WO2024042828A1 - Surface shape diffusion sheet for reducing black level degradation, reflective screen, video display system, and video display method - Google Patents

Surface shape diffusion sheet for reducing black level degradation, reflective screen, video display system, and video display method Download PDF

Info

Publication number
WO2024042828A1
WO2024042828A1 PCT/JP2023/022602 JP2023022602W WO2024042828A1 WO 2024042828 A1 WO2024042828 A1 WO 2024042828A1 JP 2023022602 W JP2023022602 W JP 2023022602W WO 2024042828 A1 WO2024042828 A1 WO 2024042828A1
Authority
WO
WIPO (PCT)
Prior art keywords
brightness
black
image
light
surface shape
Prior art date
Application number
PCT/JP2023/022602
Other languages
French (fr)
Japanese (ja)
Inventor
芳人 鈴木
修 広田
晴喜 木下
俊樹 岡安
Original Assignee
株式会社有電社
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社有電社, 王子ホールディングス株式会社 filed Critical 株式会社有電社
Publication of WO2024042828A1 publication Critical patent/WO2024042828A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present invention relates to a surface shape diffusion sheet that reduces black floating applied to a reflective screen, a reflective screen equipped with this diffusion sheet, a video display system equipped with this reflective screen, and this reflective screen (hereinafter referred to as The present invention relates to an image display method using an image projection device (also simply referred to as a screen) and an image projection device.
  • an image projection device also simply referred to as a screen
  • the reflective screen referred to here is a screen that diffuses and reflects the image light from an image projection device (also called a projector) on the front side of the screen (observer side) to the front side and emits it, and the surface of the screen
  • an image projection device also called a projector
  • Reflective screens suffer from a phenomenon called a hot spot, where incident image light appears as a bright spot on the surface of the screen, and a phenomenon called hot spot, where the brightness of ceiling lights and windows near the screen is reflected on the surface of the screen. There is a phenomenon called.
  • a surface-shaped diffusion layer having an uneven surface with a pitch of several micrometers to several tens of micrometers is provided on the screen surface to diffuse hot spots and reflected light on the screen surface and make it less noticeable.
  • the combination of the surface shape diffusion layer and the underlying substrate is called a surface shape diffusion sheet.
  • the surface of the surface shape diffusion layer is the screen surface
  • not only the image light from the projector, but also external light from ceiling lights, floors, walls and windows in front of the screen (unwanted light other than the image light) light) is also diffused on the surface of the screen.
  • a part of the light is reflected to the front side by the surface of the screen, and the rest reaches the reflective layer inside the screen, is reflected, and is emitted to the front side.
  • These so-called external light diffuse reflection lights are superimposed on the image light, so they generate so-called noise light and deteriorate the image quality of the image to be observed.
  • black floating This phenomenon is called "black floating” because it particularly increases the brightness of black in the image.
  • black floating occurs due to external light, the contrast, gradation expression, and color reproducibility of the image are significantly impaired, resulting in images that lack sharpness, blacks that are not sharp, and look like gray, and the overall colors of the image become less vivid. Instead, the image appears thin and blurry, making it difficult to reproduce a clear image.
  • This black cast depends on the intensity of outside light, so it can be prevented by turning off the ceiling lights in the room and blocking the windows with curtains to prevent outside light from entering the screen.
  • it is also important to look at large displays, check each other's facial expressions, view materials at hand, and take notes. If these actions become impossible by making the room dark, the efficiency of classes and meetings will be significantly reduced.
  • Contrast is expressed as the ratio of white luminance to black luminance, and therefore deteriorates by the amount that black luminance increases due to black floating.
  • gradation expression is determined by the value of the difference between white luminance and black luminance, the luminance range of gradation expression becomes narrower as the black luminance increases.
  • the present invention provides a surface-shaped diffusion sheet that reduces the deterioration in image quality caused by external light from ceiling lights, which has the greatest effect on the above-mentioned black floating, and all external light in the bright environment of a reflective screen.
  • a reflective screen with Furthermore, the present invention provides a video display system and a video display method that can reduce the deterioration of the color reproducibility of the video on the reflective screen and correct the deteriorated color reproducibility of the video.
  • the present inventors have made extensive studies, and have made the surface shape diffusion layer of the surface shape diffusion sheet an anisotropic surface shape diffusion layer that limits the diffusion angle in the vertical direction, and We have found that lowering the transmittance of the substrate underlying the anisotropic diffusion layer in the visible wavelength band is an effective solution. Furthermore, the present inventors have found that the deterioration in color reproducibility of an image can be quantified by expressing black floating using numerical values of an RGB color model.
  • a surface shape diffusion sheet provided on the surface of a reflective screen that diffuses and emits image light from an image projection device surface shape anisotropic diffusion layer
  • a flat substrate is provided as a base of the surface shape anisotropic diffusion layer
  • the diffusion angle of the surface of the anisotropic surface shape diffusion layer in the in-plane vertical direction is within the range of ⁇ 14° (half width)
  • a surface shape diffusion sheet for reducing black floating characterized in that the inside or surface of the substrate has a transmittance T in the visible wavelength band of 0.5 or more and less than 1.
  • a reflective screen equipped with a diffusion sheet on the surface The diffusion sheet is the surface shape diffusion sheet described in [1] above, A reflective layer, a protective film, and a retaining plate are sequentially arranged and bonded from the substrate to the back side, a bonding surface between the reflective layer and the substrate serves as a surface that reflects the image light;
  • the protective film is a film that covers the reflective layer,
  • a reflective screen characterized in that the holding plate is a plate that maintains flatness of the substrate.
  • a lens layer disposed and bonded between the substrate and the reflective layer,
  • the lens layer is made of a Fresnel lens having a reflective surface shape on the back side,
  • the image projection device projects image light
  • the black floating amount calculation means calculates the black floating amount Lb as an integer part of the value of the formula: 255 ⁇ Kmin/Kw
  • a video display system characterized by: [6] In place of or in addition to the brightness adjustment means, an image light output adjustment means is provided, The video display system according to [5], wherein the video light output adjustment means increases the brightness of the white color from Kw to Kw ⁇ (1+2Lb/255) to reduce black floating.
  • the present invention it is possible to reduce black floating due to external light from ceiling lights, which is most affected by reflective screens in bright environments, and all other external light. Furthermore, even if the color reproducibility of the image deteriorates due to black floating, it can be corrected, and furthermore, it is possible to prevent the deterioration of the color reproducibility, which is an excellent effect.
  • FIG. 1 is a schematic diagram showing an example of a surface shape diffusion sheet according to the present invention.
  • FIG. 2 is a schematic diagram showing an example of a reflective screen equipped with the surface shape diffusion sheet of FIG. 1 and the arrangement of an image projection device.
  • (a) is a schematic diagram showing the positional relationship between the reflective screen and the ceiling light
  • (b) is a schematic diagram showing the positional relationship between the ceiling light, reflective screen, projector, and measurement device (luminance meter) in black floating measurement.
  • (a) is a schematic diagram showing an example of a reflective screen according to the present invention, and (b) is a sectional view in the thickness direction of the screen in (a).
  • FIG. 2 is a schematic diagram showing ray tracing of incident light and reflected light of external light by the Fresnel lens of the spatial imaging iris surface type reflective screen according to the present invention.
  • FIG. 2 is a schematic diagram showing an example of an internal optical system of an image projection device.
  • FIG. 3 is a diagram showing a visual target display pattern for examining the relationship between black floating and color reproducibility.
  • FIG. 7 is a diagram showing the relationship between the amount of black floating and the amount of reduction in the brightness of the viewed object, using the brightness of the viewed object as a parameter.
  • FIG. 3 is a diagram showing the relationship between the brightness of a visual object and the amount of brightness reduction using the amount of black floating as a parameter.
  • FIG. 7 is a diagram illustrating a display pattern of a visual target for confirming a decrease in brightness, with the amount of black floating being 255, and the visual target being white in (a) and green in (b).
  • FIG. 7 is a diagram illustrating a display pattern of a visual target for confirming a decrease in brightness, with the amount of black floating being 255, and the visual target being white in (a) and green in (b).
  • FIG. 7 is an explanatory diagram showing a method of correcting a decrease in brightness in a color non-reproducibility brightness range when the black floating amount is 78;
  • FIG. 4 is an explanatory diagram showing that a change in brightness reduction amount with respect to the brightness of a visual object in a color non-reproducibility brightness range can be represented, for example, by a curve having the same shape as the graph line A in the figure.
  • FIG. 3 is a flowchart showing a procedure for calculating a black floating amount value of an RGB color model.
  • FIG. 7 is a diagram showing a black-filled brightness range, a color non-reproduction brightness range, and a color reproduction brightness range when the amount of black float is 78.
  • FIG. 1 is a schematic diagram showing a surface shape diffusion sheet 1 according to the present invention.
  • the reflective screen 4 having the surface-shaped diffusion sheet 1 on its surface reflects the image light from the image projection device 5 and diffuses it out.
  • FIG. 2 is a schematic diagram showing a surface shape diffusion sheet 1 according to the present invention.
  • the reflective screen 4 having the surface-shaped diffusion sheet 1 on its surface reflects the image light from the image projection device 5 and diffuses it out.
  • the image projection device 5 sequentially passes image light from a trichromatic light source 130 made of, for example, an LED chip through a diffusion film laminate 122, relay lenses 120a and 120b, and a digital mirror device 134, and then passes it through a plurality of
  • the configuration is such that the light is sequentially reflected by a concave reflecting mirror 140 and a convex reflecting mirror 142 through a projection optical system 138 consisting of a lens and sent to the reflective screen 4. Note that light not directed toward the screen is blocked by a light blocking plate 136.
  • the projection optical system 138 has a diaphragm, and the space inside the diaphragm is called an iris surface 18.
  • the surface shape diffusion sheet 1 includes a surface shape anisotropic diffusion layer 2 and a flat substrate 3 underlying the surface shape anisotropic diffusion layer 2.
  • the surface shape anisotropic diffusion layer 2 is made of an ultraviolet curable resin such as urethane acrylate or epoxy acrylate, or other ionizing radiation curable resin such as an electron beam curable resin, and is flexible.
  • the surface shape anisotropic diffusion layer 2 has a surface shape in which a large number of irregular length protrusions extending in approximately one direction are arranged side by side at irregular intervals in a direction perpendicular to the extending direction. have The height of the protrusions is preferably greater than 0 ⁇ m and less than or equal to 10 ⁇ m.
  • the direction in which the protrusions extend is the vertical direction
  • the direction in which the protrusions are arranged is the left-right direction.
  • the horizontal diffusion angle is larger than the vertical diffusion angle.
  • the vertical diffusion angle and the horizontal diffusion angle can be set to various values by changing manufacturing conditions.
  • the substrate 3 is made of, for example, a transparent resin material and has flexibility.
  • the thickness of the substrate is preferably 50 ⁇ m or more and 250 ⁇ m or less from the viewpoint of ensuring strength and reducing weight.
  • a reflective screen 4 having a surface shape anisotropic diffusion layer 2 on its surface has a reflective layer 8 inside the screen, and a holding plate 10 for maintaining the flatness of the substrate 2 on the backmost side of the screen.
  • the reflective layer 8 has a surface that the incident light reaches in a Fresnel lens surface shape in order to deflect the incident image light in the normal direction of the screen surface. There is.
  • the diffusion angle in the in-plane vertical direction of the surface shape anisotropic diffusion layer 2 is within the range of ⁇ 14° (half width), and the visible light wavelength band is transmitted within or on the surface of the substrate.
  • the ratio T was limited to be within the range of 0.5 or more and less than 1.
  • the ceiling light 11 and other lights other than the image light are reflected.
  • Outside light from other places also enters the screen surface.
  • These external lights are diffused on the screen surface (the surface of the surface shape diffusion layer 2), some of them are reflected on the screen surface toward the front, and the rest reaches the reflective layer 8 inside the screen and is reflected by the reflective layer 8. , emitted from the screen surface to the front side.
  • diffusely reflected light due to external light (hereinafter simply referred to as diffusely reflected light due to external light) is superimposed on the image light, causing black floating in the image. Note that in FIG. 2, only the principal rays of the emitted image light and external light are shown, and the diffused light is not shown.
  • the vertical diffusion angle of the surface shape anisotropic diffusion layer 2 of the surface shape diffusion sheet 1 shown in FIG. 1 is set to ⁇ 14. ° (half width).
  • the range of the diffusion angle is included in the vertical plane perpendicular to the reflective screen surface and the vertical direction, and the normal direction to the screen surface is 0°, and either the clockwise or counterclockwise angle is correct. , the other angle range is negative.
  • FIG. 3(a) shows a general positional relationship between the reflective screen 4A for studying the diffusion angle and the ceiling light 11.
  • the reflective screen 4A is not shown except for the surface shape diffusion layer 2A provided on the screen surface.
  • the surface shape diffusion layer 2A can take various diffusion angles ⁇ in the vertical direction to examine the diffusion angle.
  • the vertical size of the reflective screen 4A is 1H as shown in FIG. Assume that they are located 0.5H above and 0.5H, 1H, 1.5H, and 2H apart in the front direction. Note that the external light diffusely reflected by the ceiling light 11 tends to reach the observation position when it is incident on the top of the reflective screen 4A. Further, since the brightness of external light incident on the top is inversely proportional to the square of the distance r from the ceiling light, the position of 0.5H is the brightest. On the other hand, 1.5H and 2H are easier to reach the observation position.
  • the interaction between the brightness of the outside light and the reflection angle of the diffusely reflected light of the outside light determines the position of the ceiling light 11 where the influence of outside light is the worst, and in the case of FIG. 3, when the position of the ceiling light 11 is 1H , almost the worst condition.
  • the diffusely reflected external light reaches observation positions 2H to 3H at an upward diffusion angle from the principal ray 61 of the diffusely reflected external light by the ceiling light 11 at position 1H, as shown in FIG. This is the case when ⁇ is 14.6° or more (more than 14°). It is obvious that this point is the same even if the surface shape diffusion layer 2A is replaced with the surface shape anisotropic diffusion layer 2. Therefore, in the present invention, the vertical diffusion angle of the anisotropic surface shape diffusion layer 2 is within the range of ⁇ 14° (half width).
  • the diffusion angle in the left-right direction be as large as possible.
  • the surface shape anisotropic diffusion layer 2 of FIG. 2 was measured black floating caused by external light from ceiling lights.
  • the measurement diffusion sheet used was one in which a surface anisotropic diffusion layer 2 having a surface shape as shown in FIG. 1 was formed on a transparent substrate.
  • the diffusion angle of the measurement diffusion sheet is ⁇ 5° (half width) when measured as the diffusion angle of transmitted light that is vertically incident from the shape side (front side).An aluminum reflective layer is provided on the back of the substrate, and the transmitted light is When measured as the diffusion angle of the reflected light reflected by the reflective layer, it was ⁇ 10° (half width), so the value of surface shape diffusion (diffusion angle of the surface shape anisotropic diffusion layer of the measurement diffusion sheet) was ⁇ 10° (half width). It was considered to be within the range of 14° (half width). However, the external light diffusely reflected from the ceiling light also includes light that reaches the reflective layer inside the screen, is reflected by the reflective layer, and is emitted from the screen surface.
  • a reflective screen (referred to as SHL screen 82) was manufactured as the above-mentioned measurement diffusion sheet in place of the surface shape diffusion sheet 1, and measurements were performed in the arrangement shown in FIG. In addition, similar measurements were performed using a commercially available magnetic blackboard screen (referred to as White Matte Screen 81) for comparison.
  • FIG. 3(b) shows the positional relationship among the ceiling light 11, the SHL screen 82 (or white matte screen 81), the projector 5, and the measuring device (luminance meter 30).
  • the positional relationship between the ceiling light 11 and the SHL screen 82 in FIG. 3(b) is almost the same as that between the ceiling light 11 and the reflective screen 4A in FIG. 3(a).
  • the observation position was only 2H, which has stricter conditions than 3H.
  • Table 1 The equipment shown in Table 1 was used for the measurement.
  • Table 2 shows the illuminance at the center of each screen due to the ceiling light 11.
  • Table 2 also shows the measured value of the illuminance of the table surface directly under the ceiling light as a reference value (the illuminance meter is not shown), but according to this, the lighting in the room used for the measurement was relatively bright. It turns out that there is something.
  • the inside or surface of the substrate 3 is colored from transparent to black in order to lower the transmittance T in the visible wavelength band.
  • transparent blackening reducing the transmittance T in the visible light wavelength band inside or on the surface of the substrate 3 is called transparent blackening.
  • the external light that has passed through the substrate 3 twice becomes darker, and black floating is reduced. Regardless of whether the portion where the transmittance T of the substrate 3 is lowered is inside or on the surface of the substrate 3, black floating is reduced.
  • the transmittance T In conventional diffusion sheets, it was common to increase the transmittance T in order to make the image light as bright as possible. Although the present invention has the disadvantage that the image light also becomes darker, priority is given to reducing the deterioration of image quality due to black floating. The reason behind this is that as the light source of projectors has evolved from lamps to LEDs and then to lasers, it has become possible to brighten the image light. However, even if the image light can be brightened in this way, if the image light can be brightened in this way, if the image light can be brightened in this way, if the image light can be brightened in this way, if the image light can be brightened in this way, if the image light can be brightened in this way, if the image light can be brightened in this way, if the transmittance T is less than 0.5, the image will be too dark, so the lower limit of the transmittance T was set at 0.5. The lower limit is preferably 0.7.
  • An example of this method is to uniformly mix an appropriate amount of a UV (ultraviolet light, hereinafter the same) transparent black dispersion into the resin that is the material of the substrate 3 (transparent blackening of the inside of the substrate). Since the surface shape anisotropic diffusion layer 2 of the surface shape diffusion sheet 4 is formed on the substrate 3 by UV polymerization, the substrate 3 used for UV polymerization allows UV light to pass through and has uniform visible light transmittance.
  • a UV ultraviolet
  • the UV-transparent black dispersion liquid is a dispersion liquid that is made of fine particles of a pigment that is black (uniformly absorbs visible light) and UV-transparent, and is made of fine particles such as urethane resin, acrylic resin, ester resin, etc., which are the materials of the substrate 3. Since it is compatible with the resin, by uniformly mixing an appropriate amount of this dispersion liquid with the resin that is the material of the substrate, it is possible to make the inside of the substrate transparent and black.
  • a transparent blackening method in addition to the method of mixing the black dispersion liquid with the substrate material, there is also a method of applying the black dispersion liquid to a resin plate of the substrate material (transparent blackening of the substrate surface), or a method of applying the black dispersion liquid to the resin plate of the substrate material, or using an ND filter. It is also possible to adopt a method of vapor-depositing metal on the same resin plate (transparent blackening of the substrate surface) as shown in the figure below.
  • the substrate 3 has flexibility, and the substrate thickness is preferably 50 ⁇ m or more and 250 ⁇ m or less from the viewpoint of ensuring strength and reducing weight.
  • This reflective screen is a reflective screen equipped with a surface shape diffusion sheet 1 according to the present invention.
  • a reflective layer 8 As an example, in the embodiment shown in FIG. 4, a reflective layer 8, A protective film 9 and a retaining plate 10 are provided.
  • the bonding surface between the reflective layer 8 and the substrate 3 becomes a surface that reflects the image light
  • the protective film 9 is a film that covers the reflective layer 8 from the back side
  • the holding plate 10 maintains the flatness of the front substrate 3. It is a board that does.
  • the reflective layer 8 may be formed by, for example, depositing a thin layer of a metal with high reflectance (reflectance of 70% or more) such as aluminum, silver, or nickel so that it has flexibility, or thin small pieces of aluminum called aluminum flakes. It is preferable to form them by a method such as painting so that these surfaces are aligned parallel to each other.
  • the thickness of the reflective layer 8 is about 0.5 to 0.9 ⁇ m in the case of vapor deposition, and about 10 to 50 ⁇ m in the case of painting, and is determined from the viewpoints of releasability, reflectance, bending strength, etc.
  • the protective film 9 has flexibility and has the function of protecting the reflective layer 8 by suppressing deterioration and peeling of the reflective layer 8, damage to the reflective layer 8, and the like. Furthermore, the protective film 9 has a function of absorbing light.
  • the material for the protective film 9 is a base material such as urethane resin, epoxy resin, acrylic resin, or a mixture of these resins, and a dark color paint such as black or a dark color paint such as black as the light absorbing material. Examples include materials to which dyes, pigments, etc., or beads containing these are added, and various additives having functions such as protecting the reflective layer 8 from deterioration such as oxidation. Further, the thickness of the protective film 9 is preferably 5 to 100 ⁇ m at the thinnest portion from the viewpoint of fully exhibiting the protective function and the light absorption function.
  • the holding plate 10 is for maintaining the flatness of the substrate 3 (specifically, the flatness of the members from the surface shape diffusion sheet 1 to the protective film 9), and is preferably made of a plate, for example, from the viewpoint of ensuring rigidity and reducing weight. It is made of MDF made by compressing wood fibers with a thickness of 1.0 to 3.0 mm and hardening them with adhesive.
  • the holding plate 10 is bonded to the protective film 9 via a bonding layer (not shown) made of an adhesive material such as double-sided tape.
  • a structure in which a magnetic sheet (not shown) with a thickness of 300 to 400 ⁇ m is attached may be used.
  • the thickness of the anisotropic surface shape diffusion layer 2 is 40 ⁇ m, and the thickness of the substrate 3 is 250 ⁇ m.
  • the diffusion in the left and right direction in the anisotropic surface shape diffusion layer 2 appears to be complete diffusion. It is preferable to diffuse in all directions.
  • Fresnel lens as a lens layer: [3] of the present invention Next, one embodiment using a Fresnel lens in the reflective screen according to the present invention will be described.
  • a Fresnel lens In order to prevent the images at the left and right ends of the screen shown in FIG. 4 from becoming dark, it is preferable to use a Fresnel lens.
  • One embodiment using a Fresnel lens has a lens layer 6 disposed and bonded between a substrate 3 and a reflective layer 8, as shown in FIG. 5, and the lens layer 6 has a reflective surface shape on the back side.
  • This is a reflection type screen, which is made of a Fresnel lens having a Fresnel lens, and the joint surface between the reflection layer 8 and the lens layer 6 serves as a surface that reflects the image light.
  • the material of the lens layer 6 is an ultraviolet curable resin such as urethane acrylate or epoxy acrylate, or another ionizing radiation curable resin such as an electron beam curable resin, and is flexible and has a boundary in its thickness direction.
  • the surface is a flat surface on the front side, and the surface on the back side is a Fresnel lens surface in which lens surfaces 6a and non-lens surfaces 6b are alternately arranged in a concentric arc shape.
  • the layer thickness of the lens layer 6 is designed to be limited to about 50 ⁇ m at the maximum.
  • the radial dimension of the Fresnel lens of the lens surface 6a is approximately 100 to 150 ⁇ m, and the dimension of the non-lens surface 6b is approximately 10 ⁇ m at maximum and 0 ⁇ m in an ideal Fresnel lens.
  • "coincidence" allows an error within ⁇ 10%.
  • the principal ray direction of the image light emitted from the left and right ends of the screen is also the normal direction of the screen surface, the image light is diffused twice by the surface-shaped anisotropic diffusion layer 2, and compared with FIG. This makes it easier to reach the observation position.
  • the lens layer 6 made of a Fresnel lens can be formed directly on the back surface of the substrate 3 of the surface shape diffusion sheet 1 by UV polymerization. may be pasted.
  • a reflective layer 8 in which thin pieces of aluminum called aluminum flakes are arranged parallel to the lens surface, and a protective film 9 is further coated on the surface for protection.
  • the thickness of this reflective screen, excluding the holding plate 10, is approximately 400 ⁇ m, so in order to make the screen flat and without unevenness, it must be attached to the holding plate 10 with a thickness of 1.0 to 3.0 mm. is preferred.
  • a screen to which a magnetic sheet (not shown) is attached may be directly attached to a board or wall to which a magnet is attached.
  • the embodiment shown in FIG. 6 differs from the embodiment shown in FIG. 5 only in the Fresnel lens forming the lens layer 6. That is, the lens layer 6 (Fresnel lens) shown in FIG. 5 deflects the image light from the image projection device 5 in the normal direction of the screen, whereas in FIG. It has a condensing function of concentrating light. Optically, the focal lengths f are different from each other.
  • the optical system shown in FIG. 6 is called a spatial imaging iris surface system. Therefore, the reflective screen of this embodiment is also referred to as a spatial imaging iris surface type reflective screen.
  • FIG. 7 is a ray tracing diagram of incident light and reflected light of external light through a Fresnel lens of a spatial imaging iris surface type reflective screen. Since the external light 51 from the floor surface 13 enters the lens surface 6a of the Fresnel lens of the reflective screen 4 from the same direction as the image light 50 from the image projection device 5, it causes black floating.
  • Outside light 52 other than this outside light 51 that enters the lens surface 6a from the ceiling light 11 or the front window 12 is deflected by the lens surface 6a so as not to reach the spatial imaging iris surface 20, so that the outside light 52 does not appear black. It won't be the cause.
  • the surface shape diffusion sheet 1 it is possible to reduce black floating caused by external light 51 to 54, but in order to further reduce black floating caused by external light 53 and 54, the inclination of the non-lens surface 6b of the Fresnel lens is is perpendicular to the screen surface as well as the screen normal direction, or the non-lens surface 6b is excluded from being coated with the reflective layer (for example, a metal film) so that the non-lens surface 6b does not become a reflective surface.
  • the reflective layer for example, a metal film
  • Video display system according to the present invention [5] and [6] of the present invention
  • This image display system is premised on being equipped with the above-described reflective screen 4 according to the present invention and an image projection device 5 (illustrated in FIG. 8) that projects image light.
  • the image projection device 5 is not limited to the one illustrated in FIG. 8, and may include various commercially available projectors.
  • the numerical value 0 to 255 is an integer, called lightness (brightness), and indicates the relative intensity of brightness.
  • the integer part of the value of this formula is used.
  • the integer part may be a value obtained by rounding off, rounding down, or rounding up the decimal point of the calculated value, but in the following, the rounded value is used.
  • red (R), green (G), blue (B) in the RGB color model that constitutes the color of the image, and white, which is a mixture of these, are selected as viewing objects.
  • the visual object was observed while varying the brightness of the object and varying the amount of black floating against a background of black, which corresponds to a black floating black.
  • Lb the brightness of the viewed object
  • 2Lb the amount of black floating against a background of black
  • a "brightness reduction” occurs in which the brightness of the viewed object apparently decreases with respect to the reference value.
  • the reference value here is the brightness of the object to be viewed when the background is black with no black float (both RGB are 0, that is, the black float amount is 0).
  • the brightness of the viewing object is less than Lb, there is a so-called crushed black state in which black gradation cannot be expressed.
  • each color to be viewed is displayed in a circle within each rectangle, and the diameter of the circle is 1.2 cm, and the observation distance is approximately 30 cm, and the left and right colors are viewed from the front to see if there is a difference in brightness between each color. was visually observed.
  • black float occurs, the image becomes grayish and the vividness of the colors is impaired.
  • FIG. 10A shows that when the amount of black float is set to 215, the brightness of each color decreases by about 18 from the reference value. This value was determined by observation by five people, considering that it depends on the individual's visual sense.
  • FIG. 12 shows the relationship between the brightness of the visual object and the amount of brightness reduction using the amount of black floating as a parameter. From this figure, when the brightness of the viewed object becomes twice or more the amount of black floating, the brightness of the viewed object does not decrease.
  • 13(a) and 13(b) show prepared viewing target patterns in order to confirm the brightness range of the viewing object in which the brightness of the viewing object does not decrease.
  • the color reproducibility of the viewed object does not deteriorate in the brightness range where the brightness of the viewed object is twice or more the amount of black floating.
  • the brightness of black floating minimum brightness
  • the brightness of all white is as high as approximately 88 cd/m2.
  • the brightness range of 0 ⁇ L ⁇ Lb is the brightness range in which crushed black occurs as described above (black gradation cannot be expressed due to floating black), and is referred to as the brightness range with crushed black.
  • the minimum value of the brightness range is determined by the minimum brightness that is the source of the amount of black floating, and the maximum value can be expanded by increasing the brightness of full white (white), which is the maximum brightness. Therefore, by adjusting the transmittance T of the substrate 3 of the surface shape diffusion sheet 1 and the white brightness Kw, which is the maximum brightness of the image light from the image projection device 5, the color reproduction brightness range can be widened.
  • the relationship between the amount of black floating Lb and Lmax (maximum value of brightness ⁇ 255) is defined as Lb ⁇ Lmax/4, and the transmittance T of the substrate 3 of the surface shape diffusion sheet 1 is set so as to satisfy this relationship.
  • the image light output from the image projection device 5 is increased by 1/T2 to reduce the black floating amount Lb to a range of 0.25 ⁇ T2 ⁇ 1 and to compensate for the decrease in Lmax. increase to Here, T2 is used because the image light passes through the substrate 3 twice in the reflective screen 4. This makes it possible to lower only Lb without lowering Lmax, and expand the color reproduction brightness range to 2Lb ⁇ T2 ⁇ color reproduction brightness range ⁇ Lmax.
  • the external light reflected on the screen surface was sufficiently smaller than the external light reflected on the reflective layer 8 inside the screen.
  • the color reproduction brightness range is The lower limit of is 2Lb ⁇ 0.81, and the color reproduction brightness range can be expanded by 2Lb ⁇ (1-0.81) toward the lower brightness side.
  • FIG. 14(a) shows the decrease in brightness of the visual target when the black float amount is 255 and white is used as the visual target.
  • FIG. 14(b) shows a case where green (G) is used instead of white.
  • the video display system according to [5] of the present invention is configured to correct the decrease in brightness in the brightness range Lb ⁇ L ⁇ 2Lb (which is the color non-reproducibility brightness range). That is, this video display system includes the reflective screen and video display device based on the above premise, and further includes a luminance meter, black floating amount calculation means, and brightness adjustment means.
  • the black color in the video image and the black color under external light correspond to the visual object and the black background (background) in the visual test of brightness reduction described above, respectively.
  • the luminance meter can be constructed from ordinary commercially available products.
  • the brightness adjustment means corrects a decrease in brightness observed within a brightness range Lb ⁇ L ⁇ 2Lb of the brightness L of the image.
  • the brightness range Lb ⁇ L ⁇ 2Lb is the color non-reproducibility brightness range in which a decrease in the brightness of the viewing object is observed. Therefore, the brightness adjustment means corrects this brightness reduction. For this correction, the results of the aforementioned visual experiment of brightness reduction (for example, FIG. 12) are used.
  • FIG. 15 shows the color non-reproduction lightness range and the color reproduction lightness range when the amount of black floating in FIG. 12 is 78.
  • a method for correcting a decrease in brightness will be explained using this figure as an example.
  • the color reproduction lightness range (156 to 255)
  • the amount of reduction in brightness of the viewing object is 0, so no reduction in brightness occurs, so each RGB color having the brightness on the horizontal axis is output as image light.
  • the color non-reproducibility brightness range 78 to 155
  • the brightness reduction of the viewing object is taken as a negative value, so that when each RGB color having the brightness on the horizontal axis is output as image light, the brightness decreases.
  • each RGB color to be output as image light falls within the color non-reproducibility brightness range, the brightness value on the horizontal axis is adjusted as shown in the figure. Correction is performed by adding the absolute value of the brightness reduction amount on the corresponding vertical axis, and each RGB color having the corrected brightness is output as image light.
  • the relationship between the brightness of the visual object represented by the RGB color model and the amount of brightness reduction changes as shown in the graph of A in the figure.
  • the range is 50 or more and less than 100.
  • the change in the graph of A is that RGB is not only a primary color (red is only R, green is only G, blue is only B is a non-zero value, and the others are 0), but also white (both RGB are non-zero).
  • RGB is not only a primary color
  • red is only R
  • green is only G
  • blue is only B is a non-zero value
  • the others are 0
  • white both RGB are non-zero
  • FIG. 17 shows the procedure for determining the value of the amount of black floating. Since the amount of black floating changes depending on the external light in the installation environment of the video display system, the amount of black floating must be determined for each installation environment.
  • the brightness and the amount of brightness reduction of the viewing object whether it is the RGB primary colors or a general color that is a mixture of these, changes along a relational curve that has almost the same shape as the graph A in Figure 16, so the amount of black floating for each installation environment changes. Once understood, correction is easy.
  • Lr, Lg, and Lbl are within the color nonreproducibility lightness range of Lb or more and less than 2Lb, correct Lr, Lg, and Lbl individually from the graph of A.
  • a brightness adjustment means that performs such correction can be achieved by installing software in which the procedure for the correction is described in the image projection device.
  • the color non-reproducible brightness range can be converted into the color reproducible brightness range.
  • a black-filled brightness range where the brightness is less than Lb remains, and in this range black is displayed with the same brightness, making it impossible to express black in detailed gradations. Therefore, the video display system according to [6] of the present invention eliminates the black-out brightness range, further eliminates the color non-reproduction brightness range, and makes the entire brightness range of the viewing object the color reproduction brightness range. This reduces black floating.
  • an image light output adjusting means is provided, and this image light output adjusting means is configured to adjust the brightness of the white color. It is characterized by increasing the Kw from Kw to Kw ⁇ (1+2Lb/255) to reduce black floating.
  • the color reproduction lightness range that was 2Lb or more and 255 or less changes to a value that exceeds 255 and 255+2Lb, which is outside the range of brightness (0 to 255) of the RGB color model.
  • the following is newly added to obtain an expanded color reproduction brightness range of 2Lb to 255+2Lb. An image having a brightness within this color reproduction brightness range will not suffer from crushed shadows or a decrease in brightness.
  • FIG. 18 shows the brightness range of crushed blacks (0 or more and less than 78), the color reproduction brightness range (78 or more and less than 156), and the color reproduction brightness range (156 or more) and 255 or less) and the color reproduction brightness range (0 or more and 255 or less) after reducing black floating.
  • the function of deriving the expanded color reproduction brightness range and converting the colors of the RGB color model can be realized by installing software that describes the procedure of such derivation and conversion in the video light output adjustment means.
  • the image light output adjusting means may be built into the image projection device.
  • the entire brightness range of the RGB color model (0 to 255) becomes the color reproduction brightness range, and an image without crushed black and brightness can be observed.
  • the present invention is useful as a method for expressing various blacks by gradation expression from the minimum luminance black under external light as absolute black.
  • black (2Lb) obtained by multiplying the brightness of white by (1+2Lb/255) is defined as the absolute black.
  • Video display method according to the present invention [7] of the present invention
  • This method is based on the premise that the reflective screen according to any one of [2] to [4] of the present invention and an image projection device that projects image light are used.
  • the luminance of the black and white colors is measured under external light to obtain the respective measured values Kmin and Kw.
  • various commercially available brightness meters can be used.
  • the black floating amount Lb is calculated as the integer part of the value of the formula: 255 ⁇ Kmin/Kw.
  • a commercially available personal computer or scientific calculator can be used for this calculation.
  • the reduction in brightness observed within the brightness range Lb ⁇ L ⁇ 2Lb of the brightness L of the image is corrected. This is called the brightness adjustment process.
  • the brightness adjustment means described above can be used to carry out this step.
  • Video display method according to the present invention [8] of the present invention
  • the video display method according to [8] of the present invention will be explained.
  • the brightness of the white color is increased from Kw to Kw ⁇ (1+2Lb/255) to reduce black floating. It has an adjustment process.
  • the above-mentioned image light output adjusting means can be used to carry out this step.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

The present invention provides a surface shape diffusion sheet for reducing black level degradation, a reflective screen, a video display system, and a video display method. A surface shape diffusion sheet 1 comprises a surface shape anisotropic diffusion layer 2 and a substrate 3 that is an underlayer for said surface shape anisotropic diffusion layer, the diffusion angle of the surface shape anisotropic diffusion layer 3 in the in-plane up-down direction is within the range of ±14° (half-width), and, inside or on the surface of the substrate 3, a transmittance T is within the range of 0.5 to less than 1 in the visible light wavelength band. The video display system calculates a black level degradation amount Lb (= 255 × black luminance / white luminance) of video, and corrects a reduction in brightness observed in the brightness range Lb ≤ L < 2Lb of a brightness L of each element of the video.

Description

黒浮きを軽減する表面形状拡散シート、反射型スクリーン、映像表示システム及び映像表示方法Surface shape diffusion sheet, reflective screen, video display system, and video display method that reduce black floating
 本発明は、反射型スクリーンに適用される、黒浮きを軽減する表面形状拡散シート、この拡散シートを備えた反射型スクリーン、この反射型スクリーンを備えた映像表示システム及びこの反射型スクリーン(以下、単にスクリーンともいう)と映像投影装置とを用いる映像表示方法に関する。 The present invention relates to a surface shape diffusion sheet that reduces black floating applied to a reflective screen, a reflective screen equipped with this diffusion sheet, a video display system equipped with this reflective screen, and this reflective screen (hereinafter referred to as The present invention relates to an image display method using an image projection device (also simply referred to as a screen) and an image projection device.
 ここでいう、反射型スクリーンとは、スクリーンの正面側(観察者側)の映像投影装置(プロジェクターともいう)からの映像光を正面側に拡散・反射させて出射するスクリーンであり、スクリーンの表面から入射した映像光をスクリーンの表面で拡散・反射させるタイプや、スクリーンの表面で拡散し、内部の反射層で反射するタイプを指す。 The reflective screen referred to here is a screen that diffuses and reflects the image light from an image projection device (also called a projector) on the front side of the screen (observer side) to the front side and emits it, and the surface of the screen This refers to types in which the image light incident on the screen is diffused and reflected on the surface of the screen, and types in which it is diffused on the surface of the screen and reflected by an internal reflective layer.
 反射型スクリーンでは、入射した映像光がスクリーンの表面にスポット状の明るい点となるホットスポットと呼ばれる現象や、天井灯及びスクリーン近傍の窓の明るさがスクリーンの表面に映って見えてしまう映り込みと呼ばれる現象がある。 Reflective screens suffer from a phenomenon called a hot spot, where incident image light appears as a bright spot on the surface of the screen, and a phenomenon called hot spot, where the brightness of ceiling lights and windows near the screen is reflected on the surface of the screen. There is a phenomenon called.
 これらの現象を防止するため、従来では、数μm~数10μmピッチの凹凸形状の表面を有する表面形状拡散層をスクリーンの表面に備え、ホットスポットや映り込みの光をスクリーンの表面で拡散させ目立たないようにしている(特許文献1参照)。なお、上記表面形状拡散層とその下地である基板との合体物は、表面形状拡散シートと呼ばれる。 In order to prevent these phenomena, conventionally, a surface-shaped diffusion layer having an uneven surface with a pitch of several micrometers to several tens of micrometers is provided on the screen surface to diffuse hot spots and reflected light on the screen surface and make it less noticeable. (See Patent Document 1). The combination of the surface shape diffusion layer and the underlying substrate is called a surface shape diffusion sheet.
 しかし、表面形状拡散層の表面がスクリーン表面となっていると、プロジェクターからの映像光だけでなく、天井灯、床面及びスクリーンの正面側の壁や窓からの外光(映像光以外の不要な光)もスクリーンの表面で拡散する。そして、一部はスクリーンの表面で正面側に反射され、残りはスクリーンの内部の反射層に到達して反射され、正面側に出射される。これらのいわゆる外光拡散反射光は、映像光に重畳するのでいわゆるノイズ光を生成し、観察対象映像の画質を悪化させる。 However, if the surface of the surface shape diffusion layer is the screen surface, not only the image light from the projector, but also external light from ceiling lights, floors, walls and windows in front of the screen (unwanted light other than the image light) light) is also diffused on the surface of the screen. A part of the light is reflected to the front side by the surface of the screen, and the rest reaches the reflective layer inside the screen, is reflected, and is emitted to the front side. These so-called external light diffuse reflection lights are superimposed on the image light, so they generate so-called noise light and deteriorate the image quality of the image to be observed.
 この現象は、特に映像の黒色の輝度を上昇させてしまうので、「黒浮き」と呼ばれている。
 外光により黒浮きが起こると、映像のコントラスト、階調表現、色再現性が大きく損なわれ、メリハリがない映像や、黒が引き締まらず灰色のように見え、映像も全体的に色が鮮やかでなく薄くぼやけて見え、明確な映像再現が困難となる。
This phenomenon is called "black floating" because it particularly increases the brightness of black in the image.
When black floating occurs due to external light, the contrast, gradation expression, and color reproducibility of the image are significantly impaired, resulting in images that lack sharpness, blacks that are not sharp, and look like gray, and the overall colors of the image become less vivid. Instead, the image appears thin and blurry, making it difficult to reproduce a clear image.
 この黒浮きは、外光の強さに依存するので、部屋の天井灯を消し、窓をカーテンで遮光して、外光がスクリーンに入射しないようにすることで、防ぐことが可能である。しかし、学校の教室や企業の会議室等では、大型のディスプレイを見たり、互いの表情を確認したり、手元の資料を観たりメモを取ったりする行為も重要である。部屋を暗くすることで、これらの行為ができなくなると、授業や会議の運営効率が著しく低下する。 This black cast depends on the intensity of outside light, so it can be prevented by turning off the ceiling lights in the room and blocking the windows with curtains to prevent outside light from entering the screen. However, in school classrooms, corporate conference rooms, etc., it is also important to look at large displays, check each other's facial expressions, view materials at hand, and take notes. If these actions become impossible by making the room dark, the efficiency of classes and meetings will be significantly reduced.
 一方、授業や会議に用いる大型ディスプレイとして、黒浮きが少ない液晶やOLED、又はマイクロLEDを用いる方法もあるが、これらの80インチ以上の大型ディスプレイが必要になる。これらを量産するには、大型製造設備や製造工程での大量の薬品、水、電気などを消費し、SDGs(持続可能な開発目標)の観点から環境負荷が過大となる。また、ディスプレイ本体のサイズ、重量及び消費電力が大きいので、搬送や設置が難しく、さらに、価格も高額となり、広く普及させることは困難である。以上のような状況により、外光の影響を受ける明るい環境下でも、高画質の映像再現が可能な反射型スクリーンを用いた映像表示システムの開発の必要性が高まっている。 On the other hand, there are ways to use liquid crystals, OLEDs, or microLEDs with less black floating as large displays for classes and meetings, but these require large displays of 80 inches or more. Mass production of these products requires large manufacturing equipment and a large amount of chemicals, water, electricity, etc. in the manufacturing process, resulting in an excessive environmental burden from the perspective of SDGs (Sustainable Development Goals). Furthermore, since the size, weight, and power consumption of the display body are large, it is difficult to transport and install, and furthermore, the price is high, making it difficult to popularize it widely. Due to the above-mentioned circumstances, there is an increasing need to develop an image display system using a reflective screen that can reproduce high-quality images even in bright environments affected by external light.
特許第5971742号公報Patent No. 5971742
 上述のように、外光により黒浮きが発生すると、反射型スクリーンに映る映像のコントラスト、階調表現、色再現性は大きく影響を受ける。コントラストは、白色の輝度と黒色の輝度との比で表されるので、黒浮きにより黒色の輝度が上昇する分だけ悪化する。同様に、階調表現は、白色の輝度と黒色の輝度の差の値で決まるので、黒色の輝度の上昇の分だけ、階調表現の輝度範囲が狭くなる。 As mentioned above, when black floating occurs due to external light, the contrast, gradation expression, and color reproducibility of images displayed on a reflective screen are greatly affected. Contrast is expressed as the ratio of white luminance to black luminance, and therefore deteriorates by the amount that black luminance increases due to black floating. Similarly, since gradation expression is determined by the value of the difference between white luminance and black luminance, the luminance range of gradation expression becomes narrower as the black luminance increases.
 上述のコントラストと階調表現の問題については、黒浮きの分だけ白色の輝度をプロジェクター側で高めるという対策が、従来から行われてきた。現状市販されている学校やオフィス向けプロジェクターの映像光出力は、最大4000ルーメン前後の光量の、高出力となってきている。 Regarding the above-mentioned problems with contrast and gradation expression, a conventional measure has been to increase the brightness of white on the projector side by the amount of black floating. Currently, the video light output of projectors for schools and offices currently on the market is becoming high, with a maximum light intensity of around 4,000 lumens.
 一方、黒浮きによる色再現性の悪化に関しては、ほとんど対策がとられていないのが現状である。高出力のプロジェクターを用いた反射型プロジェクションディスプレイにおいても、外光の影響を受ける明環境では本来の色が再現できず、黒浮きの輝度に比例して色再現性が悪化してしまうという問題が残っている。 On the other hand, at present, almost no countermeasures have been taken regarding the deterioration of color reproducibility due to black floating. Even with reflective projection displays using high-output projectors, there is a problem that the original colors cannot be reproduced in bright environments affected by external light, and color reproducibility deteriorates in proportion to the brightness of black floating. Remaining.
 そこで、本発明は、反射型スクリーンの明環境下で、上述の黒浮きに最も影響を与える天井灯からの外光さらには全ての外光による映像の画質低下を軽減する表面形状拡散シート及びこれを備えた反射型スクリーンを提供する。さらに、この反射型スクリーンにおける映像の色再現性の悪化を軽減でき、悪化した映像の色再現性の補正が可能となる映像表示システム及び映像表示方法を提供する。 SUMMARY OF THE INVENTION Therefore, the present invention provides a surface-shaped diffusion sheet that reduces the deterioration in image quality caused by external light from ceiling lights, which has the greatest effect on the above-mentioned black floating, and all external light in the bright environment of a reflective screen. Provides a reflective screen with Furthermore, the present invention provides a video display system and a video display method that can reduce the deterioration of the color reproducibility of the video on the reflective screen and correct the deteriorated color reproducibility of the video.
 本発明者らは、前記課題を解決するために鋭意検討し、前記表面形状拡散シートの表面形状拡散層を、上下方向の拡散角度を制限した表面形状異方性拡散層とし、かつ該表面形状異方性拡散層の下地である基板の透過率を可視光波長帯で下げることが、解決手段として有効であるとの知見を得た。また、本発明者らは、黒浮きをRGBカラーモデルの数値で表現することにより、映像の色再現性の悪化を定量化しうるとの知見を得た。 In order to solve the above problem, the present inventors have made extensive studies, and have made the surface shape diffusion layer of the surface shape diffusion sheet an anisotropic surface shape diffusion layer that limits the diffusion angle in the vertical direction, and We have found that lowering the transmittance of the substrate underlying the anisotropic diffusion layer in the visible wavelength band is an effective solution. Furthermore, the present inventors have found that the deterioration in color reproducibility of an image can be quantified by expressing black floating using numerical values of an RGB color model.
 本発明者らは、上記の知見を基に、さらに検討を重ねて本発明をなした。すなわち本発明は以下のとおりである。
[1] 映像投影装置からの映像光を拡散出射させる反射型スクリーンの表面に備える表面形状拡散シートであって、
 表面形状異方性拡散層と、
 前記表面形状異方性拡散層の下地に平坦な基板を備え、
 前記表面形状異方性拡散層の表面の面内上下方向の拡散角度が±14°(半値幅)の範囲内であり、
 前記基板の内部又は表面で、可視光波長帯において透過率Tが0.5以上1未満の範囲内であることを特徴とする黒浮きを軽減する表面形状拡散シート。
[2] 拡散シートを表面に備えた反射型スクリーンであって、
 前記拡散シートが前記[1]に記載の表面形状拡散シートであり、
 前記基板から背面側へ順次配置接合した、反射層、保護膜及び保持板を具備し、
 前記反射層と前記基板との接合面が前記映像光を反射する面となり、
 前記保護膜は、前記反射層を被覆する膜であり、
 前記保持板は、前記基板の平坦性を維持する板であることを特徴とする反射型スクリーン。
[3] さらに、前記基板と前記反射層との間に配置接合したレンズ層を有し、
 前記レンズ層は、背面側に反射面形状を有するフレネルレンズからなり、
 前記反射層と前記レンズ層との接合面が前記映像光を反射する面となることを特徴とする[2]に記載の反射型スクリーン。
[4] 前記フレネルレンズの焦点距離fに対し、前記映像光を反射する面から、aの距離離れた前記映像投影装置の投射レンズのアイリス面からの映像光を反射して、(1/a)+(1/b)=1/fの関係を満たすbの距離離れた位置に空間結像アイリス面を作ることを特徴とする[3]に記載の反射型スクリーン。
[5] [2]~[4]のいずれか一項に記載の反射型スクリーンと、映像投影装置と、輝度計と、黒浮き量算出手段と、明度調整手段とを備えた映像表示システムであって、
 前記映像投影装置は、映像光を投影し、
 前記輝度計は、外光下で前記映像投影装置から前記反射型スクリーンに投影された、RGBカラーモデルにおける黒色(R=0、G=0、B=0)及び白色(R=255、G=255、B=255)の輝度を測定してそれぞれの測定値Kmin及びKwを取得し、
 前記黒浮き量算出手段は、黒浮き量Lbを、式:255×Kmin/Kwの値の整数部として算出し、
 前記明度調整手段は、前記黒色から黒浮き(R=Lb、G=Lb、B=Lb)した映像において、各要素の明度Lの明度範囲Lb≦L<2Lb内で観察される明度低下を補正することを特徴とする映像表示システム。
[6] 前記明度調整手段に代えて、あるいはさらに、映像光出力調整手段を備え、
 前記映像光出力調整手段は、前記白色の輝度をKwからKw×(1+2Lb/255)に上昇させて、黒浮きを軽減することを特徴とする[5]に記載の映像表示システム。
[7] [2]~[4]のいずれか一項に記載の反射型スクリーンと、映像光を投影する映像投影装置とを用いる映像表示方法であって、
 前記映像投影装置から前記反射型スクリーンに、RGBカラーモデルにおける黒色(R=0、G=0、B=0)及び白色(R=255、G=255、B=255)を投影する工程と、
 外光下で前記黒色及び白色の輝度を測定してそれぞれの測定値Kmin及びKwを取得する工程と、
 黒浮き量Lbを、式:255×Kmin/Kwの値の整数部として算出する工程と、
 前記黒色から黒浮き(R=Lb、G=Lb、B=Lb)した映像において、各要素の明度Lの明度範囲Lb≦L<2Lb内で観察される明度低下を補正する明度調整工程とを有することを特徴とする映像表示方法。
[8] 前記明度調整工程に代えて、あるいはさらに、前記白色の輝度をKwからKw×(1+2Lb/255)に上昇させて、黒浮きを軽減する映像光出力調整工程を有することを特徴とする[7]に記載の映像表示方法。
Based on the above knowledge, the present inventors conducted further studies and completed the present invention. That is, the present invention is as follows.
[1] A surface shape diffusion sheet provided on the surface of a reflective screen that diffuses and emits image light from an image projection device,
surface shape anisotropic diffusion layer,
A flat substrate is provided as a base of the surface shape anisotropic diffusion layer,
The diffusion angle of the surface of the anisotropic surface shape diffusion layer in the in-plane vertical direction is within the range of ±14° (half width),
A surface shape diffusion sheet for reducing black floating, characterized in that the inside or surface of the substrate has a transmittance T in the visible wavelength band of 0.5 or more and less than 1.
[2] A reflective screen equipped with a diffusion sheet on the surface,
The diffusion sheet is the surface shape diffusion sheet described in [1] above,
A reflective layer, a protective film, and a retaining plate are sequentially arranged and bonded from the substrate to the back side,
a bonding surface between the reflective layer and the substrate serves as a surface that reflects the image light;
The protective film is a film that covers the reflective layer,
A reflective screen characterized in that the holding plate is a plate that maintains flatness of the substrate.
[3] Further, a lens layer disposed and bonded between the substrate and the reflective layer,
The lens layer is made of a Fresnel lens having a reflective surface shape on the back side,
The reflective screen according to [2], wherein a joint surface between the reflective layer and the lens layer serves as a surface that reflects the image light.
[4] For the focal length f of the Fresnel lens, reflect the image light from the iris surface of the projection lens of the image projection device that is a distance away from the surface that reflects the image light, and )+(1/b)=1/f The reflective screen according to [3], characterized in that the spatial imaging iris surface is formed at a position separated by a distance b that satisfies the relationship: )+(1/b)=1/f.
[5] An image display system comprising the reflective screen according to any one of [2] to [4], an image projection device, a luminance meter, a black float amount calculation means, and a brightness adjustment means. There it is,
The image projection device projects image light,
The luminance meter measures black (R=0, G=0, B=0) and white (R=255, G= 255, B=255) to obtain the respective measured values Kmin and Kw,
The black floating amount calculation means calculates the black floating amount Lb as an integer part of the value of the formula: 255×Kmin/Kw,
The brightness adjustment means corrects a decrease in brightness observed within a brightness range Lb≦L<2Lb of the brightness L of each element in the black-to-black image (R=Lb, G=Lb, B=Lb). A video display system characterized by:
[6] In place of or in addition to the brightness adjustment means, an image light output adjustment means is provided,
The video display system according to [5], wherein the video light output adjustment means increases the brightness of the white color from Kw to Kw×(1+2Lb/255) to reduce black floating.
[7] An image display method using the reflective screen according to any one of [2] to [4] and an image projection device that projects image light,
Projecting black (R=0, G=0, B=0) and white (R=255, G=255, B=255) in an RGB color model from the image projection device onto the reflective screen;
a step of measuring the luminance of the black and white colors under external light to obtain respective measured values Kmin and Kw;
Calculating the black floating amount Lb as the integer part of the value of the formula: 255 x Kmin/Kw;
A brightness adjustment step of correcting a decrease in brightness observed within the brightness range Lb≦L<2Lb of the brightness L of each element in the image where the black becomes black (R=Lb, G=Lb, B=Lb). A video display method characterized by comprising:
[8] Instead of or in addition to the brightness adjustment step, the image light output adjustment step increases the brightness of the white color from Kw to Kw×(1+2Lb/255) to reduce black floating. The video display method according to [7].
 本発明によれば、明環境下での反射型スクリーンが最も影響を受ける天井灯からの外光や、それ以外の全ての外光による黒浮きを軽減できるようになる。さらに、黒浮きにより映像の色再現性の悪化が起こってもそれの補正が可能となり、また、色再現性の悪化の防止も可能であるという優れた効果を奏する。 According to the present invention, it is possible to reduce black floating due to external light from ceiling lights, which is most affected by reflective screens in bright environments, and all other external light. Furthermore, even if the color reproducibility of the image deteriorates due to black floating, it can be corrected, and furthermore, it is possible to prevent the deterioration of the color reproducibility, which is an excellent effect.
本発明に係る表面形状拡散シートの一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a surface shape diffusion sheet according to the present invention. 図1の表面形状拡散シートを備えた反射型スクリーンの一例と映像投影装置の配置を示す概略図である。FIG. 2 is a schematic diagram showing an example of a reflective screen equipped with the surface shape diffusion sheet of FIG. 1 and the arrangement of an image projection device. (a)は反射型スクリーンと天井灯の位置関係を示す概略図、(b)は黒浮き測定における天井灯、反射型スクリーン、プロジェクター及び測定装置(輝度計)の位置関係を示す概略図である。(a) is a schematic diagram showing the positional relationship between the reflective screen and the ceiling light, and (b) is a schematic diagram showing the positional relationship between the ceiling light, reflective screen, projector, and measurement device (luminance meter) in black floating measurement. . (a)は本発明に係る反射型スクリーンの一例を示す概略図、(b)は(a)のスクリーン厚さ方向断面図である。(a) is a schematic diagram showing an example of a reflective screen according to the present invention, and (b) is a sectional view in the thickness direction of the screen in (a). (a)は本発明に係る反射型スクリーンのもう一例を示す概略図、(b)は(a)のスクリーン厚さ方向断面図である。(a) is a schematic diagram showing another example of a reflective screen according to the present invention, and (b) is a sectional view in the thickness direction of the screen of (a). (a)は本発明に係る反射型スクリーンのさらにもう一例を示す概略図、(b)は(a)のスクリーン厚さ方向断面図である。(a) is a schematic diagram showing yet another example of a reflective screen according to the present invention, and (b) is a sectional view in the thickness direction of the screen of (a). 本発明に係る空間結像アイリス面方式・反射型スクリーンのフレネルレンズによる外光の入射光と反射光の光線追跡を示す概略図である。FIG. 2 is a schematic diagram showing ray tracing of incident light and reflected light of external light by the Fresnel lens of the spatial imaging iris surface type reflective screen according to the present invention. 映像投影装置の内部の光学系の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of an internal optical system of an image projection device. 黒浮きと色再現性の関係を検討するための視対象表示パターンを示す図である。FIG. 3 is a diagram showing a visual target display pattern for examining the relationship between black floating and color reproducibility. 明度低下量の測定に用いる視対象表示パターンを示す図であり、(a)は、視対象の明度=230、黒浮き量=215の場合の例、(b)は、視対象の明度=230、黒浮き量=115の場合の例を示す。FIG. 4 is a diagram illustrating a visual target display pattern used for measuring the amount of reduction in brightness, where (a) is an example in which the brightness of the visual target = 230 and the amount of black floating = 215, and (b) is an example in which the brightness of the visual target = 230. , an example in which the amount of black floating = 115 is shown. 視対象の明度をパラメータとして、黒浮き量と視対象の明度低下量の関係を示す線図である。FIG. 7 is a diagram showing the relationship between the amount of black floating and the amount of reduction in the brightness of the viewed object, using the brightness of the viewed object as a parameter. 黒浮き量をパラメータとして、視対象の明度と明度低下量の関係を示す線図である。FIG. 3 is a diagram showing the relationship between the brightness of a visual object and the amount of brightness reduction using the amount of black floating as a parameter. 黒浮き量=100とした時、視対象の明度低下が起こらなくなる明度範囲を確認するための視対象表示パターンを示す図であり、(a)は、左側(黒浮き量=0)と右側(黒浮き量=100)で視対象の明度を同一としたパターン、(b)は、左側と右側とで視対象が同じ明るさに見えるよう右側の視対象の明度を高めたパターンである。When the amount of black float = 100, it is a diagram showing a visual target display pattern for checking the brightness range in which the brightness of the visual target does not decrease, and (a) shows the left side (black float amount = 0) and the right side ( (b) is a pattern in which the brightness of the visual target on the right side is increased so that the visual target on the left and right sides appear to have the same brightness. 黒浮き量を255とし、視対象を(a)は白色、(b)は緑色として、明度低下を確認するための視対象の表示パターンを示す図である。FIG. 7 is a diagram illustrating a display pattern of a visual target for confirming a decrease in brightness, with the amount of black floating being 255, and the visual target being white in (a) and green in (b). 黒浮き量=78の時の色不再現明度範囲における明度低下の補正の方法を示す説明図である。FIG. 7 is an explanatory diagram showing a method of correcting a decrease in brightness in a color non-reproducibility brightness range when the black floating amount is 78; 色不再現明度範囲における視対象の明度に対する明度低下量の変化は、例えば図のAのグラフ線と同一形状の曲線で表しうることを示す説明図である。FIG. 4 is an explanatory diagram showing that a change in brightness reduction amount with respect to the brightness of a visual object in a color non-reproducibility brightness range can be represented, for example, by a curve having the same shape as the graph line A in the figure. RGBカラーモデルの黒浮き量の値を求める手順を示すフロー図である。FIG. 3 is a flowchart showing a procedure for calculating a black floating amount value of an RGB color model. 黒浮き量=78での黒つぶれ明度範囲、色不再現明度範囲及び色再現明度範囲を示す図である。FIG. 7 is a diagram showing a black-filled brightness range, a color non-reproduction brightness range, and a color reproduction brightness range when the amount of black float is 78.
 以下、本発明の実施形態について、図面を参照し、説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(本発明に係る表面形状拡散シート:本発明の[1])
 まず、本発明に係る表面形状拡散使シートについて説明する。
 図1は、本発明に係る表面形状拡散シート1を示す概略図である。表面形状拡散シート1を表面に備える反射型スクリーン4は、図2に示すように、映像投影装置5からの映像光を反射し、拡散出射させる。映像投影装置5は、図8に示すように、例えばLEDチップからなる三原色光源130からの映像光を拡散フィルム積層体122、リレーレンズ120a、120b、デジタルミラーデバイス134に順次通してから、複数のレンズからなる投射光学系138を介して凹面反射鏡140、凸面反射鏡142で順次反射させて反射型スクリーン4へと送る構成となっている。なおスクリーンへ向かわない光は遮光板136で遮光する。投射光学系138は、絞りを有し、該絞りの内側の空間をアイリス面18という。
(Surface shape diffusion sheet according to the present invention: [1] of the present invention)
First, the surface shape diffusion sheet according to the present invention will be explained.
FIG. 1 is a schematic diagram showing a surface shape diffusion sheet 1 according to the present invention. As shown in FIG. 2, the reflective screen 4 having the surface-shaped diffusion sheet 1 on its surface reflects the image light from the image projection device 5 and diffuses it out. As shown in FIG. 8, the image projection device 5 sequentially passes image light from a trichromatic light source 130 made of, for example, an LED chip through a diffusion film laminate 122, relay lenses 120a and 120b, and a digital mirror device 134, and then passes it through a plurality of The configuration is such that the light is sequentially reflected by a concave reflecting mirror 140 and a convex reflecting mirror 142 through a projection optical system 138 consisting of a lens and sent to the reflective screen 4. Note that light not directed toward the screen is blocked by a light blocking plate 136. The projection optical system 138 has a diaphragm, and the space inside the diaphragm is called an iris surface 18.
 表面形状拡散シート1は、図1に示すように、表面形状異方性拡散層2と、表面形状異方性拡散層2の下地に平坦な基板3を備える。 As shown in FIG. 1, the surface shape diffusion sheet 1 includes a surface shape anisotropic diffusion layer 2 and a flat substrate 3 underlying the surface shape anisotropic diffusion layer 2.
 表面形状異方性拡散層2は、その材質がウレタンアクリレートやエポキシアクリレート等の紫外線硬化型樹脂、あるいは、電子線硬化型樹脂等の他の電離放射線硬化型樹脂であり、可撓性を有する。 The surface shape anisotropic diffusion layer 2 is made of an ultraviolet curable resin such as urethane acrylate or epoxy acrylate, or other ionizing radiation curable resin such as an electron beam curable resin, and is flexible.
 表面形状異方性拡散層2は、ほぼ一方向に延在する不規則な長さの多数の凸条が、この延在方向と直交する方向に不規則な間隔で横並びした形態の表面形状を有する。凸条の高さは、0μm超10μm以下が好適である。ここでは、凸条の延在方向を上下方向、凸条の並び方向を左右方向としている。このような表面形状によると、左右方向の拡散角度は、上下方向の拡散角度に比べて大きい。上下方向の拡散角度と左右方向の拡散角度とは、製造条件変更により種々の値に設定できる。 The surface shape anisotropic diffusion layer 2 has a surface shape in which a large number of irregular length protrusions extending in approximately one direction are arranged side by side at irregular intervals in a direction perpendicular to the extending direction. have The height of the protrusions is preferably greater than 0 μm and less than or equal to 10 μm. Here, the direction in which the protrusions extend is the vertical direction, and the direction in which the protrusions are arranged is the left-right direction. With such a surface shape, the horizontal diffusion angle is larger than the vertical diffusion angle. The vertical diffusion angle and the horizontal diffusion angle can be set to various values by changing manufacturing conditions.
 基板3は、例えば透明樹脂材料製であり可撓性を有する。その基板厚みは、強度確保と軽量化の兼ね合いから、好ましくは50μm以上250μm以下である。 The substrate 3 is made of, for example, a transparent resin material and has flexibility. The thickness of the substrate is preferably 50 μm or more and 250 μm or less from the viewpoint of ensuring strength and reducing weight.
 表面形状異方性拡散層2を表面に備える反射型スクリーン4は、スクリーン内部に反射層8を有し、スクリーン最背面側に基板2の平坦性を維持するための保持板10を有する。なお、図2の反射型スクリーン4では、好ましい形態として、反射層8は入射した映像光をスクリーン表面の法線方向に偏向するために、入射光が到達する面の形状をフレネルレンズ面形状としている。 A reflective screen 4 having a surface shape anisotropic diffusion layer 2 on its surface has a reflective layer 8 inside the screen, and a holding plate 10 for maintaining the flatness of the substrate 2 on the backmost side of the screen. In the reflective screen 4 shown in FIG. 2, as a preferable form, the reflective layer 8 has a surface that the incident light reaches in a Fresnel lens surface shape in order to deflect the incident image light in the normal direction of the screen surface. There is.
 本発明では、表面形状異方性拡散層2の表面の面内上下方向の拡散角度が±14°(半値幅)の範囲内であり、前記基板の内部又は表面で、可視光波長帯において透過率Tが0.5以上1未満の範囲内であること、と限定した。これらの限定理由について述べる前に、図2を用い、黒浮きについてより具体的に説明する。 In the present invention, the diffusion angle in the in-plane vertical direction of the surface shape anisotropic diffusion layer 2 is within the range of ±14° (half width), and the visible light wavelength band is transmitted within or on the surface of the substrate. The ratio T was limited to be within the range of 0.5 or more and less than 1. Before describing the reasons for these limitations, black floating will be explained in more detail using FIG. 2.
 図2のように、正面側の映像投影装置5からの映像光を、反射層8で反射して、再び正面側に拡散出射する反射型スクリーン4において、映像光以外の、天井灯11やそれ以外の場所(床面、正面の壁や窓)からの外光も、スクリーン表面に入射する。これらの外光は、スクリーン表面(表面形状拡散層2の表面)で拡散し、一部はスクリーン表面で正面側に反射され、残りはスクリーン内部の反射層8に到達し反射層8で反射され、スクリーン表面から正面側に出射する。これら外光による拡散反射光(以下、単に、外光による拡散反射光という)は映像光に重畳し、映像の黒浮きが起こる。なお、図2では、出射される映像光と外光は、主光線のみ図示し、拡散光は図示していない。 As shown in FIG. 2, in the reflective screen 4 that reflects the image light from the image projection device 5 on the front side by the reflective layer 8 and diffuses it back to the front side, the ceiling light 11 and other lights other than the image light are reflected. Outside light from other places (floor, front wall and window) also enters the screen surface. These external lights are diffused on the screen surface (the surface of the surface shape diffusion layer 2), some of them are reflected on the screen surface toward the front, and the rest reaches the reflective layer 8 inside the screen and is reflected by the reflective layer 8. , emitted from the screen surface to the front side. These diffusely reflected light due to external light (hereinafter simply referred to as diffusely reflected light due to external light) is superimposed on the image light, causing black floating in the image. Note that in FIG. 2, only the principal rays of the emitted image light and external light are shown, and the diffused light is not shown.
(表面形状異方性拡散層の拡散角度)
 最も影響を受ける天井灯11からの外光による黒浮きを軽減するため、本発明では、図1に示す表面形状拡散シート1の表面形状異方性拡散層2の上下方向の拡散角度を±14°(半値幅)の範囲内とした。なお、拡散角度の範囲は、反射型スクリーン面と上下方向に直交する垂直面に含まれ、スクリーン面に対し法線方向を0°として、時計回り及び反時計回りのいずれか一方の角度を正、他方を負とした角度範囲である。
(Diffusion angle of surface anisotropic diffusion layer)
In order to reduce black floating due to external light from the ceiling light 11, which is most affected, in the present invention, the vertical diffusion angle of the surface shape anisotropic diffusion layer 2 of the surface shape diffusion sheet 1 shown in FIG. 1 is set to ±14. ° (half width). The range of the diffusion angle is included in the vertical plane perpendicular to the reflective screen surface and the vertical direction, and the normal direction to the screen surface is 0°, and either the clockwise or counterclockwise angle is correct. , the other angle range is negative.
 本発明において、上下方向の拡散角度を±14°(半値幅)の範囲内とする理由について図3(a)を用いて説明する。図3(a)には、拡散角度検討用の反射型スクリーン4Aと天井灯11の一般的な位置関係を示す。反射型スクリーン4Aは、そのスクリーン表面に備えた表面形状拡散層2A以外は図示していない。表面形状拡散層2Aは、拡散角度検討のため上下方向で種々の拡散角度θをとりうるものとする。 In the present invention, the reason why the vertical diffusion angle is set within the range of ±14° (half width) will be explained using FIG. 3(a). FIG. 3(a) shows a general positional relationship between the reflective screen 4A for studying the diffusion angle and the ceiling light 11. The reflective screen 4A is not shown except for the surface shape diffusion layer 2A provided on the screen surface. The surface shape diffusion layer 2A can take various diffusion angles θ in the vertical direction to examine the diffusion angle.
 図3のように反射型スクリーン4Aの縦サイズ=1Hとすると、反射型スクリーン4Aの観察位置60は、このスクリーンの中央から2H~3H離れており、天井灯11は、反射型スクリーン4Aの約0.5H上方で、正面方向に0.5H、1H、1.5H、2H離れて位置すると仮定する。なお、天井灯11による外光拡散反射光が観察位置に到達しやすいのは、反射型スクリーン4Aの最上部に入射する時である。また、最上部に入射する外光の明るさは、天井灯からの距離rの二乗に反比例するので、0.5Hの位置が最も明るくなる。一方、観察位置に到達しやすいのは、1.5Hや2Hの方である。したがって、外光の明るさと外光拡散反射光の反射角の相互作用で、外光の影響が最悪となる天井灯11の位置が決まり、図3の場合、天井灯11の位置が1Hの時、ほぼ最悪条件となる。この最悪条件下で、観察位置2H~3Hに外光拡散反射光が到達するのは、図3に示すとおり位置1Hの天井灯11による外光拡散反射光の主光線61から上方向の拡散角度θが14.6°以上(14°超)の場合である。この点は、表面形状拡散層2Aが表面形状異方性拡散層2で置換されても同様であることは自明である。したがって、本発明においては、表面形状異方性拡散層2の上下方向の拡散角度は、±14°(半値幅)の範囲内とした。 Assuming that the vertical size of the reflective screen 4A is 1H as shown in FIG. Assume that they are located 0.5H above and 0.5H, 1H, 1.5H, and 2H apart in the front direction. Note that the external light diffusely reflected by the ceiling light 11 tends to reach the observation position when it is incident on the top of the reflective screen 4A. Further, since the brightness of external light incident on the top is inversely proportional to the square of the distance r from the ceiling light, the position of 0.5H is the brightest. On the other hand, 1.5H and 2H are easier to reach the observation position. Therefore, the interaction between the brightness of the outside light and the reflection angle of the diffusely reflected light of the outside light determines the position of the ceiling light 11 where the influence of outside light is the worst, and in the case of FIG. 3, when the position of the ceiling light 11 is 1H , almost the worst condition. Under this worst-case condition, the diffusely reflected external light reaches observation positions 2H to 3H at an upward diffusion angle from the principal ray 61 of the diffusely reflected external light by the ceiling light 11 at position 1H, as shown in FIG. This is the case when θ is 14.6° or more (more than 14°). It is obvious that this point is the same even if the surface shape diffusion layer 2A is replaced with the surface shape anisotropic diffusion layer 2. Therefore, in the present invention, the vertical diffusion angle of the anisotropic surface shape diffusion layer 2 is within the range of ±14° (half width).
 これにより、スクリーン表面で拡散反射する外光拡散反射光が、正面に居る観察者の眼の近傍に到達しないようにした。なお、左右方向の拡散角度は、できるだけ大きいことが好ましい。 This prevents the diffusely reflected external light that is diffusely reflected on the screen surface from reaching the vicinity of the eyes of the viewer standing in front of the screen. Note that it is preferable that the diffusion angle in the left-right direction be as large as possible.
(黒浮きの測定)
 次に、表面形状異方性拡散層の拡散角度を±14°(半値幅)の範囲内としたことによる黒浮き軽減効果を評価するために、図1の表面形状異方性拡散層2を用いて、天井灯からの外光による黒浮きを測定した。測定用拡散シートとしては、透明な基板上に図1のような表面形状を有する表面形状異方性拡散層2を形成したものを用いた。測定用拡散シートの拡散角度は、形状側(正面側)から垂直入射した透過光の拡散角度として測定すると±5°(半値幅)、基板の背面にアルミの反射層を設け、前記透過光が反射層で反射した反射光の拡散角度として測定すると、±10°(半値幅)であったので、表面形状拡散の値(測定用拡散シートの表面形状異方性拡散層の拡散角度)は±14°(半値幅)の範囲内と考えた。ただし、天井灯からの外光拡散反射光には、スクリーン内部の反射層に到達し反射層で反射され、スクリーン表面から出射されるものも含まれる。
(Measurement of black float)
Next, in order to evaluate the effect of reducing black floating by setting the diffusion angle of the surface shape anisotropic diffusion layer within the range of ±14° (half width), the surface shape anisotropic diffusion layer 2 of FIG. Using this technology, we measured black floating caused by external light from ceiling lights. The measurement diffusion sheet used was one in which a surface anisotropic diffusion layer 2 having a surface shape as shown in FIG. 1 was formed on a transparent substrate. The diffusion angle of the measurement diffusion sheet is ±5° (half width) when measured as the diffusion angle of transmitted light that is vertically incident from the shape side (front side).An aluminum reflective layer is provided on the back of the substrate, and the transmitted light is When measured as the diffusion angle of the reflected light reflected by the reflective layer, it was ±10° (half width), so the value of surface shape diffusion (diffusion angle of the surface shape anisotropic diffusion layer of the measurement diffusion sheet) was ±10° (half width). It was considered to be within the range of 14° (half width). However, the external light diffusely reflected from the ceiling light also includes light that reaches the reflective layer inside the screen, is reflected by the reflective layer, and is emitted from the screen surface.
 図2において表面形状拡散シート1に代えて上記の測定用拡散シートとした反射型スクリーン(SHLスクリーン82と呼ぶ)を製作し、図2に示すような配置で測定を行った。また、比較用として市販のマグネット式黒板スクリーン(ホワイトマットスクリーン81と呼ぶ)を用い、同様の測定を行った。 In FIG. 2, a reflective screen (referred to as SHL screen 82) was manufactured as the above-mentioned measurement diffusion sheet in place of the surface shape diffusion sheet 1, and measurements were performed in the arrangement shown in FIG. In addition, similar measurements were performed using a commercially available magnetic blackboard screen (referred to as White Matte Screen 81) for comparison.
 図3(b)に、天井灯11、SHLスクリーン82(又はホワイトマットスクリーン81)、プロジェクター5及び測定装置(輝度計30)の位置関係を示す。なお、図3(b)の天井灯11とSHLスクリーン82の位置関係は図3(a)の天井灯11と反射型スクリーン4Aのそれとほぼ同じである。観察位置は、3Hより厳しい条件となる2Hのみで行った。 FIG. 3(b) shows the positional relationship among the ceiling light 11, the SHL screen 82 (or white matte screen 81), the projector 5, and the measuring device (luminance meter 30). The positional relationship between the ceiling light 11 and the SHL screen 82 in FIG. 3(b) is almost the same as that between the ceiling light 11 and the reflective screen 4A in FIG. 3(a). The observation position was only 2H, which has stricter conditions than 3H.
 測定には表1に示す機器類を使用した。天井灯11による各スクリーン中央での照度を表2に示す。なお、表2には参考値として天井灯真下のテーブル面の照度の測定値も示した(照度計は図示せず)が、これによると測定に用いた部屋の照明は、比較的明るい方であることが判る。 The equipment shown in Table 1 was used for the measurement. Table 2 shows the illuminance at the center of each screen due to the ceiling light 11. In addition, Table 2 also shows the measured value of the illuminance of the table surface directly under the ceiling light as a reference value (the illuminance meter is not shown), but according to this, the lighting in the room used for the measurement was relatively bright. It turns out that there is something.
 黒浮き測定結果を表3に示す。表3より、SHLスクリーンでは、黒浮き(全黒表示における輝度)が、比較として用いたホワイトマットスクリーンより、約60%(=(1-35/88)×100)軽減されていることが確認できた。なお、全黒表示とプロジェクターOFFとでは輝度がほぼ同一なので、黒浮きはプロジェクターOFFにおける輝度としてもよい。 The black floating measurement results are shown in Table 3. From Table 3, it is confirmed that black floating (brightness in all black display) is reduced by approximately 60% (= (1-35/88) x 100) on the SHL screen compared to the white matte screen used for comparison. did it. Note that since the brightness is almost the same between all black display and when the projector is OFF, the black floating may be the brightness when the projector is OFF.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(基板の透過率T)
 次に、本発明において、基板3の内部又は表面で、可視光波長帯において透過率Tが0.5以上1未満の範囲内であることとした理由を説明する。ここで、透過率Tとは、特定の波長の入射光が基板を通過する割合、T=I/I0であり、I0は入射光の、Iは基板を通過した光の、それぞれの放射発散度(単位:W/m2)であり、I0≧Iなので、T≦1である。
(Substrate transmittance T)
Next, in the present invention, the reason why it is decided that the transmittance T in the visible light wavelength band is within the range of 0.5 or more and less than 1 inside or on the surface of the substrate 3 will be explained. Here, the transmittance T is the rate at which incident light of a specific wavelength passes through the substrate, T = I/I 0 , where I 0 is the rate of incident light, and I is the rate of radiation of light that has passed through the substrate. It is the degree of divergence (unit: W/m 2 ), and since I 0 ≧I, T≦1.
 天井灯からの外光拡散反射光には、スクリーン内部の反射層に到達して当該反射層で反射され、スクリーン表面から出射されるものも含まれるので、この対策も必須である。このように基板3を2度通過する外光への対策として、本発明では、基板3の内部又は表面で、可視光波長帯において透過率Tを下げるため透明から黒色の色味を付けた。なお、基板3の内部又は表面で、可視光波長帯において透過率Tを下げることを透明黒化と呼ぶ。これにより、基板3を2度通過した外光が暗くなる分、黒浮きが軽減する。基板3の透過率Tを下げる部位が、基板3の内部、表面のいずれであっても黒浮きは軽減する。 This countermeasure is also essential because the diffusely reflected external light from the ceiling light includes light that reaches the reflective layer inside the screen, is reflected by the reflective layer, and is emitted from the screen surface. As a countermeasure against external light passing through the substrate 3 twice in this manner, in the present invention, the inside or surface of the substrate 3 is colored from transparent to black in order to lower the transmittance T in the visible wavelength band. Note that reducing the transmittance T in the visible light wavelength band inside or on the surface of the substrate 3 is called transparent blackening. As a result, the external light that has passed through the substrate 3 twice becomes darker, and black floating is reduced. Regardless of whether the portion where the transmittance T of the substrate 3 is lowered is inside or on the surface of the substrate 3, black floating is reduced.
 従来の拡散シートでは、映像光をできるだけ明るくするため透過率Tを高めることが一般的であった。本発明では、映像光も暗くなるというデメリットもあるが、黒浮きによる画質の悪化を軽減することを優先した。この背景には、プロジェクターの光源がランプからLEDさらにレーザーへと進化することに伴い、映像光を明るくできるようになったからである。ただし、そのように映像光を明るくできても、透過率Tが0.5未満では映像が暗くなりすぎるため、透過率Tは0.5を下限とした。好ましくは0.7を下限とする。 In conventional diffusion sheets, it was common to increase the transmittance T in order to make the image light as bright as possible. Although the present invention has the disadvantage that the image light also becomes darker, priority is given to reducing the deterioration of image quality due to black floating. The reason behind this is that as the light source of projectors has evolved from lamps to LEDs and then to lasers, it has become possible to brighten the image light. However, even if the image light can be brightened in this way, if the transmittance T is less than 0.5, the image will be too dark, so the lower limit of the transmittance T was set at 0.5. The lower limit is preferably 0.7.
 ここで、上記の透明黒化を実現する方法について説明する。この方法としては、基板3の材料となる樹脂にUV(紫外線、以下同じ)透過ブラック分散液を適量均一に混ぜるという方法(基板内部の透明黒化)が挙げられる。表面形状拡散シート4の表面形状異方性拡散層2は基板3上にUV重合により形成されるので、UV重合に用いる基板3は、UV光は透過して、可視光の透過率を均一に下げる特性を持つ必要がある。UV透過ブラック分散液は、黒色(可視光を均一に吸収する)で、UVは透過する特性の顔料を微粒子化した分散液で、基板3の材料となるウレタン樹脂、アクリル樹脂、エステル樹脂などの樹脂と相溶するので、この分散液を基板の材料となる樹脂に適量均一に混合することで、基板内部を透明黒化することができる。 Here, a method for realizing the above transparent blackening will be explained. An example of this method is to uniformly mix an appropriate amount of a UV (ultraviolet light, hereinafter the same) transparent black dispersion into the resin that is the material of the substrate 3 (transparent blackening of the inside of the substrate). Since the surface shape anisotropic diffusion layer 2 of the surface shape diffusion sheet 4 is formed on the substrate 3 by UV polymerization, the substrate 3 used for UV polymerization allows UV light to pass through and has uniform visible light transmittance. It is necessary to have characteristics that lower The UV-transparent black dispersion liquid is a dispersion liquid that is made of fine particles of a pigment that is black (uniformly absorbs visible light) and UV-transparent, and is made of fine particles such as urethane resin, acrylic resin, ester resin, etc., which are the materials of the substrate 3. Since it is compatible with the resin, by uniformly mixing an appropriate amount of this dispersion liquid with the resin that is the material of the substrate, it is possible to make the inside of the substrate transparent and black.
 また、透明黒化の方法として、前記基板材料に前記ブラック分散液を混合する方法以外に、前記基板材料の樹脂板に前記ブラック分散液を塗布する方法(基板表面の透明黒化)又はNDフィルターのように同樹脂板に金属を蒸着する方法(基板表面の透明黒化)などを採用することもできる。 In addition, as a transparent blackening method, in addition to the method of mixing the black dispersion liquid with the substrate material, there is also a method of applying the black dispersion liquid to a resin plate of the substrate material (transparent blackening of the substrate surface), or a method of applying the black dispersion liquid to the resin plate of the substrate material, or using an ND filter. It is also possible to adopt a method of vapor-depositing metal on the same resin plate (transparent blackening of the substrate surface) as shown in the figure below.
 なお、基板3は可撓性を有し、基板厚さは、強度確保と軽量化の兼ね合いから、好ましくは50μm以上250μm以下である。 Note that the substrate 3 has flexibility, and the substrate thickness is preferably 50 μm or more and 250 μm or less from the viewpoint of ensuring strength and reducing weight.
(本発明に係る表面形状拡散シートによる黒浮き軽減効果の確認)
 上述の黒浮きの測定において、本発明に係る表面形状拡散シート1を表面に備えたサンプルスクリーンを用い、同様の測定を行った。このサンプルスクリーンは、SHLスクリーン82において前記透明黒化により基板内部の透過率Tを0.9に下げた以外はSHLスクリーン82と同様とした。その結果、このサンプルスクリーンでは、黒浮き(全黒表示における輝度)が約30cd/m2であり、ホワイトマットスクリーンより、約66%(=(1-30/88)×100)軽減されていることが確認できた。このサンプルスクリーンでは、基板の透過率を下げたことで、黒浮きがSHLスクリーン82のそれ(約35cd/m2)より減少している。
(Confirmation of black floating reduction effect by surface shape diffusion sheet according to the present invention)
In the above-mentioned measurement of black floating, similar measurements were performed using a sample screen whose surface was provided with the surface shape diffusion sheet 1 according to the present invention. This sample screen was the same as the SHL screen 82 except that the transmittance T inside the substrate was lowered to 0.9 by the transparent blackening. As a result, on this sample screen, the black float (luminance in all black display) was approximately 30 cd/ m2 , which is approximately 66% (= (1-30/88) x 100) reduced compared to the white matte screen. This was confirmed. In this sample screen, by lowering the transmittance of the substrate, the black float is reduced compared to that of the SHL screen 82 (approximately 35 cd/m 2 ).
(本発明に係る反射型スクリーン:本発明の[2])
 次に、本発明に係る反射型スクリーンについて説明する。この反射型スクリーンは、本発明に係る表面形状拡散シート1を備えた反射型スクリーンであり、その一例として図4に示す実施形態では、基板3から背面側へ順次配置接合した、反射層8、保護膜9及び保持板10を具備する。
(Reflective screen according to the present invention: [2] of the present invention)
Next, a reflective screen according to the present invention will be explained. This reflective screen is a reflective screen equipped with a surface shape diffusion sheet 1 according to the present invention. As an example, in the embodiment shown in FIG. 4, a reflective layer 8, A protective film 9 and a retaining plate 10 are provided.
 反射層8と基板3との接合面が映像光を反射する面となり、保護膜9は、反射層8を背面側から被覆する膜であり、保持板10は、前基板3の平坦性を維持する板である。 The bonding surface between the reflective layer 8 and the substrate 3 becomes a surface that reflects the image light, the protective film 9 is a film that covers the reflective layer 8 from the back side, and the holding plate 10 maintains the flatness of the front substrate 3. It is a board that does.
(反射層)
 反射層8は、例えばアルミニウム、銀、ニッケル等の高反射率(反射率が70%以上)の金属の層を可撓性を有するように薄く蒸着したり、アルミのフレークと呼ぶアルミニウムの薄型小片をこれらの面が平行に揃うように塗装する方法などで形成するのが好ましい。反射層8の厚さは、蒸着の場合は0.5~0.9μm程度、塗装の場合は10~50μm程度にし、剥離性、反射率、曲げの強度等の観点から決定される。
(reflective layer)
The reflective layer 8 may be formed by, for example, depositing a thin layer of a metal with high reflectance (reflectance of 70% or more) such as aluminum, silver, or nickel so that it has flexibility, or thin small pieces of aluminum called aluminum flakes. It is preferable to form them by a method such as painting so that these surfaces are aligned parallel to each other. The thickness of the reflective layer 8 is about 0.5 to 0.9 μm in the case of vapor deposition, and about 10 to 50 μm in the case of painting, and is determined from the viewpoints of releasability, reflectance, bending strength, etc.
(保護膜)
 保護膜9は、可撓性を有し、反射層8の劣化や剥離、反射層8の破損等を抑制し、反射層8を保護する機能を有している。また、保護膜9は、光を吸収する機能を有している。保護膜9の材料としては、ウレタン系樹脂、エポキシ系樹脂やアクリル系樹脂等、これらの混合となる樹脂を母材とし、光吸収材として黒色等の暗色系の塗料や、黒色等の暗色系の染料や顔料等又はこれらを含有するビーズが添加され、さらに、反射層8を酸化等の劣化から保護する等の機能を有する各種添加剤等が添加された材料が挙げられる。また、保護膜9の厚さは、保護機能および光吸収機能を十分に発揮させる観点から、最も薄い部位で5~100μmが好ましい。
(Protective film)
The protective film 9 has flexibility and has the function of protecting the reflective layer 8 by suppressing deterioration and peeling of the reflective layer 8, damage to the reflective layer 8, and the like. Furthermore, the protective film 9 has a function of absorbing light. The material for the protective film 9 is a base material such as urethane resin, epoxy resin, acrylic resin, or a mixture of these resins, and a dark color paint such as black or a dark color paint such as black as the light absorbing material. Examples include materials to which dyes, pigments, etc., or beads containing these are added, and various additives having functions such as protecting the reflective layer 8 from deterioration such as oxidation. Further, the thickness of the protective film 9 is preferably 5 to 100 μm at the thinnest portion from the viewpoint of fully exhibiting the protective function and the light absorption function.
(保持板)
 保持板10は、基板3の平坦性(詳しくは表面形状拡散シート1から保護膜9までの部材の平坦性)を維持するためのもので、剛性確保と軽量化の兼ね合いから、好ましくは例えば板厚1.0~3.0mmの木材繊維を圧縮して接着剤で固めたMDFで構成される。保持板10は、両面テープ等の粘着材からなる接合層(図示せず)を介して、保護膜9と貼合してある。保持板10を有することで、搬送時の変形を防止でき、かつフック等を用いて壁面へ吊り下げるなどといった、取付け作業が容易となる。
(retention plate)
The holding plate 10 is for maintaining the flatness of the substrate 3 (specifically, the flatness of the members from the surface shape diffusion sheet 1 to the protective film 9), and is preferably made of a plate, for example, from the viewpoint of ensuring rigidity and reducing weight. It is made of MDF made by compressing wood fibers with a thickness of 1.0 to 3.0 mm and hardening them with adhesive. The holding plate 10 is bonded to the protective film 9 via a bonding layer (not shown) made of an adhesive material such as double-sided tape. By having the holding plate 10, deformation during transportation can be prevented, and installation work such as hanging on a wall using a hook or the like is facilitated.
 なお、保持板10に代えて、300~400μm厚のマグネットシート(図示せず)を貼り付けた構造でも良い。 Note that instead of the holding plate 10, a structure in which a magnetic sheet (not shown) with a thickness of 300 to 400 μm is attached may be used.
 図4の例では、表面形状異方性拡散層2の厚さは、40μm、基板3の厚さは250μmである。この実施形態では、映像光を偏向するフレネルレンズがないので、左右端からの映像光が観察位置に届き難くなるため、表面形状異方性拡散層2での左右方向の拡散は完全拡散のように全ての方向に拡散するのが好ましい。 In the example of FIG. 4, the thickness of the anisotropic surface shape diffusion layer 2 is 40 μm, and the thickness of the substrate 3 is 250 μm. In this embodiment, since there is no Fresnel lens for deflecting the image light, it becomes difficult for the image light from the left and right ends to reach the observation position, so the diffusion in the left and right direction in the anisotropic surface shape diffusion layer 2 appears to be complete diffusion. It is preferable to diffuse in all directions.
(レンズ層としてのフレネルレンズ:本発明の[3])
 次に、本発明に係る反射型スクリーンにおいて、フレネルレンズを用いる実施形態の1つについて説明する。図4のスクリーンにおいて左右端の映像が暗くなるのを防ぐため、フレネルレンズを用いるのが好ましい。フレネルレンズを用いる実施形態の1つは、図5に示すように、基板3と反射層8との間に配置接合したレンズ層6を有し、レンズ層6は、背面側に反射面形状を有するフレネルレンズからなり、反射層8とレンズ層6との接合面が前記映像光を反射する面となる反射型スクリーンである。
(Fresnel lens as a lens layer: [3] of the present invention)
Next, one embodiment using a Fresnel lens in the reflective screen according to the present invention will be described. In order to prevent the images at the left and right ends of the screen shown in FIG. 4 from becoming dark, it is preferable to use a Fresnel lens. One embodiment using a Fresnel lens has a lens layer 6 disposed and bonded between a substrate 3 and a reflective layer 8, as shown in FIG. 5, and the lens layer 6 has a reflective surface shape on the back side. This is a reflection type screen, which is made of a Fresnel lens having a Fresnel lens, and the joint surface between the reflection layer 8 and the lens layer 6 serves as a surface that reflects the image light.
 レンズ層6は、その材質がウレタンアクリレートやエポキシアクリレート等の紫外線硬化型樹脂、あるいは、電子線硬化型樹脂等の他の電離放射線硬化型樹脂であり、可撓性を有し、その厚み方向境界面が、正面側では平面、背面側では、レンズ面6aと非レンズ面6bが交互に同心円弧状に配列したフレネルレンズ面である。レンズ層6の層厚さは、最大でも50μmくらいに抑えて設計される。なお、レンズ面6aのフレネルレンズ半径方向寸法は100~150μm程度であり、非レンズ面6bのそれは、最大でも10μm程度で0μmとするのが理想のフレネルレンズである。 The material of the lens layer 6 is an ultraviolet curable resin such as urethane acrylate or epoxy acrylate, or another ionizing radiation curable resin such as an electron beam curable resin, and is flexible and has a boundary in its thickness direction. The surface is a flat surface on the front side, and the surface on the back side is a Fresnel lens surface in which lens surfaces 6a and non-lens surfaces 6b are alternately arranged in a concentric arc shape. The layer thickness of the lens layer 6 is designed to be limited to about 50 μm at the maximum. The radial dimension of the Fresnel lens of the lens surface 6a is approximately 100 to 150 μm, and the dimension of the non-lens surface 6b is approximately 10 μm at maximum and 0 μm in an ideal Fresnel lens.
 図5に示す反射型スクリーン4のレンズ層6をなすフレネルレンズは、焦点距離fのフレネルレンズであり、映像投影装置5からの映像光をスクリーン表面の法線方向に偏向するので、その焦点距離fは、スクリーン表面から映像投影装置5までの距離、詳しくは映像投影装置5の投射光学系138の絞りの内側の空間であるアイリス面18(図8参照)までの距離aと一致する(a=f)。ただし、ここで「一致」とは±10%以内の誤差を許容する。 The Fresnel lens forming the lens layer 6 of the reflective screen 4 shown in FIG. f corresponds to the distance from the screen surface to the image projection device 5, more specifically, the distance a to the iris plane 18 (see FIG. 8), which is the space inside the aperture of the projection optical system 138 of the image projection device 5 (a = f). However, here, "coincidence" allows an error within ±10%.
 したがって、スクリーン左右端から出射される映像光の主光線方向もスクリーン表面の法線方向となるので、前記映像光は表面形状異方性拡散層2で2回拡散された後、図4と比べて観察位置に到達しやすくなる。 Therefore, since the principal ray direction of the image light emitted from the left and right ends of the screen is also the normal direction of the screen surface, the image light is diffused twice by the surface-shaped anisotropic diffusion layer 2, and compared with FIG. This makes it easier to reach the observation position.
 図5(b)において、フレネルレンズからなるレンズ層6は、表面形状拡散シート1の基板3の背面に直接UV重合で形成することが可能であるが、基板3の背面にシート状のフレネルレンズを貼合してもよい。フレネルレンズを反射型にするため、アルミのフレークと呼ぶアルミニウムの薄型小片がレンズ面に平行に揃うようにした反射層8で覆い、さらにその表面に保護膜9を塗装して保護している。この反射型スクリーンの厚さは、保持板10を除いて、400μm程度であるので、平坦で凹凸がないスクリーンにするには、厚さが1.0~3.0mmの保持板10に貼ることが好ましい。また、保持板10の代わりに、マグネットシート(図示せず)を貼り付けたスクリーンを磁石の付くボードや壁に直接貼り付けるようにしてもよい。 In FIG. 5(b), the lens layer 6 made of a Fresnel lens can be formed directly on the back surface of the substrate 3 of the surface shape diffusion sheet 1 by UV polymerization. may be pasted. In order to make the Fresnel lens a reflective type, it is covered with a reflective layer 8 in which thin pieces of aluminum called aluminum flakes are arranged parallel to the lens surface, and a protective film 9 is further coated on the surface for protection. The thickness of this reflective screen, excluding the holding plate 10, is approximately 400 μm, so in order to make the screen flat and without unevenness, it must be attached to the holding plate 10 with a thickness of 1.0 to 3.0 mm. is preferred. Further, instead of the holding plate 10, a screen to which a magnetic sheet (not shown) is attached may be directly attached to a board or wall to which a magnet is attached.
(空間結像アイリス面方式:本発明の[4])
 次に、本発明に係る反射型スクリーンにおいて、フレネルレンズを用いるもう1つの実施形態について説明する。
(Spatial imaging iris surface method: [4] of the present invention)
Next, another embodiment using a Fresnel lens in the reflective screen according to the present invention will be described.
 この実施形態において、反射型スクリーン4は図6に示すように、前記フレネルレンズの焦点距離fに対し、映像光を反射する面から、aの距離離れた映像投影装置4の投射レンズのアイリス面18(図8参照)からの映像光を反射して、(1/a)+(1/b)=1/fの関係を満たすbの距離離れた位置に空間結像アイリス面20を作る。なお、距離a、bは上記の関係を満たす値に対し±10%以内の誤差が許容される。 In this embodiment, as shown in FIG. 6, the reflective screen 4 has an iris surface of the projection lens of the image projection device 4, which is located a distance a from the surface that reflects the image light with respect to the focal length f of the Fresnel lens. 18 (see FIG. 8) to create a spatial imaging iris surface 20 at a distance b that satisfies the relationship (1/a)+(1/b)=1/f. Note that an error within ±10% is allowed for the distances a and b with respect to the values that satisfy the above relationship.
 この図6の実施形態は、図5の実施形態と比べ、レンズ層6をなすフレネルレンズが異なるだけである。すなわち、図5に示すレンズ層6(フレネルレンズ)は、映像投影装置5からの映像光をスクリーンの法線方向に偏向するのに対し、図6では、スクリーンの正面からb離れた位置に映像光を集めるという集光機能を有していることである。光学的には互いの焦点距離fが異なる。図6のような光学方式は、空間結像アイリス面方式と呼ばれている。そこで、本実施形態の反射型スクリーンを空間結像アイリス面方式・反射型スクリーンともいう。 The embodiment shown in FIG. 6 differs from the embodiment shown in FIG. 5 only in the Fresnel lens forming the lens layer 6. That is, the lens layer 6 (Fresnel lens) shown in FIG. 5 deflects the image light from the image projection device 5 in the normal direction of the screen, whereas in FIG. It has a condensing function of concentrating light. Optically, the focal lengths f are different from each other. The optical system shown in FIG. 6 is called a spatial imaging iris surface system. Therefore, the reflective screen of this embodiment is also referred to as a spatial imaging iris surface type reflective screen.
(空間結像アイリス面方式・反射型スクリーンに対する外光の挙動)
 図7は、空間結像アイリス面方式・反射型スクリーンのフレネルレンズによる外光の入射光と反射光の光線追跡図である。床面13からの外光51は、映像投影装置5からの映像光50と同じ方向から反射型スクリーン4のフレネルレンズのレンズ面6aに入射するので、黒浮きの原因となる。
(Behavior of external light on spatial imaging iris surface method/reflective screen)
FIG. 7 is a ray tracing diagram of incident light and reflected light of external light through a Fresnel lens of a spatial imaging iris surface type reflective screen. Since the external light 51 from the floor surface 13 enters the lens surface 6a of the Fresnel lens of the reflective screen 4 from the same direction as the image light 50 from the image projection device 5, it causes black floating.
 この外光51以外の、天井灯11や正面窓12からレンズ面6aに入射する外光52は、レンズ面6aにより空間結像アイリス面20には到達しないように偏向されるので、黒浮きの原因にはならない。一方、天井灯11や正面窓12からそれぞれ非レンズ面6bに入射する外光53、54の一部は空間結像アイリス面20に到達してしまうので、黒浮きの原因となる。 Outside light 52 other than this outside light 51 that enters the lens surface 6a from the ceiling light 11 or the front window 12 is deflected by the lens surface 6a so as not to reach the spatial imaging iris surface 20, so that the outside light 52 does not appear black. It won't be the cause. On the other hand, a portion of the external light 53 and 54 that enters the non-lens surface 6b from the ceiling light 11 and the front window 12, respectively, reaches the spatial imaging iris surface 20, causing black floating.
 本発明に係る表面形状拡散シート1によれば、外光51~54による黒浮きを軽減できるが、外光53、54による黒浮きをさらに軽減するために、フレネルレンズの非レンズ面6bの傾きをスクリーン法線方向と同じくスクリーン表面に対して垂直にするか、非レンズ面6bが反射面とならないように、非レンズ面6bは、前記反射層(例えば金属膜)での被覆対象から除外するか、又は前記反射層に代えて光を吸収する吸収膜で被覆することが好ましい。 According to the surface shape diffusion sheet 1 according to the present invention, it is possible to reduce black floating caused by external light 51 to 54, but in order to further reduce black floating caused by external light 53 and 54, the inclination of the non-lens surface 6b of the Fresnel lens is is perpendicular to the screen surface as well as the screen normal direction, or the non-lens surface 6b is excluded from being coated with the reflective layer (for example, a metal film) so that the non-lens surface 6b does not become a reflective surface. Alternatively, it is preferable to cover with an absorbing film that absorbs light in place of the reflective layer.
(本発明に係る映像表示システム:本発明の[5]及び[6])
 次に、本発明に係る映像表示システムについて説明する。この映像表示システムは、上述の本発明に係る反射型スクリーン4と、映像光を投影する映像投影装置5(図8に例示)とを備えることを前提とする。なお、映像投影装置5としては、図8に例示したものに限らず、市販の各種プロジェクターが挙げられる。
(Video display system according to the present invention: [5] and [6] of the present invention)
Next, a video display system according to the present invention will be explained. This image display system is premised on being equipped with the above-described reflective screen 4 according to the present invention and an image projection device 5 (illustrated in FIG. 8) that projects image light. Note that the image projection device 5 is not limited to the one illustrated in FIG. 8, and may include various commercially available projectors.
 上記の前提において、外光の影響を受ける明環境では、黒浮きによる黒色の輝度が高くなるに従い、映像が灰色がかり色の鮮やかさが損なわれ、本来の色が再現できなくなるという問題がある。この問題を解決するため、本発明者らは、黒浮きと色再現性の関係について検討を重ねた。その結果、黒浮きした黒色の輝度をRGBカラーモデルの数値を用いて黒浮き量として表現することにより、色再現性の悪化を定量化しうるとの知見を得た。上記検討の過程を以下に説明する。 Based on the above premise, in a bright environment affected by external light, there is a problem that as the brightness of black due to black floating increases, the image becomes grayish and the vividness of colors is lost, making it impossible to reproduce the original colors. In order to solve this problem, the inventors of the present invention have repeatedly studied the relationship between black floating and color reproducibility. As a result, it was found that the deterioration in color reproducibility can be quantified by expressing the luminance of black that is floating as the amount of black that is floating using RGB color model values. The process of the above consideration will be explained below.
(黒浮き量)
 RGBカラーモデルでは、RGBの各要素をR=0~255、G=0~255、B=0~255で表現する。数値0~255は整数であり、明度(明るさ)と呼ばれ、明るさの相対強度を示す。最小値が0で、最大値が255である。したがって、絶対黒は、R=0、G=0、B=0で、最も明るい白は、R=255、G=255、B=255となる。
(Black floating amount)
In the RGB color model, each RGB element is expressed as R=0 to 255, G=0 to 255, and B=0 to 255. The numerical value 0 to 255 is an integer, called lightness (brightness), and indicates the relative intensity of brightness. The minimum value is 0 and the maximum value is 255. Therefore, absolute black is R=0, G=0, B=0, and the brightest white is R=255, G=255, B=255.
 一方、輝度計で測定される黒浮きした黒色の輝度(cd/m2)は外光下で絶対黒(R=0、G=0、B=0)を投影した時スクリーン面で測定される最小輝度となるので、黒浮きを、白色(R=255、G=255、B=255)を投影した時の最大輝度(cd/m2)に対する比率、すなわち相対輝度(0~1)で表すことができる。 On the other hand, the brightness (cd/m 2 ) of floating black measured with a brightness meter is measured on the screen surface when absolute black (R=0, G=0, B=0) is projected under external light. Since this is the minimum brightness, black floating is expressed as a ratio to the maximum brightness (cd/m 2 ) when white (R = 255, G = 255, B = 255) is projected, that is, relative brightness (0 to 1). be able to.
 しかし、黒浮き状態下で観察される映像の色も、映像投影装置5からの投影光の色と同様に、RGBカラーモデルの各要素の明度(0~255)で表される。したがって、スクリーン面で観察される映像の色の色再現性に及ぼす黒浮きの影響を定量化する上では、黒浮きの状態を前記黒色の相対輝度よりも、黒浮きした黒色の各要素の明度=255×(黒色の相対輝度)で表しておく方が、映像の色と黒浮き状態の関係を整理し易いと考えられる。そこで、以下では、黒浮き状態を黒浮きした黒色の各要素の明度で表し、その明度の値(黒色の各要素の明度は同じとした)を「黒浮き量」と称する。黒浮き量の符号はLbを用いる。すなわち、黒浮き量Lbの定義式は、Lb=255×(黒色の相対輝度)とする。 However, the color of the image observed under the black floating state is also expressed by the brightness (0 to 255) of each element of the RGB color model, similar to the color of the projection light from the image projection device 5. Therefore, in quantifying the effect of black floating on the color reproducibility of images observed on the screen, the condition of black floating is determined by the brightness of each element of black floating, rather than the relative luminance of the black. = 255 x (relative brightness of black) It is thought that it is easier to organize the relationship between the color of the image and the black floating state. Therefore, hereinafter, the black floating state is expressed by the brightness of each black floating element, and the value of the brightness (assuming that the brightness of each black element is the same) is referred to as the "black floating amount". Lb is used as the sign of the amount of black floating. That is, the definition formula for the amount of black floating Lb is Lb=255×(relative brightness of black).
 ただし、明度は上記のとおり整数であるから、この式の値の整数部を採用する。ここで、整数部は計算値の小数点以下を四捨五入、切り捨て又は切り上げした値のいずれであってもよいが、以下では四捨五入した値とする。 However, since brightness is an integer as mentioned above, the integer part of the value of this formula is used. Here, the integer part may be a value obtained by rounding off, rounding down, or rounding up the decimal point of the calculated value, but in the following, the rounded value is used.
 例えば、表3のSHLスクリーン場合、黒浮きした黒色の輝度は全黒の35.59cd/m2、白色の輝度は全白の994.3cd/m2であるから、黒浮き量は、Lb=255×35.59/994.3=9である。 For example, in the case of the SHL screen shown in Table 3, the luminance of the black with floating black is 35.59 cd/m 2 of all black, and the luminance of white is 994.3 cd/m 2 of all white, so the amount of black floating is Lb= 255×35.59/994.3=9.
 そこで、上記検討において、映像の色を構成するRGBカラーモデルにおける赤(R)、緑(G)、青(B)及びこれらが混合した白色を視対象に選ぶ。そして、視対象の明度を種々変え、黒浮きした黒色に相当する黒色を背景として黒浮き量も種々変えて視対象を観察した。すると、視対象の明度がLb以上2Lb未満の範囲で、視対象の明度が基準値に対して見かけ上低下する「明度低下」が起こる。なおここで基準値とは、黒浮きがない黒色(RGBとも0すなわち黒浮き量=0)を背景とした時の視対象の明度である。なお、視対象の明度がLb未満では、黒色の諧調表現ができなくなるいわゆる黒つぶれの状態である。 Therefore, in the above study, red (R), green (G), blue (B) in the RGB color model that constitutes the color of the image, and white, which is a mixture of these, are selected as viewing objects. Then, the visual object was observed while varying the brightness of the object and varying the amount of black floating against a background of black, which corresponds to a black floating black. Then, in a range where the brightness of the viewed object is greater than or equal to Lb and less than 2Lb, a "brightness reduction" occurs in which the brightness of the viewed object apparently decreases with respect to the reference value. Note that the reference value here is the brightness of the object to be viewed when the background is black with no black float (both RGB are 0, that is, the black float amount is 0). Note that when the brightness of the viewing object is less than Lb, there is a so-called crushed black state in which black gradation cannot be expressed.
(明度低下の目視実験)
 黒浮き量と視対象の明度低下量の関係を求めるための明度低下の目視実験について、以下に述べる。この目視実験では、図9に示すように、液晶ディスプレイの画面に、RGBカラーモデルの各要素の明度(0~255)を用いて、右側に黒浮きがない(黒浮き量=0の)黒色、左側に任意の黒浮き量(図9では、黒浮き量=215、すなわちRGBとも215)の黒色の矩形を接して表示する。次に、それぞれの矩形内に視対象の各色を円形で表示し、円形の直径は1.2cm、観察距離は約30cmとして、左右の色を正面から見て、各色の明るさの違いの有無を目視観察した。その結果、視対象の各色は黒浮き量=215のときが、黒浮き量=0のときの基本の色より、暗く観えることが判った。黒浮きが起こると、映像が灰色がかり色の鮮やかさが損なわれるのは、黒浮きにより各色の明度が基準値(黒浮き量=0の時の明度)よりも見かけ上低下して色再現性が損なわれてしまうからであると考えられる。
(Visual test of brightness reduction)
A visual experiment of brightness reduction for determining the relationship between the amount of black floating and the amount of brightness reduction of a visual object will be described below. In this visual experiment, as shown in Figure 9, using the brightness (0 to 255) of each element of the RGB color model on the screen of the liquid crystal display, a black color with no black float (black float amount = 0) on the right side was used. , a black rectangle with an arbitrary black floating amount (in FIG. 9, black floating amount = 215, that is, 215 for both RGB) is displayed adjacent to the left side. Next, each color to be viewed is displayed in a circle within each rectangle, and the diameter of the circle is 1.2 cm, and the observation distance is approximately 30 cm, and the left and right colors are viewed from the front to see if there is a difference in brightness between each color. was visually observed. As a result, it was found that each color of the visual object appears darker when the amount of black float = 215 than the basic color when the amount of black float = 0. When black float occurs, the image becomes grayish and the vividness of the colors is impaired.The reason for this is that due to black float, the brightness of each color is apparently lower than the standard value (brightness when black float amount = 0), and color reproducibility is affected. This is thought to be because it is damaged.
 図9では、液晶画面に表示した映像(前記視対象及び背景)を目視で観察したが、この映像の輝度を測定すると、黒色(R=0、G=0、B=0)は1.5cd/m2、白色(R=255、G=255、B=255)は85cd/m2であった。 In FIG. 9, the image displayed on the liquid crystal screen (the viewing object and background) was visually observed, and when the brightness of this image was measured, the brightness of black (R=0, G=0, B=0) was 1.5 cd. /m 2 and white (R=255, G=255, B=255) was 85 cd/m 2 .
 さらに、液晶画面上の図9の画像と同じ映像を、図3(b)の映像投影装置5からSHLスクリーン82及び前述のサンプルスクリーンに投影しても、黒浮き量=215の各色がそれぞれ、黒浮き量=0の各色(基本の色)より、暗く観える現象は、液晶ディスプレイの画面上に表示した場合と同様に観察された。 Furthermore, even if the same image as the image shown in FIG. 9 on the liquid crystal screen is projected from the image projection device 5 shown in FIG. The phenomenon in which each color (basic color) with a black float amount of 0 appeared darker was observed in the same way as when displayed on a liquid crystal display screen.
 次に、視対象である各色の、前記基準値からの明度低下を定量的に測るため、図10(a)のように、右側の矩形では、視対象の円形の右に各色の明度を記入する以外は図9と同じとし、左側の矩形では、各視対象の上部に、下部の明度低下を補い右側の各色(明度が基準値である色)と同じに見える明度補正を加えた円形を追加する。各視対象の左には、右側と同じように明度を記入する。図10(a)では、黒浮き量=215にすると、各色の明度は基準値より約18低下することを示している。この値は、個人の視覚に依存すると考え、5人で観察して確定したものである。図10(b)は、黒浮き量を変化させ、右側と左側で同じ明度になる黒浮き量を求めたものである。これより、視対象の明度=230において、黒浮き量を115以下にすれば視対象の明度低下は起こらなくなることが判った。図10と同じ方法で、視対象の明度(図10では視対象の明度=230)をパラメータとして、黒浮き量に対する視対象の明度低下量を求めると、図11のようになった。この図より、視対象の明度低下が始まる黒浮き量は、視対象の明度/2に等しいことが判った。 Next, in order to quantitatively measure the decrease in brightness from the reference value of each color to be viewed, in the rectangle on the right side, write the brightness of each color to the right of the circle to be viewed, as shown in Figure 10(a). In the rectangle on the left, a circle with brightness correction added to the top of each visual target to compensate for the decrease in brightness at the bottom and look the same as each color on the right (colors whose brightness is the reference value) is added. to add. The brightness is written on the left side of each visual object in the same way as on the right side. FIG. 10A shows that when the amount of black float is set to 215, the brightness of each color decreases by about 18 from the reference value. This value was determined by observation by five people, considering that it depends on the individual's visual sense. FIG. 10(b) shows the amount of black floating that is the same brightness on the right and left sides by varying the amount of black floating. From this, it has been found that when the brightness of the viewed object is 230, if the amount of black float is set to 115 or less, the brightness of the viewed object will not decrease. Using the same method as in FIG. 10, using the brightness of the viewed object (brightness of the viewed object = 230 in FIG. 10) as a parameter, the amount of decrease in brightness of the viewed object relative to the amount of black floating was determined, and the result was as shown in FIG. 11. From this figure, it was found that the amount of black floating at which the brightness of the viewed object begins to decrease is equal to the brightness of the viewed object/2.
 次に、黒浮き量をパラメータとして、視対象の明度と明度低下量の関係を調べたものが図12である。この図より、視対象の明度が黒浮き量の2倍以上になると、視対象の明度低下は起こらない。種々の明度の白色(明度をLとしてR=L、G=L、B=L、L=255、230、200、170、135、115)を視対象とし、背景の黒浮き量=100とした時、視対象の明度低下が起こらなくなる視対象の明度の範囲を確認するため、準備した視対象パターンを、図13(a)、(b)に示す。黒浮き量=100の2倍以上となる視対象の明度=200以上では明度低下は起こらないことが確認できた。また、図13(b)では、視対象の明度低下の量を求めたもので、明度低下分だけ明度を高めると、左右の視対象の明るさが同じになることが判る。 Next, FIG. 12 shows the relationship between the brightness of the visual object and the amount of brightness reduction using the amount of black floating as a parameter. From this figure, when the brightness of the viewed object becomes twice or more the amount of black floating, the brightness of the viewed object does not decrease. White colors of various brightnesses (R = L, G = L, B = L, L = 255, 230, 200, 170, 135, 115, where the brightness is L) were viewed, and the amount of black in the background = 100. 13(a) and 13(b) show prepared viewing target patterns in order to confirm the brightness range of the viewing object in which the brightness of the viewing object does not decrease. It was confirmed that no reduction in brightness occurs when the brightness of the visual object is 200 or more, which is more than twice the black floating amount = 100. Further, in FIG. 13(b), the amount of brightness reduction of the visual object is calculated, and it can be seen that if the brightness is increased by the brightness reduction, the brightness of the left and right visual objects becomes the same.
 以上の検討より、視対象の色再現性は、視対象の明度が黒浮き量の2倍以上になる明度範囲では悪化しないことになる。従来の反射型スクリーンにおいては、表3のホワイトマットスクリーンのように天井灯を点けた明環境下では、黒浮きの輝度(最小輝度)は約88cd/m2と大きく、全白(最大輝度)が289cd/m2であるので、黒浮き量は、255×88/289=78となる。 From the above study, it is concluded that the color reproducibility of the viewed object does not deteriorate in the brightness range where the brightness of the viewed object is twice or more the amount of black floating. In conventional reflective screens, under a bright environment with ceiling lights on, as in the case of the white matte screen shown in Table 3, the brightness of black floating (minimum brightness) is as large as approximately 88 cd/ m2 , and the brightness of all white (maximum brightness) is as high as approximately 88 cd/m2. is 289 cd/m 2 , so the amount of black floating is 255×88/289=78.
 したがって、黒浮き量=78の場合、明度が黒浮き量×2(=156)~255では視対象の明度低下は起こらないが、図12の黒浮き量=78のグラフに示すように、視対象の明度が黒浮き量(=78)~2×黒浮き量(=155)の広い範囲で視対象の明度低下が起こる。 Therefore, in the case of black float amount = 78, the brightness of the visual object does not decrease when the brightness is between black float amount x 2 (= 156) to 255, but as shown in the graph of black float amount = 78 in Fig. 12, The brightness of the visual object decreases in a wide range of brightness of the object from black floating amount (=78) to 2× black floating amount (=155).
(色再現明度範囲、色不再現明度範囲及び黒つぶれ明度範囲)
 このように、黒浮き量を求めることで、視対象の明度低下が起こる明度範囲(色不再現明度範囲という)及び視対象の明度低下が起こらない明度範囲(色再現明度範囲という)が特定できる。Lbが黒浮き量、2Lbが2×黒浮き量、Lが視対象の各要素の明度とすると、色不再現明度範囲は、Lb≦L<2Lb、色再現明度範囲は、2Lb≦L≦255と表される。
(Color reproduction brightness range, color non-reproduction brightness range, and black crushed brightness range)
In this way, by determining the amount of black float, it is possible to identify the brightness range in which the brightness of the viewed object decreases (referred to as the color reproduction brightness range) and the brightness range in which the brightness of the viewed object does not decrease (referred to as the color reproduction brightness range). . If Lb is the amount of black floating, 2Lb is 2×the amount of black floating, and L is the brightness of each element of the viewing object, the color non-reproduction brightness range is Lb≦L<2Lb, and the color reproduction brightness range is 2Lb≦L≦255. It is expressed as
 なお、0≦L<Lbの明度範囲は、前述のように黒つぶれが起こる(黒浮きにより黒色の諧調表現ができなくなる)明度範囲であり、黒つぶれ明度範囲という。 Note that the brightness range of 0≦L<Lb is the brightness range in which crushed black occurs as described above (black gradation cannot be expressed due to floating black), and is referred to as the brightness range with crushed black.
(透過率Tと白色の輝度の調整による色再現明度範囲の拡大)
 表3のSHLスクリーンでは黒浮き量は9(=255×36/994)となり、18(=2×9)~255が色再現明度範囲となる。このような色再現明度範囲は、明度範囲の最小値は黒浮き量の元になる最小輝度で決まり、最大値は最大輝度となる全白(白色)の輝度を高めことで拡げられる。そこで、表面形状拡散シート1の基板3の透過率Tと映像投影装置5からの映像光の最大輝度となる白色の輝度Kwを調整することで、色再現明度範囲を広くすることができる。例えば、黒浮き量LbとLmax(明度の最大値≦255)の関係を、Lb≦Lmax/4、と規定し、この関係を満たすように、表面形状拡散シート1の基板3の透過率Tを前述の透明黒化により、0.25≦T2<1の範囲に下げ、黒浮き量Lbを下げると同時に、Lmaxの減少分を補うため映像投影装置5からの映像光の出力を1/T2倍に高める。ここで、T2としているのは、反射型スクリーン4では映像光は基板3を2回透過するからである。これにより、Lmaxは低下せずにLbだけを下げ、色再現明度範囲を、2Lb×T2≦色再現明度範囲≦Lmax、と拡げることが可
能になる。ただし、スクリーン表面で反射される外光は、スクリーン内部の反射層8で反射される外光に対し十分小さいとした。
(Expansion of color reproduction brightness range by adjusting transmittance T and white brightness)
In the SHL screen shown in Table 3, the black floating amount is 9 (=255×36/994), and the color reproduction lightness range is 18 (=2×9) to 255. In such a color reproduction brightness range, the minimum value of the brightness range is determined by the minimum brightness that is the source of the amount of black floating, and the maximum value can be expanded by increasing the brightness of full white (white), which is the maximum brightness. Therefore, by adjusting the transmittance T of the substrate 3 of the surface shape diffusion sheet 1 and the white brightness Kw, which is the maximum brightness of the image light from the image projection device 5, the color reproduction brightness range can be widened. For example, the relationship between the amount of black floating Lb and Lmax (maximum value of brightness ≦255) is defined as Lb≦Lmax/4, and the transmittance T of the substrate 3 of the surface shape diffusion sheet 1 is set so as to satisfy this relationship. Through the above-mentioned transparent blackening, the image light output from the image projection device 5 is increased by 1/T2 to reduce the black floating amount Lb to a range of 0.25≦T2<1 and to compensate for the decrease in Lmax. increase to Here, T2 is used because the image light passes through the substrate 3 twice in the reflective screen 4. This makes it possible to lower only Lb without lowering Lmax, and expand the color reproduction brightness range to 2Lb×T2≦color reproduction brightness range≦Lmax. However, the external light reflected on the screen surface was sufficiently smaller than the external light reflected on the reflective layer 8 inside the screen.
 例えば、反射型スクリーン4の基板3の透過率Tを約0.9として、さらに映像投影装置5からの映像光の出力を1.24倍(1/T2倍)にすれば、色再現明度範囲の下限が2Lb×0.81となり、色再現明度範囲を低明度側に2Lb×(1-0.81)だけ拡大できる。 For example, if the transmittance T of the substrate 3 of the reflective screen 4 is about 0.9 and the output of the image light from the image projection device 5 is increased by 1.24 times (1/T2 times), the color reproduction brightness range is The lower limit of is 2Lb×0.81, and the color reproduction brightness range can be expanded by 2Lb×(1-0.81) toward the lower brightness side.
 さらに、黒浮き量Lbが最大輝度の白色(R=255、G=255、B=255)の明度255となった場合、色再現明度範囲の下限2Lbが510となって上限255を超えるため色再現明度範囲が存在せず、視対象の明度範囲(0~255)の全域で明度低下が起こることになる。図14(a)に、黒浮き量を255とし視対象に白色を用いた場合の視対象の明度低下を示す。図14(b)は、白色の代わりに緑(G)を用いた場合である。これらより、黒浮きが最大明度、すなわち白色の背景になると、視対象の明度範囲の全域において、黒浮きのない黒色背景の視対象の明度(基準値)からの明度低下が起こることを意味する。視対象を明るく、鮮やかな色で観てもらうために背景を白ではなく黒にすることは、理に適っていることが判る。 Furthermore, when the black floating amount Lb becomes the brightness of white (R=255, G=255, B=255) at the maximum brightness, 255, the lower limit 2Lb of the color reproduction brightness range becomes 510, which exceeds the upper limit 255, so the color There is no reproduction brightness range, and a decrease in brightness occurs throughout the brightness range (0 to 255) of the viewing object. FIG. 14(a) shows the decrease in brightness of the visual target when the black float amount is 255 and white is used as the visual target. FIG. 14(b) shows a case where green (G) is used instead of white. From these, it means that when the black float reaches its maximum brightness, that is, the white background, the brightness decreases from the brightness (reference value) of the visual target on a black background without black float across the entire brightness range of the visual target. . It turns out that it makes sense to use a black background instead of white in order to see objects in bright, vivid colors.
(明度低下の補正:本発明の[5])
 上記の検討結果に基づき、本発明の[5]に係る映像表示システムは、明度範囲Lb≦L<2Lb(色不再現明度範囲である)における明度低下を補正する構成とした。すなわち、この映像表示システムは、上記前提とした反射型スクリーンと映像表示装置を備え、さらに、輝度計と、黒浮き量算出手段と、明度調整手段とを備える。
(Correction of brightness reduction: [5] of the present invention)
Based on the above study results, the video display system according to [5] of the present invention is configured to correct the decrease in brightness in the brightness range Lb≦L<2Lb (which is the color non-reproducibility brightness range). That is, this video display system includes the reflective screen and video display device based on the above premise, and further includes a luminance meter, black floating amount calculation means, and brightness adjustment means.
(輝度計)
 前記輝度計は、外光下で前記映像投影装置から前記反射型スクリーンに投影された、RGBカラーモデルにおける黒色(R=0、G=0、B=0)及び白色(R=255、G=255、B=255)の輝度を測定してそれぞれの測定値Kmin及びKwを取得する。
(Luminance meter)
The luminance meter measures black (R=0, G=0, B=0) and white (R=255, G=0) in an RGB color model, which are projected from the image projection device onto the reflective screen under external light. 255, B=255) to obtain respective measured values Kmin and Kw.
 前記映像及び外光下での前記黒色はそれぞれ、前述の明度低下の目視実験における視対象及び黒浮きした黒色(背景)に相当する。
 輝度計は、通常の市販品で構成できる。
The black color in the video image and the black color under external light correspond to the visual object and the black background (background) in the visual test of brightness reduction described above, respectively.
The luminance meter can be constructed from ordinary commercially available products.
(黒浮き量算出手段)
 前記黒浮き量算出手段は、黒浮き量Lbを、式:255×Kmin/Kwの値の整数部として算出する。この式は、上述の黒浮き量の定義式「Lb=255×(黒色の相対輝度)」に相当する。
(Black floating amount calculation means)
The black floating amount calculation means calculates the black floating amount Lb as the integer part of the value of the formula: 255×Kmin/Kw. This equation corresponds to the above-mentioned definition equation for the amount of black floating, "Lb=255×(relative brightness of black color)".
(明度調整手段)
 前記明度調整手段は、前記映像の明度Lの明度範囲Lb≦L<2Lb内で観察される明度低下を補正する。
(Brightness adjustment means)
The brightness adjustment means corrects a decrease in brightness observed within a brightness range Lb≦L<2Lb of the brightness L of the image.
 上記の検討で述べたように、明度範囲Lb≦L<2Lbは、視対象の明度低下が観察される色不再現明度範囲である。そこで、前記明度調整手段は、この明度低下を補正するものとする。この補正には、前述の明度低下の目視実験の結果(例えば図12)を用いる。 As described in the above discussion, the brightness range Lb≦L<2Lb is the color non-reproducibility brightness range in which a decrease in the brightness of the viewing object is observed. Therefore, the brightness adjustment means corrects this brightness reduction. For this correction, the results of the aforementioned visual experiment of brightness reduction (for example, FIG. 12) are used.
 図15は、図12における黒浮き量=78の場合の色不再現明度範囲と色再現明度範囲を示した。この図を例に挙げて明度低下を補正する方法を説明する。図示するように、色再現明度範囲(156~255)では、視対象の明度低下量は0なので、明度低下は起こらないから、横軸の明度を有するRGBの各色を映像光として出力する。一方、色不再現明度範囲(78~155)では、視対象の明度低下を負の値としているので、横軸の明度を有するRGBの各色を映像光として出力すると明度低下が起こる。この明度低下を防止するために、映像光として出力しようとするRGBの各色の明度が色不再現明度範囲内に入る場合は、図示するように、その明度に対し、横軸の明度の値に対応する縦軸の明度低下量の絶対値を加算する補正を行い、補正後の明度を有するRGBの各色を映像光として出力する。 FIG. 15 shows the color non-reproduction lightness range and the color reproduction lightness range when the amount of black floating in FIG. 12 is 78. A method for correcting a decrease in brightness will be explained using this figure as an example. As shown in the figure, in the color reproduction lightness range (156 to 255), the amount of reduction in brightness of the viewing object is 0, so no reduction in brightness occurs, so each RGB color having the brightness on the horizontal axis is output as image light. On the other hand, in the color non-reproducibility brightness range (78 to 155), the brightness reduction of the viewing object is taken as a negative value, so that when each RGB color having the brightness on the horizontal axis is output as image light, the brightness decreases. In order to prevent this reduction in brightness, if the brightness of each RGB color to be output as image light falls within the color non-reproducibility brightness range, the brightness value on the horizontal axis is adjusted as shown in the figure. Correction is performed by adding the absolute value of the brightness reduction amount on the corresponding vertical axis, and each RGB color having the corrected brightness is output as image light.
 これにより、視対象の色再現明度範囲のみならず色不再現明度範囲おいても、明度低下のない映像を投影できる。 As a result, it is possible to project an image with no reduction in brightness not only in the color reproduction brightness range of the viewing object but also in the color non-reproduction brightness range.
 上述の明度低下を補正する方法について、以下に、より詳細に説明する。
 図16に示すように、RGBカラーモデルで表した視対象の明度と明度低下量の関係は、図のAのグラフのように変化する。なお、この図のAのグラフでは、例として黒浮き量=50の場合の視対象の明度と明度低下量の関係曲線を明度50未満の範囲へ外挿した曲線を示しており、色不再現範囲は、50以上100未満となる。Aのグラフの変化(曲線形状)は、RGBが原色(赤はRのみ、緑はGのみ、青はBのみがそれぞれ非0の数値、他は0)だけでなく、白色(RGBとも非0の同一数値)などの原色が混ざった色でも成り立つ(Aのグラフとほぼ同じ曲線形状になる)。よって、RGBカラーモデルの一般の色(R=Lr、G=Lg、B=Lbl)でも、Lb≦Lr、Lg、Lbl<2Lb、が成り立つ、すなわち、Lb以上2Lb未満が色不再現明度範囲となる。
A method for correcting the above-mentioned reduction in brightness will be described in more detail below.
As shown in FIG. 16, the relationship between the brightness of the visual object represented by the RGB color model and the amount of brightness reduction changes as shown in the graph of A in the figure. In addition, the graph A in this figure shows a curve obtained by extrapolating the relationship curve between the brightness of the visual object and the amount of brightness reduction when the amount of black floating = 50 to the range of brightness less than 50, and color unreproducibility. The range is 50 or more and less than 100. The change in the graph of A (curve shape) is that RGB is not only a primary color (red is only R, green is only G, blue is only B is a non-zero value, and the others are 0), but also white (both RGB are non-zero). This also applies to colors that are a mixture of primary colors such as (the same numerical value of) (the curve shape is almost the same as that of graph A). Therefore, even for the general colors of the RGB color model (R=Lr, G=Lg, B=Lbl), Lb≦Lr, Lg, Lbl<2Lb, that is, the color non-reproducibility lightness range is greater than or equal to Lb and less than 2Lb. Become.
 次に、黒浮き量の値を求める手順を図17に示す。映像表示システムの設置環境の外光により黒浮き量は変わるので、設置環境毎に黒浮き量を求めなければならない。視対象の明度と明度低下量は、RGB原色でもこれらが混ざった一般の色でも、図16のAのグラフとほぼ同一形状の関係曲線に沿って変化するので、設置環境毎の黒浮き量が判れば、補正は容易である。 Next, FIG. 17 shows the procedure for determining the value of the amount of black floating. Since the amount of black floating changes depending on the external light in the installation environment of the video display system, the amount of black floating must be determined for each installation environment. The brightness and the amount of brightness reduction of the viewing object, whether it is the RGB primary colors or a general color that is a mixture of these, changes along a relational curve that has almost the same shape as the graph A in Figure 16, so the amount of black floating for each installation environment changes. Once understood, correction is easy.
 図17に示すように、外光の影響ありの明環境で黒色(RGBとも0)及び白色(RGBとも255)を投影し、それぞれの映像の輝度を測定してそれぞれの測定値KminとKwとから、黒浮き量Lbを式:Lb=255×Kmin/Kw、により求める。黒浮き量Lbが求まると、図16においてAが明度範囲Lb~2Lbにおける明度低下量の変化とフィットするようにAを横軸方向に平行移動し、色不再現明度範囲(Lb以上2Lb未満)における明度低下量を求める。RGBカラーモデルの一般の色(R=Lr、G=Lg、B=Lbl)は、各原色毎に分けて補正を行う。 As shown in Figure 17, black (RGB both 0) and white (RGB both 255) are projected in a bright environment with the influence of external light, the brightness of each image is measured, and the measured values Kmin and Kw are calculated. From this, the black floating amount Lb is determined by the formula: Lb=255×Kmin/Kw. Once the black floating amount Lb is determined, A is translated in the horizontal axis direction so that A fits the change in brightness reduction in the brightness range Lb to 2Lb in FIG. Find the amount of brightness reduction in . General colors of the RGB color model (R=Lr, G=Lg, B=Lbl) are corrected separately for each primary color.
 Lb以上2Lb未満の色不再現明度範囲にLr、Lg、Lblが入っている場合、Aのグラフより、Lr、Lg、Lbl を個別に補正する。 If Lr, Lg, and Lbl are within the color nonreproducibility lightness range of Lb or more and less than 2Lb, correct Lr, Lg, and Lbl individually from the graph of A.
 このような補正を実行する明度調整手段は、当該補正の手順を記述したソフトウエアを前記映像投影装置に搭載することで達成できる。 A brightness adjustment means that performs such correction can be achieved by installing software in which the procedure for the correction is described in the image projection device.
(映像光出力の調整:本発明の[6])
 上述の明度低下の補正により、色不再現明度範囲を色再現明度範囲に転換できる。しかし、明度がLb未満の黒つぶれ明度範囲は残存し、この範囲では同じ明度の黒色表示となるので黒の詳細な諧調表現ができない。そこで、本発明の[6]に係る映像表示システムは、黒つぶれ明度範囲をなくし、さらに色不再現明度範囲をもなくして、視対象の明度範囲の全域を色再現明度範囲とすることで、黒浮きを軽減するものである。
(Adjustment of image light output: [6] of the present invention)
By correcting the brightness reduction described above, the color non-reproducible brightness range can be converted into the color reproducible brightness range. However, a black-filled brightness range where the brightness is less than Lb remains, and in this range black is displayed with the same brightness, making it impossible to express black in detailed gradations. Therefore, the video display system according to [6] of the present invention eliminates the black-out brightness range, further eliminates the color non-reproduction brightness range, and makes the entire brightness range of the viewing object the color reproduction brightness range. This reduces black floating.
 そのために、本発明の[6]では、本発明の[5]において、前記明度調整手段に代えて、あるいはさらに、映像光出力調整手段を備え、この映像光出力調整手段は、前記白色の輝度をKwからKw×(1+2Lb/255)に上昇させて、黒浮きを軽減することを特徴とする。 Therefore, in [6] of the present invention, in [5] of the present invention, instead of or in addition to the brightness adjusting means, an image light output adjusting means is provided, and this image light output adjusting means is configured to adjust the brightness of the white color. It is characterized by increasing the Kw from Kw to Kw×(1+2Lb/255) to reduce black floating.
 前記白色の輝度をKwからKw×(1+2Lb/255)に上昇させると、2Lb以上255以下であった色再現明度範囲に、RGBカラーモデルの明度(0~255)の範囲を外れる明度255超255+2Lb以下が新たに付加され、拡張した色再現明度範囲2Lb以上255+2Lb以下が得られる。この色再現明度範囲内の明度を有する映像は、黒つぶれも明度低下も起こらない。 When the brightness of the white color is increased from Kw to Kw x (1+2Lb/255), the color reproduction lightness range that was 2Lb or more and 255 or less changes to a value that exceeds 255 and 255+2Lb, which is outside the range of brightness (0 to 255) of the RGB color model. The following is newly added to obtain an expanded color reproduction brightness range of 2Lb to 255+2Lb. An image having a brightness within this color reproduction brightness range will not suffer from crushed shadows or a decrease in brightness.
 そして、拡張した色再現明度範囲2Lb以上255+2Lb以下を、0以上255以下の明度範囲に変換することにより、RGBカラーモデルの明度(0~255)の全域にわたり黒つぶれ及び明度低下のない映像の観察が可能である。 By converting the expanded color reproduction brightness range from 2Lb to 255 + 2Lb to a brightness range from 0 to 255, images can be observed without crushed blacks or brightness reduction over the entire brightness range (0 to 255) of the RGB color model. is possible.
 本発明の[6]の実施形態について図18の例を用いて説明する。図18は黒浮き量Lb=78の場合の、黒浮きを軽減する前の黒つぶれ明度範囲(0以上78未満)、色不再現明度範囲(78以上156未満)及び色再現明度範囲(156以上255以下)と、黒浮きを軽減した後の色再現明度範囲(0以上255以下)を示している。 Embodiment [6] of the present invention will be described using the example of FIG. 18. FIG. 18 shows the brightness range of crushed blacks (0 or more and less than 78), the color reproduction brightness range (78 or more and less than 156), and the color reproduction brightness range (156 or more) and 255 or less) and the color reproduction brightness range (0 or more and 255 or less) after reducing black floating.
 映像光出力調整手段は、白色の輝度を(1+156(=2×78)/255)倍に上昇させる。これにより、色再現明度範囲は156以上411(=255+156)以下となる。そこで、RGBカラーモデルで表される視対象の各要素の明度(0~255)を(明度+156(=2×78))と156だけシフトして映像投影装置より投影するように変換する。 The image light output adjusting means increases the white luminance by (1+156(=2×78)/255) times. As a result, the color reproduction lightness range becomes 156 or more and 411 (=255+156) or less. Therefore, the brightness (0 to 255) of each element of the visual object represented by the RGB color model is shifted by 156 (brightness + 156 (=2×78)) and then projected by the image projection device.
 なお、拡張後の色再現明度範囲を導出し、RGBカラーモデルの色を変換する機能は、かかる導出及び変換の手順を記したソフトウエアを映像光出力調整手段に搭載することで実現できる。また、映像光出力調整手段は、映像投影装置に内蔵されてもよい。 Note that the function of deriving the expanded color reproduction brightness range and converting the colors of the RGB color model can be realized by installing software that describes the procedure of such derivation and conversion in the video light output adjustment means. Further, the image light output adjusting means may be built into the image projection device.
 したがって、黒浮きを軽減した後は、RGBカラーモデルの明度範囲の全域(0以上255以下)が色再現明度範囲となり、黒つぶれ及び明度低下の無い映像が観察できる。 Therefore, after reducing black floating, the entire brightness range of the RGB color model (0 to 255) becomes the color reproduction brightness range, and an image without crushed black and brightness can be observed.
 絶対黒(RGBとも0、映像の輝度=0cd/m2)での様々な黒表現は、外光なしの暗室にしないと実現できない。そこで、外光下で最小輝度の黒色を絶対黒として、そこから階調表現で様々な黒を表現する方法として、本発明は有用である。本発明の[6]では白色の輝度を(1+2Lb/255)倍したときの黒色(2Lb)を前記絶対黒とした。 Various black expressions using absolute black (both RGB are 0, image brightness = 0 cd/m 2 ) cannot be achieved unless the room is in a dark room with no external light. Therefore, the present invention is useful as a method for expressing various blacks by gradation expression from the minimum luminance black under external light as absolute black. In [6] of the present invention, black (2Lb) obtained by multiplying the brightness of white by (1+2Lb/255) is defined as the absolute black.
(本発明に係る映像表示方法:本発明の[7])
 次に本発明の[7]の映像表示方法について説明する。この方法は、本発明の[2]~[4]のいずれか一つに係る反射型スクリーンと、映像光を投影する映像投影装置とを用いることを前提とする。
(Video display method according to the present invention: [7] of the present invention)
Next, the video display method according to [7] of the present invention will be explained. This method is based on the premise that the reflective screen according to any one of [2] to [4] of the present invention and an image projection device that projects image light are used.
 本発明の[7]では、まず、前記映像投影装置から前記反射型スクリーンに、RGBカラーモデルにおける黒色(R=0、G=0、B=0)及び白色(R=255、G=255、B=255)を投影する。 In [7] of the present invention, first, black (R=0, G=0, B=0) and white (R=255, G=255, B=255).
 次に、外光下で前記黒色及び白色の輝度を測定してそれぞれの測定値Kmin及びKwを取得する。輝度の測定には、市販の各種の輝度計を用いることができる。 Next, the luminance of the black and white colors is measured under external light to obtain the respective measured values Kmin and Kw. To measure the brightness, various commercially available brightness meters can be used.
 次に、黒浮き量Lbを、式:255×Kmin/Kwの値の整数部として算出する。この算出には、市販のパソコンあるいは関数電卓等を用いることができる。 Next, the black floating amount Lb is calculated as the integer part of the value of the formula: 255×Kmin/Kw. A commercially available personal computer or scientific calculator can be used for this calculation.
 最後に、前記映像の明度Lの明度範囲Lb≦L<2Lb内で観察される明度低下を補正する。これを明度調整工程という。この工程の実施には、前記明度調整手段を用いることができる。 Finally, the reduction in brightness observed within the brightness range Lb≦L<2Lb of the brightness L of the image is corrected. This is called the brightness adjustment process. The brightness adjustment means described above can be used to carry out this step.
(本発明に係る映像表示方法:本発明の[8])
 次に本発明の[8]の映像表示方法について説明する。この方法は、本発明の[7]において、前記明度調整工程に代えて、あるいはさらに、前記白色の輝度をKwからKw×(1+2Lb/255)に上昇させて、黒浮きを軽減する映像光出力調整工程を有する。この工程の実施には、前記映像光出力調整手段を用いることができる。
(Video display method according to the present invention: [8] of the present invention)
Next, the video display method according to [8] of the present invention will be explained. In this method, in [7] of the present invention, instead of or in addition to the brightness adjustment step, the brightness of the white color is increased from Kw to Kw×(1+2Lb/255) to reduce black floating. It has an adjustment process. The above-mentioned image light output adjusting means can be used to carry out this step.
1 表面形状拡散シート(本発明)
2 表面形状異方性拡散層
2A 表面形状拡散層(拡散角度検討用)
3 基板
4 反射型スクリーン(本発明)
4A 反射型スクリーン(拡散角度検討用)
5 映像投影装置(プロジェクター)
6 レンズ層
6a レンズ面
6b 非レンズ面
8 反射層
9 保護膜
10 保持板
11 天井灯
12 正面窓(スクリーン正面の窓)
13 床面
18 アイリス面
20 空間結像アイリス面
30 輝度計
50 映像光
51 床面からレンズ面への外光
52 床面以外からレンズ面への外光
53 天井灯から非レンズ面への外光
54 正面窓から非レンズ面への外光
60 観察位置
61 天井灯による外光拡散反射光の主光線
81 ホワイトマットスクリーン
82 SHLスクリーン
120a リレーレンズ
120b リレーレンズ
122 拡散フィルム積層体
130 三原色光源
134 デジタルミラーデバイス
136 遮光板
138 投射光学系
140 凹面反射鏡
142 凸面反射鏡
1 Surface shape diffusion sheet (present invention)
2 Surface shape anisotropic diffusion layer 2A Surface shape diffusion layer (for examining diffusion angle)
3 Substrate 4 Reflective screen (present invention)
4A Reflective screen (for examining diffusion angle)
5 Image projection device (projector)
6 Lens layer 6a Lens surface 6b Non-lens surface 8 Reflective layer 9 Protective film 10 Holding plate 11 Ceiling light 12 Front window (window in front of the screen)
13 Floor surface 18 Iris surface 20 Spatial imaging iris surface 30 Luminance meter 50 Image light 51 External light from floor surface to lens surface 52 External light from other than floor surface to lens surface 53 External light from ceiling light to non-lens surface 54 External light from the front window to the non-lens surface 60 Observation position 61 Principal ray of diffusely reflected external light from the ceiling light 81 White matte screen 82 SHL screen 120a Relay lens 120b Relay lens 122 Diffusion film laminate 130 Three primary color light source 134 Digital mirror Device 136 Light shielding plate 138 Projection optical system 140 Concave reflecting mirror 142 Convex reflecting mirror

Claims (8)

  1.  映像投影装置からの映像光を拡散出射させる反射型スクリーンの表面に備える表面形状拡散シートであって、
     表面形状異方性拡散層と、
     前記表面形状異方性拡散層の下地に平坦な基板を備え、
     前記表面形状異方性拡散層の表面の面内上下方向の拡散角度が±14°(半値幅)の範囲内であり、
     前記基板の内部又は表面で、可視光波長帯において透過率Tが0.5以上1未満の範囲内であることを特徴とする黒浮きを軽減する表面形状拡散シート。
    A surface shape diffusion sheet provided on the surface of a reflective screen that diffuses and emits image light from an image projection device,
    surface shape anisotropic diffusion layer,
    A flat substrate is provided as a base of the surface shape anisotropic diffusion layer,
    The diffusion angle of the surface of the anisotropic surface shape diffusion layer in the in-plane vertical direction is within the range of ±14° (half width),
    A surface shape diffusion sheet for reducing black floating, characterized in that the transmittance T in the visible light wavelength band is within a range of 0.5 or more and less than 1 on the inside or on the surface of the substrate.
  2.  拡散シートを表面に備えた反射型スクリーンであって、
     前記拡散シートが請求項1に記載の表面形状拡散シートであり、
     前記基板から背面側へ順次配置接合した、反射層、保護膜及び保持板を具備し、
     前記反射層と前記基板との接合面が前記映像光を反射する面となり、
     前記保護膜は、前記反射層を被覆する膜であり、
     前記保持板は、前記基板の平坦性を維持する板であることを特徴とする反射型スクリーン。
    A reflective screen equipped with a diffusion sheet on the surface,
    The diffusion sheet is the surface shape diffusion sheet according to claim 1,
    A reflective layer, a protective film, and a retaining plate are sequentially arranged and bonded from the substrate to the back side,
    a bonding surface between the reflective layer and the substrate serves as a surface that reflects the image light;
    The protective film is a film that covers the reflective layer,
    A reflective screen characterized in that the holding plate is a plate that maintains flatness of the substrate.
  3.  さらに、前記基板と前記反射層との間に配置接合したレンズ層を有し、
     前記レンズ層は、背面側に反射面形状を有するフレネルレンズからなり、
     前記反射層と前記レンズ層との接合面が前記映像光を反射する面となることを特徴とする請求項2に記載の反射型スクリーン。
    further comprising a lens layer disposed and bonded between the substrate and the reflective layer;
    The lens layer is made of a Fresnel lens having a reflective surface shape on the back side,
    3. The reflective screen according to claim 2, wherein a joint surface between the reflective layer and the lens layer serves as a surface that reflects the image light.
  4.  前記フレネルレンズの焦点距離fに対し、前記映像光を反射する面から、aの距離離れた前記映像投影装置の投射レンズのアイリス面からの映像光を反射して、(1/a)+(1/b)=1/fの関係を満たすbの距離離れた位置に空間結像アイリス面を作ることを特徴とする請求項3に記載の反射型スクリーン。 With respect to the focal length f of the Fresnel lens, reflecting the image light from the iris surface of the projection lens of the image projecting device that is a distance a from the surface that reflects the image light, (1/a) + ( 4. The reflective screen according to claim 3, wherein the spatial imaging iris surface is formed at a distance b that satisfies the relationship: 1/b)=1/f.
  5.  請求項2~4のいずれか一項に記載の反射型スクリーンと、映像投影装置と、輝度計と、黒浮き量算出手段と、明度調整手段とを備えた映像表示システムであって、
     前記映像投影装置は、映像光を投影し、
     前記輝度計は、外光下で前記映像投影装置から前記反射型スクリーンに投影された、RGBカラーモデルにおける黒色(R=0、G=0、B=0)及び白色(R=255、G=255、B=255)の輝度を測定してそれぞれの測定値Kmin及びKwを取得し、
     前記黒浮き量算出手段は、黒浮き量Lbを、式:255×Kmin/Kwの値の整数部として算出し、
     前記明度調整手段は、前記黒色から黒浮き(R=Lb、G=Lb、B=Lb)した映像において、各要素の明度Lの明度範囲Lb≦L<2Lb内で観察される明度低下を補正することを特徴とする映像表示システム。
    An image display system comprising the reflective screen according to any one of claims 2 to 4, an image projection device, a luminance meter, a black floating amount calculation means, and a brightness adjustment means,
    The image projection device projects image light,
    The luminance meter measures black (R=0, G=0, B=0) and white (R=255, G=0) in an RGB color model, which are projected from the image projection device onto the reflective screen under external light. 255, B=255) to obtain the respective measured values Kmin and Kw,
    The black floating amount calculation means calculates the black floating amount Lb as an integer part of the value of the formula: 255×Kmin/Kw,
    The brightness adjustment means corrects a decrease in brightness observed within a brightness range Lb≦L<2Lb of the brightness L of each element in the black-to-black image (R=Lb, G=Lb, B=Lb). A video display system characterized by:
  6.  前記明度調整手段に代えて、あるいはさらに、映像光出力調整手段を備え、
     前記映像光出力調整手段は、前記白色の輝度をKwからKw×(1+2Lb/255)に上昇させて、黒浮きを軽減することを特徴とする請求項5に記載の映像表示システム。
    In place of or in addition to the brightness adjustment means, an image light output adjustment means is provided,
    6. The video display system according to claim 5, wherein the video light output adjusting means increases the brightness of the white color from Kw to Kw×(1+2Lb/255) to reduce black floating.
  7.  請求項2~4のいずれか一項に記載の反射型スクリーンと、映像光を投影する映像投影装置とを用いる映像表示方法であって、
     前記映像投影装置から前記反射型スクリーンに、RGBカラーモデルにおける黒色(R=0、G=0、B=0)及び白色(R=255、G=255、B=255)を投影する工程と、
     外光下で前記黒色及び白色の輝度を測定してそれぞれの測定値Kmin及びKwを取得する工程と、
     黒浮き量Lbを、式:255×Kmin/Kwの値の整数部として算出する工程と、
     前記黒色から黒浮き(R=Lb、G=Lb、B=Lb)した映像において、各要素の明度Lの明度範囲Lb≦L<2Lb内で観察される明度低下を補正する明度調整工程とを有することを特徴とする映像表示方法。
    An image display method using the reflective screen according to any one of claims 2 to 4 and an image projection device that projects image light,
    Projecting black (R=0, G=0, B=0) and white (R=255, G=255, B=255) in an RGB color model from the image projection device onto the reflective screen;
    a step of measuring the luminance of the black and white colors under external light to obtain respective measured values Kmin and Kw;
    Calculating the black floating amount Lb as the integer part of the value of the formula: 255 × Kmin / Kw,
    A brightness adjustment step of correcting a decrease in brightness observed within the brightness range Lb≦L<2Lb of the brightness L of each element in the image where the black becomes black (R=Lb, G=Lb, B=Lb). A video display method characterized by comprising:
  8.  前記明度調整工程に代えて、あるいはさらに、前記白色の輝度をKwからKw×(1+2Lb/255)に上昇させて、黒浮きを軽減する映像光出力調整工程を有することを特徴とする請求項7に記載の映像表示方法。 7. Instead of or in addition to the brightness adjustment step, the image light output adjustment step is performed to increase the brightness of the white color from Kw to Kw×(1+2Lb/255) to reduce black floating. The video display method described in .
PCT/JP2023/022602 2022-08-22 2023-06-19 Surface shape diffusion sheet for reducing black level degradation, reflective screen, video display system, and video display method WO2024042828A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022131886A JP2024029558A (en) 2022-08-22 2022-08-22 Surface shape diffusion sheet for reducing black floating, reflective screen, picture display system, and method for displaying picture
JP2022-131886 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024042828A1 true WO2024042828A1 (en) 2024-02-29

Family

ID=90012846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022602 WO2024042828A1 (en) 2022-08-22 2023-06-19 Surface shape diffusion sheet for reducing black level degradation, reflective screen, video display system, and video display method

Country Status (2)

Country Link
JP (1) JP2024029558A (en)
WO (1) WO2024042828A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128564A (en) * 2009-12-21 2011-06-30 Canon Inc Projection device, program and control method of projection device
JP2012103290A (en) * 2010-11-05 2012-05-31 Asahi Kasei Corp Optical sheet, backlight unit and liquid crystal display device
US9057941B2 (en) * 2012-11-20 2015-06-16 Samsung Electronics Co., Ltd. Reflection type screen for front projection display apparatus
JP2016099478A (en) * 2014-11-20 2016-05-30 キヤノン株式会社 Image processing apparatus and control method of the same, image processing system and control method of the same, and computer program
JP2017116824A (en) * 2015-12-25 2017-06-29 国立大学法人東北大学 Reflection type screen and video image display system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128564A (en) * 2009-12-21 2011-06-30 Canon Inc Projection device, program and control method of projection device
JP2012103290A (en) * 2010-11-05 2012-05-31 Asahi Kasei Corp Optical sheet, backlight unit and liquid crystal display device
US9057941B2 (en) * 2012-11-20 2015-06-16 Samsung Electronics Co., Ltd. Reflection type screen for front projection display apparatus
JP2016099478A (en) * 2014-11-20 2016-05-30 キヤノン株式会社 Image processing apparatus and control method of the same, image processing system and control method of the same, and computer program
JP2017116824A (en) * 2015-12-25 2017-06-29 国立大学法人東北大学 Reflection type screen and video image display system

Also Published As

Publication number Publication date
JP2024029558A (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US6556347B1 (en) Rear projection screen
JP3147103B2 (en) Transmission screen, lenticular sheet, rear projection type image display device using the same, and method of manufacturing sheet-like member
US4165154A (en) Projection screen assembly
US6535333B1 (en) Optical system with reduced color shift
US6404548B1 (en) Reflection type screen for projectors
US5897192A (en) Rear projection module
US7522339B2 (en) High contrast projection systen
JPS6332527A (en) Lens sheet for transparent type projection screen
JP2014010404A (en) Reflection screen, and video display system
US6844969B2 (en) Front projection type screen
KR100258057B1 (en) Lenticular lens sheet,
US7139124B2 (en) Wide viewing angle screen and projection television comprising the same
US7324278B2 (en) Black matrix light guide screen display
WO2024042828A1 (en) Surface shape diffusion sheet for reducing black level degradation, reflective screen, video display system, and video display method
TW201617704A (en) Backlight systems containing downconversion film elements
JP2006317832A (en) Reflection type screen
WO2020063158A1 (en) Led display screen
WO2020063700A1 (en) Led display screen
US20080102230A1 (en) Diffusing Plate For Transmissive Screen, Transmissive Screen And Rear Projection Display Apparatus
JPH09211729A (en) Reflection type screen
TWM520656U (en) Projection screen and projection system for suspension type short throw projection
US20060050380A1 (en) Rear projection screen
JP2007334207A (en) Reflection type screen
JP5359612B2 (en) Projection system
KR102221282B1 (en) Screen for projection and Display Device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856945

Country of ref document: EP

Kind code of ref document: A1