WO2024042881A1 - 自律制御システム - Google Patents

自律制御システム Download PDF

Info

Publication number
WO2024042881A1
WO2024042881A1 PCT/JP2023/025029 JP2023025029W WO2024042881A1 WO 2024042881 A1 WO2024042881 A1 WO 2024042881A1 JP 2023025029 W JP2023025029 W JP 2023025029W WO 2024042881 A1 WO2024042881 A1 WO 2024042881A1
Authority
WO
WIPO (PCT)
Prior art keywords
controlled object
trajectory
controlled
deviation
control system
Prior art date
Application number
PCT/JP2023/025029
Other languages
English (en)
French (fr)
Inventor
新士 石原
理優 成川
政樹 金井
和也 杉本
匡士 小谷
佑里 永崎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024042881A1 publication Critical patent/WO2024042881A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/40Control within particular dimensions
    • G05D1/43Control of position or course in two dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to an autonomous control system.
  • the trajectory that pedestrians and non-automated vehicles will move is predicted, and the automated vehicle is controlled so that the vehicle does not come into contact with the predicted trajectory.
  • Non-automated vehicles are mainly subject to non-holonomic constraints and are therefore unable to move sideways or change direction suddenly, whereas pedestrians can move freely in a variety of directions, making it difficult to predict trajectories. It is not easy to calculate.
  • Patent Document 1 uses recorded past trajectory information of moving objects (including pedestrians) to calculate the probability that a moving object is on the planned route of an automated driving vehicle (
  • a driving support system is proposed that supports safe driving in an environment including pedestrians, which is difficult to predict, by having a function of calculating predictive information.
  • Patent Document 1 in order to generate predictive information of a moving object, a large amount of information recording the trajectory of the moving object in the past is required. Therefore, if this record (database) is insufficient, appropriate prediction information cannot be provided. If appropriate predictive information cannot be obtained, it is expected that it will be difficult to provide sufficient safe driving functions.
  • the present invention was devised to solve the above problems, and aims to provide an autonomous control system that can drive a vehicle efficiently and safely even when it is difficult to predict the behavior of surrounding moving objects.
  • the purpose is
  • an autonomous control system in an area where a controlled object that is a moving body whose behavior can be controlled and an uncontrolled object that is a moving body whose behavior cannot be controlled coexist, the controlled object and the uncontrolled object
  • An autonomous control system that controls the behavior of the controlled object so as not to come into contact with the controlled object, the control object position calculation unit that calculates the position of the controlled object, and the object identification unit that identifies the attribute of the non-controlled object.
  • a non-controlled object position calculation unit that calculates a position of the non-controlled object; and a non-controlled object position based on a predicted movement trajectory of the non-controlled object that corresponds to an attribute of the non-controlled object identified by the object identification unit.
  • a trajectory deviation evaluation unit that evaluates the degree of deviation of the movement trajectory of the non-controlled object calculated by the calculation unit; an attribute of the non-controlled object identified by the object identification unit; a safety standard determination unit that determines a safety standard regarding the behavior of the controlled object based on the degree of deviation from the predicted movement trajectory; the position of the controlled object calculated by the controlled object position calculation unit; and the non-controlled object. Based on the position of the non-controlled object calculated by the position calculating section and the safety standard determined by the safety standard determining section, the higher the safety standard, the less the controlled object approaches the non-controlled object. and a behavior modification unit that modifies the behavior of the controlled object.
  • FIG. 1 is a functional block diagram of an autonomous control system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a vehicle to be controlled and a pedestrian not to be controlled by the autonomous control system.
  • FIG. 3 is a functional block diagram of the trajectory deviation evaluation section.
  • FIG. 4 is a schematic diagram showing an example of a predicted movement trajectory calculated by the predicted trajectory calculation unit.
  • FIG. 5 is a schematic diagram showing an example of a predicted trajectory and an actual trajectory.
  • FIG. 6 is a diagram illustrating a method for determining a safety standard by the safety standard determining unit according to the first embodiment.
  • FIG. 7 is a schematic diagram illustrating motion control of a four-wheeled vehicle.
  • FIG. 8 is a schematic diagram showing the positional relationship between controlled objects and non-controlled objects.
  • FIG. 9 is a flowchart illustrating an example of the flow of processing executed by the controller of the autonomous control system.
  • FIG. 10 is a schematic diagram showing a distribution warehouse to which the autonomous control system according to the second embodiment is applied.
  • FIG. 11 is a schematic diagram illustrating movement control of the transfer robot.
  • FIG. 12 is a diagram illustrating a method for determining a safety standard by the safety standard determining unit according to the second embodiment.
  • FIG. 13 is a diagram showing an example of the relationship between the function h( ⁇ (k)) and the function ⁇ (k).
  • FIG. 14 is a diagram showing the configuration of an autonomous control system according to modification 1, and shows a vehicle as a moving object to be controlled and a pedestrian as a moving object not to be controlled.
  • FIG. 15 is a diagram illustrating a method of determining the safety standards and the priority of the host vehicle by the safety standard determining unit according to the second modification.
  • FIG. 1 is a functional block diagram of an autonomous control system according to a first embodiment of the present invention.
  • the autonomous control system A100 and motion control system B100 shown in FIG. 1 are installed in a vehicle to be controlled.
  • the autonomous control system A100 collects surrounding information of a vehicle to be controlled in an area where controlled targets and non-controlled targets coexist, and collects information about the surroundings of a vehicle to be controlled, and identifies moving objects other than the vehicle to be controlled (for example, pedestrians, other vehicles, etc.) and the controlled targets.
  • the motion control system B100 controls the motion (behavior) of the vehicle to be controlled so that the vehicles do not come into contact with each other.
  • illustration of parts that are not directly related to the functions of the autonomous control system A100 according to the present embodiment is omitted.
  • the vehicle to be controlled is not limited to a fully automated driving vehicle.
  • it may be a semi-automatic vehicle that is driven by a driver during normal times, and in which the autonomous control system A100 can intervene with controls such as deceleration and stopping only in an emergency.
  • the controlled vehicle may be a single vehicle that travels on a general public road, or may be a vehicle (robot) that travels within a distribution warehouse.
  • FIG. 2 is a schematic diagram showing a vehicle 001, which is a moving object to be controlled, and a pedestrian 002, which is a moving object not to be controlled.
  • a vehicle 001 traveling on a roadway 10 is controlled by the autonomous control system A100 and a non-controlled object is a pedestrian 002 walking on a sidewalk 20 will be explained as a main example. That is, the vehicle 001 is a moving object whose behavior can be controlled by the autonomous control system A100, and the pedestrian 002 is a moving object whose behavior cannot be controlled by the autonomous control system A100.
  • the present invention can be used even when there are a plurality of both controlled objects and non-controlled objects.
  • the motion control system B100 includes an actuator controller B001 and an actuator B002.
  • Actuator controller B001 controls actuator B002 according to instructions from autonomous control system A100.
  • the actuator B002 is connected to, for example, the steering, accelerator, brake, etc. of the vehicle.
  • the autonomous control system A100 includes an environment recognizer A001, a state detector A002, a controlled object position calculation section A003, an object identification section A004, a non-controlled object position calculation section A005, a trajectory deviation evaluation section A006, a safety It includes a reference determination section A007 and a vehicle motion calculation section A008.
  • the controlled object position calculation section A003, the object identification section A004, the non-controlled object position calculation section A005, the trajectory deviation evaluation section A006, the safety standard determination section A007, and the vehicle motion calculation section A008 are functions realized by the controller A101.
  • the controller A101 includes, for example, a processing device such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a nonvolatile memory such as a flash memory, a volatile memory called a RAM (Random Access Memory), an input/output interface, and It consists of a computer with other peripheral circuits. These pieces of hardware work together to run software and achieve multiple functions. Note that the controller A101 may be composed of one computer or may be composed of multiple computers.
  • a processing device such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a nonvolatile memory such as a flash memory, a volatile memory called a RAM (Random Access Memory), an input/output interface, and It consists of a computer with other peripheral circuits. These pieces of hardware work together to run software and achieve multiple functions.
  • the controller A101 may be composed of one computer or may be composed of multiple computers.
  • the non-volatile memory stores programs that can execute various calculations and data such as threshold values. That is, the nonvolatile memory is a storage medium (storage device) that can read a program that implements the functions of this embodiment. Volatile memory is a storage medium (storage device) that temporarily stores calculation results by a processing device and signals input from an input/output interface.
  • a processing device is a device that expands a program stored in a non-volatile memory into a volatile memory and executes arithmetic operations. Performs calculation processing.
  • the autonomous control system A100 does not need to be installed on the controlled object (that is, the vehicle 001).
  • the area to which the controlled object moves is limited, it is possible to provide a server capable of communicating within the area with a calculation function.
  • the environment recognizer A001 acquires environmental information representing the state around the controlled object.
  • the environment recognizer A001 is, for example, an external world recognition sensor such as a LiDAR (Light Detection And Ranging) sensor, a stereo camera, or a millimeter wave radar mounted on a controlled object.
  • an external world recognition sensor such as a LiDAR (Light Detection And Ranging) sensor, a stereo camera, or a millimeter wave radar mounted on a controlled object.
  • the state detector A002 acquires vehicle information (position, direction, speed, etc.) representing the state of the controlled object.
  • the state detector A002 is, for example, a sensor such as a GNSS (Global Navigation Satellite System) receiver that acquires position information of a controlled object, or an IMU (Inertial Measurement Unit) that acquires acceleration and angular velocity of a controlled object.
  • GNSS Global Navigation Satellite System
  • IMU Inertial Measurement Unit
  • the environment recognizer A001 and the state detector A002 are not necessarily separate sensors.
  • a LiDAR sensor mounted on a controlled object functions as both an environment recognizer A001 and a state detector A002.
  • the controlled object position calculation unit A003 integrates the vehicle information acquired by the state detector A002 and calculates the position of the controlled object. For example, when the state detector A002 is LiDAR, the controlled object position calculation unit A003 estimates the position of the controlled object using the well-known SLAM (Simultaneous Localization and Mapping) technique. Furthermore, if the status detector A002 is a GNSS receiver and an IMU, the controlled object position calculation unit A003 uses the well-known sensor fusion technology to supplement the update period of the position information output from the GNSS receiver with the IMU, and performs control. Calculate the target position.
  • SLAM Simultaneous Localization and Mapping
  • the object identification unit A004 identifies the attributes of non-controlled objects existing around the controlled object from the environmental information acquired by the environment recognizer A001 using well-known image recognition technology or Semantic SLAM technology.
  • the environment recognizer A001 and the object identification unit A004 may be integrated.
  • stereo cameras and millimeter wave radars are sometimes equipped with the ability to identify moving objects. In this case, there is no need to explicitly divide the environment recognizer A001 and the object identification unit A004.
  • the object identification unit A004 identifies characteristics related to the movement of moving objects, such as pedestrians and bicycles, as attributes of non-controlled objects.
  • the characteristics related to movement refer to the equation of motion governing the dynamic characteristics of the moving body and the maximum value of the moving speed.
  • a pedestrian can move freely on a two-dimensional plane.
  • vehicles such as wheelchairs, bicycles, scooters, and automobiles include holonomic constraints, such as the inability to move sideways.
  • the moving speeds of pedestrians differ depending on whether they are adults, children, or elderly people, it is desirable to take into account the characteristics of more detailed classifications of pedestrians.
  • the non-controlled object position calculation unit A005 calculates the position of a non-controlled object existing around the controlled object from the environmental information acquired by the environment recognizer A001 using the well-known Semantic SLAM technique.
  • the object identification section A004 and the non-controlled object position calculation section A005 can execute processing simultaneously using the same technology. In other words, the identification process by the object identification unit A004 and the position calculation process by the non-controlled object position calculation unit A005 can be performed in parallel.
  • FIG. 3 is a functional block diagram of the trajectory deviation evaluation unit A006.
  • the trajectory deviation evaluation section A006 includes a predicted trajectory calculation section A006a, an actual trajectory evaluation section A006b, and a trajectory comparison section A006c.
  • the trajectory deviation evaluation unit A006 evaluates the degree of deviation of the actual movement trajectory (hereinafter also referred to as actual trajectory) of the non-controlled object from the predicted movement trajectory of the non-controlled object corresponding to the attribute of the non-controlled object.
  • the predicted trajectory calculation unit A006a determines the non-control target based on the attributes of the non-control target identified by the target identification unit A004 and the position of the non-control target calculated a predetermined time ago by the non-control target position calculation unit A005. Calculate the predicted movement trajectory of. For example, if the non-controlled object is a pedestrian, the position of the non-controlled object several seconds after the current position is calculated according to the equations of motion of equations (3a) and (3b) described later.
  • the position of the non-controlled object several seconds after the current position is calculated according to the equations of motion of equations (2a) and (2b) described later.
  • the actual trajectory evaluation unit A006b evaluates the change in the position of the non-controlled object calculated by the non-controlled object position calculation unit A005 as the actual movement trajectory of the non-controlled object.
  • the trajectory comparison unit A006c compares the predicted movement trajectory of the non-controlled object calculated by the predicted trajectory calculation unit A006a with the movement trajectory (actual trajectory) of the non-controlled object evaluated by the actual trajectory evaluation unit A006b, and calculates the movement prediction. Evaluate the degree of deviation of the moving trajectory (actual trajectory) from the trajectory.
  • FIG. 4 is a schematic diagram showing an example of a predicted movement trajectory calculated by the predicted trajectory calculation unit A006a.
  • FIG. 4 schematically shows predicted movement trajectories (hereinafter also simply referred to as predicted trajectories) calculated by the predicted trajectory calculation unit A006a for the pedestrian 002 and the bicycle 005.
  • the predicted trajectory calculation unit A006a calculates the position of the pedestrian 002 at position P1 at time t1 one step later, and at time t2 two steps later.
  • position P3 is predicted at time t3 after three steps
  • position P4 is predicted at time t4 after four steps
  • position P5 is predicted at time t5 after five steps.
  • the predicted trajectory calculation unit A006a calculates the predicted trajectory shown in FIG. 4 by prediction based on a probability model. That is, the predicted trajectory calculation unit A006a calculates the average value and variance of the trajectory of the non-controlled object, and uses them as the predicted movement trajectory. Positions P1 to P5 shown in FIG.
  • the illustrated upper limit 40 and lower limit 30 are defined by the variance 50 of the predicted movement trajectory.
  • the predicted movement trajectory has a constant spread defined by the variance 50.
  • pedestrians can move not only straight but also diagonally and laterally, so the range of candidate trajectories becomes wider as time progresses.
  • the predicted trajectory calculation unit A006a calculates the position of the bicycle 005 as follows: position P11 at time t1 one step later, position P12 at time t2 two steps later, Position P13 is predicted at time t3 after three steps, position P14 is predicted at time t4 after four steps, and position P15 is predicted at time t5 after five steps. Since it is more difficult for the bicycle 005 to move in the left-right direction than for the pedestrian 002, the candidate range defined by the upper limit 41 and the lower limit 31 in the vertical direction of the page is not as wide as for the pedestrian 002.
  • the variance 51 of the predicted trajectory of the bicycle 005 is smaller than the variance 50 of the predicted trajectory of the pedestrian 002.
  • the bicycle 005 since the bicycle 005 moves faster than the pedestrian 002, the bicycle 005 is characterized in that the candidate range expands in the left and right directions on the paper. That is, the interval between the positions P10 to P15 of the bicycle 005 is wider than the interval between the positions P0 to P5 of the pedestrian 002.
  • the actual trajectory evaluation unit A006b shown in FIG. 3 evaluates the actual movement trajectory (actual trajectory) of the non-controlled object by recording the position of the non-controlled object calculated by the non-controlled object position calculation unit A005 for a predetermined period of time. do.
  • the trajectory comparison unit A006c compares the predicted trajectory calculated by the predicted trajectory calculation unit A006a and the actual trajectory evaluated by the actual trajectory evaluation unit A006b, and evaluates the behavior index (behavioral orientation) of the non-controlled object.
  • the trajectory comparison unit A006c calculates the evaluation value using the following equation (1).
  • k is the time of the predicted trajectory
  • z(k) is the coordinate of the predicted trajectory at time k
  • x(k) is the coordinate of the actual trajectory at time k
  • e(k) is the predicted trajectory at time k.
  • Each represents the orbit deviation, which is the difference between the orbit and the actual orbit.
  • the trajectory comparison unit A006c uses the trajectory deviation e calculated by equation (1) as an evaluation value representing the degree of deviation of the actual trajectory from the predicted trajectory.
  • FIG. 5 is a schematic diagram showing an example of a predicted trajectory and an actual trajectory.
  • FIG. 5A shows a candidate range 60a of the predicted trajectory of the pedestrian 002 (ie, non-controlled object) calculated by the predicted trajectory calculation unit A006a at a certain time. This example assumes a situation in which a pedestrian moves upwards (in the direction indicated by arrow 61) on the paper.
  • FIG. 5(b) shows an example of the actual trajectory 62b of the pedestrian 002 superimposed on the candidate range 60b of the predicted trajectory of the pedestrian 002.
  • the actual trajectory 62b of the pedestrian 002 coincides with the center (average) of the candidate range 60b of the predicted trajectory. In other words, it can be determined that the behavior of this pedestrian 002 is easy to predict.
  • FIG. 5(c) shows an example of the actual trajectory 62c of the pedestrian 002 superimposed on the candidate range 60c of the predicted trajectory of the pedestrian 002.
  • This actual trajectory 62c deviates from the predicted trajectory candidate range 60c.
  • Such behavior of the pedestrian 002 may occur, for example, when the pedestrian 002 is drunk, so it can be said that the behavior of the pedestrian 002 is difficult to predict.
  • the safety standard determination unit A007 shown in FIG. determine safety standards for the behavior of the controlled object.
  • the safety standard determining unit A007 uses two types of safety standards: "Standard” which is a standard safety standard, and “Safest” which is the safety standard with the highest level of safety. These safety standards each affect the motion control of the controlled object by the vehicle motion calculation unit A008 (see FIG. 1). Although details will be described later, when the safety standard is determined to be "safest", the vehicle motion calculation unit A008 distinguishes between non-controlled objects and controlled objects when the safety standard is determined to be “standard”. Motion control is performed with a large distance margin. In addition, apart from these two types, intermediate safety standards are continuously used, which are higher in safety than the "standard” and lower in safety than the "safest".
  • FIG. 6 is a diagram illustrating a method for determining safety standards by the safety standard determination unit A007.
  • the safety standard determination unit A007 changes the control content so that the greater the trajectory deviation e calculated by the trajectory comparison unit A006c, the safer the motion control of the controlled object is performed.
  • the safety standard is determined to be "standard” when the orbital deviation e is less than or equal to the threshold value th1, and the safety standard is determined to be "the safest" when the orbital deviation e is equal to or greater than the threshold value th2.
  • the threshold th2 is larger than the threshold th1. It is desirable that these threshold values th1 and th2 be designed according to the variance of the predicted trajectory calculated by the predicted trajectory calculation unit A006a.
  • two threshold values such as th1 and th2 are provided, and the safety standard is configured continuously, but the safety standard is not limited to this type. For example, if only one threshold value is set and the safety standard is determined to be “standard” when the orbital deviation e is less than the threshold value, and the safety standard is determined to be “safest” when the orbital deviation e is greater than or equal to the threshold value. good.
  • the controller A101 As described above, the controller A101 according to the present embodiment shown in FIG. The predicted trajectory and the actual trajectory are compared by obtaining the actual trajectory as the movement record of the (predetermined step). In other words, it must be noted that the timing at which a non-control object (moving object, pedestrian) is detected is different from the timing at which control becomes possible.
  • the controller A101 sets the trajectory deviation e to an initial value equal to or higher than the threshold value th2 at the time when a non-controlled object (moving object, pedestrian) is detected, and the trajectory deviation e is actually calculated. Once this becomes possible, it is desirable to change the orbital deviation e from the initial value.
  • the vehicle motion calculation unit A008 calculates the position of the controlled object calculated by the controlled object position calculation unit A003, the position of the non-controlled object calculated by the non-controlled object position calculation unit A005, and the position determined by the safety standard determination unit A007. Controls the motion of the controlled object based on safety standards.
  • the vehicle motion calculation unit A008 instructs the actuator controller B001 to interfere with vehicle speed control and decelerate or stop when the safety standard becomes higher than "standard”. do.
  • Actuator controller B001 drives actuator B002 connected to the brake according to this instruction.
  • the safety standards are below the "standard” level, there is no need to interfere with the driver's operations.
  • the vehicle motion calculation unit A008 also uses control functions related to overall vehicle motion.
  • FIG. 7 is a schematic diagram illustrating motion control of a four-wheeled vehicle.
  • the controlled object is the four-wheeled vehicle 006 shown in FIG.
  • (2b) can be given.
  • the azimuth angle ⁇ corresponds to the angle between the reference azimuth and an axis extending in the longitudinal direction of the vehicle.
  • L is the distance between the front wheels and the rear wheels of the vehicle, as shown in FIG.
  • the control inputs uc in equations (2a) and (2b) are the vehicle speed v and the steering angle ⁇ .
  • Equations (3a) and (3b) assume a model whose positional coordinates can freely move in either the x or y direction, assuming that the non-controlled object is a pedestrian.
  • the control input uu in equations (3a) and (3b) is the x-direction component vx and the y-direction component vy of the velocity v of the non-controlled object. Note that when the non-controlled object is a vehicle, equations of motion in the same format as Equations (2a) and (2b) are used.
  • the content of control by the vehicle motion calculation unit A008 when the safety standard is "standard", that is, when the non-controlled object follows the range of the predicted trajectory will be explained.
  • the movement of the controlled object can be predicted according to the above equation (4a).
  • the movement of the non-controlled object can be predicted according to the above equation (4b).
  • the position (xu, yu) and velocity (vx, vy) of the non-controlled object at the current time k0 can be used by the environment recognizer A001 and the non-controlled object position calculation unit A005.
  • the variance of the positions of the non-controlled objects changes according to the following equation (5).
  • P is the variance matrix of the uncontrolled position
  • Qw is the variance of the process noise.
  • the object identification unit A004 may set the radius r according to the attributes (pedestrian, bicycle, etc.) of the identified non-controlled object. For example, the object identification unit A004 sets the radius r to 1.5 meters when the attribute of the non-controlled object is a pedestrian, and sets the radius r to 2 meters when the attribute of the non-controlled object is a bicycle. .
  • the controlled object when the total length of the controlled object is lc and the total width is wc, the controlled object can be surrounded by a circle with a radius rc shown in the following equation (6).
  • FIG. 8 is a schematic diagram showing the positional relationship between controlled objects and non-controlled objects. From the above assumptions, it can be said that the non-controlled object and the controlled object will not come into contact with each other as long as the positional relationship shown in FIG. 8, that is, the following equations (7a), (7b), and (7c) are satisfied. Note that dpq in equations (7a) and (7b) corresponds to the length of the line segment connecting the center of the controlled object and the center of the non-controlled object, that is, the distance between the controlled object and the non-controlled object.
  • ra in equation (7c) is an increment in the radius that takes into account uncertainty with respect to the predicted trajectory of the non-controlled object, and corresponds to the standard deviation calculated from the dispersion matrix P of the position of the non-controlled object.
  • the target trajectory may be set at the center of the road several meters ahead from the current vehicle position.
  • the evaluation function J of the following equation (8) is formulated as a control problem that calculates the control input uc so as to be minimized under the constraints that the constraints (7a), (7b), and (7c) are satisfied. be able to.
  • Q and R are weight matrices
  • Np is a prediction step. Since the above is a formulation of general model predictive control, detailed explanation will be omitted.
  • the weight Q in the evaluation function (formula (8)) used for model predictive control may be increased to improve the followability of the controlled vehicle to the target trajectory.
  • the weight R may be reduced to allow the generation of a larger control input uc.
  • control content may be the same as when the safety standard is "standard”.
  • the vehicle motion calculation unit A008 sets the maximum value of the moving speed of the non-controlled object according to this attribute. For example, if the non-controlled object belongs to a pedestrian, the maximum value of the moving speed is set to 5 kilometers per hour, and if the non-controlled object belongs to a bicycle, the maximum value of the moving speed is set to 20 kilometers per hour.
  • the vehicle motion calculation unit A008 sets the maximum value of the moving speed to an upper limit value depending on the location where the non-controlled object exists. For example, if the non-controlled object is on the sidewalk, the maximum moving speed is set to 20 kilometers per hour, which is equivalent to a bicycle. Furthermore, if a non-controlled object exists on the roadway, the maximum moving speed is set to 60 kilometers per hour, which is equivalent to a general vehicle.
  • model predictive control that calculates not only the control input u of the controlled object but also the control input uu of the non-controlled object.
  • the control input uu of the non-controlled objects calculated by model predictive control is not actually used.
  • Equation (9a) is given as an example of the evaluation function handled by model predictive control.
  • the evaluation function J' in equation (9a) is obtained by adding the evaluation function Jp shown in equation (9b) to the evaluation function J shown in equation (8).
  • Qu and Ru are weight matrices.
  • the first term of equation (9b) is the product of the distance dpq between the controlled object and the non-controlled object multiplied by the weight matrix Qu.
  • minimizing the evaluation function Jp means minimizing the distance dpq between the controlled object and the non-controlled object.
  • the second term is the product of the control input uu of the non-controlled object (velocity v of the non-controlled object) multiplied by the weight matrix Ru, and this value is further multiplied by -1 to make it a negative value.
  • minimizing the evaluation function Jp means maximizing the control input uu of the non-controlled object (velocity v of the non-controlled object).
  • the newly added evaluation function Jp becomes a problem design assuming that the non-controlled object approaches the controlled object at the fastest speed.
  • the control input uc of the controlled object is calculated by considering the constraint conditions of equations (7a), (7b), and (7c), the possibility that the non-controlled object will take dangerous actions will be taken into account.
  • this control operation is also adopted when the predicted trajectory and the actual trajectory cannot be compared immediately after the non-controlled object is detected.
  • the detection range of the environment recognizer A001 is sufficiently wide, the controlled object and the non-controlled object are sufficiently far apart, so even if equation (9b) is taken into account, the constraint conditions (7a), (7b), Behavior that deviates from (7c) is unlikely to occur.
  • the safety standard is "standard"
  • the same behavior as when using equation (8) is often generated.
  • equation (10) matches equation (9a). Furthermore, when the trajectory deviation e is greater than the threshold th1 and less than the threshold th2, an intermediate behavior between equations (8) and (9a) is achieved by increasing the adjustment variable ⁇ as the trajectory deviation e becomes larger. be done.
  • the actuator controller B001 of the motion control system B100 controls the actuator B002 and changes the accelerator opening and steering so as to realize the calculated control input uc, that is, the vehicle speed v and the steering angle (steering angle) ⁇ . do.
  • FIG. 9 is a flowchart showing an example of the flow of processing executed by the controller A101 of the autonomous control system.
  • the process shown in FIG. 9 is repeatedly executed at a predetermined control cycle.
  • the controller A101 acquires detected values from the environment recognizer A001 and the state detector A002, and updates the detected values stored in the memory.
  • the controller A101 determines whether the environment recognizer A001 detects a moving object that is not to be controlled. If a non-controlled object is detected by the environment recognizer A001, the process transitions to step S03. On the other hand, if the environment recognizer A001 does not detect a non-controlled object, the process transitions to step S10.
  • the vehicle motion calculation unit A008 performs a control operation considering only the controlled object. That is, model predictive control is performed to minimize equation (8) without considering constraint conditions (7a), (7b), and (7c).
  • step S03 the object identification unit A004 identifies non-controlled objects based on the environmental information acquired from the environment recognizer A001.
  • the object identification unit A004 determines the moving speed limit (maximum value of control input uu) of the non-controlled object and the size (radius r) of the non-controlled object according to the identification result.
  • step S04 the predicted trajectory calculation unit A006a calculates the predicted trajectory of the non-controlled object according to the attributes of the non-controlled object identified in step S03.
  • step S05 the actual trajectory evaluation unit A006b calculates the movement trajectory (actual trajectory) actually taken by the non-controlled object.
  • step S06 the trajectory comparison unit A006c determines whether a predetermined time has elapsed since the time when the non-controlled object was detected in step S02. If the actual trajectory is too short, the predicted trajectory and the actual trajectory cannot be compared, so such a determination is performed in step S05. If the predetermined time has not elapsed, the process transitions to step S07. On the other hand, if the predetermined time has elapsed, the process transitions to step S08.
  • the trajectory comparison unit A006c sets the trajectory deviation e to a predetermined initial value (a value greater than or equal to the threshold th2).
  • the trajectory comparison unit A006c calculates the trajectory deviation e by comparing the predicted trajectory and the actual trajectory.
  • step S09 the safety standard determination unit A007 determines the safety standard according to the trajectory deviation e set in step S07 or calculated in step S08, and determines the model predictive control method to be used.
  • step S10 the vehicle motion calculation unit A008 calculates the control input uc of the controlled vehicle according to the model predictive control method determined in step S09.
  • step S11 the vehicle motion calculation unit A008 gives a control instruction to the actuator controller B001 to realize the control input uc calculated in step S10. Actuator controller B001 controls each actuator B002 according to this control instruction.
  • the trajectory deviation evaluation unit A006 evaluates the degree of deviation of the movement trajectory of the non-controlled object from the predicted movement trajectory of the non-controlled object corresponding to the attribute of the non-controlled object.
  • the safety standard determination unit A007 determines safety standards regarding the behavior of the controlled object based on the attributes of the non-controlled object and the degree of deviation from the predicted movement trajectory. Based on the position of the controlled object, the position of the non-controlled object, and the safety standard, the vehicle motion calculation unit A008 (behavior modification unit) adjusts the controlled object so that the higher the safety standard is, the less the controlled object approaches the non-controlled object. modify their behavior. With this configuration, even when it is difficult to predict the behavior of surrounding moving objects, the autonomous vehicle or semi-automatic vehicle can be driven efficiently and safely.
  • the predicted trajectory calculation unit A006a calculates the average value and variance of the trajectory based on the attributes of the non-controlled object and the position of the non-controlled object calculated a predetermined time ago, and predicts the movement of the non-controlled object. Let it be the orbit.
  • the actual trajectory evaluation unit A006b evaluates the change in the position of the non-controlled object as a movement trajectory of the non-controlled object.
  • the trajectory comparison unit A006c evaluates the degree of deviation of the movement trajectory of the non-controlled object from the predicted movement trajectory of the non-controlled object. By doing this, it is possible to accurately determine the range of the predicted movement trajectory according to the attributes of the non-controlled object.
  • the predicted trajectory calculation unit A006a predicts the non-controlled object based on the attributes of the non-controlled object, using the equation of motion followed by the non-controlled object, the maximum value of the moving speed of the non-controlled object, and the size of the non-controlled object. Calculate the trajectory. By doing this, it is possible to accurately calculate the predicted trajectory according to the attributes of the non-controlled object.
  • FIG. 10 is a schematic diagram showing a distribution warehouse to which the autonomous control system according to the second embodiment is applied.
  • a total of three transport robots 101a, 101b, and 101c are arranged in the warehouse 100.
  • the transport robots 101a, 101b, and 101c perform transport work together with workers.
  • the transport robots 101a, 101b, and 101c are the objects to be controlled, and the pedestrians 102a and 102b, such as workers, are the objects not to be controlled.
  • the transport robots 101a, 101b, and 101c are collectively referred to as the transport robot 101.
  • pedestrians 102a and 102b are collectively referred to as pedestrian 102.
  • a plurality of infrastructure sensors 103 are provided within the warehouse 100.
  • a plurality of infrastructure sensors 103 monitor moving objects existing within the warehouse 100. Monitoring information from the plurality of infrastructure sensors 103 is deployed to the server 105 via the access point 104 for wireless communication.
  • the server 105 has a function of calculating a movement control plan for the transport robot 101 within the warehouse 100, and is responsible for the calculation function of the autonomous control system according to the second embodiment.
  • the server 105 includes the same hardware (processing device, volatile memory, nonvolatile memory, etc.) as the controller A101 described in the first embodiment.
  • the server 105 and the transfer robot 101 perform bidirectional communication. That is, the server 105 receives sensor information acquired by the transport robot 101, and the transport robot 101 receives an action plan from the server 105.
  • the transport robot 101 is equipped with sensors such as a LiDAR sensor, an IMU, and an encoder, which correspond to the environment recognizer A001 and the state detector A002.
  • FIG. 11 is a schematic diagram illustrating movement control of the transfer robot 101.
  • the pedestrian 102 follows the equation of motion of the following equation (12).
  • vx,i is the x-direction component of the speed v of the pedestrian 102
  • vy,j is the y-direction component of the speed v of the pedestrian 102
  • uu,j is the control input of the pedestrian 102. It is.
  • the object identification unit A004 identifies the non-control object.
  • the attributes (mobility characteristics) of are identified.
  • the actions of robots and vehicles (including forklifts operated by humans) moving within the warehouse are managed by the WMS (Warehouse Management System) that operates the warehouse.
  • WMS Warehouse Management System
  • the attributes (movement characteristics) of the non-controlled object may be identified by linking the position of the non-controlled object detected by the controlled object to the business status of the vehicle managed by the WMS.
  • the object identification unit A004 identifies the attribute of the pedestrian 102 based on the attribute information received from the card held by the pedestrian 102 as a non-controlled object.
  • FIG. 12 is a diagram illustrating a method for determining safety standards by the safety standard determination unit A007 according to the second embodiment.
  • the safety standard determining section A007 can be subdivided as shown in FIG. That is, even if the values of the trajectory deviation e between the predicted trajectory and the actual trajectory calculated by the trajectory deviation evaluation unit A006 are the same, different safety standards are determined.
  • the safety standard determining unit A007 adopts the standard safety standard characteristic 70 for the pedestrian 102 whose attribute is identified as a new employee, a part-time worker, or a part-time worker by the object identifying unit A004.
  • the standard safety standard characteristic 70 is similar to the characteristic shown in FIG. 6, so a description thereof will be omitted.
  • the safety standard determination unit A007 adopts the safety standard characteristics 71 for veterans for the pedestrian 102 whose attribute is identified as an employee with a long service life by the object identification unit A004. Employees who have been with the company for a long time have a higher level of safety awareness than new employees, part-time employees, etc., so it can be expected that they will not come into contact with the transport robot 101 even if the safety standards are not raised to the "safest” level. . Therefore, the safety standard characteristic 71 for veterans is a characteristic that sets the safety standard to "high safety" between "safest” and "standard” when the trajectory deviation e is equal to or greater than the threshold value th2.
  • the safety standard characteristic 71 for veterans is a characteristic in which the safety standard is raised as the trajectory deviation e increases in a range where the trajectory deviation e is greater than the threshold value th1 and less than the threshold value th2.
  • the safety standard characteristic 71 for veterans is a characteristic that sets the safety standard to "standard” similarly to the safety standard characteristic 70 for standard use when the trajectory deviation e is less than or equal to the threshold value th1.
  • the safety standard determining unit A007 adopts the guest safety standard characteristic 72 for the pedestrian 102 whose attribute is identified as a guest by the object identifying unit A004. For guest card holders who may not be highly safety conscious, it is preferable to set the safety standard higher than "standard” even if the predicted trajectory and the actual trajectory match. This makes it easier to avoid contact between the pedestrian (guest) 102 and the transport robot 101 even if the pedestrian (guest) 102 suddenly approaches the transport robot 101 .
  • the guest safety standard characteristic 72 is a characteristic that sets the safety standard to "high safety" between "standard” and "safest” in a range where the orbital deviation e is 0 or more and less than the threshold value th1.
  • the safety standard characteristic 72 for guests is such that in a range where the trajectory deviation e is greater than the threshold th1 and less than the threshold th2, the safety standard is increased as the trajectory deviation e becomes larger, and the trajectory deviation e is set between the threshold th1 and the threshold th2. This is a characteristic that sets the safety standard to the "safest" when the value is greater than or equal to the intermediate value.
  • the distance dij between the transport robot 101(i) and the pedestrian 102(j) can be given by equation (13c).
  • a condition for preventing contact between the transport robot 101(i) and the pedestrian 102(j) can be given by equation (13d).
  • the evaluation function Ji to be considered for the transport robot 101(i) is given by following equation (8) when there is one controlled object: It can be given by the following equation (14).
  • control input uc,i that minimizes the following equation (15) considering the sum J of the evaluation functions Ji of each transport robot 101 is set to It may be determined by considering equations (13a), (13b), (13c), and (13d), which are constraint conditions for preventing contact between the two.
  • the server 105 distributes the calculated control input uc,i to each transport robot 101.
  • the transfer robot 101 drives an actuator B002 using a motion control system B100 provided therein.
  • equations (16a) and (16b) the evaluation function J' to be considered should be given by the following equations (16a) and (16b), following the equations (9a) and (9b) when there is one non-controlled object. I can do it.
  • vj is the speed of pedestrian 102 with ID j.
  • the function mj ( ⁇ (k)) included in equation (16b) can be given by equations (16c), (16d), (16e), and (16f).
  • Equation (16a) The evaluation function J' in Equation (16a) is the same as in the problem setting described above, in the form of the evaluation function J in Equation (15) plus the evaluation function Jp intended for the non-controlled object to approach the controlled object as quickly as possible. ing.
  • equation (16c) includes the function h( ⁇ (k)) of equation (16f). Note that in equation (16c), W is a predetermined coefficient.
  • FIG. 13 is a diagram showing an example of the relationship between the function h( ⁇ (k)) and the function ⁇ (k).
  • the function ⁇ (k) calculated by equations (16d) and (16e) corresponds to the square of the distance between the transport robot 101(i) with ID i and the pedestrian 102(j) with ID j.
  • equation (16f) becomes 0.
  • equation (16c) also becomes 0.
  • the function ⁇ (k) is small, that is, when the transport robot 101(i) and the pedestrian 102(j) are close, the function h( ⁇ (k)) shown in equation (16f) is 1.
  • the object identification unit A004 identifies the attributes of the non-controlled object using a card (device) provided in the non-controlled object that can identify the attributes of the non-controlled object. By doing this, it becomes possible to determine the attributes of the non-controlled objects in advance and utilize them for motion control of the controlled objects.
  • the safety standard determination unit A007 determines whether the attributes of the non-controlled object identified by the object identification unit A004 and the degree of deviation of the non-controlled object from the predicted movement trajectory evaluated by the trajectory deviation evaluation unit A006 are the same. However, if the evaluation values regarding the safe behavior of non-controlled objects set in cards (devices) that can identify the attributes of non-controlled objects are different, different safety standards are determined. By doing this, it is possible to perform more flexible motion control using not only the attributes and behavior of the non-controlled object but also the evaluation value of the non-controlled object.
  • FIG. 14 is a diagram showing the configuration of an autonomous control system according to modification 1, and shows a vehicle 001 that is a moving object to be controlled and a pedestrian 002 that is a moving object that is not to be controlled.
  • the environment recognizer A001 is installed in the controlled object.
  • peripheral information of the controlled object can be collected, the environment recognizer A001 does not need to be mounted on the controlled object.
  • an infrastructure sensor 003 as an environment recognizer A001 is installed at a location physically distant from the vehicle 001 to be controlled.
  • the infrastructure sensor 003 provides the acquired sensor information of the pedestrian 002 to the vehicle 001 via the wireless system 004. By doing so, the cost, weight, fuel consumption, etc. per vehicle can be reduced, for example, when a large number of vehicles are used in a limited space.
  • the safety standard is determined only by the orbit deviation e, but the safety standard determination unit A007 is not limited to this type of configuration.
  • the safety standard determination unit A007 is not limited to this type of configuration.
  • the trajectory deviation evaluation unit A006 calculates and holds a predicted value of the distance (hereinafter also referred to as relative distance) between the controlled object and the non-controlled object after a predetermined period of time has elapsed, and calculates and holds the predicted value of the distance (hereinafter also referred to as relative distance) between the controlled object and the non-controlled object after a predetermined period of time has elapsed. Compare with the actual measured value of relative distance.
  • the trajectory deviation evaluation unit A006 determines that the non-controlled object is far from the controlled object when the actual measured value of the relative distance is larger than the predicted value. If the actual measured value of the relative distance is less than or equal to the predicted value, the trajectory deviation evaluation unit A006 determines that the non-controlled object is approaching the controlled object.
  • FIG. 15 is a diagram illustrating a method of determining the safety standards and the priority of the own vehicle by the safety standard determination unit A007 according to Modification 2. If the corrected trajectory deviation e' is negative, that is, if the non-controlled object takes an action to avoid the controlled object, safety will not be compromised even if the controlled object performs a selfish action.
  • the vertical axis in FIG. 15 schematically shows that the safety standard increases as it goes above the horizontal axis, and the priority of the own vehicle (controlled object) increases as it goes below the horizontal axis. .
  • the safety standard determining unit A007 increases the coefficient ⁇ as the absolute value of the corrected trajectory deviation e' increases, that is, as the priority of the own vehicle increases.
  • the priority is set to standard.
  • the coefficient ⁇ is set to 1.
  • the threshold value th3 is a value less than 0, and is, for example, a value obtained by multiplying the threshold value th1 by -1.
  • the priority is set to the highest priority. In this case, the coefficient ⁇ is set to a predetermined value ⁇ 1 larger than 1.
  • the threshold th4 is a value less than the threshold th3, and is, for example, a value obtained by multiplying the threshold th2 by -1.
  • the coefficient ⁇ increases as the absolute value of the corrected trajectory deviation e' increases.
  • the speed of the controlled object can be increased, so the efficiency of work by the controlled object can be improved.
  • a control method to an inter-process transport vehicle operating in a factory during the busy season, it can contribute to improving the productivity of the factory.
  • the safety standard determination unit A007 when the degree of deviation from the predicted trajectory evaluated by the trajectory deviation evaluation unit A006 is larger than a predetermined threshold (e>th1), the safety standard determination unit A007 according to this modification When the behavior of the object approaching the controlled object is confirmed, the safety standard regarding the behavior of the controlled object is changed to a safer side (higher side) than the current standard. On the other hand, when the degree of deviation from the predicted trajectory evaluated by the trajectory deviation evaluation unit A006 is larger than a predetermined threshold (e>th1), the safety standard determination unit A007 determines that the behavior of the non-controlled object to move away from the controlled object is If this is confirmed, do not change the safety standard to a higher level. In other words, according to this modification, it is possible to define accurate safety standards that take into account not only the attributes of non-controlled objects but also the behavior of non-controlled objects.
  • the characteristics used to determine the safety standards and the priority of the host vehicle are not limited to the example shown in FIG. 15.
  • the characteristic used to determine the priority may be a characteristic that sets the priority to the highest priority when the corrected trajectory deviation e' is less than or equal to the threshold value th3.
  • each configuration related to the autonomous control system A100 described above, and the functions and execution processing of each of the configurations, may be partially or entirely implemented in hardware (for example, the logic for executing each function is designed using an integrated circuit). It may be realized.
  • the control lines and information lines shown in the figures are those considered necessary for explanation, and do not necessarily show all the control lines and information lines necessary on the product. In reality, almost all configurations may be considered to be interconnected.
  • A001...Environment recognizer A002...State detector, A003...Controlled object position calculation section, A004...Object identification section, A005...Non-controlled object position calculation section, A006...Trajectory deviation evaluation section, A006a...Predicted trajectory calculation section, A006b ...Actual trajectory evaluation section, A006c...Trajectory comparison section, A007...Safety standard determination section, A008...Vehicle motion calculation section, A100...Autonomous control system, A101...Controller, B001...Actuator controller, B002...Actuator, B100...Motion control system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

自律制御システムは、制御対象の位置を算出し、非制御対象の属性を識別し、非制御対象の位置を算出し、非制御対象の属性に対応する非制御対象の移動予測軌道からの非制御対象の移動軌道の逸脱度合いを評価し、非制御対象の属性と移動予測軌道からの逸脱度合いとに基づき、制御対象の行動に関する安全基準を決定し、制御対象の位置と非制御対象の位置と安全基準とに基づき、安全基準が高くなるほど制御対象が非制御対象に接近しなくなるように制御対象の行動を修正する。

Description

自律制御システム
 本発明は、自律制御システムに関する。
 近年、交通事故や交通渋滞を軽減するために、自動運転技術の開発が進んでいる。自動運転技術は労働力不足が深刻な物流産業においても期待を集めている。一般道路で集荷、配送を行うトラックだけでなく、工場や倉庫内で物品を収集、格納するために利用されるフォークリフトや、AGV(Automatic Guided Vehicle)やAMR(Autonomous Mobile Robot)と呼ばれる搬送ロボット、工程間搬送車両など自動運転技術の展開先は多岐にわたる。
 完全自動化された大型物流倉庫を除き、自動運転技術は人(主に歩行者)や非自動化車両(例えば、作業員が操作するフォークリフト)が混在する環境で利用される。このため、自動運転車両は歩行者や非自動化車両と接触しないように安全機能を有する必要がある。
 一般に、このような安全機能を実現するには、歩行者や非自動化車両が動くであろう軌道を予測し、その予測軌道と自車両が接触しないように、自動運転車両の制御を行う。
 非自動化車両は主にその運動が非ホロノミック拘束に支配されるため、真横に移動することや突然の方向転換もできないのに対して、歩行者は様々な方向に自在に行動できるため、予測軌道を算出すること自体が容易ではない。
 このような課題に対して、特許文献1には、記録している過去の移動体(歩行者を含む)の軌道情報を利用して、移動体が自動運転車両の計画経路上にいる確率(特許文献中、予測情報)を算出する機能を持たせることで、予測が困難な歩行者を含む環境での安全運転を支援する運転支援システムが提示されている。
特開2016-53846号公報
 特許文献1では、移動体の予測情報を生成するために、過去の移動体の軌道を記録した多くの情報が必要になる。このため、この記録(データベース)が不十分である場合には、適切な予測情報を提供することができない。そして、適切な予測情報が得られない場合、十分な安全運転機能を提供することが困難になることが予想される。
 本発明は以上のような課題を解決するために発案したものであり、周囲の移動体の挙動の予想が困難な場合でも車両を効率的かつ安全に運転可能な自律制御システムを提供することを目的としている。
 本発明の一態様による自律制御システムは、行動を制御可能な移動体である制御対象と、行動を制御できない移動体である非制御対象とが混在する領域において、前記制御対象と前記非制御対象とが接触しないように前記制御対象の行動を制御する自律制御システムであって、前記制御対象の位置を算出する制御対象位置算出部と、前記非制御対象の属性を識別する対象識別部と、前記非制御対象の位置を算出する非制御対象位置算出部と、前記対象識別部により識別された前記非制御対象の属性に対応する前記非制御対象の移動予測軌道からの、前記非制御対象位置算出部により算出された前記非制御対象の移動軌道の逸脱度合いを評価する軌道逸脱評価部と、前記対象識別部により識別された前記非制御対象の属性と、前記軌道逸脱評価部により評価された前記移動予測軌道からの逸脱度合いとに基づき、前記制御対象の行動に関する安全基準を決定する安全基準決定部と、前記制御対象位置算出部により算出された前記制御対象の位置と、前記非制御対象位置算出部により算出された前記非制御対象の位置と、前記安全基準決定部により決定された前記安全基準とに基づき、前記安全基準が高くなるほど前記制御対象が前記非制御対象に接近しなくなるように前記制御対象の行動を修正する行動修正部と、を備える。
 本発明によれば、周囲の移動体の挙動の予想が困難な場合でも車両を効率的かつ安全に運転可能な自律制御システムを提供することができる。
図1は、本発明の第1実施形態に係る自律制御システムの機能ブロック図である。 図2は、自律制御システムの制御対象の車両および非制御対象の歩行者を示す模式図である。 図3は、軌道逸脱評価部の機能ブロック図である。 図4は、予測軌道算出部により算出される移動予測軌道の一例を示す模式図である。 図5は、予測軌道と実軌道の例を示す模式図である。 図6は、第1実施形態に係る安全基準決定部による安全基準の決定方法を説明する図である。 図7は、四輪車両の運動制御を説明する模式図である。 図8は、制御対象と非制御対象の位置関係を示す模式図である。 図9は、自律制御システムのコントローラにより実行される処理の流れの一例を示すフローチャートである。 図10は、第2実施形態に係る自律制御システムが適用された物流倉庫を示す模式図である。 図11は、搬送ロボットの運動制御を説明する模式図である。 図12は、第2実施形態に係る安全基準決定部による安全基準の決定方法を説明する図である。 図13は、関数h(ε(k))と関数ε(k)の関係の一例を示す図である。 図14は、変形例1に係る自律制御システムの構成を示す図であり、制御対象の移動体である車両および非制御対象の移動体である歩行者を示す。 図15は、変形例2に係る安全基準決定部による安全基準および自車両の優先度の決定方法を説明する図である。
 (第1実施形態)
 図1は、本発明の第1実施形態に係る自律制御システムの機能ブロック図である。図1に示す自律制御システムA100および運動制御システムB100は、制御対象の車両に搭載される。自律制御システムA100は、制御対象と非制御対象とが混在する領域において、制御対象の車両の周囲情報を収集し、制御対象の車両以外の移動体(例えば歩行者、他車両など)と制御対象とが接触しないように、制御対象の車両の運動(行動)を運動制御システムB100に制御させる。図1では、本実施形態に係る自律制御システムA100の機能と直接的な関わりがない箇所については図示を省略している。
 なお、制御対象の車両は、完全な自動運転車両に限定されない。例えば、通常時は運転者が運転し、緊急時のみ自律制御システムA100による減速、停止等の制御の介入が可能な半自動運転車両であってもよい。また、制御対象車両は、一般公道を走行する車両一台であってもよいし、物流倉庫内を走行する車両(ロボット)であってもよい。
 図2は、制御対象の移動体である車両001および非制御対象の移動体である歩行者002を示す模式図である。以下では、車道10を走行する車両001が自律制御システムA100の制御対象とされ、非制御対象が歩道20を歩く歩行者002である場合を主な例として説明する。すなわち、車両001は自律制御システムA100から行動を制御可能な移動体であり、歩行者002は自律制御システムA100からは行動を制御できない移動体である。なお、説明を簡単にするため、制御対象および非制御対象がそれぞれ1つの状況を示しているが、本発明は制御対象、非制御対象がともに複数の場合であっても利用可能である。
 図1に示すように、運動制御システムB100は、アクチュエータ制御器B001およびアクチュエータB002を備える。アクチュエータ制御器B001は自律制御システムA100の指示に従って、アクチュエータB002を制御する。アクチュエータB002は、例えば車両のステアリングやアクセル、ブレーキ等に接続される。
 図1に示すように、自律制御システムA100は、環境認識器A001、状態検出器A002、制御対象位置算出部A003、対象識別部A004、非制御対象位置算出部A005、軌道逸脱評価部A006、安全基準決定部A007、および車両運動演算部A008を備える。制御対象位置算出部A003、対象識別部A004、非制御対象位置算出部A005、軌道逸脱評価部A006、安全基準決定部A007、および車両運動演算部A008は、コントローラA101により実現される機能である。
 コントローラA101は、例えば、CPU(Central Processing Unit)等の処理装置、ROM(Read Only Memory)、フラッシュメモリ等の不揮発性メモリ、所謂RAM(Random Access Memory)と呼ばれる揮発性メモリ、入出力インタフェース、および、その他の周辺回路を備えたコンピュータで構成される。これらのハードウェアは、協働してソフトウェアを動作させ、複数の機能を実現する。なお、コントローラA101は、1つのコンピュータで構成してもよいし、複数のコンピュータで構成してもよい。
 不揮発性メモリには、各種演算が実行可能なプログラムや閾値等のデータが格納されている。すなわち、不揮発性メモリは、本実施形態の機能を実現するプログラムを読み取り可能な記憶媒体(記憶装置)である。揮発性メモリは、処理装置による演算結果および入出力インタフェースから入力された信号を一時的に記憶する記憶媒体(記憶装置)である。処理装置は、不揮発性メモリに記憶されたプログラムを揮発性メモリに展開して演算実行する装置であって、プログラムに従って入出力インタフェース、不揮発性メモリおよび揮発性メモリから取り入れたデータに対して所定の演算処理を行う。
 なお、自律制御システムA100は制御対象(すなわち車両001)に実装されていなくてもよい。後述する第2実施形態のように、制御対象が移動するエリアが限定的であれば、そのエリア内と通信可能なサーバに演算機能を持たせることも可能である。
 環境認識器A001は、制御対象の周囲の状態を表す環境情報を取得する。環境認識器A001は、例えば制御対象に搭載されたLiDAR(Light Detection And Ranging)センサやステレオカメラ、ミリ波レーダーなどの外界認識センサである。
 状態検出器A002は、制御対象の状態を表す車両情報(位置、方位、速度など)を取得する。状態検出器A002は、例えば制御対象の位置情報を取得するGNSS(Global Navigation Satellite System)受信機や、制御対象の加速度と角速度を取得するIMU(Inertial Measurement Unit)などのセンサである。
 なお、環境認識器A001および状態検出器A002は、必ずしも別々のセンサとは限らない。例えば、制御対象に搭載されたLiDARセンサは環境認識器A001および状態検出器A002の両方として機能する。
 制御対象位置算出部A003は、状態検出器A002で取得した車両情報を統合して、制御対象の位置を算出する。例えば、状態検出器A002がLiDARである場合、制御対象位置算出部A003は周知のSLAM(Simultaneous Localization and Mapping)技術を利用して制御対象の位置を推定する。また、状態検出器A002がGNSS受信機およびIMUであれば、制御対象位置算出部A003はGNSS受信機から出力される位置情報の更新周期間を周知のセンサフュージョン技術によりIMUで補完して、制御対象の位置を算出する。
 対象識別部A004は、環境認識器A001で取得した環境情報から周知の画像認識技術やSemantic SLAM技術によって、制御対象の周辺に存在する非制御対象の属性を識別する。
 なお、環境認識器A001および対象識別部A004が一体であってもよい。例えばステレオカメラやミリ波レーダーには、移動体を識別する機能が備わっていることがある。この場合、環境認識器A001と対象識別部A004を陽に分割する必要はない。
 対象識別部A004は、非制御対象の属性として、例えば歩行者、自転車など、移動体の移動に関わる特性を識別する。ここで、移動に関わる特性とは、その移動体の動特性を支配する運動方程式や移動速度の最大値を意味する。歩行者の場合、2次元平面上を自在に動くことができる。一方、車椅子、自転車、スクータ、自動車等の車両は、真横に移動することができないなど、ホロノミック拘束が含まれる。さらに、歩行者であっても、大人、こども、老人で移動速度が異なるため、歩行者をさらに細かく分類した特性を考慮することが望ましい。
 非制御対象位置算出部A005は、対象識別部A004と同様に、環境認識器A001で取得した環境情報から周知のSemantic SLAM技術によって、制御対象の周辺に存在する非制御対象の位置を算出する。対象識別部A004と非制御対象位置算出部A005は同一の技術によって、同時に処理を実行することができる。つまり、対象識別部A004による識別処理と非制御対象位置算出部A005による位置算出処理は、並行処理とすることができる。
 図3は、軌道逸脱評価部A006の機能ブロック図である。軌道逸脱評価部A006は、予測軌道算出部A006a、実軌道評価部A006b、および軌道比較部A006cを備える。
 軌道逸脱評価部A006は、非制御対象の属性に対応する非制御対象の移動予測軌道からの、非制御対象の実際の移動軌道(以下、実軌道とも記す)の逸脱度合いを評価する。予測軌道算出部A006aは、対象識別部A004により識別された非制御対象の属性、および、非制御対象位置算出部A005により所定時間前に算出された非制御対象の位置に基づいて、非制御対象の移動予測軌道を算出する。例えば、非制御対象が歩行者の場合には、後述する式(3a)、(3b)の運動方程式に従って現在の位置から数秒後の非制御対象の位置を算出する。また、非制御対象が車両の場合には、後述する式(2a)、(2b)の運動方程式に従って現在の位置から数秒後の非制御対象の位置を算出する。実軌道評価部A006bは、非制御対象位置算出部A005により算出された非制御対象の位置の変化を非制御対象の実際の移動軌道として評価する。軌道比較部A006cは、予測軌道算出部A006aにより算出された非制御対象の移動予測軌道と、実軌道評価部A006bにより評価された非制御対象の移動軌道(実軌道)とを比較し、移動予測軌道からの移動軌道(実軌道)の逸脱度合いを評価する。
 図4は、予測軌道算出部A006aにより算出される移動予測軌道の一例を示す模式図である。図4には、歩行者002および自転車005について予測軌道算出部A006aが算出した移動予測軌道(以下、単に予測軌道とも記す)を模式的に示してある。
 歩行者002が時刻t0に位置P0に紙面左方向を向いているとき、予測軌道算出部A006aは歩行者002の位置を、1ステップ後の時刻t1に位置P1、2ステップ後の時刻t2に位置P2、3ステップ後の時刻t3に位置P3、4ステップ後の時刻t4に位置P4、5ステップ後の時刻t5に位置P5と予測する。予測軌道算出部A006aは、図4に示す予測軌道を確率モデルに基づく予測により算出する。つまり予測軌道算出部A006aは、非制御対象の軌道の平均値と分散を算出し、それらを移動予測軌道とする。図4に示す位置P1~P5は移動予測軌道の平均値を示し、図示する上限40および下限30は移動予測軌道の分散50により規定される。図4に示したように、移動予測軌道は分散50により規定される一定の広がりを持つ。一般に、歩行者は直進するだけでなく斜め方向にも横方向にも自在に移動できるため、時刻が進むにつれて軌道の候補範囲が広くなる特徴がある。
 自転車005が時刻t0に位置P10に紙面左方向を向いているとき、予測軌道算出部A006aは自転車005の位置を、1ステップ後の時刻t1に位置P11、2ステップ後の時刻t2に位置P12、3ステップ後の時刻t3に位置P13、4ステップ後の時刻t4に位置P14、5ステップ後の時刻t5に位置P15と予測する。自転車005は歩行者002に比べて左右方向の移動が困難であるため、紙面の上下方向に上限41および下限31で規定される候補範囲が歩行者002ほど広がることはない。つまり自転車005の予測軌道の分散51は歩行者002の予測軌道の分散50に比べて小さくなる。一方、自転車005は歩行者002に比べて移動速度が速いため、紙面で左右方向に候補範囲が広がる点に特徴がある。つまり、自転車005の位置P10~P15の間隔は、歩行者002の位置P0~P5の間隔に比べて広くなる。
 図3に示す実軌道評価部A006bは、非制御対象位置算出部A005により算出された非制御対象の位置を所定時間分記録することにより、非制御対象の実際の移動軌道(実軌道)を評価する。
 軌道比較部A006cは、予測軌道算出部A006aにより算出された予測軌道と、実軌道評価部A006bにより評価された実軌道とを比較し、非制御対象の行動指標(行動指向)を評価する。軌道比較部A006cは、次式(1)により評価値を算出する。式(1)においてkは予測軌道の時刻を、z(k)は予測軌道の時刻kにおける座標を、x(k)は実軌道の時刻kにおける座標を、e(k)は時刻kにおける予測軌道と実軌道の差である軌道偏差をそれぞれ表す。軌道比較部A006cは、式(1)により算出された軌道偏差eを、予測軌道からの実軌道の逸脱度合いを表す評価値として用いる。
Figure JPOXMLDOC01-appb-M000001
 図5は、予測軌道と実軌道の例を示す模式図である。図5(a)は、ある時刻において、予測軌道算出部A006aにより算出された歩行者002(すなわち非制御対象)の予測軌道の候補範囲60aを示している。この例では、歩行者が紙面で上方向(矢印61で示す方向)に移動する状況を想定している。
 図5(b)は、歩行者002の予測軌道の候補範囲60bに対して、歩行者002の実軌道62bの一例を重ねた様子を示している。歩行者002の実軌道62bは予測軌道の候補範囲60bの中心(平均)と一致している。つまり、この歩行者002の行動は予測し易いと判断できる。
 図5(c)は、歩行者002の予測軌道の候補範囲60cに対して、歩行者002の実軌道62cの一例を重ねた様子を示している。この実軌道62cは予測軌道の候補範囲60cから逸脱している。このような歩行者002の挙動は、例えば、歩行者002が泥酔している場合に発生し得るため、歩行者002の行動は予測しにくい状況にあると言える。
 図3に示す安全基準決定部A007は、対象識別部A004により識別された非制御対象の属性と、軌道逸脱評価部A006により評価された移動予測軌道からの逸脱度合い(軌道偏差e)とに基づき、制御対象の行動に関する安全基準を決定する。安全基準決定部A007は、標準的な安全基準である「標準」と、もっとも安全性の高い安全基準である「最安全」という2種類の安全基準を用いる。これらの安全基準は、それぞれ車両運動演算部A008(図1参照)による制御対象の運動制御に影響する。詳細は後述するが、車両運動演算部A008は、安全基準が「最安全」に決定されているとき、安全基準が「標準」に決定されているときに比べて、非制御対象と制御対象との距離のマージンを大きくとった運動制御を行う。また、これら2種類とは別に、「標準」より安全性が高く「最安全」より安全性が低い中間的な安全基準を連続的に利用する。
 図6は、安全基準決定部A007による安全基準の決定方法を説明する図である。安全基準決定部A007は、軌道比較部A006cにより算出された軌道偏差eが大きくなるほど、制御対象の安全な運動制御が行われるように制御内容を変更する。図6では、軌道偏差eが閾値th1以下のとき安全基準を「標準」に、軌道偏差eが閾値th2以上のとき安全基準を「最安全」に決定している。なお、閾値th2は、閾値th1よりも大きい。これらの閾値th1、th2は予測軌道算出部A006aにより算出される予測軌道の分散に従って設計することが望ましい。例えば、分散の平方根である標準偏差σを利用すれば、軌道偏差eが予測に対してどの程度の確率で発生する現象なのかを判断しやすい。つまり、th1をσとすれば、およそ68%一致するはずの軌道を逸脱する事態に対応する制御、th2を2σとすれば、およそ95%一致するはずの軌道を逸脱する事態に対応する制御を行うといった設計が可能になる。
 なお、図6ではth1、th2のように2つの閾値を持たせ、安全基準を連続的に構成しているが、安全基準はこのような形式に限定されるものではない。例えば、閾値を1つだけ設けて、軌道偏差eが閾値未満のとき安全基準を「標準」に決定し、軌道偏差eが閾値以上のとき安全基準を「最安全」に決定するようにしてもよい。
 上述のとおり、図1に示す本実施形態に係るコントローラA101は、所定時間(所定ステップ)前に非制御対象(移動体、歩行者)を検出してから予測軌道を算出し、その後、所定時間(所定ステップ)の移動実績としての実軌道を得ることで、予測軌道と実軌道とを比較する。つまり、非制御対象(移動体、歩行者)を検出したタイミングと制御が実施可能になるタイミングが異なる点に注意が必要である。安全性を重視する場合、コントローラA101は、非制御対象(移動体、歩行者)を検出した時点では、軌道偏差eを閾値th2以上の初期値に設定しておき、実際に軌道偏差eが算出できるようになったら、軌道偏差eを初期値から変更することが望ましい。
 車両運動演算部A008は、制御対象位置算出部A003により算出された制御対象の位置、非制御対象位置算出部A005により算出された非制御対象の位置、および、安全基準決定部A007により決定された安全基準に基づき、制御対象の運動制御を行う。
 制御対象が半自動運転車両の場合、車両運動演算部A008は、安全基準が「標準」よりも高くなると、車両速度制御に干渉して、減速、もしくは、停止を行うよう、アクチュエータ制御器B001に指示する。アクチュエータ制御器B001はこの指示に従い、ブレーキに接続されたアクチュエータB002を駆動する。一方、安全基準が「標準」以下であるときは、運転者の操作に干渉する必要はない。
 制御対象車両が自動運転車両の場合、車両運動演算部A008は車両運動全般に関する制御機能も併用する。
 図7は、四輪車両の運動制御を説明する模式図である。制御対象が図7に示す四輪車両006の場合、車両の位置の座標(x,y)と方位角θをまとめたベクトルp=[x y θ]を考えると、簡易ダイナミクスを次式(2a)、(2b)で与えることができる。方位角θは、基準方位と車両の前後方向に延在する軸とのなす角に相当する。なお、式(2a)においてLは図7に示す通り、車両の前輪と後輪との間の距離である。また、式(2a)、(2b)における制御入力ucは車両速度vとステアリング角度φである。
Figure JPOXMLDOC01-appb-M000002
 一方、非制御対象が歩行者である場合、歩行者の位置の座標(xu,yu)をまとめたベクトルq=[xu yu]を考えると、非制御対象の簡易ダイナミクスは次式(3a)、(3b)で与えることができる。式(3a)、(3b)は非制御対象が歩行者であることを前提として、位置座標がx,yいずれの方向にも自在に動作できるモデルを仮定している。式(3a)、(3b)における制御入力uuは、非制御対象の速度vのx方向成分vxおよびy方向成分vyである。なお、非制御対象が車両の場合、式(2a)、(2b)と同じ形式の運動方程式を利用することになる。
Figure JPOXMLDOC01-appb-M000003
 上式(2a)および(2b)、ならびに式(3a)および(3b)それぞれの微分方程式は、サンプリング周期Δtを用いて次式(4a)、(4b)のように離散化することができる。ここで、p(k)は時刻k(演算ステップk)における制御対象の状態ベクトルであり、p(k+1)はその次の時刻k+1(次の演算ステップk+1)における制御対象の状態ベクトルである。同様に、q(k)は時刻k(演算ステップk)における非制御対象(歩行者)の状態ベクトルであり、q(k+1)はその次の時刻k+1(次の演算ステップk+1)における非制御対象(歩行者)の状態ベクトルである。
Figure JPOXMLDOC01-appb-M000004
 まず、安全基準が「標準」のとき、つまり、非制御対象が予測軌道の範囲に従っているときの車両運動演算部A008による制御内容について説明する。制御対象の動きは上式(4a)に従って予測することができる。また、非制御対象の動きは上式(4b)に従って予測することができる。環境認識器A001および非制御対象位置算出部A005によって、現在時刻k0における非制御対象の位置(xu,yu)と速度(vx,vy)が利用できるものとする。このとき、非制御対象の位置の分散は次式(5)に従って変化していく。ここで、Pは非制御対象の位置の分散行列であり、Qwはプロセス雑音の分散である。
Figure JPOXMLDOC01-appb-M000005
 また、環境認識器A001によって、非制御対象の大まかなサイズが取得できており、非制御対象を半径rの円で囲むことができるとする。もし、非制御対象のサイズ(半径r)が取得できなかった場合、対象識別部A004が、識別した非制御対象の属性(歩行者、自転車など)に従って半径rを設定してもよい。例えば、対象識別部A004は、非制御対象の属性が歩行者の場合には半径rを1.5メートルに設定し、非制御対象の属性が自転車の場合には半径rを2メートルに設定する。
 一方、制御対象の全長をlc、全幅をwcとした場合、制御対象は次式(6)に示す半径rcの円で囲むことができる。
Figure JPOXMLDOC01-appb-M000006
 図8は、制御対象と非制御対象の位置関係を示す模式図である。以上の仮定より、非制御対象と制御対象は図8に示す位置関係、つまり、次式(7a)、(7b)、(7c)を満足する限りお互いが接触することは無いと言える。なお、式(7a)、(7b)におけるdpqは制御対象の中心と非制御対象の中心とを結ぶ線分の長さ、すなわち制御対象と非制御対象との間の距離に相当する。また、式(7c)におけるraは、非制御対象の予測軌道に対する不確定性を考慮した半径の増加分であり、非制御対象の位置の分散行列Pから算出される標準偏差に相当する。αは調整パラメータ(0より大きい)である。例えばα=2とすれば、予測軌道が正しいという仮定の下、95%の確率で接触しないという設計になる。
Figure JPOXMLDOC01-appb-M000007
 制御対象を自動制御するには、車両の位置が目標軌道pr=[xr yr θr]に追従するように制御を行えばよい。例えば、一般公道を走行する車両の場合、現在の車両位置から数メートル先の車道の中心に目標軌道を設ければよい。
 このような追従制御にはモデル予測制御の考えを用いるのが好適である。つまり、次式(8)の評価関数Jを拘束条件(7a)、(7b)、(7c)を満足するという制約条件の下、最小化するように制御入力ucを求める制御問題として定式化することができる。なお、Q,Rは重み行列、Npは予測ステップである。以上は、一般的なモデル予測制御の定式化であるため、詳細な説明は省略する。
Figure JPOXMLDOC01-appb-M000008
 次に、安全基準が「標準」よりも低いとき、つまり、非制御対象が予測軌道を逸脱しているが、安全な軌道をとっているときの車両運動演算部A008による制御内容について説明する。
 このような状況では、制御対象である車両が移動速度を上げても安全性を維持することが可能になる。よって、モデル予測制御に利用する評価関数(式(8))における重みQを大きくし、制御対象車両の目標軌道への追従性を上げればよい。あるいは、重みRを小さくし、より大きな制御入力ucの発生を許容してもよい。
 なお、安全基準が「標準」よりも低い時には、安全基準が「標準」の時と同じ制御内容としてもよい。
 つぎに、安全基準が「標準」よりも高いとき、つまり、非制御対象が予測軌道を逸脱し、かつ、危険な軌道をとっているときの車両運動演算部A008による制御内容について説明する。
 非制御対象の挙動は予測できていないが、そのダイナミクスは式(4b)に従うと仮定する。さらに、対象識別部A004において、非制御対象の属性(歩行者、自転車など)を識別できていると仮定する。車両運動演算部A008はこの属性に従って非制御対象の移動速度の最大値を設定する。例えば、非制御対象が歩行者に属する場合は移動速度の最大値を時速5キロメートル、自転車に属する場合は移動速度の最大値を時速20キロメートルとする。なお、非制御対象の属性を識別できなかった場合、車両運動演算部A008は移動速度の最大値を非制御対象が存在する場所に応じた上限値に設定する。例えば、非制御対象が歩道上に存在すれば、移動速度の最大値を自転車相当の時速20キロメートルとする。また、非制御対象が車道上に存在すれば、移動速度の最大値を一般車両相当の時速60キロメートルとする。
 安全基準が標準よりも高いときは、制御対象の制御入力uだけでなく、非制御対象の制御入力uuも計算するモデル予測制御を考える。ただし、非制御対象は制御できないため、モデル予測制御で算出した非制御対象の制御入力uuを実際に利用することはない。
 安全基準が標準よりも高いときは、モデル予測制御で扱う評価関数の一例として、次式(9a)を与える。式(9a)の評価関数J´は、式(8)で表される評価関数Jに式(9b)で表される評価関数Jpを付与した形になっている。ここで、Qu,Ruは重み行列である。
Figure JPOXMLDOC01-appb-M000009
 上式(9b)が与えられることにより得られる効果を説明する。まず、式(9b)の第一項は制御対象と非制御対象の距離dpqの積に重み行列Quをかけたものである。つまり、評価関数Jpを最小化するということは、制御対象と非制御対象の距離dpqを最小化するということである。そして第二項は非制御対象の制御入力uu(非制御対象の速度v)の積に重み行列Ruをかけたものであり、さらに、その値に-1をかけて負の値にしている。つまり、評価関数Jpを最小化するということは、非制御対象の制御入力uu(非制御対象の速度v)を最大化するということである。以上の効果を合わせると、新たに追加した評価関数Jpは、非制御対象が制御対象に最速で近づくことを仮定した問題設計になる。このような問題設計の下、式(7a)、(7b)、(7c)の拘束条件を考慮して制御対象の制御入力ucを算出すれば、非制御対象が危険行動をとる可能性を考慮しつつ、それを回避するような安全な運動を実行させる指令を生成できる。
 なお、上述の通り、非制御対象を検知した直後で予測軌道と実軌道の比較ができない場合も本制御動作が採用される。ただし、環境認識器A001の検知範囲が十分に広ければ、制御対象と非制御対象とが十分に離れているため、式(9b)を考慮しても、拘束条件(7a)、(7b)、(7c)を逸脱するような挙動は発生しにくい。つまり、安全基準が「標準」である場合、式(8)を利用した場合と同じような挙動が生成されることが多い。
 なお、安全基準決定部A007が閾値を1つだけ用いて安全基準を離散的に決定する場合、車両運動演算部A008は、式(8)により表される評価関数Jを最小化するモデル予測制御と、式(9a)により表される評価関数J´を最小化するモデル予測制御とを切り替えればよい。また、安全基準決定部A007が図6に示したように、軌道偏差eが閾値th1を超えた状況から徐々に安全基準を高める場合、車両運動演算部A008は、調整変数β(0≦β≦1)を利用した次式(10)で表される評価関数J´を最小化するモデル予測制御を利用すればよい。つまり、軌道偏差eが閾値th1以下の場合にはβ=0とすれば、式(10)は式(8)と一致する。一方、軌道偏差eが閾値th2以上の場合にはβ=1とすれば、式(10)は式(9a)と一致する。また、軌道偏差eが閾値th1よりも大きく閾値th2未満の場合には、軌道偏差eが大きくなるほど調整変数βを大きくすることで、式(8)と式(9a)の中間的な挙動が実現される。
Figure JPOXMLDOC01-appb-M000010
 運動制御システムB100のアクチュエータ制御器B001は、計算された制御入力uc、すなわち、車両速度vおよびステアリング角度(操舵角)φを実現するように、アクチュエータB002を制御し、アクセル開度やステアリングを変更する。
 図9は、自律制御システムのコントローラA101により実行される処理の流れの一例を示すフローチャートである。図9に示す処理は、所定の制御周期で繰り返し実行される。図9に示すように、ステップS01において、コントローラA101は、環境認識器A001および状態検出器A002から検出値を取得し、メモリに記憶されている検出値を更新する。ステップS02において、コントローラA101は、環境認識器A001により非制御対象である移動体が検出されたか否かを判定する。環境認識器A001により非制御対象が検出された場合、処理はステップS03に遷移する。他方、環境認識器A001により非制御対象が検出されなかった場合、処理はステップS10に遷移する。この場合、車両運動演算部A008は、制御対象のみを考慮した制御動作を実施する。つまり、拘束条件(7a)、(7b)、(7c)を考慮せずに式(8)を最小化するようモデル予測制御を行う。
 ステップS03において、対象識別部A004は、環境認識器A001から取得した環境情報に基づき非制御対象の識別を行う。対象識別部A004は、この識別結果に従って、非制御対象の移動速度限界(制御入力uuの最大値)と非制御対象のサイズ(半径r)とを決定する。ステップS04において、予測軌道算出部A006aは、ステップS03において識別した非制御対象の属性に従って、非制御対象の予測軌道を算出する。
 ステップS05において、実軌道評価部A006bは、非制御対象が実際にとった移動軌道(実軌道)を算出する。ステップS06において、軌道比較部A006cは、ステップS02で非制御対象が検出された時刻から所定時刻が経過しているか否かを判定する。実軌道が短すぎる場合、予測軌道と実軌道の比較ができないため、ステップS05でこのような判定が実施される。所定時間が経過していない場合、処理はステップS07に遷移する。一方、所定時間が経過している場合、処理はステップS08に遷移する。 
 ステップS07に遷移した場合、実軌道が短すぎて予測軌道と実軌道の比較が実施できないため、軌道比較部A006cは軌道偏差eを所定の初期値(閾値th2以上の値)に設定する。ステップS08に遷移した場合、軌道比較部A006cは予測軌道と実軌道を比較して軌道偏差eを算出する。
 ステップS09において、安全基準決定部A007は、ステップS07において設定された、もしくはステップS08において算出された軌道偏差eに従って、安全基準を決定し、利用するモデル予測制御の方式を決定する。ステップS10において、車両運動演算部A008は、ステップS09において決定されたモデル予測制御の方式に従って制御対象車両の制御入力ucを算出する。ステップS11において、車両運動演算部A008は、ステップS10で算出された制御入力ucを実現するようにアクチュエータ制御器B001に制御指示を与える。アクチュエータ制御器B001は、この制御指示に従って各アクチュエータB002の制御を実施する。
 上述した実施形態によれば、次の作用効果を奏する。
 (1)軌道逸脱評価部A006は、非制御対象の属性に対応する非制御対象の移動予測軌道からの、非制御対象の移動軌道の逸脱度合いを評価する。安全基準決定部A007は、非制御対象の属性と、移動予測軌道からの逸脱度合いとに基づき、制御対象の行動に関する安全基準を決定する。車両運動演算部A008(行動修正部)は、制御対象の位置と、非制御対象の位置と、安全基準とに基づき、安全基準が高くなるほど制御対象が非制御対象に接近しなくなるように制御対象の行動を修正する。このようにしたので、周囲の移動体の挙動の予想が困難な場合でも、自動運転車両もしくは半自動運転車両を効率的かつ安全に運転することができる。
 (2)予測軌道算出部A006aは、非制御対象の属性と、所定時間前に算出された非制御対象の位置とに基づいて、軌道の平均値と分散とを算出し非制御対象の移動予測軌道とする。実軌道評価部A006bは、非制御対象の位置の変化を非制御対象の移動軌道として評価する。軌道比較部A006cは、非制御対象の移動予測軌道からの、非制御対象の移動軌道の逸脱度合いを評価する。このようにしたので、非制御対象の属性に応じて移動予測軌道の範囲を的確に定めることができる。
 (3)予測軌道算出部A006aは、非制御対象の属性に基づき、非制御対象が従う運動方程式、非制御対象の移動速度の最大値、および非制御対象のサイズを用いて非制御対象の予測軌道を算出する。このようにしたので、非制御対象の属性に応じて予測軌道を精度良く算出することができる。
 (第2実施形態)
 図10は、第2実施形態に係る自律制御システムが適用された物流倉庫を示す模式図である。倉庫100内には搬送ロボット101a,101b,101cが計3台配置されている。搬送ロボット101a,101b,101cは、作業員とともに搬送作業を行う。本実施形態では、搬送ロボット101a,101b,101cが制御対象であり、作業員等の歩行者102a,102bが非制御対象である。以下の説明において、搬送ロボット101a,101b,101cを搬送ロボット101と総称する。同様に、歩行者102a,102bを歩行者102と総称する。
 倉庫100内には複数のインフラセンサ103が備えられている。複数のインフラセンサ103は、倉庫100内に存在する移動体を監視する。複数のインフラセンサ103による監視情報は、無線通信用のアクセスポイント104を介してサーバ105に展開される。サーバ105は倉庫100内の搬送ロボット101の移動制御計画を算出する機能を有しており、本第2実施形態に係る自律制御システムの演算機能を担う。サーバ105は、第1実施形態で説明したコントローラA101と同様のハードウェア(処理装置、揮発性メモリ、不揮発性メモリ等)を備える。サーバ105と搬送ロボット101は双方向の通信を行う。すなわち、サーバ105は搬送ロボット101が取得したセンサ情報を受信し、搬送ロボット101はサーバ105から行動計画を受信する。搬送ロボット101はLiDARセンサ、IMU、エンコーダなど環境認識器A001および状態検出器A002に相当するセンサを備えている。
 図11は、搬送ロボット101の運動制御を説明する模式図である。搬送ロボット101は差動二輪方式で駆動される。各々の搬送ロボット101に割り付けられたIDに対応する添え字iを利用して、搬送ロボット101の位置の座標(xi,yi)、方位角θiをまとめたベクトルpi=[xi yi θi]で与えた場合、搬送ロボット101は次式(11)の運動方程式に従う。式(11)において、viは搬送ロボット101の速度であり、ωiは搬送ロボット101の角速度であり、uc,iは搬送ロボット101の制御入力である。
Figure JPOXMLDOC01-appb-M000011
 歩行者102にもインフラセンサ103で認識した順にIDが割り付けられる。各IDに対応する添え字jを利用して、歩行者102の位置の座標((xu,j),(yu,j))をまとめたベクトルqj=[xu,j yu,j]で与えた場合、歩行者102は次式(12)の運動方程式に従う。式(12)において、vx,iは歩行者102の速度vのx方向成分であり、vy,jは歩行者102の速度vのy方向成分であり、uu,jは歩行者102の制御入力である。
Figure JPOXMLDOC01-appb-M000012
 上述の第1実施形態と同様に、環境認識器A001に相当するインフラセンサ103もしくは搬送ロボット101に搭載されたLiDARセンサが非制御対象(歩行者)を検知すると、対象識別部A004によって非制御対象の属性(移動特性)が識別される。
 一般公道と異なり、物流倉庫のような限定エリアの場合、倉庫内を移動するロボットや車両(人が操作するフォークリフトを含む)の行動は、倉庫を運用するWMS(Warehouse Management System)で管理されている。このため、制御対象が検知した非制御対象の位置とWMSが管理している車両の業務状況とを紐づけることで、非制御対象の属性(移動特性)を識別してもよい。
 同じく、物流倉庫のような限定エリアの場合、上記のWMSを利用した属性の識別で対応がつかない非制御対象の大部分は歩行者に分類される。ただし、同じ歩行者の分類であっても、限定エリアにおいては、さらに細かい分類を行うことが可能になる。
 例えば、一般に、勤続年数が長い社員のほうが倉庫の運用を熟知しており、危険な行動をとりにくい。同様に、期間限定で働いているアルバイトやパートの作業員は倉庫の運用に慣れていないため、危険な行動をとりやすい。また、倉庫を見学に来た一般人は搬送ロボット101を見たこともないため、さらに危険な行動をとることが予想される。
 以上のような分類は、インフラセンサ103やLiDARセンサで取得した画像や点群情報から類推することは困難である。しかしながら、限定領域であれば、社員証やゲストカードを持っていないと入場することができないため、サーバ105はこのカードと通信することで、カード所有者の属性を取得することができる。対象識別部A004は、非制御対象としての歩行者102が所持しているカードから受信した属性情報に基づき、歩行者102の属性を識別する。
 図12は、第2実施形態に係る安全基準決定部A007による安全基準の決定方法を説明する図である。上述した分類に従えば、安全基準決定部A007を図12に示すように細分化することができる。つまり、軌道逸脱評価部A006で算出した予測軌道と実軌道の軌道偏差eの値が同一であっても、異なる安全基準が決定される。
 例えば、安全基準決定部A007は、対象識別部A004により属性が新入社員、アルバイト、およびパートのいずれかに識別された歩行者102については、標準的な安全基準特性70を採用する。標準的な安全基準特性70は、図6で示す特性と同様であるので、説明を省略する。
 安全基準決定部A007は、対象識別部A004により属性が勤続年数の長い社員と識別された歩行者102については、ベテラン用の安全基準特性71を採用する。勤続年数の長い社員は、新入社員、アルバイト、およびパート等に比べて安全意識が高いため、安全基準を「最安全」まで上げずとも搬送ロボット101と接触するような事態を生じさせないと予想できる。このため、ベテラン用の安全基準特性71は、軌道偏差eが閾値th2以上の場合に安全基準を「最安全」と「標準」の間の「高安全」とする特性とされている。ベテラン用の安全基準特性71は、軌道偏差eが閾値th1よりも大きく閾値th2未満の範囲において、軌道偏差eが大きくなるにしたがって安全基準を高くする特性である。ベテラン用の安全基準特性71は、軌道偏差eが閾値th1以下の場合には、標準用の安全基準特性70と同様、安全基準を「標準」とする特性である。
 安全基準決定部A007は、対象識別部A004により属性がゲストと識別された歩行者102については、ゲスト用の安全基準特性72を採用する。安全意識が高くないであろうゲストカード所持者については、たとえ予想軌道と実軌道が一致しても安全基準を「標準」よりも高くすることが好ましい。これにより、歩行者(ゲスト)102が急に搬送ロボット101に接近したとしても、歩行者(ゲスト)102と搬送ロボット101との接触を回避しやすくなる。ゲスト用の安全基準特性72は、軌道偏差eが0以上かつ閾値th1未満の範囲では、安全基準を「標準」と「最安全」の間の「高安全」とする特性である。さらに、ゲスト用の安全基準特性72は、軌道偏差eが閾値th1よりも大きく閾値th2未満の範囲において、軌道偏差eが大きくなるにしたがって安全基準を高くし、軌道偏差eが閾値th1と閾値th2の中間の値以上の場合に安全基準を「最安全」とする特性である。
 以下、制御対象と非制御対象とがそれぞれ複数存在するときに、車両運動演算部A008で実行される制御演算について説明する。
 まず、安全基準決定部A007が安全基準を「標準」に決定したときの車両運動演算部A008による制御内容を説明する。搬送ロボット101と歩行者102とが接触しないための条件は、次式(13a)、(13b)、(13c)、(13d)で表される。IDがiの搬送ロボット101(i)を囲む半径rc,iは式(13a)で与えることができる。また、IDがjの歩行者102(j)を囲む半径rjは環境認識器A001の検出結果に従って算出される。さらに、歩行者102(j)の予測軌道に対する不確定性を考慮した半径の増加分ra,jは式(13b)で与えることができる。搬送ロボット101(i)と歩行者102(j)の距離dijは式(13c)で与えることができる。以上の準備の下、搬送ロボット101(i)と歩行者102(j)が接触しないための条件は、式(13d)で与えることができる。
Figure JPOXMLDOC01-appb-M000013
 なお、制御対象である搬送ロボット101が複数台存在する場合、搬送ロボット101同士が接触しないための条件も必要になるが、その条件の算出方法は式(13a)、(13b)、(13c)、(13d)と同様なので説明を省略する。
 搬送ロボット101(i)が従うべき目標経路riが与えられている場合、搬送ロボット101(i)について考慮すべき評価関数Jiは、制御対象が1台のときの式(8)に倣って、次式(14)で与えることができる。
Figure JPOXMLDOC01-appb-M000014
 すべての搬送ロボット101の行動を最適化するには各搬送ロボット101の評価関数Jiの総和Jを考えた次式(15)を最小化する制御入力uc,iを、搬送ロボット101と歩行者102とが接触しないための拘束条件である式(13a)、(13b)、(13c)、(13d)を考慮して求めればよい。式(15)において、Nは搬送ロボット101の台数であり、図10に示す例ではN=3になる。
Figure JPOXMLDOC01-appb-M000015
 サーバ105は、算出した制御入力uc,iを各搬送ロボット101に配信する。搬送ロボット101は自身に備えられている運動制御システムB100を利用してアクチュエータB002を駆動する。
 次に、安全基準決定部A007が安全基準を「最安全」に決定したときの車両運動演算部A008による制御内容を説明する。非制御対象が複数存在する場合、考慮すべき評価関数J´は、非制御対象が1つのときの式(9a)、(9b)に倣って、次式(16a)、(16b)で与えることができる。ここで、Mは非制御対象の数であり、図10に示す例ではM=2になる。式(16b)において、vjは、IDがjの歩行者102の速度である。また、式(16b)に含まれる関数mj(ε(k))は式(16c)、(16d)、(16e)、(16f)によって与えることができる。式(16a)の評価関数J´は、前述の問題設定と同様に、式(15)の評価関数Jに非制御対象が制御対象に最速で近づくこと意図した評価関数Jpを加えた形になっている。ただし、制御対象と非制御対象が複数存在する場合、どの制御対象に近づくのかを考慮しないと安全性を向上する効果を十分に付与することができない。この問題を考慮するために、式(16c)に式(16f)の関数h(ε(k))が含まれている。なお、式(16c)において、Wは所定の係数である。
Figure JPOXMLDOC01-appb-M000016
 図13は、関数h(ε(k))と関数ε(k)の関係の一例を示す図である。式(16d)、(16e)により算出される関数ε(k)は、IDがiの搬送ロボット101(i)とIDがjの歩行者102(j)の距離の二乗に相当する。関数ε(k)が大きい場合、つまり、搬送ロボット101(i)と歩行者102(j)とが十分に離れている場合には、式(16f)は0になる。このとき式(16c)も0になる。一方、関数ε(k)が小さい場合、つまり、搬送ロボット101(i)と歩行者102(j)とが近い場合には、式(16f)に示す関数h(ε(k))が1の値をとる。このような条件のときのみ、式(9a)、(9b)と同様、評価関数Jに評価関数Jpが加えられた状況になる。つまり、歩行者102(j)は距離が近い搬送ロボット101(i)に近づくという状況で搬送ロボット101(i)が歩行者102(j)に接触しないような制御入力ucを算出する問題になる。
 式(16a)、(16b)の評価関数と式(13a)、(13b)、(13c)、(13d)の拘束条件を考慮したモデル予測制御に従って算出した制御入力ucを用いれば、安全基準が「標準」の場合よりも、さらに安全な行動を搬送ロボット101にとらせることができる。
 上述した第2実施形態によれば、次の作用効果を奏する。
 (1)対象識別部A004は、非制御対象に設けられた非制御対象の属性を識別可能なカード(デバイス)により非制御対象の属性を識別する。このようにしたので、非制御対象の属性を予め定めておき制御対象の運動制御に活用することが可能になる。
 (2)安全基準決定部A007は、対象識別部A004により識別された非制御対象の属性、および、軌道逸脱評価部A006により評価された非制御対象の移動予測軌道からの逸脱度合いが同一であっても、非制御対象の属性を識別可能なカード(デバイス)に設定された非制御対象の安全行動に関する評価値が異なれば、異なる安全基準を決定する。このようにしたので、非制御対象の属性や振る舞いだけでなく非制御対象の評価値も用いたより柔軟な運動制御を行うことができる。
 以上、一般公道を走行する車両と物流倉庫における搬送ロボットを例に本発明の実施形態を詳細に述べたが、本発明の適用先はこれらに限定されないことは言うまでもない。たとえば、港湾における搬送車両やテーマパーク内を移動するロボットなどにも本発明を活用できる。
 次のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、上述の異なる実施形態で説明した構成同士を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせることも可能である。
 <変形例1>
 図14は、変形例1に係る自律制御システムの構成を示す図であり、制御対象の移動体である車両001および非制御対象の移動体である歩行者002を示す。第1実施形態では、制御対象に環境認識器A001が搭載されている例について説明した。しかしながら、制御対象の周辺情報を収集できれば、環境認識器A001は制御対象に搭載されている必要はない。図14に示す例では、制御対象の車両001とは物理的に離れた場所に、環境認識器A001としてのインフラセンサ003が設置されている。インフラセンサ003は、取得した歩行者002のセンサ情報を、無線システム004を介して車両001に提供する。このようにすることで、例えば限定された空間内で多数の車両を用いる場合などに車両1台あたりのコストや重量、燃料消費量などを削減することができる。
 <変形例2>
 図6で説明した例では軌道偏差eのみで安全基準を決定しているが、安全基準決定部A007はこのような形態に限定されない。例えば、軌道偏差eが大きくなる図5(c)のような歩行者002の挙動が確認されたとしても、図5(d)のように、歩行者002が遠方から接近してくる車両90に気づいたうえでの回避行動をとったとすると、この歩行者002は安全志向が強いと判断される。一方、図5(d)と類似した状況でも、図5(e)のように、遠方の車両90に接近するような実軌道が確認された場合は、この歩行者は危険行動をとっていると判断される。
 よって、図5(d)のように制御対象から非制御対象が離れる場合は負、図5(e)のように制御対象に非制御対象が近づく場合は正の符合を付与した修正軌道偏差e’(図15参照)を利用して安全基準を決定してもよい。軌道逸脱評価部A006は、所定時間経過後の制御対象と非制御対象との間の距離(以下、相対距離とも記す)の予測値を演算して保持し、実際に上記所定時間が経過したときの相対距離の実測値と比較する。軌道逸脱評価部A006は、相対距離の実測値が予測値よりも大きい場合には、制御対象から非制御対象が離れていると判断する。軌道逸脱評価部A006は、相対距離の実測値が予測値以下の場合には、制御対象に非制御対象が近づいていると判断する。
 図15は、変形例2に係る安全基準決定部A007による安全基準および自車両の優先度の決定方法を説明する図である。修正軌道偏差e’が負、つまり、非制御対象が制御対象を回避するような動作をとった場合には、制御対象が利己的な行動を行っても安全性は損なわれない。図15の縦軸は、横軸より上側に向かうにしたがって安全基準が高くなり、横軸より下側に向かうにしたがって自車両(制御対象)の優先度が高くなることを模式的に示している。図15では、修正軌道偏差e’が負の場合、安全基準は維持(β=0を維持)しつつ、修正軌道偏差e’の絶対値が大きくなるほど、自車両の優先度を上げる例について示している。
 本変形例において、評価関数J´は、式(10)の右辺第一項に係数γを乗じることで与えられる(J´=γJ+βJp)。安全基準決定部A007は、修正軌道偏差e’が負の場合、修正軌道偏差e’の絶対値が大きくなるほど、すなわち自車両の優先度が高くなるほど係数γを大きくする。
 図15に示す例では、修正軌道偏差e’が負の場合において、修正軌道偏差e’が0以下であり閾値th3以上の場合には、優先度が標準に設定される。なお、修正軌道偏差e’が0以上の場合も同様に、優先度が標準に設定される。この場合、係数γは1に設定される。なお、閾値th3は、0未満の値であり、例えば閾値th1に-1を乗じた値である。修正軌道偏差e’が閾値th4以下である場合には、優先度が最優先に設定される。この場合、係数γは1よりも大きい所定値γ1に設定される。なお、閾値th4は、閾値th3未満の値であり、例えば閾値th2に-1を乗じた値である。修正軌道偏差e’が閾値th3未満であり閾値th4よりも大きい場合には、修正軌道偏差e’の絶対値が大きくなるほど、優先度が高くなる。つまり、修正軌道偏差e’の絶対値が大きくなるほど係数γが増加する。
 係数γが大きい場合、制御対象の速度を上昇させることができるので、制御対象による作業の効率を向上することができる。例えば繁忙期の工場で動作する工程間搬送車両に、このような制御方式を適用することで、工場の生産性向上に寄与し得る。
 以上のとおり、本変形例に係る安全基準決定部A007は、軌道逸脱評価部A006により評価された予測軌道からの逸脱度合いが所定の閾値よりも大きい場合(e>th1)であって、非制御対象が制御対象に近づく挙動が確認されたときには、制御対象の行動に関する安全基準を現在の基準よりも安全な側(高い側)に変更する。一方、安全基準決定部A007は、軌道逸脱評価部A006により評価された予測軌道からの逸脱度合いが所定の閾値よりも大きい場合(e>th1)であって、非制御対象が制御対象から離れる挙動が確認されたときには、安全基準を高い側に変更しない。つまり、本変形例によれば、非制御対象の属性だけでなく非制御対象の挙動をも考慮した正確な安全基準を定めることができる。
 なお、安全基準および自車両の優先度の決定に用いる特性は、図15に示す例に限定されない。例えば、優先度の決定に用いる特性は、修正軌道偏差e’が閾値th3以下である場合に優先度を最優先に設定する特性であってもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 なお、上記の自律制御システムA100に係る各構成や当該各構成の機能および実行処理等は、それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現してもよい。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。
A001…環境認識器、A002…状態検出器、A003…制御対象位置算出部、A004…対象識別部、A005…非制御対象位置算出部、A006…軌道逸脱評価部、A006a…予測軌道算出部、A006b…実軌道評価部、A006c…軌道比較部、A007…安全基準決定部、A008…車両運動演算部、A100…自律制御システム、A101…コントローラ、B001…アクチュエータ制御器、B002…アクチュエータ、B100…運動制御システム

Claims (6)

  1.  行動を制御可能な移動体である制御対象と、行動を制御できない移動体である非制御対象とが混在する領域において、前記制御対象と前記非制御対象とが接触しないように前記制御対象の行動を制御する自律制御システムであって、
     前記制御対象の位置を算出する制御対象位置算出部と、
     前記非制御対象の属性を識別する対象識別部と、
     前記非制御対象の位置を算出する非制御対象位置算出部と、
     前記対象識別部により識別された前記非制御対象の属性に対応する前記非制御対象の移動予測軌道からの、前記非制御対象位置算出部により算出された前記非制御対象の移動軌道の逸脱度合いを評価する軌道逸脱評価部と、
     前記対象識別部により識別された前記非制御対象の属性と、前記軌道逸脱評価部により評価された前記移動予測軌道からの逸脱度合いとに基づき、前記制御対象の行動に関する安全基準を決定する安全基準決定部と、
     前記制御対象位置算出部により算出された前記制御対象の位置と、前記非制御対象位置算出部により算出された前記非制御対象の位置と、前記安全基準決定部により決定された前記安全基準とに基づき、前記安全基準が高くなるほど前記制御対象が前記非制御対象に接近しなくなるように前記制御対象の行動を修正する行動修正部と、
    を備える自律制御システム。
  2.  請求項1に記載の自律制御システムにおいて、
     前記軌道逸脱評価部は、
      前記対象識別部により識別された前記非制御対象の属性と前記非制御対象位置算出部により所定時間前に算出された前記非制御対象の位置とに基づいて、軌道の平均値と分散とを算出し前記非制御対象の前記移動予測軌道とする予測軌道算出部と、
      前記非制御対象位置算出部により算出された前記非制御対象の位置の変化を前記非制御対象の前記移動軌道として評価する実軌道評価部と、
      前記予測軌道算出部により算出された前記非制御対象の前記移動予測軌道からの、前記実軌道評価部により評価された前記非制御対象の前記移動軌道の逸脱度合いを評価する軌道比較部と、
    を備える自律制御システム。
  3.  請求項2に記載の自律制御システムにおいて、
     前記予測軌道算出部は、前記対象識別部により識別された前記非制御対象の属性に基づき、前記非制御対象が従う運動方程式、前記非制御対象の移動速度の最大値、および前記非制御対象のサイズを用いて前記非制御対象の前記移動予測軌道を算出する自律制御システム。
  4.  請求項1に記載の自律制御システムにおいて、
     前記安全基準決定部は、前記軌道逸脱評価部により評価された前記移動予測軌道からの逸脱度合いが所定の閾値よりも大きい場合、前記安全基準を現在の基準よりも安全な側に変更するが、前記非制御対象が前記制御対象から離れる挙動が確認された場合は、前記安全基準を変更しない自律制御システム。
  5.  請求項1に記載の自律制御システムにおいて、
     前記対象識別部は、前記非制御対象に設けられた前記非制御対象の属性を識別可能なデバイスにより前記非制御対象の属性を識別する自律制御システム。
  6.  請求項5に記載の自律制御システムにおいて、
     前記安全基準決定部は、前記対象識別部により識別された前記非制御対象の属性、および、前記軌道逸脱評価部により評価された前記非制御対象の前記移動予測軌道からの逸脱度合いが同一であっても、前記非制御対象の属性を識別可能なデバイスに設定された前記非制御対象の安全行動に関する評価値が異なれば、異なる安全基準を決定する自律制御システム。
PCT/JP2023/025029 2022-08-24 2023-07-05 自律制御システム WO2024042881A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022133333A JP2024030429A (ja) 2022-08-24 2022-08-24 自律制御システム
JP2022-133333 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024042881A1 true WO2024042881A1 (ja) 2024-02-29

Family

ID=90013036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025029 WO2024042881A1 (ja) 2022-08-24 2023-07-05 自律制御システム

Country Status (2)

Country Link
JP (1) JP2024030429A (ja)
WO (1) WO2024042881A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053846A (ja) * 2014-09-03 2016-04-14 株式会社デンソーアイティーラボラトリ 自動運転支援システム、自動運転支援方法及び自動運転装置
WO2021020311A1 (ja) * 2019-07-26 2021-02-04 株式会社Soken 車両制御装置、車両制御方法、自動運転装置及び自動運転方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053846A (ja) * 2014-09-03 2016-04-14 株式会社デンソーアイティーラボラトリ 自動運転支援システム、自動運転支援方法及び自動運転装置
WO2021020311A1 (ja) * 2019-07-26 2021-02-04 株式会社Soken 車両制御装置、車両制御方法、自動運転装置及び自動運転方法

Also Published As

Publication number Publication date
JP2024030429A (ja) 2024-03-07

Similar Documents

Publication Publication Date Title
CN112368662B (zh) 用于自主运载工具操作管理的定向调整动作
Eskandarian et al. Research advances and challenges of autonomous and connected ground vehicles
Bevly et al. Lane change and merge maneuvers for connected and automated vehicles: A survey
US10627825B2 (en) Using discomfort for speed planning in autonomous vehicles
US11608060B1 (en) Speed planning for autonomous vehicles
US10824155B2 (en) Predicting movement intent of objects
US9340207B2 (en) Lateral maneuver planner for automated driving system
US11634134B2 (en) Using discomfort for speed planning in responding to tailgating vehicles for autonomous vehicles
US11400941B2 (en) Moving body behavior prediction device
AU2017343547A1 (en) Planning stopping locations for autonomous vehicles
US20070043502A1 (en) System for and method of detecting a collision and predicting a vehicle path
WO2018235239A1 (ja) 車両用情報記憶方法、車両の走行制御方法、及び車両用情報記憶装置
JP2021160530A (ja) 車両制御装置、車両制御方法、及びプログラム
US20220366175A1 (en) Long-range object detection, localization, tracking and classification for autonomous vehicles
CA3094795C (en) Using discomfort for speed planning for autonomous vehicles
EP3934956A1 (en) Exception handling for autonomous vehicles
JP2020019455A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021160531A (ja) 車両制御装置、車両制御方法、及びプログラム
WO2024042881A1 (ja) 自律制御システム
CN113460079B (zh) 车辆控制装置、车辆控制方法及存储介质
US20230030104A1 (en) Lateral gap planning for autonomous vehicles
US20230047336A1 (en) Time gaps for autonomous vehicles
US20230242158A1 (en) Incorporating position estimation degradation into trajectory planning for autonomous vehicles in certain situations
US20230054626A1 (en) Persisting Predicted Objects for Robustness to Perception Issues in Autonomous Driving
Sweigard Development of a Novel Vehicle Guidance System: Vehicle Risk Mitigation and Control