WO2024042777A1 - Iii族元素窒化物基板の検査方法、iii族元素窒化物基板の製造方法および半導体素子の製造方法 - Google Patents

Iii族元素窒化物基板の検査方法、iii族元素窒化物基板の製造方法および半導体素子の製造方法 Download PDF

Info

Publication number
WO2024042777A1
WO2024042777A1 PCT/JP2023/016089 JP2023016089W WO2024042777A1 WO 2024042777 A1 WO2024042777 A1 WO 2024042777A1 JP 2023016089 W JP2023016089 W JP 2023016089W WO 2024042777 A1 WO2024042777 A1 WO 2024042777A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
iii element
nitride substrate
element nitride
substrate
Prior art date
Application number
PCT/JP2023/016089
Other languages
English (en)
French (fr)
Inventor
義孝 倉岡
健太朗 野中
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2024042777A1 publication Critical patent/WO2024042777A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present invention relates to a method for inspecting a group III element nitride substrate, a method for manufacturing a group III element nitride substrate, and a method for manufacturing a semiconductor element.
  • Group III element nitrides have direct transition type wide band gaps, high dielectric breakdown electric fields, and high saturated electron velocities, so they are being actively developed as semiconductor materials for high-frequency/high-power electronic devices, for example. It is being done.
  • the Group III element nitride is desired to have high resistance.
  • Semiconductor devices obtained from the above-mentioned high-resistance Group III element nitride substrates may not have sufficient uniformity in quality, and improvement in yield is desired.
  • the main object of the present invention is to provide a group III element nitride substrate that can improve yield.
  • a method for inspecting a group III element nitride substrate includes preparing a group III element nitride substrate doped with an element other than a group III element, and applying excitation energy to the group III element nitride substrate. and measuring the half-width of band-edge emission of the emission spectrum obtained by the irradiation. 2.
  • the irradiation with the excitation energy may be performed by irradiating at least one of ultraviolet light and electron beams.
  • the excitation energy may be applied to a plurality of locations on the main surface of the Group III element nitride substrate. 4.
  • the elements other than the Group III elements may include a transition element. 5.
  • the transition element may include at least one of iron and manganese.
  • the Group III element nitride substrate may contain gallium nitride. 7.
  • the group III element nitride substrate may have a resistivity of 1 ⁇ 10 5 ⁇ cm or more as determined by a change in charge amount over time. 8.
  • the half-width is the full width at half-maximum. 9.
  • a method for manufacturing a group III element nitride substrate according to another embodiment of the present invention includes performing the method for inspecting a group III element nitride substrate according to any one of 1 to 7 above, and the half-value width of the band edge emission. and selecting the Group III element nitride substrate based on the method. 11. In the manufacturing method described in item 10 above, the Group III element nitride substrate having the full width at half maximum of the band edge emission of 6.5 nm or less may be selected. 12.
  • the group III element nitride substrate having a half width at half maximum on the long wavelength side of the band edge emission of 4.2 nm or less may be selected.
  • preparing the Group III element nitride substrate includes a sapphire substrate having upper and lower surfaces facing each other, and a seed crystal formed on the upper surface of the sapphire substrate. and growing a group III element nitride crystal doped with an element other than a group III element on the seed crystal film of the seed crystal substrate.
  • the off-angle of the sapphire substrate may be 0.58° or less.
  • the off-angle of the sapphire substrate may be 0.20° or more and 0.42° or less.
  • a method for manufacturing a semiconductor device includes irradiating a group III element nitride substrate doped with an element other than a group III element with excitation energy, and band-edge emission of an emission spectrum obtained by the irradiation. forming a channel layer and a barrier layer on the group III element nitride substrate to obtain a layered structure; and providing a source electrode, a drain electrode, and a gate electrode on the layered structure. ,including. 16.
  • the Group III element nitride substrate may be irradiated with energy higher than the bandgap energy of the constituent material of the channel layer. 17.
  • a semiconductor element including the Group III element nitride substrate in which the half width satisfies a predetermined value may be obtained. 18.
  • the layered structure may be obtained by epitaxial growth.
  • a group III element nitride substrate according to yet another embodiment of the present invention is a group III element nitride substrate doped with an element other than a group III element, and includes band edge emission of an emission spectrum obtained by irradiation with excitation energy.
  • the half-value width of is 6.5 nm or less.
  • a group III element nitride substrate according to yet another embodiment of the present invention is a group III element nitride substrate doped with an element other than a group III element, and includes band edge emission of an emission spectrum obtained by irradiation with excitation energy.
  • the half width at half maximum on the long wavelength side is 4.2 nm or less. 21.
  • the Group III element nitride substrate may contain gallium nitride. 22.
  • the elements other than the Group III element may include a transition element. 23.
  • the transition element may include at least one of iron and manganese. 24.
  • a method for manufacturing a group III element nitride substrate according to yet another embodiment of the present invention is a method for manufacturing a group III element nitride substrate according to any one of items 19 to 23 above, in which the upper surface and the lower surface facing each other are and a seed crystal film formed on the upper surface of the sapphire substrate, and the seed crystal film of the seed crystal substrate is doped with an element other than a group III element. and growing a Group III element nitride crystal, and the off-angle of the sapphire substrate may be 0.58° or less. 25.
  • the Group III element nitride crystal may be grown by a flux method.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a group III element nitride substrate according to one embodiment of the present invention.
  • 2 is a plan view of the group III element nitride substrate shown in FIG. 1.
  • FIG. FIG. 3 is a diagram showing a manufacturing process of a group III element nitride substrate according to one embodiment. It is a figure following FIG. 3A. It is a figure following FIG. 3B.
  • 1 is a schematic cross-sectional view showing a schematic configuration of a semiconductor element according to one embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a method of measuring the emission spectrum of a substrate.
  • 2 is an emission spectrum near the band edge of the gallium nitride substrate of Experimental Example 1.
  • 2 is an emission spectrum near the band edge of the gallium nitride substrate of Experimental Example 1.
  • FIG. 1 is a schematic cross-sectional view showing the general structure of a Group III element nitride substrate according to one embodiment of the present invention
  • FIG. FIG. 3 is a plan view of the substrate.
  • the group III element nitride substrate 10 is plate-shaped and has a first principal surface 11 and a second principal surface 12 facing each other, which are connected via a side surface 13.
  • the group III element nitride substrate is disk-shaped (wafer), but is not limited to this and may have any suitable shape.
  • the size of the Group III element nitride substrate can be appropriately set depending on the purpose.
  • the diameter of the disk-shaped group III element nitride substrate is, for example, 50 mm or more and 200 mm or less.
  • the thickness of the Group III element nitride substrate is, for example, 250 ⁇ m or more and 800 ⁇ m or less.
  • the resistivity of the Group III element nitride substrate is, for example, 1 ⁇ 10 5 ⁇ cm or more and 1 ⁇ 10 12 ⁇ cm or less, preferably 1 ⁇ 10 6 ⁇ cm or more. , more preferably 1 ⁇ 10 7 ⁇ cm or more.
  • a semi-insulating Group III element nitride substrate can be suitably used, for example, as a substrate for a high electron mobility transistor (HEMT) element.
  • HEMT high electron mobility transistor
  • a channel layer and a barrier layer can be formed on a group III element nitride substrate, and this can be used as a HEMT device.
  • the resistivity of the Group III element nitride substrate can be determined from the change in charge amount over time. According to the change in charge amount over time, the resistivity can be determined without destroying the group III element nitride substrate. Specifically, a group III element nitride substrate is inserted into a capacitor consisting of a probe and a stage, a pulse voltage is applied, and the time change in the amount of charge on the group III element nitride substrate is measured. Calculate the resistivity. At this time, since the probe does not contact the group III element nitride substrate, the resistivity can be determined without forming an ohmic contact electrode. Note that the spatial resolution of the probe may be approximately 1 mm to 10 mm.
  • the group III element nitride substrate is composed of a group III element nitride crystal.
  • group III element constituting the group III element nitride for example, aluminum (Al), gallium (Ga), and indium (In) are used. These may be used alone or in combination of two or more.
  • the Group III element nitride is doped with an element other than the Group III element.
  • the group III element nitride contains an element other than the group III element as a dopant.
  • the dopant transition elements such as iron (Fe), manganese (Mn), vanadium (V), chromium (Cr), cobalt (Co), and nickel (Ni) are preferably used. These may be used alone or in combination of two or more.
  • the transition element includes at least one of iron or manganese.
  • the amount of the transition element present in the Group III element nitride substrate is, for example, 5 ⁇ 10 16 atoms/cm 3 or more and 1 ⁇ 10 20 atoms/cm 3 or less.
  • the ⁇ 0001> direction is the c-axis direction
  • the ⁇ 1-100> direction is the m-axis direction
  • the ⁇ 11-20> direction is the a-axis direction.
  • the crystal plane orthogonal to the c-axis is the c-plane
  • the crystal plane orthogonal to the m-axis is the m-plane
  • the crystal plane orthogonal to the a-axis is the a-plane.
  • the thickness direction of the group III element nitride substrate 10 is parallel or substantially parallel to the c-axis
  • the first principal surface 11 is a group III element polar plane on the (0001) side
  • the first principal surface 11 is a group III element polar plane on the (0001) side
  • the two main surfaces 12 are nitrogen polar surfaces on the (000-1) side.
  • the first principal surface 11 may be parallel to the (0001) plane or may be inclined with respect to the (0001) plane.
  • the angle of inclination of the first principal surface 11 with respect to the (0001) plane is, for example, 10° or less, may be 5° or less, may be 2° or less, or may be 1° or less.
  • the second principal surface 12 may be parallel to the (000-1) plane or may be inclined with respect to the (000-1) plane.
  • the inclination angle of the second principal surface 12 with respect to the (000-1) plane is, for example, 10° or less, may be 5° or less, may be 2° or less, or may be 1° or less. .
  • the group III element nitride substrate has a resistivity determined from the charge amount change over time that satisfies a predetermined value (for example, 1 ⁇ 10 5 ⁇ cm or more), the group III element nitride substrate It is considered that there may be a region with low resistivity within the plane of the physical substrate. Specifically, impurity elements such as oxygen may segregate into crystal defects such as dislocations in the group III element nitride crystal, thereby affecting conductivity. Donor impurities such as oxygen are likely to be mixed into crystal defects and may affect resistivity.
  • a predetermined value for example, 1 ⁇ 10 5 ⁇ cm or more
  • crystal defects may be concentrated in a micro region with a diameter of, for example, about 10 ⁇ m to 200 ⁇ m within the plane of the group III element nitride substrate.
  • the diameter of the measurement probe used in the above-mentioned method for measuring resistivity based on the change in electric charge over time may be, for example, ⁇ 1 mm to 10 mm.
  • Measuring resistivity based on changes in electric charge over time assumes that the resistivity is uniform at least within the diameter range of the measurement probe, and the resistance in areas that include minute regions with locally low resistivity is Measuring the rate correctly can be difficult.
  • the quality of a semiconductor element obtained corresponding to a region with low resistivity will be low.
  • a HEMT element obtained in a region with low resistivity may suffer from current leakage.
  • a method for inspecting a group III element nitride substrate according to an embodiment of the present invention includes irradiating the prepared group III element nitride substrate with excitation energy, and half of the band edge emission of the emission spectrum obtained by the irradiation. Measuring the price range.
  • the above excitation energy irradiation can be performed, for example, by irradiating at least one of ultraviolet light and electron beams.
  • the Group III element nitride substrate is irradiated with energy higher than the bandgap energy of the constituent material of the channel layer. By applying such energy, it is possible to predict, for example, the occurrence of current leakage in the HEMT element.
  • a light source capable of emitting laser light with a wavelength shorter than the band edge is used.
  • a laser light source a He-Cd laser or an excimer laser is typically used.
  • a deep ultraviolet (DUV) lamp such as a low-pressure mercury lamp or a deuterium lamp can be used for irradiation with ultraviolet light.
  • an electron beam source for example, an electron gun
  • the electron beam source include a cold cathode field emission electron source, a photocathode electron source, and a Schottky electron source.
  • a group III element nitride substrate made of gallium nitride may be irradiated with ultraviolet light having a wavelength of 364 nm or less.
  • Group III element nitride substrates made of aluminum gallium nitride, which has a higher bandgap energy than gallium nitride, may be irradiated with an electron beam since higher energy may be required.
  • the intensity of light of any wavelength separated using a spectrometer is measured using any suitable ultraviolet detector.
  • the ultraviolet detector include a Si photodiode and a photomultiplier tube (PMT).
  • PMT photomultiplier tube
  • an example of the ultraviolet detector is an array type spectroscopic detector that combines a small grating and a CCD/CMOS/NMOS image sensor.
  • the half width includes the full width at half maximum (FWHM) and the half width at half maximum (HWHM).
  • the full width at half maximum of the band edge emission of the measured emission spectrum is preferably 6.5 nm or less.
  • the half-width at half maximum on the longer wavelength side of the band edge emission of the measured emission spectrum is preferably 4.2 nm or less.
  • the intensity of the emission spectrum obtained by irradiating the semi-insulating Group III element nitride substrate with excitation energy is the same as that of the semi-insulating Group III element nitride substrate (e.g., It may be weaker than the intensity of the emission spectrum obtained by irradiating excitation energy to a group element nitride substrate), and furthermore, it is likely to be influenced by the surface flatness of the substrate and the presence or absence of a process-affected layer.
  • the present inventors investigated the relationship between the emission spectrum of a semi-insulating Group III element nitride substrate and the quality of the semiconductor device obtained, and found that the half width of band edge emission and the quality of the semiconductor device obtained found that there is a correlation.
  • the band edge intensity of the emission spectrum can be weak, but since the emission through various levels near the band edge is relatively reduced, the apparent The half width can become narrow.
  • a donor impurity such as oxygen is incorporated into a group III element nitride crystal, the emission intensity near the band edge becomes stronger and the half-width can be widened.
  • the quality of the Group III element nitride substrate can be easily determined by measurement at room temperature based on the half-width of the band edge emission.
  • the emission spectrum can include emission at various levels near the band edge and can only be observed separately at extremely low temperatures, whereas the half-width of band edge emission can be measured at room temperature. can.
  • the measurement of the half-width of band edge emission tends to be less dependent on the measuring device. Specifically, there is no need to adjust the intensity of irradiated excitation energy to a constant level or to check reproducibility using a calibration sample.
  • the excitation energy may be irradiated to a plurality of locations on the main surface of the Group III element nitride substrate.
  • areas that do not satisfy a predetermined value are areas where the quality of the resulting semiconductor device is low (for example, a defective device with a large leakage current). area).
  • excitation energy is applied at predetermined intervals (for example, intervals of 0.01 mm to 1 mm) in each of the vertical and horizontal directions within the plane of the disk-shaped substrate shown in FIG.
  • Mapping data may be obtained from the obtained data.
  • the location where the semiconductor element is to be formed may be selected based on mapping data within the substrate surface.
  • Manufacturing method A method for manufacturing a group III element nitride substrate according to one embodiment of the present invention includes preparing a seed crystal substrate having a base substrate and a seed crystal film, and forming a group III element nitride on the seed crystal film of the seed crystal substrate. and growing a group III element nitride crystal doped with an element other than the group element.
  • FIGS. 3A to 3C are diagrams showing the manufacturing process of a group III element nitride substrate according to one embodiment.
  • FIG. 3A shows a state in which the seed crystal film 22 is formed on the upper surface 21a of the base substrate 21 having an upper surface 21a and a lower surface 21b facing each other, and the seed crystal substrate 20 is completed.
  • the base substrate for example, a substrate having a shape and size that allows production of a group III element nitride substrate having a desired shape and size is used.
  • the base substrate is disk-shaped with a diameter of 50 mm to 200 mm.
  • the thickness of the base substrate is, for example, 200 ⁇ m to 800 ⁇ m.
  • the base substrate is preferably composed of a single crystal having a hexagonal crystal structure.
  • a sapphire substrate made of single crystal alumina is preferable to use as the base substrate.
  • the off-angle of the sapphire substrate can be set to any appropriate angle.
  • the off-angle of the sapphire substrate is preferably 0.58° or less, more preferably 0.48° or less, and still more preferably 0.42° or less.
  • the off-angle of the sapphire substrate is preferably 0.20° or more.
  • a group III element nitride crystal can be grown favorably.
  • the off-angle of the sapphire substrate means the inclination angle of the main surface of the sapphire substrate with respect to the reference crystal plane (c-plane).
  • the thickness of the seed crystal film is, for example, 0.2 ⁇ m or more. From the viewpoint of preventing meltback and disappearance during film formation, the thickness of the seed crystal film is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more. On the other hand, from the viewpoint of productivity, the thickness of the seed crystal film is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • any suitable material may be employed as the material constituting the seed crystal film.
  • a group III element nitride is typically used as a material constituting the seed crystal film. Details of the group III element nitride are as described above.
  • gallium nitride is used.
  • gallium nitride is used, which exhibits a yellow luminescent effect when observed under a fluorescence microscope. In such gallium nitride, in addition to band-to-band exciton transition (UV), a peak (yellow emission (YL) or yellow band (YB)) in the range of 2.2 eV to 2.5 eV has been confirmed. Ru.
  • the seed crystal film can be formed by any suitable method.
  • a vapor phase growth method is typically used as a method for forming the seed crystal film.
  • Specific examples of vapor phase growth methods include metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), pulse excitation deposition (PXD), and molecular beam epitaxy (MBE). method, vapor deposition method, and sublimation method. Among these, MOCVD method is preferably used.
  • the formation of the seed crystal film by the above MOCVD method includes, for example, a first formation step and a second formation step in this order.
  • a first layer low-temperature growth buffer layer (not shown) is formed on the base substrate at a temperature T1 (for example, 450°C to 550°C), and in the second formation step, the temperature is A second layer (not shown) is formed at a temperature T2 (eg, 1000° C. to 1200° C.) higher than T1.
  • the thickness of the first layer is, for example, 20 nm to 50 nm.
  • the thickness of the second layer is, for example, 1 ⁇ m to 5 ⁇ m.
  • a group III element nitride crystal is grown on the seed crystal film 22 of the seed crystal substrate 20 to form a group III element nitride crystal layer 16, and a laminated substrate 30 is obtained as shown in FIG. 3B.
  • the degree of growth of the group III element nitride crystal can be adjusted. Any suitable direction may be selected as the direction of growth of the group III element nitride crystal depending on the use, purpose, etc. Specific examples include the normal direction of each of the c-plane, a-plane, and m-plane, and the normal direction of a plane inclined to the c-plane, a-plane, and m-plane.
  • Group III element nitride crystals may be grown by any suitable method.
  • the method for growing the Group III element nitride crystal is not particularly limited as long as it can achieve a crystal orientation that roughly follows the crystal orientation of the seed crystal film.
  • Specific examples of methods for growing group III element nitride crystals include metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), pulse-excited deposition (PXD), and molecular Vapor phase growth methods such as line epitaxy (MBE) method and sublimation method; liquid phase growth methods such as flux method, ammonothermal method, hydrothermal method, and sol-gel method. These may be used alone or in combination of two or more.
  • a flux method for example, Na flux method
  • a method for growing group III element nitride crystals is employed as a method for growing group III element nitride crystals. Details of such a growing method are described in, for example, Japanese Patent No. 5451085, and the growth may be performed by adjusting various conditions of the described growing method as appropriate.
  • the growth of group III element nitride crystals requires a pressure vessel capable of supplying pressurized nitrogen gas, a rotary table that can rotate within the pressure vessel, and an outer container placed on the rotary table. This can be carried out by adjusting various conditions using a crystal manufacturing apparatus equipped with the following.
  • Group III element nitride crystal growth by the flux method is typically performed using a crucible as a growth container. Specifically, the seed crystal substrate is placed at a predetermined position within the crucible, and the crucible is further filled with raw materials. The crucible in which the seed crystal substrate is placed is typically placed with a lid under a predetermined pressure and temperature in an atmosphere containing nitrogen, and subjected to a growth process.
  • the above raw material is, for example, a melt composition containing a flux, a group III element, and a dopant.
  • the flux preferably contains at least one of an alkali metal and an alkaline earth metal, and more preferably contains metallic sodium.
  • a mixture of flux and metal raw material is used.
  • the metal raw material elemental metals, alloys, metal compounds, etc. may be used, but from the viewpoint of handling, elemental metals are preferably used.
  • the crucible (including the lid) may be made of any suitable material that can be used in the flux method.
  • the material of the crucible include alumina, yttria, and YAG (yttrium aluminum garnet).
  • the material of the crucible may be single crystal or polycrystalline (ceramic).
  • the ceramic may be made to have so-called translucency by increasing its relative density through HIP treatment or the like.
  • the growth may be performed in an atmosphere containing nitrogen.
  • the growth atmosphere may include other gases in addition to nitrogen.
  • inert gases such as argon, helium, and neon are preferably used.
  • the pressure of the atmosphere during growth can be set to any appropriate pressure.
  • the pressure of the atmosphere during growth is, for example, preferably 10 atmospheres or more, more preferably 30 atmospheres or more, from the viewpoint of preventing flux evaporation.
  • the pressure of the atmosphere during growth is preferably 2,000 atmospheres or less, and more preferably 500 atmospheres or less, for example, from the viewpoint of preventing the growth apparatus from becoming large-scale.
  • the temperature of the atmosphere during growth can be set to any appropriate temperature.
  • the temperature of the atmosphere during growth is preferably 700°C to 1000°C, more preferably 800°C to 900°C.
  • the growth be performed while rotating the crucible.
  • a crucible with a lid is housed in the outer container and placed on the rotary table, and the crucible is rotated by rotating the rotary table.
  • the group III element nitride crystal (group III element nitride crystal layer 16) is separated from the base substrate 21 to obtain a free-standing substrate 32.
  • free-standing substrate 32 may include Group III element nitride crystal 16 and seed crystal film 22 .
  • the Group III element nitride crystal may be separated from the underlying substrate by any suitable method. Methods for separating group III element nitride crystals include, for example, a method in which the group III element nitride crystal is spontaneously separated from the base substrate by utilizing the difference in thermal contraction with the base substrate in the cooling process after growth, and separation by chemical etching.
  • a laser lift-off method using laser light irradiation typically, laser light is irradiated from the lower surface 21b side of the base substrate 21 of the laminated substrate 30.
  • a self-supporting substrate may be obtained by grinding or cutting using a cutting machine such as a wire saw.
  • the free-standing substrate 32 can be used as the Group III element nitride substrate as it is, typically, the free-standing substrate 32 is subjected to any appropriate processing to obtain the Group III element nitride substrate.
  • An example of the processing performed on the self-supporting substrate is grinding of the peripheral edge (for example, grinding using a diamond grindstone). Typically, it is processed by grinding so that it has the desired shape and size (for example, a disk shape with a desired diameter).
  • processing performed on the self-supporting substrate is processing such as grinding and polishing (for example, lapping, chemical mechanical polishing (CMP)) of the main surface (upper surface, lower surface).
  • the plate is thinned and flattened to a desired thickness by grinding and polishing.
  • the seed crystal film 22 is removed by processing the main surface, leaving only the group III element nitride crystal layer 16 (only a single crystal growth layer).
  • the processing performed on the self-supporting substrate includes chamfering the outer peripheral edge, removing a process-affected layer, and removing residual stress that may be caused by the process-affected layer.
  • FIG. 4 is a schematic cross-sectional view showing a general configuration of a semiconductor device according to one embodiment of the present invention, using a HEMT device as an example.
  • the HEMT element 40 includes a layered structure 43 including a group III element nitride substrate 10, a channel layer 41, and a barrier layer 42 in this order, a source electrode 44, a drain electrode 45, and a gate electrode provided on the layered structure 43. 46.
  • Each of these electrodes may be a metal electrode having a thickness of approximately 10-odd nm to 100-odd nm.
  • the laminated structure 43 can be obtained by heterojunction of each layer.
  • the channel layer 41 and the barrier layer 42 may be formed over the group III element nitride substrate 10 by epitaxial growth. Note that this stacked structure is sometimes referred to as an epitaxial substrate.
  • the thickness of the channel layer 41 is, for example, 50 nm to 5 ⁇ m.
  • the thickness of the barrier layer 42 is, for example, 2 nm to 40 nm.
  • Group III element nitride crystals may be employed as the materials constituting the channel layer 41 and the barrier layer 42, respectively.
  • group III element constituting the group III element nitride for example, Ga (gallium), Al (aluminum), and In (indium) are used. These may be used alone or in combination of two or more.
  • the Group III element nitride substrate 10 may be comprised of gallium nitride doped with an element other than Ga.
  • channel layer 41 is preferably composed of gallium nitride.
  • the barrier layer 42 is preferably made of at least one selected from aluminum gallium nitride, aluminum indium nitride, and aluminum indium gallium nitride.
  • channel layer 41 and the barrier layer 42 can each be formed by any appropriate method.
  • channel layer 41 and barrier layer 42 may each be formed by MOCVD.
  • an organic metal (MO) source gas may be used as the group III element source.
  • MO organic metal
  • a gallium nitride layer as the channel layer 41 and an aluminum gallium nitride layer as the barrier layer 42 by the MOCVD method
  • trimethyl gallium (TMG) and trimethyl aluminum (TMA) are used as the Ga source and the Al source, respectively.
  • Ammonia gas may then be used as the nitrogen source.
  • at least one of hydrogen gas and nitrogen gas may be used as the carrier gas.
  • a buffer layer may be disposed between the group III element nitride substrate 10 and the channel layer 41.
  • the buffer layer may be formed during the deposition of the channel layer, and may include the material that constitutes the channel layer.
  • the predetermined value may be, for example, a full width at half maximum of 6.5 nm or less, or a full width at half maximum on the long wavelength side of 4.2 nm or less.
  • the resistivity is a value measured by the following measurement method.
  • ⁇ Resistivity> The in-plane resistivity of the substrate was measured by a non-contact method based on the change in charge amount over time. Specifically, the substrate is placed on a capacitor stage consisting of a probe and a stage, the probe is brought close to the substrate, a pulse voltage with a pulse width of 100 ns is applied, and the time change in the amount of charge on the substrate is measured at room temperature ( 25° C.) for 1 second, and the resistivity was calculated.
  • the gallium nitride crystal was grown using a crystal manufacturing apparatus that includes a pressure vessel capable of supplying pressurized nitrogen gas, a rotary table that can rotate within the pressure vessel, and an outer container placed on the rotary table. .
  • the obtained seed crystal substrate was placed in an alumina crucible in a glove box with a nitrogen atmosphere.
  • 40 g of metallic gallium, 80 g of metallic sodium, and 0.1 g of iron as a doping element were each melted in a glove box and filled into the crucible, the seed crystal substrate was immersed in the flux melt, and an alumina plate was I put the lid on.
  • the crucible was placed in an inner container made of stainless steel, and further placed in an outer container made of stainless steel capable of accommodating this inner container, and the outer container was closed with a lid equipped with a nitrogen introduction pipe.
  • the outer container was placed on a rotary table installed in the heating section of the crystal manufacturing apparatus, which had been vacuum baked in advance, and the pressure-resistant container of the crystal manufacturing apparatus was sealed with a lid.
  • nitrogen gas was introduced from the nitrogen gas cylinder into the pressure vessel until the temperature reached 4 MPa.
  • the outer container was rotated horizontally. This state was maintained for 35 hours to grow gallium nitride crystals.
  • the peeled surface of the gallium nitride crystal from the sapphire substrate and the opposite surface thereof were polished and flattened using diamond abrasive grains, and the resistivity was 1 ⁇ 10 7 ⁇ with a diameter of 3 inches and a thickness of 0.5 mm.
  • An Fe-doped gallium nitride substrate with a size of 1.5 cm or more was obtained.
  • Example 2 The procedure was the same as in Experimental Example 1 except that Mn was used instead of Fe as the doping element (0.1 g of manganese was filled in the crucible), with a diameter of 3 inches, a thickness of 0.5 mm, and a resistivity of 1 ⁇ 10 7 A Mn-doped gallium nitride substrate with a resistance of ⁇ cm or more was obtained.
  • Band edge emission half width full width at half maximum and half width at half maximum
  • the spectrum of the photoluminescence obtained by irradiating the obtained gallium nitride substrate with an ultraviolet laser was measured using a spectrometer, and the half-value width of the peak of band edge emission was determined.
  • the obtained gallium nitride substrate (measurement substrate) 56 is fixed on a sample stage 55, and in this state, He-Cd with a wavelength of 325 nm is applied to the main surface of the substrate 56 from the laser device 51. irradiated with laser.
  • Laser irradiation was applied to the main surface of the substrate 56 at an incident angle of 45° via a chopper 52, a light reducing plate 53, and a condenser lens 54 with a focal length of 100 mm and a diameter of 50 mm.
  • Photoluminescence from the substrate 56 was incident on a spectrometer 59 via condenser lenses 57 and 58 with a focal length of 100 mm and a diameter of 150 mm. Note that the arrow in FIG. 5 indicates the direction of the laser beam.
  • a photodetector (photomultiplier tube) 60 is attached to the spectrometer 59 .
  • a weak signal detected by the photodetector 60 was amplified by a lock-in amplifier 61 in synchronization with the chopper 52 to obtain an emission spectrum.
  • the position of the sample stage 55 on which the substrate 56 is fixed was adjusted so that the detection intensity of the lock-in amplifier 61 was maximized.
  • the diameter of the irradiated light on the substrate 56 was about ⁇ 0.3 mm.
  • the broken line in FIG. 5 indicates a synchronization signal.
  • a gallium nitride (GaN) layer and an aluminum gallium nitride (AlGaN) layer were epitaxially grown on the main surface of the obtained gallium nitride substrate using the MOCVD method to produce an epitaxial substrate.
  • the obtained gallium nitride substrate was placed in a susceptor in a MOCVD apparatus furnace.
  • a mixed flow of hydrogen gas and nitrogen gas was created in the MOCVD furnace, and the temperature was raised to 1100° C. at an internal pressure of 0.3 atm.
  • a 1 ⁇ m thick GaN layer was formed using ammonia gas and Ga raw material gas, and then Al raw material gas was further added to form a 20 nm AlGaN layer (composition ratio of Al and Ga 0.2:0. 8) was deposited to form an epitaxial substrate. After film formation, the substrate temperature was lowered to room temperature and returned to atmospheric pressure, and then the epitaxial substrate was taken out from the MOCVD furnace.
  • transistor element was manufactured using the epitaxial substrate.
  • a silicon oxide film with a thickness of 10 nm was formed as a passivation film on the obtained epitaxial substrate.
  • the silicon oxide film at the locations where the source electrode, drain electrode, and gate electrode were to be formed was removed by etching.
  • RIE reactive ion etching
  • a photoresist is applied on the AlGaN layer, openings are formed in the regions where the source and drain electrodes will be formed by photolithography, and metal films of Ti, Al, Ni, and Au are deposited by vacuum evaporation, respectively.
  • a multilayer structure was formed by sequentially forming films with film thicknesses of 25 nm, 75 nm, 15 nm, and 100 nm. Thereafter, the substrate was immersed in an organic solvent or a stripping solution, and the photoresist film was removed by lift-off to obtain a source electrode and a drain electrode. Next, from the viewpoint of improving the ohmic properties of the source electrode and the drain electrode, the substrate was subjected to heat treatment at 850° C.
  • a transistor element was manufactured in which electrodes were formed with a gate width of 1 mm, a distance between the source and gate of 2 ⁇ m, a distance between the gate and drain of 8 ⁇ m, and a gate length of 1 ⁇ m.
  • leakage current was measured for 15 arbitrarily selected samples in the epitaxial substrate.
  • 10V was applied as the source-drain voltage and the gate voltage was set to -4V to turn off the device, the current flowing between the source and drain was defined as the leakage current.
  • FIGS. 6 and 7 the evaluation results when using a sapphire substrate with an off angle of 0.43° in Experimental Example 1 are shown in Table 1 and FIGS. 6 and 7. Specifically, the leakage current of any 16 elements in the substrate, the full width at half maximum of the peak of band edge emission at the position in the substrate of each element determined from the above mapping data, and the half width at half maximum on the long wavelength side are displayed. Summarize in 1.
  • Figure 6 (1) shows the emission spectrum near the band edge (wavelength 364 nm) corresponding to a device with a small leakage current (4.57 ⁇ 10 -8 A/mm 2 ) when off, and a device with a large leakage current (4.57 ⁇ 10 -8 A/mm 2 ).
  • the emission spectrum near the band edge corresponding to the 6.85 ⁇ 10 ⁇ 2 A/mm 2 ) device is shown in (2) of FIG. Note that the emission spectrum was normalized by the maximum value.
  • Table 3 shows the evaluation results when the sapphire substrate with an off angle of 0.43° in Experimental Example 2 was used. Specifically, the leakage current of any 16 elements in the substrate, the full width at half maximum of the band edge emission at the position in the substrate of each element determined from the above mapping data, and the half width at half maximum on the long wavelength side are shown in Table 3. Summarize.
  • Group III element nitride substrates according to embodiments of the present invention can be used, for example, as substrates for various semiconductor devices.
  • Group III element nitride substrate 11 First main surface, 12 Second main surface, 13 Side surface, 16 Group III element nitride crystal layer, 20 Seed crystal substrate, 21 Base substrate, 21a Top surface, 21b Bottom surface, 22 Seed crystal Film, 30 Laminated substrate, 32 Self-supporting substrate, 40 HEMT element, 41 Channel layer, 42 Barrier layer, 43 Laminated structure, 44 Source electrode, 45 Drain electrode, 46 Gate electrode, 51 Laser device, 52 Chopper, 53 Dark plate, 54 Condenser lens, 55 sample stage, 56 measurement board, 57 condenser lens, 58 condenser lens, 59 spectrometer, 60 photodetector, 61 lock-in amplifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

歩留まりを向上させ得るIII族元素窒化物基板を提供する。本発明の実施形態によるIII族元素窒化物基板の検査方法は、III族元素以外の元素がドープされたIII族元素窒化物基板を準備することと、前記III族元素窒化物基板に励起エネルギーを照射することと、前記照射により得られる発光スペクトルのバンド端発光の半値幅を測定することと、を含む。

Description

III族元素窒化物基板の検査方法、III族元素窒化物基板の製造方法および半導体素子の製造方法
 本発明は、III族元素窒化物基板の検査方法、III族元素窒化物基板の製造方法および半導体素子の製造方法に関する。
 III族元素窒化物は、直接遷移型の広いバンドギャップを有し、高い絶縁破壊電界、高い飽和電子速度を有することから、例えば、高周波/ハイパワーの電子デバイス用の半導体材料として開発が活発に行われている。
 例えば、特許文献1に記載されているように、用途によっては、上記III族元素窒化物は高抵抗であることが望まれている。
特許第5451085号公報
 上記高抵抗のIII族元素窒化物基板から得られる半導体素子は、品質の均一性が十分でない場合があり、歩留まりの向上が望まれている。
 上記に鑑み、本発明は、歩留まりを向上させ得るIII族元素窒化物基板を提供することを主たる目的とする。
 1.本発明の実施形態によるIII族元素窒化物基板の検査方法は、III族元素以外の元素がドープされたIII族元素窒化物基板を準備することと、前記III族元素窒化物基板に励起エネルギーを照射することと、前記照射により得られる発光スペクトルのバンド端発光の半値幅を測定することと、を含む。
 2.上記1に記載の検査方法において、上記励起エネルギーの照射は、紫外光または電子線の少なくとも一つを照射することにより行ってもよい。
 3.上記1または2に記載の検査方法において、上記III族元素窒化物基板の主面に対し、複数個所に上記励起エネルギーを照射してもよい。
 4.上記1から3のいずれかに記載の検査方法において、上記III族元素以外の元素は遷移元素を含んでもよい。
 5.上記4に記載の検査方法において、上記遷移元素は、鉄またはマンガンの少なくとも一つを含んでもよい。
 6.上記1から5のいずれかに記載の検査方法において、上記III族元素窒化物基板は窒化ガリウムを含んでもよい。
 7.上記1から6のいずれかに記載の検査方法において、上記III族元素窒化物基板は、電荷量時間変化により求められる抵抗率が1×10Ω・cm以上であってもよい。
 8.上記1から7のいずれかに記載の検査方法において、上記半値幅は半値全幅である。
 9.上記1から7のいずれかに記載の検査方法において、上記半値幅は半値半幅である。
 10.本発明の別の実施形態によるIII族元素窒化物基板の製造方法は、上記1から7のいずれかに記載のIII族元素窒化物基板の検査方法を行うことと、上記バンド端発光の半値幅に基づいて、上記III族元素窒化物基板を選別することと、を含む。
 11.上記10に記載の製造方法において、上記バンド端発光の半値全幅が6.5nm以下の上記III族元素窒化物基板を選別してもよい。
 12.上記10に記載の製造方法において、上記バンド端発光の長波長側の半値半幅が4.2nm以下の上記III族元素窒化物基板を選別してもよい。
 13.上記10から12のいずれかに記載の製造方法において、上記III族元素窒化物基板を準備することは、互いに対向する上面および下面を有するサファイア基板と、前記サファイア基板の上面に形成される種結晶膜とを有する種結晶基板を準備することと、前記種結晶基板の前記種結晶膜上に、III族元素以外の元素がドープされたIII族元素窒化物結晶を育成することと、を含んでもよく、前記サファイア基板のオフ角は0.58°以下であってもよい。
 14.上記13に記載の製造方法において、上記サファイア基板のオフ角は0.20°以上0.42°以下であってもよい。
 15.本発明のさらに別の実施形態による半導体素子の製造方法は、III族元素以外の元素がドープされたIII族元素窒化物基板に励起エネルギーを照射し、前記照射により得られる発光スペクトルのバンド端発光の半値幅を測定することと、前記III族元素窒化物基板にチャネル層および障壁層を形成して積層構造を得ることと、前記積層構造上にソース電極、ドレイン電極およびゲート電極を設けることと、を含む。
 16.上記15に記載の製造方法において、上記チャネル層の構成材料のバンドギャップエネルギーよりも高いエネルギーを上記III族元素窒化物基板に照射してもよい。
 17.上記15または16に記載の製造方法において、上記半値幅が所定の値を満足する上記III族元素窒化物基板を備える半導体素子を得てもよい。
 18.上記15から17のいずれかに記載の製造方法において、エピタキシャル成長により、上記積層構造を得てもよい。
 19.本発明のさらに別の実施形態によるIII族元素窒化物基板は、III族元素以外の元素がドープされたIII族元素窒化物基板であって、励起エネルギーの照射により得られる発光スペクトルのバンド端発光の半値幅は6.5nm以下である。
 20.本発明のさらに別の実施形態によるIII族元素窒化物基板は、III族元素以外の元素がドープされたIII族元素窒化物基板であって、励起エネルギーの照射により得られる発光スペクトルのバンド端発光の長波長側の半値半幅は4.2nm以下である。
 21.上記19または20に記載のIII族元素窒化物基板において、上記III族元素窒化物基板は窒化ガリウムを含んでもよい。
 22.上記19から21のいずれかに記載のIII族元素窒化物基板において、上記III族元素以外の元素は遷移元素を含んでもよい。
 23.上記22に記載のIII族元素窒化物基板において、上記遷移元素は、鉄またはマンガンの少なくとも一つを含んでもよい。
 24.本発明のさらに別の実施形態によるIII族元素窒化物基板の製造方法は、上記19から23のいずれかに記載のIII族元素窒化物基板の製造方法であって、互いに対向する上面および下面を有するサファイア基板と、前記サファイア基板の上面に形成される種結晶膜とを有する種結晶基板を準備することと、前記種結晶基板の前記種結晶膜上に、III族元素以外の元素がドープされたIII族元素窒化物結晶を育成することと、を含んでもよく、前記サファイア基板のオフ角は0.58°以下であってもよい。
 25.上記24に記載の製造方法において、フラックス法により、上記III族元素窒化物結晶を育成してもよい。
 本発明の実施形態によれば、歩留まりを向上させ得るIII族元素窒化物基板を提供することができる。
本発明の1つの実施形態に係るIII族元素窒化物基板の概略の構成を示す模式的な断面図である。 図1に示すIII族元素窒化物基板の平面図である。 1つの実施形態に係るIII族元素窒化物基板の製造工程を示す図である。 図3Aに続く図である。 図3Bに続く図である。 本発明の1つの実施形態に係る半導体素子の概略の構成を示す模式的な断面図である。 基板の発光スペクトルの測定方法を説明するための図である。 実験例1の窒化ガリウム基板のバンド端付近の発光スペクトルである。 実験例1の窒化ガリウム基板のバンド端付近の発光スペクトルである。
 以下、本発明の実施形態について図面を参照しつつ説明するが、本発明はこれらの実施形態には限定されない。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
A.III族元素窒化物基板
 図1は本発明の1つの実施形態に係るIII族元素窒化物基板の概略の構成を示す模式的な断面図であり、図2は図1に示すIII族元素窒化物基板の平面図である。III族元素窒化物基板10は、板状であり、互いに対向する第一主面11および第二主面12を有し、これらは側面13を介してつながっている。
 図示例では、III族元素窒化物基板は、円盤状(ウエハ)とされているが、これに限らず、任意の適切な形状とされ得る。III族元素窒化物基板のサイズは、目的に応じて適切に設定され得る。円盤状のIII族元素窒化物基板の直径は、例えば50mm以上200mm以下である。III族元素窒化物基板の厚さは、例えば250μm以上800μm以下である。
 1つの実施形態においては、III族元素窒化物基板の抵抗率は、例えば1×10Ω・cm以上1×1012Ω・cm以下であり、好ましくは1×10Ω・cm以上であり、より好ましくは1×10Ω・cm以上である。このような半絶縁性のIII族元素窒化物基板は、例えば、高電子移動度トランジスタ(HEMT)素子の基板として好適に用いられ得る。具体的には、III族元素窒化物基板にチャネル層および障壁層を形成して、これをHEMT素子として用い得る。
 上記III族元素窒化物基板の抵抗率は、電荷量時間変化により求めることができる。電荷量時間変化によれば、III族元素窒化物基板を破壊することなく抵抗率を求めることができる。具体的には、III族元素窒化物基板をプローブとステージから構成されるキャパシタ内に挿入してパルス電圧を印加し、III族元素窒化物基板の電荷量の時間変化を測定し、測定値から抵抗率を算出する。この際、プローブはIII族元素窒化物基板に接触しないため、オーミック性接触電極を形成することなく抵抗率を求めることができる。なお、プローブの空間分解能は1mm~10mm程度であり得る。抵抗率の求め方については、例えば、非特許文献である「R. Stibal et al., “Contactless evaluation of semi-insulating GaAs wafer resistivity using the time-dependent charge measurement” Semiconductor Science and Technology 6 p995 (1991)」に記載されている。
 III族元素窒化物基板は、III族元素窒化物結晶で構成される。III族元素窒化物を構成するIII族元素としては、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)が用いられる。これらは単独で、または、二種以上組み合わせて用いられ得る。III族元素窒化物の具体例としては、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)、窒化アルミニウムガリウム(AlGaN)、窒化ガリウムインジウム(GaInN)、窒化アルミニウムインジウム(AlInN)、窒化アルミニウムガリウムインジウム(AlGaInN)が挙げられる。なお、括弧内の各化学式において、代表的には、x+y+z=1である。
 上記III族元素窒化物は、III族元素以外の元素がドープされている。具体的には、III族元素窒化物は、ドーパントとしてIII族元素以外の元素を含む。III族元素以外の元素がドープされていることにより、上記抵抗率を良好に満足し得るIII族元素窒化物基板(半絶縁性のIII族元素窒化物基板)を得ることができる。上記ドーパントとしては、好ましくは、鉄(Fe)、マンガン(Mn)、バナジウム(V)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)等の遷移元素が用いられる。これらは単独で、または、二種以上組み合わせて用いられ得る。好ましくは、遷移元素は、鉄またはマンガンの少なくとも一つを含む。III族元素窒化物基板における遷移元素の存在量は、例えば5×1016atoms/cm以上1×1020atoms/cm以下である。
 上記III族元素窒化物結晶においては、代表的には、<0001>方向がc軸方向であり、<1-100>方向がm軸方向であり、<11-20>方向がa軸方向である。また、c軸に直交する結晶面はc面であり、m軸に直交する結晶面はm面であり、a軸に直交する結晶面はa面である。1つの実施形態においては、III族元素窒化物基板10の厚さ方向はc軸に平行または略平行であり、第一主面11は(0001)面側のIII族元素極性面であり、第二主面12は(000-1)側の窒素極性面である。第一主面11は、(0001)面に平行であってもよく、(0001)面に対して傾斜していてもよい。第一主面11の(0001)面に対する傾斜角は、例えば10°以下であり、5°以下であってもよく、2°以下であってもよく、1°以下であってもよい。第二主面12は、(000-1)面に平行であってもよく、(000-1)面に対して傾斜していてもよい。第二主面12の(000-1)面に対する傾斜角は、例えば10°以下であり、5°以下であってもよく、2°以下であってもよく、1°以下であってもよい。
B.検査方法
 上記III族元素窒化物基板が、上記電荷量時間変化により求められる抵抗率が所定の値(例えば、1×10Ω・cm以上)を満足する場合であっても、III族元素窒化物基板の面内において、抵抗率の低い領域が存在する場合があると考えられる。具体的には、III族元素窒化物結晶内の転位などの結晶欠陥に酸素などの不純物元素が偏析して、導電性に影響を与え得る。結晶欠陥に酸素などのドナー性不純物は混入しやすく、抵抗率に影響を与え得る。そのため、III族元素窒化物基板面内において、例えばφ10μm~200μm程度の微小領域に結晶欠陥が集中する場合が考えられる。一方、上記電荷量時間変化による抵抗率の測定方法の測定プローブの径は、例えばφ1mm~10mmであり得る。電荷量時間変化による抵抗率の測定では、少なくともこの測定プローブの径の範囲で抵抗率が均一であることを前提としたものであり、局所的に抵抗率の低い微小領域が含まれる領域の抵抗率を正しく測定することは、難しいと考えられる。また、抵抗率の低い領域に対応して得られる半導体素子は、品質が低くなるおそれがある。例えば、抵抗率の低い領域に対応して得られるHEMT素子は、電流のリークが発生するおそれがある。
 本発明の1つの実施形態に係るIII族元素窒化物基板の検査方法は、準備した上記III族元素窒化物基板に励起エネルギーを照射することと、照射により得られる発光スペクトルのバンド端発光の半値幅を測定することと、を含む。
 上記励起エネルギーの照射は、例えば、紫外光または電子線の少なくとも一つを照射することにより行うことができる。1つの実施形態においては、上記III族元素窒化物基板に上記チャネル層の構成材料のバンドギャップエネルギーよりも高いエネルギーを照射する。このようなエネルギーを照射することにより、例えば、HEMT素子の電流のリークの発生を良好に予測することができる。
 上記紫外光の照射は、例えば、バンド端より短い波長のレーザ光を発射し得る光源が用いられる。レーザ光源としては、代表的には、He-Cdレーザやエキシマレーザが用いられる。また、紫外光の照射には、例えば、低圧水銀ランプ、重水素ランプ等の深紫外光(DUV)ランプを用いることもできる。
 上記電子線の照射は、例えば、エネルギーが0.5KeV~10KeV程度の電子線源(例えば、電子銃)が用いられる。電子線源としては、例えば、冷陰極電界放出電子源、フォトカソード電子源、ショットキー電子源が挙げられる。
 例えば、窒化ガリウムで構成されるIII族元素窒化物基板に、波長364nm以下の紫外光を照射してもよい。窒化ガリウムよりも高いバンドギャップエネルギーを有する窒化アルミニウムガリウムから構成されるIII族元素窒化物基板には、より高いエネルギーが必要とされ得ることから、電子線を照射してもよい。
 上記III族元素窒化物基板への励起エネルギーの照射により得られる発光スペクトルの測定は、代表的には、分光器を用いて分光した任意の波長の光の強度を、任意の適切な紫外線検出器を用いて行われ得る。紫外線検出器としては、Siフォトダイオード、光電子倍増管(PMT)などが例示できる。また、紫外線検出器として、小型グレーティングとCCD/CMOS/NMOSイメージセンサとを組み合わせたアレイ型分光検出器などが例示できる。
 測定された発光スペクトルからバンド端発光の半値幅を得る。測定された半値幅が所定の値を満足することにより(所定の値以下を有することにより)、品質に優れた半導体素子を得ることができる。例えば、リーク電流が抑制されたHEMT素子を得ることができる。そして、所定の半値幅を満足し得るIII族元素窒化物基板を選別して用いることにより、半導体素子の製造の歩留まりが格段に向上し得る。ここで、半値幅は、半値全幅(FWHM)および半値半幅(HWHM)を包含する。1つの実施形態においては、測定された発光スペクトルのバンド端発光の半値全幅は、6.5nm以下であることが好ましい。別の実施形態においては、測定された発光スペクトルのバンド端発光の長波長側の半値半幅は、4.2nm以下であることが好ましい。
 上記半絶縁性のIII族元素窒化物基板に励起エネルギーを照射して得られる発光スペクトルの強度は、導電性のIII族元素窒化物基板(例えば、III族元素以外の元素がドープされていないIII族元素窒化物基板)に励起エネルギーを照射して得られる発光スペクトルの強度に比べて微弱であり得、さらには、基板の表面平坦性や加工変質層の有無によって影響を受けやすい。しかし、本発明者らは、半絶縁性のIII族元素窒化物基板の発光スペクトルと得られる半導体素子の品質との関係を精査したところ、バンド端発光の半値幅と得られる半導体素子の品質に関連性があることを見出した。良好な半絶縁性を持つIII族元素窒化物では、発光スペクトルのバンド端強度は微弱になり得るが、バンド端近傍の様々な準位を介した発光が相対的に低下するため、見かけ上、半値幅が狭くなり得る。一方で、例えば、酸素などのドナー性不純物がIII族元素窒化物結晶内に取り込まれるとバンド端近傍の発光強度が強まり、半値幅が広がり得る。
 バンド端発光の半値幅により、室温での測定でIII族元素窒化物基板の良否を簡便に判断することができる。厳密には、発光スペクトルは、バンド端近傍で様々な準位の発光を含み得、極低温でしか分離して観測され得ないのに対し、バンド端発光の半値幅は室温で測定することができる。また、バンド端発光の半値幅の測定は、測定装置の装置依存性が低い傾向にある。具体的には、照射する励起エネルギーの強度を一定に調整したり、較正用試料による再現性を確認したりする必要がない。
 励起エネルギーの照射は、上記III族元素窒化物基板の主面の複数の箇所に照射してもよい。複数の箇所に照射して、基板面内におけるバンド端発光の半値幅をマッピングすることで、所定の値を満足しない領域が、得られる半導体素子の品質が低い領域(例えば、リーク電流の大きい不良領域)になると予測することができる。例えば、図2に示す円盤状の基板面内の縦方向および横方向のそれぞれにおいて、所定の間隔(例えば、0.01mm~1mmの間隔)で励起エネルギーを照射する。得られたデータからマッピングデータが得られ得る。基板面内のマッピングデータに基づいて、半導体素子の形成箇所を選別してもよい。
C.製造方法
 本発明の1つの実施形態に係るIII族元素窒化物基板の製造方法は、下地基板と種結晶膜とを有する種結晶基板を準備することと、種結晶基板の種結晶膜上にIII族元素以外の元素がドープされたIII族元素窒化物結晶を育成することと、を含む。
 図3Aから図3Cは、1つの実施形態に係るIII族元素窒化物基板の製造工程を示す図である。図3Aは、互いに対向する上面21aおよび下面21bを有する下地基板21の上面21aに種結晶膜22が成膜され、種結晶基板20が完成した状態を示している。
 上記下地基板としては、例えば、所望の形状・サイズを有するIII族元素窒化物基板を製造可能な形状・サイズを有する基板が用いられる。代表的には、下地基板は、直径50mm~200mmの円盤状とされる。下地基板の厚さは、例えば200μm~800μmである。
 下地基板としては、任意の適切な基板が用いられ得る。下地基板は、好ましくは、六方晶の結晶構造を有する単結晶体で構成される。例えば、下地基板として、単結晶アルミナで構成されるサファイア基板を用いることが好ましい。
 サファイア基板のオフ角は、任意の適切な角度に設定され得る。サファイア基板のオフ角は、好ましくは0.58°以下であり、より好ましくは0.48°以下であり、さらに好ましくは0.42°以下である。このようなオフ角を有するサファイア基板を用いることにより、例えば、品質に優れた半導体素子を歩留まり良く(例えば、高い良品率で)製造し得るIII族元素窒化物基板を得ることができる。一方、サファイア基板のオフ角は、好ましくは0.20°以上である。このようなオフ角を有するサファイア基板を用いることにより、例えば、III族元素窒化物結晶を良好に育成し得る。ここで、サファイア基板のオフ角は、サファイア基板の主面の基準結晶面(c面)に対する傾斜角を意味する。
 上記種結晶膜の厚さは、例えば0.2μm以上である。成膜時のメルトバックや消失を防止する観点から、種結晶膜の厚さは、1μm以上であることが好ましく、より好ましくは2μm以上である。一方、種結晶膜の厚さは、生産性の観点から、10μm以下であることが好ましく、より好ましくは5μm以下である。
 種結晶膜を構成する材料としては、任意の適切な材料が採用され得る。種結晶膜を構成する材料としては、代表的には、III族元素窒化物が用いられる。III族元素窒化物の詳細は上述のとおりである。1つの実施形態においては、窒化ガリウムが用いられる。好ましくは、蛍光顕微鏡観察により黄色発光効果が認められる窒化ガリウムが用いられる。このような窒化ガリウムにおいては、バンドからバンドへの励起子遷移(UV)に加えて、2.2eV~2.5eVの範囲にピーク(黄色発光(YL)または黄色帯(YB))が確認される。
 種結晶膜は、任意の適切な方法により成膜され得る。種結晶膜の成膜方法としては、代表的には、気相成長法が用いられる。気相成長法の具体例としては、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法、ハイドライド気相成長(HVPE)法、パルス励起堆積(PXD)法、分子線エピタキシー(MBE)法、蒸着法、昇華法が挙げられる。これらの中でも、MOCVD法が好ましく用いられる。
 上記MOCVD法による種結晶膜の成膜は、例えば、第一形成工程および第二形成工程をこの順に含む。具体的には、第一形成工程では温度T1(例えば、450℃~550℃)にて下地基板上に図示しない第一の層(低温成長緩衝層)を成膜し、第二形成工程では温度T1よりも高い温度T2(例えば、1000℃~1200℃)にて図示しない第二の層を成膜する。第一の層の厚さは、例えば20nm~50nmである。第二の層の厚さは、例えば1μm~5μmである。
 次に、種結晶基板20の種結晶膜22上にIII族元素窒化物結晶を育成してIII族元素窒化物結晶層16を形成し、図3Bに示すように積層基板30を得る。所望のIII族元素窒化物基板の厚さに応じて、III族元素窒化物結晶の育成の程度(III族元素窒化物結晶層16の厚さ)は調整され得る。III族元素窒化物結晶の育成方向としては、用途、目的等に応じて、任意の適切な方向が選択され得る。具体例として、上記c面、a面、m面それぞれの法線方向、上記c面、a面、m面に対して傾斜した面の法線方向が挙げられる。
 III族元素窒化物結晶は、任意の適切な方法により育成され得る。III族元素窒化物結晶の育成方法としては、上記種結晶膜の結晶方位に概ね倣った結晶方位を達成し得る方法であれば、特に限定されない。III族元素窒化物結晶の育成方法の具体例としては、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法、ハイドライド気相成長(HVPE)法、パルス励起堆積(PXD)法、分子線エピタキシー(MBE)法、昇華法等の気相成長法;フラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相成長法が挙げられる。これらは単独で、または、二種以上組み合わせて用いられ得る。
 好ましくは、III族元素窒化物結晶の育成方法として、フラックス法(例えば、Naフラックス法)が採用される。このような育成方法の詳細は、例えば、特許第5451085号公報に記載されており、適宜、記載された育成方法の各種条件を調整して育成してもよい。具体的には、III族元素窒化物結晶の育成は、加圧窒素ガスを供給可能な耐圧容器と、この耐圧容器内で回転可能な回転台と、この回転台に載置される外容器とを備える結晶製造装置を用いて、各種条件を調整して行うことができる。
 フラックス法によるIII族元素窒化物結晶の育成は、代表的には、育成容器としての坩堝を用いて行われる。具体的には、坩堝内の所定の位置に上記種結晶基板が配置され、さらに、原料が充填される。種結晶基板が配置された坩堝は、代表的には、蓋をした状態で、窒素を含む雰囲気下、所定の圧力・温度下に置かれ、育成処理に供される。
 上記原料は、例えば、フラックス、III族元素、および、ドーパントを含む融液組成物である。フラックスは、アルカリ金属とアルカリ土類金属の少なくとも一方を含むことが好ましく、より好ましくは金属ナトリウムを含む。代表的には、フラックスと金属原料物質とを混合して使用する。金属原料物質としては、単体金属、合金、金属化合物等が用いられ得るが、取扱いの観点から、単体金属が好ましく用いられる。
 上記坩堝(蓋を含む)としては、フラックス法に用いられ得る任意の適切な材質で形成され得る。坩堝の材質としては、例えば、アルミナ、イットリア、YAG(イットリウム・アルミニウム・ガーネット)が挙げられる。また、坩堝の材質は、単結晶であってもよく、多結晶(セラミックス)であってもよい。セラミックスは、HIP処理などで相対密度を高めた、いわゆる透光性を持たせたものであってよい。
 育成は、上述のとおり、窒素を含む雰囲気下で行われ得る。育成雰囲気は、窒素に加えて、他のガスを含み得る。他のガスとしては、アルゴン、ヘリウム、ネオン等の不活性ガスが好ましく用いられる。
 育成時の雰囲気の圧力は、任意の適切な圧力に設定され得る。育成時の雰囲気の圧力は、例えば、フラックスの蒸発を防止する観点から、好ましくは10気圧以上であり、より好ましくは30気圧以上である。一方、育成時の雰囲気の圧力は、例えば、育成装置が大がかりとなるのを防止する観点から、好ましくは2000気圧以下であり、より好ましくは500気圧以下である。
 育成時の雰囲気の温度は、任意の適切な温度に設定され得る。育成時の雰囲気の温度は、好ましくは700℃~1000℃であり、より好ましくは800℃~900℃である。
 育成は、坩堝を回転させながら行うことが好ましい。例えば、蓋をした坩堝を上記外容器に収容して上記回転台の上に載置し、回転台を回転させることにより坩堝を回転させる。
 III族元素窒化物結晶の育成後、図3Cに示すように、下地基板21からIII族元素窒化物結晶(III族元素窒化物結晶層16)を分離して、自立基板32を得る。代表的には、図示するように、自立基板32は、III族元素窒化物結晶16および種結晶膜22を含み得る。III族元素窒化物結晶は、任意の適切な方法により下地基板から分離され得る。III族元素窒化物結晶の分離方法としては、例えば、III族元素窒化物結晶の育成後の降温工程において下地基板との熱収縮差を利用して下地基板から自発分離させる方法、ケミカルエッチングにより分離する方法、レーザ光照射によるレーザリフトオフ法が挙げられる。レーザリフトオフ法によりIII族元素窒化物結晶を分離する場合、代表的には、レーザ光を積層基板30の下地基板21の下面21b側から照射する。また、研削、ワイヤソー等の切断機を用いた切断により、自立基板を得てもよい。
 自立基板32は、そのまま上記III族元素窒化物基板とされ得るが、代表的には、自立基板32に対して任意の適切な加工を行い、上記III族元素窒化物基板を得る。
 上記自立基板に対して行う加工の一例としては、周縁部の研削加工(例えば、ダイヤモンド砥石を用いた研削加工)が挙げられる。代表的には、研削により、上記所望の形状・サイズ(例えば、所望の直径を有する円盤状)となるように加工する。
 上記自立基板に対して行う加工の別の例としては、主面(上面、下面)の研削、研磨(例えば、ラップ研磨、化学機械研磨(CMP))等の加工が挙げられる。代表的には、研削および研磨により、所望の厚さとなるように薄板化および平坦化する。1つの実施形態においては、主面の加工により種結晶膜22は除去され、III族元素窒化物結晶層16のみ(単一の結晶成長層のみ)の状態とされ得る。
 また、例えば、上記自立基板に対して行う加工としては、外周エッジの面取り、加工変質層の除去、加工変質層に起因し得る残留応力の除去が挙げられる。
D.用途
 上記III族元素窒化物基板は、任意の適切な半導体素子に適用され得る。図4は、本発明の1つの実施形態に係る半導体素子の概略の構成を、HEMT素子を例にして示す模式的な断面図である。HEMT素子40は、III族元素窒化物基板10と、チャネル層41と、障壁層42とをこの順に含む積層構造43と、積層構造43上に設けられたソース電極44とドレイン電極45とゲート電極46とを備える。これらの電極は、それぞれに、十数nm~百数十nm程度の厚さを有する金属電極であり得る。
 積層構造43は、各層をヘテロ接合させて得ることができる。例えば、チャネル層41および障壁層42は、III族元素窒化物基板10上方にエピタキシャル成長により形成され得る。なお、この積層構造をエピタキシャル基板と称する場合がある。チャネル層41の厚さは、例えば50nm~5μmである。障壁層42の厚さは、例えば2nm~40nmである。
 チャネル層41および障壁層42を構成する材料としては、それぞれ、III族元素窒化物結晶が採用され得る。III族元素窒化物を構成するIII族元素としては、例えば、Ga(ガリウム)、Al(アルミニウム)、In(インジウム)が用いられる。これらは単独で、または、二種以上組み合わせて用いられ得る。1つの実施形態においては、III族元素窒化物基板10としてGa以外の元素がドープされた窒化ガリウムで構成され得る。この場合、チャネル層41は、好ましくは、窒化ガリウムで構成される。そして、障壁層42は、好ましくは、窒化アルミニウムガリウム、窒化アルミニウムインジウムおよび窒化アルミニウムインジウムガリウムから選択される少なくとも一つで構成される。
 チャネル層41および障壁層42は、それぞれ、任意の適切な方法により形成され得る。1つの実施形態においては、チャネル層41および障壁層42は、それぞれ、MOCVD法により形成され得る。MOCVD法により、チャネル層41および障壁層42を形成する場合、III族元素源として有機金属(MO)原料ガスが用いられ得る。例えば、MOCVD法により、チャネル層41として窒化ガリウム層を形成し、障壁層42として窒化アルミニウムガリウム層を形成する場合、Ga源およびAl源として、それぞれ、トリメチルガリウム(TMG)およびトリメチルアルミニウム(TMA)が用いられ得る。そして、窒素源として、アンモニアガスが用いられ得る。また、キャリアガスとして、水素ガスまたは窒素ガスの少なくとも一つが用いられ得る。
 図示しないが、III族元素窒化物基板10とチャネル層41との間には、バッファ層が配置され得る。例えば、バッファ層は、チャネル層の成膜に際して形成され得、チャネル層を構成する材料を含み得る。
 III族元素窒化物基板10のバンド端発光の半値幅が所定の値を満足することにより、例えば、HEMT素子40はリーク電流が良好に抑制され得る。上記所定の値は、例えば、半値全幅が6.5nm以下であってもよいし、長波長側の半値半幅が4.2nm以下であってもよい。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、抵抗率は下記の測定方法により測定した値である。
<抵抗率>
 電荷量時間変化により非接触方法にて基板面内の抵抗率を測定した。具体的には、基板をプローブとステージから構成されるキャパシタのステージに載置し、プローブを基板近傍に接近させてパルス幅100nsのパルス電圧を印加し、基板の電荷量の時間変化を室温(25℃)にて1秒間測定し、抵抗率を算出した。
[実験例1]
(種結晶基板の作製)
 様々なオフ角(0.20°、0.28°、0.36°、0.39°、0.42°、0.43°、0.44°、0.46°、0.48°、0.52°、0.56°、0.58°および0.60°)を有する直径3インチのc面サファイア基板を準備した。それぞれのサファイア基板上に、MOCVD法により厚さ2μmの窒化ガリウム膜を成膜して種結晶基板を作製した。
(窒化ガリウム結晶の育成)
 窒化ガリウム結晶の育成は、加圧窒素ガスを供給可能な耐圧容器と、この耐圧容器内で回転可能な回転台と、この回転台に載置される外容器とを備える結晶製造装置により行った。
 得られた種結晶基板を、窒素雰囲気のグローブボックス内で、アルミナ坩堝内に配置した。次に、40gの金属ガリウムと80gの金属ナトリウムと、ドープ元素として鉄0.1gをグローブボックス内でそれぞれ融解して坩堝内に充填し、種結晶基板をフラックス融液に浸漬し、アルミナ板で蓋をした。この状態で、坩堝をステンレス製の内容器に入れ、さらにこの内容器を収容可能なステンレス製の外容器に入れて、窒素導入パイプの付いた蓋で外容器を閉じた。この状態で、外容器を予め真空ベークしておいた結晶製造装置内の加熱部に設置されている回転台の上に載置し、結晶製造装置の耐圧容器に蓋をして密閉した。
 次いで、加熱部(上段ヒータ、中段ヒータおよび下段ヒータ)を操作して、加熱空間の温度を850℃になるように加熱しながら、4MPaになるまで窒素ガスボンベから耐圧容器内に窒素ガスを導入し、外容器を水平回転させた。この状態を35時間保持し、窒化ガリウム結晶を成長させた。
 その後、室温まで自然冷却して大気圧にまで減圧した後、アルミナ坩堝の蓋を開けたところ、成長させた窒化ガリウム結晶とサファイア基板とが自然剥離した状態であった。こうして、直径3インチで厚さ1mmの窒化ガリウム結晶を得た。
 その後、窒化ガリウム結晶のサファイア基板からの剥離面およびその反対側の面を、ダイヤモンド砥粒を用いて研磨して平坦化し、直径3インチ、厚さ0.5mmで抵抗率1×10Ω・cm以上のFeドープ窒化ガリウム基板を得た。
[実験例2]
 ドープ元素をFeのかわりにMnとしたこと(坩堝内にマンガン0.1gを充填したこと)以外は実験例1と同様にして、直径3インチ、厚さ0.5mmで抵抗率1×10Ω・cm以上のMnドープ窒化ガリウム基板を得た。
<評価>
 実験例1および実験例2で得られた窒化ガリウム基板について下記の評価を行った。
1.バンド端発光の半値幅(半値全幅および半値半幅)
 得られた窒化ガリウム基板に紫外光レーザを照射して得られるフォトルミネセンスについて、分光器によりスペクトル測定を行い、バンド端発光のピークの半値幅を求めた。
 具体的には、図5に示すように、得られた窒化ガリウム基板(測定基板)56を試料台55に固定し、この状態で基板56の主面にレーザ装置51から波長325nmのHe-Cdレーザを照射した。レーザの照射は、チョッパ52、減光板53および焦点距離100mmでφ50mmの集光レンズ54を介し、入射角45°にて基板56の主面に照射した。基板56からのフォトルミネセンスは、焦点距離100mmでφ150mmの集光レンズ57、58を介して分光器59に入射させた。なお、図5中の矢印は、レーザ光の向きを示している。
 分光器59には光検出器(光電子増倍管)60が取り付けられている。光検出器60で検出された微弱信号を、チョッパ52と同期してロックインアンプ61で増幅し、発光スペクトルを得た。なお、基板56を固定させる試料台55の位置はロックインアンプ61の検出強度が最大となるように調整した。このとき基板56上の照射光の径はφ0.3mm程度であった。また、図5中の破線は、同期信号を示している。
 試料台55を移動させることで、基板面内において1mmの間隔でバンド端発光を測定して、ピーク値の半値幅を算出し、バンド端発光の半値幅のマッピングデータを取得した。
2.リーク電流
(エピタキシャル基板の作製)
 MOCVD法により、得られた窒化ガリウム基板の主面に、窒化ガリウム(GaN)層および窒化アルミニウムガリウム(AlGaN)層をエピタキシャル成長により成膜し、エピタキシャル基板を作製した。具体的には、得られた窒化ガリウム基板をMOCVD装置炉内のサセプターに配置した。MOCVD炉内を水素ガスと窒素ガスの混合フローとし、炉内圧力0.3atmにて1100℃まで昇温した。1100℃に到達後、アンモニアガスとGa原料ガスを用いて1μmのGaN層を成膜し、その後、さらにAl原料ガスを加えて20nmのAlGaN層(AlとGaの組成比0.2:0.8)を成膜し、エピタキシャル基板を形成した。成膜後、室温まで基板温度を下げて大気圧に復圧した後、MOCVD炉からエピタキシャル基板を取り出した。
(トランジスタ素子の作製)
 次に、エピタキシャル基板を用いてトランジスタ素子を作製した。エピタキシャル基板への電極の形成に先立ち、得られたエピタキシャル基板に、パッシベーション膜として厚さ10nmの酸化ケイ素膜を成膜した。続いて、フォトリソグラフィにより、ソース電極、ドレイン電極およびゲート電極の形成予定箇所の酸化ケイ素膜をエッチングにより除去した。
 次に、フォトリソグラフィと反応性イオンエッチング(RIE)法とを用い、得られる各トランジスタ素子の境界となる部位を深さ400nm程度までAlGaN層およびGaN層をエッチング除去した。
 次に、AlGaN層上にフォトレジストを塗布し、フォトリソグラフィによりソース電極およびドレイン電極が形成される領域に開口を形成し、真空蒸着法によりTi、Al、NiおよびAuの金属膜を、それぞれ、25nm、75nm、15nm、100nmの膜厚で順次成膜し多層構造を形成した。その後、有機溶剤や剥離液に基板を浸漬させ、リフトオフによりフォトレジスト膜を除去してソース電極およびドレイン電極を得た。次いで、ソース電極およびドレイン電極のオーミック性を向上させる観点から、基板を、窒素ガス雰囲気中にて850℃で30秒間の熱処理に供した。
 続いて、ソース電極およびドレイン電極の形成と同様、フォトリソグラフィと真空蒸着法とを用いて、PtおよびAuの金属膜を、それぞれ、30nm、100nmの膜厚にて順次成膜し、ショットキー性金属パターンとなり得るゲート電極を形成した。
 こうして、ゲート幅が1mm、ソースとゲートとの間隔が2μm、ゲートとドレインとの間隔が8μm、ゲート長が1μmの電極が形成されたトランジスタ素子を作製した。
 以上のように作製したトランジスタ素子のうち、エピタキシャル基板内の任意に選んだ15サンプルについてリーク電流を測定した。ソース・ドレイン間電圧として10Vを印加し、ゲート電圧を-4Vとしてオフ状態にしたときに、ソース・ドレイン間に流れる電流をリーク電流とした。
 一例として、実験例1におけるオフ角0.43°のサファイア基板を用いたときの、評価結果を表1および図6、7に示す。具体的には、基板内の任意の16個の素子のリーク電流と、上記マッピングデータから割り出した各素子の基板内の位置のバンド端発光のピークの半値全幅および長波長側の半値半幅を表1にまとめる。
 また、オフ時のリーク電流が小さい(4.57×10-8A/mm)素子に対応するバンド端(波長364nm)付近の発光スペクトルを図6の(1)に、リーク電流が大きい(6.85×10-2A/mm)素子に対応するバンド端付近の発光スペクトルを図7の(2)に示す。なお、発光スペクトルは最大値で規格化した。
Figure JPOXMLDOC01-appb-T000001
 表1から、リーク電流1×10-6A/mm未満を良品としたときの、オフ角0.43°のサファイア基板を用いたときの良品の割合は75%である。
 同様に、実験例1において、オフ角の異なるサファイア基板を用いて作製した窒化ガリウム基板それぞれの良品率を算出した。算出結果を表2にまとめる。
Figure JPOXMLDOC01-appb-T000002
 一例として、実験例2におけるオフ角0.43°のサファイア基板を用いたとき、評価結果を表3に示す。具体的には、基板内の任意の16個の素子のリーク電流と、上記マッピングデータから割り出した各素子の基板内の位置のバンド端発光の半値全幅および長波長側の半値半幅を表3にまとめる。
Figure JPOXMLDOC01-appb-T000003
 表3から、リーク電流1×10-6A/mm未満を良品としたとき、オフ角0.43°のサファイア基板を用いたときの良品の割合は63%である。
 同様に、実験例2において、オフ角の異なるサファイア基板を用いて作製した窒化ガリウム基板それぞれの良品率を算出した。算出結果を表4にまとめる。
Figure JPOXMLDOC01-appb-T000004
 本発明の実施形態によるIII族元素窒化物基板は、例えば、各種半導体デバイスの基板として利用され得る。
 10 III族元素窒化物基板、11 第一主面、12 第二主面、13 側面、16 III族元素窒化物結晶層、20 種結晶基板、21 下地基板、21a 上面、21b 下面、22 種結晶膜、30 積層基板、32 自立基板、40 HEMT素子、41 チャネル層、42 障壁層、43 積層構造、44 ソース電極、45 ドレイン電極、46 ゲート電極、51 レーザ装置、52 チョッパ、53 減光板、54 集光レンズ、55 試料台、56 測定基板、57 集光レンズ、58 集光レンズ、59 分光器、60 光検出器、61 ロックインアンプ。

Claims (25)

  1.  III族元素以外の元素がドープされたIII族元素窒化物基板を準備することと、
     前記III族元素窒化物基板に励起エネルギーを照射することと、
     前記照射により得られる発光スペクトルのバンド端発光の半値幅を測定することと、
     を含む、III族元素窒化物基板の検査方法。
  2.  前記励起エネルギーの照射は、紫外光または電子線の少なくとも一つを照射することにより行う、請求項1に記載の検査方法。
  3.  前記III族元素窒化物基板の主面に対し、複数個所に前記励起エネルギーを照射する、請求項1に記載の検査方法。
  4.  前記III族元素以外の元素は遷移元素を含む、請求項1に記載の検査方法。
  5.  前記遷移元素は、鉄またはマンガンの少なくとも一つを含む、請求項4に記載の検査方法。
  6.  前記III族元素窒化物基板は窒化ガリウムを含む、請求項1に記載の検査方法。
  7.  前記III族元素窒化物基板は、電荷量時間変化により求められる抵抗率が1×10Ω・cm以上である、請求項1に記載の検査方法。
  8.  前記半値幅は半値全幅である、請求項1に記載の検査方法。
  9.  前記半値幅は半値半幅である、請求項1に記載の検査方法。
  10.  請求項1から請求項7のいずれか一項に記載のIII族元素窒化物基板の検査方法を行うことと、
     前記バンド端発光の半値幅に基づいて、前記III族元素窒化物基板を選別することと、
     を含む、III族元素窒化物基板の製造方法。
  11.  前記バンド端発光の半値全幅が6.5nm以下の前記III族元素窒化物基板を選別する、請求項10に記載のIII族元素窒化物基板の製造方法。
  12.  前記バンド端発光の長波長側の半値半幅が4.2nm以下の前記III族元素窒化物基板を選別する、請求項10に記載のIII族元素窒化物基板の製造方法。
  13.  前記III族元素窒化物基板を準備することは、
     互いに対向する上面および下面を有するサファイア基板と、前記サファイア基板の上面に形成される種結晶膜とを有する種結晶基板を準備することと、
     前記種結晶基板の前記種結晶膜上に、III族元素以外の元素がドープされたIII族元素窒化物結晶を育成することと、を含み、
     前記サファイア基板のオフ角は0.58°以下である、
     請求項10に記載のIII族元素窒化物基板の製造方法。
  14.  前記サファイア基板のオフ角は0.20°以上0.42°以下である、請求項13に記載のIII族元素窒化物基板の製造方法。
  15.  III族元素以外の元素がドープされたIII族元素窒化物基板に励起エネルギーを照射し、前記照射により得られる発光スペクトルのバンド端発光の半値幅を測定することと、
     前記III族元素窒化物基板にチャネル層および障壁層を形成して積層構造を得ることと、
     前記積層構造上にソース電極、ドレイン電極およびゲート電極を設けることと、
     を含む、半導体素子の製造方法。
  16.  前記チャネル層の構成材料のバンドギャップエネルギーよりも高いエネルギーを前記III族元素窒化物基板に照射する、請求項15に記載の半導体素子の製造方法。
  17.  前記半値幅が所定の値を満足する前記III族元素窒化物基板を備える半導体素子を得る、請求項15に記載の半導体素子の製造方法。
  18.  エピタキシャル成長により、前記積層構造を得る、請求項15に記載の半導体素子の製造方法。
  19.  III族元素以外の元素がドープされたIII族元素窒化物基板であって、
     励起エネルギーの照射により得られる発光スペクトルのバンド端発光の半値全幅は6.5nm以下である、III族元素窒化物基板。
  20.  III族元素以外の元素がドープされたIII族元素窒化物基板であって、
     励起エネルギーの照射により得られる発光スペクトルのバンド端発光の長波長側の半値半幅は4.2nm以下である、III族元素窒化物基板。
  21.  前記III族元素窒化物基板は窒化ガリウムを含む、請求項19または20に記載のIII族元素窒化物基板。
  22.  前記III族元素以外の元素は遷移元素を含む、請求項19または20に記載のIII族元素窒化物基板。
  23.  前記遷移元素は、鉄またはマンガンの少なくとも一つを含む、請求項22に記載のIII族元素窒化物基板。
  24.  互いに対向する上面および下面を有するサファイア基板と、前記サファイア基板の上面に形成される種結晶膜とを有する種結晶基板を準備することと、
     前記種結晶基板の前記種結晶膜上に、III族元素以外の元素がドープされたIII族元素窒化物結晶を育成することと、を含み、
     前記サファイア基板のオフ角は0.58°以下である、
     請求項19または20に記載のIII族元素窒化物基板の製造方法。
  25.  フラックス法により、前記III族元素窒化物結晶を育成する、請求項24に記載のIII族元素窒化物基板の製造方法。
PCT/JP2023/016089 2022-08-26 2023-04-24 Iii族元素窒化物基板の検査方法、iii族元素窒化物基板の製造方法および半導体素子の製造方法 WO2024042777A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-135354 2022-08-26
JP2022135354 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024042777A1 true WO2024042777A1 (ja) 2024-02-29

Family

ID=90012919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016089 WO2024042777A1 (ja) 2022-08-26 2023-04-24 Iii族元素窒化物基板の検査方法、iii族元素窒化物基板の製造方法および半導体素子の製造方法

Country Status (2)

Country Link
TW (1) TW202425164A (ja)
WO (1) WO2024042777A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339605A (ja) * 2005-06-06 2006-12-14 Sumitomo Electric Ind Ltd 化合物半導体部材のダメージ評価方法、化合物半導体部材の製造方法、窒化ガリウム系化合物半導体部材及び窒化ガリウム系化合物半導体膜
JP2015040169A (ja) * 2013-08-23 2015-03-02 三菱化学株式会社 周期表第13族金属窒化物結晶
WO2022039198A1 (ja) * 2020-08-21 2022-02-24 三菱ケミカル株式会社 GaN結晶およびGaN基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339605A (ja) * 2005-06-06 2006-12-14 Sumitomo Electric Ind Ltd 化合物半導体部材のダメージ評価方法、化合物半導体部材の製造方法、窒化ガリウム系化合物半導体部材及び窒化ガリウム系化合物半導体膜
JP2015040169A (ja) * 2013-08-23 2015-03-02 三菱化学株式会社 周期表第13族金属窒化物結晶
WO2022039198A1 (ja) * 2020-08-21 2022-02-24 三菱ケミカル株式会社 GaN結晶およびGaN基板

Also Published As

Publication number Publication date
TW202425164A (zh) 2024-06-16

Similar Documents

Publication Publication Date Title
CN108140563B (zh) 半导体元件用外延基板、半导体元件和半导体元件用外延基板的制造方法
US11913136B2 (en) Thermal control for formation and processing of aluminum nitride
Götz et al. Electronic and structural properties of GaN grown by hydride vapor phase epitaxy
EP2267197A1 (en) Method of obtaining bulk mono-crystalline gallium-containing nitride, bulk mono-crystalline gallium-containing nitride, substrates manufactured thereof and devices manufactured on such substrates
WO2007123093A1 (ja) 単結晶サファイア基板
Zhang et al. Growth of high quality GaN on a novel designed bonding-thinned template by HVPE
Gogova et al. High-quality 2''bulk-like free-standing GaN grown by HydrideVapour phase epitaxy on a Si-doped metal organic vapour phase epitaxial GaN template with an ultra low dislocation density
Mokhov et al. Growth of AlN and GaN crystals by sublimation
Freitas Jr Optical studies of bulk and homoepitaxial films of III–V nitride semiconductors
Wang et al. Ammonothermal growth of high-quality GaN crystals on HVPE template seeds
Goldys et al. Direct observation of large-scale nonuniformities in hydride vapor-phase epitaxy-grown gallium nitride by cathodoluminescence
WO2024042777A1 (ja) Iii族元素窒化物基板の検査方法、iii族元素窒化物基板の製造方法および半導体素子の製造方法
Hanser et al. Growth and fabrication of 2 inch free-standing GaN substrates via the boule growth method
Imabayashi et al. Growth and Evaluation of Bulk GaN Crystals Grown on a Point Seed Crystal by Ba-Added Na Flux Method
Tong et al. The influences of laser scanning speed on the structural and optical properties of thin GaN films separated from sapphire substrates by excimer laser lift-off
Lou et al. Synchrotron X-ray diffraction characterization of the inheritance of GaN homoepitaxial thin films grown on selective growth substrates
WO2023153154A1 (ja) Iii族元素窒化物半導体基板、エピタキシャル基板および機能素子
US20240312779A1 (en) Semiconductor substrate manufacturing method, semiconductor substrate, and semiconductor substrate manufacturing apparatus
WO2024184966A1 (ja) Iii族元素窒化物基板およびiii族元素窒化物基板の製造方法
Hospodková et al. Devices based on InGaN/GaN multiple quantum well for scintillator and detector applications
ABAS Indium nitride growth with in situ surface modification by RF-MBE
Mokhov et al. Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
Lebedev et al. Growth and study of thick 3C-SiC epitaxial layers produced by epitaxy on 6H-SiC substrates
CN118632951A (zh) 具有13族元素氮化物单晶基板的层叠体
Yang et al. X-ray diffraction characterization of epitaxial zinc-blende GaN films on a miscut GaAs (0 0 1) substrates using the hydride vapor-phase epitaxy method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856897

Country of ref document: EP

Kind code of ref document: A1