WO2024042993A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2024042993A1
WO2024042993A1 PCT/JP2023/027561 JP2023027561W WO2024042993A1 WO 2024042993 A1 WO2024042993 A1 WO 2024042993A1 JP 2023027561 W JP2023027561 W JP 2023027561W WO 2024042993 A1 WO2024042993 A1 WO 2024042993A1
Authority
WO
WIPO (PCT)
Prior art keywords
layers
transmission
pusch
layer
information
Prior art date
Application number
PCT/JP2023/027561
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2024042993A1 publication Critical patent/WO2024042993A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a user terminal (User Equipment (UE)) will be able to transmit one or more Code Words (CW) using more than four layers.
  • CW Code Words
  • TB Transport Block
  • PUSCH Physical Uplink Shared Channel
  • simultaneous UL transmission using multiple panels is being considered.
  • MCS modulation and coding schemes
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately perform UL transmission such as PUSCH.
  • a terminal uses a plurality of modulation and coding schemes (MCS) corresponding to a plurality of layers, respectively, to be used for transmission of a physical uplink shared channel (PUSCH). )) and MCSs respectively corresponding to the plurality of layer groups; and a control unit that controls at least one PUSCH transmission.
  • MCS modulation and coding schemes
  • UL transmission such as PUSCH can be performed appropriately.
  • FIGS. 1A and 1B are diagrams illustrating an example of single-panel UL transmission.
  • 2A to 2C are diagrams showing examples of methods 1 to 3 of simultaneous UL transmission using multi-panels.
  • FIG. 3 is a diagram illustrating an example of PUSCH repetitive transmission using TDM.
  • FIGS. 4A to 4D are diagrams showing variations of PUSCH repetitive transmission.
  • 5A to 5C are diagrams showing other variations of PUSCH repetitive transmission.
  • 6A to 6D are diagrams illustrating an example of the correspondence between layer groups and layers for each number of layers.
  • FIG. 7 is a diagram showing an example of CW-layer mapping of one CW up to four layers.
  • FIG. 8 is a diagram showing an example of CW-layer mapping of one CW of up to eight layers (for example, layers 5-8).
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the UE receives information (SRS configuration information, e.g., parameters in "SRS-Config" of the RRC control element) used to transmit a measurement reference signal (e.g., Sounding Reference Signal (SRS)).
  • SRS configuration information e.g., parameters in "SRS-Config" of the RRC control element
  • SRS Sounding Reference Signal
  • the UE transmits information regarding one or more SRS resource sets (SRS resource set information, e.g., "SRS-ResourceSet” of an RRC control element) and information regarding one or more SRS resources (SRS resource At least one of the RRC control element "SRS-Resource”) may be received.
  • SRS resource set information e.g., "SRS-ResourceSet” of an RRC control element
  • SRS resource At least one of the RRC control element "SRS-Resource” may be received.
  • One SRS resource set may be associated with a predetermined number of SRS resources (a predetermined number of SRS resources may be grouped).
  • Each SRS resource may be identified by an SRS resource indicator (SRI) or an SRS resource ID (Identifier).
  • the SRS resource set information may include an SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, an SRS resource type, and information on SRS usage.
  • SRS-ResourceSetId SRS resource set ID
  • SRS-ResourceId SRS resource set ID
  • SRS resource type SRS resource type
  • the SRS resource types are Periodic SRS (P-SRS), Semi-Persistent SRS (SP-SRS), Aperiodic SRS (A-SRS, AP -SRS)) may be indicated.
  • the UE may transmit the P-SRS and SP-SRS periodically (or periodically after activation), and may transmit the A-SRS based on the SRS request of the DCI.
  • the usage is, for example, beam management (beamManagement), codebook-based transmission (codebook: CB), non-codebook-based transmission (nonCodebook: NCB), antenna switching (antennaSwitching), etc.
  • the SRS for codebook-based or non-codebook-based transmission applications may be used to determine the precoder for codebook-based or non-codebook-based PUSCH transmissions based on SRI.
  • the UE determines the precoder for PUSCH transmission based on the SRI, Transmitted Rank Indicator (TRI), and Transmitted Precoding Matrix Indicator (TPMI). You may.
  • the UE may determine the precoder for PUSCH transmission based on the SRI for non-codebook-based transmission.
  • SRS resource information includes SRS resource ID (SRS-ResourceId), SRS port number, SRS port number, transmission Comb, SRS resource mapping (e.g., time and/or frequency resource location, resource offset, resource period, repetition number, SRS (number of symbols, SRS bandwidth, etc.), hopping related information, SRS resource type, sequence ID, SRS spatial relationship information, etc.
  • the spatial relationship information of the SRS may indicate spatial relationship information between the predetermined reference signal and the SRS.
  • the predetermined reference signal includes a synchronization signal/broadcast channel (Synchronization Signal/Physical Broadcast Channel: SS/PBCH) block, a channel state information reference signal (CSI-RS), and an SRS (for example, another SRS). It may be at least one of the following.
  • the SS/PBCH block may be called a synchronization signal block (SSB).
  • the SRS spatial relationship information may include at least one of an SSB index, a CSI-RS resource ID, and an SRS resource ID as an index of the predetermined reference signal.
  • the SSB index, SSB resource ID, and SSBRI may be read interchangeably.
  • the CSI-RS index, CSI-RS resource ID, and CRI may be read interchangeably.
  • the SRS index, SRS resource ID, and SRI may be read interchangeably.
  • the SRS spatial relationship information may include a serving cell index, a BWP index (BWP ID), etc. corresponding to the above-mentioned predetermined reference signal.
  • BC is, for example, a node (e.g., base station or UE) that determines the beam (transmission beam, Tx beam) to be used for signal transmission based on the beam (reception beam, Rx beam) used for signal reception. It may be the ability to
  • BC is transmission/reception beam correspondence (Tx/Rx beam correspondence), beam reciprocity (beam reciprocity), beam calibration (beam calibration), calibrated/non-calibrated (Calibrated/Non-calibrated), reciprocity calibration It may also be referred to as reciprocity, calibrated/non-calibrated, degree of correspondence, degree of coincidence, etc.
  • the UE uses the same beam (spatial domain transmission filter) as the SRS (or SRS resources) instructed by the base station based on the measurement results of one or more SRSs (or SRS resources).
  • uplink signals for example, PUSCH, PUCCH, SRS, etc. may be transmitted.
  • the UE uses a beam (spatial domain transmit filter) that is the same as or corresponds to the beam (spatial domain receive filter) used for receiving a predetermined SSB or CSI-RS (or CSI-RS resource). Then, uplink signals (for example, PUSCH, PUCCH, SRS, etc.) may be transmitted.
  • a beam spatial domain transmit filter
  • CSI-RS CSI-RS resource
  • the UE determines the spatial domain for reception of the SSB or CSI-RS.
  • the SRS resource may be transmitted using the same spatial domain filter (spatial domain transmit filter) as the filter (spatial domain receive filter).
  • the UE may assume that the UE receive beam for SSB or CSI-RS and the UE transmit beam for SRS are the same.
  • target SRS For a certain SRS (target SRS) resource, when the UE is configured with spatial relationship information regarding another SRS (reference SRS) and the relevant SRS (target SRS) (for example, in the case of no BC), the UE The target SRS resource may be transmitted using the same spatial domain filter (spatial domain transmit filter) as for the transmission of the target SRS resource. That is, in this case, the UE may assume that the UE transmission beam of the reference SRS and the UE transmission beam of the target SRS are the same.
  • spatial domain filter spatial domain transmit filter
  • the UE may determine the spatial relationship of the PUSCH scheduled by the DCI based on the value of a predetermined field (e.g., SRS resource identifier (SRI) field) in the DCI (e.g., DCI format 0_1). Specifically, the UE may use the spatial relationship information (for example, "spatialRelationInfo" of the RRC information element) of the SRS resource determined based on the value of the predetermined field (for example, SRI) for PUSCH transmission.
  • a predetermined field e.g., SRS resource identifier (SRI) field
  • SRI spatialRelationInfo
  • the UE When using codebook-based transmission for PUSCH, the UE may be configured with two SRS resources by RRC, and may be instructed to use one of the two SRS resources by DCI (1-bit predetermined field).
  • the UE When using non-codebook-based transmission for PUSCH, the UE may have four SRS resources configured by RRC, and one of the four SRS resources may be indicated by DCI (2-bit predetermined field). .
  • RRC reconfiguration is required.
  • DL-RS can be configured for the spatial relationship of SRS resources used for PUSCH.
  • a UE can be configured with a spatial relationship of multiple (eg, up to 16) SRS resources by RRC, and can be directed to one of the multiple SRS resources by a MAC CE.
  • UL TCI status (UL TCI status) Rel.
  • the use of the UL TCI state is being considered as a UL beam directing method.
  • the notification of UL TCI status is similar to the notification of DL beam (DL TCI status) of the UE.
  • the DL TCI state may be interchanged with the TCI state for PDCCH/PDSCH.
  • the channel/signal (which may be called a target channel/RS) for which the UL TCI state is set (designated) is, for example, PUSCH (DMRS of PUSCH), PUCCH (DMRS of PUCCH), random access channel (Physical Random Access Channel (PRACH)), SRS, etc.
  • PUSCH DMRS of PUSCH
  • PUCCH DMRS of PUCCH
  • PRACH Physical Random Access Channel
  • the RS (source RS) that has a QCL relationship with the channel/signal may be, for example, a DL RS (for example, SSB, CSI-RS, TRS, etc.) or a UL RS (for example, SRS, beam management (SRS etc.) may also be used.
  • a DL RS for example, SSB, CSI-RS, TRS, etc.
  • a UL RS for example, SRS, beam management (SRS etc.
  • an RS that has a QCL relationship with the channel/signal may be associated with a panel ID for receiving or transmitting the RS.
  • the association may be explicitly set (or specified) by upper layer signaling (for example, RRC signaling, MAC CE, etc.), or may be determined implicitly.
  • the correspondence between the RS and the panel ID may be set and included in the UL TCI status information, or may be set and included in at least one of the resource configuration information, spatial relationship information, etc. of the RS.
  • the QCL type indicated by the UL TCI state may be the existing QCL types A to D, or may be another QCL type, and may be based on a predetermined spatial relationship, associated antenna port (port index), etc. May include.
  • the UE When the UE is designated with a relevant panel ID for UL transmission (for example, designated by the DCI), the UE may perform the UL transmission using the panel corresponding to the panel ID.
  • a panel ID may be associated with a UL TCI state, and if a UE is assigned (or activated) a UL TCI state for a given UL channel/signal, the UE selects that UL TCI state according to the panel ID associated with that UL TCI state. /The panel used for signal transmission may be specified.
  • At least one of the following transmission methods A and B may be applied to the single panel UL transmission method or the single panel UL transmission method candidate.
  • panel/UE panel may be read as a UE capability value set (for example, UE capability value set) reported for each UE capability.
  • UE capability value set for example, UE capability value set
  • different panels, different spatial relationships, different joint TCI states, different TPC parameters, different antenna ports, etc. may be read interchangeably.
  • Transmission method A Single panel single TRP UL transmission
  • a transmission scheme is used in which the UE transmits UL for one TRP at one time from only one beam and panel (FIG. 1A).
  • Transmission method B Single panel multi-TRP UL transmission
  • Rel it is considered to perform UL transmission from only one beam and panel at one time and repeatedly transmit to multiple TRPs (FIG. 1B).
  • the UE transmits PUSCH from panel #1 to TRP #1 (switching beams and panels), and then transmits PUSCH from panel #2 to TRP #2.
  • the two TRPs are connected via an ideal backhaul.
  • Multi-panel transmission Rel. From 18 onwards, simultaneous UL transmission using multiple panels (e.g., simultaneous multi-panel UL transmission (SiMPUL)) for one or more TRPs may be supported to improve UL throughput/reliability. It is being considered. Furthermore, multi-panel UL transmission systems are being considered for predetermined UL channels (for example, PUSCH/PUCCH).
  • predetermined UL channels for example, PUSCH/PUCCH
  • codebooks of existing systems eg, Rel. 16 and earlier
  • At least one of the following methods 1 to 3 (multi-panel UL transmission methods 1 to 3) is being considered as a multi-panel UL transmission method or a multi-panel UL transmission method candidate. Only one of transmission methods 1 to 3 may be supported. Multiple schemes are supported, including at least one of transmission schemes 1 to 3, and one of the multiple transmission schemes may be configured on the UE.
  • Transmission method 1 Coherent multi-panel UL transmission
  • Multiple panels may be synchronized with each other. All layers are mapped to all panels. Multiple analog beams are directed.
  • the SRS Resource Indicator (SRI) field may be expanded. This scheme may use up to 4 layers for UL.
  • the UE maps one codeword (CW) or one transport block (TB) to L layers (PUSCH(1,2,...,L)) from each of the two panels.
  • Panel #1 and panel #2 are coherent.
  • Transmission method 1 can obtain a gain due to diversity.
  • the total number of layers in the two panels is 2L. If the maximum total number of layers is 4, the maximum number of layers in one panel is 2.
  • Transmission method 2 Non-coherent multi-panel UL transmission of one codeword (CW) or transport block (TB)
  • Multiple panels do not need to be synchronized. Different layers are mapped to different panels and one CW or TB for PUSCH from multiple panels. A layer corresponding to one CW or TB may be mapped to multiple panels.
  • This transmission scheme may use up to 4 layers or up to 8 layers for UL. If supporting up to 8 layers, this transmission scheme may support one CW or TB with up to 8 layers.
  • the UE divides 1 CW or 1 TB into k layers (PUSCH (1, 2, ..., k)) and L - k layers (PUSCH (k+1, k+2, ..., L)).
  • k layers are transmitted from panel #1
  • L ⁇ k layers are transmitted from panel #2.
  • Transmission method 2 can obtain gains due to multiplexing and diversity.
  • the total number of layers in the two panels is L.
  • Transmission method 3 2 CW or TB non-coherent multi-panel UL transmission
  • Multiple panels do not need to be synchronized.
  • Different layers are mapped to different panels and two CWs or TBs for PUSCH from multiple panels.
  • a layer corresponding to one CW or TB may be mapped to one panel.
  • Layers corresponding to multiple CWs or TBs may be mapped to different panels.
  • This transmission scheme may use up to 4 layers or up to 8 layers for UL. If supporting up to 8 layers, this transmission scheme may support up to 4 layers per CW or TB.
  • the UE maps CW#1 or TB#1 to k layers (PUSCH(1,2,...,k)) among 2CWs or 2TBs, and maps CW#2 or TB#2 to k layers (PUSCH(1,2,...,k)). is mapped to Lk layers (PUSCH (k+1, k+2, . . . , L)), k layers are transmitted from panel #1, and Lk layers are transmitted from panel #2. Transmission method 3 can obtain gains due to multiplexing and diversity. The total number of layers in the two panels is L.
  • the base station may set or instruct panel-specific transmission for UL transmission using the UL TCI or panel ID.
  • UL TCI (UL TCI status) is Rel. It may be based on signaling similar to the DL beam indication supported in X.15.
  • the panel ID may be implicitly or explicitly applied to the transmission of at least one of the target RS resource or target RS resource set, PUCCH, SRS, and PRACH. If the panel ID is explicitly notified, the panel ID may be configured in at least one of the target RS, target channel, and reference RS (eg, DL RS resource configuration or spatial relationship information).
  • multi-panel UL transmission for example, simultaneous multi-panel transmission ( Simultaneous Transmission Across Multiple Panels (STxMP) is being considered.
  • STxMP simultaneous multi-panel transmission
  • S-DCI Single DCI
  • SDM Space Division Multiplexing
  • FDM Frequency Division Multiplexing
  • a scheme different parts of the frequency domain resources of one PUSCH transmission opportunity are transmitted from different UE beams/panels.
  • S-DCI FDM-B method A method in which two PUSCH transmission opportunities of the same/different RV of the same TB are transmitted from different UE beams/panels on non-overlapping frequency domain resources and the same time domain resources.
  • - S-DCI SFN-based transmission scheme transmit the same PUSCH/DMRS from two different UE beams/panels at the same time.
  • - S-DCI spatial domain repetition scheme Two PUSCH transmission opportunities with different Redundancy Versions (RVs) of the same TB are transmitted from two different UE beams/panels on the same time and frequency resources.
  • RVs Redundancy Versions
  • - M-DCI scheme two overlapping (fully/partially overlapping in time domain, fully/partially overlapping or non-overlapping in frequency domain) two PUSCHs are transmitted from two different UE beams/panels.
  • Transmitting multiple TBs may mean transmitting the same TB multiple times or transmitting different TBs.
  • FIG. 3 is a diagram illustrating an example of PUSCH repetitive transmission using TDM.
  • the frequency resources of repetition #1 and repetition #2 of PUSCH/PUCCH are the same, but the time resources are different.
  • the UE may assume that PUSCH/PUCCH repeated transmissions applying Frequency Division Multiplexing (FDM) are scheduled on the same time resource and different frequency resources. That is, when a plurality of coherent panels are used, the UE may transmit PUSCH/PUCCH repetition transmission using FDM in the same time resource and different frequency resources.
  • FDM Frequency Division Multiplexing
  • FIG. 4A is a diagram showing a first example of repeated transmission using FDM (FDM-A).
  • FDM-A FDM-A
  • FIG. 4A shows an example in which PUSCH/PUCCH is repeatedly transmitted once for one TB/UCI.
  • FIG. 4B is a diagram showing a second example of repeated transmission using FDM (FDM-B).
  • FDM-B shows an example in which PUSCH/PUCCH is repeatedly transmitted twice for one TB/UCI.
  • FIG. 4C is a diagram illustrating an example of repeated transmission using a single frequency network (SFN).
  • SFN single frequency network
  • FIG. 4C shows an example in which one PUSCH/PUCCH is transmitted using different beams/panels for one TB/UCI.
  • the UE may assume that PUSCH repeated transmissions applying space division multiplexing (SDM) are scheduled on the same time resource and the same frequency resource. That is, when a plurality of coherent panels are used, the UE may transmit PUSCH repetition transmission using SDM in the same time resource and the same frequency resource.
  • SDM space division multiplexing
  • FIG. 4D is a diagram showing an example of repeated transmission using SDM.
  • the time and frequency resources of PUSCH/PUCCH repetition #1 and repetition #2 are the same.
  • FIG. 5A is a diagram illustrating an example of repeated transmission using SDM with one CW.
  • the time and frequency resources of layers #1-2 and #3-4 corresponding to PUSCH/PUCCH are the same.
  • FIG. 5B is a diagram showing an example of repeated transmission using SDM with two CWs.
  • the time and frequency resources of CW#1 and CW#2 corresponding to PUSCH/PUCCH are the same.
  • FIG. 5C is a diagram illustrating an example where at least a portion of the time and frequency resources of PUSCH/PUCCH corresponding to each of a plurality of TBs overlap.
  • the time and frequency resources of PUSCH/PUCCH #1 corresponding to the first TB/UCI and PUSCH/PUCCH #2 corresponding to the second TB/UCI are the same.
  • Rel. 15/16 NR supports uplink (UL) Multi Input Multi Output (MIMO) transmission up to 4 layers.
  • MIMO Multi Input Multi Output
  • Rel. 18 NR transmission of up to 6 ranks using 6 antenna ports, transmission of up to 6 or 8 ranks using 8 antenna ports, etc. are being considered.
  • antennas may be arranged one-dimensionally (1D) or two-dimensionally (2D).
  • 1D one-dimensionally
  • 2D two-dimensionally
  • the antenna layout is not limited to these.
  • the number of panels in which the antennas are placed, the orientation of the panels, the coherency of each panel/antenna (fully coherent, partially coherent, non-coherent, etc.), antenna alignment in a particular direction (horizontal, vertical, etc.), polarization antenna configuration. (Single polarization, cross polarization, number of polarization planes, etc.) may be arbitrarily set.
  • Rel. 15 and Rel. for Rel. 16 UEs it is assumed that only one beam/panel is used for UL transmission at a given time, but Rel.
  • simultaneous UL transmission of multiple beams/multiple panels for example, PUSCH transmission
  • simultaneous PUSCH transmission of multiple beams/multiple panels may correspond to PUSCH transmission with a number of layers greater than 4, or may correspond to PUSCH transmission with a number of layers equal to or less than 4.
  • precoding matrices for UL transmission using more than four antenna ports are being considered.
  • a codebook for 8-port transmission (which may also be called an 8-transmission UL codebook (8 TX UL codebook)) is being considered.
  • MCS table may be defined (may be stored in the UE). Note that in the MCS table, in addition to the above three items, spectral efficiency may be associated.
  • the UE receives a DCI (UL grant, at least one of DCI format 0_x (x is 0, 1, 2, etc.)) for PUSCH scheduling, and based on the MCS table and the MCS index included in the DCI, The modulation order (Qm) and coding rate (R) for PUSCH may be determined.
  • the DCI for scheduling may be called a scheduling DCI.
  • the UE may determine the TBS for PUSCH using at least one of steps 1) to 4) below.
  • Step 1) The UE determines the number of REs in the slot (N RE ).
  • the UE may determine the number of REs (N' RE ) allocated to the PUSCH within one PRB. For example, the UE may determine the number of REs (N' RE ) allocated to the PUSCH within one PRB based on at least one parameter shown in equation (1) below.
  • N' RE N RB SC ⁇ N sh symb -N PRB DMRS -N PRB oh
  • N sh symb is the number of symbols (eg, OFDM symbols) scheduled within the slot.
  • N PRB DMRS is the number of REs for DMRS per PRB within the scheduled period.
  • the number of REs for the DMRS may include group overhead regarding code division multiplexing (CDM) of the DMRS indicated by the scheduling DCI.
  • CDM code division multiplexing
  • N PRB oh may be a value configured by upper layer parameters.
  • N PRB oh is the overhead indicated by the upper layer parameter (Xoh-PUSCH), and may have a value of 0, 6, 12, or 18. If Xoh-PUSCH is not configured (notified) to the UE, Xoh-PUSCH may be set to 0. Furthermore, in message 3 (msg3) in the random access procedure, Xoh-PUSCH is set to 0.
  • the UE may also determine the total number of REs (N RE ) allocated to the PUSCH.
  • the UE determines the total number of REs (N RE ) allocated to the PUSCH based on the number of REs (N' RE ) allocated to the PUSCH within one PRB and the total number of PRBs (n PRB ) allocated to the UE. (For example, the following formula (2)).
  • N RE min (156, N' RE ) ⁇ n PRB
  • the UE quantizes the number of REs (N' RE ) allocated to PUSCH within one PRB according to a predetermined rule, and calculates the number of REs allocated to the PUSCH based on the quantized number of REs and the total number of PRBs allocated to the UE (n PRB ).
  • the total number of REs (N RE ) allocated to the PUSCH may be determined.
  • Step 2 The UE determines an intermediate number of information bits (N info ). Specifically, the UE may determine the intermediate number (N info ) based on at least one parameter shown in equation (3) below. Note that the intermediate number (N info ) may be called a temporary TBS (TBS temp ) or the like.
  • N info N RE ⁇ R ⁇ Q m ⁇
  • N RE is the total number of REs allocated to PUSCH.
  • R is a coding rate associated with the MCS index included in the DCI in the MCS table.
  • Q m is the modulation order associated with the MCS index included in the DCI in the MCS table.
  • is the number of PUSCH layers.
  • Step 3 If the intermediate number of information bits (N info ) determined in step 2) is less than or equal to a predetermined threshold (e.g., 3824), the UE quantizes the intermediate number and converts the quantized intermediate number (N' info ) may be determined. The UE may calculate the quantized intermediate number (N' info ) using, for example, equation (4).
  • N' info max (24, 2 n ⁇ floor (N info /2))
  • n max(3, floor(log 2 (N info ))
  • the UE uses a predetermined table (for example, a table that associates a TBS with an index (also referred to as a quantization table or a TBS table)), and uses (not less than) may find the nearest TBS.
  • a predetermined table for example, a table that associates a TBS with an index (also referred to as a quantization table or a TBS table)
  • uses not less than may find the nearest TBS.
  • TBS 8 ⁇ C ⁇ ceil((N' info +24)/(8 ⁇ C))-24
  • C ceil((N' info +24)/3816)
  • N' info is a quantized intermediate number, and may be calculated using the above equation (5), for example. Further, C may be the number of code blocks (CB) into which the TB is divided.
  • the coding rate (R) is greater than (or more than) a predetermined threshold (for example, 1/4), and the quantized intermediate number of information bits (N' info ) is equal to or greater than the predetermined threshold (
  • the UE may determine the TBS based on at least one parameter shown in equation (7) below (e.g., using equation (7)). good.
  • TBS 8 ⁇ C ⁇ ceil((N' info +24)/(8 ⁇ C))-24
  • C ceil((N' info +24)/8424)
  • the UE determines the intermediate number of information bits ( NRE ) based on at least one of the number of REs available for PUSCH within a slot, the coding rate (R), the modulation order (Qm), and the number of layers. N info ) is determined, and the TBS for PUSCH is determined based on the intermediate number (N'info) obtained by quantizing the intermediate number (N info ).
  • Case 1/2 below is being considered to support MCS for each layer/layer group/panel/TRP.
  • Case 1 2 TB/CW is transmitted on PUSCH and MCS is directed to TB/CW
  • Case 2 1 TB/CW is transmitted on PUSCH and MCS is transmitted on 1 TB/CW layer/layer group (or panel/TRP) ) is indicated for each
  • the present inventors focused on the case (for example, case 2 above) where MCS is instructed for each layer/layer group (or panel/TRP) of 1 TB/CW, and devised a method for appropriately performing PUSCH transmission. I came up with the idea.
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages upper layer parameters, fields, Information Elements (IEs), settings, etc.
  • IEs Information Elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described.
  • SRS resource indicator SRI
  • control resource set CONtrol REsource SET (CORESET)
  • Physical Downlink Shared Channel PDSCH
  • codeword CW
  • Transport Block Transport Block
  • TB transport Block
  • RS reference signal
  • antenna port e.g. demodulation reference signal (DMRS) port
  • antenna port group e.g.
  • DMRS port group groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • groups e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups
  • resources e.g., reference signal resources, SRS resource
  • resource set for example, reference signal resource set
  • CORESET pool downlink Transmission Configuration Indication state (TCI state) (DL TCI state), up
  • spatial relationship information identifier (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably.
  • “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
  • the UE transmits information on the layer/layer group used for PUSCH transmission, information on the mapping (or association) between layers and layer groups, and information on at least one of the MCSs corresponding to each layer/layer group through RRC/ It may also be received by MAC CE/DCI.
  • the UE may control PUSCH transmission of at least one of each layer and each layer group based on the mapping relationship between the multiple layers and the multiple layer groups.
  • the following embodiments can be suitably applied to 1 CW PUSCH transmission (for example, 8Tx PUSCH)/simultaneous multi-panel transmission (STxMP PUSCH SDM method) using MCS for each layer/layer group.
  • 1 CW PUSCH transmission for example, 8Tx PUSCH
  • STxMP PUSCH SDM method simultaneous multi-panel transmission
  • 8Tx PUSCH may be read as PUSCH using more than four antenna ports.
  • the first embodiment relates to mapping between layers and layer groups (or association between layers and layer groups) when MCS is instructed for each layer group of PUSCH. Instructions may be read as settings or applications.
  • layer groups When performing PUSCH transmission using multiple layers, layer groups may be configured/applied/supported. Each layer group may include one or more layers. MCS may be specified for each layer group. The UE may control PUSCH transmission by applying MCS separately for each layer group of PUSCH.
  • mapping (or association) between layers and layer groups may be defined in advance in specifications or the like.
  • the number of layer groups and the number of layers within each layer group may be defined in advance. For example, layers #0 to #X may be defined as a first layer group, layers #X+1 to #Y may be defined as a second layer group, etc.
  • the number of layer groups or the number of layers included in each layer group may be defined based on the number of layers applied/configured to PUSCH transmission. That is, different mapping may be defined for each total number of PUSCH layers.
  • layers #0 to #3 may correspond to the first layer group, and layers #4 to #7 may correspond to the second layer group (see FIG. 6A).
  • layers #0 to #3 may correspond to the first layer group, and layers #4 to #6 may correspond to the second group (see FIG. 6B).
  • layers #0 to #2 may correspond to the first layer group, and layers #3 to #6 may correspond to the second group.
  • layers #0 to #3 may correspond to the first layer group, and layers #4 to #5 may correspond to the second group (see FIG. 6C).
  • layers #0 to #1 may correspond to the first layer group, and layers #2 to #5 may correspond to the second group.
  • layers #0 to #2 may correspond to the first layer group, and layers #3 to #5 may correspond to the second group.
  • layers #0 to #3 may correspond to the first layer group, and layer #4 may correspond to the second group (see FIG. 6D).
  • layer #0 may correspond to the first layer group
  • layers #1 to #4 may correspond to the second group.
  • layers #0 to #2 may correspond to the first layer group
  • layers #3 to #4 may correspond to the second group.
  • layers #0 to #1 may correspond to the first layer group
  • layers #2 to #4 may correspond to the second group.
  • the number of layer groups may be three or more.
  • the number of applied/supported layer groups may differ based on the total number of layers applied to PUSCH transmission. For example, three or more layer groups may be applied to M layers or more, and two or less layer groups may be applied to less than M layers.
  • ⁇ Option 1-2 ⁇ Information regarding mapping (or association) between layers and layer groups may be configured/instructed from the base station (or network) to the UE using RRC/MAC CE/DCI.
  • the base station may set/instruct the UE to information regarding the number of layer groups/information regarding the number of layers included in each layer group using RRC/MAC CE/DCI.
  • the UE may determine the correspondence between layer groups and each layer based on information set/instructed by the base station. For example, at least one of the layer group (or layer group index) to be set, the number of layers (or layer index), and the number of layers corresponding to each layer group (or layer index corresponding to each layer group index) may be included in RRC parameters related to PUSCH configuration (for example, PUSCHconfig), or may be included in other RRC parameters.
  • PUSCHconfig for example, PUSCHconfig
  • option 1-1/option 1-2 information regarding MCS corresponding to each layer group (or applied to each layer group) is transmitted from the base station (or network) to the UE using RRC/MAC CE/DCI. may be set/instructed.
  • MCS for each layer group may be supported/applied when predetermined conditions are met.
  • the predetermined condition may be at least one of the number of PUSCH layers and the setting of a predetermined RRC parameter.
  • MCS may be configured/applied separately for each layer group.
  • the predetermined value (X) may be, for example, 4, 6, or other values.
  • the UE may apply the MCS separately for each layer group when the predetermined upper layer parameter setting/PUSCH layer number is greater than a predetermined value.
  • the mapping (or association) between layers and layer groups may be determined based on the panel/TRP/TCI/SRI/SRS resource set with which each layer is associated.
  • layers associated with a first panel/TRP/TCI/SRI/SRS resource set are mapped to a first layer group and associated with a second panel/TRP/TCI/SRI/SRS resource set.
  • the layers may be mapped to a second layer group.
  • the first panel may correspond to a panel with a lower panel ID (lower panel ID), and the second panel may correspond to a panel with a higher panel ID (higher panel ID).
  • the first panel may correspond to a panel with a higher panel ID and the second panel may correspond to a panel with a lower panel ID.
  • the first SRI corresponds to (or is indicated by) the first SRI field
  • the second SRI corresponds to (or is indicated by) the second SRI field. may be instructed).
  • the first SRS resource set may correspond to an SRS resource set with a lower ID
  • the second SRS resource set may correspond to an SRS resource set with a higher ID.
  • the first SRS resource set may correspond to an SRS resource set with a higher ID
  • the second SRS resource set may correspond to an SRS resource set with a lower ID.
  • the second embodiment describes an example of determining the TB size when 1 TB/CW is transmitted on the PUSCH and different layers/layer groups of the PUSCH are transmitted on different MCSs.
  • UL transmission with more than 4 layers e.g. 8Tx with more than 4 layers
  • simultaneous multi-panel transmission using SDM scheme e.g. STxMP SDM scheme
  • the TB size (or A predetermined parameter (eg, N info ) in TB sizing may be derived.
  • N info may be calculated (or calculated/derived) as the sum of N info_i for all layers/layer groups (or across all layers/layer groups).
  • N info_i may be calculated based on the MCS and the number of layers (or layer number) of the i-th layer/layer group. For example, N info may be calculated based on the following equation (9).
  • N corresponds to the number of layers/layer groups. A separate MCS may be indicated for each layer/layer group. N may be predefined in the specification. For example, N may be 2 or may be any other value. Alternatively, N may be set/instructed from the base station to the UE by RRC/MAC CE/DCI.
  • R(i) corresponds to the target code rate (e.g., target code rate) of the i-th layer/layer group and is indicated for the i-th layer/layer group (or may be determined/derived from the MCS (corresponding to the layer group).
  • target code rate e.g., target code rate
  • Q m(i) corresponds to the modulation order of the ith layer/layer group and is indicated for the ith layer/layer group (or (corresponding to) may be determined/derived from the MCS.
  • N RE may correspond to the total number of REs allocated to PUSCH (eg, the same N RE as the existing system).
  • N RE may be replaced by N RE(i) indicating the number of REs in the i-th layer/layer group.
  • step 2 supported in the existing system (e.g. Rel. You may go.
  • TB size (TBS) is calculated (or calculated/derived) based on the selected MCS. It's okay.
  • One MCS may be selected from a plurality of MCSs across all layers/layer groups by applying at least one of the following options 2-2-1 to 2-2-3.
  • the MCS corresponding to the first, second, or last layer/layer group may be selected.
  • An MCS associated with a given panel/TRP/TCI/SRI/SRS resource set may be selected.
  • the MCS associated with the first panel/TRP/TCI/SRI/SRS resource set may be selected.
  • the MCS associated with the second panel/TRP/TCI/SRI/SRS resource set may be selected.
  • the first panel may correspond to a panel with a lower panel ID (lower panel ID), and the second panel may correspond to a panel with a higher panel ID (higher panel ID).
  • the first panel may correspond to a panel with a higher panel ID and the second panel may correspond to a panel with a lower panel ID.
  • the first SRI corresponds to (or is indicated by) the first SRI field
  • the second SRI corresponds to (or is indicated by) the second SRI field. may be instructed).
  • the first SRS resource set may correspond to an SRS resource set with a lower ID
  • the second SRS resource set may correspond to an SRS resource set with a higher ID.
  • the first SRS resource set may correspond to an SRS resource set with a higher ID
  • the second SRS resource set may correspond to an SRS resource set with a lower ID.
  • the MCS to be selected may be determined based on the index of the MCS. For example, the MCS with the smallest index (or the MCS with the smallest index) may be selected. Alternatively, the MCS with the largest index (or the MCS with the largest index) may be selected.
  • N info may be calculated (or calculated/derived) based on the selected MCS.
  • N info may be calculated based on the following equation (10).
  • R corresponds to a target code rate (for example, target code rate) determined from the selected MCS.
  • Q m corresponds to the modulation order determined from the selected MCS.
  • corresponds to the total number of PUSCH layers.
  • N RE corresponds to the total number of REs allocated to PUSCH.
  • step 2 supported by the existing system (e.g. Rel. You may go.
  • the third embodiment relates to CW and layer mapping (or association) when UL transmission with more than 4 layers (eg, 8 layers) is supported.
  • CW and layer mapping for example, CW-layer mapping
  • CW-layer mapping for example, CW-layer mapping
  • CW-layer mapping is defined for one CW up to a number of layers greater than 4 (for example, up to 8 layers) (see FIG. 8).
  • FIG. 8 shows an example of CW-layer mapping for one CW in layers 5-8.
  • the CW-layer mapping for one CW supporting up to 8 layers may be defined by the same principle/mechanism as the CW-layer mapping for one CW supporting up to 4 layers.
  • i 0, 1,..., M layer symb -1, ⁇ corresponds to the number of layers, and M layer symb corresponds to the number of modulation symbols for each layer (for example, modulation symbols).
  • ⁇ Supplement> At least one of the embodiments described above may apply only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: - Supporting specific processing/operation/control/information for at least one of the above embodiments.
  • - Support 8Tx PUSCH or - Support 8Tx PUSCH using more than 4 layers, up to 8 layers or up to 6 layers, or - 1CW, more than 4 layers (or up to 8 layers or up to 6 layers).
  • supporting 8 Tx PUSCH per MCS of layer/layer group or - supporting STxMP SDM scheme, or - supporting STxMP SDM scheme with 1 CW with MCS per CW.
  • the above-mentioned specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency), or may be a capability for each frequency (for example, cell, band, BWP). , capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), or for each subcarrier spacing (SCS). It may be the ability of
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • At least one of the embodiments described above may be applied to at least one of the following PUSCH transmissions.
  • ⁇ Simultaneous multi-panel UL transmission with 4 layers or less ⁇ UL transmission of 4 layers or more and 8 layers or less, ⁇ Single panel UL transmission with 4 layers or less.
  • At least one of the embodiments described above may be configured such that the UE configures/activates specific information related to the embodiment described above (or performs the operation of the embodiment described above) by upper layer signaling/physical layer signaling. / May be applied when triggered.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
  • MCS modulation and coding schemes
  • PUSCH Physical Uplink Shared Channel
  • a terminal having a section and a terminal.
  • the receiving unit receives information regarding mapping relationships between the plurality of layers and the plurality of layer groups.
  • the control unit is used to determine a transport block size based on a target coding rate and a modulation order determined from a plurality of MCSs respectively corresponding to a plurality of layers or a plurality of MCSs respectively corresponding to a plurality of layer groups.
  • the terminal according to Supplementary note 1 or 2, which determines a parameter to be used or a transport block size.
  • the control unit performs a transducer based on a target coding rate and modulation order determined from a specific MCS selected from a plurality of MCSs respectively corresponding to a plurality of layers or a plurality of MCSs respectively corresponding to a plurality of layer groups.
  • the terminal according to any one of Supplementary Notes 1 to 3, which determines a parameter used to determine a port block size or a transport block size.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • Core Network 30 is, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management (SMF), Unified Data Management. T (UDM), ApplicationFunction (AF), Data Network (DN), Location Management Network Functions (NF) such as Function (LMF) and Operation, Administration and Maintenance (Management) (OAM) may also be included.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management
  • UDM Unified Data Management.
  • AF ApplicationFunction
  • DN Location Management Network Functions
  • NF Location Management Network Functions
  • LMF Location Management Network Functions
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL wireless access methods may be used as the UL and DL wireless access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 10 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 is the receiving power (for example, Reference Signal Received Power (RSRP)), Receive Quality (eg, Reference Signal Received Quality (RSRQ), Signal To InterfERENCE PLUS NOI. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20.
  • signals backhaul signaling
  • devices included in the core network 30 for example, network nodes providing NF, other base stations 10, etc.
  • User data user plane data
  • control plane data etc. may be acquired and transmitted.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitter/receiver 120 uses a plurality of modulation and coding schemes (MCS) corresponding to a plurality of layers and a plurality of Information regarding at least one MCS corresponding to each layer group may be transmitted.
  • MCS modulation and coding schemes
  • the control unit 110 may perform control to instruct mapping relationships between multiple layers and multiple layer groups.
  • FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitter/receiver 220 uses a plurality of modulation and coding schemes (MCS) corresponding to a plurality of layers and a plurality of Information regarding at least one MCS corresponding to each layer group may be received.
  • MCS modulation and coding schemes
  • the transmitter/receiver 220 may receive information regarding mapping relationships between multiple layers and multiple layer groups.
  • the control unit 210 may control PUSCH transmission of at least one of each layer and each layer group based on the mapping relationship between the multiple layers and the multiple layer groups.
  • the control unit 210 uses target coding rates and modulation orders determined from a plurality of MCSs respectively corresponding to a plurality of layers or a plurality of MCSs respectively corresponding to a plurality of layer groups to determine a transport block size.
  • the parameters/transport block size may be determined.
  • the control unit 210 performs a transformer based on a target coding rate and modulation order determined from a specific MCS selected from a plurality of MCSs respectively corresponding to a plurality of layers or a plurality of MCSs respectively corresponding to a plurality of layer groups.
  • the parameters used to determine the port block size or the transport block size may be determined.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 12 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 13 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified,
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • the i-th (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest” can be interpreted as “the i-th highest”). may be read interchangeably).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to one aspect of the present disclosure comprises: a reception unit that receives information relating to a plurality of modulation and coding schemes (MCSs) respectively corresponding to a plurality of layers and/or MCSs respectively corresponding to a plurality of layer groups, the plurality of layers and the plurality of layer groups being utilized for transmission of a physical uplink shared channel (PUSCH); and a control unit that, on the basis of a mapping relationship between the plurality of layers and the plurality of layer groups, controls PUSCH transmission of the respective layers and/or the respective layer groups.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates, lower delay, etc. (Non-Patent Document 1). Additionally, LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (for example, also referred to as 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 or later) are also being considered. .
 将来の無線通信システム(例えば、Rel.18 NR)のために、ユーザ端末(user terminal、User Equipment(UE))が、4より多いレイヤを利用して1以上のコードワード(Code Word(CW))/トランスポートブロック(Transport Block(TB))を上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))を用いて送信することが検討されている。あるいは、複数パネルを利用した同時UL送信を行うことが検討されている。 For future wireless communication systems (e.g. Rel. 18 NR), a user terminal (User Equipment (UE)) will be able to transmit one or more Code Words (CW) using more than four layers. )/Transport Block (TB) using an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) is being considered. Alternatively, simultaneous UL transmission using multiple panels is being considered.
 しかしながら、この動作の詳細について、十分に検討が進んでいない。例えば、複数のレイヤ/レイヤグループ/TRP/パネルに対して変調及び符号化方式(Modulation and Coding Scheme(MCS))をどのように適用/マッピングするか、あるいは、サイズ計算(例えばTBサイズ)等をどのように制御するかについて十分に検討されていない。UL送信制御(例えば、PUSCH送信制御)が適切に行われなければ、スループットが低下したり、通信品質が劣化したりするおそれがある。 However, the details of this operation have not been sufficiently studied. For example, how to apply/map modulation and coding schemes (MCS) to multiple layers/layer groups/TRPs/panels, or size calculations (e.g. TB size), etc. Not enough consideration has been given to how to control it. If UL transmission control (for example, PUSCH transmission control) is not performed appropriately, there is a risk that throughput may decrease or communication quality may deteriorate.
 そこで、本開示は、PUSCH等のUL送信を適切に行う端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately perform UL transmission such as PUSCH.
 本開示の一態様に係る端末は、上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))の送信に利用する、複数のレイヤにそれぞれ対応する複数の変調及び符号化方式(Modulation and Coding Scheme(MCS))と、複数のレイヤグループにそれぞれ対応するMCSと、の少なくとも一つに関する情報を受信する受信部と、複数のレイヤと複数のレイヤグループ間のマッピング関係に基づいて、各レイヤ及び各レイヤグループの少なくとも一方のPUSCH送信を制御する制御部と、を有する。 A terminal according to an aspect of the present disclosure uses a plurality of modulation and coding schemes (MCS) corresponding to a plurality of layers, respectively, to be used for transmission of a physical uplink shared channel (PUSCH). )) and MCSs respectively corresponding to the plurality of layer groups; and a control unit that controls at least one PUSCH transmission.
 本開示の一態様によれば、PUSCH等のUL送信を適切に行うことができる。 According to one aspect of the present disclosure, UL transmission such as PUSCH can be performed appropriately.
図1A及び図1Bは、シングルパネルのUL送信の一例を示す図である。FIGS. 1A and 1B are diagrams illustrating an example of single-panel UL transmission. 図2A-図2Cは、マルチパネルを用いた同時UL送信の方式1~3の一例を示す図である。2A to 2C are diagrams showing examples of methods 1 to 3 of simultaneous UL transmission using multi-panels. 図3は、TDMを適用したPUSCH繰り返し送信の一例を示す図である。FIG. 3 is a diagram illustrating an example of PUSCH repetitive transmission using TDM. 図4A-図4Dは、PUSCH繰り返し送信のバリエーションを示す図である。FIGS. 4A to 4D are diagrams showing variations of PUSCH repetitive transmission. 図5A-図5Cは、PUSCH繰り返し送信の他のバリエーションを示す図である。5A to 5C are diagrams showing other variations of PUSCH repetitive transmission. 図6A-図6Dは、各レイヤ数におけるレイヤグループとレイヤとの対応関係の一例を示す図である。6A to 6D are diagrams illustrating an example of the correspondence between layer groups and layers for each number of layers. 図7は、4レイヤまでの1CWのCW-レイヤ間のマッピングの一例を示す図である。FIG. 7 is a diagram showing an example of CW-layer mapping of one CW up to four layers. 図8は、8レイヤまで(例えば、レイヤ5-8)の1CWのCW-レイヤ間のマッピングの一例を示す図である。FIG. 8 is a diagram showing an example of CW-layer mapping of one CW of up to eight layers (for example, layers 5-8). 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図10は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of the configuration of a base station according to an embodiment. 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. 図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. 図13は、一実施形態に係る車両の一例を示す図である。FIG. 13 is a diagram illustrating an example of a vehicle according to an embodiment.
(SRS、PUSCHのための空間関係)
 UEは、測定用参照信号(例えば、サウンディング参照信号(Sounding Reference Signal(SRS)))の送信に用いられる情報(SRS設定情報、例えば、RRC制御要素の「SRS-Config」内のパラメータ)を受信してもよい。
(Spatial relationship for SRS, PUSCH)
The UE receives information (SRS configuration information, e.g., parameters in "SRS-Config" of the RRC control element) used to transmit a measurement reference signal (e.g., Sounding Reference Signal (SRS)). You may.
 具体的には、UEは、一つ又は複数のSRSリソースセットに関する情報(SRSリソースセット情報、例えば、RRC制御要素の「SRS-ResourceSet」)と、一つ又は複数のSRSリソースに関する情報(SRSリソース情報、例えば、RRC制御要素の「SRS-Resource」)との少なくとも一つを受信してもよい。 Specifically, the UE transmits information regarding one or more SRS resource sets (SRS resource set information, e.g., "SRS-ResourceSet" of an RRC control element) and information regarding one or more SRS resources (SRS resource At least one of the RRC control element "SRS-Resource") may be received.
 1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい(所定数のSRSリソースをグループ化してもよい)。各SRSリソースは、SRSリソース識別子(SRS Resource Indicator(SRI))又はSRSリソースID(Identifier)によって特定されてもよい。 One SRS resource set may be associated with a predetermined number of SRS resources (a predetermined number of SRS resources may be grouped). Each SRS resource may be identified by an SRS resource indicator (SRI) or an SRS resource ID (Identifier).
 SRSリソースセット情報は、SRSリソースセットID(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ、SRSの用途(usage)の情報を含んでもよい。 The SRS resource set information may include an SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, an SRS resource type, and information on SRS usage.
 ここで、SRSリソースタイプは、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的SRS(Aperiodic SRS(A-SRS、AP-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信し、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。 Here, the SRS resource types are Periodic SRS (P-SRS), Semi-Persistent SRS (SP-SRS), Aperiodic SRS (A-SRS, AP -SRS)) may be indicated. Note that the UE may transmit the P-SRS and SP-SRS periodically (or periodically after activation), and may transmit the A-SRS based on the SRS request of the DCI.
 また、用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブックベース送信(codebook:CB)、ノンコードブックベース送信(nonCodebook:NCB)、アンテナスイッチング(antennaSwitching)などであってもよい。コードブックベース送信又はノンコードブックベース送信の用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースのPUSCH送信のプリコーダの決定に用いられてもよい。 In addition, the usage (RRC parameter "usage", L1 (Layer-1) parameter "SRS-SetUse") is, for example, beam management (beamManagement), codebook-based transmission (codebook: CB), non-codebook-based transmission (nonCodebook: NCB), antenna switching (antennaSwitching), etc. The SRS for codebook-based or non-codebook-based transmission applications may be used to determine the precoder for codebook-based or non-codebook-based PUSCH transmissions based on SRI.
 例えば、UEは、コードブックベース送信の場合、SRI、送信ランクインジケータ(Transmitted Rank Indicator:TRI)及び送信プリコーディング行列インジケータ(Transmitted Precoding Matrix Indicator:TPMI)に基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、ノンコードブックベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。 For example, in the case of codebook-based transmission, the UE determines the precoder for PUSCH transmission based on the SRI, Transmitted Rank Indicator (TRI), and Transmitted Precoding Matrix Indicator (TPMI). You may. The UE may determine the precoder for PUSCH transmission based on the SRI for non-codebook-based transmission.
 SRSリソース情報は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信Comb、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング関連情報、SRSリソースタイプ、系列ID、SRSの空間関係情報などを含んでもよい。 SRS resource information includes SRS resource ID (SRS-ResourceId), SRS port number, SRS port number, transmission Comb, SRS resource mapping (e.g., time and/or frequency resource location, resource offset, resource period, repetition number, SRS (number of symbols, SRS bandwidth, etc.), hopping related information, SRS resource type, sequence ID, SRS spatial relationship information, etc.
 SRSの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)は、所定の参照信号とSRSとの間の空間関係情報を示してもよい。当該所定の参照信号は、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel:SS/PBCH)ブロック、チャネル状態情報参照信号(Channel State Information Reference Signal:CSI-RS)及びSRS(例えば別のSRS)の少なくとも1つであってもよい。SS/PBCHブロックは、同期信号ブロック(SSB)と呼ばれてもよい。 The spatial relationship information of the SRS (for example, "spatialRelationInfo" of the RRC information element) may indicate spatial relationship information between the predetermined reference signal and the SRS. The predetermined reference signal includes a synchronization signal/broadcast channel (Synchronization Signal/Physical Broadcast Channel: SS/PBCH) block, a channel state information reference signal (CSI-RS), and an SRS (for example, another SRS). It may be at least one of the following. The SS/PBCH block may be called a synchronization signal block (SSB).
 SRSの空間関係情報は、上記所定の参照信号のインデックスとして、SSBインデックス、CSI-RSリソースID、SRSリソースIDの少なくとも1つを含んでもよい。 The SRS spatial relationship information may include at least one of an SSB index, a CSI-RS resource ID, and an SRS resource ID as an index of the predetermined reference signal.
 なお、本開示において、SSBインデックス、SSBリソースID及びSSBRI(SSB Resource Indicator)は互いに読み替えられてもよい。また、CSI-RSインデックス、CSI-RSリソースID及びCRI(CSI-RS Resource Indicator)は互いに読み替えられてもよい。また、SRSインデックス、SRSリソースID及びSRIは互いに読み替えられてもよい。 Note that in the present disclosure, the SSB index, SSB resource ID, and SSBRI (SSB Resource Indicator) may be read interchangeably. Further, the CSI-RS index, CSI-RS resource ID, and CRI (CSI-RS Resource Indicator) may be read interchangeably. Further, the SRS index, SRS resource ID, and SRI may be read interchangeably.
 SRSの空間関係情報は、上記所定の参照信号に対応するサービングセルインデックス、BWPインデックス(BWP ID)などを含んでもよい。 The SRS spatial relationship information may include a serving cell index, a BWP index (BWP ID), etc. corresponding to the above-mentioned predetermined reference signal.
 NRでは、上り信号の送信は、ビームコレスポンデンス(Beam Correspondence(BC))の有無に基づいて制御されてもよい。BCとは、例えば、あるノード(例えば、基地局又はUE)が、信号の受信に用いるビーム(受信ビーム、Rxビーム)に基づいて、信号の送信に用いるビーム(送信ビーム、Txビーム)を決定する能力であってもよい。 In NR, transmission of uplink signals may be controlled based on the presence or absence of beam correspondence (BC). BC is, for example, a node (e.g., base station or UE) that determines the beam (transmission beam, Tx beam) to be used for signal transmission based on the beam (reception beam, Rx beam) used for signal reception. It may be the ability to
 なお、BCは、送信/受信ビームコレスポンデンス(Tx/Rx beam correspondence)、ビームレシプロシティ(beam reciprocity)、ビームキャリブレーション(beam calibration)、較正済/未較正(Calibrated/Non-calibrated)、レシプロシティ較正済/未較正(reciprocity calibrated/non-calibrated)、対応度、一致度などと呼ばれてもよい。 In addition, BC is transmission/reception beam correspondence (Tx/Rx beam correspondence), beam reciprocity (beam reciprocity), beam calibration (beam calibration), calibrated/non-calibrated (Calibrated/Non-calibrated), reciprocity calibration It may also be referred to as reciprocity, calibrated/non-calibrated, degree of correspondence, degree of coincidence, etc.
 例えば、BC無しの場合、UEは、一以上のSRS(又はSRSリソース)の測定結果に基づいて基地局から指示されるSRS(又はSRSリソース)と同一のビーム(空間ドメイン送信フィルタ)を用いて、上り信号(例えば、PUSCH、PUCCH、SRS等)を送信してもよい。 For example, in the case of no BC, the UE uses the same beam (spatial domain transmission filter) as the SRS (or SRS resources) instructed by the base station based on the measurement results of one or more SRSs (or SRS resources). , uplink signals (for example, PUSCH, PUCCH, SRS, etc.) may be transmitted.
 一方、BC有りの場合、UEは、所定のSSB又はCSI-RS(又はCSI-RSリソース)の受信に用いるビーム(空間ドメイン受信フィルタ)と同一の又は対応するビーム(空間ドメイン送信フィルタ)を用いて、上り信号(例えば、PUSCH、PUCCH、SRS等)を送信してもよい。 On the other hand, in the case of BC, the UE uses a beam (spatial domain transmit filter) that is the same as or corresponds to the beam (spatial domain receive filter) used for receiving a predetermined SSB or CSI-RS (or CSI-RS resource). Then, uplink signals (for example, PUSCH, PUCCH, SRS, etc.) may be transmitted.
 UEは、あるSRSリソースについて、SSB又はCSI-RSと、SRSとに関する空間関係情報を設定される場合(例えば、BC有りの場合)には、当該SSB又はCSI-RSの受信のための空間ドメインフィルタ(空間ドメイン受信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いて当該SRSリソースを送信してもよい。この場合、UEはSSB又はCSI-RSのUE受信ビームとSRSのUE送信ビームとが同じであると想定してもよい。 When the UE is configured with spatial relationship information regarding the SSB or CSI-RS and the SRS for a certain SRS resource (for example, when BC is present), the UE determines the spatial domain for reception of the SSB or CSI-RS. The SRS resource may be transmitted using the same spatial domain filter (spatial domain transmit filter) as the filter (spatial domain receive filter). In this case, the UE may assume that the UE receive beam for SSB or CSI-RS and the UE transmit beam for SRS are the same.
 UEは、あるSRS(ターゲットSRS)リソースについて、別のSRS(参照SRS)と当該SRS(ターゲットSRS)とに関する空間関係情報を設定される場合(例えば、BC無しの場合)には、当該参照SRSの送信のための空間ドメインフィルタ(空間ドメイン送信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いてターゲットSRSリソースを送信してもよい。つまり、この場合、UEは参照SRSのUE送信ビームとターゲットSRSのUE送信ビームとが同じであると想定してもよい。 For a certain SRS (target SRS) resource, when the UE is configured with spatial relationship information regarding another SRS (reference SRS) and the relevant SRS (target SRS) (for example, in the case of no BC), the UE The target SRS resource may be transmitted using the same spatial domain filter (spatial domain transmit filter) as for the transmission of the target SRS resource. That is, in this case, the UE may assume that the UE transmission beam of the reference SRS and the UE transmission beam of the target SRS are the same.
 UEは、DCI(例えば、DCIフォーマット0_1)内の所定フィールド(例えば、SRSリソース識別子(SRI)フィールド)の値に基づいて、当該DCIによりスケジュールされるPUSCHの空間関係を決定してもよい。具体的には、UEは、当該所定フィールドの値(例えば、SRI)に基づいて決定されるSRSリソースの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)をPUSCH送信に用いてもよい。 The UE may determine the spatial relationship of the PUSCH scheduled by the DCI based on the value of a predetermined field (e.g., SRS resource identifier (SRI) field) in the DCI (e.g., DCI format 0_1). Specifically, the UE may use the spatial relationship information (for example, "spatialRelationInfo" of the RRC information element) of the SRS resource determined based on the value of the predetermined field (for example, SRI) for PUSCH transmission.
 PUSCHに対し、コードブックベース送信を用いる場合、UEは、2個のSRSリソースをRRCによって設定され、2個のSRSリソースの1つをDCI(1ビットの所定フィールド)によって指示されてもよい。PUSCHに対し、ノンコードブックベース送信を用いる場合、UEは、4個のSRSリソースをRRCによって設定され、4個のSRSリソースの1つをDCI(2ビットの所定フィールド)によって指示されてもよい。RRCによって設定された2個又は4個の空間関係以外の空間関係を用いるためには、RRC再設定が必要となる。 When using codebook-based transmission for PUSCH, the UE may be configured with two SRS resources by RRC, and may be instructed to use one of the two SRS resources by DCI (1-bit predetermined field). When using non-codebook-based transmission for PUSCH, the UE may have four SRS resources configured by RRC, and one of the four SRS resources may be indicated by DCI (2-bit predetermined field). . In order to use spatial relationships other than the two or four spatial relationships configured by RRC, RRC reconfiguration is required.
 なお、PUSCHに用いられるSRSリソースの空間関係に対し、DL-RSを設定することができる。例えば、SP-SRSに対し、UEは、複数(例えば、16個まで)のSRSリソースの空間関係をRRCによって設定され、複数のSRSリソースの1つをMAC CEによって指示されることができる。 Note that DL-RS can be configured for the spatial relationship of SRS resources used for PUSCH. For example, for SP-SRS, a UE can be configured with a spatial relationship of multiple (eg, up to 16) SRS resources by RRC, and can be directed to one of the multiple SRS resources by a MAC CE.
(UL TCI状態)
 Rel.16 NRでは、ULのビーム指示方法として、UL TCI状態を用いることが検討されている。UL TCI状態の通知は、UEのDLビーム(DL TCI状態)の通知に類似する。なお、DL TCI状態は、PDCCH/PDSCHのためのTCI状態と互いに読み換えられてもよい。
(UL TCI status)
Rel. In the 16 NR, the use of the UL TCI state is being considered as a UL beam directing method. The notification of UL TCI status is similar to the notification of DL beam (DL TCI status) of the UE. Note that the DL TCI state may be interchanged with the TCI state for PDCCH/PDSCH.
 UL TCI状態が設定(指定)されるチャネル/信号(ターゲットチャネル/RSと呼ばれてもよい)は、例えば、PUSCH(PUSCHのDMRS)、PUCCH(PUCCHのDMRS)、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、SRSなどの少なくとも1つであってもよい。 The channel/signal (which may be called a target channel/RS) for which the UL TCI state is set (designated) is, for example, PUSCH (DMRS of PUSCH), PUCCH (DMRS of PUCCH), random access channel (Physical Random Access Channel (PRACH)), SRS, etc.
 また、当該チャネル/信号とQCL関係となるRS(ソースRS)は、例えば、DL RS(例えば、SSB、CSI-RS、TRSなど)であってもよいし、UL RS(例えば、SRS、ビームマネジメント用のSRSなど)であってもよい。 Further, the RS (source RS) that has a QCL relationship with the channel/signal may be, for example, a DL RS (for example, SSB, CSI-RS, TRS, etc.) or a UL RS (for example, SRS, beam management (SRS etc.) may also be used.
 UL TCI状態において、当該チャネル/信号とQCL関係となるRSは、当該RSを受信又は送信するためのパネルIDに関連付けられてもよい。当該関連付けは、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CEなど)によって明示的に設定(又は指定)されてもよいし、暗示的に判断されてもよい。 In the UL TCI state, an RS that has a QCL relationship with the channel/signal may be associated with a panel ID for receiving or transmitting the RS. The association may be explicitly set (or specified) by upper layer signaling (for example, RRC signaling, MAC CE, etc.), or may be determined implicitly.
 RSとパネルIDとの対応関係は、UL TCI状態情報に含まれて設定されてもよいし、当該RSのリソース設定情報、空間関係情報などの少なくとも1つに含まれて設定されてもよい。 The correspondence between the RS and the panel ID may be set and included in the UL TCI status information, or may be set and included in at least one of the resource configuration information, spatial relationship information, etc. of the RS.
 UL TCI状態によって示されるQCLタイプは、既存のQCLタイプA-Dであってもよいし、他のQCLタイプであってもよいし、所定の空間関係、関連するアンテナポート(ポートインデックス)などを含んでもよい。 The QCL type indicated by the UL TCI state may be the existing QCL types A to D, or may be another QCL type, and may be based on a predetermined spatial relationship, associated antenna port (port index), etc. May include.
 UEは、UL送信について、関連するパネルIDを指定される(例えば、DCIによって指定される)と、当該パネルIDに対応するパネルを用いて当該UL送信を行ってもよい。パネルIDは、UL TCI状態に関連付けられてもよく、UEは、所定のULチャネル/信号についてUL TCI状態を指定(又はアクティベート)された場合、当該UL TCI状態に関連するパネルIDに従って当該ULチャネル/信号送信に用いるパネルを特定してもよい。 When the UE is designated with a relevant panel ID for UL transmission (for example, designated by the DCI), the UE may perform the UL transmission using the panel corresponding to the panel ID. A panel ID may be associated with a UL TCI state, and if a UE is assigned (or activated) a UL TCI state for a given UL channel/signal, the UE selects that UL TCI state according to the panel ID associated with that UL TCI state. /The panel used for signal transmission may be specified.
(シングルパネル送信)
 シングルパネルUL送信方式又はシングルパネルUL送信方式候補は、以下の送信方式A,B(シングルパネルUL送信方式A,B)の少なくとも1つが適用されてもよい。なお、本開示において、パネル/UEパネルは、UE能力毎に報告されるUE能力値セット(例えば、UE capability value set)と読み替えられてもよい。また、本開示において、異なるパネル、異なる空間関係、異なるジョイントTCI状態、異なるTPCパラメータ、異なるアンテナポートなどは、互いに読み替えられてもよい。
(Single panel transmission)
At least one of the following transmission methods A and B (single panel UL transmission methods A and B) may be applied to the single panel UL transmission method or the single panel UL transmission method candidate. Note that in the present disclosure, panel/UE panel may be read as a UE capability value set (for example, UE capability value set) reported for each UE capability. Also, in this disclosure, different panels, different spatial relationships, different joint TCI states, different TPC parameters, different antenna ports, etc. may be read interchangeably.
[送信方式A:シングルパネル シングルTRP UL送信]
 Rel.15及びRel.16では、UEは、1つのみのビーム及びパネルから、1つの時点において、1つのTRPに対してULを送信する送信方式が使用される(図1A)。
[Transmission method A: Single panel single TRP UL transmission]
Rel. 15 and Rel. In 16, a transmission scheme is used in which the UE transmits UL for one TRP at one time from only one beam and panel (FIG. 1A).
[送信方式B:シングルパネル マルチTRP UL送信]
 Rel.17においては、1つの時点において、1つのみのビーム及びパネルからのUL送信を行い、複数のTRPに対する繰り返し送信を行うことが検討されている(図1B)。図1Bの例では、UEは、パネル#1からTRP#1にPUSCHを送信した後(ビーム及びパネルを切り替え)、パネル#2からTRP#2にPUSCHを送信する。2つのTRPは、理想バックホール(ideal backhaul)を介して接続される。
[Transmission method B: Single panel multi-TRP UL transmission]
Rel. In 17, it is considered to perform UL transmission from only one beam and panel at one time and repeatedly transmit to multiple TRPs (FIG. 1B). In the example of FIG. 1B, the UE transmits PUSCH from panel #1 to TRP #1 (switching beams and panels), and then transmits PUSCH from panel #2 to TRP #2. The two TRPs are connected via an ideal backhaul.
(マルチパネル送信)
 Rel.18以降において、ULのスループット/信頼性の改善のために、1以上のTRPに向けて、複数パネルを用いる同時UL送信(例えば、simultaneous multi-panel UL transmission(SiMPUL))がサポートされることが検討されている。また、所定のULチャネル(例えば、PUSCH/PUCCH)等について、マルチパネルUL送信方式が検討されている。
(Multi-panel transmission)
Rel. From 18 onwards, simultaneous UL transmission using multiple panels (e.g., simultaneous multi-panel UL transmission (SiMPUL)) for one or more TRPs may be supported to improve UL throughput/reliability. It is being considered. Furthermore, multi-panel UL transmission systems are being considered for predetermined UL channels (for example, PUSCH/PUCCH).
 マルチパネルUL送信として、例えば、最大X個(例えば、X=2)と、最大Y個(例えば、Y=2)のパネルがサポートされてもよい。マルチパネルUL送信において、PUSCHに対するULプリコーディング指示がサポートされる場合、マルチパネル同時送信に対して既存システム(例えば、Rel.16以前)のコードブックがサポートされてもよい。シングルDCI及びマルチDCIベースのマルチTRPオペレーションを考慮した場合、レイヤ数は全パネルにおいて最大x個(例えば、x=4)、コードワード(CW)数は全パネルで最大y個(例えば、y=2)であってもよい。 For multi-panel UL transmission, for example, up to X (eg, X=2) and up to Y (eg, Y=2) panels may be supported. In multi-panel UL transmission, if UL precoding instructions for PUSCH are supported, codebooks of existing systems (eg, Rel. 16 and earlier) may be supported for multi-panel simultaneous transmission. When considering single DCI and multi-DCI-based multi-TRP operations, the number of layers is at most x (for example, x = 4) in all panels, and the number of codewords (CW) is at most y in all panels (for example, y = 2) may be used.
 マルチパネルUL送信方式又はマルチパネルUL送信方式候補は、次の方式1から3(マルチパネルUL送信方式1から3)の少なくとも1つが検討されている。送信方式1から3の1つのみがサポートされてもよい。送信方式1から3の少なくとも1つを含む複数の方式がサポートされ、複数の送信方式の1つがUEに設定されてもよい。 At least one of the following methods 1 to 3 (multi-panel UL transmission methods 1 to 3) is being considered as a multi-panel UL transmission method or a multi-panel UL transmission method candidate. Only one of transmission methods 1 to 3 may be supported. Multiple schemes are supported, including at least one of transmission schemes 1 to 3, and one of the multiple transmission schemes may be configured on the UE.
[送信方式1:コヒーレントマルチパネルUL送信]
 複数パネルが互いに同期していてもよい。全てのレイヤは、全てのパネルにマップされる。複数アナログビームが指示される。SRSリソースインディケーター(SRI)フィールドが拡張されてもよい。この方式は、ULに対して最大4レイヤを用いてもよい。
[Transmission method 1: Coherent multi-panel UL transmission]
Multiple panels may be synchronized with each other. All layers are mapped to all panels. Multiple analog beams are directed. The SRS Resource Indicator (SRI) field may be expanded. This scheme may use up to 4 layers for UL.
 図2Aの例において、UEは、1コードワード(CW)又は1トランスポートブロック(TB)をL個のレイヤ(PUSCH(1,2,…,L))へマップし、2つのパネルのそれぞれからL個のレイヤを送信する。パネル#1及びパネル#2はコヒーレントである。送信方式1は、ダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数は2Lである。レイヤの総数の最大値が4である場合、1つのパネルにおけるレイヤ数の最大値は2である。 In the example of FIG. 2A, the UE maps one codeword (CW) or one transport block (TB) to L layers (PUSCH(1,2,...,L)) from each of the two panels. Send L layers. Panel #1 and panel #2 are coherent. Transmission method 1 can obtain a gain due to diversity. The total number of layers in the two panels is 2L. If the maximum total number of layers is 4, the maximum number of layers in one panel is 2.
[送信方式2:1つのコードワード(CW)又はトランスポートブロック(TB)のノンコヒーレントマルチパネルUL送信]
 複数パネルが同期していなくてもよい。異なるレイヤは、異なるパネルと、複数パネルからのPUSCHに対する1つのCW又はTBにマップされる。1つのCW又はTBに対応するレイヤが、複数パネルにマップされてもよい。この送信方式は、ULに対して最大4レイヤ又は最大8レイヤを用いてもよい。最大8レイヤをサポートする場合、この送信方式は、最大8レイヤを用いる1つのCW又はTBをサポートしてもよい。
[Transmission method 2: Non-coherent multi-panel UL transmission of one codeword (CW) or transport block (TB)]
Multiple panels do not need to be synchronized. Different layers are mapped to different panels and one CW or TB for PUSCH from multiple panels. A layer corresponding to one CW or TB may be mapped to multiple panels. This transmission scheme may use up to 4 layers or up to 8 layers for UL. If supporting up to 8 layers, this transmission scheme may support one CW or TB with up to 8 layers.
 図2Bの例において、UEは、1CW又は1TBを、k個のレイヤ(PUSCH(1,2,…,k))とL-k個のレイヤ(PUSCH(k+1,k+2,…,L))とへマップし、k個のレイヤをパネル#1から送信し、L-k個のレイヤをパネル#2から送信する。送信方式2は、多重及びダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数はLである。 In the example of FIG. 2B, the UE divides 1 CW or 1 TB into k layers (PUSCH (1, 2, ..., k)) and L - k layers (PUSCH (k+1, k+2, ..., L)). , k layers are transmitted from panel #1, and L−k layers are transmitted from panel #2. Transmission method 2 can obtain gains due to multiplexing and diversity. The total number of layers in the two panels is L.
[送信方式3:2つのCW又はTBのノンコヒーレントマルチパネルUL送信]
 複数パネルが同期していなくてもよい。異なるレイヤは、異なるパネルと、複数パネルからのPUSCHに対する2つのCW又はTBにマップされる。1つのCW又はTBに対応するレイヤが、1つのパネルにマップされてもよい。複数のCW又はTBに対応するレイヤが、異なるパネルにマップされてもよい。この送信方式は、ULに対して最大4レイヤ又は最大8レイヤを用いてもよい。最大8レイヤをサポートする場合、この送信方式は、CW又はTB当たり最大4レイヤをサポートしてもよい。
[Transmission method 3: 2 CW or TB non-coherent multi-panel UL transmission]
Multiple panels do not need to be synchronized. Different layers are mapped to different panels and two CWs or TBs for PUSCH from multiple panels. A layer corresponding to one CW or TB may be mapped to one panel. Layers corresponding to multiple CWs or TBs may be mapped to different panels. This transmission scheme may use up to 4 layers or up to 8 layers for UL. If supporting up to 8 layers, this transmission scheme may support up to 4 layers per CW or TB.
 図2Cの例において、UEは、2CW又は2TBのうち、CW#1又はTB#1をk個のレイヤ(PUSCH(1,2,…,k))へマップし、CW#2又はTB#2をL-k個のレイヤ(PUSCH(k+1,k+2,…,L))へマップし、k個のレイヤをパネル#1から送信し、L-k個のレイヤをパネル#2から送信する。送信方式3は、多重及びダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数はLである。 In the example of FIG. 2C, the UE maps CW#1 or TB#1 to k layers (PUSCH(1,2,...,k)) among 2CWs or 2TBs, and maps CW#2 or TB#2 to k layers (PUSCH(1,2,...,k)). is mapped to Lk layers (PUSCH (k+1, k+2, . . . , L)), k layers are transmitted from panel #1, and Lk layers are transmitted from panel #2. Transmission method 3 can obtain gains due to multiplexing and diversity. The total number of layers in the two panels is L.
 上記の各送信方式において、基地局は、UL TCI又はパネルIDを用いて、UL送信のためのパネル固有送信を設定又は指示してもよい。UL TCI(UL TCI状態)は、Rel.15においてサポートされるDLビーム指示と類似するシグナリングに基づいてもよい。パネルIDは、ターゲットRSリソース又はターゲットRSリソースセットと、PUCCHと、SRSと、PRACHと、の少なくとも1つの送信に、暗示的に又は明示的に適用されてもよい。パネルIDが明示的に通知される場合、パネルIDは、ターゲットRSと、ターゲットチャネルと、リファレンスRSと、の少なくとも1つ(例えば、DL RSリソース設定又は空間関係情報)において設定されてもよい。 In each of the above transmission methods, the base station may set or instruct panel-specific transmission for UL transmission using the UL TCI or panel ID. UL TCI (UL TCI status) is Rel. It may be based on signaling similar to the DL beam indication supported in X.15. The panel ID may be implicitly or explicitly applied to the transmission of at least one of the target RS resource or target RS resource set, PUCCH, SRS, and PRACH. If the panel ID is explicitly notified, the panel ID may be configured in at least one of the target RS, target channel, and reference RS (eg, DL RS resource configuration or spatial relationship information).
 上述した1以上の伝送方式/モードにおいて、1つのDCI(シングルDCI)に基づくPUSCHのスケジュール/複数のDCI(マルチDCI)に基づくPUSCHのスケジュールについてのマルチパネルUL送信(例えば、同時マルチパネル送信(Simultaneous Transmission across Multiple Panels(STxMP))が検討されている。 In one or more transmission methods/modes described above, multi-panel UL transmission (for example, simultaneous multi-panel transmission ( Simultaneous Transmission Across Multiple Panels (STxMP) is being considered.
 STxMPにおいて、以下の方式が適用されてもよい。
・単一のDCI(S-DCI) 空間分割多重(Space Division Multiplexing:SDM)方式:1つのPUSCHの異なるレイヤ/DMRSポートが別々にプリコーディングされ、異なるUEビーム/パネルから同時に送信される。
・S-DCI 周波数分割多重(FDM)-A方式:1つのPUSCHの送信機会の周波数領域リソースの異なる部分が、異なるUEビーム/パネルから送信される。
・S-DCI FDM-B方式:同一TBの同一/異なるRVの2つのPUSCH送信機会を、重複しない周波数領域リソース及び同一時間領域リソース上で、異なるUEビーム/パネルから送信する方式。
・S-DCI SFNベースの送信方式:2つの異なるUEビーム/パネルから同時に同じPUSCH/DMRSを送信する。
・S-DCI 空間領域繰り返し方式:同じTBの異なる冗長バージョン(Redundancy Version(RV))を持つ2つのPUSCH送信機会が、同じ時間および周波数リソース上で2つの異なるUEビーム/パネルから送信される。
・M-DCI方式:オーバーラップした(時間領域では完全/部分的にオーバーラップ、周波数領域では完全/部分的オーバーラップ又は非オーバーラップ)2つのPUSCHを、2つの異なるUEビーム/パネルから送信する方式。
In STxMP, the following scheme may be applied.
- Single DCI (S-DCI) Space Division Multiplexing (SDM): Different layers/DMRS ports of one PUSCH are precoded separately and transmitted simultaneously from different UE beams/panels.
- S-DCI Frequency Division Multiplexing (FDM)-A scheme: different parts of the frequency domain resources of one PUSCH transmission opportunity are transmitted from different UE beams/panels.
- S-DCI FDM-B method: A method in which two PUSCH transmission opportunities of the same/different RV of the same TB are transmitted from different UE beams/panels on non-overlapping frequency domain resources and the same time domain resources.
- S-DCI SFN-based transmission scheme: transmit the same PUSCH/DMRS from two different UE beams/panels at the same time.
- S-DCI spatial domain repetition scheme: Two PUSCH transmission opportunities with different Redundancy Versions (RVs) of the same TB are transmitted from two different UE beams/panels on the same time and frequency resources.
- M-DCI scheme: two overlapping (fully/partially overlapping in time domain, fully/partially overlapping or non-overlapping in frequency domain) two PUSCHs are transmitted from two different UE beams/panels. method.
 なお、本開示において、繰り返し送信と送信は互いに読み替えられてもよい。複数のTBを送信することは、同じTBを複数送信すること、又は、異なるTBを送信することを意味してもよい。 Note that in the present disclosure, repeated transmission and transmission may be interchanged. Transmitting multiple TBs may mean transmitting the same TB multiple times or transmitting different TBs.
[時間分割多重(TDM)]
 UEは、時間分割多重(Time Division Multiplexing:TDM)を適用したPUSCH繰り返し送信が異なる時間リソース及び同じ周波数リソースにスケジュールされることを想定してもよい。図3は、TDMを適用したPUSCH繰り返し送信の一例を示す図である。図3では、PUSCH/PUCCHの繰り返し#1と繰り返し#2の周波数リソースは同じであり時間リソースが異なっている。
[Time division multiplexing (TDM)]
The UE may assume that PUSCH repeated transmissions applying time division multiplexing (TDM) are scheduled on different time resources and the same frequency resource. FIG. 3 is a diagram illustrating an example of PUSCH repetitive transmission using TDM. In FIG. 3, the frequency resources of repetition #1 and repetition #2 of PUSCH/PUCCH are the same, but the time resources are different.
[周波数分割多重(FDM)]
 UEは、周波数分割多重(Frequency Division Multiplexing:FDM)を適用したPUSCH/PUCCH繰り返し送信が同じ時間リソース及び異なる周波数リソースにスケジュールされることを想定してもよい。すなわち、UEは、コヒーレントな複数のパネルを用いた場合、FDMを適用したPUSCH/PUCCH繰り返し送信を同じ時間リソース及び異なる周波数リソースにおいて送信してもよい。
[Frequency division multiplexing (FDM)]
The UE may assume that PUSCH/PUCCH repeated transmissions applying Frequency Division Multiplexing (FDM) are scheduled on the same time resource and different frequency resources. That is, when a plurality of coherent panels are used, the UE may transmit PUSCH/PUCCH repetition transmission using FDM in the same time resource and different frequency resources.
 図4Aは、FDM(FDM-A)を適用した繰り返し送信の第1の例を示す図である。図4Aは、1つのTB/UCIにつき、1回のPUSCH/PUCCH繰り返し送信が行われる例を示している。 FIG. 4A is a diagram showing a first example of repeated transmission using FDM (FDM-A). FIG. 4A shows an example in which PUSCH/PUCCH is repeatedly transmitted once for one TB/UCI.
 図4Bは、FDM(FDM-B)を適用した繰り返し送信の第2の例を示す図である。図4Bは、1つのTB/UCIにつき、2回のPUSCH/PUCCH繰り返し送信が行われる例を示している。 FIG. 4B is a diagram showing a second example of repeated transmission using FDM (FDM-B). FIG. 4B shows an example in which PUSCH/PUCCH is repeatedly transmitted twice for one TB/UCI.
 図4Cは、single frequency network(SFN)を適用した繰り返し送信の例を示す図である。図4Cは、1つのTB/UCIにつき、1つのPUSCH/PUCCHが異なるビーム/パネルを利用して送信される例を示している。 FIG. 4C is a diagram illustrating an example of repeated transmission using a single frequency network (SFN). FIG. 4C shows an example in which one PUSCH/PUCCH is transmitted using different beams/panels for one TB/UCI.
[空間分割多重(SDM)]
 UEは、空間分割多重(Space Division Multiplexing:SDM)を適用したPUSCH繰り返し送信が同じ時間リソース及び同じ周波数リソースにスケジュールされることを想定してもよい。すなわち、UEは、コヒーレントな複数のパネルを用いた場合、SDMを適用したPUSCH繰り返し送信を、同じ時間リソース及び同じ周波数リソースにおいて送信してもよい。
[Space division multiplexing (SDM)]
The UE may assume that PUSCH repeated transmissions applying space division multiplexing (SDM) are scheduled on the same time resource and the same frequency resource. That is, when a plurality of coherent panels are used, the UE may transmit PUSCH repetition transmission using SDM in the same time resource and the same frequency resource.
 図4Dは、SDMを適用した繰り返し送信の例を示す図である。図4Dでは、PUSCH/PUCCHの繰り返し#1と繰り返し#2の時間及び周波数リソースが同じである。 FIG. 4D is a diagram showing an example of repeated transmission using SDM. In FIG. 4D, the time and frequency resources of PUSCH/PUCCH repetition #1 and repetition #2 are the same.
 図5Aは、1つのCWでSDMを適用した繰り返し送信の例を示す図である。図5Aでは、PUSCH/PUCCHに対応するレイヤ#1-2とレイヤ#3-4の時間及び周波数リソースが同じである。 FIG. 5A is a diagram illustrating an example of repeated transmission using SDM with one CW. In FIG. 5A, the time and frequency resources of layers #1-2 and #3-4 corresponding to PUSCH/PUCCH are the same.
 図5Bは、2つのCWでSDMを適用した繰り返し送信の例を示す図である。図5Bでは、PUSCH/PUCCHに対応するCW#1とCW#2の時間及び周波数リソースが同じである。 FIG. 5B is a diagram showing an example of repeated transmission using SDM with two CWs. In FIG. 5B, the time and frequency resources of CW#1 and CW#2 corresponding to PUSCH/PUCCH are the same.
 図5Cは、複数のTBのそれぞれに対応するPUSCH/PUCCHの時間及び周波数リソースの少なくとも一部が重複する場合の例を示す図である。図5Cでは、第1のTB/UCIに対応するPUSCH/PUCCH#1と第2のTB/UCIに対応するPUSCH/PUCCH#2の時間及び周波数リソースが同じである。 FIG. 5C is a diagram illustrating an example where at least a portion of the time and frequency resources of PUSCH/PUCCH corresponding to each of a plurality of TBs overlap. In FIG. 5C, the time and frequency resources of PUSCH/PUCCH #1 corresponding to the first TB/UCI and PUSCH/PUCCH #2 corresponding to the second TB/UCI are the same.
(4より多いアンテナポートの送信)
 Rel.15/16 NRでは、4レイヤまでの上りリンク(Uplink(UL))Multi Input Multi Output(MIMO)送信がサポートされる。将来の無線通信システムについて、より高いスペクトル効率を実現するために、4より大きいレイヤ数のUL送信をサポートすることが検討されている。例えば、Rel.18 NRに向けて、6アンテナポートを用いた最大6ランク送信、8アンテナポートを用いた最大6又は8ランク送信などが検討されている。
(Transmission of more than 4 antenna ports)
Rel. 15/16 NR supports uplink (UL) Multi Input Multi Output (MIMO) transmission up to 4 layers. For future wireless communication systems, supporting UL transmission with a number of layers greater than four is being considered to achieve higher spectral efficiency. For example, Rel. 18 NR, transmission of up to 6 ranks using 6 antenna ports, transmission of up to 6 or 8 ranks using 8 antenna ports, etc. are being considered.
 例えば、8アンテナが1次元的(1 dimensional(1D))に配置されてもよいし、2次元的(2 dimensional(2D))に配置されてもよい。前者の場合、例えば水平方向に4つ並ぶ交差偏波アンテナを有するアンテナ構成が考えられ、後者の場合、水平及び垂直方向に2つずつ並ぶ交差偏波アンテナを有するアンテナ構成が考えられる。 For example, eight antennas may be arranged one-dimensionally (1D) or two-dimensionally (2D). In the former case, for example, an antenna configuration having four cross-polarized antennas lined up in the horizontal direction can be considered, and in the latter case, an antenna configuration can be considered that has two cross-polarized antennas lined up horizontally and vertically.
 なお、アンテナレイアウトはこれらに限定されない。例えば、アンテナが配置されるパネルの数、パネルの向き、各パネル/アンテナのコヒーレンシー(完全コヒーレント、部分コヒーレント、ノンコヒーレントなど)、特定の方向(水平、垂直など)のアンテナ配列、偏波アンテナ構成(単一偏波、交差偏波、偏波面の数など)は任意の設定が可能であってもよい。 Note that the antenna layout is not limited to these. For example, the number of panels in which the antennas are placed, the orientation of the panels, the coherency of each panel/antenna (fully coherent, partially coherent, non-coherent, etc.), antenna alignment in a particular direction (horizontal, vertical, etc.), polarization antenna configuration. (Single polarization, cross polarization, number of polarization planes, etc.) may be arbitrarily set.
 また、Rel.15/16 NRでは、1つのPUSCHにおける1つのコードワード(Codeword(CW))の送信がサポートされていたところ、Rel.18 NRにむけて、UEが、1つのPUSCHにおける1つより多いCWを送信することが検討されている。例えば、ランク5-8のための2CW送信のサポート、ランク2-8のための2CW送信のサポートなどが検討されている。 Also, Rel. 15/16 In NR, transmission of one codeword (CW) on one PUSCH was supported, but Rel. Towards 18 NR, it is being considered that the UE transmits more than one CW on one PUSCH. For example, support for 2CW transmission for ranks 5-8, support for 2CW transmission for ranks 2-8, etc. are being considered.
 また、Rel.15及びRel.16のUEにおいては、ある時間においては1つのみのビーム/パネルがUL送信に用いられると想定されるが、Rel.17以降においては、ULのスループット及び信頼性(reliability)の改善のために、1以上のTRPに対して、複数ビーム/複数パネルの同時UL送信(例えば、PUSCH送信)が検討されている。なお、複数ビーム/複数パネルの同時PUSCH送信は、4より大きいレイヤ数のPUSCH送信に該当してもよいし、4以下のレイヤ数のPUSCH送信に該当してもよい。 Also, Rel. 15 and Rel. For Rel. 16 UEs, it is assumed that only one beam/panel is used for UL transmission at a given time, but Rel. In order to improve UL throughput and reliability, simultaneous UL transmission of multiple beams/multiple panels (for example, PUSCH transmission) for one or more TRPs is being considered. Note that simultaneous PUSCH transmission of multiple beams/multiple panels may correspond to PUSCH transmission with a number of layers greater than 4, or may correspond to PUSCH transmission with a number of layers equal to or less than 4.
 また、4より多いアンテナポート(4つより多い数のアンテナポート)を用いるUL送信についてのプリコーディング行列が検討されている。例えば、8ポート送信についてのコードブック(8送信ULコードブック(8 TX UL codebook)などと呼ばれてもよい)が検討されている。 Additionally, precoding matrices for UL transmission using more than four antenna ports are being considered. For example, a codebook for 8-port transmission (which may also be called an 8-transmission UL codebook (8 TX UL codebook)) is being considered.
(トランスポートブロックサイズ)
 Rel.16 NRでは、変調次数(Modulation order)と、符号化率(想定される符号化率、ターゲット符号化率等ともいう)と、当該変調次数及び符号化率を示すインデックス(例えば、MCSインデックス)と、を関連付けるテーブル(MCSテーブル)が規定されてもよい(UEに記憶されてもよい)。なお、当該MCSテーブルでは、上記3項目に加えて、スペクトル効率(Spectral efficiency)が関連付けられてもよい。
(transport block size)
Rel. 16 NR requires a modulation order, a coding rate (also referred to as an expected coding rate, a target coding rate, etc.), and an index (for example, MCS index) indicating the modulation order and coding rate. , a table (MCS table) may be defined (may be stored in the UE). Note that in the MCS table, in addition to the above three items, spectral efficiency may be associated.
 UEは、PUSCHのスケジューリング用のDCI(ULグラント、DCIフォーマット0_x(xは例えば0、1、2など)の少なくとも一つ)を受信し、MCSテーブル及び当該DCIに含まれるMCSインデックスに基づいて、PUSCH用の変調次数(Qm)及び符号化率(R)を決定してもよい。スケジューリング用のDCIは、スケジューリングDCIと呼ばれてもよい。 The UE receives a DCI (UL grant, at least one of DCI format 0_x (x is 0, 1, 2, etc.)) for PUSCH scheduling, and based on the MCS table and the MCS index included in the DCI, The modulation order (Qm) and coding rate (R) for PUSCH may be determined. The DCI for scheduling may be called a scheduling DCI.
 Rel.16 NRでは、UEは、下記のステップ1)~4)の少なくとも一つを用いてPUSCH用のTBSを決定してもよい。 Rel. In 16 NR, the UE may determine the TBS for PUSCH using at least one of steps 1) to 4) below.
 ステップ1)
 UEは、スロット内のREの数(NRE)を決定する。
Step 1)
The UE determines the number of REs in the slot (N RE ).
 具体的には、UEは、1PRB内でPUSCHに割り当てられるREの数(N’RE)を決定してもよい。例えば、UEは、下記式(1)に示される少なくとも一つのパラメータに基づいて、1PRB内でPUSCHに割り当てられるREの数(N’RE)を決定してもよい。
式(1)
N’RE=NRB SC・Nsh symb-NPRB DMRS-NPRB oh
Specifically, the UE may determine the number of REs (N' RE ) allocated to the PUSCH within one PRB. For example, the UE may determine the number of REs (N' RE ) allocated to the PUSCH within one PRB based on at least one parameter shown in equation (1) below.
Formula (1)
N' RE =N RB SC・N sh symb -N PRB DMRS -N PRB oh
 ここで、NRB SCは、1RBあたりのサブキャリアの数であり、例えば、NRB SC=12であってもよい。Nsh symbは、スロット内でスケジューリングされたシンボル(例えば、OFDMシンボル)の数である。 Here, N RB SC is the number of subcarriers per RB, and may be, for example, N RB SC =12. N sh symb is the number of symbols (eg, OFDM symbols) scheduled within the slot.
 NPRB DMRSは、スケジューリングされた期間内における1PRBあたりのDMRS用のREの数である。当該DMRS用のREの数は、スケジューリングDCIによって示されるDMRSの符号分割多重(CDM:Code Division Multiplexing)に関するグループのオーバーヘッドを含んでもよい。 N PRB DMRS is the number of REs for DMRS per PRB within the scheduled period. The number of REs for the DMRS may include group overhead regarding code division multiplexing (CDM) of the DMRS indicated by the scheduling DCI.
 NPRB ohは、上位レイヤパラメータによって設定(configure)される値であってもよい。例えば、NPRB ohは、上位レイヤパラメータ(Xoh-PUSCH)が示すオーバーヘッドであり、0、6、12又は18のいずれかの値であってもよい。Xoh-PUSCHがUEに設定(通知)されない場合、Xoh-PUSCHは0に設定されてもよい。また、ランダムアクセス手順におけるメッセージ3(msg3)では、Xoh-PUSCHは0に設定される。 N PRB oh may be a value configured by upper layer parameters. For example, N PRB oh is the overhead indicated by the upper layer parameter (Xoh-PUSCH), and may have a value of 0, 6, 12, or 18. If Xoh-PUSCH is not configured (notified) to the UE, Xoh-PUSCH may be set to 0. Furthermore, in message 3 (msg3) in the random access procedure, Xoh-PUSCH is set to 0.
 また、UEは、PUSCHに割り当てられるREの総数(NRE)を決定してもよい。UEは、1PRB内でPUSCHに割り当てられるREの数(N’RE)及びUEに割り当てられるPRBの総数(nPRB)に基づいて、当該PUSCHに割り当てられるREの総数(NRE)を決定してもよい(例えば、下記式(2))。
式(2)
RE=min(156,N’RE)・nPRB
The UE may also determine the total number of REs (N RE ) allocated to the PUSCH. The UE determines the total number of REs (N RE ) allocated to the PUSCH based on the number of REs (N' RE ) allocated to the PUSCH within one PRB and the total number of PRBs (n PRB ) allocated to the UE. (For example, the following formula (2)).
Formula (2)
N RE = min (156, N' RE )・n PRB
 なお、UEは、1PRB内でPUSCHに割り当てられるREの数(N’RE)を所定のルールに従って量子化し、当該量子化されたRE数とUEに割り当てられるPRBの総数(nPRB)とに基づいて、PUSCHに割り当てられるREの総数(NRE)を決定してもよい。 Note that the UE quantizes the number of REs (N' RE ) allocated to PUSCH within one PRB according to a predetermined rule, and calculates the number of REs allocated to the PUSCH based on the quantized number of REs and the total number of PRBs allocated to the UE (n PRB ). The total number of REs (N RE ) allocated to the PUSCH may be determined.
 ステップ2)
 UEは、情報ビットの中間数(intermediate number)(Ninfo)を決定する。具体的には、UEは、下記式(3)に示される少なくとも一つのパラメータに基づいて、当該中間数(Ninfo)を決定してもよい。なお、当該中間数(Ninfo)は、一時的なTBS(TBStemp)等と呼ばれてもよい。
式(3)
info=NRE・R・Q・υ
Step 2)
The UE determines an intermediate number of information bits (N info ). Specifically, the UE may determine the intermediate number (N info ) based on at least one parameter shown in equation (3) below. Note that the intermediate number (N info ) may be called a temporary TBS (TBS temp ) or the like.
Formula (3)
N info =N RE・R・Q m・υ
 ここで、NREは、PUSCHに割り当てられるREの総数である。Rは、MCSテーブルにおいてDCIに含まれるMCSインデックスに関連付けられる符号化率である。Qは、当該MCSテーブルにおいて当該DCIに含まれるMCSインデックスに関連付けられる変調次数である。υは、PUSCHのレイヤの数である。 Here, N RE is the total number of REs allocated to PUSCH. R is a coding rate associated with the MCS index included in the DCI in the MCS table. Q m is the modulation order associated with the MCS index included in the DCI in the MCS table. υ is the number of PUSCH layers.
 ステップ3)
 ステップ2)で決定される情報ビットの中間数(Ninfo)が所定の閾値(例えば、3824)以下(又は未満)である場合、UEは、当該中間数を量子化し、量子化された中間数(N’info)を決定してもよい。UEは、例えば、式(4)を用いて、量子化された中間数(N’info)を算出してもよい。
式(4)
N’info=max(24,2・floor(Ninfo/2))
ここで、n=max(3,floor(log(Ninfo))
Step 3)
If the intermediate number of information bits (N info ) determined in step 2) is less than or equal to a predetermined threshold (e.g., 3824), the UE quantizes the intermediate number and converts the quantized intermediate number (N' info ) may be determined. The UE may calculate the quantized intermediate number (N' info ) using, for example, equation (4).
Formula (4)
N' info = max (24, 2 n・floor (N info /2))
Here, n=max(3, floor(log 2 (N info ))
 また、UEは、所定のテーブル(例えば、TBSとインデックスとを関連づけるテーブル(量子化(quantization)テーブル又はTBSテーブル等ともいう))を用いて、量子化された中間数(N’info)以上の(not less than)最も近いTBSを見つけ(find)てもよい。 In addition, the UE uses a predetermined table (for example, a table that associates a TBS with an index (also referred to as a quantization table or a TBS table)), and uses (not less than) may find the nearest TBS.
 ステップ4)
 一方、ステップ2)で決定される情報ビットの中間数(Ninfo)が所定の閾値(例えば、3824)より大きい(又は以上である)場合、UEは、当該中間数(Ninfo)を量子化し、量子化された中間数(N’info)を決定してもよい。UEは、例えば、式(5)を用いて、量子化された中間数(N’info)を算出してもよい。なお、ラウンド関数は、端数を切り上げてもよい。
式(5)
N’info=max(3840,2×round((Ninfo-24)/2))
ここで、n=floor(log(Ninfo-24))―5
Step 4)
On the other hand, if the intermediate number of information bits (N info ) determined in step 2) is greater than (or greater than) a predetermined threshold (e.g. 3824), the UE quantizes the intermediate number (N info ). , a quantized intermediate number (N' info ) may be determined. The UE may calculate the quantized intermediate number (N' info ) using, for example, equation (5). Note that the round function may be rounded up.
Formula (5)
N' info = max(3840, 2 n × round ((N info -24)/2 n ))
Here, n=floor(log 2 (N info -24)) - 5
 ここで、上記MCSテーブルでDCI内のMCSインデックスに関連付けられる符号化率(R)が所定の閾値(例えば、1/4)以下(又は未満)である場合、UEは、下記式(6)に示される少なくとも一つのパラメータに基づいて(例えば、式(6)を用いて)、TBSを決定してもよい。
式(6)
TBS=8・C・ceil((N’info+24)/(8・C))-24
ここで、C=ceil((N’info+24)/3816)
Here, if the coding rate (R) associated with the MCS index in the DCI in the above MCS table is below (or less than) a predetermined threshold (for example, 1/4), the UE calculates The TBS may be determined based on the at least one parameter shown (eg, using equation (6)).
Formula (6)
TBS=8・C・ceil((N' info +24)/(8・C))-24
Here, C=ceil((N' info +24)/3816)
 N’infoは、量子化された中間数であり、例えば、上記式(5)を用いて算出されてもよい。また、Cは、TBが分割されるコードブロック(CB:code block)の数であってもよい。 N' info is a quantized intermediate number, and may be calculated using the above equation (5), for example. Further, C may be the number of code blocks (CB) into which the TB is divided.
 一方、上記符号化率(R)が所定の閾値(例えば、1/4)より大きく(又は以上であり)、かつ、情報ビットの量子化された中間数(N’info)が所定の閾値(例えば、8424)より大きい(又は以上である)場合、UEは、下記式(7)に示される少なくとも一つのパラメータに基づいて(例えば、式(7)を用いて)、TBSを決定してもよい。
式(7)
TBS=8・C・ceil((N’info+24)/(8・C))-24
ここで、C=ceil((N’info+24)/8424)
On the other hand, the coding rate (R) is greater than (or more than) a predetermined threshold (for example, 1/4), and the quantized intermediate number of information bits (N' info ) is equal to or greater than the predetermined threshold ( For example, if the TBS is greater than or equal to 8424), the UE may determine the TBS based on at least one parameter shown in equation (7) below (e.g., using equation (7)). good.
Formula (7)
TBS=8・C・ceil((N' info +24)/(8・C))-24
Here, C=ceil((N' info +24)/8424)
 また、上記符号化率(R)が所定の閾値(例えば、1/4)以下(又は未満)であり、かつ、量子化された中間数(N’info)が所定の閾値(例えば、8424)以下(又は未満)である場合、UEは、下記式(8)に示される少なくとも一つのパラメータに基づいて(例えば、式(8)を用いて)、TBSを決定してもよい。
式(8)
TBS=8・ceil((N’info+24)/8)-24
Further, the coding rate (R) is equal to or less than a predetermined threshold (for example, 1/4), and the quantized intermediate number (N'info) is equal to or less than a predetermined threshold (for example, 8424). If it is less than or equal to (or less than), the UE may determine the TBS based on at least one parameter shown in Equation (8) below (eg, using Equation (8)).
Formula (8)
TBS=8・ceil((N' info +24)/8)-24
 このように、Rel.16 NRでは、UEは、スロット内でPUSCHに利用可能なRE数(NRE)、符号化率(R)、変調次数(Qm)、レイヤ数の少なくとも一つに基づいて情報ビットの中間数(Ninfo)を決定し、当該中間数(Ninfo)が量子化された中間数(N’info)に基づいてPUSCH用のTBSを決定する。 In this way, Rel. 16 NR, the UE determines the intermediate number of information bits ( NRE ) based on at least one of the number of REs available for PUSCH within a slot, the coding rate (R), the modulation order (Qm), and the number of layers. N info ) is determined, and the TBS for PUSCH is determined based on the intermediate number (N'info) obtained by quantizing the intermediate number (N info ).
 ところで、上述した4より多いアンテナポートUL送信(例えば、8Tx)では、レイヤ/レイヤグループ毎に異なるMCSが必要(又は、適用)されることも想定される。また、同時マルチパネル送信(STxMP(例えば、SDM方式))では、パネル/TRP毎に異なるMCSが必要(又は、適用)されることも想定される。 By the way, in the above-mentioned UL transmission with more than four antenna ports (for example, 8Tx), it is also assumed that different MCSs are required (or applied) for each layer/layer group. Furthermore, in simultaneous multi-panel transmission (STxMP (eg, SDM method)), it is also assumed that a different MCS is required (or applied) for each panel/TRP.
 レイヤ/レイヤグループ/パネル/TRP毎のMCSをサポートするために以下のケース1/2が検討されている。
ケース1:2TB/CWがPUSCHで送信され、MCSがTB/CW事に指示される
ケース2:1TB/CWがPUSCHで送信され、MCSが1TB/CWのレイヤ/レイヤグループ(又は、パネル/TRP)毎に指示される
Case 1/2 below is being considered to support MCS for each layer/layer group/panel/TRP.
Case 1: 2 TB/CW is transmitted on PUSCH and MCS is directed to TB/CW Case 2: 1 TB/CW is transmitted on PUSCH and MCS is transmitted on 1 TB/CW layer/layer group (or panel/TRP) ) is indicated for each
 しかしながら、ケース2のようにMCSが1TB/CWのレイヤ/レイヤグループ(又は、パネル/TRP)毎に指示される場合、レイヤとレイヤグループのマッピング(又は、レイヤとレイヤグループの関連づけ)をどのように制御するかが問題となる。あるいは、レイヤとパネル/TRPのマッピング(又は、レイヤとパネル/TRPの関連づけ)をどのように制御するかが問題となる。 However, if MCS is specified for each 1TB/CW layer/layer group (or panel/TRP) as in case 2, how should the mapping between layers and layer groups (or the association between layers and layer groups) be done? The question is how to control it. Alternatively, the problem is how to control the mapping between layers and panels/TRPs (or the association between layers and panels/TRPs).
 また、ケース2のようにMCSが1TB/CWのレイヤ/レイヤグループ(又は、パネル/TRP)毎に指示される場合、UL送信(例えば、PUSCH送信)のTBサイズをどのように制御するかが問題となる。 Also, when MCS is instructed for each layer/layer group (or panel/TRP) of 1 TB/CW as in case 2, how to control the TB size of UL transmission (for example, PUSCH transmission) is important. It becomes a problem.
 そこで、本件発明者らは、MCSが1TB/CWのレイヤ/レイヤグループ(又は、パネル/TRP)毎に指示されるケース(例えば、上記ケース2)に着目し、PUSCH送信を適切に行う方法を着想した。 Therefore, the present inventors focused on the case (for example, case 2 above) where MCS is instructed for each layer/layer group (or panel/TRP) of 1 TB/CW, and devised a method for appropriately performing PUSCH transmission. I came up with the idea.
 以下、本開示に係る実施形態について、詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail. The wireless communication methods according to each embodiment may be applied singly or in combination.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably. Furthermore, in the present disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In the present disclosure, "activate", "deactivate", "indicate", "select", "configure", "update", "determine", etc. may be read interchangeably. In this disclosure, supporting, controlling, being able to control, operating, capable of operating, etc. may be read interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In the present disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, upper layer parameters, fields, Information Elements (IEs), settings, etc. may be read interchangeably. In the present disclosure, the terms Medium Access Control Element (CE), update command, activation/deactivation command, etc. may be read interchangeably.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like. Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
 本開示において、インデックス、識別子(Identifier(ID))、インジケータ、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, an index, an identifier (ID), an indicator, a resource ID, etc. may be read interchangeably. In this disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。 In this disclosure, a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described. )), spatial relationship, SRS resource indicator (SRI), control resource set (CONtrol REsource SET (CORESET)), Physical Downlink Shared Channel (PDSCH), codeword (CW), transport Block (Transport Block (TB)), reference signal (RS), antenna port (e.g. demodulation reference signal (DMRS) port), antenna port group (e.g. DMRS port group), groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。 Additionally, the spatial relationship information identifier (ID) (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably. “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
(無線通信方法)
 UEは、PUSCHの送信に利用するレイヤ/レイヤグループに関する情報、レイヤとレイヤグループ間のマッピング(又は、関連づけ)に関する情報、各レイヤ/レイヤグループにそれぞれ対応するMCSの少なくとも一つに関する情報をRRC/MAC CE/DCIにより受信してもよい。UEは、複数のレイヤと複数のレイヤグループ間のマッピング関係に基づいて、各レイヤ及び各レイヤグループの少なくとも一方のPUSCH送信を制御してもよい。
(Wireless communication method)
The UE transmits information on the layer/layer group used for PUSCH transmission, information on the mapping (or association) between layers and layer groups, and information on at least one of the MCSs corresponding to each layer/layer group through RRC/ It may also be received by MAC CE/DCI. The UE may control PUSCH transmission of at least one of each layer and each layer group based on the mapping relationship between the multiple layers and the multiple layer groups.
 以下の実施形態は、レイヤ/レイヤグループ毎のMCSを利用した1CWのPUSCH送信(例えば、8Tx PUSCH)/同時マルチパネル送信(STxMP PUSCH SDM方式)に好適に適用できる。もちろん、本実施の形態が適用可能な構成はこれに限られない。 The following embodiments can be suitably applied to 1 CW PUSCH transmission (for example, 8Tx PUSCH)/simultaneous multi-panel transmission (STxMP PUSCH SDM method) using MCS for each layer/layer group. Of course, the configuration to which this embodiment is applicable is not limited to this.
 以下の説明において、8Tx PUSCHは、4より多いアンテナポートを利用したPUSCHと読み替えられてもよい。 In the following description, 8Tx PUSCH may be read as PUSCH using more than four antenna ports.
<第1の実施形態>
 第1の実施形態は、MCSがPUSCHのレイヤグループ毎に指示される場合におけるレイヤとレイヤグループ間のマッピング(又は、レイヤとレイヤグループ間の関連づけ)に関する。指示は、設定又は適用と読み替えられてもよい。
<First embodiment>
The first embodiment relates to mapping between layers and layer groups (or association between layers and layer groups) when MCS is instructed for each layer group of PUSCH. Instructions may be read as settings or applications.
 PUSCH送信を複数のレイヤを利用して行う場合、レイヤグループが設定/適用/サポートされてもよい。各レイヤグループは、それぞれ1以上のレイヤを含む構成であってもよい。MCSは、レイヤグループ毎に指示されてもよい。UEは、PUSCHのレイヤグループ毎にMCSを別々に適用してPUSCH送信を制御してもよい。 When performing PUSCH transmission using multiple layers, layer groups may be configured/applied/supported. Each layer group may include one or more layers. MCS may be specified for each layer group. The UE may control PUSCH transmission by applying MCS separately for each layer group of PUSCH.
[8Tx PUSCH]
 レイヤとレイヤグループ間のマッピングとして、以下のオプション1-1~オプション1-2の少なくとも一つが適用されてもよい。
[8Tx PUSCH]
At least one of the following options 1-1 to 1-2 may be applied as the mapping between layers and layer groups.
《オプション1-1》
 レイヤとレイヤグループ間のマッピング(又は、関連づけ)は、あらかじめ仕様等で定義されてもよい。
《Option 1-1》
The mapping (or association) between layers and layer groups may be defined in advance in specifications or the like.
 レイヤグループの数と、各レイヤグループ内のレイヤの数は、あらかじめ定義されてもよい。例えば、レイヤ#0~#Xが第1のレイヤグループ、レイヤ#X+1~#Yが第2のレイヤグループ等と定義されてもよい。 The number of layer groups and the number of layers within each layer group may be defined in advance. For example, layers #0 to #X may be defined as a first layer group, layers #X+1 to #Y may be defined as a second layer group, etc.
 レイヤグループ数又は各レイヤグループに含まれるレイヤ数は、PUSCH送信に適用/設定されるレイヤ数に基づいてそれぞれ定義されてもよい。つまり、PUSCHのレイヤ数の総数毎に異なるマッピングが定義されてもよい。 The number of layer groups or the number of layers included in each layer group may be defined based on the number of layers applied/configured to PUSCH transmission. That is, different mapping may be defined for each total number of PUSCH layers.
 例えば、8レイヤPUSCHに対して、レイヤ#0~#3が第1のレイヤグループに対応し、レイヤ#4~#7が第2のレイヤグループに対応してもよい(図6A参照)。 For example, for the 8-layer PUSCH, layers #0 to #3 may correspond to the first layer group, and layers #4 to #7 may correspond to the second layer group (see FIG. 6A).
 7レイヤPUSCHに対して、レイヤ#0~#3が第1のレイヤグループに対応し、レイヤ#4~#6が第2のグループに対応してもよい(図6B参照)。あるいは、レイヤ#0~#2が第1のレイヤグループに対応し、レイヤ#3~#6が第2のグループに対応してもよい。 For the 7-layer PUSCH, layers #0 to #3 may correspond to the first layer group, and layers #4 to #6 may correspond to the second group (see FIG. 6B). Alternatively, layers #0 to #2 may correspond to the first layer group, and layers #3 to #6 may correspond to the second group.
 6レイヤPUSCHに対して、レイヤ#0~#3が第1のレイヤグループに対応し、レイヤ#4~#5が第2のグループに対応してもよい(図6C参照)。あるいは、レイヤ#0~#1が第1のレイヤグループに対応し、レイヤ#2~#5が第2のグループに対応してもよい。あるいは、レイヤ#0~#2が第1のレイヤグループに対応し、レイヤ#3~#5が第2のグループに対応してもよい。 For the 6-layer PUSCH, layers #0 to #3 may correspond to the first layer group, and layers #4 to #5 may correspond to the second group (see FIG. 6C). Alternatively, layers #0 to #1 may correspond to the first layer group, and layers #2 to #5 may correspond to the second group. Alternatively, layers #0 to #2 may correspond to the first layer group, and layers #3 to #5 may correspond to the second group.
 5レイヤPUSCHに対して、レイヤ#0~#3が第1のレイヤグループに対応し、レイヤ#4が第2のグループに対応してもよい(図6D参照)。あるいは、レイヤ#0が第1のレイヤグループに対応し、レイヤ#1~#4が第2のグループに対応してもよい。あるいは、レイヤ#0~#2が第1のレイヤグループに対応し、レイヤ#3~#4が第2のグループに対応してもよい。あるいは、レイヤ#0~#1が第1のレイヤグループに対応し、レイヤ#2~#4が第2のグループに対応してもよい。 For the 5-layer PUSCH, layers #0 to #3 may correspond to the first layer group, and layer #4 may correspond to the second group (see FIG. 6D). Alternatively, layer #0 may correspond to the first layer group, and layers #1 to #4 may correspond to the second group. Alternatively, layers #0 to #2 may correspond to the first layer group, and layers #3 to #4 may correspond to the second group. Alternatively, layers #0 to #1 may correspond to the first layer group, and layers #2 to #4 may correspond to the second group.
 ここでは、2つのレイヤグループが適用/サポートされる場合を示したが、レイヤグループの数は3以上であってもよい。あるいは、PUSCH送信に適用するレイヤ数の総数に基づいて適用/サポートされるレイヤグループ数が異なってもよい。例えば、Mレイヤ以上は3以上のレイヤグループが適用され、Mレイヤ未満は2以下のレイヤグループが適用されてもよい。 Although the case where two layer groups are applied/supported is shown here, the number of layer groups may be three or more. Alternatively, the number of applied/supported layer groups may differ based on the total number of layers applied to PUSCH transmission. For example, three or more layer groups may be applied to M layers or more, and two or less layer groups may be applied to less than M layers.
《オプション1-2》
 レイヤとレイヤグループ間のマッピング(又は、関連づけ)に関する情報がRRC/MAC CE/DCIを利用して基地局(又は、ネットワーク)からUEに設定/指示されてもよい。
《Option 1-2》
Information regarding mapping (or association) between layers and layer groups may be configured/instructed from the base station (or network) to the UE using RRC/MAC CE/DCI.
 例えば、基地局は、レイヤグループ数に関する情報/各レイヤグループに含まれるレイヤ数に関する情報をRRC/MAC CE/DCIを利用してUEに設定/指示してもよい。UEは、基地局から設定/指示された情報に基づいて、レイヤグループと各レイヤとの対応関係を判断してもよい。例えば、設定されるレイヤグループ(又は、レイヤグループインデックス)、レイヤ数(又は、レイヤインデックス)、及び各レイヤグループに対応するレイヤ数(又は、各レイヤグループインデックスに対応するレイヤインデックス)の少なくとも一つは、PUSCH設定に関するRRCパラメータ(例えば、PUSCHconfig)に含まれてもよいし、他のRRCパラメータに含まれてもよい。 For example, the base station may set/instruct the UE to information regarding the number of layer groups/information regarding the number of layers included in each layer group using RRC/MAC CE/DCI. The UE may determine the correspondence between layer groups and each layer based on information set/instructed by the base station. For example, at least one of the layer group (or layer group index) to be set, the number of layers (or layer index), and the number of layers corresponding to each layer group (or layer index corresponding to each layer group index) may be included in RRC parameters related to PUSCH configuration (for example, PUSCHconfig), or may be included in other RRC parameters.
 オプション1-1/オプション1-2において、各レイヤグループに対応する(又は、各レイヤグループに適用する)MCSに関する情報がRRC/MAC CE/DCIを利用して基地局(又は、ネットワーク)からUEに設定/指示されてもよい。 In option 1-1/option 1-2, information regarding MCS corresponding to each layer group (or applied to each layer group) is transmitted from the base station (or network) to the UE using RRC/MAC CE/DCI. may be set/instructed.
 レイヤグループ毎のMCSは、所定条件を満たす場合にサポート/適用されてもよい。所定条件は、PUSCHのレイヤ数、及び所定のRRCパラメータの設定の少なくとも一つであってもよい。例えば、PUSCHのレイヤ数が所定値(X)より大きい場合に、レイヤグループ毎にMCSが別々に設定/適用されてもよい。所定値(X)は、例えば、4、6又はその他の値であってもよい。あるいは、UEは、所定の上位レイヤパラメータの設定/PUSCHレイヤ数が所定値より大きい場合に、レイヤグループ毎にMCSを別々に適用してもよい。 MCS for each layer group may be supported/applied when predetermined conditions are met. The predetermined condition may be at least one of the number of PUSCH layers and the setting of a predetermined RRC parameter. For example, when the number of PUSCH layers is greater than a predetermined value (X), MCS may be configured/applied separately for each layer group. The predetermined value (X) may be, for example, 4, 6, or other values. Alternatively, the UE may apply the MCS separately for each layer group when the predetermined upper layer parameter setting/PUSCH layer number is greater than a predetermined value.
[STxMP PUSCH]
 レイヤとレイヤグループとのマッピング(又は、関連づけ)は、各レイヤが関連付けられるパネル/TRP/TCI/SRI/SRSリソースセットに基づいて決定されてもよい。
[STxMP PUSCH]
The mapping (or association) between layers and layer groups may be determined based on the panel/TRP/TCI/SRI/SRS resource set with which each layer is associated.
 例えば、第1のパネル/TRP/TCI/SRI/SRSリソースセットに関連づけられたレイヤは、第1のレイヤグループにマッピングされ、第2のパネル/TRP/TCI/SRI/SRSリソースセットに関連づけられたレイヤは、第2のレイヤグループにマッピングされてもよい。 For example, layers associated with a first panel/TRP/TCI/SRI/SRS resource set are mapped to a first layer group and associated with a second panel/TRP/TCI/SRI/SRS resource set. The layers may be mapped to a second layer group.
 第1のパネルは、パネルIDがより低いパネル(lower panel ID)に対応し、第2のパネルは、パネルIDがより高いパネル(higher panel ID)に対応してもよい。あるいは、第1のパネルは、パネルIDがより高いパネルに対応し、第2のパネルは、パネルIDがより低いパネルに対応してもよい。 The first panel may correspond to a panel with a lower panel ID (lower panel ID), and the second panel may correspond to a panel with a higher panel ID (higher panel ID). Alternatively, the first panel may correspond to a panel with a higher panel ID and the second panel may correspond to a panel with a lower panel ID.
 第1のSRIは、第1のSRIフィールドに対応し(又は、第1のSRIフィールドで指示され)、第2のSRIは、第2のSRIフィールドに対応し(又は、第2のSRIフィールドで指示され)てもよい。 The first SRI corresponds to (or is indicated by) the first SRI field, and the second SRI corresponds to (or is indicated by) the second SRI field. may be instructed).
 第1のSRSリソースセットは、より低いID(lower ID)を有するSRSリソースセットに対応し、第2のSRSリソースセットは、より高いID(higher ID)を有するSRSリソースセットに対応してもよい。あるいは、第1のSRSリソースセットは、より高いIDを有するSRSリソースセットに対応し、第2のSRSリソースセットは、より低いIDを有するSRSリソースセットに対応してもよい。 The first SRS resource set may correspond to an SRS resource set with a lower ID, and the second SRS resource set may correspond to an SRS resource set with a higher ID. . Alternatively, the first SRS resource set may correspond to an SRS resource set with a higher ID, and the second SRS resource set may correspond to an SRS resource set with a lower ID.
<第2の実施形態>
 第2の実施形態は、1TB/CWがPUSCHで送信され、PUSCHの異なるレイヤ/レイヤグループが異なるMCSで送信される場合のTBサイズの決定の一例について説明する。以下の説明では、4レイヤより多いUL送信(例えば、8Tx with more than 4 layer)又はSDM方式の同時マルチパネル送信(例えば、STxMP SDM scheme)を例に挙げて説明するが、適用可能な構成はこれに限られない。
<Second embodiment>
The second embodiment describes an example of determining the TB size when 1 TB/CW is transmitted on the PUSCH and different layers/layer groups of the PUSCH are transmitted on different MCSs. In the following explanation, UL transmission with more than 4 layers (e.g. 8Tx with more than 4 layers) or simultaneous multi-panel transmission using SDM scheme (e.g. STxMP SDM scheme) will be explained as an example, but the applicable configurations are It is not limited to this.
 1TB/CWをPUSCHで送信し、PUSCHの異なるレイヤ/レイヤグループを異なるMCSを利用して送信する場合、以下のオプション2-1~オプション2-2の少なくとも一つに基づいてTBサイズ(又は、TBサイズ決定における所定パラメータ(例えば、Ninfo))が導出されてもよい。 When transmitting 1 TB/CW on PUSCH and transmitting different layers/layer groups of PUSCH using different MCS, the TB size (or A predetermined parameter (eg, N info ) in TB sizing may be derived.
[オプション2-1]
 Ninfoは、全てのレイヤ/レイヤグループの(又は、全てのレイヤ/レイヤグループにわたる)Ninfo_iの合計として算出(又は、計算/導出)されてもよい。Ninfo_iは、MCSと、i番目のレイヤ/レイヤグループのレイヤ数(又は、レイヤ番号)と、に基づいて算出されてもよい。例えば、下記の式(9)に基づいて、Ninfoが算出されてもよい。
Figure JPOXMLDOC01-appb-M000001
[Option 2-1]
N info may be calculated (or calculated/derived) as the sum of N info_i for all layers/layer groups (or across all layers/layer groups). N info_i may be calculated based on the MCS and the number of layers (or layer number) of the i-th layer/layer group. For example, N info may be calculated based on the following equation (9).
Figure JPOXMLDOC01-appb-M000001
 Nは、レイヤ/レイヤグループの数に相当する。各レイヤ/レイヤグループに対して、別々のMCSが指示されてもよい。Nは、仕様であらかじめ定義されてもよい。例えば、N=2であってもよいし、他の値であってもよい。あるいは、Nは、RRC/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。 N corresponds to the number of layers/layer groups. A separate MCS may be indicated for each layer/layer group. N may be predefined in the specification. For example, N may be 2 or may be any other value. Alternatively, N may be set/instructed from the base station to the UE by RRC/MAC CE/DCI.
 R(i)は、i番目のレイヤ/レイヤグループのターゲット符号化率(例えば、target code rate)に相当し、i番目のレイヤ/レイヤグループに対して指示される(又は、i番目のレイヤ/レイヤグループに対応する)MCSから決定/導出されてもよい。 R(i) corresponds to the target code rate (e.g., target code rate) of the i-th layer/layer group and is indicated for the i-th layer/layer group (or may be determined/derived from the MCS (corresponding to the layer group).
 Qm(i)は、i番目のレイヤ/レイヤグループの変調次数(例えば、modulation order)に相当し、i番目のレイヤ/レイヤグループに対して指示される(又は、i番目のレイヤ/レイヤグループに対応する)MCSから決定/導出されてもよい。 Q m(i) corresponds to the modulation order of the ith layer/layer group and is indicated for the ith layer/layer group (or (corresponding to) may be determined/derived from the MCS.
 NREは、PUSCHに割り当てられるREの総数(例えば、既存システムと同じNRE)に相当してもよい。あるいは、NREは、i番目のレイヤ/レイヤグループのREの数を示すNRE(i)に置き換えられてもよい。 N RE may correspond to the total number of REs allocated to PUSCH (eg, the same N RE as the existing system). Alternatively, N RE may be replaced by N RE(i) indicating the number of REs in the i-th layer/layer group.
 TBS決定において、Ninfo算出のステップ以外の他のステップ(例えば、ステップ2以外のステップ1、3、4)は、既存システム(例えば、Rel.16)でサポートされているステップと同じ方法が適用されてもよい。例えば、既存システム(例えば、Rel.16)でサポートされているステップ2を上記オプション2-1で示した方法に置き換え、他のステップ(例えば、ステップ1、3、4)は既存システムと同様に行ってもよい。 In TBS determination, the same method as the steps supported by the existing system (for example, Rel. 16) is applied to other steps other than the N info calculation step (for example, steps 1, 3, and 4 other than step 2). may be done. For example, step 2 supported in the existing system (e.g. Rel. You may go.
[オプション2-2]
 全てのレイヤ/レイヤグループにわたるMCS(例えば、MCS across all the layers/layer groups)から1つのMCSが選択され、TBサイズ(TBS)が選択されたMCSに基づいて算出(又は、計算/導出)されてもよい。
[Option 2-2]
One MCS is selected from the MCSs across all the layers/layer groups, and a TB size (TBS) is calculated (or calculated/derived) based on the selected MCS. It's okay.
 以下のオプション2-2-1~オプション2-2-3の少なくとも一つを適用して、全てのレイヤ/レイヤグループにわたる複数のMCSから1つのMCSが選択されてもよい。 One MCS may be selected from a plurality of MCSs across all layers/layer groups by applying at least one of the following options 2-2-1 to 2-2-3.
《オプション2-2-1》
 1番目、2番目、又は最後のレイヤ/レイヤグループに対応するMCSが選択されてもよい。
《Option 2-2-1》
The MCS corresponding to the first, second, or last layer/layer group may be selected.
《オプション2-2-2》
 所定のパネル/TRP/TCI/SRI/SRSリソースセットに関連づけられたMCSが選択されてもよい。
《Option 2-2-2》
An MCS associated with a given panel/TRP/TCI/SRI/SRS resource set may be selected.
 例えば、第1のパネル/TRP/TCI/SRI/SRSリソースセットに関連づけられたMCSが選択されてもよい。あるいは、第2のパネル/TRP/TCI/SRI/SRSリソースセットに関連づけられたMCSが選択されてもよい。 For example, the MCS associated with the first panel/TRP/TCI/SRI/SRS resource set may be selected. Alternatively, the MCS associated with the second panel/TRP/TCI/SRI/SRS resource set may be selected.
 第1のパネルは、パネルIDがより低いパネル(lower panel ID)に対応し、第2のパネルは、パネルIDがより高いパネル(higher panel ID)に対応してもよい。あるいは、第1のパネルは、パネルIDがより高いパネルに対応し、第2のパネルは、パネルIDがより低いパネルに対応してもよい。 The first panel may correspond to a panel with a lower panel ID (lower panel ID), and the second panel may correspond to a panel with a higher panel ID (higher panel ID). Alternatively, the first panel may correspond to a panel with a higher panel ID and the second panel may correspond to a panel with a lower panel ID.
 第1のSRIは、第1のSRIフィールドに対応し(又は、第1のSRIフィールドで指示され)、第2のSRIは、第2のSRIフィールドに対応し(又は、第2のSRIフィールドで指示され)てもよい。 The first SRI corresponds to (or is indicated by) the first SRI field, and the second SRI corresponds to (or is indicated by) the second SRI field. may be instructed).
 第1のSRSリソースセットは、より低いID(lower ID)を有するSRSリソースセットに対応し、第2のSRSリソースセットは、より高いID(higher ID)を有するSRSリソースセットに対応してもよい。あるいは、第1のSRSリソースセットは、より高いIDを有するSRSリソースセットに対応し、第2のSRSリソースセットは、より低いIDを有するSRSリソースセットに対応してもよい。 The first SRS resource set may correspond to an SRS resource set with a lower ID, and the second SRS resource set may correspond to an SRS resource set with a higher ID. . Alternatively, the first SRS resource set may correspond to an SRS resource set with a higher ID, and the second SRS resource set may correspond to an SRS resource set with a lower ID.
《オプション2-2-3》
 MCSのインデックスに基づいて、選択されるMCSが決定されてもよい。例えば、インデックスが最小となるMCS(又は、最小のインデックスを有するMCS)が選択されてもよい。あるいは、インデックスが最大となるMCS(又は、最大のインデックスを有するMCS)が選択されてもよい。
《Option 2-2-3》
The MCS to be selected may be determined based on the index of the MCS. For example, the MCS with the smallest index (or the MCS with the smallest index) may be selected. Alternatively, the MCS with the largest index (or the MCS with the largest index) may be selected.
 Ninfoは、選択されたMCSに基づいて算出(又は、計算/導出)されてもよい。例えば、下記の式(10)に基づいて、Ninfoが算出されてもよい。
式(10)
info=NRE・R・Q・υ
N info may be calculated (or calculated/derived) based on the selected MCS. For example, N info may be calculated based on the following equation (10).
Formula (10)
N info =N RE・R・Q m・υ
 Rは、選択されたMCSから決定されるターゲット符号化率(例えば、target code rate)に相当する。 R corresponds to a target code rate (for example, target code rate) determined from the selected MCS.
 Qは、選択されたMCSから決定される変調次数(例えば、modulation order)に相当する。 Q m corresponds to the modulation order determined from the selected MCS.
 υは、PUSCHのレイヤの総数に相当する。 υ corresponds to the total number of PUSCH layers.
 NREは、PUSCHに割り当てられるREの総数に相当する。 N RE corresponds to the total number of REs allocated to PUSCH.
 TBS決定において、Ninfo算出のステップ以外の他のステップ(例えば、ステップ2以外のステップ1、3、4)は、既存システム(例えば、Rel.16)でサポートされているステップと同じ方法が適用されてもよい。例えば、既存システム(例えば、Rel.16)でサポートされているステップ2を上記オプション2-2で示した方法に置き換え、他のステップ(例えば、ステップ1、3、4)は既存システムと同様に行ってもよい。 In TBS determination, the same method as the steps supported by the existing system (for example, Rel. 16) is applied to other steps other than the N info calculation step (for example, steps 1, 3, and 4 other than step 2). may be done. For example, step 2 supported by the existing system (e.g. Rel. You may go.
<第3の実施形態>
 第3の実施形態は、4レイヤより多い(例えば、8レイヤ)UL送信がサポートされる場合のCWとレイヤのマッピング(又は、関連づけ)に関する。
<Third embodiment>
The third embodiment relates to CW and layer mapping (or association) when UL transmission with more than 4 layers (eg, 8 layers) is supported.
 既存システム(Rel.17以前)では、1CWに対するCWとレイヤのマッピング(例えば、CW-layer mapping)は4レイヤまでサポートされている(図7参照)。 In the existing system (before Rel. 17), CW and layer mapping (for example, CW-layer mapping) for one CW is supported up to 4 layers (see FIG. 7).
 本実施の形態では、4より多いレイヤ数(例えば、最大8レイヤ)までの1CWに対するCW-レイヤのマッピングを定義する(図8参照)。図8は、レイヤ5-8における1CWに対するCW-レイヤのマッピングの一例を示している。 In this embodiment, CW-layer mapping is defined for one CW up to a number of layers greater than 4 (for example, up to 8 layers) (see FIG. 8). FIG. 8 shows an example of CW-layer mapping for one CW in layers 5-8.
 8レイヤまでをサポートする1CWに対するCW-レイヤのマッピングは、4レイヤまでをサポートする1CWに対するCW-レイヤのマッピングと同じ原理/メカニズムにより定義されてもよい。 The CW-layer mapping for one CW supporting up to 8 layers may be defined by the same principle/mechanism as the CW-layer mapping for one CW supporting up to 4 layers.
 例えば、コードワードqに対する複素値変調シンボル(例えば、complex-valued modulation symbols)d(q)(0),…,d(q)(M(q) symb-1)が、レイヤx(i)=[x(0)(i)…x(υ-1)(i)]にマッピングされてもよい。ここで、i=0,1,…,Mlayer symb-1、υはレイヤ数、Mlayer symbはレイヤ毎の変調シンボル数(例えば、modulation symbols)に相当する。 For example, the complex-valued modulation symbols d (q) (0),..., d (q) (M (q) symb -1) for codeword q are defined in layer x(i) = [x (0) (i)...x (υ-1) (i)] may be mapped to T. Here, i=0, 1,..., M layer symb -1, υ corresponds to the number of layers, and M layer symb corresponds to the number of modulation symbols for each layer (for example, modulation symbols).
 このように、4レイヤより多い場合において1CWに対するCW-レイヤマッピングを定義することにより、4レイヤより多いレイヤを利用したPUSCH送信(1CW)を適切に制御することができる。 In this way, by defining the CW-layer mapping for 1 CW when there are more than 4 layers, it is possible to appropriately control PUSCH transmission (1 CW) using more than 4 layers.
<補足>
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
<Supplement>
At least one of the embodiments described above may apply only to UEs that have reported or support a particular UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること。
・8Tx PUSCHをサポートすること、又は
・4レイヤより多い、最大8レイヤ又は最大6レイヤを利用した8Tx PUSCHをサポートすること、又は
・1CW、4レイヤより多い(又は、最大8レイヤ又は最大6レイヤ)、レイヤ/レイヤグループのMCS毎の8Tx PUSCHをサポートすること、又は
・STxMP SDM方式をサポートすること、又は
・CW毎にMCSを有する1CWによるSTxMP SDM方式をサポートすること。
The particular UE capability may indicate at least one of the following:
- Supporting specific processing/operation/control/information for at least one of the above embodiments.
- Support 8Tx PUSCH, or - Support 8Tx PUSCH using more than 4 layers, up to 8 layers or up to 6 layers, or - 1CW, more than 4 layers (or up to 8 layers or up to 6 layers). ), supporting 8 Tx PUSCH per MCS of layer/layer group, or - supporting STxMP SDM scheme, or - supporting STxMP SDM scheme with 1 CW with MCS per CW.
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、BWP)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよい。 Further, the above-mentioned specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency), or may be a capability for each frequency (for example, cell, band, BWP). , capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), or for each subcarrier spacing (SCS). It may be the ability of
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex). The capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
 また、上述の実施形態の少なくとも1つは、以下の少なくとも1つのPUSCH送信について適用されてよい。
・4レイヤ以下の同時マルチパネルUL送信、
・4レイヤ以上8レイヤ以下のUL送信、
・4レイヤ以下のシングルパネルUL送信。
Also, at least one of the embodiments described above may be applied to at least one of the following PUSCH transmissions.
・Simultaneous multi-panel UL transmission with 4 layers or less,
・UL transmission of 4 layers or more and 8 layers or less,
・Single panel UL transmission with 4 layers or less.
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。 In addition, at least one of the embodiments described above may be configured such that the UE configures/activates specific information related to the embodiment described above (or performs the operation of the embodiment described above) by upper layer signaling/physical layer signaling. / May be applied when triggered.
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。 If the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))の送信に利用する、複数のレイヤにそれぞれ対応する複数の変調及び符号化方式(Modulation and Coding Scheme(MCS))と、複数のレイヤグループにそれぞれ対応するMCSと、の少なくとも一つに関する情報を受信する受信部と、複数のレイヤと複数のレイヤグループ間のマッピング関係に基づいて、各レイヤ及び各レイヤグループの少なくとも一方のPUSCH送信を制御する制御部と、を有する端末。
[付記2]
 前記受信部は、前記複数のレイヤと複数のレイヤグループ間のマッピング関係に関する情報を受信する付記1に記載の端末。
[付記3]
 前記制御部は、複数のレイヤにそれぞれ対応する複数のMCS又は複数のレイヤグループにそれぞれ対応する複数のMCSから決定されるターゲット符号化率及び変調次数に基づいて、トランスポートブロックサイズの決定に利用するパラメータ、又はトランスポートブロックサイズを判断する付記1又は付記2に記載の端末。
[付記4]
 前記制御部は、複数のレイヤにそれぞれ対応する複数のMCS又は複数のレイヤグループにそれぞれ対応する複数のMCSから選択される特定のMCSから決定されるターゲット符号化率及び変調次数に基づいて、トランスポートブロックサイズの決定に利用するパラメータ、又はトランスポートブロックサイズを判断する付記1から付記3のいずれかに記載の端末。
(Additional note)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Additional note 1]
Multiple modulation and coding schemes (MCS) each corresponding to multiple layers and multiple layer groups each used for transmission of the uplink shared channel (Physical Uplink Shared Channel (PUSCH)) a corresponding MCS; and a control unit that controls PUSCH transmission of at least one of each layer and each layer group based on the mapping relationship between the plurality of layers and the plurality of layer groups. A terminal having a section and a terminal.
[Additional note 2]
The terminal according to supplementary note 1, wherein the receiving unit receives information regarding mapping relationships between the plurality of layers and the plurality of layer groups.
[Additional note 3]
The control unit is used to determine a transport block size based on a target coding rate and a modulation order determined from a plurality of MCSs respectively corresponding to a plurality of layers or a plurality of MCSs respectively corresponding to a plurality of layer groups. The terminal according to Supplementary note 1 or 2, which determines a parameter to be used or a transport block size.
[Additional note 4]
The control unit performs a transducer based on a target coding rate and modulation order determined from a specific MCS selected from a plurality of MCSs respectively corresponding to a plurality of layers or a plurality of MCSs respectively corresponding to a plurality of layer groups. The terminal according to any one of Supplementary Notes 1 to 3, which determines a parameter used to determine a port block size or a transport block size.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (also simply referred to as system 1) uses Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). It may also be a system that realizes communication using
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Additionally, the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare. User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、ApplicationFunction(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。 Core Network 30 is, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management (SMF), Unified Data Management. T (UDM), ApplicationFunction (AF), Data Network (DN), Location Management Network Functions (NF) such as Function (LMF) and Operation, Administration and Maintenance (Management) (OAM) may also be included. Note that multiple functions may be provided by one network node. Further, communication with an external network (eg, the Internet) may be performed via the DN.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A wireless access method may also be called a waveform. Note that in the wireless communication system 1, other wireless access methods (for example, other single carrier transmission methods, other multicarrier transmission methods) may be used as the UL and DL wireless access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the wireless communication system 1, uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, upper layer control information, etc. may be transmitted by PUSCH. Furthermore, a Master Information Block (MIB) may be transmitted via the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlinks, uplinks, etc. may be expressed without adding "link". Furthermore, various channels may be expressed without adding "Physical" at the beginning.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In addition, in the wireless communication system 1, measurement reference signals (Sounding Reference Signal (SRS)), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS). good. Note that DMRS may be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図10は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 10 is a diagram illustrating an example of the configuration of a base station according to an embodiment. The base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like. The control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140. The control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120. The control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123. The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212. The transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 1211 and an RF section 122. The reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted. A baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 120 (RF section 122) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may perform measurements regarding the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 is the receiving power (for example, Reference Signal Received Power (RSRP)), Receive Quality (eg, Reference Signal Received Quality (RSRQ), Signal To InterfERENCE PLUS NOI. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured. The measurement results may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20. User data (user plane data), control plane data, etc. may be acquired and transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
 送受信部120は、上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))の送信に利用する、複数のレイヤにそれぞれ対応する複数の変調及び符号化方式(Modulation and Coding Scheme(MCS))及び複数のレイヤグループにそれぞれ対応するMCSの少なくとも一つに関する情報を送信してもよい。 The transmitter/receiver 120 uses a plurality of modulation and coding schemes (MCS) corresponding to a plurality of layers and a plurality of Information regarding at least one MCS corresponding to each layer group may be transmitted.
 制御部110は、複数のレイヤと複数のレイヤグループ間のマッピング関係を指示するように制御してもよい。 The control unit 110 may perform control to instruct mapping relationships between multiple layers and multiple layer groups.
(ユーザ端末)
 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. The user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223. The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212. The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 2211 and an RF section 222. The reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Note that whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (for example, PUSCH), the transmitting/receiving unit 220 (transmission processing unit 2211) performs the above processing in order to transmit the channel using the DFT-s-OFDM waveform. DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving unit 220 (measuring unit 223) may perform measurements regarding the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement results may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
 送受信部220は、上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))の送信に利用する、複数のレイヤにそれぞれ対応する複数の変調及び符号化方式(Modulation and Coding Scheme(MCS))及び複数のレイヤグループにそれぞれ対応するMCSの少なくとも一つに関する情報を受信してもよい。送受信部220は、複数のレイヤと複数のレイヤグループ間のマッピング関係に関する情報を受信してもよい。 The transmitter/receiver 220 uses a plurality of modulation and coding schemes (MCS) corresponding to a plurality of layers and a plurality of Information regarding at least one MCS corresponding to each layer group may be received. The transmitter/receiver 220 may receive information regarding mapping relationships between multiple layers and multiple layer groups.
 制御部210は、複数のレイヤと複数のレイヤグループ間のマッピング関係に基づいて、各レイヤ及び各レイヤグループの少なくとも一方のPUSCH送信を制御してもよい。 The control unit 210 may control PUSCH transmission of at least one of each layer and each layer group based on the mapping relationship between the multiple layers and the multiple layer groups.
 制御部210は、複数のレイヤにそれぞれ対応する複数のMCS又は複数のレイヤグループにそれぞれ対応する複数のMCSから決定されるターゲット符号化率及び変調次数に基づいて、トランスポートブロックサイズの決定に利用するパラメータ/トランスポートブロックサイズを判断してもよい。 The control unit 210 uses target coding rates and modulation orders determined from a plurality of MCSs respectively corresponding to a plurality of layers or a plurality of MCSs respectively corresponding to a plurality of layer groups to determine a transport block size. The parameters/transport block size may be determined.
 制御部210は、複数のレイヤにそれぞれ対応する複数のMCS又は複数のレイヤグループにそれぞれ対応する複数のMCSから選択される特定のMCSから決定されるターゲット符号化率及び変調次数に基づいて、トランスポートブロックサイズの決定に利用するパラメータ、又はトランスポートブロックサイズを判断してもよい。 The control unit 210 performs a transformer based on a target coding rate and modulation order determined from a specific MCS selected from a plurality of MCSs respectively corresponding to a plurality of layers or a plurality of MCSs respectively corresponding to a plurality of layer groups. The parameters used to determine the port block size or the transport block size may be determined.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 12 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in this disclosure, words such as apparatus, circuit, device, section, unit, etc. can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, the processing may be performed by one processor, or the processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Note that the processor 1001 may be implemented using one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a portion of the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include. For example, the above-described transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modified example)
Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal may be interchanged. Also, the signal may be a message. The reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard. Further, a component carrier (CC) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Additionally, an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier. Good too. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are not in any way exclusive designations. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Additionally, information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer. Information, signals, etc. may be input and output via multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like. Further, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, notification of prescribed information (for example, notification of "X") is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (such as infrared, microwave, etc.) to , a server, or other remote source, these wired and/or wireless technologies are included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may refer to devices (eg, base stations) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, "precoding", "precoder", "weight (precoding weight)", "quasi-co-location (QCL)", "Transmission Configuration Indication state (TCI state)", "space "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", and "panel" are interchangeable. can be used.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "Base Station (BS)", "Wireless base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , "cell," "sector," "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In the present disclosure, a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" are used interchangeably. can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 図13は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 13 is a diagram illustrating an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49. The electronic control section 49 may be called an electronic control unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52. air pressure signals of the front wheels 46/rear wheels 47, a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor. 56, a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40. Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the base station 10, user terminal 20, etc. described above. Further, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 The communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions that the base station 10 described above has. Further, words such as "uplink" and "downlink" may be replaced with words corresponding to inter-terminal communication (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be replaced with sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 10 may have the functions that the user terminal 20 described above has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, the operations performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is an integer or decimal number, for example)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods. The present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these systems. Furthermore, a combination of multiple systems (for example, a combination of LTE or LTE-A and 5G) may be applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment" can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be "determining", such as accessing data in memory (eg, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment" is considered to mean "judging" resolving, selecting, choosing, establishing, comparing, etc. Good too. In other words, "judgment (decision)" may be considered to be "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Furthermore, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected", "coupled", or any variations thereof refer to any connection or coupling, direct or indirect, between two or more elements. can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access."
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising". It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In the present disclosure, "less than or equal to", "less than", "more than", "more than", "equal to", etc. may be read interchangeably. In addition, in this disclosure, "good", "bad", "large", "small", "high", "low", "early", "slow", "wide", "narrow", etc. The words are not limited to the original, comparative, and superlative, and may be interpreted interchangeably. In addition, in this disclosure, words meaning "good", "bad", "large", "small", "high", "low", "early", "slow", "wide", "narrow", etc. may be interpreted as an expression with "the i-th" (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest" can be interpreted as "the i-th highest"). may be read interchangeably).
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, "of", "for", "regarding", "related to", "associated with", etc. are used to refer to each other. It may be read differently.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the invention as determined based on the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and does not have any limiting meaning on the invention according to the present disclosure.
 本出願は、2022年8月25日出願の特願2022-133893に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2022-133893 filed on August 25, 2022. All of this information will be included here.

Claims (6)

  1.  上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))の送信に利用する、複数のレイヤにそれぞれ対応する複数の変調及び符号化方式(Modulation and Coding Scheme(MCS))と、複数のレイヤグループにそれぞれ対応するMCSと、の少なくとも一つに関する情報を受信する受信部と、
     複数のレイヤと複数のレイヤグループ間のマッピング関係に基づいて、各レイヤ及び各レイヤグループの少なくとも一方のPUSCH送信を制御する制御部と、を有する端末。
    Multiple modulation and coding schemes (MCS) each corresponding to multiple layers and multiple layer groups each used for transmission of the uplink shared channel (Physical Uplink Shared Channel (PUSCH)) a corresponding MCS, and a receiving unit that receives information regarding at least one of the following;
    A terminal comprising: a control unit that controls PUSCH transmission of at least one of each layer and each layer group based on mapping relationships between the plurality of layers and the plurality of layer groups.
  2.  前記受信部は、前記複数のレイヤと複数のレイヤグループ間のマッピング関係に関する情報を受信する請求項1に記載の端末。 The terminal according to claim 1, wherein the receiving unit receives information regarding mapping relationships between the plurality of layers and the plurality of layer groups.
  3.  前記制御部は、複数のレイヤにそれぞれ対応する複数のMCS又は複数のレイヤグループにそれぞれ対応する複数のMCSから決定されるターゲット符号化率及び変調次数に基づいて、トランスポートブロックサイズの決定に利用するパラメータ、又はトランスポートブロックサイズを判断する請求項1に記載の端末。 The control unit is used to determine a transport block size based on a target coding rate and a modulation order determined from a plurality of MCSs respectively corresponding to a plurality of layers or a plurality of MCSs respectively corresponding to a plurality of layer groups. The terminal according to claim 1, wherein the terminal determines a parameter for transport block size or a transport block size.
  4.  前記制御部は、複数のレイヤにそれぞれ対応する複数のMCS又は複数のレイヤグループにそれぞれ対応する複数のMCSから選択される特定のMCSから決定されるターゲット符号化率及び変調次数に基づいて、トランスポートブロックサイズの決定に利用するパラメータ、又はトランスポートブロックサイズを判断する請求項1に記載の端末。 The control unit performs a transducer based on a target coding rate and modulation order determined from a specific MCS selected from a plurality of MCSs respectively corresponding to a plurality of layers or a plurality of MCSs respectively corresponding to a plurality of layer groups. The terminal according to claim 1, wherein the terminal determines a parameter used to determine a port block size or a transport block size.
  5.  上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))の送信に利用する、複数のレイヤにそれぞれ対応する複数の変調及び符号化方式(Modulation and Coding Scheme(MCS))と、複数のレイヤグループにそれぞれ対応するMCSと、の少なくとも一つに関する情報を受信する工程と、
     複数のレイヤと複数のレイヤグループ間のマッピング関係に基づいて、各レイヤ及び各レイヤグループの少なくとも一方のPUSCH送信を制御する工程と、を有する端末の無線通信方法。
    Multiple modulation and coding schemes (MCS) each corresponding to multiple layers and multiple layer groups each used for transmission of the uplink shared channel (Physical Uplink Shared Channel (PUSCH)) receiving information regarding at least one of the corresponding MCS;
    A wireless communication method for a terminal, comprising: controlling PUSCH transmission of at least one of each layer and each layer group based on mapping relationships between the plurality of layers and the plurality of layer groups.
  6.  上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))の送信に利用する、複数のレイヤにそれぞれ対応する複数の変調及び符号化方式(Modulation and Coding Scheme(MCS))と、複数のレイヤグループにそれぞれ対応するMCSと、の少なくとも一つに関する情報を送信する送信部と、
     複数のレイヤと複数のレイヤグループ間のマッピング関係を指示するように制御する制御部と、を有する基地局。
     
     
     
    Multiple modulation and coding schemes (MCS) each corresponding to multiple layers and multiple layer groups each used for transmission of the uplink shared channel (Physical Uplink Shared Channel (PUSCH)) a corresponding MCS, and a transmitter that transmits information regarding at least one of the following;
    A base station comprising: a control unit configured to instruct mapping relationships between a plurality of layers and a plurality of layer groups.


PCT/JP2023/027561 2022-08-25 2023-07-27 Terminal, wireless communication method, and base station WO2024042993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-133893 2022-08-25
JP2022133893 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024042993A1 true WO2024042993A1 (en) 2024-02-29

Family

ID=90012998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027561 WO2024042993A1 (en) 2022-08-25 2023-07-27 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2024042993A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 17)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.214, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V17.2.0, 23 June 2022 (2022-06-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 229, XP052183196 *
CMCC: "Discussion on SRI/TPMI enhancement for enabling 8 TX UL transmission", 3GPP DRAFT; R1-2206900, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052274838 *
NTT DOCOMO, INC.: "Discussion on 8TX UL transmission", 3GPP DRAFT; R1-2207399, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052275334 *
QUALCOMM INCORPORATED: "Enhancements for 8 Tx UL transmissions", 3GPP DRAFT; R1-2207221, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 13 August 2022 (2022-08-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052275158 *

Similar Documents

Publication Publication Date Title
WO2024042993A1 (en) Terminal, wireless communication method, and base station
WO2024029043A1 (en) Terminal, wireless communication method, and base station
WO2024029044A1 (en) Terminal, wireless communication method, and base station
WO2024004172A1 (en) Terminal, radio communication method, and base station
WO2024004173A1 (en) Terminal, wireless communication method, and base station
WO2024029029A1 (en) Terminal, wireless communication method, and base station
WO2024029030A1 (en) Terminal, wireless communication method, and base station
WO2024009492A1 (en) Terminal, wireless communication method, and base station
WO2024009476A1 (en) Terminal, radio communication method, and base station
WO2023218954A1 (en) Terminal, radio communication method, and base station
WO2023209992A1 (en) Terminal, radio communication method, and base station
WO2024042926A1 (en) Terminal, wireless communication method, and base station
WO2024042925A1 (en) Terminal, wireless communication method, and base station
WO2024042924A1 (en) Terminal, wireless communication method, and base station
WO2023175785A1 (en) Terminal, wireless communication method, and base station
WO2024042866A1 (en) Terminal, wireless communication method, and base station
WO2023203713A1 (en) Terminal, wireless communication method, and base station
WO2024095473A1 (en) Terminal, wireless communication method, and base station
WO2023181366A1 (en) Terminal, radio communication method, and base station
WO2023209990A1 (en) Terminal, wireless communication method, and base station
WO2024171283A1 (en) Terminal, wireless communication method, and base station
WO2023209991A1 (en) Terminal, wireless communication method, and base station
WO2024095472A1 (en) Terminal, wireless communication method, and base station
WO2024034133A1 (en) Terminal, wireless communication method, and base station
WO2023170905A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857109

Country of ref document: EP

Kind code of ref document: A1