WO2024042935A1 - Exhaust gas purifying catalyst, and catalyst body using same - Google Patents

Exhaust gas purifying catalyst, and catalyst body using same Download PDF

Info

Publication number
WO2024042935A1
WO2024042935A1 PCT/JP2023/026601 JP2023026601W WO2024042935A1 WO 2024042935 A1 WO2024042935 A1 WO 2024042935A1 JP 2023026601 W JP2023026601 W JP 2023026601W WO 2024042935 A1 WO2024042935 A1 WO 2024042935A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
base material
gas purifying
zirconia
Prior art date
Application number
PCT/JP2023/026601
Other languages
French (fr)
Japanese (ja)
Inventor
斗志生 谷
隼輔 大石
ひろ美 冨樫
正尚 佐藤
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Publication of WO2024042935A1 publication Critical patent/WO2024042935A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • B01J35/51
    • B01J35/57

Definitions

  • the present invention relates to an exhaust gas purifying catalyst.
  • the present invention also relates to a catalyst body for exhaust gas purification using the same.
  • Exhaust gas emitted from internal combustion engines such as automobile engines contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx).
  • exhaust gas purifying catalysts in which noble catalytic metals are supported on a base material such as alumina have been used.
  • Rh which has high NOx reduction performance, is mainly used as a catalytic noble metal for NOx purification.
  • Patent Document 1 discloses that when a zirconia coating is provided on the alumina particles of the base material, the zirconia coating can suppress Rh from forming a solid solution in the alumina and improve the durability of the exhaust gas purification catalyst. is listed.
  • Patent Document 2 alumina particles coated with zirconia used as a base material are produced by a coprecipitation method.
  • the present invention has been made in view of the above circumstances, and its purpose is to provide an exhaust gas purifying catalyst that has high Rh purifying activity even when exposed to high temperatures for a long time.
  • the present inventors succeeded in making the zirconia coating finer by manufacturing alumina, which is a base material, with a zirconia coating using a spray drying method. They have also found that when Rh is supported on an alumina base material coated with finely divided zirconia, the purification activity of Rh becomes sufficiently high even when exposed to high temperatures for a long time.
  • the exhaust gas purifying catalyst [1] disclosed herein includes a base material and a catalytic noble metal supported by the base material.
  • the base material includes La-containing alumina particles and a zirconia coating disposed on the surface of the alumina particles.
  • the catalytic noble metal contains at least Rh.
  • the mass percentage of zirconia in the base material is 5% by mass or more.
  • the average grain size of the zirconia coating, as determined by focused ion beam scanning electron microscopy, is less than 100 nm.
  • the average particle size of the zirconia coating of the base material is several hundred nm or more, and therefore, when exposed to high temperatures for a long period of time, The solid solution of Rh into alumina is not sufficiently suppressed. Therefore, when exposed to high temperatures for a long time, the Rh purification activity decreases.
  • the exhaust gas purifying catalyst [1] disclosed herein contains a predetermined amount of zirconia, and the average particle size of the zirconia coating is small. Therefore, in the exhaust gas purifying catalyst [1] disclosed herein, the zirconia coating is highly dispersed on the surface of the alumina particles.
  • the proportion of Rh existing on or near the zirconia coating increases, and the zirconia coating prevents Rh from forming a solid solution in the alumina of the base material when exposed to high temperatures for a long time. Can be suppressed. Therefore, the exhaust gas purification catalyst [1] disclosed herein has high Rh purification activity even when exposed to high temperatures for a long time.
  • the exhaust gas purification catalyst [2] disclosed herein is the same as the exhaust gas purification catalyst [1], in which a quantitative line analysis of Zr is performed from the surface of the alumina particles toward the center using a field emission type electron probe analyzer.
  • a quantitative line analysis of Zr is performed from the surface of the alumina particles toward the center using a field emission type electron probe analyzer.
  • the proportion of Rh existing on or near the zirconia coating becomes higher, and solid solution of Rh into the alumina of the base material is further suppressed when exposed to high temperatures for a long period of time. can do. Therefore, even when exposed to high temperatures for a long time, the Rh purification activity becomes higher.
  • the mass proportion of zirconia in the base material is 9 mass% or more and 30 mass% or less. At this time, the Rh purification activity becomes particularly high when exposed to high temperatures for a long time.
  • the average particle size of the zirconia coating is 5 nm or more and 80 nm or less. At this time, the Rh purification activity becomes particularly high when exposed to high temperatures for a long time.
  • the exhaust gas purifying catalyst body [5] disclosed herein includes a base material and a catalyst layer provided on the base material.
  • the catalyst layer contains any one of the exhaust gas purifying catalysts [1] to [4].
  • the catalyst body for exhaust gas purification [6] disclosed herein is the catalyst body for exhaust gas purification [5], in which the catalyst layer includes a first partial catalyst layer located on the base material side, and a surface layer of the catalyst layer. a second partial catalyst layer located on the side.
  • the first partial catalyst layer contains an exhaust gas purifying catalyst in which the catalytic noble metal is at least one of Pt and Pd.
  • the second partial catalyst layer contains any one of the exhaust gas purifying catalysts [1] to [4].
  • a catalyst body for exhaust gas purification that not only has particularly high purification performance for NOx contained in exhaust gas but also has particularly high purification performance for HC and CO.
  • FIG. 1 is a cross-sectional view schematically showing an exhaust gas purifying catalyst according to the present embodiment.
  • FIG. 1 is a schematic diagram showing an exhaust gas purification system according to the present embodiment.
  • 3 is a perspective view schematically showing the exhaust gas purifying catalyst body of FIG. 2.
  • FIG. 4 is a partial cross-sectional view of the exhaust gas purifying catalyst body of FIG. 3 cut in the cylinder axis direction.
  • FIG. 5 is a partial cross-sectional view showing the configuration of a modification of the exhaust gas purifying catalyst body of FIG. 4.
  • FIG. This is an FIB-SEM image of the exhaust gas purifying catalyst of Example 4 observed at a measurement magnification of 300,000 times.
  • This is an FIB-SEM image of the exhaust gas purification catalyst of Comparative Example 4 observed at a measurement magnification of 3,000 times.
  • FIG. 1 is a schematic cross-sectional view of an exhaust gas purifying catalyst 100, which is an example of the exhaust gas purifying catalyst disclosed herein.
  • the exhaust gas purifying catalyst 100 includes a base material 30 and a catalytic noble metal 40, as shown in FIG.
  • the catalytic noble metal 40 contains at least Rh. Since the catalyst noble metal 40 contains Rh, NOx in the exhaust gas can be efficiently purified.
  • the catalyst noble metal 40 contains a noble metal other than Rh (i.e., gold (Au), silver (Ag), platinum (Pt), palladium (Pd), iridium (Ir), ruthenium (Ru), osmium (Os)). You can leave it there.
  • the amount of Rh in the catalytic noble metal 40 is preferably 80% by mass, more preferably 90% by mass, even more preferably 95% by mass, and most preferably 100% by mass (that is, the catalytic noble metal 40 is Rh only).
  • the catalytic noble metal 40 is typically in the form of particles.
  • the average particle size of the catalyst noble metal 40 is not particularly limited. From the viewpoint of increasing the contact area with exhaust gas, the catalyst noble metal 40 is preferably fine particles with a sufficiently small particle size.
  • the average particle size of the catalyst noble metal 40 is, for example, 15 nm or less, preferably 10 nm or less, and more preferably 5 nm or less.
  • the lower limit of the average particle size of the catalyst noble metal 40 is not particularly limited, and the average particle size of the catalyst noble metal 40 may be, for example, 1 nm or more. Note that the average particle diameter of the catalyst noble metal 40 can be determined as the average value of the particle diameters of 50 or more catalyst noble metals determined by transmission electron microscopy (TEM) observation.
  • TEM transmission electron microscopy
  • the supported amount of the catalyst noble metal 40 is not particularly limited, and can be appropriately determined depending on the design of the exhaust gas purification catalyst body using the exhaust gas purification catalyst 100.
  • the amount of catalyst noble metal 40 supported is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.1% by mass or more, based on the mass of base material 30. Further, the amount of the catalyst noble metal 40 supported is, for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 3% by mass or less, based on the mass of the base material 30.
  • the base material 30 includes La-containing alumina particles 32 (also simply referred to as "alumina particles 32") and a zirconia coating 34 disposed on the surface of the alumina particles 32.
  • the base material 30 of the exhaust gas purifying catalyst 100 is La-containing alumina particles 32 having a coating 34 of zirconia.
  • the average particle size of the base material 30 is not particularly limited.
  • the average particle size of the base material 30 is, for example, 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • the average particle size of the base material 30 is, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably 60 ⁇ m or less. Note that the average particle size of the base material 30 can be determined as a median diameter (D50: volume basis) by measurement based on a laser diffraction/scattering method.
  • the alumina particles 32 contain La. Therefore, the alumina particles 32 are particles of lanthanum-alumina composite oxide. When the alumina particles 32 contain La, the heat resistance of the exhaust gas purification catalyst 100 is improved. Further, the fact that the alumina particles 32 contain La also contributes to suppressing solid solution of Rh into alumina when exposed to high temperatures for a long time.
  • the configuration of the La-containing alumina particles 32 may be the same as or similar to known La-containing alumina particles used as a support for a three-way catalyst.
  • the content of La in the alumina particles 32 is not particularly limited, and is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more in terms of La 2 O 3 It is.
  • the content of La in the alumina particles 32 is, for example, 30% by mass or less, preferably 20% by mass or less, and more preferably 10% by mass or less, in terms of La 2 O 3 .
  • the content of La in the alumina particles 32 can be determined by measurement using an X-ray fluorescence analyzer (XRF).
  • the alumina particles 32 contain components other than Al 2 O 3 and La 2 O 3 (for example, Pr 2 O 3 , Nd 2 O 3 ) within a range that does not significantly inhibit the effects of the present invention (for example, 10% by mass or less) . , Y 2 O 3 or other rare earth element oxides other than La, preferably Y 2 O 3 ).
  • the shape of the alumina particles 32 is not particularly limited, and may be approximately spherical, approximately ellipsoidal, irregular, etc.
  • the alumina particles 32 are usually secondary particles that are aggregates of primary particles. When the alumina particles 32 are secondary particles, a large specific surface area can be ensured. However, the alumina particles 32 may be primary particles or a mixture of primary particles and secondary particles.
  • the coating 34 of zirconia is in the form of fine particles and is scattered on the surface of the alumina particles 32 . Note that the shape and number of the zirconia coating 34 are not limited to those shown in the drawings.
  • the average particle size determined by a focused ion beam scanning electron microscope is less than 100 nm.
  • This average particle diameter can be determined by measuring the equivalent circle diameters (in other words, Heywood diameters) of six or more coatings arbitrarily selected from the SEM image, and determining the average value thereof. Note that, in order to determine the average particle diameter, it is preferable to perform SEM observation at a measurement magnification of at least 300,000 times. Image analysis software (eg, ImageJ, etc.) may be used to calculate the equivalent circle diameter and the average value.
  • Image analysis software eg, ImageJ, etc.
  • the mass ratio of zirconia (ZrO 2 ) in the base material 30 (that is, relative to the mass of the base material 30 (total mass of the alumina particles 32 and the coating 34)) is 5% by mass or more. Since the zirconia coating 34 has an average particle size of less than 100 nm and zirconia is present in the base material 30 in a mass proportion of 5% by mass or more, the zirconia coating 34 is highly concentrated on the surface of the alumina particles 32. This allows more Rh to be present on or near the zirconia coating 34.
  • the zirconia coating 34 can highly suppress Rh from dissolving into alumina.
  • Rh purification activity can be maintained at a high level even when exposed to high temperatures for a long time.
  • the average particle size of the zirconia coating 34 is preferably 80 nm or less, more preferably 70 nm or less, More preferably, it is 60 nm or less, particularly preferably 50 nm or less.
  • the lower limit of the average particle size of the zirconia coating 34 is determined by technological limitations and may be, for example, 5 nm, 10 nm, 15 nm, or 20 nm.
  • the mass proportion of zirconia (ZrO 2 ) in the base material 30 is preferably set to The content is 9% by mass or more, more preferably 14% by mass or more, even more preferably 18% by mass or more, and most preferably 20% by mass or more.
  • the mass proportion of zirconia in the base material 30 is preferably 30% by mass or less, more preferably 28% by mass or less, still more preferably 25% by mass or less, and most preferably 22% by mass or less. .
  • the mass proportion of zirconia in the base material 30 can be determined by measurement using an X-ray fluorescence spectrometer (XRF).
  • the zirconia coating 34 may contain components other than ZrO 2 within a range (for example, 10% by mass or less) that does not significantly inhibit the effects of the present invention.
  • zirconia typically exists as a coating 34 on the surface of the alumina particles 32.
  • zirconia may exist inside the La-containing alumina particles 32 within a range that does not impede the effects of the present invention.
  • the zirconia precursor described below may enter through the gaps.
  • zirconia may be generated inside the alumina particles 32.
  • zirconia is distributed only on the surface of the alumina particles 32, or in a large amount on the surface and the vicinity thereof, from the viewpoint of suppressing the solid solution of Rh into alumina to a higher degree. Therefore, quantitative line analysis of Zr was performed from the surface of the alumina particle 32 toward the center using a field emission electron probe analyzer (FE-EPMA), and from the surface to the center, the surface was set as 0% and the center as 100%. It is preferable that the peak top of the Zr intensity exists within the range of 0% to 20% (preferably 0% to 15%, more preferably 0% to 12%) when expressed as the depth of .
  • FE-EPMA field emission electron probe analyzer
  • the exhaust gas purifying catalyst 100 can be manufactured, for example, as follows.
  • zirconia precursor that is converted into zirconia by firing and is soluble in a solvent is used. Since water can be used as a solvent, zirconium oxynitrate is preferred as the zirconia precursor.
  • Spray drying conditions may be determined with reference to known conditions employed to coat particles with solids of a solution by spray drying. Thereby, the zirconia precursor can be adhered to the surface of the alumina particles 32 in a highly dispersed state. Further drying may be performed to sufficiently remove the solvent.
  • the mass proportion of zirconia in the base material 30 can be adjusted by changing the concentrations of the La-containing alumina particles 32 and the zirconia precursor in the suspension.
  • spray drying allows the particle size of the zirconia coating to be less than 100 nm, the particle size of the zirconia coating can be further adjusted by changing the spray drying conditions.
  • a step of firing the obtained powder is performed.
  • This firing converts the zirconia precursor into a coating 34 of zirconia.
  • the firing conditions may be determined as appropriate depending on the type of zirconia precursor.
  • La-containing alumina particles 32 (ie, base material 30) having a zirconia coating 34 can be obtained.
  • a step of firing is carried out.
  • the catalytic noble metal 40 can be supported on the base material 30. That is, the exhaust gas purifying catalyst 100 can be obtained.
  • the exhaust gas purification catalyst 100 has excellent Rh purification activity even when exposed to high temperatures for a long time. Therefore, the exhaust gas purification catalyst 100 has excellent NOx purification performance even when exposed to high temperatures for a long time. Therefore, an example of an exhaust gas purifying catalyst body using the exhaust gas purifying catalyst 100 and an example of an exhaust gas purifying system including the same will be described below.
  • FIG. 2 is a schematic diagram of the exhaust gas purification system 1.
  • the exhaust gas purification system 1 includes an internal combustion engine 2, an exhaust gas purification device 3, and an engine control unit (ECU) 7.
  • the exhaust gas purification system 1 is configured so that the exhaust gas purification device 3 purifies harmful components such as HC, CO, NOx, etc. contained in the exhaust gas discharged from the internal combustion engine 2.
  • the arrows in FIG. 2 indicate the flow direction of exhaust gas.
  • the side closer to the internal combustion engine 2 along the flow of exhaust gas will be referred to as the upstream side, and the side farther from the internal combustion engine 2 will be referred to as the downstream side.
  • the internal combustion engine 2 is mainly configured with a gasoline engine of a gasoline vehicle.
  • the internal combustion engine 2 may be an engine other than gasoline, such as a diesel engine or an engine installed in a hybrid vehicle.
  • Internal combustion engine 2 includes a combustion chamber (not shown).
  • the combustion chamber is connected to a fuel tank (not shown). Gasoline is stored in the fuel tank here.
  • the fuel stored in the fuel tank may be diesel fuel (light oil) or the like.
  • fuel supplied from the fuel tank is mixed with oxygen and combusted. This converts combustion energy into mechanical energy.
  • the combustion chamber communicates with the exhaust port 2a.
  • the exhaust port 2a communicates with the exhaust gas purification device 3.
  • the combusted fuel gas becomes exhaust gas and is discharged to the exhaust gas purification device 3.
  • the exhaust gas purification device 3 includes an exhaust path 4 communicating with the internal combustion engine 2, a pressure sensor 8, a first catalyst body 9, and a second catalyst body 10.
  • the exhaust path 4 is an exhaust gas flow path through which exhaust gas flows.
  • the exhaust path 4 here includes an exhaust manifold 5 and an exhaust pipe 6.
  • An upstream end of the exhaust manifold 5 is connected to an exhaust port 2a of the internal combustion engine 2.
  • a downstream end of the exhaust manifold 5 is connected to an exhaust pipe 6.
  • a first catalyst body 9 and a second catalyst body 10 are arranged in order from the upstream side.
  • the arrangement of the first catalyst body 9 and the second catalyst body 10 may be arbitrarily changed.
  • the number of first catalyst bodies 9 and second catalyst bodies 10 is not particularly limited, and a plurality of each may be provided.
  • a third catalyst body may be further disposed downstream of the second catalyst body 10.
  • the first catalyst body 9 may be the same as the conventional one and is not particularly limited.
  • the first catalyst body 9 is, for example, a diesel particulate filter (DPF) that removes PM contained in exhaust gas; a diesel oxidation catalyst (DOC) that purifies HC and CO contained in exhaust gas; A three-way catalyst that simultaneously purifies HC, CO, and NOx contained in exhaust gas; a reducing agent that stores NOx during normal operation (under lean conditions) and reduces HC and CO when a large amount of fuel is injected (under rich conditions). It may also be a NOx storage-reduction (NSR) catalyst that purifies NOx.
  • the first catalyst body 9 may have a function of increasing the temperature of the exhaust gas flowing into the second catalyst body 10, for example. Note that the first catalyst body 9 is not an essential component and may be omitted in other embodiments.
  • the second catalyst body 10 is an example of an exhaust gas purification catalyst body using the above-described exhaust gas purification catalyst 100. Therefore, the second catalyst body 10 includes the above-mentioned exhaust gas purifying catalyst 100, and has a function of purifying harmful components (particularly NOx) in the exhaust gas. Note that, hereinafter, the second catalyst body 10 may be referred to as an "exhaust gas purification catalyst body.” The configuration of the second catalyst body (exhaust gas purification catalyst body) 10 will be described in detail later.
  • the ECU 7 controls the internal combustion engine 2 and the exhaust gas purification device 3.
  • the ECU 7 is electrically connected to the internal combustion engine 2 and sensors installed at various parts of the exhaust gas purification device 3 (for example, a pressure sensor 8, a temperature sensor, an oxygen sensor, etc.).
  • the configuration of the ECU 7 may be the same as the conventional one and is not particularly limited.
  • the ECU 7 is, for example, a processor or an integrated circuit.
  • the ECU 7 includes an input port (not shown) and an output port (not shown).
  • the ECU 7 receives information such as the operating state of the vehicle, the amount of exhaust gas discharged from the internal combustion engine 2, the temperature, and the pressure.
  • the ECU 7 receives information detected by the sensor (for example, the pressure measured by the pressure sensor 8) via an input port.
  • the ECU 7 transmits a control signal via the output port, for example, based on the received information.
  • the ECU 7 controls operations such as fuel injection control, ignition control, and intake air amount adjustment control of the internal combustion engine 2, for example.
  • the ECU 7 controls driving and stopping of the exhaust gas purification device 3 based on, for example, the operating state of the internal combustion engine 2 and the amount of exhaust gas discharged from the internal combustion engine 2.
  • FIG. 3 is a perspective view schematically showing the exhaust gas purifying catalyst body 10.
  • the exhaust gas purification catalyst body 10 is a second catalyst body 10 that includes the above-described exhaust gas purification catalyst 100. Note that the arrows in FIG. 3 indicate the flow of exhaust gas.
  • the upstream side of the exhaust path 4 that is relatively close to the internal combustion engine 2 is shown on the left, and the downstream side of the exhaust path that is relatively far from the internal combustion engine 2 is shown on the right.
  • the symbol X represents the cylinder axis direction of the exhaust gas purifying catalyst body 10.
  • the exhaust gas purifying catalyst body 10 is installed in the exhaust path 4 so that the cylinder axis direction X is along the flow direction of exhaust gas.
  • the cylinder axis direction X is the flow direction of exhaust gas.
  • one direction X1 will be referred to as the upstream side (also referred to as the exhaust gas inflow side, front side), and the other direction X2 will be referred to as the downstream side (also referred to as the exhaust gas outflow side, rear side).
  • the upstream side also referred to as the exhaust gas inflow side, front side
  • the downstream side also referred to as the exhaust gas outflow side, rear side
  • this is only a direction for convenience of explanation, and does not limit the installation form of the exhaust gas purifying catalyst body 10 in any way.
  • the exhaust gas purifying catalyst body 10 includes a base material 11 with a straight flow structure and a catalyst layer 20 (see FIG. 4). An end of the exhaust gas purifying catalyst body 10 in one direction X1 is an exhaust gas inlet 10a, and an end in the other direction X2 is an exhaust gas outlet 10b.
  • the outer shape of the exhaust gas purifying catalyst body 10 is cylindrical here.
  • the external shape of the exhaust gas purifying catalyst body 10 is not particularly limited, and may be, for example, an elliptical cylinder shape, a polygonal cylinder shape, a pipe shape, a foam shape, a pellet shape, a fibrous shape, or the like.
  • the exhaust gas purifying catalyst body 10 may include members other than the base material 11 and the catalyst layer 20.
  • the exhaust gas purifying catalyst body 10 may further include a layer other than the catalyst layer 20.
  • the base material 11 constitutes the framework of the exhaust gas purifying catalyst body 10.
  • the base material 11 is not particularly limited, and various materials and shapes conventionally used for this type of use can be used.
  • the base material 11 may be a ceramic carrier made of ceramics such as cordierite, aluminum titanate, silicon carbide, etc., or may be a ceramic carrier made of ceramics such as cordierite, aluminum titanate, silicon carbide, stainless steel (SUS), Fe-Cr-Al alloy, Ni-Cr- A metal carrier made of an Al-based alloy or the like may also be used.
  • the base material 11 has a honeycomb structure here.
  • the base material 11 includes a plurality of cells (cavities) 12 regularly arranged in the cylinder axis direction X, and partition walls (ribs) 14 that partition the plurality of cells 12.
  • the volume of the base material 11 (apparent volume including the volume of the cells 12) may be approximately 0.1 to 10L, for example, 0.5 to 5L.
  • the average length (total length) L of the base material 11 along the cylinder axis direction X may be approximately 10 to 500 mm, for example, 50 to 300 mm.
  • the cell 12 becomes a flow path for exhaust gas.
  • the cell 12 extends in the cylinder axis direction X.
  • the cell 12 is a through hole that penetrates the base material 11 in the cylinder axis direction X.
  • the shape, size, number, etc. of the cells 12 may be designed in consideration of, for example, the flow rate and components of the exhaust gas flowing through the exhaust gas purifying catalyst body 10.
  • the shape of the cross section of the cell 12 perpendicular to the cylinder axis direction X is not particularly limited.
  • the cross-sectional shape of the cell 12 may be various geometric shapes, such as squares, parallelograms, rectangles, trapezoids, other polygons (triangles, hexagons, octagons, etc.), wavy shapes, circles, etc.
  • the partition wall 14 faces the cells 12 and separates adjacent cells 12 from each other.
  • the average thickness (dimension in the direction perpendicular to the surface; the same shall apply hereinafter) of the partition wall 14 is approximately 0.1 to 0.1 from the viewpoint of improving mechanical strength and reducing pressure loss. It may be 10 mil (1 mil is about 25.4 ⁇ m), for example 0.2 to 5 mil.
  • the partition wall 14 may be porous so that exhaust gas can pass therethrough.
  • the catalyst layer 20 is a reaction field that purifies harmful components in exhaust gas.
  • the catalyst layer 20 is a porous body having many pores (voids).
  • the exhaust gas that has flowed into the exhaust gas purification catalyst body 10 comes into contact with the catalyst layer 20 while flowing in the flow path (cell 12) of the exhaust gas purification catalyst body 10. This purifies harmful components in the exhaust gas.
  • FIG. 4 is a partial sectional view schematically showing a part of the cross section of the exhaust gas purifying catalyst body 10 taken along the cylinder axis direction X.
  • the catalyst layer 20 is provided here on the base material 11, specifically on the surface of the partition wall 14. However, part or all of the catalyst layer 20 may penetrate into the partition wall 14 .
  • the catalyst layer 20 contains the above-mentioned exhaust gas purifying catalyst 100. Since the exhaust gas purification catalyst 100 contains Rh as the noble metal catalyst 40, the exhaust gas purification catalyst body 10 can reduce NOx contained in the exhaust gas and convert it into nitrogen, thereby purifying the exhaust gas. be able to. In particular, the exhaust gas purification catalyst body 10 has high NOx purification performance even when exposed to high temperatures for a long time.
  • the catalyst layer 20 may contain components other than the exhaust gas purifying catalyst 100 (hereinafter also referred to as "optional components").
  • the optional components will be explained below.
  • the catalyst layer 20 may contain a material having an oxygen storage capacity (OSC material) such as a composite oxide containing ceria.
  • OSC material oxygen storage capacity
  • the exhaust gas purifying catalyst body 10 can stably exhibit excellent purification performance even when the air-fuel ratio of the exhaust gas fluctuates depending on the driving conditions of the vehicle.
  • examples of the composite oxide containing ceria include a composite oxide containing ceria and zirconia (ceria-zirconia composite oxide (so-called CZ composite oxide or ZC composite oxide)).
  • ceria-zirconia composite oxide sin-called CZ composite oxide or ZC composite oxide
  • the OSC material contains zirconium oxide, thermal deterioration of cerium oxide can be suppressed, so ceria-zirconia composite oxide is preferable as the OSC material.
  • the content of cerium oxide is preferably 15% by mass or more, more preferably 20% by mass or more, from the viewpoint of fully demonstrating its oxygen storage capacity. be.
  • the content of cerium oxide is preferably 40% by mass or less, more preferably 30% by mass or less.
  • the OSC material may contain an oxide of a rare earth element for the purpose of improving properties (especially heat resistance, oxygen absorption/release properties, etc.).
  • a rare earth element for the purpose of improving properties (especially heat resistance, oxygen absorption/release properties, etc.).
  • rare earth elements include Sc, Y, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and the like.
  • Preferred rare earth element oxides are Pr 2 O 3 , Nd 2 O 3 , La 2 O 3 , and Y 2 O 3 .
  • the amount of OSC material per 1 L volume of the base material 11 is not particularly limited, but may be, for example, 10 g/L or more, 25 g/L or more, or 50 g/L or more, and, for example, 150 g/L or less, It may be 100 g/L or less, or 80 g/L or less.
  • per 1 L volume of the base material refers to per 1 L bulk volume of the entire base material including the volume of the cell passageway in the pure volume of the base material.
  • (g/L) indicates the amount contained in 1 L of volume of the base material.
  • the catalyst layer 20 may contain an oxygen storage material such as aluminum oxide (Al 2 O 3 , alumina), titanium oxide (TiO 2 , titania), zirconium oxide (ZrO 2 , zirconia), silicon oxide (SiO 2 , silica), etc. It may also contain a material (non-OSC material) that does not have this ability.
  • an oxygen storage material such as aluminum oxide (Al 2 O 3 , alumina), titanium oxide (TiO 2 , titania), zirconium oxide (ZrO 2 , zirconia), silicon oxide (SiO 2 , silica), etc. It may also contain a material (non-OSC material) that does not have this ability.
  • Oxides used as non-OSC materials contain small amounts of oxides of rare earth elements such as Pr 2 O 3 , Nd 2 O 3 , La 2 O 3 , and Y 2 O 3 in order to improve heat resistance. For example, 1% by mass or more and 10% by mass or less) may be added. Since it has particularly excellent heat resistance and durability, the non-OSC material is preferably Al 2 O 3 , and Al 2 O 3 composited with La 2 O 3 (La 2 O 3 -Al 2 O 3 composite oxide; LA composite oxide) is more preferable.
  • the amount of non-OSC material per 1 L volume of the base material 11 is not particularly limited, but may be, for example, 10 g/L or more, 25 g/L or more, or 50 g/L or more, and, for example, 150 g/L or less. , 100 g/L or less, or 80 g/L or less.
  • the catalyst layer 20 may include an exhaust gas purification catalyst (hereinafter also referred to as "any exhaust gas purification catalyst”) containing a catalytic noble metal other than Rh. Therefore, in the catalyst layer 20, the above-described exhaust gas purification catalyst 100 and an exhaust gas purification catalyst containing a catalytic noble metal other than Rh may be used together. Particularly, when the above-mentioned exhaust gas purification catalyst 100 and an exhaust gas purification catalyst containing at least one of Pt and Pd are used together in the catalyst layer 20, the exhaust gas purification catalyst body 10 is contained in the exhaust gas. It has excellent not only NOx purification performance but also HC and CO purification performance.
  • catalytic noble metals other than Rh are typically supported on a carrier.
  • carriers include the above non-OSC materials and OSC materials.
  • the carrier may be the base material 30 used in the above-mentioned exhaust gas purifying catalyst 100.
  • the catalytic noble metal other than Rh is preferably used in the form of fine particles with a sufficiently small particle size from the viewpoint of increasing the contact area with the exhaust gas.
  • the average particle size of the catalytic noble metal (specifically, the average value of the particle sizes of 50 or more catalytic noble metals determined by transmission electron microscopy (TEM) observation) is approximately 1 to 15 nm, for example, 10 nm or less, and even 5 nm. It is good if it is below.
  • the amount of catalytic noble metal in the exhaust gas purifying catalyst body 10 (total amount if catalytic noble metal other than Rh is included) is not particularly limited, and can be determined as appropriate depending on the type of catalytic noble metal. From the viewpoint of particularly high exhaust gas purification performance, the amount of catalytic precious metal per 1 L of volume of the base material 11 is, for example, 0.01 g/L or more, 0.03 g/L or more, 0.05 g/L or more, 0.08 g. /L or more, or 0.10g/L or more.
  • the catalyst layer 20 may contain an alkaline earth element such as calcium (Ca) or barium (Ba). Poisoning of noble metal catalysts (particularly oxidation catalysts) can be suppressed by alkaline earth elements. Moreover, the alkaline earth element improves the dispersibility of the catalyst noble metal, and can suppress sintering accompanying grain growth of the catalyst noble metal. Furthermore, when the catalyst layer 20 contains an alkaline earth element together with the OSC material, it is possible to further improve the amount of oxygen absorbed into the OSC material in a lean atmosphere (oxygen-excess atmosphere) where the fuel is thinner than the stoichiometric air-fuel ratio. can. Alkaline earth elements may be contained in the form of oxides, hydroxides, carbonates, nitrates, sulfates, phosphates, acetates, formates, oxalates, halides, and the like.
  • the catalyst layer 20 may contain a NOx adsorbent having NOx storage capacity, a stabilizer, and the like.
  • the stabilizer include rare earth elements such as yttrium (Y), lanthanum (La), and neodymium (Nd). Note that the rare earth element may exist in the catalyst layer 20 in the form of an oxide.
  • the catalyst layer 20 may contain binders such as alumina sol and silica sol, various additives, and the like.
  • the coating amount (forming amount) of the catalyst layer 20 is approximately 30 g/L or more, typically 50 g/L per 1 L of the volume of the catalyst body 10 for exhaust gas purification (volume of the base material 11). /L or more, preferably 70g/L or more, for example 100g/L or more, and may be approximately 500g/L or less, typically 400g/L or less, for example 300g/L or less.
  • the "coating amount” refers to the mass of solid content contained per unit volume of the exhaust gas purifying catalyst body 10.
  • the length and thickness of the catalyst layer 20 can be appropriately designed in consideration of, for example, the size of the cells 12 of the base material 11 and the flow rate of exhaust gas flowing through the exhaust gas purifying catalyst body 10.
  • the catalyst layer 20 may be continuously provided on the partition wall 14 of the base material 11, or may be provided intermittently.
  • the catalyst layer 20 may be provided along the cylinder axis direction X from the exhaust gas inlet 10a, or may be provided along the cylinder axis direction X from the exhaust gas outlet 10b.
  • the overall coating width (average length) of the catalyst layer 20 in the cylinder axis direction may be 80% or more, for example 90% or more, and may be the same length as the total length L of the base material 11.
  • the coating thickness (average thickness) of the catalyst layer 20 is approximately 1 to 300 ⁇ m, typically 5 to 200 ⁇ m, for example 10 to 100 ⁇ m. Thereby, it is possible to achieve a high level of both improvement in purification performance and reduction in pressure loss.
  • the exhaust gas purifying catalyst 100 may be contained only in a part of the catalyst layer 20.
  • the catalyst layer 20 has an upstream X1 portion (front portion) and a downstream X2 portion (rear portion) in the cylinder axis direction X, and the upstream X1 portion (front portion) and the downstream X2 portion (rear portion). ) contains the exhaust gas purification catalyst 100, and the other contains any of the above exhaust gas purification catalysts (particularly an exhaust gas purification catalyst in which the catalytic noble metal is at least one of Pt and Pd). You can leave it there.
  • the catalyst layer 20 may be configured as a laminated structure including two or more layers, one layer containing the exhaust gas purification catalyst 100, and the other layer containing any of the above exhaust gas purification catalysts (in particular, catalyst noble metals).
  • the exhaust gas purifying catalyst may contain at least one of Pt and Pd (exhaust gas purification catalyst).
  • FIG. 5 is a partial sectional view schematically showing a part of a cross section of an exhaust gas purifying catalyst body 10', which is a modified example of the exhaust gas purifying catalyst body 10, taken along the cylinder axis direction X.
  • the exhaust gas purifying catalyst body 10' includes a base material 11 and a multilayer catalyst layer 20' provided on the base material 11. Since the catalyst layer 20' has a multilayer structure, the exhaust gas purification performance can be further improved.
  • the base material 11 is the same as above.
  • the catalyst layer 20' has a multilayer structure, unlike the example shown in FIG. Specifically, the catalyst layer 20' has a laminated structure in which a first partial catalyst layer (lower layer) 21 and a second partial catalyst layer (upper layer) 22 are laminated in the thickness direction. Therefore, the lower layer 21 is provided so as to be in contact with the surface of the base material 11, and the upper layer 22 is provided so as to be in contact with the upper surface of the lower layer 21.
  • the catalyst layer 20' has a two-layer structure, but the catalyst layer 20' may have a laminated structure of three or more layers.
  • the catalyst layer 20' may have an intermediate layer between the lower layer 21 and the upper layer 22, or the catalyst layer 20' may further have another layer on the upper layer 22. .
  • the lower layer 21 contains an exhaust gas purifying catalyst in which the catalytic precious metal is at least one of Pt and Pd.
  • the upper layer 22 contains an exhaust gas purifying catalyst 100 in which the noble metal catalyst contains Rh.
  • the exhaust gas purifying catalyst body 10' has particularly excellent exhaust gas purifying performance.
  • the amount of Pt and Pd (total amount when both are included) in the catalyst noble metal of the exhaust gas purification catalyst in the lower layer 21 is preferably 80% by mass, more preferably 90% by mass, and even more preferably 95% by mass. %, most preferably 100% by mass.
  • the lower layer 21 and the upper layer 22 may contain the same optional components as the catalyst layer 20 described above, and preferably, the lower layer 21 and the upper layer 22 each contain an OSC material.
  • the exhaust gas purifying catalyst body 10' configured in this manner not only has particularly high purification performance for NOx contained in exhaust gas, but also has particularly high purification performance for HC and CO.
  • the exhaust gas purifying catalyst body 10 can be manufactured, for example, by the following method.
  • the base material 11 and a catalyst layer forming slurry for forming the catalyst layer 20 are prepared.
  • the slurry for forming the catalyst layer can be prepared by mixing the exhaust gas purification catalyst 100 and other optional components (for example, non-OSC materials, OSC materials, binders, various additives, etc.) in a dispersion medium. I can do it.
  • the dispersion medium for example, water, a mixture of water and a water-soluble organic solvent, etc. can be used.
  • the properties of the slurry (for example, viscosity, solid content, etc.) can be appropriately determined depending on the size of the base material 11 used, the form of the cells 12 (partition walls 14), the characteristics required for the catalyst layer 20, etc.
  • the catalyst layer 20 is formed on the base material 11 using the catalyst layer forming slurry.
  • the catalyst layer 20 can be formed by a conventionally known method (for example, an impregnation method, a wash coating method, etc.).
  • the prepared slurry for forming a catalyst layer is made to flow into the cell 12 from the end of the base material 11, and is supplied to a predetermined length along the cylinder axis direction X.
  • the slurry may be made to flow in from either the inlet 10a or the outlet 10b. At this time, excess slurry may be sucked from the opposite end. Further, excess slurry may be discharged from the cell 12 by blowing air from the opposite end.
  • the base material 11 to which the slurry has been supplied is dried at a predetermined temperature and time.
  • a catalyst layer 20 including the exhaust gas purifying catalyst 100 is formed.
  • the exhaust gas purifying catalyst body 10 can be obtained.
  • a catalytic noble metal source containing Rh e.g., a solution containing Rh as ions
  • La-containing alumina particles 32 i.e., base material 30
  • a coating 34 of zirconia i.e., zirconia
  • other optional components e.g., a slurry for forming the second catalyst layer is prepared by mixing non-OSC materials, OSC materials, binders, various additives, etc.) in a dispersion medium.
  • the catalyst layer 20 is formed on the base material 11 using the second catalyst layer forming slurry.
  • the slurry for forming the second catalyst layer is supplied to the base material 11 in the same manner as described above.
  • the base material 11 to which the slurry has been supplied is fired at a predetermined temperature and time.
  • the firing method may be the same as conventional methods.
  • the dispersion medium may be removed by drying before firing.
  • the exhaust gas purification catalyst 100 is generated, and a porous catalyst layer 20 containing the exhaust gas purification catalyst 100 is formed on the base material. In the manner described above, the exhaust gas purifying catalyst body 10 can be obtained.
  • the exhaust gas purification catalyst 10 is used in vehicles such as cars and trucks, motorcycles and motorized bicycles, marine products such as ships, tankers, watercraft, personal watercraft, outboard motors, lawn mowers, and chainsaws. It can be suitably used for purifying exhaust gas emitted from gardening products such as trimmers, leisure products such as golf carts and four-wheeled buggies, power generation equipment such as cogeneration systems, and internal combustion engines such as garbage incinerators. Among these, it can be suitably used for vehicles such as automobiles, and in particular, it can be suitably used for vehicles equipped with a gasoline engine.
  • test examples related to the present invention will be described, but the present invention is not intended to be limited to those shown in the test examples below.
  • Examples 1 to 4 Zirconium oxynitrate and La-containing alumina powder were placed in a container and stirred while adding pure water to prepare a suspension in which zirconium oxynitrate was dissolved and La-containing alumina powder was dispersed.
  • a powder with a particle size (D50) of 10 to 20 ⁇ m and a pore volume of 0.59 to 0.86 mL/g was used as the La-containing alumina powder
  • Examples 3 and 4 a powder with a particle size (D50) in the range of 27 to 43 ⁇ m and a pore volume of 0.3 to 0.55 mL/g was used.
  • the mixing ratio of zirconium oxynitrate and La-containing alumina powder was changed from Examples 1 and 3, and the zirconia content was lower than in Examples 1 and 3.
  • This suspension was spray-dried using a nozzle-type spray drying device (ODT-8 manufactured by Okawara Kakoki Co., Ltd.) to adhere zirconium oxynitrate to the surface of the La-containing alumina powder.
  • the spray drying conditions were an inlet gas temperature of 200°C, an outlet gas temperature of 110°C, and a pump flow rate of 20 ccm.
  • the obtained powder was dried in an electric furnace at 120°C for 8 hours, and then calcined at 500°C for 2 hours. As a result, a base material having a zirconia coating on the surface of the La-containing alumina powder was obtained.
  • This base material was impregnated with a predetermined amount of Rh nitric acid aqueous solution and evaporated to dryness.
  • the obtained powder was fired at 500° C. for 2 hours to support Rh on the base material. Note that the amount of Rh supported was 0.5% by mass. In this way, exhaust gas purifying catalysts of Examples 1 to 4 were obtained.
  • Co-precipitation was performed by adding ammonia water to the prepared suspension so that the suspension became alkaline.
  • the precipitate was collected and dried in an electric furnace at 200°C for 2 hours.
  • the obtained powder was calcined at 500°C for 2 hours.
  • a base material having a zirconia coating on the surface of the La-containing alumina powder was obtained.
  • This base material was impregnated with a predetermined amount of Rh nitric acid aqueous solution and evaporated to dryness.
  • the obtained powder was fired at 500° C. for 2 hours to support Rh on the base material. Note that the amount of Rh supported was 0.5% by mass. In this way, exhaust gas purifying catalysts of Comparative Examples 2 to 4 were obtained.
  • the prepared suspension was evaporated to dryness in an electric furnace at 120°C for 8 hours.
  • the obtained powder was calcined at 500°C for 2 hours.
  • a base material having a zirconia coating on the surface of the La-containing alumina powder was obtained.
  • This base material was impregnated with a predetermined amount of Rh nitric acid aqueous solution and evaporated to dryness.
  • the obtained powder was fired at 500° C. for 2 hours to support Rh on the base material. Note that the amount of Rh supported was 0.5% by mass. In this way, exhaust gas purifying catalysts of Comparative Examples 5 and 6 were obtained.
  • a measurement sample was prepared in which the cross section of the particles of the exhaust gas purification catalyst was exposed.
  • the upper limit of the intensity of Al Level was set to 3000, and an Al mapping image was obtained. This is an area where
  • the upper limit of the intensity of Zr Level was set to 300, and the detection range was set to the intensity of Zr of 30 or more.
  • Quantitative line analysis of Zr was performed on the region where particles of the exhaust gas purifying catalyst were present from the surface position to the center position, and the Zr intensity spectrum was measured with the surface as 0% and the center as 100%. Then, the position of the peak top of Zr intensity was determined. The results are shown in Table 1.
  • a cordierite honeycomb base material (volume: 1.075 L, total length of base material: 100 mm, number of cells: 600 cells, cell shape: square, thickness of partition wall: 2 mm) was prepared.
  • a slurry for forming a lower layer was prepared by mixing an aqueous Pd nitrate solution, Al 2 O 3 , CeO 2 -ZrO 2 -based composite oxide, barium sulfate, Al 2 O 3 -based binder, and pure water. This slurry for forming a lower layer was applied onto the surface of the base material by a wash coating method. Then, it was fired at 500° C. for 2 hours in an electric furnace. In this way, a lower layer containing a Pd catalyst was formed on the base material.
  • Example 1 the Rh nitric acid aqueous solution, the base material used in Example 1, Example 3, or Comparative Example 1, the CeO 2 -ZrO 2- based composite oxide, the Al 2 O 3 -based binder, and pure water were mixed to form the upper layer.
  • a forming slurry was prepared. This slurry for forming an upper layer was applied onto the lower layer formed on the surface of the base material by a wash coating method. Then, it was fired at 500° C. for 2 hours in an electric furnace. This calcination produced an exhaust gas purifying catalyst in which Rh was supported on the base material. In this way, an upper layer containing an exhaust gas purification catalyst on which Rh was supported was formed on the lower layer, and exhaust gas purification catalyst bodies of Example 1, Example 3, and Comparative Example 1 were obtained.

Abstract

The present invention provides an exhaust gas purifying catalyst which has high purification activity of Rh even when exposed to high temperatures for a long period of time. The exhaust gas purifying catalyst disclosed herein comprises a base material and a catalytic noble metal supported on the base material. The base material comprises La-containing alumina particles and a zirconia coating arranged on the surface of the alumina particles. The catalytic noble metal contains at least Rh. The mass ratio of zirconia in the base material is at least 5 mass%. The average particle diameter of the zirconia coating, as determined by a focused ion beam scanning electron microscope, is less than 100 nm.

Description

排ガス浄化用触媒およびこれを用いた触媒体Exhaust gas purification catalyst and catalyst body using the same
 本発明は、排ガス浄化用触媒に関する。本発明はまた、これを用いた排ガス浄化用触媒体に関する。なお、本出願は2022年8月25日に出願された日本国特許出願第2022-134003号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to an exhaust gas purifying catalyst. The present invention also relates to a catalyst body for exhaust gas purification using the same. This application claims priority based on Japanese Patent Application No. 2022-134003 filed on August 25, 2022, and the entire content of that application is incorporated herein by reference. There is.
 自動車エンジン等の内燃機関から排出される排ガスには、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害成分が含まれる。これら有害成分を排ガス中から効率よく反応・除去するために、従来から、アルミナ等の母材に触媒貴金属を担持させた排ガス浄化用触媒が利用されている。NOxの浄化には、NOx還元性能の高いRhが触媒貴金属として主に用いられている。 Exhaust gas emitted from internal combustion engines such as automobile engines contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). In order to efficiently react and remove these harmful components from exhaust gas, exhaust gas purifying catalysts in which noble catalytic metals are supported on a base material such as alumina have been used. Rh, which has high NOx reduction performance, is mainly used as a catalytic noble metal for NOx purification.
 Rhを担持する母材として、ジルコニアの被覆を有するアルミナ粒子を用いる技術が知られている(例えば、特許文献1および2参照)。特許文献1には、母材のアルミナ粒子にジルコニアの被覆を設けた場合には、ジルコニアの被覆によって、Rhがアルミナに固溶するのを抑制でき、排ガス浄化用触媒の耐久性が向上することが記載されている。特許文献2では、母材として用いられるジルコニアの被覆を有するアルミナ粒子は、共沈法によって作製されている。 A technique is known that uses alumina particles coated with zirconia as a base material that supports Rh (see, for example, Patent Documents 1 and 2). Patent Document 1 discloses that when a zirconia coating is provided on the alumina particles of the base material, the zirconia coating can suppress Rh from forming a solid solution in the alumina and improve the durability of the exhaust gas purification catalyst. is listed. In Patent Document 2, alumina particles coated with zirconia used as a base material are produced by a coprecipitation method.
日本国特許出願公開第2005-103410号公報Japanese Patent Application Publication No. 2005-103410 日本国特許出願公開第2007-301530号公報Japanese Patent Application Publication No. 2007-301530
 本発明者らがジルコニアの被覆を有するアルミナ粒子にRhを担持させた排ガス浄化用触媒について鋭意検討した結果、上記従来技術においては、高温に長時間晒された際に、Rhの浄化活性が低下するという問題があることを見出した。 As a result of intensive studies by the present inventors on exhaust gas purification catalysts in which Rh is supported on alumina particles coated with zirconia, it was found that in the above conventional technology, the Rh purification activity decreases when exposed to high temperatures for a long time. I found out that there is a problem.
 本発明は上記事情に鑑みてなされたものであり、その目的は、高温に長時間晒された場合でも、Rhの浄化活性が高い排ガス浄化用触媒を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide an exhaust gas purifying catalyst that has high Rh purifying activity even when exposed to high temperatures for a long time.
 本発明者らが鋭意検討した結果、母材であるジルコニアの被覆を有するアルミナの製造をスプレードライ法によって行うことにより、ジルコニアの被覆を微細化することに成功した。そして、微細化されたジルコニアの被覆を有するアルミナ母材にRhを担持させた場合には、高温に長時間晒された場合でも、Rhの浄化活性が十分に高くなることを見出した。 As a result of intensive studies, the present inventors succeeded in making the zirconia coating finer by manufacturing alumina, which is a base material, with a zirconia coating using a spray drying method. They have also found that when Rh is supported on an alumina base material coated with finely divided zirconia, the purification activity of Rh becomes sufficiently high even when exposed to high temperatures for a long time.
 すなわち、ここに開示される排ガス浄化用触媒[1]は、母材と、前記母材に支持された触媒貴金属と、を含む。前記母材は、La含有アルミナ粒子と、前記アルミナ粒子の表面に配置されたジルコニアの被覆とを含む。前記触媒貴金属は、少なくともRhを含有する。前記母材におけるジルコニアの質量割合は、5質量%以上である。集束イオンビーム走査型電子顕微鏡によって求まる前記ジルコニアの被覆の平均粒径は、100nm未満である。 That is, the exhaust gas purifying catalyst [1] disclosed herein includes a base material and a catalytic noble metal supported by the base material. The base material includes La-containing alumina particles and a zirconia coating disposed on the surface of the alumina particles. The catalytic noble metal contains at least Rh. The mass percentage of zirconia in the base material is 5% by mass or more. The average grain size of the zirconia coating, as determined by focused ion beam scanning electron microscopy, is less than 100 nm.
 本発明者らの知見によれば、上記従来の排ガス浄化用触媒では、母材のジルコニアの被覆の平均粒径は、数百nmあるいはそれ以上であり、そのため、高温に長期晒された際に起こる、Rhのアルミナへの固溶の抑制が不十分である。そのため、高温に長時間晒された際に、Rhの浄化活性の低下が起こる。しかしながら、ここに開示される排ガス浄化用触媒[1]は、ジルコニアを所定量含み、かつジルコニアの被覆の平均粒径が小さい。よって、ここに開示される排ガス浄化用触媒[1]においては、ジルコニアの被覆がアルミナ粒子の表面に高度に分散している。そのため、ジルコニアの被覆上または近傍に存在しているRhの割合が高くなり、高温に長時間晒された際のRhの母材のアルミナへの固溶を、ジルコニアの被覆によって従来よりも高度に抑制することができる。よって、ここに開示される排ガス浄化用触媒[1]では、高温に長時間晒された場合でも、Rhの浄化活性が高くなる。 According to the findings of the present inventors, in the conventional exhaust gas purification catalyst described above, the average particle size of the zirconia coating of the base material is several hundred nm or more, and therefore, when exposed to high temperatures for a long period of time, The solid solution of Rh into alumina is not sufficiently suppressed. Therefore, when exposed to high temperatures for a long time, the Rh purification activity decreases. However, the exhaust gas purifying catalyst [1] disclosed herein contains a predetermined amount of zirconia, and the average particle size of the zirconia coating is small. Therefore, in the exhaust gas purifying catalyst [1] disclosed herein, the zirconia coating is highly dispersed on the surface of the alumina particles. Therefore, the proportion of Rh existing on or near the zirconia coating increases, and the zirconia coating prevents Rh from forming a solid solution in the alumina of the base material when exposed to high temperatures for a long time. Can be suppressed. Therefore, the exhaust gas purification catalyst [1] disclosed herein has high Rh purification activity even when exposed to high temperatures for a long time.
 ここに開示される排ガス浄化用触媒[2]は、上記排ガス浄化用触媒[1]において、前記アルミナ粒子の表面から中心に向かって、電界放出型電子プローブアナライザを用いてZrの定量ライン分析を行って、表面を0%、中心を100%として表面から中心までの深さを表した場合に、0%~20%の範囲内にZr強度のピークトップが存在する。 The exhaust gas purification catalyst [2] disclosed herein is the same as the exhaust gas purification catalyst [1], in which a quantitative line analysis of Zr is performed from the surface of the alumina particles toward the center using a field emission type electron probe analyzer. When the depth from the surface to the center is expressed with the surface as 0% and the center as 100%, the peak top of Zr intensity exists within the range of 0% to 20%.
 このような構成によれば、ジルコニアの被覆上または近傍に存在しているRhの割合がより高くなり、高温に長期晒された際のRhの母材のアルミナへの固溶をさらに高度に抑制することができる。よって、高温に長時間晒された場合でも、Rhの浄化活性がより高くなる。 According to such a configuration, the proportion of Rh existing on or near the zirconia coating becomes higher, and solid solution of Rh into the alumina of the base material is further suppressed when exposed to high temperatures for a long period of time. can do. Therefore, even when exposed to high temperatures for a long time, the Rh purification activity becomes higher.
 ここに開示される排ガス浄化用触媒[3]は、上記排ガス浄化用触媒[1]または[2]において、前記母材におけるジルコニアの前記質量割合が、9質量%以上30質量%以下である。このとき、高温に長時間晒された場合のRhの浄化活性が特に高くなる。 In the exhaust gas purification catalyst [3] disclosed herein, in the exhaust gas purification catalyst [1] or [2], the mass proportion of zirconia in the base material is 9 mass% or more and 30 mass% or less. At this time, the Rh purification activity becomes particularly high when exposed to high temperatures for a long time.
 ここに開示される排ガス浄化用触媒[4]は、上記排ガス浄化用触媒[1]~[3]のいずれかにおいて、前記ジルコニアの被覆の平均粒径が、5nm以上80nm以下である。このとき、高温に長時間晒された場合のRhの浄化活性が特に高くなる。 In the exhaust gas purification catalyst [4] disclosed herein, in any of the above exhaust gas purification catalysts [1] to [3], the average particle size of the zirconia coating is 5 nm or more and 80 nm or less. At this time, the Rh purification activity becomes particularly high when exposed to high temperatures for a long time.
 ここに開示される排ガス浄化用触媒体[5]は、基材と、前記基材に設けられている触媒層と、を備える。前記触媒層が、上記排ガス浄化用触媒[1]~[4]のいずれかを含有する。 The exhaust gas purifying catalyst body [5] disclosed herein includes a base material and a catalyst layer provided on the base material. The catalyst layer contains any one of the exhaust gas purifying catalysts [1] to [4].
 このような構成によれば、高温に長時間晒された場合でも、Rhの浄化活性が高い排ガス浄化用触媒体を提供することができる。 According to such a configuration, it is possible to provide an exhaust gas purifying catalyst body that has high Rh purifying activity even when exposed to high temperatures for a long time.
 ここに開示される排ガス浄化用触媒体[6]は、上記排ガス浄化用触媒体[5]において、前記触媒層が、前記基材側に位置する第1部分触媒層と、前記触媒層の表層部側に位置する第2部分触媒層と、を備える。前記第1部分触媒層が、触媒貴金属がPtおよびPdのうちの少なくとも一方である排ガス浄化用触媒を含有する。前記第2部分触媒層が、上記排ガス浄化用触媒[1]~[4]のいずれかを含有する。 The catalyst body for exhaust gas purification [6] disclosed herein is the catalyst body for exhaust gas purification [5], in which the catalyst layer includes a first partial catalyst layer located on the base material side, and a surface layer of the catalyst layer. a second partial catalyst layer located on the side. The first partial catalyst layer contains an exhaust gas purifying catalyst in which the catalytic noble metal is at least one of Pt and Pd. The second partial catalyst layer contains any one of the exhaust gas purifying catalysts [1] to [4].
 このような構成によれば、排ガスに含まれるNOxの浄化性能が特に高いだけでなく、HCおよびCOの浄化性能も特に高い排ガス浄化用触媒体を提供することができる。 According to such a configuration, it is possible to provide a catalyst body for exhaust gas purification that not only has particularly high purification performance for NOx contained in exhaust gas but also has particularly high purification performance for HC and CO.
本実施形態に係る排ガス浄化用触媒を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an exhaust gas purifying catalyst according to the present embodiment. 本実施形態に係る排ガス浄化システムを示す模式図である。FIG. 1 is a schematic diagram showing an exhaust gas purification system according to the present embodiment. 図2の排ガス浄化用触媒体を模式的に示す斜視図である。3 is a perspective view schematically showing the exhaust gas purifying catalyst body of FIG. 2. FIG. 図3の排ガス浄化用触媒体を筒軸方向に切断した部分断面図である。FIG. 4 is a partial cross-sectional view of the exhaust gas purifying catalyst body of FIG. 3 cut in the cylinder axis direction. 図4の排ガス浄化用触媒体の変形例の構成を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing the configuration of a modification of the exhaust gas purifying catalyst body of FIG. 4. FIG. 測定倍率300,000倍で観察した実施例4の排ガス浄化用触媒のFIB-SEM画像である。This is an FIB-SEM image of the exhaust gas purifying catalyst of Example 4 observed at a measurement magnification of 300,000 times. 測定倍率3,000倍で観察した比較例4の排ガス浄化用触媒のFIB-SEM画像である。This is an FIB-SEM image of the exhaust gas purification catalyst of Comparative Example 4 observed at a measurement magnification of 3,000 times.
 以下、図面を参照しつつ本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。各図における寸法関係(長さ、幅、厚み等)は、実際の寸法関係を必ずしも反映するものではない。また、本明細書において範囲を示す「A~B」(A,Bは任意の数値)の表記は、A以上B以下の意と共に、「好ましくはAより大きい」および「好ましくはBより小さい」の意を包含する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Note that matters other than those specifically mentioned in this specification that are necessary for implementing the present invention can be understood as matters designed by those skilled in the art based on the prior art in the relevant field. The present invention can be implemented based on the content disclosed in this specification and the common general knowledge in the field. Further, in the following drawings, members and parts that have the same function are given the same reference numerals, and overlapping explanations may be omitted or simplified. The dimensional relationships (length, width, thickness, etc.) in each figure do not necessarily reflect the actual dimensional relationships. In addition, in this specification, the notation "A to B" (A and B are arbitrary numerical values) indicating a range means not less than A but not more than B, as well as "preferably larger than A" and "preferably smaller than B." includes the meaning of
≪排ガス浄化用触媒≫
 図1は、ここに開示される排ガス浄化用触媒の一例の排ガス浄化用触媒100の模式断面図である。排ガス浄化用触媒100は、図1に示すように、母材30と、触媒貴金属40と、を含む。
<<Catalyst for exhaust gas purification>>
FIG. 1 is a schematic cross-sectional view of an exhaust gas purifying catalyst 100, which is an example of the exhaust gas purifying catalyst disclosed herein. The exhaust gas purifying catalyst 100 includes a base material 30 and a catalytic noble metal 40, as shown in FIG.
 触媒貴金属40は、少なくともRhを含有する。触媒貴金属40がRhを含有することにより、排ガス中のNOxを効率よく浄化することができる。触媒貴金属40は、Rh以外の貴金属(すなわち、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os))を含有していてもよい。触媒貴金属40に占めるRhの量は、好ましくは80質量%であり、より好ましくは90質量%であり、さらに好ましくは95質量%であり、最も好ましくは100質量%(すなわち、触媒貴金属40はRhのみ)である。 The catalytic noble metal 40 contains at least Rh. Since the catalyst noble metal 40 contains Rh, NOx in the exhaust gas can be efficiently purified. The catalyst noble metal 40 contains a noble metal other than Rh (i.e., gold (Au), silver (Ag), platinum (Pt), palladium (Pd), iridium (Ir), ruthenium (Ru), osmium (Os)). You can leave it there. The amount of Rh in the catalytic noble metal 40 is preferably 80% by mass, more preferably 90% by mass, even more preferably 95% by mass, and most preferably 100% by mass (that is, the catalytic noble metal 40 is Rh only).
 触媒貴金属40は、典型的には、粒子状である。触媒貴金属40の平均粒径は、特に限定されない。排ガスとの接触面積を高める観点から、触媒貴金属40は、十分に小さい粒径の微粒子であることが好ましい。触媒貴金属40の平均粒径は、例えば15nm以下であり、好ましくは10nm以下であり、より好ましくは5nm以下である。触媒貴金属40の平均粒径の下限は特に限定されず、触媒貴金属40の平均粒径は、例えば1nm以上であってよい。なお、触媒貴金属40の平均粒径は、透過電子顕微鏡(TEM)観察により求められる、50個以上の触媒貴金属の粒径の平均値として求めることができる。 The catalytic noble metal 40 is typically in the form of particles. The average particle size of the catalyst noble metal 40 is not particularly limited. From the viewpoint of increasing the contact area with exhaust gas, the catalyst noble metal 40 is preferably fine particles with a sufficiently small particle size. The average particle size of the catalyst noble metal 40 is, for example, 15 nm or less, preferably 10 nm or less, and more preferably 5 nm or less. The lower limit of the average particle size of the catalyst noble metal 40 is not particularly limited, and the average particle size of the catalyst noble metal 40 may be, for example, 1 nm or more. Note that the average particle diameter of the catalyst noble metal 40 can be determined as the average value of the particle diameters of 50 or more catalyst noble metals determined by transmission electron microscopy (TEM) observation.
 触媒貴金属40の担持量は、特に限定されず、排ガス浄化用触媒100を用いた排ガス浄化用触媒体の設計に応じて適宜決定することができる。触媒貴金属40の担持量は、母材30の質量に対し、例えば0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上である。また、触媒貴金属40の担持量は、母材30の質量に対し、例えば10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下である。 The supported amount of the catalyst noble metal 40 is not particularly limited, and can be appropriately determined depending on the design of the exhaust gas purification catalyst body using the exhaust gas purification catalyst 100. The amount of catalyst noble metal 40 supported is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.1% by mass or more, based on the mass of base material 30. Further, the amount of the catalyst noble metal 40 supported is, for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 3% by mass or less, based on the mass of the base material 30.
 母材30は、図示されるように、La含有アルミナ粒子32(単に「アルミナ粒子32」とも称する)と、アルミナ粒子32の表面に配置されたジルコニアの被覆34とを含む。言い換えると、排ガス浄化用触媒100の母材30は、ジルコニアの被覆34を有するLa含有アルミナ粒子32である。 As illustrated, the base material 30 includes La-containing alumina particles 32 (also simply referred to as "alumina particles 32") and a zirconia coating 34 disposed on the surface of the alumina particles 32. In other words, the base material 30 of the exhaust gas purifying catalyst 100 is La-containing alumina particles 32 having a coating 34 of zirconia.
 母材30の平均粒径は特に限定されない。母材30の平均粒径は、例えば0.5μm以上であり、好ましくは1μm以上であり、より好ましくは3μm以上である。母材30の平均粒径は、例えば200μm以下であり、好ましくは100μm以下であり、より好ましくは60μm以下である。なお、母材30の平均粒径は、レーザ回折・散乱法に基づく測定によってメジアン径(D50:体積基準)として求めることができる。 The average particle size of the base material 30 is not particularly limited. The average particle size of the base material 30 is, for example, 0.5 μm or more, preferably 1 μm or more, and more preferably 3 μm or more. The average particle size of the base material 30 is, for example, 200 μm or less, preferably 100 μm or less, and more preferably 60 μm or less. Note that the average particle size of the base material 30 can be determined as a median diameter (D50: volume basis) by measurement based on a laser diffraction/scattering method.
 アルミナ粒子32はLaを含有する。よって、アルミナ粒子32は、ランタン-アルミナ複合酸化物の粒子である。アルミナ粒子32がLaを含有することで、排ガス浄化用触媒100の耐熱性が向上する。また、アルミナ粒子32がLaを含有することも、高温に長時間晒された際のRhのアルミナへの固溶抑制に寄与する。La含有アルミナ粒子32の構成は、三元触媒の担体として用いられる公知のLa含有アルミナ粒子と同じまたは類似であってよい。アルミナ粒子32におけるLaの含有量は、特に限定されず、La換算で、例えば0.1質量%以上であり、好ましくは0.5質量%以上であり、より好ましくは1質量%以上である。また、アルミナ粒子32におけるLaの含有量は、La換算で、例えば30質量%以下であり、好ましくは20質量%以下であり、より好ましくは10質量%以下である。アルミナ粒子32におけるLaの含有量は、蛍光X線分析装置(XRF)を用いた測定によって求めることができる。 The alumina particles 32 contain La. Therefore, the alumina particles 32 are particles of lanthanum-alumina composite oxide. When the alumina particles 32 contain La, the heat resistance of the exhaust gas purification catalyst 100 is improved. Further, the fact that the alumina particles 32 contain La also contributes to suppressing solid solution of Rh into alumina when exposed to high temperatures for a long time. The configuration of the La-containing alumina particles 32 may be the same as or similar to known La-containing alumina particles used as a support for a three-way catalyst. The content of La in the alumina particles 32 is not particularly limited, and is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more in terms of La 2 O 3 It is. Further, the content of La in the alumina particles 32 is, for example, 30% by mass or less, preferably 20% by mass or less, and more preferably 10% by mass or less, in terms of La 2 O 3 . The content of La in the alumina particles 32 can be determined by measurement using an X-ray fluorescence analyzer (XRF).
 アルミナ粒子32は、本発明の効果を顕著に阻害しない範囲内(例えば、10質量%以下)で、AlおよびLa以外の成分(例、Pr、Nd、Y等のLa以外の希土類元素の酸化物、好ましくはY)をさらに含有していてもよい。 The alumina particles 32 contain components other than Al 2 O 3 and La 2 O 3 (for example, Pr 2 O 3 , Nd 2 O 3 ) within a range that does not significantly inhibit the effects of the present invention (for example, 10% by mass or less) . , Y 2 O 3 or other rare earth element oxides other than La, preferably Y 2 O 3 ).
 アルミナ粒子32の形状は特に限定されず、略球状、略楕円球状、不定形等であってよい。アルミナ粒子32は、通常、一次粒子が凝集した二次粒子である。アルミナ粒子32が二次粒子である場合には、大きな比表面積を確保することができる。しかしながら、アルミナ粒子32は、一次粒子であってもよいし、一次粒子と二次粒子の混合物であってもよい。 The shape of the alumina particles 32 is not particularly limited, and may be approximately spherical, approximately ellipsoidal, irregular, etc. The alumina particles 32 are usually secondary particles that are aggregates of primary particles. When the alumina particles 32 are secondary particles, a large specific surface area can be ensured. However, the alumina particles 32 may be primary particles or a mixture of primary particles and secondary particles.
 ジルコニア(ZrO)の被覆34は、微細な粒状であり、アルミナ粒子32の表面上に点在している。なお、ジルコニアの被覆34の形状、個数は、図示されたものに限られない。 The coating 34 of zirconia (ZrO 2 ) is in the form of fine particles and is scattered on the surface of the alumina particles 32 . Note that the shape and number of the zirconia coating 34 are not limited to those shown in the drawings.
 被覆34の大きさに関し、集束イオンビーム走査型電子顕微鏡(FIB-SEM)によって求まる平均粒径が、100nm未満である。この平均粒径は、SEM画像から任意に選ばれる6個以上の被覆の円相当径(言い換えると、ヘイウッド径)を測定し、その平均値として求めることができる。なお、平均粒径を求めるためには、少なくとも300,000倍の測定倍率で、SEM観察を行うことが好ましい。円相当径および平均値の算出には、画像解析ソフト(例、ImageJなど)を使用してよい。 Regarding the size of the coating 34, the average particle size determined by a focused ion beam scanning electron microscope (FIB-SEM) is less than 100 nm. This average particle diameter can be determined by measuring the equivalent circle diameters (in other words, Heywood diameters) of six or more coatings arbitrarily selected from the SEM image, and determining the average value thereof. Note that, in order to determine the average particle diameter, it is preferable to perform SEM observation at a measurement magnification of at least 300,000 times. Image analysis software (eg, ImageJ, etc.) may be used to calculate the equivalent circle diameter and the average value.
 また、排ガス浄化用触媒100において、母材30における(すなわち、母材30の質量(アルミナ粒子32と被覆34の合計質量)に対する)ジルコニア(ZrO)の質量割合が5質量%以上である。ジルコニアの被覆34が、平均粒径が100nm未満であって、かつジルコニアが母材30において5質量%以上の質量割合で存在することにより、ジルコニアの被覆34が、アルミナ粒子32の表面上に高度に分散し、多くのRhが、ジルコニアの被覆34に接してまたは近傍に存在できるようになる。その結果、排ガス浄化用触媒100が高温に長時間晒された際に、ジルコニアの被覆34によって、Rhがアルミナに固溶することを高度に抑制することができる。その結果、高温に長時間晒された場合でも、Rhの浄化活性を高く保つことができる。 Further, in the exhaust gas purifying catalyst 100, the mass ratio of zirconia (ZrO 2 ) in the base material 30 (that is, relative to the mass of the base material 30 (total mass of the alumina particles 32 and the coating 34)) is 5% by mass or more. Since the zirconia coating 34 has an average particle size of less than 100 nm and zirconia is present in the base material 30 in a mass proportion of 5% by mass or more, the zirconia coating 34 is highly concentrated on the surface of the alumina particles 32. This allows more Rh to be present on or near the zirconia coating 34. As a result, when the exhaust gas purifying catalyst 100 is exposed to high temperatures for a long time, the zirconia coating 34 can highly suppress Rh from dissolving into alumina. As a result, Rh purification activity can be maintained at a high level even when exposed to high temperatures for a long time.
 ジルコニアの被覆34の分散度がより高くなり、上記のRhの浄化活性がより高くなることから、ジルコニアの被覆34の平均粒径は、好ましくは80nm以下であり、より好ましくは70nm以下であり、さらに好ましくは60nm以下であり、特に好ましくは50nm以下である。ジルコニアの被覆34の平均粒径の下限は、技術的限界によって定まり、例えば、5nm、10nm、15nm、または20nmであり得る。 Since the degree of dispersion of the zirconia coating 34 becomes higher and the above-mentioned Rh purification activity becomes higher, the average particle size of the zirconia coating 34 is preferably 80 nm or less, more preferably 70 nm or less, More preferably, it is 60 nm or less, particularly preferably 50 nm or less. The lower limit of the average particle size of the zirconia coating 34 is determined by technological limitations and may be, for example, 5 nm, 10 nm, 15 nm, or 20 nm.
 また、ジルコニアの被覆34の分散度がより高くなり、上記のRhの浄化活性がより高くなることから、排ガス浄化用触媒100において、母材30におけるジルコニア(ZrO)の質量割合は、好ましくは9質量%以上であり、より好ましくは14質量%以上であり、さらに好ましくは18質量%以上であり、最も好ましくは20質量%以上である。一方、母材30におけるジルコニアの質量割合は、好ましくは30質量%以下であり、より好ましくは28質量%以下であり、さらに好ましくは25質量%以下であり、最も好ましくは22質量%以下である。なお、母材30におけるジルコニアの質量割合は、蛍光X線分析装置(XRF)を用いた測定によって求めることができる。 Further, since the degree of dispersion of the zirconia coating 34 becomes higher and the above-mentioned Rh purification activity becomes higher, in the exhaust gas purification catalyst 100, the mass proportion of zirconia (ZrO 2 ) in the base material 30 is preferably set to The content is 9% by mass or more, more preferably 14% by mass or more, even more preferably 18% by mass or more, and most preferably 20% by mass or more. On the other hand, the mass proportion of zirconia in the base material 30 is preferably 30% by mass or less, more preferably 28% by mass or less, still more preferably 25% by mass or less, and most preferably 22% by mass or less. . Note that the mass proportion of zirconia in the base material 30 can be determined by measurement using an X-ray fluorescence spectrometer (XRF).
 ジルコニアの被覆34は、本発明の効果を顕著に阻害しない範囲内(例えば、10質量%以下)で、ZrO以外の成分を含有していてもよい。 The zirconia coating 34 may contain components other than ZrO 2 within a range (for example, 10% by mass or less) that does not significantly inhibit the effects of the present invention.
 排ガス浄化用触媒100においては、典型的には、ジルコニアは、アルミナ粒子32の表面に被覆34として存在する。しかしながら、本発明の効果を阻害しない範囲内で、La含有アルミナ粒子32の内部にジルコニアが存在していてもよい。例えば、後述の方法によって排ガス浄化用触媒100を製造する場合、アルミナ粒子32が二次粒子状である場合には、一次粒子間に隙間があるため、後述のジルコニア前駆体が当該隙間より入り込んで、アルミナ粒子32の内部にジルコニアが生成し得る。 In the exhaust gas purifying catalyst 100, zirconia typically exists as a coating 34 on the surface of the alumina particles 32. However, zirconia may exist inside the La-containing alumina particles 32 within a range that does not impede the effects of the present invention. For example, when manufacturing the exhaust gas purifying catalyst 100 by the method described below, if the alumina particles 32 are in the form of secondary particles, there are gaps between the primary particles, so the zirconia precursor described below may enter through the gaps. , zirconia may be generated inside the alumina particles 32.
 排ガス浄化用触媒100においては、Rhのアルミナへの固溶をより高度に抑制する観点から、ジルコニアは、アルミナ粒子32の表面のみ、または表面およびその近傍に多く分布していることが好ましい。したがって、アルミナ粒子32の表面から中心に向かって、電界放出型電子プローブアナライザ(FE-EPMA)を用いてZrの定量ライン分析を行って、表面を0%、中心を100%として表面から中心までの深さを表した場合に、0%~20%(好ましくは0%~15%、より好ましくは0%~12%)の範囲内にZr強度のピークトップが存在することが好ましい。 In the exhaust gas purifying catalyst 100, it is preferable that zirconia is distributed only on the surface of the alumina particles 32, or in a large amount on the surface and the vicinity thereof, from the viewpoint of suppressing the solid solution of Rh into alumina to a higher degree. Therefore, quantitative line analysis of Zr was performed from the surface of the alumina particle 32 toward the center using a field emission electron probe analyzer (FE-EPMA), and from the surface to the center, the surface was set as 0% and the center as 100%. It is preferable that the peak top of the Zr intensity exists within the range of 0% to 20% (preferably 0% to 15%, more preferably 0% to 12%) when expressed as the depth of .
 排ガス浄化用触媒100の製造方法には特に制限はない。排ガス浄化用触媒100は、例えば、次のようにして作製することができる。 There is no particular restriction on the method of manufacturing the exhaust gas purifying catalyst 100. The exhaust gas purifying catalyst 100 can be manufactured, for example, as follows.
 ジルコニアの被覆34の原料として、焼成によってジルコニアに変換され、かつ溶媒に可溶なジルコニア前駆体を使用する。溶媒として水を使用できることから、ジルコニア前駆体として好ましくは、オキシ硝酸ジルコニウムである。 As a raw material for the zirconia coating 34, a zirconia precursor that is converted into zirconia by firing and is soluble in a solvent is used. Since water can be used as a solvent, zirconium oxynitrate is preferred as the zirconia precursor.
 La含有アルミナ粒子32と、ジルコニア前駆体と、溶媒とを混合し、La含有アルミナ粒子32が分散し、ジルコニア前駆体が溶解した懸濁液を調製する工程と、この懸濁液を、噴霧乾燥装置を用いてスプレードライする工程とを実施する。スプレードライの条件は、スプレードライ法によって粒子を溶液の固形分で被覆するのに採用される公知の条件を参考にして決定してよい。これにより、アルミナ粒子32の表面にジルコニア前駆体を高度な分散状態で付着させることができる。溶媒を十分に除去するために、さらに乾燥を行ってもよい。なお、懸濁液中のLa含有アルミナ粒子32およびジルコニア前駆体の濃度を変化させることにより、母材30におけるジルコニアの質量割合を調整することができる。また、スプレードライによれば、ジルコニアの被覆の粒径を100nm未満にすることができるが、スプレードライの条件を変化させることにより、ジルコニアの被覆の粒径をさらに調整することができる。 A step of mixing La-containing alumina particles 32, a zirconia precursor, and a solvent to prepare a suspension in which the La-containing alumina particles 32 are dispersed and the zirconia precursor is dissolved, and spray-drying this suspension. and a step of spray drying using a device. Spray drying conditions may be determined with reference to known conditions employed to coat particles with solids of a solution by spray drying. Thereby, the zirconia precursor can be adhered to the surface of the alumina particles 32 in a highly dispersed state. Further drying may be performed to sufficiently remove the solvent. Note that the mass proportion of zirconia in the base material 30 can be adjusted by changing the concentrations of the La-containing alumina particles 32 and the zirconia precursor in the suspension. Although spray drying allows the particle size of the zirconia coating to be less than 100 nm, the particle size of the zirconia coating can be further adjusted by changing the spray drying conditions.
 次に、得られた粉体を焼成する工程を行う。この焼成により、ジルコニア前駆体をジルコニアの被覆34に変換する。焼成条件は、ジルコニア前駆体の種類に応じて適宜決定してよい。これにより、ジルコニアの被覆34を有するLa含有アルミナ粒子32(すなわち、母材30)を得ることができる。 Next, a step of firing the obtained powder is performed. This firing converts the zirconia precursor into a coating 34 of zirconia. The firing conditions may be determined as appropriate depending on the type of zirconia precursor. As a result, La-containing alumina particles 32 (ie, base material 30) having a zirconia coating 34 can be obtained.
 次に、Rhを含む触媒貴金属源(例えば、Rhをイオンとして含む溶液)と、母材30とを、分散媒中で混合し、得られた混合液を乾燥する工程と、得られた乾燥物を、焼成する工程を実施する。これにより、触媒貴金属40を、母材30に担持させることができる。すなわち、排ガス浄化用触媒100を得ることができる。 Next, a step of mixing a catalytic precious metal source containing Rh (for example, a solution containing Rh as ions) and the base material 30 in a dispersion medium and drying the obtained mixed solution, and drying the obtained dried product. A step of firing is carried out. Thereby, the catalytic noble metal 40 can be supported on the base material 30. That is, the exhaust gas purifying catalyst 100 can be obtained.
 排ガス浄化用触媒100は、高温に長時間晒された場合でも、Rhの浄化活性に優れている。したがって、排ガス浄化用触媒100は、高温に長時間晒された場合でも、NOxの浄化性能に優れている。そこで、排ガス浄化用触媒100を用いた排ガス浄化用触媒体の例、およびそれを含む排ガス浄化システムの例について以下説明する。 The exhaust gas purification catalyst 100 has excellent Rh purification activity even when exposed to high temperatures for a long time. Therefore, the exhaust gas purification catalyst 100 has excellent NOx purification performance even when exposed to high temperatures for a long time. Therefore, an example of an exhaust gas purifying catalyst body using the exhaust gas purifying catalyst 100 and an example of an exhaust gas purifying system including the same will be described below.
≪排ガス浄化システム≫
 図2は、排ガス浄化システム1の模式図である。排ガス浄化システム1は、内燃機関(エンジン)2と、排ガス浄化装置3と、エンジンコントロールユニット(Engine Control Unit:ECU)7と、を備えている。排ガス浄化システム1は、内燃機関2から排出される排ガスに含まれる有害成分、例えば、HC、CO、NOx等を、排ガス浄化装置3で浄化するように構成されている。なお、図2の矢印は排ガスの流動方向を示している。また、以下の説明では、排ガスの流れに沿って内燃機関2に近い側を上流側、内燃機関2から遠い側を下流側という。
≪Exhaust gas purification system≫
FIG. 2 is a schematic diagram of the exhaust gas purification system 1. The exhaust gas purification system 1 includes an internal combustion engine 2, an exhaust gas purification device 3, and an engine control unit (ECU) 7. The exhaust gas purification system 1 is configured so that the exhaust gas purification device 3 purifies harmful components such as HC, CO, NOx, etc. contained in the exhaust gas discharged from the internal combustion engine 2. Note that the arrows in FIG. 2 indicate the flow direction of exhaust gas. In the following description, the side closer to the internal combustion engine 2 along the flow of exhaust gas will be referred to as the upstream side, and the side farther from the internal combustion engine 2 will be referred to as the downstream side.
 内燃機関2は、ここではガソリン車両のガソリンエンジンを主体として構成されている。ただし、内燃機関2は、ガソリン以外のエンジン、例えばディーゼルエンジンやハイブリッド車に搭載されるエンジン等であってもよい。内燃機関2は、燃焼室(図示せず)を備えている。燃焼室は、燃料タンク(図示せず)に接続されている。燃料タンクには、ここではガソリンが貯留されている。ただし、燃料タンクに貯留される燃料は、ディーゼル燃料(軽油)等であってもよい。燃焼室では、燃料タンクから供給された燃料が酸素と混合され、燃焼される。これにより、燃焼エネルギーが力学的エネルギーへと変換される。燃焼室は、排気ポート2aに連通している。排気ポート2aは、排ガス浄化装置3に連通している。燃焼された燃料ガスは、排ガスとなって排ガス浄化装置3に排出される。 The internal combustion engine 2 is mainly configured with a gasoline engine of a gasoline vehicle. However, the internal combustion engine 2 may be an engine other than gasoline, such as a diesel engine or an engine installed in a hybrid vehicle. Internal combustion engine 2 includes a combustion chamber (not shown). The combustion chamber is connected to a fuel tank (not shown). Gasoline is stored in the fuel tank here. However, the fuel stored in the fuel tank may be diesel fuel (light oil) or the like. In the combustion chamber, fuel supplied from the fuel tank is mixed with oxygen and combusted. This converts combustion energy into mechanical energy. The combustion chamber communicates with the exhaust port 2a. The exhaust port 2a communicates with the exhaust gas purification device 3. The combusted fuel gas becomes exhaust gas and is discharged to the exhaust gas purification device 3.
 排ガス浄化装置3は、内燃機関2と連通する排気経路4と、圧力センサ8と、第1触媒体9と、第2触媒体10と、を備えている。排気経路4は、排ガスが流動する排ガス流路である。排気経路4は、ここではエキゾーストマニホールド5と排気管6とを備えている。エキゾーストマニホールド5の上流側の端部は、内燃機関2の排気ポート2aに連結されている。エキゾーストマニホールド5の下流側の端部は、排気管6に連結されている。排気管6の途中には、上流側から順に、第1触媒体9と第2触媒体10とが配置されている。ただし、第1触媒体9と第2触媒体10との配置は任意に可変であってよい。また、第1触媒体9と第2触媒体10との個数は特に限定されず、それぞれ複数個が設けられてもよい。また、第2触媒体10の下流側には、さらに第3触媒体が配置されていてもよい。 The exhaust gas purification device 3 includes an exhaust path 4 communicating with the internal combustion engine 2, a pressure sensor 8, a first catalyst body 9, and a second catalyst body 10. The exhaust path 4 is an exhaust gas flow path through which exhaust gas flows. The exhaust path 4 here includes an exhaust manifold 5 and an exhaust pipe 6. An upstream end of the exhaust manifold 5 is connected to an exhaust port 2a of the internal combustion engine 2. A downstream end of the exhaust manifold 5 is connected to an exhaust pipe 6. In the middle of the exhaust pipe 6, a first catalyst body 9 and a second catalyst body 10 are arranged in order from the upstream side. However, the arrangement of the first catalyst body 9 and the second catalyst body 10 may be arbitrarily changed. Further, the number of first catalyst bodies 9 and second catalyst bodies 10 is not particularly limited, and a plurality of each may be provided. Further, a third catalyst body may be further disposed downstream of the second catalyst body 10.
 第1触媒体9については従来と同様でよく、特に限定されない。第1触媒体9は、例えば、排ガスに含まれるPMを除去するディーゼルパティキュレートフィルタ(DPF:Diesel Particulate Filter);排ガスに含まれるHCやCOを浄化するディーゼル酸化触媒(DOC:Diesel Oxidation Catalyst);排ガスに含まれるHC、CO、NOxを同時に浄化する三元触媒;通常運転時に(リーン条件下で)NOxを吸蔵し、燃料を多めに噴射した時に(リッチ条件下で)HC、COを還元剤としてNOxを浄化するNOx吸着還元(NSR:NOx Storage-Reduction)触媒;等であってもよい。第1触媒体9は、例えば第2触媒体10に流入する排ガスの温度を上昇させる機能を有していてもよい。なお、第1触媒体9は必須の構成ではなく、他の実施形態において省略することもできる。 The first catalyst body 9 may be the same as the conventional one and is not particularly limited. The first catalyst body 9 is, for example, a diesel particulate filter (DPF) that removes PM contained in exhaust gas; a diesel oxidation catalyst (DOC) that purifies HC and CO contained in exhaust gas; A three-way catalyst that simultaneously purifies HC, CO, and NOx contained in exhaust gas; a reducing agent that stores NOx during normal operation (under lean conditions) and reduces HC and CO when a large amount of fuel is injected (under rich conditions). It may also be a NOx storage-reduction (NSR) catalyst that purifies NOx. The first catalyst body 9 may have a function of increasing the temperature of the exhaust gas flowing into the second catalyst body 10, for example. Note that the first catalyst body 9 is not an essential component and may be omitted in other embodiments.
 第2触媒体10は、上述の排ガス浄化用触媒100を用いた排ガス浄化用触媒体の一例である。よって、第2触媒体10は、上述の排ガス浄化用触媒100を含んでおり、排ガス中の有害成分(特にNOx)を浄化する機能を有する。なお、以下では、第2触媒体10を「排ガス浄化用触媒体」ということがある。第2触媒体(排ガス浄化用触媒体)10の構成については、後に詳述する。 The second catalyst body 10 is an example of an exhaust gas purification catalyst body using the above-described exhaust gas purification catalyst 100. Therefore, the second catalyst body 10 includes the above-mentioned exhaust gas purifying catalyst 100, and has a function of purifying harmful components (particularly NOx) in the exhaust gas. Note that, hereinafter, the second catalyst body 10 may be referred to as an "exhaust gas purification catalyst body." The configuration of the second catalyst body (exhaust gas purification catalyst body) 10 will be described in detail later.
 ECU7は、内燃機関2と排ガス浄化装置3とを制御する。ECU7は、内燃機関2と、排ガス浄化装置3の各部位に設置されているセンサ(例えば、圧力センサ8や、温度センサ、酸素センサ等)とに、電気的に接続されている。なお、ECU7の構成については従来と同様でよく、特に限定されない。ECU7は、例えばプロセッサや集積回路である。ECU7は、入力ポート(図示せず)と出力ポート(図示せず)とを備えている。ECU7は、例えば、車両の運転状態や、内燃機関2から排出される排ガスの量、温度、圧力等の情報を受信する。ECU7は、センサで検知された情報(例えば、圧力センサ8で計測された圧力)を、入力ポートを介して受信する。ECU7は、例えば受信した情報に基づいて、出力ポートを介して制御信号を送信する。ECU7は、例えば内燃機関2の燃料噴射制御や点火制御、吸入空気量調節制御等の運転を制御する。ECU7は、例えば内燃機関2の運転状態や内燃機関2から排出される排ガスの量等に基づいて、排ガス浄化装置3の駆動と停止とを制御する。 The ECU 7 controls the internal combustion engine 2 and the exhaust gas purification device 3. The ECU 7 is electrically connected to the internal combustion engine 2 and sensors installed at various parts of the exhaust gas purification device 3 (for example, a pressure sensor 8, a temperature sensor, an oxygen sensor, etc.). Note that the configuration of the ECU 7 may be the same as the conventional one and is not particularly limited. The ECU 7 is, for example, a processor or an integrated circuit. The ECU 7 includes an input port (not shown) and an output port (not shown). The ECU 7 receives information such as the operating state of the vehicle, the amount of exhaust gas discharged from the internal combustion engine 2, the temperature, and the pressure. The ECU 7 receives information detected by the sensor (for example, the pressure measured by the pressure sensor 8) via an input port. The ECU 7 transmits a control signal via the output port, for example, based on the received information. The ECU 7 controls operations such as fuel injection control, ignition control, and intake air amount adjustment control of the internal combustion engine 2, for example. The ECU 7 controls driving and stopping of the exhaust gas purification device 3 based on, for example, the operating state of the internal combustion engine 2 and the amount of exhaust gas discharged from the internal combustion engine 2.
≪排ガス浄化用触媒体≫
 図3は、排ガス浄化用触媒体10を模式的に示す斜視図である。排ガス浄化用触媒体10は、上述の排ガス浄化用触媒100を含む第2触媒体10である。なお、図3の矢印は、排ガスの流れを示している。図3では、相対的に内燃機関2に近い排気経路4の上流側が左側に表され、相対的に内燃機関2から遠い排気経路の下流側が右側に表されている。また、図3において、符号Xは、排ガス浄化用触媒体10の筒軸方向を表している。排ガス浄化用触媒体10は、筒軸方向Xが排ガスの流動方向に沿うように排気経路4に設置されている。筒軸方向Xは、排ガスの流動方向である。以下では、筒軸方向Xのうち、一の方向X1を上流側(排ガス流入側、フロント側ともいう。)といい、他の方向X2を下流側(排ガス流出側、リア側ともいう。)ということがある。ただし、これは説明の便宜上の方向に過ぎず、排ガス浄化用触媒体10の設置形態を何ら限定するものではない。
≪Catalyst body for exhaust gas purification≫
FIG. 3 is a perspective view schematically showing the exhaust gas purifying catalyst body 10. As shown in FIG. The exhaust gas purification catalyst body 10 is a second catalyst body 10 that includes the above-described exhaust gas purification catalyst 100. Note that the arrows in FIG. 3 indicate the flow of exhaust gas. In FIG. 3, the upstream side of the exhaust path 4 that is relatively close to the internal combustion engine 2 is shown on the left, and the downstream side of the exhaust path that is relatively far from the internal combustion engine 2 is shown on the right. Moreover, in FIG. 3, the symbol X represents the cylinder axis direction of the exhaust gas purifying catalyst body 10. The exhaust gas purifying catalyst body 10 is installed in the exhaust path 4 so that the cylinder axis direction X is along the flow direction of exhaust gas. The cylinder axis direction X is the flow direction of exhaust gas. Hereinafter, among the cylinder axis directions X, one direction X1 will be referred to as the upstream side (also referred to as the exhaust gas inflow side, front side), and the other direction X2 will be referred to as the downstream side (also referred to as the exhaust gas outflow side, rear side). Sometimes. However, this is only a direction for convenience of explanation, and does not limit the installation form of the exhaust gas purifying catalyst body 10 in any way.
 排ガス浄化用触媒体10は、ストレートフロー構造の基材11と、触媒層20(図4参照)と、を備えている。排ガス浄化用触媒体10の一の方向X1の端部は排ガスの流入口10aであり、他の方向X2の端部は排ガスの流出口10bである。排ガス浄化用触媒体10の外形は、ここでは円筒形状である。ただし、排ガス浄化用触媒体10の外形は特に限定されず、例えば、楕円筒形状、多角筒形状、パイプ状、フォーム状、ペレット形状、繊維状等であってもよい。 The exhaust gas purifying catalyst body 10 includes a base material 11 with a straight flow structure and a catalyst layer 20 (see FIG. 4). An end of the exhaust gas purifying catalyst body 10 in one direction X1 is an exhaust gas inlet 10a, and an end in the other direction X2 is an exhaust gas outlet 10b. The outer shape of the exhaust gas purifying catalyst body 10 is cylindrical here. However, the external shape of the exhaust gas purifying catalyst body 10 is not particularly limited, and may be, for example, an elliptical cylinder shape, a polygonal cylinder shape, a pipe shape, a foam shape, a pellet shape, a fibrous shape, or the like.
 排ガス浄化用触媒体10は、基材11および触媒層20以外の部材を備えていてもよい。例えば、排ガス浄化用触媒体10は、触媒層20以外の層をさらに有していてもよい。 The exhaust gas purifying catalyst body 10 may include members other than the base material 11 and the catalyst layer 20. For example, the exhaust gas purifying catalyst body 10 may further include a layer other than the catalyst layer 20.
 基材11は、排ガス浄化用触媒体10の骨組みを構成するものである。基材11としては特に限定されず、従来のこの種の用途に用いられる種々の素材および形態のものが使用可能である。基材11は、例えば、コージェライト、チタン酸アルミニウム、炭化ケイ素等のセラミックスで構成されるセラミックス担体であってもよいし、ステンレス鋼(SUS)、Fe-Cr-Al系合金、Ni-Cr-Al系合金等で構成されるメタル担体であってもよい。図2に示すように、基材11は、ここではハニカム構造を有している。基材11は、筒軸方向Xに規則的に配列された複数のセル(空洞)12と、複数のセル12を仕切る隔壁(リブ)14と、を備えている。特に限定されるものではないが、基材11の体積(セル12の容積を含んだ見掛けの体積)は、概ね0.1~10L、例えば0.5~5Lであってもよい。また、基材11の筒軸方向Xに沿う平均長さ(全長)Lは、概ね10~500mm、例えば50~300mmであってもよい。 The base material 11 constitutes the framework of the exhaust gas purifying catalyst body 10. The base material 11 is not particularly limited, and various materials and shapes conventionally used for this type of use can be used. The base material 11 may be a ceramic carrier made of ceramics such as cordierite, aluminum titanate, silicon carbide, etc., or may be a ceramic carrier made of ceramics such as cordierite, aluminum titanate, silicon carbide, stainless steel (SUS), Fe-Cr-Al alloy, Ni-Cr- A metal carrier made of an Al-based alloy or the like may also be used. As shown in FIG. 2, the base material 11 has a honeycomb structure here. The base material 11 includes a plurality of cells (cavities) 12 regularly arranged in the cylinder axis direction X, and partition walls (ribs) 14 that partition the plurality of cells 12. Although not particularly limited, the volume of the base material 11 (apparent volume including the volume of the cells 12) may be approximately 0.1 to 10L, for example, 0.5 to 5L. Further, the average length (total length) L of the base material 11 along the cylinder axis direction X may be approximately 10 to 500 mm, for example, 50 to 300 mm.
 セル12は、排ガスの流路となる。セル12は、筒軸方向Xに延びている。セル12は、基材11を筒軸方向Xに貫通する貫通孔である。セル12の形状、大きさ、数等は、例えば、排ガス浄化用触媒体10を流動する排ガスの流量や成分等を考慮して設計すればよい。セル12の筒軸方向Xに直交する断面の形状は特に限定されない。セル12の断面形状は、例えば、正方形、平行四辺形、長方形、台形等の四角形や、その他の多角形(例えば、三角形、六角形、八角形)、波形、円形等種々の幾何学形状であってよい。隔壁14は、セル12に面し、隣り合うセル12の間を区切っている。特に限定されるものではないが、隔壁14の平均厚み(表面に直交する方向の寸法。以下同じ。)は、機械的強度を向上する観点や圧損を低減する観点等から、概ね0.1~10mil(1milは、約25.4μm)、例えば0.2~5milであってもよい。隔壁14は、排ガスが通過可能なように多孔質であってもよい。 The cell 12 becomes a flow path for exhaust gas. The cell 12 extends in the cylinder axis direction X. The cell 12 is a through hole that penetrates the base material 11 in the cylinder axis direction X. The shape, size, number, etc. of the cells 12 may be designed in consideration of, for example, the flow rate and components of the exhaust gas flowing through the exhaust gas purifying catalyst body 10. The shape of the cross section of the cell 12 perpendicular to the cylinder axis direction X is not particularly limited. The cross-sectional shape of the cell 12 may be various geometric shapes, such as squares, parallelograms, rectangles, trapezoids, other polygons (triangles, hexagons, octagons, etc.), wavy shapes, circles, etc. It's fine. The partition wall 14 faces the cells 12 and separates adjacent cells 12 from each other. Although not particularly limited, the average thickness (dimension in the direction perpendicular to the surface; the same shall apply hereinafter) of the partition wall 14 is approximately 0.1 to 0.1 from the viewpoint of improving mechanical strength and reducing pressure loss. It may be 10 mil (1 mil is about 25.4 μm), for example 0.2 to 5 mil. The partition wall 14 may be porous so that exhaust gas can pass therethrough.
 触媒層20は、排ガス中の有害成分を浄化する反応場である。触媒層20は、多数の細孔(空隙)を有する多孔質体である。排ガス浄化用触媒体10に流入した排ガスは、排ガス浄化用触媒体10の流路内(セル12)を流動している間に触媒層20と接触する。これによって、排ガス中の有害成分が浄化される。 The catalyst layer 20 is a reaction field that purifies harmful components in exhaust gas. The catalyst layer 20 is a porous body having many pores (voids). The exhaust gas that has flowed into the exhaust gas purification catalyst body 10 comes into contact with the catalyst layer 20 while flowing in the flow path (cell 12) of the exhaust gas purification catalyst body 10. This purifies harmful components in the exhaust gas.
 図4は、排ガス浄化用触媒体10を筒軸方向Xに沿って切断した断面の一部を模式的に示す部分断面図である。触媒層20は、ここでは基材11の上、具体的には隔壁14の表面に設けられている。ただし、触媒層20は、その一部または全部が、隔壁14の内部に浸透していてもよい。 FIG. 4 is a partial sectional view schematically showing a part of the cross section of the exhaust gas purifying catalyst body 10 taken along the cylinder axis direction X. The catalyst layer 20 is provided here on the base material 11, specifically on the surface of the partition wall 14. However, part or all of the catalyst layer 20 may penetrate into the partition wall 14 .
 触媒層20は、上述の排ガス浄化用触媒100を含有する。排ガス浄化用触媒100は、貴金属触媒40としてRhを含んでいるため、排ガス浄化用触媒体10は、排ガスに含まれるNOxを還元して、窒素に変換することができ、これにより排ガスを浄化することができる。特に、排ガス浄化用触媒体10は、高温に長時間晒された場合でも、NOxの浄化性能が高い。 The catalyst layer 20 contains the above-mentioned exhaust gas purifying catalyst 100. Since the exhaust gas purification catalyst 100 contains Rh as the noble metal catalyst 40, the exhaust gas purification catalyst body 10 can reduce NOx contained in the exhaust gas and convert it into nitrogen, thereby purifying the exhaust gas. be able to. In particular, the exhaust gas purification catalyst body 10 has high NOx purification performance even when exposed to high temperatures for a long time.
 触媒層20は、排ガス浄化用触媒100以外の成分(以下、「任意成分」ともいう)を含有していてもよい。以下、任意成分について説明する。 The catalyst layer 20 may contain components other than the exhaust gas purifying catalyst 100 (hereinafter also referred to as "optional components"). The optional components will be explained below.
 任意成分として、触媒層20は、セリアを含む複合酸化物等の酸素貯蔵能を有する材料(OSC材)を含有していてもよい。触媒層20がOSC材を含有する場合、車両の走行条件などによって排ガスの空燃比が変動したときでも、排ガス浄化用触媒体10は、安定して優れた浄化性能を発揮することができる。 As an optional component, the catalyst layer 20 may contain a material having an oxygen storage capacity (OSC material) such as a composite oxide containing ceria. When the catalyst layer 20 contains the OSC material, the exhaust gas purifying catalyst body 10 can stably exhibit excellent purification performance even when the air-fuel ratio of the exhaust gas fluctuates depending on the driving conditions of the vehicle.
 OSC材に関し、セリアを含む複合酸化物としては、セリアとジルコニアとを含む複合酸化物(セリア-ジルコニア複合酸化物(いわゆる、CZ複合酸化物またはZC複合酸化物))などが挙げられる。OSC材に酸化ジルコニウムが含有されている場合には、酸化セリウムの熱劣化を抑制できることから、OSC材としては、セリア-ジルコニア複合酸化物が好ましい。 Regarding the OSC material, examples of the composite oxide containing ceria include a composite oxide containing ceria and zirconia (ceria-zirconia composite oxide (so-called CZ composite oxide or ZC composite oxide)). When the OSC material contains zirconium oxide, thermal deterioration of cerium oxide can be suppressed, so ceria-zirconia composite oxide is preferable as the OSC material.
 OSC材が酸化セリウムを含む複合酸化物である場合、その酸素吸蔵能を十分に発揮させる観点から、酸化セリウムの含有率は、好ましくは15質量%以上であり、より好ましくは20質量%以上である。一方、酸化セリウムの含有率が高過ぎると、OSC材の塩基性が高くなり過ぎるおそれがある。そのため、酸化セリウムの含有率は、好ましくは40質量%以下であり、より好ましくは30質量%以下である。 When the OSC material is a composite oxide containing cerium oxide, the content of cerium oxide is preferably 15% by mass or more, more preferably 20% by mass or more, from the viewpoint of fully demonstrating its oxygen storage capacity. be. On the other hand, if the content of cerium oxide is too high, the basicity of the OSC material may become too high. Therefore, the content of cerium oxide is preferably 40% by mass or less, more preferably 30% by mass or less.
 OSC材は、特性(特に耐熱性と酸素吸放出特性等)の向上を目的として、希土類元素の酸化物を含んでいても良い。希土類元素の例としては、Sc、Y、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなどが挙げられる。希土類元素の酸化物としては、好適にはPr、Nd、La、およびYである。 The OSC material may contain an oxide of a rare earth element for the purpose of improving properties (especially heat resistance, oxygen absorption/release properties, etc.). Examples of rare earth elements include Sc, Y, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and the like. Preferred rare earth element oxides are Pr 2 O 3 , Nd 2 O 3 , La 2 O 3 , and Y 2 O 3 .
 基材11の体積1L当たりのOSC材の量は、特に限定されないが、例えば、10g/L以上、25g/L以上、または50g/L以上であってよく、また、例えば、150g/L以下、100g/L以下、または80g/L以下であってよい。 The amount of OSC material per 1 L volume of the base material 11 is not particularly limited, but may be, for example, 10 g/L or more, 25 g/L or more, or 50 g/L or more, and, for example, 150 g/L or less, It may be 100 g/L or less, or 80 g/L or less.
 なお、本明細書において「基材の体積1L当たり」とは、基材の純体積にセル通路の容積も含めた全体の嵩容積1L当たりをいう。以下の説明において(g/L)と記載しているものについては、基材の体積1Lに含まれる量を示すものである。 In this specification, "per 1 L volume of the base material" refers to per 1 L bulk volume of the entire base material including the volume of the cell passageway in the pure volume of the base material. In the following description, (g/L) indicates the amount contained in 1 L of volume of the base material.
 任意成分として、触媒層20は、酸化アルミニウム(Al、アルミナ)、酸化チタン(TiO、チタニア)、酸化ジルコニウム(ZrO、ジルコニア)、酸化ケイ素(SiO、シリカ)等の酸素貯蔵能を有しない材料(非OSC材)を含有していてもよい。 As an optional component, the catalyst layer 20 may contain an oxygen storage material such as aluminum oxide (Al 2 O 3 , alumina), titanium oxide (TiO 2 , titania), zirconium oxide (ZrO 2 , zirconia), silicon oxide (SiO 2 , silica), etc. It may also contain a material (non-OSC material) that does not have this ability.
 非OSC材として用いられる酸化物には、耐熱性等を向上させるために、Pr、Nd、La、Y等の希土類元素の酸化物が、少量(例えば、1質量%以上10質量%以下)添加されていてもよい。耐熱性および耐久性に特に優れることから、非OSC材は、Alが好ましく、Laが複合化されたAl(La-Al複合酸化物;LA複合酸化物)であることがより好ましい。 Oxides used as non-OSC materials contain small amounts of oxides of rare earth elements such as Pr 2 O 3 , Nd 2 O 3 , La 2 O 3 , and Y 2 O 3 in order to improve heat resistance. For example, 1% by mass or more and 10% by mass or less) may be added. Since it has particularly excellent heat resistance and durability, the non-OSC material is preferably Al 2 O 3 , and Al 2 O 3 composited with La 2 O 3 (La 2 O 3 -Al 2 O 3 composite oxide; LA composite oxide) is more preferable.
 基材11の体積1L当たりの非OSC材の量は、特に限定されないが、例えば、10g/L以上、25g/L以上、または50g/L以上であってよく、また、例えば、150g/L以下、100g/L以下、または80g/L以下であってよい。 The amount of non-OSC material per 1 L volume of the base material 11 is not particularly limited, but may be, for example, 10 g/L or more, 25 g/L or more, or 50 g/L or more, and, for example, 150 g/L or less. , 100 g/L or less, or 80 g/L or less.
 任意成分として、触媒層20は、Rh以外の触媒貴金属を含む排ガス浄化用触媒(以下、「任意の排ガス浄化用触媒」ともいう)を含んでいてもよい。よって、触媒層20では、上述の排ガス浄化用触媒100と、Rh以外の触媒貴金属を含む排ガス浄化用触媒とが併用されていてもよい。特に、触媒層20において、上述の排ガス浄化用触媒100と、PtおよびPdのうちの少なくとも一方を含む排ガス浄化用触媒とを併用した場合には、排ガス浄化用触媒体10は、排ガスに含まれるNOxの浄化性能だけでなく、HCおよびCOの浄化性能にも優れる。 As an optional component, the catalyst layer 20 may include an exhaust gas purification catalyst (hereinafter also referred to as "any exhaust gas purification catalyst") containing a catalytic noble metal other than Rh. Therefore, in the catalyst layer 20, the above-described exhaust gas purification catalyst 100 and an exhaust gas purification catalyst containing a catalytic noble metal other than Rh may be used together. Particularly, when the above-mentioned exhaust gas purification catalyst 100 and an exhaust gas purification catalyst containing at least one of Pt and Pd are used together in the catalyst layer 20, the exhaust gas purification catalyst body 10 is contained in the exhaust gas. It has excellent not only NOx purification performance but also HC and CO purification performance.
 任意の排ガス浄化用触媒において、Rh以外の触媒貴金属は、典型的には、担体に担持される。担体の例としては、上記非OSC材およびOSC材が挙げられる。担体は、上述の排ガス浄化用触媒100に用いられる母材30であってもよい。 In any exhaust gas purifying catalyst, catalytic noble metals other than Rh are typically supported on a carrier. Examples of carriers include the above non-OSC materials and OSC materials. The carrier may be the base material 30 used in the above-mentioned exhaust gas purifying catalyst 100.
 任意の排ガス浄化用触媒において、Rh以外の触媒貴金属は、排ガスとの接触面積を高める観点から、十分に小さい粒径の微粒子として使用されることが好ましい。触媒貴金属の平均粒径(具体的には、透過電子顕微鏡(TEM)観察により求められる、50個以上の触媒貴金属の粒径の平均値)は、概ね1~15nm、例えば10nm以下、さらには5nm以下であるとよい。 In any exhaust gas purification catalyst, the catalytic noble metal other than Rh is preferably used in the form of fine particles with a sufficiently small particle size from the viewpoint of increasing the contact area with the exhaust gas. The average particle size of the catalytic noble metal (specifically, the average value of the particle sizes of 50 or more catalytic noble metals determined by transmission electron microscopy (TEM) observation) is approximately 1 to 15 nm, for example, 10 nm or less, and even 5 nm. It is good if it is below.
 排ガス浄化用触媒体10における触媒貴金属の量(Rh以外の触媒貴金属を含む場合は合計量)は、特に限定されず、触媒貴金属の種類等に応じて適宜決定することができる。基材11の体積1L当たりの触媒貴金属の量として、特に高い排ガス浄化性能の観点からは、例えば、0.01g/L以上、0.03g/L以上、0.05g/L以上、0.08g/L以上、または0.10g/L以上であってよい。排ガス浄化性能とコストとのバランスの観点からは、例えば、15.00g/L以下、10.00g/L以下、5.00g/L以下、3.00g/L以下、1.50g/L以下、1.00g/L以下、0.80g/L以下、または0.50g/L以下であってよい。 The amount of catalytic noble metal in the exhaust gas purifying catalyst body 10 (total amount if catalytic noble metal other than Rh is included) is not particularly limited, and can be determined as appropriate depending on the type of catalytic noble metal. From the viewpoint of particularly high exhaust gas purification performance, the amount of catalytic precious metal per 1 L of volume of the base material 11 is, for example, 0.01 g/L or more, 0.03 g/L or more, 0.05 g/L or more, 0.08 g. /L or more, or 0.10g/L or more. From the viewpoint of balance between exhaust gas purification performance and cost, for example, 15.00 g/L or less, 10.00 g/L or less, 5.00 g/L or less, 3.00 g/L or less, 1.50 g/L or less, It may be 1.00 g/L or less, 0.80 g/L or less, or 0.50 g/L or less.
 任意成分として、触媒層20は、カルシウム(Ca)、バリウム(Ba)等のアルカリ土類元素を含んでいてもよい。アルカリ土類元素によって、触媒貴金属(特に酸化触媒)の被毒を抑制することができる。また、アルカリ土類元素によって、触媒貴金属の分散性が高められ、触媒貴金属の粒成長に伴うシンタリングを抑制することができる。また、触媒層20が、OSC材と共にアルカリ土類元素を含む場合には、理論空燃比よりも燃料が薄いリーン雰囲気(酸素過剰雰囲気)において、OSC材への酸素吸収量をさらに向上させることができる。アルカリ土類元素は、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、リン酸塩、酢酸塩、ギ酸塩、シュウ酸塩、ハロゲン化物等の形態で含有され得る。 As an optional component, the catalyst layer 20 may contain an alkaline earth element such as calcium (Ca) or barium (Ba). Poisoning of noble metal catalysts (particularly oxidation catalysts) can be suppressed by alkaline earth elements. Moreover, the alkaline earth element improves the dispersibility of the catalyst noble metal, and can suppress sintering accompanying grain growth of the catalyst noble metal. Furthermore, when the catalyst layer 20 contains an alkaline earth element together with the OSC material, it is possible to further improve the amount of oxygen absorbed into the OSC material in a lean atmosphere (oxygen-excess atmosphere) where the fuel is thinner than the stoichiometric air-fuel ratio. can. Alkaline earth elements may be contained in the form of oxides, hydroxides, carbonates, nitrates, sulfates, phosphates, acetates, formates, oxalates, halides, and the like.
 任意成分として、触媒層20は、NOx吸蔵能を有するNOx吸着材や、安定化剤等を含んでいてもよい。安定化剤としては、例えば、イットリウム(Y)、ランタン(La)、ネオジウム(Nd)等の希土類元素が挙げられる。なお、希土類元素は、酸化物の形態で触媒層20に存在しうる。 As optional components, the catalyst layer 20 may contain a NOx adsorbent having NOx storage capacity, a stabilizer, and the like. Examples of the stabilizer include rare earth elements such as yttrium (Y), lanthanum (La), and neodymium (Nd). Note that the rare earth element may exist in the catalyst layer 20 in the form of an oxide.
 任意成分として、触媒層20は、アルミナゾル、シリカゾル等のバインダ、各種添加剤などを含有していてもよい。 As optional components, the catalyst layer 20 may contain binders such as alumina sol and silica sol, various additives, and the like.
 特に限定されるものではないが、触媒層20のコート量(成形量)は、排ガス浄化用触媒体10の体積(基材11の体積)1Lあたり、概ね30g/L以上、典型的には50g/L以上、好ましくは70g/L以上、例えば100g/L以上であってよく、概ね500g/L以下、典型的には400g/L以下、例えば、300g/L以下であってもよい。上記範囲を満たすことにより、浄化性能の向上と圧損の低減とを高いレベルで兼ね備えることができる。なお、本明細書において「コート量」とは、排ガス浄化用触媒体10の単位体積あたりに含まれる固形分の質量をいう。 Although not particularly limited, the coating amount (forming amount) of the catalyst layer 20 is approximately 30 g/L or more, typically 50 g/L per 1 L of the volume of the catalyst body 10 for exhaust gas purification (volume of the base material 11). /L or more, preferably 70g/L or more, for example 100g/L or more, and may be approximately 500g/L or less, typically 400g/L or less, for example 300g/L or less. By satisfying the above range, it is possible to improve purification performance and reduce pressure loss at a high level. Note that in this specification, the "coating amount" refers to the mass of solid content contained per unit volume of the exhaust gas purifying catalyst body 10.
 触媒層20の長さや厚みは、例えば、基材11のセル12の大きさや排ガス浄化用触媒体10に流通する排ガスの流量等を考慮して適宜設計することができる。触媒層20は、基材11の隔壁14に連続的に設けられていてもよく、断続的に設けられていてもよい。触媒層20は、例えば、排ガスの流入口10aから筒軸方向Xに沿って設けられていてもよいし、排ガスの流出口10bから筒軸方向Xに沿って設けられていてもよい。 The length and thickness of the catalyst layer 20 can be appropriately designed in consideration of, for example, the size of the cells 12 of the base material 11 and the flow rate of exhaust gas flowing through the exhaust gas purifying catalyst body 10. The catalyst layer 20 may be continuously provided on the partition wall 14 of the base material 11, or may be provided intermittently. For example, the catalyst layer 20 may be provided along the cylinder axis direction X from the exhaust gas inlet 10a, or may be provided along the cylinder axis direction X from the exhaust gas outlet 10b.
 特に限定されるものではないが、触媒層20の筒軸方向Xの全体のコート幅(平均長さ)は、基材11の全長Lの概ね20%以上、好ましくは50%以上、典型的には80%以上、例えば90%以上であるとよく、基材11の全長Lと同じ長さであってもよい。特に限定されるものではないが、触媒層20のコート厚み(平均厚み)は、概ね1~300μm、典型的には5~200μm、例えば10~100μmである。これにより、浄化性能の向上と圧損の低減とを高いレベルで兼ね備えることができる。 Although not particularly limited, the overall coating width (average length) of the catalyst layer 20 in the cylinder axis direction may be 80% or more, for example 90% or more, and may be the same length as the total length L of the base material 11. Although not particularly limited, the coating thickness (average thickness) of the catalyst layer 20 is approximately 1 to 300 μm, typically 5 to 200 μm, for example 10 to 100 μm. Thereby, it is possible to achieve a high level of both improvement in purification performance and reduction in pressure loss.
 触媒層20の一部の領域のみに、排ガス浄化用触媒100を含有させてもよい。例えば、触媒層20が、筒軸方向Xの上流側X1部分(フロント部)と下流側X2部分(リア部)とを有し、上流側X1部分(フロント部)と下流側X2部分(リア部)のうちの一方が、排ガス浄化用触媒100を含有し、他方が、上記任意の排ガス浄化用触媒(特に、触媒貴金属がPtおよびPdのうちの少なくとも一方である排ガス浄化用触媒)を含有していてもよい。 The exhaust gas purifying catalyst 100 may be contained only in a part of the catalyst layer 20. For example, the catalyst layer 20 has an upstream X1 portion (front portion) and a downstream X2 portion (rear portion) in the cylinder axis direction X, and the upstream X1 portion (front portion) and the downstream X2 portion (rear portion). ) contains the exhaust gas purification catalyst 100, and the other contains any of the above exhaust gas purification catalysts (particularly an exhaust gas purification catalyst in which the catalytic noble metal is at least one of Pt and Pd). You can leave it there.
 あるいは、触媒層20を二層以上の層を含む積層構造として構成し、一つの層が排ガス浄化用触媒100を含有し、他の層が、上記任意の排ガス浄化用触媒(特に、触媒貴金属がPtおよびPdのうちの少なくとも一方である排ガス浄化用触媒)を含有していてもよい。以下、変形例として、触媒層20が複層構造の場合の好適例について説明する。 Alternatively, the catalyst layer 20 may be configured as a laminated structure including two or more layers, one layer containing the exhaust gas purification catalyst 100, and the other layer containing any of the above exhaust gas purification catalysts (in particular, catalyst noble metals). The exhaust gas purifying catalyst may contain at least one of Pt and Pd (exhaust gas purification catalyst). Hereinafter, as a modification, a preferred example in which the catalyst layer 20 has a multilayer structure will be described.
≪排ガス浄化用触媒体10の変形例≫
 図5は、排ガス浄化用触媒体10の変形例である排ガス浄化用触媒体10’を筒軸方向Xに沿って切断した断面の一部を模式的に示す部分断面図である。排ガス浄化用触媒体10’は、基材11と、基材11に設けられた複層構造の触媒層20’と、を備えている。触媒層20’が複層構造であることにより、排ガス浄化性能をさらに高めることができる。
<<Modified example of exhaust gas purification catalyst body 10>>
FIG. 5 is a partial sectional view schematically showing a part of a cross section of an exhaust gas purifying catalyst body 10', which is a modified example of the exhaust gas purifying catalyst body 10, taken along the cylinder axis direction X. The exhaust gas purifying catalyst body 10' includes a base material 11 and a multilayer catalyst layer 20' provided on the base material 11. Since the catalyst layer 20' has a multilayer structure, the exhaust gas purification performance can be further improved.
 基材11については上記と同様である。触媒層20’は、図4に示す例とは異なり、複層構造を有している。具体的には、触媒層20’は、第1部分触媒層(下層)21と第2部分触媒層(上層)22とが、厚み方向に積層された積層構造を有している。したがって、基材11の表面に接するように下層21が設けられ、下層21の上面に接するように上層22が設けられている。図示例では触媒層20’は、2層構造を有しているが、触媒層20’は、3層以上の積層構造を有していてもよい。例えば、触媒層20’は、下層21と上層22との間に中間層を有していてもよいし、触媒層20’は、上層22の上にさらに別の層を有していてもよい。 The base material 11 is the same as above. The catalyst layer 20' has a multilayer structure, unlike the example shown in FIG. Specifically, the catalyst layer 20' has a laminated structure in which a first partial catalyst layer (lower layer) 21 and a second partial catalyst layer (upper layer) 22 are laminated in the thickness direction. Therefore, the lower layer 21 is provided so as to be in contact with the surface of the base material 11, and the upper layer 22 is provided so as to be in contact with the upper surface of the lower layer 21. In the illustrated example, the catalyst layer 20' has a two-layer structure, but the catalyst layer 20' may have a laminated structure of three or more layers. For example, the catalyst layer 20' may have an intermediate layer between the lower layer 21 and the upper layer 22, or the catalyst layer 20' may further have another layer on the upper layer 22. .
 下層21は、触媒貴金属がPtおよびPdのうちの少なくとも一方である排ガス浄化用触媒を含有している。上層22は、貴金属触媒がRhを含む排ガス浄化用触媒100を含有する。この場合、排ガス浄化用触媒体10’は、排ガス浄化性能に特に優れる。なお、下層21の排ガス浄化用触媒の触媒貴金属におけるPtおよびPdの量(両方含む場合は合計量)は、好ましくは80質量%であり、より好ましくは90質量%であり、さらに好ましくは95質量%であり、最も好ましくは100質量%である。 The lower layer 21 contains an exhaust gas purifying catalyst in which the catalytic precious metal is at least one of Pt and Pd. The upper layer 22 contains an exhaust gas purifying catalyst 100 in which the noble metal catalyst contains Rh. In this case, the exhaust gas purifying catalyst body 10' has particularly excellent exhaust gas purifying performance. The amount of Pt and Pd (total amount when both are included) in the catalyst noble metal of the exhaust gas purification catalyst in the lower layer 21 is preferably 80% by mass, more preferably 90% by mass, and even more preferably 95% by mass. %, most preferably 100% by mass.
 下層21および上層22は、上記した触媒層20と同様の任意成分を含有していてもよく、好ましくは、下層21および上層22はそれぞれ、OSC材を含有する。 The lower layer 21 and the upper layer 22 may contain the same optional components as the catalyst layer 20 described above, and preferably, the lower layer 21 and the upper layer 22 each contain an OSC material.
 このように構成される排ガス浄化用触媒体10’は、排ガスに含まれるNOxの浄化性能が特に高いだけでなく、HCおよびCOの浄化性能も特に高い。 The exhaust gas purifying catalyst body 10' configured in this manner not only has particularly high purification performance for NOx contained in exhaust gas, but also has particularly high purification performance for HC and CO.
≪排ガス浄化用触媒体10の製造方法≫
 排ガス浄化用触媒体10は、例えば以下のような方法で製造することができる。まず、基材11と、触媒層20を形成するための触媒層形成用スラリーとを用意する。触媒層形成用スラリーは、排ガス浄化用触媒100と、その他の任意成分(例えば、非OSC材、OSC材、バインダ、各種添加剤等)とを、分散媒中で混合することにより、調製することができる。分散媒としては、例えば、水、水と水溶性有機溶媒の混合物等を使用し得る。スラリーの性状(例えば、粘度、固形分率等)は、使用する基材11のサイズや、セル12(隔壁14)の形態、触媒層20への要求特性等によって適宜決定することができる。
<<Method for manufacturing exhaust gas purification catalyst body 10>>
The exhaust gas purifying catalyst body 10 can be manufactured, for example, by the following method. First, the base material 11 and a catalyst layer forming slurry for forming the catalyst layer 20 are prepared. The slurry for forming the catalyst layer can be prepared by mixing the exhaust gas purification catalyst 100 and other optional components (for example, non-OSC materials, OSC materials, binders, various additives, etc.) in a dispersion medium. I can do it. As the dispersion medium, for example, water, a mixture of water and a water-soluble organic solvent, etc. can be used. The properties of the slurry (for example, viscosity, solid content, etc.) can be appropriately determined depending on the size of the base material 11 used, the form of the cells 12 (partition walls 14), the characteristics required for the catalyst layer 20, etc.
 次に、触媒層形成用スラリーを用いて、基材11に触媒層20を形成する。触媒層20の形成は、従来公知の方法(例えば、含浸法、ウォッシュコート法等)により行うことができる。具体的に例えば、調製した触媒層形成用スラリーを基材11の端部からセル12に流入させ、筒軸方向Xに沿って所定の長さまで供給する。スラリーは、流入口10aと流出口10bのいずれから流入させてもよい。このとき、余分なスラリーは反対側の端部から吸引してもよい。また、反対側の端部から送風を行う等して、余分なスラリーをセル12から排出させてもよい。次に、スラリーを供給した基材11を所定の温度および時間で乾燥する。これにより、排ガス浄化用触媒100を含む触媒層20が形成される。以上のようにして、排ガス浄化用触媒体10を得ることができる。 Next, the catalyst layer 20 is formed on the base material 11 using the catalyst layer forming slurry. The catalyst layer 20 can be formed by a conventionally known method (for example, an impregnation method, a wash coating method, etc.). Specifically, for example, the prepared slurry for forming a catalyst layer is made to flow into the cell 12 from the end of the base material 11, and is supplied to a predetermined length along the cylinder axis direction X. The slurry may be made to flow in from either the inlet 10a or the outlet 10b. At this time, excess slurry may be sucked from the opposite end. Further, excess slurry may be discharged from the cell 12 by blowing air from the opposite end. Next, the base material 11 to which the slurry has been supplied is dried at a predetermined temperature and time. As a result, a catalyst layer 20 including the exhaust gas purifying catalyst 100 is formed. In the manner described above, the exhaust gas purifying catalyst body 10 can be obtained.
 あるいは、別の方法として、Rhを含む触媒貴金属源(例えば、Rhをイオンとして含む溶液)と、ジルコニアの被覆34を有するLa含有アルミナ粒子32(すなわち、母材30)と、その他の任意成分(例えば、非OSC材、OSC材、バインダ、各種添加剤等)とを、分散媒中で混合することにより、第2の触媒層形成用スラリーを調製する。 Alternatively, a catalytic noble metal source containing Rh (e.g., a solution containing Rh as ions), La-containing alumina particles 32 (i.e., base material 30) having a coating 34 of zirconia, and other optional components ( For example, a slurry for forming the second catalyst layer is prepared by mixing non-OSC materials, OSC materials, binders, various additives, etc.) in a dispersion medium.
 次に、第2の触媒層形成用スラリーを用いて、基材11に触媒層20を形成する。具体的には、上記と同様にして基材11に第2の触媒層形成用スラリーを供給する。次に、スラリーを供給した基材11を所定の温度および時間で焼成する。焼成の方法は従来と同様であってよい。また、焼成の前に乾燥を行って、分散媒を除去してもよい。これにより、排ガス浄化用触媒100が生成して、基材上に排ガス浄化用触媒100を含む多孔質な触媒層20が形成される。以上のようにして、排ガス浄化用触媒体10を得ることができる。 Next, the catalyst layer 20 is formed on the base material 11 using the second catalyst layer forming slurry. Specifically, the slurry for forming the second catalyst layer is supplied to the base material 11 in the same manner as described above. Next, the base material 11 to which the slurry has been supplied is fired at a predetermined temperature and time. The firing method may be the same as conventional methods. Further, the dispersion medium may be removed by drying before firing. As a result, the exhaust gas purification catalyst 100 is generated, and a porous catalyst layer 20 containing the exhaust gas purification catalyst 100 is formed on the base material. In the manner described above, the exhaust gas purifying catalyst body 10 can be obtained.
≪排ガス浄化用触媒体10の用途≫
 排ガス浄化用触媒体10は、自動車やトラック等の車両や、自動二輪車や原動機付き自転車をはじめとして、船舶、タンカー、水上バイク、パーソナルウォータークラフト、船外機等のマリン用製品、草刈機、チェーンソー、トリマー等のガーデニング用製品、ゴルフカート、四輪バギー等のレジャー用製品、コージェネレーションシステム等の発電設備、ゴミ焼却炉等の内燃機関から排出される排ガスの浄化に好適に用いることができる。なかでも、自動車等の車両に対して好適に用いることができ、特に、ガソリンエンジンを備える車両に対して好適に用いることができる。
≪Applications of catalyst body 10 for exhaust gas purification≫
The exhaust gas purification catalyst 10 is used in vehicles such as cars and trucks, motorcycles and motorized bicycles, marine products such as ships, tankers, watercraft, personal watercraft, outboard motors, lawn mowers, and chainsaws. It can be suitably used for purifying exhaust gas emitted from gardening products such as trimmers, leisure products such as golf carts and four-wheeled buggies, power generation equipment such as cogeneration systems, and internal combustion engines such as garbage incinerators. Among these, it can be suitably used for vehicles such as automobiles, and in particular, it can be suitably used for vehicles equipped with a gasoline engine.
 以下、本発明に関する試験例を説明するが、本発明を以下の試験例に示すものに限定することを意図したものではない。 Hereinafter, test examples related to the present invention will be described, but the present invention is not intended to be limited to those shown in the test examples below.
〔実施例1~4〕
 オキシ硝酸ジルコニウムおよびLa含有アルミナ粉末を容器に入れ、純水を加えながら撹拌して、オキシ硝酸ジルコニウムが溶解し、La含有アルミナ粉末が分散した懸濁液を調製した。なお、実施例1および2では、La含有アルミナ粉末として、粒径(D50)範囲が10~20μm、細孔容積が0.59~0.86mL/gの粉末を用い、実施例3および4では、粒径(D50)範囲が27~43μm、細孔容積が0.3~0.55mL/gの粉末を用いた。また、実施例2および4ではそれぞれ、オキシ硝酸ジルコニウムおよびLa含有アルミナ粉末の混合比率を実施例1および3から変更し、実施例1および3よりもジルコニア含有率を低くした。
[Examples 1 to 4]
Zirconium oxynitrate and La-containing alumina powder were placed in a container and stirred while adding pure water to prepare a suspension in which zirconium oxynitrate was dissolved and La-containing alumina powder was dispersed. In Examples 1 and 2, a powder with a particle size (D50) of 10 to 20 μm and a pore volume of 0.59 to 0.86 mL/g was used as the La-containing alumina powder, and in Examples 3 and 4, , a powder with a particle size (D50) in the range of 27 to 43 μm and a pore volume of 0.3 to 0.55 mL/g was used. Further, in Examples 2 and 4, the mixing ratio of zirconium oxynitrate and La-containing alumina powder was changed from Examples 1 and 3, and the zirconia content was lower than in Examples 1 and 3.
 この懸濁液に対して、ノズル型スプレードライ装置(大川原化工機製ODT-8)を用いてスプレードライを行い、La含有アルミナ粉末の表面にオキシ硝酸ジルコニウムを付着させた。スプレードライの条件は、入ガス温度200℃、出ガス温度110℃、ポンプ流量20ccmとした。 This suspension was spray-dried using a nozzle-type spray drying device (ODT-8 manufactured by Okawara Kakoki Co., Ltd.) to adhere zirconium oxynitrate to the surface of the La-containing alumina powder. The spray drying conditions were an inlet gas temperature of 200°C, an outlet gas temperature of 110°C, and a pump flow rate of 20 ccm.
 得られた粉末を、電気炉にて120℃で8時間乾燥した後、500℃で2時間焼成した。これにより、La含有アルミナ粉末の表面にジルコニアの被覆を有する母材を得た。 The obtained powder was dried in an electric furnace at 120°C for 8 hours, and then calcined at 500°C for 2 hours. As a result, a base material having a zirconia coating on the surface of the La-containing alumina powder was obtained.
 この母材に、所定量の硝酸Rh水溶液を含浸させ、蒸発乾固を行った。得られた粉末を、500℃で2時間焼成することにより、母材にRhを担持させた。なお、Rhの担持量は、0.5質量%とした。このようにして、実施例1~4の排ガス浄化用触媒を得た。 This base material was impregnated with a predetermined amount of Rh nitric acid aqueous solution and evaporated to dryness. The obtained powder was fired at 500° C. for 2 hours to support Rh on the base material. Note that the amount of Rh supported was 0.5% by mass. In this way, exhaust gas purifying catalysts of Examples 1 to 4 were obtained.
〔比較例1〕
 粒径(D50)範囲が27~43μm、細孔容積が0.3~0.55mL/gのLa含有アルミナ粉末に、所定量の硝酸Rh水溶液を含浸させ、蒸発乾固を行った。得られた粉末を、500℃で2時間焼成することにより、La含有アルミナ粉末にRhを担持させた。なお、Rhの担持量は、0.5質量%とした。このようにして、比較例1の排ガス浄化用触媒を得た。よって、比較例1の排ガス浄化用触媒では、母材は、ジルコニアの被覆を有していない。
[Comparative example 1]
La-containing alumina powder with a particle size (D50) range of 27 to 43 μm and a pore volume of 0.3 to 0.55 mL/g was impregnated with a predetermined amount of Rh nitric acid aqueous solution and evaporated to dryness. The obtained powder was fired at 500° C. for 2 hours to make the La-containing alumina powder support Rh. Note that the amount of Rh supported was 0.5% by mass. In this way, an exhaust gas purifying catalyst of Comparative Example 1 was obtained. Therefore, in the exhaust gas purifying catalyst of Comparative Example 1, the base material does not have a zirconia coating.
〔比較例2~4〕
 オキシ硝酸ジルコニウムおよびLa含有アルミナ粉末を容器に入れ、純水を加えながら撹拌して、オキシ硝酸ジルコニウムが溶解し、La含有アルミナ粉末が分散した懸濁液を調製した。なお、比較例2~4では、オキシ硝酸ジルコニウムおよびLa含有アルミナ粉末の混合比率を変更し、ジルコニア含有率を変更した。
[Comparative Examples 2 to 4]
Zirconium oxynitrate and La-containing alumina powder were placed in a container and stirred while adding pure water to prepare a suspension in which zirconium oxynitrate was dissolved and La-containing alumina powder was dispersed. In Comparative Examples 2 to 4, the mixing ratio of zirconium oxynitrate and La-containing alumina powder was changed, and the zirconia content was changed.
 調製した懸濁液に対して、アンモニア水を、懸濁液がアルカリ性になるように添加して、共沈を行った。沈殿物を回収し、電気炉で200℃で2時間乾燥させた。得られた粉末を、500℃で2時間焼成した。これにより、La含有アルミナ粉末の表面にジルコニアの被覆を有する母材を得た。 Co-precipitation was performed by adding ammonia water to the prepared suspension so that the suspension became alkaline. The precipitate was collected and dried in an electric furnace at 200°C for 2 hours. The obtained powder was calcined at 500°C for 2 hours. As a result, a base material having a zirconia coating on the surface of the La-containing alumina powder was obtained.
 この母材に、所定量の硝酸Rh水溶液を含浸させ、蒸発乾固を行った。得られた粉末を、500℃で2時間焼成することにより、母材にRhを担持させた。なお、Rhの担持量は、0.5質量%とした。このようにして、比較例2~4の排ガス浄化用触媒を得た。 This base material was impregnated with a predetermined amount of Rh nitric acid aqueous solution and evaporated to dryness. The obtained powder was fired at 500° C. for 2 hours to support Rh on the base material. Note that the amount of Rh supported was 0.5% by mass. In this way, exhaust gas purifying catalysts of Comparative Examples 2 to 4 were obtained.
〔比較例5および6〕
 比較例5では、オキシ硝酸ジルコニウムおよび粒径(D50)範囲が10~20μm、細孔容積が0.59~0.86mL/gのLa含有アルミナ粉末を容器に入れ、純水を加えながら撹拌して、オキシ硝酸ジルコニウムが溶解し、La含有アルミナ粉末が分散した懸濁液を調製した。比較例6では、ジルコニアゾルおよび粒径(D50)範囲が27~43μm、細孔容積が0.3~0.55mL/gのLa含有アルミナ粉末を容器に入れ、純水を加えながら撹拌して、ジルコニアゾルおよびLa含有アルミナ粉末が分散した懸濁液を調製した。
[Comparative Examples 5 and 6]
In Comparative Example 5, zirconium oxynitrate and La-containing alumina powder with a particle size (D50) range of 10 to 20 μm and a pore volume of 0.59 to 0.86 mL/g were placed in a container and stirred while adding pure water. A suspension in which zirconium oxynitrate was dissolved and La-containing alumina powder was dispersed was prepared. In Comparative Example 6, zirconia sol and La-containing alumina powder with a particle size (D50) range of 27 to 43 μm and a pore volume of 0.3 to 0.55 mL/g were placed in a container and stirred while adding pure water. A suspension in which zirconia sol and La-containing alumina powder were dispersed was prepared.
 調製した懸濁液を、電気炉にて120℃で8時間、蒸発乾固させた。得られた粉末を、500℃で2時間焼成した。これにより、La含有アルミナ粉末の表面にジルコニアの被覆を有する母材を得た。 The prepared suspension was evaporated to dryness in an electric furnace at 120°C for 8 hours. The obtained powder was calcined at 500°C for 2 hours. As a result, a base material having a zirconia coating on the surface of the La-containing alumina powder was obtained.
 この母材に、所定量の硝酸Rh水溶液を含浸させ、蒸発乾固を行った。得られた粉末を、500℃で2時間焼成することにより、母材にRhを担持させた。なお、Rhの担持量は、0.5質量%とした。このようにして、比較例5および6の排ガス浄化用触媒を得た。 This base material was impregnated with a predetermined amount of Rh nitric acid aqueous solution and evaporated to dryness. The obtained powder was fired at 500° C. for 2 hours to support Rh on the base material. Note that the amount of Rh supported was 0.5% by mass. In this way, exhaust gas purifying catalysts of Comparative Examples 5 and 6 were obtained.
[XRFによる元素分析]
 上記作製した実施例1~4および比較例1~6の排ガス浄化用触媒に対し、蛍光X線分析装置(XRF:スペクトリス社製(MalvernPANalytical) Axios)を用いて、ZrO、AlおよびLaの酸化物での存在割合を質量%で求めた。なお、測定条件は、X線出力:2.4kW、加速電圧:30kV、電流値:80mAとし、FP法により存在割合を求めた。結果を表1に示す。
[Elemental analysis by XRF]
ZrO 2 , Al 2 O 3 and The abundance ratio of La 2 O 3 in the oxide was determined in mass %. Note that the measurement conditions were X-ray output: 2.4 kW, acceleration voltage: 30 kV, and current value: 80 mA, and the abundance ratio was determined by the FP method. The results are shown in Table 1.
[FIB-SEM観察]
 上記作製した実施例1~4および比較例2~6の排ガス浄化用触媒を、集束イオンビーム走査型電子顕微鏡(FIB-SEM:JEOL製JXA-8530F)を用いて観察した。測定条件は、加速電圧:7kVまたは3kV、電流値:0.4nA、WD:4mmとした。実施例1~4では、測定倍率300,000倍で観察した場合に、粒子の表面に微細なジルコニアの被覆が形成されているのが確認できた。参考として、測定倍率300,000倍で観察した実施例4の排ガス浄化用触媒のSEM画像を図6に示す。測定倍率300,000倍のSEM画像において、任意に6個以上のジルコニアの被覆を選択し、その円相当径(すなわち、ヘイウッド径)を求め、平均値を算出した。その値(すなわち、ジルコニアの被覆の平均粒径の値)を表1に示す。
[FIB-SEM observation]
The exhaust gas purifying catalysts of Examples 1 to 4 and Comparative Examples 2 to 6 prepared above were observed using a focused ion beam scanning electron microscope (FIB-SEM: JXA-8530F manufactured by JEOL). The measurement conditions were acceleration voltage: 7 kV or 3 kV, current value: 0.4 nA, and WD: 4 mm. In Examples 1 to 4, when observed at a measurement magnification of 300,000 times, it was confirmed that a fine zirconia coating was formed on the surface of the particles. For reference, a SEM image of the exhaust gas purifying catalyst of Example 4 observed at a measurement magnification of 300,000 times is shown in FIG. In the SEM image at a measurement magnification of 300,000 times, six or more zirconia coatings were arbitrarily selected, their equivalent circle diameters (ie, Heywood diameters) were determined, and the average value was calculated. The values (ie, the values of the average particle size of the zirconia coating) are shown in Table 1.
 比較例2~5では、測定倍率3,000倍において、粒子の表面に粗大なジルコニアの被覆が形成されているのが確認できた。一方、測定倍率を300,000倍に上げても、微細なジルコニアの被覆は見られなかった。参考として、測定倍率3,000倍で観察した比較例4の排ガス浄化用触媒のSEM画像を図7に示す。測定倍率3,000倍のSEM画像において、任意に6個以上のジルコニアの被覆を選択し、その円相当径を求め、平均値を算出した。その値(すなわち、ジルコニアの被覆の平均粒径の値)を表1に示す。 In Comparative Examples 2 to 5, it was confirmed that a coarse zirconia coating was formed on the surface of the particles at a measurement magnification of 3,000 times. On the other hand, even when the measurement magnification was increased to 300,000 times, no fine zirconia coating was observed. For reference, a SEM image of the exhaust gas purifying catalyst of Comparative Example 4 observed at a measurement magnification of 3,000 times is shown in FIG. In the SEM image with a measurement magnification of 3,000 times, six or more zirconia coatings were arbitrarily selected, their equivalent circular diameters were determined, and the average value was calculated. The values (ie, the values of the average particle size of the zirconia coating) are shown in Table 1.
[FE-EPMAによるライン分析]
 上記作製した実施例1~4および比較例2~6の排ガス浄化用触媒に対して、電界放出型電子プローブアナライザ(FE-EPMA:FEI製HeliosG4UX)を用いてZrの定量ライン分析を行った。
[Line analysis by FE-EPMA]
Quantitative line analysis of Zr was performed on the exhaust gas purification catalysts of Examples 1 to 4 and Comparative Examples 2 to 6 prepared above using a field emission electron probe analyzer (FE-EPMA: Helios G4UX manufactured by FEI).
 具体的には、まず、排ガス浄化用触媒の粒子の断面が露出した測定試料を作製した。これに対して、FE-EPMAを用いて、Al LevelのIntensityの上限を3000に設定して、Alのマッピング像を取得し、AlのIntensityが500以上の領域を排ガス浄化用触媒の粒子が存在する領域とした。 Specifically, first, a measurement sample was prepared in which the cross section of the particles of the exhaust gas purification catalyst was exposed. On the other hand, using FE-EPMA, the upper limit of the intensity of Al Level was set to 3000, and an Al mapping image was obtained. This is an area where
 次にZr LevelのIntensityの上限を300に設定し、ZrのIntensityが30以上を検出範囲に設定した。排ガス浄化用触媒の粒子が存在する領域に対し、表面の位置から中心の位置までZrの定量ライン分析を行い、表面を0%、中心を100%としてZr強度のスペクトルを測定した。そして、Zr強度のピークトップの位置を求めた。結果を表1に示す。 Next, the upper limit of the intensity of Zr Level was set to 300, and the detection range was set to the intensity of Zr of 30 or more. Quantitative line analysis of Zr was performed on the region where particles of the exhaust gas purifying catalyst were present from the surface position to the center position, and the Zr intensity spectrum was measured with the surface as 0% and the center as 100%. Then, the position of the peak top of Zr intensity was determined. The results are shown in Table 1.
[耐久処理]
 各実施例および各比較例の排ガス浄化用触媒を、常法に従ってペレット化した。ペレットをチャンバー型電気炉内に置き、大気雰囲気下で1000℃で10時間熱処理した。
[Durability treatment]
The exhaust gas purifying catalysts of each Example and each Comparative Example were pelletized according to a conventional method. The pellets were placed in a chamber-type electric furnace and heat-treated at 1000° C. for 10 hours in an air atmosphere.
[モデルガス評価]
 上記耐久処理を行ったペレットを、堀場製作所製の触媒評価装置にセットした。前処理として、500℃で5分間、水素ガスを流して、還元処理を行った。本試験として、装置内にCO、O、NO、CO、およびCを含む混合ガスを流しながら、80℃まで昇温した。混合ガスにHOを加え、このガスを80℃で3分30秒間流した。その後600℃まで20℃/分の昇温速度で昇温し、600℃で30秒間保持した。このとき、NOの浄化率が50%に到達する温度(NOx50%浄化温度:T50-NOx)を求めた。評価結果を表1に示す。
[Model gas evaluation]
The pellets subjected to the above durability treatment were set in a catalyst evaluation device manufactured by Horiba. As a pretreatment, a reduction treatment was performed by flowing hydrogen gas at 500° C. for 5 minutes. In this test, the temperature was raised to 80° C. while flowing a mixed gas containing CO 2 , O 2 , NO, CO, and C 3 H 6 into the device. H 2 O was added to the mixed gas, and the gas was allowed to flow at 80° C. for 3 minutes and 30 seconds. Thereafter, the temperature was raised to 600°C at a rate of 20°C/min, and held at 600°C for 30 seconds. At this time, the temperature at which the NO purification rate reached 50% (NOx 50% purification temperature: T50-NOx) was determined. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、Zrの被覆の平均粒径が2ケタのオーダーまで小さいことによって、高温耐久後において、より低い温度でNOxを除去できていることがわかる。よって、ここに開示される排ガス浄化用触媒によれば、高温に長時間晒された場合でも、Rhの浄化活性が高いことがわかる。 From the results in Table 1, it can be seen that because the average particle diameter of the Zr coating is small to the order of two digits, NOx can be removed at a lower temperature after high-temperature durability. Therefore, it can be seen that the exhaust gas purifying catalyst disclosed herein has a high Rh purifying activity even when exposed to high temperatures for a long time.
[車両評価による確認実験]
 基材として、コージェライト製のハニカム基材(容積:1.075L、基材の全長:100mm、セル数:600セル、セル形状:四角形、隔壁の厚み:2mm)を用意した。
[Confirmation experiment based on vehicle evaluation]
As a base material, a cordierite honeycomb base material (volume: 1.075 L, total length of base material: 100 mm, number of cells: 600 cells, cell shape: square, thickness of partition wall: 2 mm) was prepared.
 硝酸Pd水溶液、Al、CeO-ZrO系複合酸化物、硫酸バリウム、Al系バインダ、および純水を混合して、下層形成用スラリーを調製した。この下層形成用スラリーを、ウォッシュコート法により基材表面上に塗布した。次いで、電気炉内で500℃で2時間焼成した。このようにして、基材上にPd触媒を含有する下層を形成した。 A slurry for forming a lower layer was prepared by mixing an aqueous Pd nitrate solution, Al 2 O 3 , CeO 2 -ZrO 2 -based composite oxide, barium sulfate, Al 2 O 3 -based binder, and pure water. This slurry for forming a lower layer was applied onto the surface of the base material by a wash coating method. Then, it was fired at 500° C. for 2 hours in an electric furnace. In this way, a lower layer containing a Pd catalyst was formed on the base material.
 次に、硝酸Rh水溶液、実施例1、実施例3または比較例1で用いた母材、CeO-ZrO系複合酸化物、Al系バインダ、および純水を混合して、上層形成用スラリーを調製した。この上層形成用スラリーをウォッシュコート法により、基材表面に形成された下層上に塗布した。次いで、電気炉内で500℃で2時間焼成した。この焼成によって、上記母材にRhが担持された排ガス浄化用触媒を生成させた。このようにして、下層上に、Rhが担持された排ガス浄化用触媒を含有する上層を形成し、実施例1、実施例3および比較例1の排ガス浄化用触媒体を得た。 Next, the Rh nitric acid aqueous solution, the base material used in Example 1, Example 3, or Comparative Example 1, the CeO 2 -ZrO 2- based composite oxide, the Al 2 O 3 -based binder, and pure water were mixed to form the upper layer. A forming slurry was prepared. This slurry for forming an upper layer was applied onto the lower layer formed on the surface of the base material by a wash coating method. Then, it was fired at 500° C. for 2 hours in an electric furnace. This calcination produced an exhaust gas purifying catalyst in which Rh was supported on the base material. In this way, an upper layer containing an exhaust gas purification catalyst on which Rh was supported was formed on the lower layer, and exhaust gas purification catalyst bodies of Example 1, Example 3, and Comparative Example 1 were obtained.
 これらの排ガス浄化用触媒体を用いて駆動台上試験を行い、NOxのエミッション量を評価した。走行モードは、低温域での評価ができるように、WLTP(Worldwide harmonized Light dutydriving Test Procedure)Phase1とした。NOxのエミッション量は、実施例1で0.004ppm未満、実施例3で0.0045ppm未満であったのに対し、比較例1では、0.0065ppm超であった。このことから、排ガス浄化用触媒を用いて、排ガス浄化用触媒体を構成し、車両に搭載した場合に、NOxを大幅に低減できることが確認できた。 Using these catalyst bodies for purifying exhaust gas, an on-drive test was conducted to evaluate the amount of NOx emissions. The driving mode was WLTP (Worldwide harmonized Light duty driving Test Procedure) Phase 1 to enable evaluation in low temperature ranges. The NOx emission amount was less than 0.004 ppm in Example 1 and less than 0.0045 ppm in Example 3, whereas it was more than 0.0065 ppm in Comparative Example 1. From this, it was confirmed that NOx can be significantly reduced when the exhaust gas purifying catalyst is used to form an exhaust gas purifying catalyst body and mounted on a vehicle.
 以上、本発明のいくつかの実施形態について説明したが、上記実施形態は一例に過ぎない。本発明は、他にも種々の形態にて実施することができる。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。請求の範囲に記載の技術には、上記に例示した実施形態を様々に変形、変更したものが含まれる。 Several embodiments of the present invention have been described above, but the above embodiments are merely examples. The present invention can be implemented in various other forms. The present invention can be implemented based on the content disclosed in this specification and the common general knowledge in the field. The technology described in the claims includes various modifications and changes to the embodiments exemplified above.

Claims (6)

  1.  母材と、
     前記母材に支持された触媒貴金属と、
    を含む排ガス浄化用触媒であって、
     前記母材は、La含有アルミナ粒子と、前記アルミナ粒子の表面に配置されたジルコニアの被覆とを含み、
     前記触媒貴金属は、少なくともRhを含有し、
     前記母材におけるジルコニアの質量割合が5質量%以上であり、
     集束イオンビーム走査型電子顕微鏡によって求まる前記ジルコニアの被覆の平均粒径が、100nm未満である、
    排ガス浄化用触媒。
    base material and
    a catalytic noble metal supported by the base material;
    An exhaust gas purification catalyst comprising:
    The base material includes La-containing alumina particles and a zirconia coating disposed on the surface of the alumina particles,
    The catalytic noble metal contains at least Rh,
    The mass proportion of zirconia in the base material is 5% by mass or more,
    The average grain size of the zirconia coating determined by a focused ion beam scanning electron microscope is less than 100 nm.
    Catalyst for exhaust gas purification.
  2.  前記アルミナ粒子の表面から中心に向かって、電界放出型電子プローブアナライザを用いてZrの定量ライン分析を行って、表面を0%、中心を100%として表面から中心までの深さを表した場合に、0%~20%の範囲内にZr強度のピークトップが存在する、請求項1に記載の排ガス浄化用触媒。 When quantitative line analysis of Zr is performed from the surface of the alumina particle toward the center using a field emission electron probe analyzer, and the depth from the surface to the center is expressed with the surface as 0% and the center as 100%. 2. The exhaust gas purifying catalyst according to claim 1, wherein the peak top of Zr intensity exists within a range of 0% to 20%.
  3.  前記母材におけるジルコニアの前記質量割合が、9質量%以上30質量%以下である、請求項1に記載の排ガス浄化用触媒。 The exhaust gas purifying catalyst according to claim 1, wherein the mass proportion of zirconia in the base material is 9% by mass or more and 30% by mass or less.
  4.  前記ジルコニアの被覆の平均粒径が、5nm以上80nm以下である、請求項1に記載の排ガス浄化用触媒。 The exhaust gas purifying catalyst according to claim 1, wherein the average particle diameter of the zirconia coating is 5 nm or more and 80 nm or less.
  5.  基材と、前記基材に設けられている触媒層と、を備え、
     前記触媒層が、請求項1に記載の排ガス浄化用触媒を含有する、
    排ガス浄化用触媒体。
    comprising a base material and a catalyst layer provided on the base material,
    The catalyst layer contains the exhaust gas purifying catalyst according to claim 1.
    Catalyst for exhaust gas purification.
  6.  前記触媒層が、前記基材側に位置する第1部分触媒層と、前記触媒層の表層部側に位置する第2部分触媒層と、を備え、
     前記第1部分触媒層が、触媒貴金属がPtおよびPdのうちの少なくとも一方である排ガス浄化用触媒を含有し、
     前記第2部分触媒層が、請求項1に記載の排ガス浄化用触媒を含有する、請求項5に記載の排ガス浄化用触媒体。
    The catalyst layer includes a first partial catalyst layer located on the base material side and a second partial catalyst layer located on the surface layer side of the catalyst layer,
    The first partial catalyst layer contains an exhaust gas purifying catalyst in which the catalytic noble metal is at least one of Pt and Pd,
    The exhaust gas purifying catalyst body according to claim 5, wherein the second partial catalyst layer contains the exhaust gas purifying catalyst according to claim 1.
PCT/JP2023/026601 2022-08-25 2023-07-20 Exhaust gas purifying catalyst, and catalyst body using same WO2024042935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022134003A JP7430754B1 (en) 2022-08-25 2022-08-25 Exhaust gas purification catalyst and catalyst body using the same
JP2022-134003 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024042935A1 true WO2024042935A1 (en) 2024-02-29

Family

ID=89852757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026601 WO2024042935A1 (en) 2022-08-25 2023-07-20 Exhaust gas purifying catalyst, and catalyst body using same

Country Status (2)

Country Link
JP (1) JP7430754B1 (en)
WO (1) WO2024042935A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119749A1 (en) * 2013-01-31 2014-08-07 ユミコア日本触媒株式会社 Exhaust-gas purification catalyst and exhaust-gas purification method using said catalyst
WO2018147408A1 (en) * 2017-02-13 2018-08-16 エヌ・イーケムキャット株式会社 Exhaust gas purifying catalyst composition, method for producing same and exhaust gas purifying catalyst for automobiles
WO2021166382A1 (en) * 2020-02-21 2021-08-26 株式会社キャタラー Exhaust gas purification catalyst
WO2022004638A1 (en) * 2020-06-30 2022-01-06 株式会社キャタラー Exhaust gas purification catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119749A1 (en) * 2013-01-31 2014-08-07 ユミコア日本触媒株式会社 Exhaust-gas purification catalyst and exhaust-gas purification method using said catalyst
WO2018147408A1 (en) * 2017-02-13 2018-08-16 エヌ・イーケムキャット株式会社 Exhaust gas purifying catalyst composition, method for producing same and exhaust gas purifying catalyst for automobiles
WO2021166382A1 (en) * 2020-02-21 2021-08-26 株式会社キャタラー Exhaust gas purification catalyst
WO2022004638A1 (en) * 2020-06-30 2022-01-06 株式会社キャタラー Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP2024030832A (en) 2024-03-07
JP7430754B1 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
JP6382939B2 (en) Filter substrate with three-way catalyst
KR102102695B1 (en) Positive ignition engine and exhaust system comprising three-way catalysed filter
CN113453787B (en) Catalyst article and use thereof for filtering fine particles
US11097260B2 (en) Exhaust gas purification device
AU2012240909B2 (en) Oxidation Catalyst for Exhaust Gas Purification
WO2011062129A1 (en) Exhaust gas purification catalyst and manufacturing method therefor
WO2019065206A1 (en) Exhaust-gas purifying catalyst
US11285467B2 (en) Catalyst article and the use thereof for filtering fine particles
WO2019012874A1 (en) Catalyst for exhaust gas purification
WO2018068229A1 (en) Catalytic articles
US20220297094A1 (en) Exhaust Gas Purification Catalyst
JPWO2018147408A1 (en) Exhaust gas purification catalyst composition, method for producing the same, and automobile exhaust gas purification catalyst
CN113710351A (en) Catalyzed gasoline particulate filter
JP7430754B1 (en) Exhaust gas purification catalyst and catalyst body using the same
JP7466535B2 (en) EXHAUST GAS PURIFICATION CATALYST AND EXHAUST GAS PURIFICATION SYSTEM USING THE EXHAUST GAS PURIFICATION CATALYST
JP7434489B1 (en) Exhaust gas purification catalyst and catalyst body using the same
WO2024084800A1 (en) Exhaust gas purifying catalyst, and catalyst body using same
JP7266506B2 (en) Exhaust gas purification catalyst
WO2023085091A1 (en) Exhaust gas purification catalyst, method for purifying exhaust gas, and method for producing exhaust gas purification catalyst
JP7343718B2 (en) Exhaust gas purification catalyst
WO2023176325A1 (en) Exhaust gas purification catalyst
JP7430833B1 (en) Exhaust gas purification catalyst
WO2023002772A1 (en) Exhaust gas purification catalyst
WO2023171528A1 (en) Exhaust gas purification catalyst
WO2020203838A1 (en) Catalyst material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857051

Country of ref document: EP

Kind code of ref document: A1