WO2024042756A1 - Reagent for measuring fluorine ion concentration, method for measuring fluorine ion concentration, and device for measuring fluorine ion concentration - Google Patents

Reagent for measuring fluorine ion concentration, method for measuring fluorine ion concentration, and device for measuring fluorine ion concentration Download PDF

Info

Publication number
WO2024042756A1
WO2024042756A1 PCT/JP2023/011011 JP2023011011W WO2024042756A1 WO 2024042756 A1 WO2024042756 A1 WO 2024042756A1 JP 2023011011 W JP2023011011 W JP 2023011011W WO 2024042756 A1 WO2024042756 A1 WO 2024042756A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
reagent
sample
ion concentration
measurement
Prior art date
Application number
PCT/JP2023/011011
Other languages
French (fr)
Japanese (ja)
Inventor
エウヘニオ ヘルナン オタル
マヌエラ レティシア キム
睦 木村
Original Assignee
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学 filed Critical 国立大学法人信州大学
Publication of WO2024042756A1 publication Critical patent/WO2024042756A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Definitions

  • the present invention relates to reagents, methods, and devices used to measure fluorine ion concentrations in water.
  • Volcanic rocks containing high concentrations of fluorine are distributed in eastern Africa due to alkaline volcanic activity. In Africa in particular, groundwater and river water that has passed through the ground containing high concentrations of fluorine is used as fresh water resources. These freshwater resources contain high concentrations of fluorine.
  • fluoride When freshwater resources containing fluorine are used for domestic or agricultural purposes, fluoride accumulates in the human body. However, fluoride has the aspect of being a toxic substance with acute or chronic effects. Fluoride has strong chronic toxicity, and fluoride poisoning has occurred in countries such as Africa and other countries due to fluoride contamination of drinking water. Symptoms of fluoride toxicity include mottled teeth and bone sclerosis. Treatment of fluoride poisoning is difficult, and cases of severe acute poisoning may result in death.
  • freshwater resources are required due to geographical or economic water shortages.
  • a method for measuring the fluorine concentration contained in freshwater resources is required.
  • Patent Document 1 discloses a method of measuring fluorine ion concentration by irradiating a test solution with ultraviolet rays and measuring the intensity of the generated fluorescence.
  • the present invention has been made in view of the above circumstances, and provides a reagent for measuring fluorine ion concentration that makes it possible to measure fluorine ion concentration using visible light.
  • a reagent for measuring fluorine ion concentration comprising a metal-organic structure and a dye molecule capable of absorbing visible light, wherein the dye molecule is coordinately bonded to the metal-organic structure, and the dye molecule is coordinately bonded to the metal-organic structure. is such that when sample water that may contain fluorine ions and the reagent are mixed, the fluorine ions are coordinated to the metal of the metal-organic structure and the dye molecules are liberated from the metal-organic structure. consisting of reagents.
  • a method for measuring fluorine ion concentration comprising a sample preparation step, a measurement step, and a concentration determination step, wherein in the sample preparation, the reagent according to any one of [1] to [12],
  • a measurement sample is prepared by mixing sample water that may contain fluorine ions, and in the measurement step, a physical quantity correlated with the concentration of the dye molecules in the measurement sample is measured using visible light, and the concentration determination step
  • a method for determining the fluorine ion concentration of the sample water based on the physical quantity.
  • a fluorine ion concentration measuring device comprising a sample holding section, a measuring section, and a concentration determining section, wherein the sample holding section contains the reagent according to any one of [1] to [12]. , holds a measurement sample prepared by mixing sample water that may contain fluorine ions, and the measurement section measures a physical quantity correlated with the concentration of the dye molecules in the measurement sample using visible light,
  • the concentration determining unit is a device that determines the fluorine ion concentration of the sample water based on the physical quantity.
  • the device includes an information processing device and an adapter that can be communicatively connected to the information processing device, and the information processing device includes the concentration determining section.
  • the adapter includes the sample holding section and the measuring section.
  • the measuring section of the adapter is configured to be operable by being supplied with power from the information processing device.
  • the information processing device includes a positioning section, a storage section, and a superimposed display section, and the positioning section acquires current position data at the time of the measurement.
  • the storage unit stores the fluorine ion concentration and the current position data in association with each other as measurement data
  • the superimposition display unit displays the measurement data read from the storage unit in a superimposed manner on a map. .
  • fluorine ions (F - , also referred to as "fluoride ions") coordinate with the metal of a metal organic framework (MOF, also referred to as metal organic framework), so that the dye molecules
  • MOF metal organic framework
  • the dye molecules are configured to be liberated from the metal-organic framework, and the dye molecules are configured to be able to absorb visible light.
  • it is possible to prepare a measurement sample by mixing the reagent of the present invention and sample water that may contain fluorine ions, and to measure the physical quantity correlated with the concentration of the dye molecules in the measurement sample using visible light. can.
  • the fluorine ion concentration of the sample water can be determined based on the measured physical quantity.
  • FIG. 2 is a conceptual diagram showing the principle of detection of fluorine ion concentration in the present invention.
  • 2A is a perspective view of the reagent 4 contained in the container 3
  • FIG. 2B is a perspective view of the container 3 filled with sample water 5
  • FIG. 2C is a perspective view of the container 3 with a lid.
  • 2 is a perspective view of a state after a measurement sample 6 is created by attaching and shaking the test sample 2.
  • FIG. FIG. 3A is a perspective view after the measurement sample 6 is attached to the sample holding part 7a of the adapter 7
  • FIG. 3B is a perspective view after the adapter 7 is attached with the lid 7d and the terminal 7b is inserted into the terminal insertion port of the information processing device 9.
  • FIG. 3A is a perspective view after the measurement sample 6 is attached to the sample holding part 7a of the adapter 7
  • FIG. 3B is a perspective view after the adapter 7 is attached with the lid 7d and the terminal 7b is inserted into the terminal
  • FIG. 1 is a configuration diagram of a fluorine ion concentration measuring device 1.
  • FIG. It is a graph showing the relationship between fluorine ion concentration and physical quantity. Shows the state in which measurement data is superimposed and displayed on a map.
  • 7A shows a secondary structural unit 4d
  • FIG. 7B shows a metal-organic structure 4a composed of secondary structural units 4d bonded to each other by an organic ligand 4c
  • FIG. 7C shows a secondary structural unit 4d.
  • a schematic representation is shown.
  • FIGS. 8A to 8B show TGA measurement results for UiO-66 ND and UiO-66 00 , respectively.
  • 9A-9B show the TGA measurement results for UiO-66 06 and UiO-66 12 , respectively.
  • FIG. 12A and 12B are electron micrographs of Al-BDC ND and Al-BDC 00 , respectively.
  • FIG. 13A shows the XRD patterns of UiO-66 made by various methods
  • FIG. 13B shows the XRD patterns of Al-BDC made by various methods.
  • FIG. 14A shows the Abs F- , Abs MQ , and figure of merit of UiO-66 prepared by various methods
  • FIG. 14B shows the Abs F- , Abs MQ , and figure of merit of Al-BDC prepared by various methods.
  • show. 15A to 15B are graphs showing changes in fluorescence intensity over time, and FIGS.
  • 15A and 15B show the results for UiO-66 00 and Al-BDC 30 , respectively.
  • 16A to 16B are graphs showing the relationship between fluorine ion concentration and fluorescence intensity when various amounts of reagent 4 are used, and FIGS. 16A and 16B are graphs showing the relationship between fluorine ion concentration and fluorescence intensity, respectively The results for 30 are shown.
  • 17A to 17B are graphs showing the recovery rate of fluorescence intensity when various accompanying ions coexist, and FIGS. 17A and 17B show the results for UiO-66 00 and Al-BDC 30 , respectively. show.
  • FIGS. 18A to 18B are graphs showing the difference in the recovery rate of fluorescence intensity in the presence and absence of a buffer when the accompanying ion is HCO 3 ⁇ or HPO 4 2 ⁇
  • FIGS. 18A and 18B are Results for UiO-66 00 and Al-BDC 30 are shown.
  • 2 is a graph showing the relationship between fluorine ion concentration and orange channel output of AS7262 for UiO-66 00 and Al-BDC 30 .
  • An example of an image used for determining fluorine ion concentration by image analysis is shown.
  • FIG. 21A is a graph showing the relationship between rhodamine B concentration and magenta intensity for two color filters 14 and 15 and five measurement samples 6.
  • FIG. 21A is a graph showing the relationship between rhodamine B concentration and magenta intensity for two color filters 14 and 15 and five measurement samples 6.
  • FIG. 21B is a graph showing the relationship between the concentration of rhodamine B and the magenta intensity, which was obtained by changing the spectrum of ambient light and the concentration of rhodamine B in measurement sample 6.
  • FIG. 22A is a graph showing the relationship between fluorine ion concentration and absorbance at 523 nm for measurement sample 6 prepared using reagent A.
  • FIG. 22B is a graph showing the relationship between fluorine ion concentration and magenta intensity for measurement sample 6 prepared using reagent A.
  • FIG. 23A shows the particle size distribution of the alumina particles used in "10. Preparation of metal-organic structure 4a supported on carrier".
  • FIG. 23B shows the particle size distribution of particles obtained by supporting the metal-organic structure 4a on the alumina particles of FIG. 23A.
  • ppm in the following description means “mg/L”.
  • a reagent 4 contained in a container 3 with a lid 2 is prepared.
  • a mark 3a is attached to the container 3 to indicate the position at which the injection of sample water is stopped.
  • the reagent 4 includes a metal-organic structure 4a and a dye molecule 4b capable of absorbing visible light.
  • the dye molecules 4b are coordinately bonded to the metal-organic framework 4a. Details of reagent 4 will be described later.
  • the amount of reagent 4 contained in container 3 is, for example, 0.1 to 10 mg, preferably 0.5 to 2 mg.
  • the reagent 4 in addition to the small amount of reagent 4 required for measurement, the reagent 4 can be manufactured relatively inexpensively, so the cost required for the reagent 4 can be suppressed.
  • the amount of reagent 4 is, for example, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mg, and the It may be within a range between any two values.
  • the sample water 5 is water whose fluorine ion concentration is to be measured, and examples thereof include freshwater resources such as river water, lake water, ground water, or well water.
  • samples collected from rivers, lakes, groundwater, or well water are used as sample water as they are.
  • the fluorine ion concentration can be measured at the site where the sample water 5 is collected.
  • the amount of sample water 5 used for measurement is, for example, 1 to 100 mL, preferably 10 to 50 mL, and specifically, for example, 1, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mL, and may be within a range between any two of the numerical values exemplified here.
  • the fluorine ion concentration can be measured using such a small amount of sample water 5.
  • the sample water 5 may contain fluorine ions, and may not contain fluorine ions.
  • the fluorine ion concentration of the sample water 5 is, for example, preferably 20 ppm or less, more preferably 15 ppm or less. In this case, the measurement accuracy of fluorine ion concentration becomes particularly high.
  • This fluorine ion concentration is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 ppm, and may be within a range between any two of the numerical values exemplified here. Note that even if the fluorine ion concentration in the sample water 5 exceeds 20 ppm, it is possible to qualitatively measure whether the fluorine ion concentration in the sample water 5 is higher than the standard value.
  • the ion concentration is not particularly limited.
  • the sample water 5 may contain accompanying ions other than fluorine ions.
  • the accompanying ions include Cl ⁇ , SO 4 2 ⁇ , Ca 2+ , Mg 2+ , HCO 3 ⁇ , HPO 4 2 ⁇ and the like. If the concentration of these ions is too high, it may adversely affect the measurement accuracy of fluorine ions, so the concentration of each of these ions is preferably 100 ppm or less, and more preferably 50 ppm or less. HCO 3 ⁇ , HPO 4 2 ⁇ Although these ions tend to affect measurement accuracy, the influence of these ions can be reduced by adjusting the pH using a buffer.
  • the pH after addition of the buffer is, for example, preferably 8.0 or less, more preferably 7.5 or less, and even more preferably 7 or less.
  • This pH is, for example, 2.0 to 8.0, and specifically, for example, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5. , 7, 7.5, and 8, and may be within the range between any two of the numerical values exemplified here or below any one thereof.
  • a buffer for example, a tertiary tertiary material having a pH adjusting function within the above pH range and containing an N-substituent so large as to be sterically inaccessible to the formation of a complex with the metal cluster forming the metal-organic framework 4a.
  • Amine-based ones are preferred; for example, a solution containing tris(hydroxymethyl)aminomethane and hydrochloric acid can be used.
  • Other buffers include PIPES, PIPPS, PIBS, DEPP, DESPEN, MES, TEEN, Bis-Tris, lloADA, ACES, MOPSO, Bis-Tris Propane, BES, MOPS, TES, HEPES, and the like.
  • the concentration of the buffer is preferably set so that the buffer capacity (number of moles of added acid or base/change in pH) is 0.01 to 0.1.
  • the buffering capacity is, for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10. Yes, it may be within the range between any two of the numerical values exemplified here.
  • the reagent 4 and the sample water 5 are mixed to obtain a measurement sample 6.
  • the reagent 4 becomes a suspension dispersed in the sample water 5, and as shown in FIG.
  • the dye molecules 4b are liberated from the metal-organic framework 4a.
  • the fluorine ion concentration of the sample water 5 can be measured by measuring a physical quantity that correlates with the amount of free dye molecules 4b. It is possible.
  • the dye molecule 4b is in a free state than when it is coordinated to the metal-organic structure 4a, the transmitted light intensity of visible light is smaller, and the dye molecule 4b is excited by visible light and emitted. The intensity of the fluorescence emitted increases. As the transmitted light intensity decreases, the absorbance calculated by Equation 1 increases. Therefore, it becomes possible to determine the fluorine ion concentration of the sample water 5 based on the absorbance or fluorescence intensity.
  • Absorbance -log 10 (I/I 0 ) (where I is the transmitted light intensity and I 0 is the incident light intensity)
  • the concentration of reagent 4 in measurement sample 6 is preferably 0.05 to 1 mg/mL, preferably 0.1 to 0.5 mg/mL.
  • concentration of the reagent 4 in the measurement sample 6 is, for example, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0. .8, 0.9, and 1.0 mg/mL, and may be within the range between any two of the numerical values exemplified here.
  • the lid 7d is attached to the adapter 7, and the terminal 7b of the adapter 7 is inserted into the terminal insertion port (not shown) of the information processing device 9.
  • the adapter 7 and the information processing device 9 are communicably connected through the communication units 7c and 9g.
  • the information processing device 9 is preferably a portable terminal such as a smartphone, a tablet terminal, or a notebook PC.
  • the adapter 7 and the information processing device 9 constitute a fluorine ion concentration measuring device 1.
  • the information processing device 9 includes a display section 9a, a measurement control section 9b, a concentration determination section 9c, a positioning section 9d, a storage section 9e, a superimposition display section 9f, and a communication section 9g.
  • Various programs are stored in the storage unit 9e, and various functions necessary for the operation of the information processing device 9 are realized by the CPU provided in the information processing device 9 executing the various programs.
  • the storage unit 9e also stores an application program for measuring fluorine ion concentration (hereinafter referred to as "measurement application”), and when the CPU executes this program, various functions necessary for measuring fluorine ion concentration are realized. be done.
  • the adapter 7 is provided with a measurement section 10 that can measure physical quantities correlated with the concentration of dye molecules in the measurement sample 6 using visible light. controls the measurement unit 10 to measure the above-mentioned physical quantities.
  • the measuring section 10 includes a light projecting section 10a such as an LED, and a light receiving section 10b, and irradiates the measurement sample 6 with visible light 12 from the light projecting section 10a.
  • the intensity of the visible light 12 not absorbed by the measurement sample 6 or the fluorescence 13 emitted when dye molecules in the measurement sample 6 are excited by the visible light 12 is measured.
  • the measurement unit 10 is configured to be operable by being supplied with power from the information processing device 9. Therefore, since it is not necessary to provide a power source such as a battery to the adapter 7, the configuration of the adapter 7 is simplified and the cost of the adapter 7 is reduced. Furthermore, the visible light projecting section 10a and the light receiving section 10b are cheaper than those for ultraviolet light, which leads to a reduction in the cost of the adapter 7 in this respect. Furthermore, since visible light is safer than ultraviolet light, even if measuring light leaks from the adapter 7, the risk of exposing the user to danger is reduced.
  • the time from creating the measurement sample 6 to performing the measurement is preferably 120 seconds or more, more preferably 150 seconds or more, and even more preferably 200 seconds or more. If this time is too short, the release of the dye molecules 4b will be insufficient and measurement accuracy will decrease. Further, this time is preferably 1800 seconds or less, more preferably 1200 seconds or less, even more preferably 600 seconds or less, even more preferably 500 seconds or less, and even more preferably 400 seconds or less. If this time is too long, the measurement accuracy will decrease because the dye molecules 4b will re-adhere to the metal-organic structure 4a. Specifically, this time is, for example, 120, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 1200, 1800 seconds, and is between any two of the numerical values exemplified here. may be within the range of
  • the concentration determination step the fluorine ion concentration of the sample water 5 is determined based on the physical quantity.
  • the storage unit 9e stores information indicating the correlation between the physical quantity measured by the measurement unit 10 and the fluorine ion concentration. Examples of this information include tables and mathematical formulas showing the above-mentioned correlations. The correlation is preferably a linear relationship.
  • the concentration determining section 9c determines the fluorine ion concentration of the sample water 5 based on the above correlation.
  • the above correlation can be determined using multiple types of test water whose fluoride ion concentrations are known and whose fluoride ion concentrations differ.
  • the relationship between the physical quantity and the fluorine ion concentration can be obtained for each fluorine ion concentration. For example, as shown in the graph of FIG.
  • the measuring step and the concentration determining step may be performed by image analysis.
  • an image of the measurement sample 6 is photographed using an image sensor having a plurality of light receiving elements while the measurement sample 6 is irradiated with visible light
  • the concentration determination step at least one of the images is The fluorine ion concentration of the sample water 5 can be determined based on the representative values obtained for the gradation values of the two color components.
  • the image sensor of this camera can be used as the light receiving section 10b. In this case, since there is no need to separately provide the light receiving section 10b, it is possible to reduce the device cost.
  • An image captured using an image sensor includes tone values corresponding to outputs corresponding to the intensity of light received by each of the plurality of light receiving elements included in the image sensor.
  • These gradation values are values that correlate with the concentration of dye molecules in the measurement sample 6, and also with the fluorine ion concentration of the sample water 5. Therefore, the fluorine ion concentration of the sample water 5 can be determined based on the representative value calculated from these gradation values.
  • the representative value may be any value that represents a plurality of gradation values, for example, an average value, but may also be a maximum value, minimum value, mode value, etc.
  • Each pixel usually includes an R component, a G component, and a B component, and the calculation of the representative value can be performed using one, two, or three of these components. .
  • the gradation value of the G component changes more than other components depending on the concentration of the dye molecule 4b. It is preferable to calculate the representative value using only the gradation values.
  • the concentration may be determined qualitatively. For example, by preparing a reference sample and comparing the physical quantity measured for the reference sample with the physical quantity measured for the measurement sample 6, the fluorine ion concentration contained in the measurement sample 6 can be relatively determined. For example, if the fluoride ion concentration of the reference sample is at an acceptable upper limit, it is sufficient to know that the fluoride ion concentration of the measurement sample 6 is lower than the fluoride ion concentration of the reference sample; The fluorine ion concentration of the measurement sample 6 can be determined qualitatively, such that the fluorine ion concentration is lower than the fluorine ion concentration of the reference sample.
  • the reference sample may be an authentic reference sample prepared by mixing test water with a known fluorine ion concentration with reagent 4, or it may be a pseudo reference sample that has an absorption spectrum equivalent to that of the authentic reference sample.
  • the pseudo reference sample may be liquid or solid, and is preferably solid from the viewpoint of ease of handling.
  • Solid state pseudo reference samples include color filters. Color filters with various absorption spectra are commercially available, and by employing a color filter corresponding to a desired authentic reference sample as a pseudo reference sample, measurement sample 6 can be measured without preparing an authentic reference sample. Fluoride ion concentration can be determined.
  • the dye molecule 4b has a maximum absorption wavelength near 550 nm (e.g. Rhodamine B)
  • a color filter having a maximum absorption wavelength near 550 nm can be employed as the pseudo reference sample.
  • Two reference samples corresponding to mutually different fluorine ion concentrations may be used.
  • the fluorine ion concentration contained in the measurement sample 6 is determined to be between the fluorine ion concentrations of the two reference samples. It is possible to determine whether the value is
  • the visible light used for measurement may be environmental light such as natural light or illumination light.
  • environmental light such as natural light or illumination light.
  • the spectrum (intensity for each wavelength) of environmental light may change, and when the spectrum of environmental light changes, the physical quantity measured for measurement sample 6 will also change, but the physical quantity measured for the reference sample will also change. Even if the environmental light changes, the fluorine ion concentration can be specified based on the physical quantity measured for the measurement sample 6.
  • the light receiving section 10b can be configured with an image sensor such as a CCD or CMOS, for example.
  • the measurement step and concentration determination step can be performed by image analysis using the reference sample and measurement sample 6.
  • the reference sample corresponding to a specific fluorine ion concentration and the measurement sample 6 are both irradiated with the visible light, and an image sensor having a plurality of light receiving elements is used to irradiate the reference sample and the measurement sample 6.
  • An image of the measurement sample is photographed, and in the concentration determination step, the fluorine content of the sample water 5 is determined based on the representative value obtained for the gradation value of at least one color component in the images of the reference sample and the measurement sample. Ion concentration can be determined.
  • the fluorine ion concentration can be determined even when the visible light is environmental light.
  • the environmental light is light containing a green component and the dye molecules 4b can absorb the green component
  • an image of the measurement sample 6 and the reference sample in the container 3 is photographed, and the The fluorine ion concentration can be specified based on the representative value (for example, the average value of the gradation values) of the gradation values of the G component of each pixel.
  • the measurement sample 6 and the reference sample are magenta (reddish-purple), which is a complementary color to green.
  • the fluorine ion concentration of the measurement sample 6 is determined by comparing the colors of the images of the measurement sample 6 and the reference sample, and by calculating a representative value based on the gradation value of the G component in these images. be able to.
  • the positioning unit 9d of the information processing device 9 is capable of acquiring current position data at the time of the above measurement.
  • the positioning unit 9d is, for example, a GPS receiver.
  • the storage unit 9e stores the fluorine ion concentration determined by the concentration determination unit 9c and the current position data acquired by the positioning unit 9d in association with each other as measurement data. This makes it possible to compare the fluorine ion concentrations at each measurement point.
  • the superimposition display section 9f can display the measurement data retrieved from the storage section 9e in a superimposed manner on the map. This makes it easy to intuitively understand the distribution of fluorine ion concentration. Furthermore, since it becomes easy to identify areas with low fluoride ion concentrations, it becomes easy to obtain safe water with low fluoride ion concentrations.
  • the storage unit 9e may be provided outside the information processing device 9. In this case, data can be exchanged with the externally provided storage section 9e by communication via the communication section 9g.
  • Data sharing Obtained measurement data can be shared with others using Internet services such as email and SNS. This makes it easier to disseminate information about the availability of safe water.
  • the reagent 4 includes a metal organic structure 4a and a dye molecule 4b that can absorb visible light.
  • the dye molecule 4b has a carboxyl group.
  • the dye molecules 4b are likely to coordinately bond to the metal-organic structure 4a.
  • the number of carboxyl groups contained in the dye molecule 4b is preferably one. When the dye molecule 4b has a plurality of carboxyl groups, it becomes difficult for the dye molecule 4b to be released from the metal-organic structure 4a.
  • the dye molecules 4b are preferably capable of emitting fluorescence when excited by visible light. In this case, it becomes possible to measure the concentration of fluorine ions by measuring the intensity of fluorescence.
  • the dye molecule 4b has a value of [absorbance in a free state]/[absorbance in a state arranged in a metal-organic structure 4a] as A, and a value of [fluorescence intensity in a free state]/[a metal-organic structure].
  • [Fluorescence intensity when placed on the body 4a] is B, A and B are each larger than 1, preferably 2 or more, more preferably 5 or more, and even more preferably 10 or more. In this case, the measurement accuracy of the fluorine ion concentration based on the physical quantity correlated to the release of the dye molecules 4b is improved.
  • the dye molecule 4b preferably has a maximum absorption wavelength of 450 to 650 nm, more preferably 500 to 600 nm. Further, the absorption fluorescence wavelength of the dye molecule 4b is preferably 480 to 680 nm, more preferably 530 to 630 nm.
  • the dye molecule 4b is preferably a xanthene dye molecule having a carboxyl group.
  • a xanthene dye molecule is a dye molecule having a xanthene skeleton, such as rose bengal, erythrosin, eosin Y, fluorescein, rhodamine, or calcein.
  • Rhodamine is preferably Rhodamine B.
  • the dye molecule 4b may be a dye molecule other than the xanthene dye molecule, for example, an azo dye (methyl red, alizarin yellow R), a phthalein dye (phenolphthalein, o-cresol phthalein, thymol phthalein). It may also be a dye molecule having a carboxyl group such as.
  • Such dye molecules 4b can be purchased or manufactured at relatively low cost, and thus contribute to reducing the manufacturing cost of the reagent 4.
  • the metal-organic structure 4a is a structure having a periodic structure formed by periodic coordination bonds between metal atoms M and organic ligands 4c.
  • the metal-organic structure 4a is preferably one in which at least a portion of the dye molecules 4b coordinately bonded to the metal-organic structure 4a can be replaced with fluorine ions.
  • the dye molecules 4b are rapidly liberated in the presence of fluorine ions and can be detected.
  • the metal-organic structure 4a is porous, and water can quickly penetrate into the metal-organic structure 4a. Therefore, the substitution reaction between the dye molecules 4b and fluorine ions occurs quickly, so that the fluorine ion concentration can be measured quickly.
  • the metal of the metal-organic structure 4a is not particularly limited, but iron, zirconium, aluminum, or a lanthanoid rare earth metal element is preferable. In this case, the metal-organic framework tends to become stable in water.
  • Lanthanoid rare earth metal elements include terbium, europium, yttrium, cerium, dysprosium, neodymium, erbium, thulium, and ytterbium.
  • the organic ligand 4c includes a polydentate organic ligand.
  • the polydentate organic ligand preferably has a plurality of bonding sites, and preferably has a plurality of carboxyl groups.
  • the polydentate organic ligand is preferably a bidentate organic ligand, more preferably has a terephthalic acid skeleton, and even more preferably terephthalic acid.
  • the metal-organic structure 4a preferably has a secondary structural unit 4d composed of a metal polynuclear cluster, as shown in FIG. 7A, and as shown in FIG. 7B, the secondary structural units 4d are organic It is preferable that a periodic structure is formed by bonding through the ligands 4c, and it is preferable that the secondary structural units 4d are arranged so as to form a face-centered cubic lattice.
  • FIG. 7A when the secondary structural unit 4d is represented by a polyhedron 4d1 and the organic ligand 4c is represented by a band 4c1, the metal-organic structure 4a in FIG. 7B can be schematically expressed as shown in FIG. 7C. can be expressed.
  • the metal polynuclear cluster preferably has a structure in which a plurality of metal atoms M are bonded to each other via oxygen atoms.
  • the metal polynuclear cluster is preferably a metal hexanuclear cluster.
  • a structure in which six metal atoms M are arranged at the vertices of an octahedron is preferable.
  • the metal-organic structure 4a becomes a structure called UiO-66.
  • an MOF for example, MOF76 (LnBTC, Ln:Y, lanthanide), MOF199
  • MOF having a unique open metal site
  • OMP unique open metal site
  • synthetic modulation such as UiO-66, UiO-67, isoreticular series of UiO-66, MIL-53, MIL-67, MIL-101, etc.
  • the open metal site means a binding site on a metal atom to which the dye molecule 4b can coordinately bond.
  • ZrOCl 2 or ZrCl 4 can be used to prepare the iso-reticular series of UiO-66.
  • the metal-organic structure 4a is a crystalline structure, and there is a chemical interaction between the carboxyl group of the dye molecule 4b and the metal cluster of the metal-organic structure 4a, which constitutes a reagent.
  • the dye molecules 4b are included in the crystal lattice of the metal-organic structure 4a.
  • the number of binding sites to which the dye molecules 4b can coordinately bond may be insufficient. In such a case, the coordination bond of the dye molecules 4b can be promoted by intentionally introducing defects into the metal-organic structure 4a.
  • Examples of methods for introducing defects include increasing the specific surface area of the metal-organic structure 4a and introducing monodentate organic ligands.
  • a method for reducing the average particle diameter of the metal-organic structure 4a includes increasing the rate of crystallization of the metal-organic structure 4a.
  • the monodentate organic ligand preferably has one bonding site and one carboxyl group.
  • a monovalent aliphatic carboxylic acid is preferable, and examples include acetic acid (eg, trifluoroacetic acid) in which the hydrogen atom of the methyl group may be substituted with a halogen, and formic acid.
  • a binding site for the dye molecule 4b can be created by placing a monodentate organic ligand at a site where a polydentate organic ligand should be placed in the crystal structure of the metal-organic structure 4a.
  • the number of defects per Zr hexanuclear cluster (hereinafter referred to as "Zr 6 unit”) is preferably 0.2 or more, and more preferably 0.5 or more. preferable.
  • the number of defects per 6 units of Zr is, for example, 0.2 to 2.0, and specifically, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. , 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2 .0, and may be in the range between any two of the numerical values exemplified here.
  • the metal-organic structure 4a may not easily settle in the measurement sample 6, and in this case, the measurement sample 6 becomes a suspension.
  • the accuracy of measurement may be reduced due to the floating metal-organic structures 4a.
  • the metal-organic structure 4a is capable of settling quickly.
  • the metal-organic structure 4a is preferably supported on carrier particles. These carrier particles have a higher sedimentation rate than the metal-organic structure 4a. By supporting the metal-organic structure 4a on the carrier particles, the sedimentation rate of the metal-organic structure 4a can be increased.
  • a substantially transparent supernatant can be obtained by simply leaving the suspension for a while without centrifugation, and this supernatant can be used to Since it is possible to measure a physical quantity that correlates with the concentration of dye molecules 4b in the measurement sample 6, measurement accuracy can be improved.
  • the physical quantity to be measured is preferably the transmitted light intensity of visible light irradiated onto the measurement sample 6. Measurement of the transmitted light intensity of visible light is easily affected by suspended particles, so if the measurement sample 6 is a suspension, highly accurate measurement is difficult. By obtaining a substantially transparent supernatant liquid, it becomes possible to measure the transmitted light intensity of visible light with high accuracy.
  • the dye molecules 4b non-specifically adsorbed to the metal-organic structure 4a cause a decrease in measurement accuracy, it is preferable to remove them as much as possible.
  • a solvent e.g. ethanol
  • shaking ⁇ centrifuging ⁇ removing the supernatant liquid many times, and repeating this process requires a large amount of solvent. This is necessary and takes a very long time and a lot of effort.
  • the metal-organic structure 4a is difficult to sediment, such a process is unavoidable, but by supporting the metal-organic structure 4a on a carrier and increasing the sedimentation rate, it is possible to do so without centrifugation.
  • the metal-organic structure 4a can now be precipitated, and the above process can be simplified.
  • the non-specifically adsorbed dye molecules 4b can be removed using a Soxhlet extractor.
  • a Soxhlet extractor a predetermined amount of solvent is refluxed and used repeatedly, so it is possible to dramatically reduce the amount of solvent used, and because it requires less manual work, it can also dramatically reduce labor. .
  • the carrier particles are preferably composed of an inorganic oxide from the viewpoint of specific gravity and ease of handling.
  • inorganic oxides include alumina and silica.
  • the inorganic oxide preferably has a particle size (45 to 150 ⁇ m) of 90% or more. The larger the particle size of the inorganic oxide, the higher the sedimentation rate.
  • the average particle size of the inorganic oxide is, for example, 20 to 500 ⁇ m, specifically, for example, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150.
  • the coefficient of variation of particle diameter is, for example, 80% or less, preferably 50% or less, and more preferably 30% or less. This variation coefficient is, for example, 0 to 80%, and specifically, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 , 80%, and may be in the range between any two of the numerical values exemplified here.
  • the average particle diameter is determined by taking a SEM image of the inorganic oxide particles at a magnification of 80 times, measuring the particle diameters of 30 or more particles in the obtained SEM image, and taking the arithmetic average of the particle diameters. It can be carried out.
  • D2/D1 is, for example, 1.5 or less, and 1 .2 or less is more preferable.
  • This value is, for example, 1 to 1.5, and specifically, for example, 1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1. 07, 1.08, 1.09, 1.1, 1.2, 1.3, 1.4, 1.5, and in the range between any two of the numerical values exemplified here or below any one. There may be.
  • the metal-organic structure 4a can be supported on the carrier particles by mixing and stirring the metal-organic structure 4a and the carrier particles.
  • the dye molecules 4b may be coordinated to the metal-organic structure 4a when the metal-organic structure 4a is supported on the carrier particles, and the dye molecules 4b may be coordinated with the metal-organic structure 4a before or after the metal-organic structure 4a is supported on the carrier particles. It may be coordinated to
  • UiO-66 UiO-66 was prepared by the method shown below. First, ZrOCl 2.8H 2 O, terephthalic acid (BDC) and trifluoroacetic acid (TFA) were dissolved in dimethylformamide (DMF) at room temperature in an ultrasonic bath and heated to 120 °C in a glass bottle for 72 hours. . Samples were isolated by centrifugation and washed three times with DMF for 3 hours at 70°C, once with DMF and twice with ethanol at 60°C overnight at the same temperature. Samples were dried at 80°C. The molar ratios and amounts used for sample preparation are shown in Table 1.
  • a defect-free sample, UiO-66 ND was prepared by the method shown below. First, 3.781 g of ZrOCl 2 (16.22 mmol), 2.865 ml of 35% HCl (32.45 mmol), 5.391 g of BDC (32.45 mmol), and 97.40 ml of N,N'-dimethylformamide (1258 mmol) were mixed. The resulting mixture was stirred with gentle heating (approximately 70° C.) until complete dissolution. Once all samples were dissolved, the solution was transferred to a Teflon liner and transferred to an oven preheated to 220°C. After 24 hours of reaction, the solids were collected by centrifugation.
  • thermogravimetric measurement The obtained sample was subjected to thermogravimetric measurement (TGA measurement). This measurement was performed using Seiko Instruments EXSTAR TG/DTA6200 under nitrogen gas flow at a scan rate of 5° C./min up to 850° C. ⁇ -alumina was used as a standard. For each UiO-66 sample, 2 mg of sample was weighed on a microbalance and placed in an open alumina pan for measurements. The results are shown in FIGS. 8 to 10.
  • Al-BDC Al-BDC samples were prepared by the method shown below. First, AlCl 3 .9H 2 O and BDC were dissolved in DMF for 60 minutes using an ultrasonic bath. After completely dissolving the metal and ligand according to Table 2, formic acid was added. The glass reactor was then maintained at 120°C for 24 hours. Samples were isolated by centrifugation and washed with DMF for 3 hours at 70°C, overnight with DMF at 70°C, 3 hours at room temperature with butanone, and again overnight with butanone. Samples were dried at 80°C.
  • the defect-free sample Al-BDC ND was prepared by hydrothermal synthesis method by mixing Al2O3 and BDC in 60 mL deionized water, transferring it to a Teflon-covered hydrothermal reactor, and adding 200 mL under self-generating pressure. It was kept at °C for 72 hours. The resulting powder was washed with DMF at 130° C. for 4 hours and overnight, and the procedure was repeated three times using EtOH at room temperature. Samples were dried at 80°C.
  • Electron micrographs of Al-BDC ND and Al-BDC 00 are shown in FIG.
  • the Al-BDC ND shown in FIG. 12A was a prismatic crystal with sharp surfaces.
  • the crystals of Al-BDC 00 were more rounded and aggregated, and the particle size was more uniform.
  • the peak broadened as the amount of trifluoroacetic acid (TFA) decreased. This indicates a decrease in particle size. Moreover, the XRD pattern did not change before and after coordination of the dye molecule 4b.
  • MOF suspension a suspension of the metal-organic framework 4a (hereinafter referred to as “MOF suspension”) coordinated with the dye molecule 4b was prepared. ) (10 mg/mL) was prepared and dispersed for 60 minutes using ultrasonic bath assistance. Non-specific adsorption was evaluated by adding 50 ⁇ L of MOF suspension to 5 mL of deionized water. Total adsorption was evaluated using a solution with a fluoride ion concentration of 1000 ppm.
  • Abs MQ is the absorbance of a solution obtained using deionized water
  • Abs F- is the absorbance obtained using a solution with a fluorine ion concentration of 1000 ppm.
  • Abs F- , Abs MQ , and figure of merit were determined for each sample. The results are shown in FIGS. 14A and 14B. As shown in these figures, for UiO-66, UiO-66 00 had the highest figure of merit, and for Al-BDC, Al-BDC 30 had the highest figure of merit.
  • the figure of merit is preferably 2 or more, more preferably 5 or more, and even more preferably 10 or more.
  • the figure of merit is, for example, 2 to 50, specifically, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, and may be within a range between any two of the numerical values exemplified here or more than any one.
  • reaction Rate The reaction rate of the reaction for liberating the dye molecule 4b from the metal-organic structure 4a to which the dye molecule 4b was coordinated was measured. Reaction rates were measured on an Ocean Optics Flame Uv-Vis spectrometer using a commercially available green LED for bottom illumination at 90° to the detector. The metal-organic framework 4a to which the dye molecules 4b were coordinated was kept in suspension using a magnetic stirrer and a 3 mm stirring bar.
  • UiO- 6600 has a faster signal rise than Al-BDC 30 , and the signal is higher at the same mass.
  • the signal strength reached its maximum at about 200 seconds in both cases, and then gradually decreased. It is believed that the attenuation is due to the dye molecules 4b reattaching to the metal-organic structure 4a.
  • a fluoride ion solution with a fluoride ion concentration of 1000 ppm was diluted with double deionized water to create a standard solution with a fluoride ion concentration in the range of 0 to 20 ppm.
  • a calibration curve was created using 10 mg/mL MOF suspension and 3 mL of standard solution. Measurements were performed in fluorescence mode using a laboratory device as described below. The standardized time of signal sampling was 1500 seconds for Al-BDC and 200 seconds for UiO-66. The obtained results are shown in FIG. 16. For both UiO-66 00 and Al-BDC 30 , as the amount of MOF suspension used increased, the sensitivity decreased and the concentration range in which the calibration curve became linear expanded.
  • PA tris(hydroxymethyl)aminomethane
  • the test results are shown in FIGS. 17 and 18.
  • the six bar graphs for each accompanying ion concentration in FIG. 17 show the results for Cl ⁇ , SO 4 2 ⁇ , Ca 2+ , Mg 2+ , HCO 3 ⁇ , and HPO 4 2 ⁇ in order from the left.
  • the results for HCO 3 ⁇ and HPO 4 2 ⁇ are obtained with the addition of buffer.
  • the four bar graphs for each accompanying ion concentration in FIG. 18 are, from left to right, HCO 3 ⁇ (without buffer), HPO 4 2 ⁇ (without buffer), HCO 3 ⁇ (with buffer), and HPO 4 2 ⁇
  • the results for (with buffer) are shown.
  • Al-BDC 30 showed complete recovery of the fluorine ion signal even at 100 ppm of concomitant ions, as shown in FIG. 17B.
  • the main interference occurred at concentrations of carbonate and phosphate (related species at natural pH) above 10 ppm, as shown in Figure 18B.
  • these interferences could be overcome by using a buffer, as shown in Figure 18B. Thus, no significant difference in recovery was observed under the optimized conditions.
  • the device for fluorescence measurements was constructed using an AS7262 6-channel detector, a commercially available green LED (530 nm), and an chicken UNO with an SD card shield.
  • the device for field applications was built using the same detectors and LEDs and using SeeduinoXIAO and SeeedunoXIAO expansion boards. These members are relatively inexpensive, and according to this embodiment, it is possible to construct the device at low cost.
  • the orange channel of AS7262 outputs light intensity in the range of center wavelength 600 nm and FWHM 40 nm.
  • a calibration curve was created using the output from this channel. The results are shown in FIG. The three points are lined up on a straight line, and it can be seen that the output from the channel exhibits linearity with respect to the fluorine ion concentration.
  • FIG. 20 shows images taken under natural light. Although this image is actually a color image, it is displayed here in black and white for convenience.
  • a sample holder 16 holds two commercially available color filters (pseudo reference samples) 14 and 15 and five measurement samples 6.
  • the background of the sample holder 16 is a blue sky with scattered white clouds.
  • the image 14a of the color filter 14 is a light magenta color
  • the image 15a of the color filter 15 is a dark magenta color.
  • concentration of rhodamine B gradually increases from left to right
  • the magenta color of the image 6a of the measurement samples 6 gradually increases from left to right.
  • the depth of magenta color corresponds to the concentration of Rhodamine B.
  • Rhodamine B concentration can be related to fluoride ion concentration.
  • the image file in FIG. 20 includes R, G, and B gradation values of each pixel included in images 14a, 15a, and 6a, and among these, the G gradation value changes depending on the concentration of rhodamine B. is large, the average value of the G gradation values was taken as the average intensity of the magenta color of each sample (hereinafter referred to as magenta intensity). This image analysis was performed using Matlab.
  • FIG. 21A is a graph showing the relationship between rhodamine B concentration and magenta intensity for two color filters 14 and 15 and five measurement samples 6. Looking at the plots for the five measurement samples 6, it can be seen that the concentration of Rhodamine B and the magenta intensity change linearly. This average intensity changes in response to changes in the spectrum of environmental light, and cannot be directly converted into a fluorine ion concentration. However, the two color filters 14 and 15 are each associated with a known fluorine ion concentration, and the magenta intensity of each measurement sample 6 is determined by using the relationship between the magenta intensity and the fluorine ion concentration for these filters. can be converted to fluorine ion concentration.
  • FIG. 21B is a graph showing the relationship between rhodamine B concentration and magenta intensity for two color filters 14 and 15 and five measurement samples 6, and the rhodamine B concentration of five measurement samples 6 is different from that in FIG. 21A. It's different.
  • the color filters 14 and 15 are the same as in FIG. 21A, but the spectrum of the ambient light is different from that in FIG. 21A, so the magenta intensity is different.
  • the range of rhodamine B concentration is wider than in FIG. 21A, but similarly to FIG. 21A, the rhodamine B concentration and magenta intensity change linearly.
  • the concentration of Rhodamine B becomes higher, the concentration of Rhodamine B and the magenta intensity may not have a linear relationship.
  • the linear range can be changed by changing the optical path length.
  • the inner surface shape of the container 3 is a shape (e.g. rectangular parallelepiped) that changes depending on the rotation (e.g. 90 degree rotation) of the container 3, the optical path length can be changed by rotating the container 3. .
  • two types of sensitivity can be achieved with one device.
  • the maximum absorption wavelength of rhodamine B is approximately 550 nm, so the G component in the image was used for image analysis, but the component used for image analysis was determined according to the absorption spectrum of the dye molecule 4b used. It can be changed as appropriate. For example, if the dye molecule 4b used has a maximum absorption wavelength in the red region, it is preferable to use the R component in the image for image analysis.
  • metal-organic framework 4a supported on carrier ZrOCl 2.8H 2 O (1.19 g, 3.7 mmol) and terephthalic acid (BDC) (0.615 g, 3.7 mmol) were placed in an ultrasonic bath. It was dissolved in dimethylformamide (DMF) (100 ml) at room temperature and heated to 120° C. for 72 hours in a glass bottle to form a gel. The resulting gel was homogenized by ultrasonication and washed with DMF using solvent exchange twice at 100° C. for 3 hours and twice at room temperature for 3 hours. The sample was also homogenized with an ultrasonic homogenizer during washing.
  • DMF dimethylformamide
  • a fluoride ion solution with a fluoride ion concentration of 1000 ppm was diluted with double deionized water to create a standard solution with a fluorine ion concentration in the range of 0 to 15 ppm.
  • a plastic conical tube with a cap was then used to weigh out 10 mg of Reagent A using an analytical balance.
  • 5 mL of the standard solution was added to the plastic tube containing Reagent A, the lid was closed, and the tube was stirred for 1 to 5 minutes at 100 rpm using a rotary shaker.
  • FIG. 23A shows the results obtained for alumina particles (Al 2 O 3 )
  • FIG. 23B shows the results obtained for alumina particles (Al 2 O 3 +MOF) supporting the metal-organic framework 4a.
  • the alumina particles had an average particle diameter of 102 ⁇ m, a standard deviation of 20 ⁇ m, and the number of measured particles was 71.
  • the alumina particles supporting the metal-organic structure 4a had an average particle diameter of 103 ⁇ m, a standard deviation of 32 ⁇ m, and the number of measured particles was 77. This result shows that the particle diameter of the alumina particles hardly changes due to the support of the metal-organic structure 4a. This also indicates that the particle size of the metal-organic structure 4a is much smaller than the particle size of the alumina particles.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Provided is a reagent for measuring fluorine ion concentration, which makes it possible to measure fluorine ion concentration by using visible light. The present invention provides a reagent for measuring fluorine ion concentration, including a metal organic framework and pigment molecules that can absorb visible light, wherein the pigment molecules are coordinate-bonded to the metal organic framework, and the reagent is composed such that when the reagent is mixed with an aqueous sample that may contain fluorine ions, the fluorine ions become coordinated with the metal in the metal organic framework, and the pigment molecules become released from the metal organic framework.

Description

フッ素イオン濃度測定用試薬、フッ素イオン濃度測定方法、フッ素イオン濃度測定装置Fluoride ion concentration measurement reagent, fluoride ion concentration measurement method, fluoride ion concentration measurement device
 本発明は、水中のフッ素イオン濃度を測定するための用いられる試薬、方法及び装置に関する。 The present invention relates to reagents, methods, and devices used to measure fluorine ion concentrations in water.
 アフリカ東部にはアルカリ火山活動によって、高濃度のフッ素を含む火山岩類が分布している。特にタンザニアでは、その高濃度のフッ素を含む地中を通過してきた地下水や河川水が淡水水資源として使われている。このような淡水資源には高濃度のフッ素が含まれる。 Volcanic rocks containing high concentrations of fluorine are distributed in eastern Africa due to alkaline volcanic activity. In Tanzania in particular, groundwater and river water that has passed through the ground containing high concentrations of fluorine is used as fresh water resources. These freshwater resources contain high concentrations of fluorine.
 フッ素を含む淡水資源が生活用水や農業用水に使用されると、人体にフッ素が蓄積していく。しかし、フッ素は急性影響又は慢性影響を示す毒物としての側面を持つ。フッ素の慢性毒性は強く、アフリカ諸外国をはじめ、飲料水のフッ素汚染によるフッ素中毒症が発生している。フッ素中毒症としては、斑状歯、骨硬化症等の症状があげられる。フッ素中毒症の治療は困難であり、重症の急性中毒例では死亡する場合もある。 When freshwater resources containing fluorine are used for domestic or agricultural purposes, fluoride accumulates in the human body. However, fluoride has the aspect of being a toxic substance with acute or chronic effects. Fluoride has strong chronic toxicity, and fluoride poisoning has occurred in countries such as Africa and other countries due to fluoride contamination of drinking water. Symptoms of fluoride toxicity include mottled teeth and bone sclerosis. Treatment of fluoride poisoning is difficult, and cases of severe acute poisoning may result in death.
 一方で、地理的又は経済的な水不足から、淡水資源を利用することが求められる。淡水資源を利用するにあたり、淡水資源に含まれるフッ素濃度を測定する方法が求められる。 On the other hand, the use of freshwater resources is required due to geographical or economic water shortages. When utilizing freshwater resources, a method for measuring the fluorine concentration contained in freshwater resources is required.
 特許文献1には、試験溶液に紫外線を照射し、発生した蛍光強度を計測してフッ素イオン濃度を測定する方法が開示されている。 Patent Document 1 discloses a method of measuring fluorine ion concentration by irradiating a test solution with ultraviolet rays and measuring the intensity of the generated fluorescence.
特許第7033818号Patent No. 7033818
 しかし、より安価かつ安全に、測定を行うために、紫外光よりも可視光を用いて、フッ素イオン濃度を測定することが望まれる。 However, in order to perform measurements more cheaply and safely, it is desirable to measure fluorine ion concentration using visible light rather than ultraviolet light.
 本発明はこのような事情に鑑みてなされたものであり、可視光を用いてフッ素イオン濃度を測定することを可能とする、フッ素イオン濃度測定用試薬を提供するものである。 The present invention has been made in view of the above circumstances, and provides a reagent for measuring fluorine ion concentration that makes it possible to measure fluorine ion concentration using visible light.
 本発明によれば、以下の発明が提供される。[1]金属有機構造体と、可視光を吸収可能な色素分子を備える、フッ素イオン濃度測定用試薬であって、前記色素分子は、前記金属有機構造体に配位結合されており、前記試薬は、フッ素イオンを含み得る試料水と、前記試薬を混合したときに、前記フッ素イオンが前記金属有機構造体の金属に配位するとともに、前記色素分子が前記金属有機構造体から遊離するように構成される、試薬。
[2][1]に記載の試薬であって、前記色素分子は、カルボキシル基を有する、試薬。
[3][1]に記載の試薬であって、前記色素分子は、前記可視光で励起されて蛍光を放出可能である、試薬。
[4][1]に記載の試薬であって、前記色素分子は、カルボキシル基を有する、キサンテン色素分子、アゾ系色素、又はフタレイン系色素である、試薬。
[5][4]に記載の試薬であって、前記色素分子が、前記キサンテン色素分子であって、前記キサンテン色素分子は、ローズベンガル、エリスロシン、エオシンY、フルオレセイン、ローダミン、又はカルセインである、試薬。
[6][1]に記載の試薬であって、前記金属有機構造体の金属は、鉄、ジルコニウム、アルミニウム、イットリウム又はランタノイド系希土類金属元素を含む、試薬。
[7][1]に記載の試薬であって、前記金属有機構造体は、金属多核クラスターで構成される二次構造単位同士が多座有機配位子で結合されて構成された周期構造を有する、試薬。
[8][7]に記載の試薬であって、前記金属多核クラスターは、金属六核クラスターである、試薬。
[9][1]に記載の試薬であって、前記金属有機構造体は、MOF76、MOF199、UiO-66、UiO-67、UiO-66の等網状系列(isoreticularseries)、MIL-53、MIL-67、又はMIL-101である、試薬。
[10][1]~[9]の何れか1つに記載の試薬であって、前記金属有機構造体は、担体粒子に担持されている、試薬。
[11][10]に記載の試薬であって、前記担体粒子は、無機酸化物で構成される、試薬。
[12][11]に記載の試薬であって、前記無機酸化物の平均粒子径をD1とし、前記無機酸化物に前記金属有機構造体を担持して得られる粒子の平均粒子径D2とすると、D2/D1が1.5以下である、試薬。
[13]サンプル作成工程と、測定工程と、濃度決定工程を備える、フッ素イオン濃度測定方法であって、前記サンプル作成では、[1]~[12]の何れか1つに記載の試薬と、フッ素イオンを含み得る試料水を混合して測定サンプルを作成し、前記測定工程では、前記測定サンプル中の前記色素分子の濃度と相関する物理量を、可視光を用いて測定し、前記濃度決定工程では、前記物理量に基づいて前記試料水のフッ素イオン濃度を決定する、方法。
[14][13]に記載の方法であって、前記試料水中のフッ素イオン濃度は、20ppm以下である、方法。
[15][13]に記載の方法であって、前記測定サンプル中の前記試薬の濃度は、0.05~1mg/mLである、方法。
[16][13]に記載の方法であって、前記物理量は、前記可視光の透過光強度、又は前記可視光によって前記色素分子が励起されて放出される蛍光の強度である、方法。
[17][13]~[16]の何れか1つに記載の方法であって、前記金属有機構造体は、担体粒子に担持されており、前記測定工程では、前記測定サンプルに可視光を照射した状態で、複数の受光素子を有するイメージセンサを用いて前記測定サンプルの画像を撮影し、前記濃度決定工程では、前記画像中の少なくとも1つの色成分の階調値について得られた代表値に基づいて前記試料水のフッ素イオン濃度を決定する、方法。
[18]サンプル保持部と、測定部と、濃度決定部を備える、フッ素イオン濃度測定装置であって、前記サンプル保持部は、[1]~[12]の何れか1つに記載の試薬と、フッ素イオンを含み得る試料水を混合して作製した測定サンプルを保持し、前記測定部は、前記測定サンプル中の前記色素分子の濃度と相関する物理量を、可視光を用いて測定し、前記濃度決定部は、前記物理量に基づいて前記試料水のフッ素イオン濃度を決定する、装置。
[19][18]に記載の装置であって、前記装置は、情報処理装置と、前記情報処理装置と通信可能に接続可能なアダプタを備え、前記情報処理装置は、前記濃度決定部を備え、前記アダプタは、前記サンプル保持部と、前記測定部を備える、装置。
[20][19]に記載の装置であって、前記アダプタの測定部は、前記情報処理装置から給電されて動作可能に構成される、装置。
[21][19]に記載の装置であって、前記情報処理装置は、測位部と、記憶部と、重畳表示部を備え、前記測位部は、前記測定の時点での現在位置データを取得し、前記記憶部は、前記フッ素イオン濃度と前記現在位置データを関連付けて測定データとして記憶し、前記重畳表示部は、前記記憶部から呼び出した前記測定データを地図上に重ねて表示する、装置。
According to the present invention, the following inventions are provided. [1] A reagent for measuring fluorine ion concentration, comprising a metal-organic structure and a dye molecule capable of absorbing visible light, wherein the dye molecule is coordinately bonded to the metal-organic structure, and the dye molecule is coordinately bonded to the metal-organic structure. is such that when sample water that may contain fluorine ions and the reagent are mixed, the fluorine ions are coordinated to the metal of the metal-organic structure and the dye molecules are liberated from the metal-organic structure. consisting of reagents.
[2] The reagent according to [1], wherein the dye molecule has a carboxyl group.
[3] The reagent according to [1], wherein the dye molecule is excited by the visible light and can emit fluorescence.
[4] The reagent according to [1], wherein the dye molecule is a xanthene dye molecule, an azo dye, or a phthalein dye having a carboxyl group.
[5] The reagent according to [4], wherein the dye molecule is the xanthene dye molecule, and the xanthene dye molecule is rose bengal, erythrosin, eosin Y, fluorescein, rhodamine, or calcein. reagent.
[6] The reagent according to [1], wherein the metal of the metal-organic structure contains iron, zirconium, aluminum, yttrium, or a lanthanoid rare earth metal element.
[7] The reagent according to [1], wherein the metal-organic structure has a periodic structure in which secondary structural units constituted by metal polynuclear clusters are bonded to each other by polydentate organic ligands. has a reagent.
[8] The reagent according to [7], wherein the metal polynuclear cluster is a metal hexanuclear cluster.
[9] The reagent according to [1], wherein the metal organic framework is MOF76, MOF199, UiO-66, UiO-67, isoreticular series of UiO-66, MIL-53, MIL- 67, or MIL-101.
[10] The reagent according to any one of [1] to [9], wherein the metal organic structure is supported on carrier particles.
[11] The reagent according to [10], wherein the carrier particles are composed of an inorganic oxide.
[12] The reagent according to [11], where the average particle size of the inorganic oxide is D1, and the average particle size of the particles obtained by supporting the metal-organic structure on the inorganic oxide is D2. , D2/D1 is 1.5 or less.
[13] A method for measuring fluorine ion concentration, comprising a sample preparation step, a measurement step, and a concentration determination step, wherein in the sample preparation, the reagent according to any one of [1] to [12], A measurement sample is prepared by mixing sample water that may contain fluorine ions, and in the measurement step, a physical quantity correlated with the concentration of the dye molecules in the measurement sample is measured using visible light, and the concentration determination step Here, a method for determining the fluorine ion concentration of the sample water based on the physical quantity.
[14] The method according to [13], wherein the fluorine ion concentration in the sample water is 20 ppm or less.
[15] The method according to [13], wherein the concentration of the reagent in the measurement sample is 0.05 to 1 mg/mL.
[16] The method according to [13], wherein the physical quantity is the transmitted light intensity of the visible light or the intensity of fluorescence emitted when the dye molecule is excited by the visible light.
[17] The method according to any one of [13] to [16], wherein the metal organic structure is supported on carrier particles, and in the measurement step, visible light is applied to the measurement sample. In the irradiated state, an image of the measurement sample is taken using an image sensor having a plurality of light receiving elements, and in the density determination step, a representative value obtained for the gradation value of at least one color component in the image is taken. A method for determining the fluorine ion concentration of the sample water based on.
[18] A fluorine ion concentration measuring device comprising a sample holding section, a measuring section, and a concentration determining section, wherein the sample holding section contains the reagent according to any one of [1] to [12]. , holds a measurement sample prepared by mixing sample water that may contain fluorine ions, and the measurement section measures a physical quantity correlated with the concentration of the dye molecules in the measurement sample using visible light, The concentration determining unit is a device that determines the fluorine ion concentration of the sample water based on the physical quantity.
[19] The device according to [18], wherein the device includes an information processing device and an adapter that can be communicatively connected to the information processing device, and the information processing device includes the concentration determining section. , wherein the adapter includes the sample holding section and the measuring section.
[20] The device according to [19], wherein the measuring section of the adapter is configured to be operable by being supplied with power from the information processing device.
[21] The device according to [19], wherein the information processing device includes a positioning section, a storage section, and a superimposed display section, and the positioning section acquires current position data at the time of the measurement. The storage unit stores the fluorine ion concentration and the current position data in association with each other as measurement data, and the superimposition display unit displays the measurement data read from the storage unit in a superimposed manner on a map. .
 本発明の試薬は、フッ素イオン(F、「フッ化物イオン」ともいう。)が金属有機構造体(MOF, metal organic Frameworkともいう。)の金属に配位することによって、前記色素分子が前記金属有機構造体から遊離するように構成されており、かつこの色素分子が可視光を吸収可能に構成されている。このため、本発明の試薬と、フッ素イオンを含み得る試料水を混合して測定サンプルを作製し、測定サンプル中の前記色素分子の濃度と相関する物理量を、可視光を用いて測定することができる。また、この物理量とフッ素イオン濃度との相関関係を予め決定しておくことにより、測定した物理量に基づいて試料水のフッ素イオン濃度を決定することができる。 In the reagent of the present invention, fluorine ions (F - , also referred to as "fluoride ions") coordinate with the metal of a metal organic framework (MOF, also referred to as metal organic framework), so that the dye molecules The dye molecules are configured to be liberated from the metal-organic framework, and the dye molecules are configured to be able to absorb visible light. For this reason, it is possible to prepare a measurement sample by mixing the reagent of the present invention and sample water that may contain fluorine ions, and to measure the physical quantity correlated with the concentration of the dye molecules in the measurement sample using visible light. can. Moreover, by determining the correlation between this physical quantity and the fluorine ion concentration in advance, the fluorine ion concentration of the sample water can be determined based on the measured physical quantity.
本発明でのフッ素イオン濃度の検出原理を示す概念図である。FIG. 2 is a conceptual diagram showing the principle of detection of fluorine ion concentration in the present invention. 図2Aは、試薬4が容器3に収容されている状態の斜視図であり、図2Bは、容器3に試料水5が注入された状態の斜視図であり、図2Cは、容器3に蓋2を装着して振り混ぜて測定サンプル6を作成した後の状態の斜視図である。2A is a perspective view of the reagent 4 contained in the container 3, FIG. 2B is a perspective view of the container 3 filled with sample water 5, and FIG. 2C is a perspective view of the container 3 with a lid. 2 is a perspective view of a state after a measurement sample 6 is created by attaching and shaking the test sample 2. FIG. 図3Aは、測定サンプル6をアダプタ7のサンプル保持部7aに装着した後の斜視図であり、図3Bは、アダプタ7に蓋7dを装着した後に端子7bを情報処理装置9の端子差込口に挿入した後の斜視図である。FIG. 3A is a perspective view after the measurement sample 6 is attached to the sample holding part 7a of the adapter 7, and FIG. 3B is a perspective view after the adapter 7 is attached with the lid 7d and the terminal 7b is inserted into the terminal insertion port of the information processing device 9. FIG. フッ素イオン濃度測定装置1の構成図である。1 is a configuration diagram of a fluorine ion concentration measuring device 1. FIG. フッ素イオン濃度と物理量の関係を示すグラフである。It is a graph showing the relationship between fluorine ion concentration and physical quantity. 測定データを地図上に重畳して表示した状態を示す。Shows the state in which measurement data is superimposed and displayed on a map. 図7Aは、二次構造単位4dを示し、図7Bは、二次構造単位4d同士が有機配位子4cで結合されて構成された金属有機構造体4aを示し、図7Cは、図7Bを模式的に表示した状態を示す。7A shows a secondary structural unit 4d, FIG. 7B shows a metal-organic structure 4a composed of secondary structural units 4d bonded to each other by an organic ligand 4c, and FIG. 7C shows a secondary structural unit 4d. A schematic representation is shown. 図8A~図8Bは、それぞれ、UiO-66ND及びUiO-6600についてのTGA測定結果を示す。FIGS. 8A to 8B show TGA measurement results for UiO-66 ND and UiO-66 00 , respectively. 図9A~図9Bは、それぞれ、UiO-6606及びUiO-6612についてのTGA測定結果を示す。9A-9B show the TGA measurement results for UiO-66 06 and UiO-66 12 , respectively. UiO-6624についてのTGA測定結果を示す。The TGA measurement results for UiO-66 24 are shown. TGA測定結果に基づいて算出されたZrユニット当たりの欠陥数を示す。The number of defects per 6 units of Zr calculated based on TGA measurement results is shown. 図12A及び図12Bは、それぞれ、Al-BDCND及びAl-BDC00の電子顕微鏡写真である。12A and 12B are electron micrographs of Al-BDC ND and Al-BDC 00 , respectively. 図13Aは、種々の方法で作製したUiO-66のXRDパターンを示し、図13Bは、種々の方法で作製したAl-BDCのXRDパターンを示す。FIG. 13A shows the XRD patterns of UiO-66 made by various methods, and FIG. 13B shows the XRD patterns of Al-BDC made by various methods. 図14Aは、種々の方法で作製したUiO-66のAbsF-、AbsMQ及び性能指数を示し、図14Bは、種々の方法で作製したAl-BDCのAbsF-、AbsMQ及び性能指数を示す。FIG. 14A shows the Abs F- , Abs MQ , and figure of merit of UiO-66 prepared by various methods, and FIG. 14B shows the Abs F- , Abs MQ , and figure of merit of Al-BDC prepared by various methods. show. 図15A~図15Bは、蛍光強度の時間変化を示すグラフであり、図15A及び図15Bは、それぞれ、UiO-6600及びAl-BDC30についての結果を示す。15A to 15B are graphs showing changes in fluorescence intensity over time, and FIGS. 15A and 15B show the results for UiO-66 00 and Al-BDC 30 , respectively. 図16A~図16Bは、種々の量の試薬4を用いた場合の、フッ素イオン濃度と蛍光強度の関係を示すグラフであり、図16A及び図16Bは、それぞれ、UiO-6600及びAl-BDC30についての結果を示す。16A to 16B are graphs showing the relationship between fluorine ion concentration and fluorescence intensity when various amounts of reagent 4 are used, and FIGS. 16A and 16B are graphs showing the relationship between fluorine ion concentration and fluorescence intensity, respectively The results for 30 are shown. 図17A~図17Bは、種々の付随イオンが共存する場合の、蛍光強度の回復率を示すグラフであり、図17A及び図17Bは、それぞれ、UiO-6600及びAl-BDC30についての結果を示す。17A to 17B are graphs showing the recovery rate of fluorescence intensity when various accompanying ions coexist, and FIGS. 17A and 17B show the results for UiO-66 00 and Al-BDC 30 , respectively. show. 図18A~図18Bは、付随イオンがHCO 又はHPO 2-である場合について、バッファーの有無での蛍光強度の回復率の差を示すグラフであり、図18A及び図18Bは、それぞれ、UiO-6600及びAl-BDC30についての結果を示す。18A to 18B are graphs showing the difference in the recovery rate of fluorescence intensity in the presence and absence of a buffer when the accompanying ion is HCO 3 or HPO 4 2− , and FIGS. 18A and 18B are Results for UiO-66 00 and Al-BDC 30 are shown. UiO-6600及びAl-BDC30について、フッ素イオン濃度と、AS7262のオレンジチャネル出力との関係を示すグラフである。2 is a graph showing the relationship between fluorine ion concentration and orange channel output of AS7262 for UiO-66 00 and Al-BDC 30 . 画像解析によるフッ素イオン濃度の決定に用いる画像の例を示す。An example of an image used for determining fluorine ion concentration by image analysis is shown. 図21Aは、2つのカラーフィルタ14,15と5つの測定サンプル6についての、ローダミンBの濃度とマゼンダ強度の関係を示すグラフである。図21Bは、環境光のスペクトルと、測定サンプル6のローダミンBの濃度を変更して得られた、ローダミンBの濃度とマゼンダ強度の関係を示すグラフである。FIG. 21A is a graph showing the relationship between rhodamine B concentration and magenta intensity for two color filters 14 and 15 and five measurement samples 6. FIG. 21B is a graph showing the relationship between the concentration of rhodamine B and the magenta intensity, which was obtained by changing the spectrum of ambient light and the concentration of rhodamine B in measurement sample 6. 図22Aは、試薬Aを用いて作成した測定サンプル6についての、フッ素イオン濃度と、523nmの吸光度の関係を示すグラフである。図22Bは、試薬Aを用いて作成した測定サンプル6についての、フッ素イオン濃度と、マゼンダ強度の関係を示すグラフである。FIG. 22A is a graph showing the relationship between fluorine ion concentration and absorbance at 523 nm for measurement sample 6 prepared using reagent A. FIG. 22B is a graph showing the relationship between fluorine ion concentration and magenta intensity for measurement sample 6 prepared using reagent A. 図23Aは、「10.担体に担持された金属有機構造体4aの調製」で用いたアルミナ粒子の粒度分布を示す。図23Bは、図23Aのアルミナ粒子に金属有機構造体4aを担持させて得られた粒子の粒度分布を示す。FIG. 23A shows the particle size distribution of the alumina particles used in "10. Preparation of metal-organic structure 4a supported on carrier". FIG. 23B shows the particle size distribution of particles obtained by supporting the metal-organic structure 4a on the alumina particles of FIG. 23A.
 以下、本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴について独立して発明が成立する。以下の説明中の「ppm」は、「mg/L」を意味する。 Hereinafter, embodiments of the present invention will be described. Various features shown in the embodiments described below can be combined with each other. Further, the invention can be realized independently for each feature. "ppm" in the following description means "mg/L".
1.フッ素イオン濃度測定方法及び装置
 まず、図1~図6を用いて、本発明の一実施形態によるフッ素イオン濃度測定方法について説明する。この方法を実施可能な装置についても説明する。ここでは、具体例を用いて説明するが、本発明は、ここで説明した方法や装置以外の手段で実施することも可能である。
1. Fluorine Ion Concentration Measuring Method and Apparatus First, a fluorine ion concentration measuring method according to an embodiment of the present invention will be described using FIGS. 1 to 6. An apparatus capable of implementing this method will also be described. Although a specific example will be used to explain the present invention, it is also possible to implement the present invention by means other than the method and apparatus described here.
(1)サンプル作成工程
 サンプル作成工程では、まず、図2Aに示すように、蓋2が付いた容器3内に収容された試薬4を準備する。容器3には、試料水の注入を停止する位置を示すマーク3aが付されている。図1に示すように、試薬4は、金属有機構造体4aと、可視光を吸収可能な色素分子4bを備える。色素分子4bは、金属有機構造体4aに配位結合されている。試薬4の詳細は、後述する。
(1) Sample Preparation Step In the sample preparation step, first, as shown in FIG. 2A, a reagent 4 contained in a container 3 with a lid 2 is prepared. A mark 3a is attached to the container 3 to indicate the position at which the injection of sample water is stopped. As shown in FIG. 1, the reagent 4 includes a metal-organic structure 4a and a dye molecule 4b capable of absorbing visible light. The dye molecules 4b are coordinately bonded to the metal-organic framework 4a. Details of reagent 4 will be described later.
 容器3に入っている試薬4の量は、例えば、0.1~10mgであり、好ましくは、0.5~2mgである。本実施形態では、測定に必要な試薬4が少量であることに加えて、試薬4が比較的安価に製造可能であるので、試薬4に必要なコストを抑制することができる。試薬4の量は、具体的には例えば、0.1、0.2、0.5、1、2、3、4、5、6、7、8、9、10mgであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The amount of reagent 4 contained in container 3 is, for example, 0.1 to 10 mg, preferably 0.5 to 2 mg. In this embodiment, in addition to the small amount of reagent 4 required for measurement, the reagent 4 can be manufactured relatively inexpensively, so the cost required for the reagent 4 can be suppressed. Specifically, the amount of reagent 4 is, for example, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mg, and the It may be within a range between any two values.
 次に、図2Bに示すように、蓋2を開け、容器3内に試料水5を注入し、試料水5の水面がマーク3aの位置に到達するときに、試料水5の注入を停止させる。これによって、一定量の試料水5を注入するのが容易になる。なお、マーク3aを設けずに、別の手段で一定量の試料水5を注入してもよい。 Next, as shown in FIG. 2B, open the lid 2, inject the sample water 5 into the container 3, and stop the injection of the sample water 5 when the water surface of the sample water 5 reaches the position of the mark 3a. . This makes it easy to inject a certain amount of sample water 5. Note that a certain amount of sample water 5 may be injected by another means without providing the mark 3a.
 試料水5は、フッ素イオン濃度を測定する水であり、例えば河川水、湖水、地下水又は井戸水等の淡水資源が挙げられる。本実施形態において、河川、湖、地下水又は井戸水から採取したサンプルをそのまま試料水として用いる。本実施形態によれば、試料水5の前処理等の工程は不要であるため、試料水5を採取した現地でフッ素イオン濃度を測定することができる。 The sample water 5 is water whose fluorine ion concentration is to be measured, and examples thereof include freshwater resources such as river water, lake water, ground water, or well water. In this embodiment, samples collected from rivers, lakes, groundwater, or well water are used as sample water as they are. According to this embodiment, since steps such as pretreatment of the sample water 5 are not necessary, the fluorine ion concentration can be measured at the site where the sample water 5 is collected.
 測定に用いる試料水5の量は、例えば、1~100mLであり、10~50mLが好ましく、具体的には例えば、1、3、5、10、20、30、40、50、60、70、80、90、100mLであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。本実施形態の方法では、このような少量の試料水5でフッ素イオン濃度の測定が可能である。 The amount of sample water 5 used for measurement is, for example, 1 to 100 mL, preferably 10 to 50 mL, and specifically, for example, 1, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mL, and may be within a range between any two of the numerical values exemplified here. In the method of this embodiment, the fluorine ion concentration can be measured using such a small amount of sample water 5.
 試料水5は、フッ素イオンを含み得るものであり、フッ素イオンを含んでいなくてもよい。試料水5のフッ素イオン濃度は、例えば、20ppm以下が好ましく、15ppm以下がさらに好ましい。この場合、フッ素イオン濃度の測定精度が特に高くなる。このフッ素イオン濃度は、例えば、具体的には例えば、0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20ppmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。なお、試料水5のフッ素イオン濃度が20ppmを超える場合であっても、試料水5にフッ素イオン濃度が基準値以上であるかどうかの定性的な測定は可能であるので、試料水5のフッ素イオン濃度は特に限定されない。 The sample water 5 may contain fluorine ions, and may not contain fluorine ions. The fluorine ion concentration of the sample water 5 is, for example, preferably 20 ppm or less, more preferably 15 ppm or less. In this case, the measurement accuracy of fluorine ion concentration becomes particularly high. This fluorine ion concentration is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 ppm, and may be within a range between any two of the numerical values exemplified here. Note that even if the fluorine ion concentration in the sample water 5 exceeds 20 ppm, it is possible to qualitatively measure whether the fluorine ion concentration in the sample water 5 is higher than the standard value. The ion concentration is not particularly limited.
 試料水5中には、フッ素イオン以外の付随イオンが含まれていてもよい。付随イオンとしては、Cl、SO 2-、Ca2+、Mg2+、HCO 、HPO 2-などが挙げられる。これらのイオンは、濃度が高すぎると、フッ素イオンの測定精度に悪影響を与える可能性があるので、これらのイオンの濃度は、それぞれ、100ppm以下が好ましく、50ppm以下がさらに好ましい。HCO 、HPO 2-
は、測定精度に影響を与えやすいが、バッファー用いてpHを調製することによって、これらのイオンの影響を低減することができる。バッファー添加後のpHは、例えば8.0以下が好ましく、7.5以下がさらに好ましく、7以下がさらに好ましい。このpHは、例えば2.0~8.0であり、具体的には例えば、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8であり、ここで例示した数値の何れか2つの間の範囲内又は何れか以下であってもよい。バッファーとしては、例えば、上記pHの範囲内でpH調節機能を有し、かつ金属有機構造体4aを形成する金属クラスターとの錯体形成に立体的にアクセスできないほど大きいN-置換基を含む3級アミンベースのものが好ましく、例えばトリス(ヒドロキシメチル)アミノメタンと塩酸を含む溶液を用いることができる。その他のバッファーとしては、PIPES、PIPPS、PIBS、DEPP、DESPEN、MES、TEEN、Bis-Tris、lloADA、ACES、MOPSO、Bis-Tris Propane、BES、MOPS、TES、HEPESなどが挙げられる。
The sample water 5 may contain accompanying ions other than fluorine ions. The accompanying ions include Cl , SO 4 2− , Ca 2+ , Mg 2+ , HCO 3 , HPO 4 2− and the like. If the concentration of these ions is too high, it may adversely affect the measurement accuracy of fluorine ions, so the concentration of each of these ions is preferably 100 ppm or less, and more preferably 50 ppm or less. HCO 3 , HPO 4 2−
Although these ions tend to affect measurement accuracy, the influence of these ions can be reduced by adjusting the pH using a buffer. The pH after addition of the buffer is, for example, preferably 8.0 or less, more preferably 7.5 or less, and even more preferably 7 or less. This pH is, for example, 2.0 to 8.0, and specifically, for example, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5. , 7, 7.5, and 8, and may be within the range between any two of the numerical values exemplified here or below any one thereof. As a buffer, for example, a tertiary tertiary material having a pH adjusting function within the above pH range and containing an N-substituent so large as to be sterically inaccessible to the formation of a complex with the metal cluster forming the metal-organic framework 4a. Amine-based ones are preferred; for example, a solution containing tris(hydroxymethyl)aminomethane and hydrochloric acid can be used. Other buffers include PIPES, PIPPS, PIBS, DEPP, DESPEN, MES, TEEN, Bis-Tris, lloADA, ACES, MOPSO, Bis-Tris Propane, BES, MOPS, TES, HEPES, and the like.
 バッファーの濃度は、緩衝能(添加された酸または塩基のモル数/pHの変化)が0.01~0.1となるように設定することが好ましい。緩衝能は、具体的には例えば、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The concentration of the buffer is preferably set so that the buffer capacity (number of moles of added acid or base/change in pH) is 0.01 to 0.1. Specifically, the buffering capacity is, for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10. Yes, it may be within the range between any two of the numerical values exemplified here.
 次に、図2Cに示すように、蓋2を閉じて、容器3を振ることによって、試薬4と試料水5を混合して、測定サンプル6を得る。試料水5と試薬4を混合すると試薬4が試料水5中に分散した懸濁液となり、図1に示すように、試料水5中のフッ素イオンが金属有機構造体4aに配位するとともに、色素分子4bが金属有機構造体4aから遊離する。 Next, as shown in FIG. 2C, by closing the lid 2 and shaking the container 3, the reagent 4 and the sample water 5 are mixed to obtain a measurement sample 6. When the sample water 5 and the reagent 4 are mixed, the reagent 4 becomes a suspension dispersed in the sample water 5, and as shown in FIG. The dye molecules 4b are liberated from the metal-organic framework 4a.
 試料水5のフッ素イオン濃度が高いほど、色素分子4bの遊離量が多くなるので、色素分子4bの遊離量に相関する物理量を測定することによって、試料水5のフッ素イオン濃度を測定することが可能である。また、色素分子4bは、金属有機構造体4aに配位している状態よりも、遊離した状態の方が、可視光の透過光強度が小さくなり、可視光によって色素分子4bが励起されて放出される蛍光の強度が大きくなる。透過光強度が小さくなると、式1によって算出される吸光度が大きくなる。このため、吸光度又は蛍光強度に基づいて、試料水5のフッ素イオン濃度を決定することが可能になる。
(式1) 吸光度=-log10(I/I) (但し、Iは透過光強度で、Iは入射光強度)
The higher the fluorine ion concentration of the sample water 5, the greater the amount of free dye molecules 4b. Therefore, the fluorine ion concentration of the sample water 5 can be measured by measuring a physical quantity that correlates with the amount of free dye molecules 4b. It is possible. In addition, when the dye molecule 4b is in a free state than when it is coordinated to the metal-organic structure 4a, the transmitted light intensity of visible light is smaller, and the dye molecule 4b is excited by visible light and emitted. The intensity of the fluorescence emitted increases. As the transmitted light intensity decreases, the absorbance calculated by Equation 1 increases. Therefore, it becomes possible to determine the fluorine ion concentration of the sample water 5 based on the absorbance or fluorescence intensity.
(Formula 1) Absorbance = -log 10 (I/I 0 ) (where I is the transmitted light intensity and I 0 is the incident light intensity)
 測定サンプル6中の試薬4の濃度は、0.05~1mg/mLであることが好ましく、0.1~0.5mg/mLが好ましい。この濃度が低いほど、感度が高くなるものの、物理量とフッ素イオン濃度が線形関係となる濃度範囲が狭くなる。測定サンプル6中の試薬4の濃度は、具体的には例えば、0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0mg/mLであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The concentration of reagent 4 in measurement sample 6 is preferably 0.05 to 1 mg/mL, preferably 0.1 to 0.5 mg/mL. The lower the concentration, the higher the sensitivity, but the narrower the concentration range in which the physical quantity and the fluorine ion concentration have a linear relationship. Specifically, the concentration of the reagent 4 in the measurement sample 6 is, for example, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0. .8, 0.9, and 1.0 mg/mL, and may be within the range between any two of the numerical values exemplified here.
(2)測定工程
 測定工程では、まず、図3Aに示すように、測定サンプル6をアダプタ7のサンプル保持部7aに配置する。
(2) Measurement process In the measurement process, first, as shown in FIG. 3A, the measurement sample 6 is placed in the sample holding section 7a of the adapter 7.
 次に、図3Bに示すように、アダプタ7に蓋7dを装着し、アダプタ7の端子7bを情報処理装置9の端子差込口(不図示)に挿入する。これによって、図4に示すように、アダプタ7と情報処理装置9が通信部7c,9gを通じて、通信可能に接続される。情報処理装置9は、スマートフォン、タブレット端末、ノートPCのような携帯型端末であることが好ましい。アダプタ7と情報処理装置9によってフッ素イオン濃度測定装置1が構成される。 Next, as shown in FIG. 3B, the lid 7d is attached to the adapter 7, and the terminal 7b of the adapter 7 is inserted into the terminal insertion port (not shown) of the information processing device 9. Thereby, as shown in FIG. 4, the adapter 7 and the information processing device 9 are communicably connected through the communication units 7c and 9g. The information processing device 9 is preferably a portable terminal such as a smartphone, a tablet terminal, or a notebook PC. The adapter 7 and the information processing device 9 constitute a fluorine ion concentration measuring device 1.
 図4に示すように、情報処理装置9は、表示部9aと、測定制御部9bと、濃度決定部9cと、測位部9dと、記憶部9eと、重畳表示部9fと、通信部9gを有する。記憶部9eには各種プログラムが記憶されており、情報処理装置9に設けられているCPUが各種プログラムを実行することによって、情報処理装置9の動作に必要な各種機能が実現される。また、記憶部9eには、フッ素イオン濃度測定用アプリケーションプログラム(以下、「測定アプリ」)も記憶されており、CPUがこのプログラムを実行することによって、フッ素イオン濃度測定に必要な各種機能が実現される。 As shown in FIG. 4, the information processing device 9 includes a display section 9a, a measurement control section 9b, a concentration determination section 9c, a positioning section 9d, a storage section 9e, a superimposition display section 9f, and a communication section 9g. have Various programs are stored in the storage unit 9e, and various functions necessary for the operation of the information processing device 9 are realized by the CPU provided in the information processing device 9 executing the various programs. The storage unit 9e also stores an application program for measuring fluorine ion concentration (hereinafter referred to as "measurement application"), and when the CPU executes this program, various functions necessary for measuring fluorine ion concentration are realized. be done.
 アダプタ7には、測定サンプル6中の色素分子の濃度と相関する物理量を、可視光を用いて測定可能な測定部10が設けられており、測定アプリでの操作に基づいて、測定制御部9bが測定部10を制御して、上記物理量の測定が行われる。 The adapter 7 is provided with a measurement section 10 that can measure physical quantities correlated with the concentration of dye molecules in the measurement sample 6 using visible light. controls the measurement unit 10 to measure the above-mentioned physical quantities.
 より具体的には、図4に示すように、測定部10は、LEDなどの投光部10aと、受光部10bを備えており、投光部10aから可視光12を測定サンプル6に照射すると共に、受光部10bにおいて、測定サンプル6で吸収されなかった可視光12、又は測定サンプル6中の色素分子が可視光12で励起されて放出される蛍光13の強度を測定する。 More specifically, as shown in FIG. 4, the measuring section 10 includes a light projecting section 10a such as an LED, and a light receiving section 10b, and irradiates the measurement sample 6 with visible light 12 from the light projecting section 10a. At the same time, in the light receiving section 10b, the intensity of the visible light 12 not absorbed by the measurement sample 6 or the fluorescence 13 emitted when dye molecules in the measurement sample 6 are excited by the visible light 12 is measured.
 測定部10は、情報処理装置9から給電されて動作可能に構成されている。このため、アダプタ7にバッテリーなどの電源を設ける必要がないので、アダプタ7の構成が簡素化され、アダプタ7の低コスト化につながる。また、可視光用の投光部10a及び受光部10bは、紫外光用のものに比べて、安価であるので、この点でのアダプタ7の低コスト化につながる。さらに、可視光は、紫外光よりも安全性が高いので、万が一、アダプタ7から測定用の光の漏れた場合にも、ユーザーが危険にさらされるリスクが低減される。 The measurement unit 10 is configured to be operable by being supplied with power from the information processing device 9. Therefore, since it is not necessary to provide a power source such as a battery to the adapter 7, the configuration of the adapter 7 is simplified and the cost of the adapter 7 is reduced. Furthermore, the visible light projecting section 10a and the light receiving section 10b are cheaper than those for ultraviolet light, which leads to a reduction in the cost of the adapter 7 in this respect. Furthermore, since visible light is safer than ultraviolet light, even if measuring light leaks from the adapter 7, the risk of exposing the user to danger is reduced.
 測定サンプル6を作成してから測定を行うまでの時間は、120秒以上が好ましく、150秒以上がさらに好ましく、200秒以上がさらに好ましい。この時間が短すぎると、色素分子4bの遊離が不十分となり、測定精度が低下する。また、この時間は、1800秒以下が好ましく、1200秒以下がさらに好ましい、600秒以下がさらに好ましく、500秒以下がさらに好ましく、400秒以下がさらに好ましい。この時間が長すぎると、色素分子4bが金属有機構造体4aに再付着してしまうというの理由により測定精度が低下する。この時間は、具体的には例えば、120、150、200、250、300、350、400、450、500、550、600、1200、1800秒であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The time from creating the measurement sample 6 to performing the measurement is preferably 120 seconds or more, more preferably 150 seconds or more, and even more preferably 200 seconds or more. If this time is too short, the release of the dye molecules 4b will be insufficient and measurement accuracy will decrease. Further, this time is preferably 1800 seconds or less, more preferably 1200 seconds or less, even more preferably 600 seconds or less, even more preferably 500 seconds or less, and even more preferably 400 seconds or less. If this time is too long, the measurement accuracy will decrease because the dye molecules 4b will re-adhere to the metal-organic structure 4a. Specifically, this time is, for example, 120, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 1200, 1800 seconds, and is between any two of the numerical values exemplified here. may be within the range of
(3)濃度決定工程
 濃度決定工程では、前記物理量に基づいて試料水5のフッ素イオン濃度を決定する。記憶部9eには、測定部10によって測定される物理量とフッ素イオン濃度との相関関係を示す情報が格納されている。この情報としては、上記相関関係を示すテーブルや数式などが挙げられる。相関関係は、好ましくは線形関係である。濃度決定部9cは、測定部10が測定した物理量を受け取ると、上記相関関係に基づいて試料水5のフッ素イオン濃度を決定する。
(3) Concentration determination step In the concentration determination step, the fluorine ion concentration of the sample water 5 is determined based on the physical quantity. The storage unit 9e stores information indicating the correlation between the physical quantity measured by the measurement unit 10 and the fluorine ion concentration. Examples of this information include tables and mathematical formulas showing the above-mentioned correlations. The correlation is preferably a linear relationship. Upon receiving the physical quantity measured by the measuring section 10, the concentration determining section 9c determines the fluorine ion concentration of the sample water 5 based on the above correlation.
 上記相関関係は、フッ素イオン濃度が既知であり且つフッ素イオン濃度が異なる複数種類の試験水を用いて決定することができる。各試験水について、上記の方法で物理量を測定することによって、各フッ素イオン濃度について、物理量とフッ素イオン濃度の関係が得られる。例えば、図5のグラフに示すように、3つのフッ素イオン濃度c1,c2,c3を有する試験水について得られた物理量がp1,p2,p3である場合、フッ素イオン濃度と物理量によって決定される点a1,a2,a3が一直線に並ぶ場合、物理量p1~p3及び濃度c1~c3の範囲内で、物理量とフッ素イオン濃度が線形関係になっているといえ、物理量p1~p3の間の任意の物理量に対応するフッ素イオン濃度を決定することができる。フッ素イオン濃度と物理量が線形関係になっていない場合でも例えば、フッ素イオン濃度と物理量の関係を示す近似式を決定し、この近似式にもとづいて、任意の物理量に対応するフッ素イオン濃度を決定することができる。 The above correlation can be determined using multiple types of test water whose fluoride ion concentrations are known and whose fluoride ion concentrations differ. By measuring the physical quantity for each test water using the method described above, the relationship between the physical quantity and the fluorine ion concentration can be obtained for each fluorine ion concentration. For example, as shown in the graph of FIG. 5, if the physical quantities obtained for test water having three fluorine ion concentrations c1, c2, and c3 are p1, p2, and p3, then the point determined by the fluorine ion concentration and the physical quantity When a1, a2, and a3 are aligned in a straight line, it can be said that there is a linear relationship between the physical quantities and the fluorine ion concentration within the ranges of physical quantities p1 to p3 and concentrations c1 to c3, and any physical quantity between physical quantities p1 to p3 The corresponding fluorine ion concentration can be determined. Even if the fluorine ion concentration and the physical quantity do not have a linear relationship, for example, an approximate expression showing the relationship between the fluorine ion concentration and the physical quantity is determined, and based on this approximate expression, the fluorine ion concentration corresponding to an arbitrary physical quantity is determined. be able to.
 一例では、測定工程及び濃度決定工程は、画像解析によって実施してもよい。この場合、測定工程では、測定サンプル6に可視光を照射した状態で、複数の受光素子を有するイメージセンサを用いて測定サンプル6の画像を撮影し、濃度決定工程では、前記画像中の少なくとも1つの色成分の階調値について得られた代表値に基づいて試料水5のフッ素イオン濃度を決定することができる。情報処理装置9がカメラを有する場合、このカメラのイメージセンサを受光部10bとして用いることができる。この場合、受光部10bを別途設ける必要がないので、装置コストの低減が可能である。 In one example, the measuring step and the concentration determining step may be performed by image analysis. In this case, in the measurement step, an image of the measurement sample 6 is photographed using an image sensor having a plurality of light receiving elements while the measurement sample 6 is irradiated with visible light, and in the concentration determination step, at least one of the images is The fluorine ion concentration of the sample water 5 can be determined based on the representative values obtained for the gradation values of the two color components. When the information processing device 9 has a camera, the image sensor of this camera can be used as the light receiving section 10b. In this case, since there is no need to separately provide the light receiving section 10b, it is possible to reduce the device cost.
 イメージセンサを用いて撮影した画像中には、イメージセンサに含まれる複数の受光素子のそれぞれが、受光した光の強度に応じた出力に対応する階調値が含まれる。これらの階調値は、測定サンプル6中の色素分子の濃度と相関する値であり、試料水5のフッ素イオン濃度とも相関する。このため、これらの階調値から算出した代表値に基づいて試料水5のフッ素イオン濃度を決定することができる。 An image captured using an image sensor includes tone values corresponding to outputs corresponding to the intensity of light received by each of the plurality of light receiving elements included in the image sensor. These gradation values are values that correlate with the concentration of dye molecules in the measurement sample 6, and also with the fluorine ion concentration of the sample water 5. Therefore, the fluorine ion concentration of the sample water 5 can be determined based on the representative value calculated from these gradation values.
 代表値は、複数の階調値を代表する値であればよく、例えば平均値であるが、最大値、最小値、最頻値などあってもよい。各画素には、通常、R成分と、G成分と、B成分が含まれており、代表値の算出は、これらの成分のうちの1つ、2つ、又は3つ用いて行うことができる。例えば、G成分の波長域の吸光度が大きい色素分子4bを用いた場合には、色素分子4bの濃度に応じてG成分の階調値が、他の成分よりも大きく変化するので、G成分の階調値のみを用いて代表値を算出することが好ましい。 The representative value may be any value that represents a plurality of gradation values, for example, an average value, but may also be a maximum value, minimum value, mode value, etc. Each pixel usually includes an R component, a G component, and a B component, and the calculation of the representative value can be performed using one, two, or three of these components. . For example, if a dye molecule 4b with high absorbance in the wavelength range of the G component is used, the gradation value of the G component changes more than other components depending on the concentration of the dye molecule 4b. It is preferable to calculate the representative value using only the gradation values.
 ところで、濃度決定は、定性的に行ってもよい。例えば、参照サンプルを準備し、この参照サンプルについて測定した物理量と、測定サンプル6について測定した物理量を比較することによって、測定サンプル6に含まれるフッ素イオン濃度を相対的に決定することができる。例えば、参照サンプルのフッ素イオン濃度が許容可能な上限値である場合、測定サンプル6のフッ素イオン濃度が参照サンプルのフッ素イオン濃度よりも低いことが分かれば十分であり、この場合、測定サンプル6のフッ素イオン濃度は、参照サンプルのフッ素イオン濃度よりも低い、というように、測定サンプル6のフッ素イオン濃度を定性的に決定することができる。 By the way, the concentration may be determined qualitatively. For example, by preparing a reference sample and comparing the physical quantity measured for the reference sample with the physical quantity measured for the measurement sample 6, the fluorine ion concentration contained in the measurement sample 6 can be relatively determined. For example, if the fluoride ion concentration of the reference sample is at an acceptable upper limit, it is sufficient to know that the fluoride ion concentration of the measurement sample 6 is lower than the fluoride ion concentration of the reference sample; The fluorine ion concentration of the measurement sample 6 can be determined qualitatively, such that the fluorine ion concentration is lower than the fluorine ion concentration of the reference sample.
 参照サンプルは、フッ素イオン濃度が既知である試験水を試薬4と混合して作成した真正参照サンプルであってよく、真正参照サンプルと同等の吸収スペクトルを有する疑似参照サンプルであってもよい。疑似参照サンプルは、液体であっても固体であってもよく、取り扱い性の観点から固体であることが好ましい。固体の疑似参照サンプルとしては、カラーフィルタが挙げられる。カラーフィルタは、種々の吸光スペクトルを有するものが市販されており、所望の真正参照サンプルに対応したカラーフィルタを疑似参照サンプルとして採用することによって、真正参照サンプルを準備することなく、測定サンプル6のフッ素イオン濃度を決定することができる。 The reference sample may be an authentic reference sample prepared by mixing test water with a known fluorine ion concentration with reagent 4, or it may be a pseudo reference sample that has an absorption spectrum equivalent to that of the authentic reference sample. The pseudo reference sample may be liquid or solid, and is preferably solid from the viewpoint of ease of handling. Solid state pseudo reference samples include color filters. Color filters with various absorption spectra are commercially available, and by employing a color filter corresponding to a desired authentic reference sample as a pseudo reference sample, measurement sample 6 can be measured without preparing an authentic reference sample. Fluoride ion concentration can be determined.
 例えば、色素分子4bが550nm付近に極大吸収波長を有するもの(例:ローダミンB)である場合、550nm付近に極大吸収波長を有するカラーフィルタを疑似参照サンプルとして採用することができる。 For example, if the dye molecule 4b has a maximum absorption wavelength near 550 nm (e.g. Rhodamine B), a color filter having a maximum absorption wavelength near 550 nm can be employed as the pseudo reference sample.
 互いに異なるフッ素イオン濃度に対応する2つの参照サンプルを用いてもよい。この場合、測定サンプル6について測定した物理量と、2つの参照サンプルのそれぞれについて測定した物理量を比較することによって、測定サンプル6に含まれるフッ素イオン濃度が、2つの参照サンプルのフッ素イオン濃度の間の値であるかどうかを決定することができる。 Two reference samples corresponding to mutually different fluorine ion concentrations may be used. In this case, by comparing the physical quantities measured for the measurement sample 6 and the physical quantities measured for each of the two reference samples, the fluorine ion concentration contained in the measurement sample 6 is determined to be between the fluorine ion concentrations of the two reference samples. It is possible to determine whether the value is
 参照サンプルを用いて濃度決定を行う場合、測定に用いる可視光は、自然光や照明光のような環境光であってもよい。この場合、測定に用いる投光部を別途設ける必要がないので、装置コストの低減が可能である。環境光は、スペクトル(波長ごとの強度)が変化する可能性があり、環境光のスペクトルが変化すると、測定サンプル6について測定した物理量も変化するが、参照サンプルについて測定した物理量も変化するので、環境光が変化しても、測定サンプル6について測定した物理量に基づくフッ素イオン濃度の特定が可能になる。 When determining concentration using a reference sample, the visible light used for measurement may be environmental light such as natural light or illumination light. In this case, since there is no need to separately provide a light projecting section for use in measurement, it is possible to reduce the cost of the device. The spectrum (intensity for each wavelength) of environmental light may change, and when the spectrum of environmental light changes, the physical quantity measured for measurement sample 6 will also change, but the physical quantity measured for the reference sample will also change. Even if the environmental light changes, the fluorine ion concentration can be specified based on the physical quantity measured for the measurement sample 6.
 測定に用いる可視光が環境光である場合は、受光部10bは、一例では、CCDやCMOSなどのイメージセンサで構成することができる。 When the visible light used for measurement is environmental light, the light receiving section 10b can be configured with an image sensor such as a CCD or CMOS, for example.
 可視光が環境光である場合も、参照サンプル及び測定サンプル6を用いた画像解析によって、測定工程及び濃度決定工程を行うことができる。この場合、測定工程では、特定のフッ素イオン濃度に対応した参照サンプルと、測定サンプル6の両方に前記可視光を照射した状態で、複数の受光素子を有するイメージセンサを用いて前記参照サンプルと前記測定サンプルの画像を撮影し、濃度決定工程では、前記参照サンプルと前記測定サンプルのそれぞれの前記画像中の少なくとも1つの色成分の階調値について得られた代表値に基づいて試料水5のフッ素イオン濃度を決定することができる。 Even when the visible light is environmental light, the measurement step and concentration determination step can be performed by image analysis using the reference sample and measurement sample 6. In this case, in the measurement step, the reference sample corresponding to a specific fluorine ion concentration and the measurement sample 6 are both irradiated with the visible light, and an image sensor having a plurality of light receiving elements is used to irradiate the reference sample and the measurement sample 6. An image of the measurement sample is photographed, and in the concentration determination step, the fluorine content of the sample water 5 is determined based on the representative value obtained for the gradation value of at least one color component in the images of the reference sample and the measurement sample. Ion concentration can be determined.
 参照サンプルを用いれば、可視光が環境光である場合にもフッ素イオン濃度の特定が可能になるのは、上述した通りである。 As mentioned above, if a reference sample is used, the fluorine ion concentration can be determined even when the visible light is environmental light.
 一例では、環境光が緑成分を含む光であり、色素分子4bが緑成分を吸収可能である場合には、容器3に入った測定サンプル6及び参照サンプルの画像を撮影し、この画像中の各画素のG成分の階調値の代表値(例えば階調値の平均値)に基づいてフッ素イオン濃度を特定することができる。環境光が白色光である場合、測定サンプル6及び参照サンプルは、緑色の補色のマゼンダ(赤紫)色となる。測定サンプル6中の色素分子4bの濃度が高いほど、環境光中の緑成分の吸収量が多くなって、画像中の緑成分の階調値が小さくなると共にマゼンダ色が濃くなる。このため、測定サンプル6及び参照サンプルの画像の色を見比べたり、これらの画像中のG成分の階調値に基づく代表値を算出したりすることによって、測定サンプル6のフッ素イオン濃度を特定することができる。 In one example, when the environmental light is light containing a green component and the dye molecules 4b can absorb the green component, an image of the measurement sample 6 and the reference sample in the container 3 is photographed, and the The fluorine ion concentration can be specified based on the representative value (for example, the average value of the gradation values) of the gradation values of the G component of each pixel. When the environmental light is white light, the measurement sample 6 and the reference sample are magenta (reddish-purple), which is a complementary color to green. The higher the concentration of the dye molecules 4b in the measurement sample 6, the more the green component in the ambient light is absorbed, the smaller the gradation value of the green component in the image, and the deeper the magenta color becomes. Therefore, the fluorine ion concentration of the measurement sample 6 is determined by comparing the colors of the images of the measurement sample 6 and the reference sample, and by calculating a representative value based on the gradation value of the G component in these images. be able to.
(4)重畳表示工程
 情報処理装置9の測位部9dは、上記測定の時点での現在位置データを取得可能になっている。測位部9dは、例えばGPS受信機である。記憶部9eは、濃度決定部9cが決定したフッ素イオン濃度と、測位部9dが取得した現在位置データを関連付けて測定データとして記憶する。これによって、各測定地点でのフッ素イオン濃度を比較することが可能になる。
(4) Superimposed Display Step The positioning unit 9d of the information processing device 9 is capable of acquiring current position data at the time of the above measurement. The positioning unit 9d is, for example, a GPS receiver. The storage unit 9e stores the fluorine ion concentration determined by the concentration determination unit 9c and the current position data acquired by the positioning unit 9d in association with each other as measurement data. This makes it possible to compare the fluorine ion concentrations at each measurement point.
 また、図6に示すように、重畳表示部9fは、記憶部9eから呼び出した測定データを地図上に重ねて表示することができる。これによって、フッ素イオン濃度の分布状況を直感的に理解することが容易になる。また、フッ素イオン濃度が低い地域を特定することが容易になるので、フッ素イオン濃度が低い安全な水を入手することが容易になる。なお、記憶部9eは、情報処理装置9外に設けてもよい。この場合、通信部9gを介した通信によって、外部に設けた記憶部9eとのデータの授受を行うことができる。 Furthermore, as shown in FIG. 6, the superimposition display section 9f can display the measurement data retrieved from the storage section 9e in a superimposed manner on the map. This makes it easy to intuitively understand the distribution of fluorine ion concentration. Furthermore, since it becomes easy to identify areas with low fluoride ion concentrations, it becomes easy to obtain safe water with low fluoride ion concentrations. Note that the storage unit 9e may be provided outside the information processing device 9. In this case, data can be exchanged with the externally provided storage section 9e by communication via the communication section 9g.
(5)データ共有
 得られた測定データは、電子メールやSNSなどのインターネットサービスを利用して、他者と共有することができる。これによって、安全な水が入手可能な情報を容易に伝播させることができる。
(5) Data sharing Obtained measurement data can be shared with others using Internet services such as email and SNS. This makes it easier to disseminate information about the availability of safe water.
2.フッ素イオン濃度測定用試薬
 試薬4の詳細を説明する。試薬4は、上述の通り、試薬4は、金属有機構造体4aと、可視光を吸収可能な色素分子4bを備える。
2. Reagent for measuring fluorine ion concentration The details of reagent 4 will be explained. As described above, the reagent 4 includes a metal organic structure 4a and a dye molecule 4b that can absorb visible light.
 色素分子4bは、カルボキシル基を有することが好ましい。この場合、色素分子4bが金属有機構造体4aに配位結合しやすくなる。色素分子4bに含まれるカルボキシル基の数は、1つであることが好ましい。色素分子4bが複数のカルボキシル基を有すると、色素分子4bが金属有機構造体4aから遊離しにくくなる。 It is preferable that the dye molecule 4b has a carboxyl group. In this case, the dye molecules 4b are likely to coordinately bond to the metal-organic structure 4a. The number of carboxyl groups contained in the dye molecule 4b is preferably one. When the dye molecule 4b has a plurality of carboxyl groups, it becomes difficult for the dye molecule 4b to be released from the metal-organic structure 4a.
 色素分子4bは、可視光で励起されて蛍光を放出可能であることが好ましい。この場合、蛍光の強度を測定することによって、フッ素イオンの濃度を測定することが可能になる。 The dye molecules 4b are preferably capable of emitting fluorescence when excited by visible light. In this case, it becomes possible to measure the concentration of fluorine ions by measuring the intensity of fluorescence.
 色素分子4bは、[遊離した状態での吸光度]/[金属有機構造体4aに配置されている状態での吸光度]の値をAとし、[遊離した状態での蛍光強度]/[金属有機構造体4aに配置されている状態での蛍光強度]をBとすると、A及びBは、それぞれ、1より大きく、2以上が好ましく、5以上がさらに好ましく、10以上がさらに好ましい。この場合、色素分子4bの遊離に相関した物理量に基づくフッ素イオン濃度の測定精度が高まる。 The dye molecule 4b has a value of [absorbance in a free state]/[absorbance in a state arranged in a metal-organic structure 4a] as A, and a value of [fluorescence intensity in a free state]/[a metal-organic structure]. [Fluorescence intensity when placed on the body 4a] is B, A and B are each larger than 1, preferably 2 or more, more preferably 5 or more, and even more preferably 10 or more. In this case, the measurement accuracy of the fluorine ion concentration based on the physical quantity correlated to the release of the dye molecules 4b is improved.
 色素分子4bは、吸収極大波長が450~650nmであることが好ましく、500~600nmであることがさらに好ましい。また、色素分子4bは、吸収蛍光波長が480~680nmであることが好ましく、530~630nmであることが好ましい。 The dye molecule 4b preferably has a maximum absorption wavelength of 450 to 650 nm, more preferably 500 to 600 nm. Further, the absorption fluorescence wavelength of the dye molecule 4b is preferably 480 to 680 nm, more preferably 530 to 630 nm.
 色素分子4bは、カルボキシル基を有するキサンテン色素分子であることが好ましい。キサンテン色素分子は、キサンテン骨格を有する色素分子であり、例えば、ローズベンガル、エリスロシン、エオシンY、フルオレセイン、ローダミン、又はカルセインである。ローダミンは、ローダミンBが好ましい。色素分子4bは、キサンテン色素分子以外の色素分子であってもよく、例えば、アゾ系色素(メチルレッド、アリザリンイエローR)、フタレイン系色素(フェノールフタレイン、o-クレゾールフタレイン、チモールフタレイン)などのようなカルボキシル基を有する色素分子であってもよい。このような色素分子4bは、比較的安価に購入又は製造可能であるので、試薬4の製造コストの低減に寄与する。 The dye molecule 4b is preferably a xanthene dye molecule having a carboxyl group. A xanthene dye molecule is a dye molecule having a xanthene skeleton, such as rose bengal, erythrosin, eosin Y, fluorescein, rhodamine, or calcein. Rhodamine is preferably Rhodamine B. The dye molecule 4b may be a dye molecule other than the xanthene dye molecule, for example, an azo dye (methyl red, alizarin yellow R), a phthalein dye (phenolphthalein, o-cresol phthalein, thymol phthalein). It may also be a dye molecule having a carboxyl group such as. Such dye molecules 4b can be purchased or manufactured at relatively low cost, and thus contribute to reducing the manufacturing cost of the reagent 4.
 金属有機構造体4aとは、図7A~図7Cに示すように、金属原子Mと有機配位子4cとが周期的に配位結合することによって構成された周期構造を有する構造体である。金属有機構造体4aとしては、金属有機構造体4aに配位結合されている色素分子4bの少なくとも一部が、フッ素イオンと置換可能なものであることが好ましい。この場合、フッ素イオンの存在下で色素分子4bが速やかに遊離して検出可能となる。金属有機構造体4aは、多孔性であり、金属有機構造体4a内に水が速やかに浸透可能である。このため、色素分子4bとフッ素イオンの置換反応が速やかに起こるため、フッ素イオン濃度の測定を速やかに行うことができる。 As shown in FIGS. 7A to 7C, the metal-organic structure 4a is a structure having a periodic structure formed by periodic coordination bonds between metal atoms M and organic ligands 4c. The metal-organic structure 4a is preferably one in which at least a portion of the dye molecules 4b coordinately bonded to the metal-organic structure 4a can be replaced with fluorine ions. In this case, the dye molecules 4b are rapidly liberated in the presence of fluorine ions and can be detected. The metal-organic structure 4a is porous, and water can quickly penetrate into the metal-organic structure 4a. Therefore, the substitution reaction between the dye molecules 4b and fluorine ions occurs quickly, so that the fluorine ion concentration can be measured quickly.
 金属有機構造体4aの金属は、特に限定されないが、鉄、ジルコニウム、アルミニウム、又はランタノイド系希土類金属元素が好ましい。この場合、金属有機構造体が水中で安定になりやすい。ランタノイド系希土類金属元素としては、テルビウム、ユウロピウム、イットリウム、セリウム、ジスプロシウム、ネオジウム、エルビウム、ツリウム、及びイッテルビウムが挙げられる。 The metal of the metal-organic structure 4a is not particularly limited, but iron, zirconium, aluminum, or a lanthanoid rare earth metal element is preferable. In this case, the metal-organic framework tends to become stable in water. Lanthanoid rare earth metal elements include terbium, europium, yttrium, cerium, dysprosium, neodymium, erbium, thulium, and ytterbium.
 有機配位子4cは、多座有機配位子を含む。多座有機配位子は、複数の結合部位を有することが好ましく、複数のカルボキシル基を有することが好ましい。多座有機配位子は、好ましくは、二座有機配位子であり、より好ましくは、テレフタル酸骨格を有することが好ましく、テレフタル酸であることがさらに好ましい。 The organic ligand 4c includes a polydentate organic ligand. The polydentate organic ligand preferably has a plurality of bonding sites, and preferably has a plurality of carboxyl groups. The polydentate organic ligand is preferably a bidentate organic ligand, more preferably has a terephthalic acid skeleton, and even more preferably terephthalic acid.
 金属有機構造体4aは、好ましくは、図7Aに示すように、金属多核クラスターで構成される二次構造単位4dを有することが好ましく、図7Bに示すように、二次構造単位4d同士が有機配位子4cで結合されて周期構造が構成されることが好ましく、二次構造単位4dが面心立方格子を形成するように配置されることが好ましい。図7Aに示すように、二次構造単位4dを多面体4d1で表現し、有機配位子4cを帯4c1で表現すると、図7Bの金属有機構造体4aは、図7Cに示すように模式的に表現することができる。 The metal-organic structure 4a preferably has a secondary structural unit 4d composed of a metal polynuclear cluster, as shown in FIG. 7A, and as shown in FIG. 7B, the secondary structural units 4d are organic It is preferable that a periodic structure is formed by bonding through the ligands 4c, and it is preferable that the secondary structural units 4d are arranged so as to form a face-centered cubic lattice. As shown in FIG. 7A, when the secondary structural unit 4d is represented by a polyhedron 4d1 and the organic ligand 4c is represented by a band 4c1, the metal-organic structure 4a in FIG. 7B can be schematically expressed as shown in FIG. 7C. can be expressed.
 金属多核クラスターは、複数の金属原子Mが酸素原子で互いに結合された構造であることが好ましい。金属多核クラスターは、金属六核クラスターであることが好ましい。この場合、6つの金属原子Mが八面体の頂点に配置される構造であることが好ましい。図7A~図7Cにおいて、金属原子Mがジルコニウムである場合、金属有機構造体4aが、UiO-66と称される構造体となる。 The metal polynuclear cluster preferably has a structure in which a plurality of metal atoms M are bonded to each other via oxygen atoms. The metal polynuclear cluster is preferably a metal hexanuclear cluster. In this case, a structure in which six metal atoms M are arranged at the vertices of an octahedron is preferable. In FIGS. 7A to 7C, when the metal atom M is zirconium, the metal-organic structure 4a becomes a structure called UiO-66.
 本実施形態において利用可能な金属有機構造体4aとしては、固有のオープンメタルサイト(以下、「OMP」)を有するMOF(例えば、MOF76(LnBTC、Ln:Y、ランタノイド)、MOF199)、又は合成修飾(synthetic modulation)によって生成されたOMPを有するMOF(例えば、UiO-66、UiO-67、UiO-66の等網状系列(isoreticular series)、MIL-53、MIL-67、MIL-101など)が挙げられる。このような金属有機構造体4aは、比較的安価に購入又は製造可能であるので、試薬4の製造コストの低減に寄与する。オープンメタルサイトとは、金属原子上での、色素分子4bが配位結合可能な結合部位を意味する。なお、UiO-66の等網状系列の調製には、ZrOClやZrClを用いることができる。 As the metal-organic structure 4a that can be used in this embodiment, an MOF (for example, MOF76 (LnBTC, Ln:Y, lanthanide), MOF199) having a unique open metal site (hereinafter referred to as "OMP"), or a synthetically modified (synthetic modulation) such as UiO-66, UiO-67, isoreticular series of UiO-66, MIL-53, MIL-67, MIL-101, etc. It will be done. Such a metal-organic structure 4a can be purchased or manufactured at relatively low cost, and thus contributes to reducing the manufacturing cost of the reagent 4. The open metal site means a binding site on a metal atom to which the dye molecule 4b can coordinately bond. Note that ZrOCl 2 or ZrCl 4 can be used to prepare the iso-reticular series of UiO-66.
 ところで、金属有機構造体4aは、結晶性の構造体であって、色素分子4bのカルボキシル基と金属有機構造体4aの金属クラスターとの間には化学的な相互作用があり、試薬を構成する色素分子4bは当該金属有機構造体4aの結晶格子に含まれるものである。一方で、金属有機構造体4aにおいて、色素分子4bが配位結合可能な結合部位の数が不十分である場合がある。このような場合、金属有機構造体4aに意図的に欠陥を導入することによって、色素分子4bの配位結合を促進することができる。 By the way, the metal-organic structure 4a is a crystalline structure, and there is a chemical interaction between the carboxyl group of the dye molecule 4b and the metal cluster of the metal-organic structure 4a, which constitutes a reagent. The dye molecules 4b are included in the crystal lattice of the metal-organic structure 4a. On the other hand, in the metal-organic structure 4a, the number of binding sites to which the dye molecules 4b can coordinately bond may be insufficient. In such a case, the coordination bond of the dye molecules 4b can be promoted by intentionally introducing defects into the metal-organic structure 4a.
 欠陥の導入方法としては、金属有機構造体4aの比表面積を大きくすることと、単座の有機配位子を導入することが例示される。 Examples of methods for introducing defects include increasing the specific surface area of the metal-organic structure 4a and introducing monodentate organic ligands.
 金属有機構造体4aの表面では、結晶構造が崩れるので、比表面積が大きいほど、結晶構造が崩れた面の面積が大きくなり、色素分子4bが配位結合可能な結合部位が増大する。比表面積を大きくするには、金属有機構造体4aの平均粒子径を小さくすればよい。金属有機構造体4aの平均粒子径を小さくする方法として、金属有機構造体4aの結晶化の速度を高めること等が挙げられる。 Since the crystal structure collapses on the surface of the metal-organic structure 4a, the larger the specific surface area, the larger the area of the surface where the crystal structure collapses, increasing the number of binding sites where the dye molecules 4b can coordinate. In order to increase the specific surface area, the average particle diameter of the metal-organic structure 4a may be decreased. A method for reducing the average particle diameter of the metal-organic structure 4a includes increasing the rate of crystallization of the metal-organic structure 4a.
 単座の有機配位子は、1つの結合部位を有し、1つのカルボキシル基を有することが好ましい。単座の有機配位子としては、1価の脂肪族カルボン酸が好ましく、メチル基の水素原子がハロゲンで置換されていてもよい酢酸(例:トリフルオロ酢酸)や、ギ酸などが挙げられる。金属有機構造体4aの結晶構造において多座有機配位子が配置されるべき部位に、単座有機配位子を配置することによって、色素分子4bの結合部位を生じさせることができる。 The monodentate organic ligand preferably has one bonding site and one carboxyl group. As the monodentate organic ligand, a monovalent aliphatic carboxylic acid is preferable, and examples include acetic acid (eg, trifluoroacetic acid) in which the hydrogen atom of the methyl group may be substituted with a halogen, and formic acid. A binding site for the dye molecule 4b can be created by placing a monodentate organic ligand at a site where a polydentate organic ligand should be placed in the crystal structure of the metal-organic structure 4a.
 金属有機構造体4aがUiO-66である場合、Zr六核クラスター(以下、「Zrユニット」)当たりの欠陥数が0.2以上であることが好ましく、0.5以上であることがさらに好ましい。Zrユニット当たりの欠陥数は、例えば、0.2~2.0であり、具体的には例えば、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0であり、ここで例示した数値の何れか2つの間の範囲であってもよい。 When the metal-organic framework 4a is UiO-66, the number of defects per Zr hexanuclear cluster (hereinafter referred to as "Zr 6 unit") is preferably 0.2 or more, and more preferably 0.5 or more. preferable. The number of defects per 6 units of Zr is, for example, 0.2 to 2.0, and specifically, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. , 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2 .0, and may be in the range between any two of the numerical values exemplified here.
 ところで、金属有機構造体4aが測定サンプル6中で容易に沈降しない場合があり、この場合、測定サンプル6が懸濁液になる。測定サンプル6が懸濁液になると、浮遊している金属有機構造体4aによって測定の精度が低下してしまう場合がある。このため、金属有機構造体4aは、速やかに沈降可能であることが好ましい。金属有機構造体4aの沈降速度を高めるべく、金属有機構造体4aは、担体粒子に担持されていることが好ましい。この担体粒子は、金属有機構造体4aよりも沈降速度が高い粒子である。金属有機構造体4aを担体粒子に担持させることによって、金属有機構造体4aの沈降速度を高めることができる。 Incidentally, the metal-organic structure 4a may not easily settle in the measurement sample 6, and in this case, the measurement sample 6 becomes a suspension. When the measurement sample 6 becomes a suspension, the accuracy of measurement may be reduced due to the floating metal-organic structures 4a. For this reason, it is preferable that the metal-organic structure 4a is capable of settling quickly. In order to increase the sedimentation rate of the metal-organic structure 4a, the metal-organic structure 4a is preferably supported on carrier particles. These carrier particles have a higher sedimentation rate than the metal-organic structure 4a. By supporting the metal-organic structure 4a on the carrier particles, the sedimentation rate of the metal-organic structure 4a can be increased.
 金属有機構造体4aの沈降速度が高くなると、遠心分離を行わなくても、懸濁液をしばらく静置しておくだけで、略透明な上澄み液を得ることができ、この上澄み液を用いて、測定サンプル6中の色素分子4bの濃度と相関する物理量を測定することができるので、測定精度を向上させることができる。測定する物理量は、前記測定サンプル6に照射された可視光の透過光強度であることが好ましい。可視光の透過光強度の測定は、浮遊粒子の影響を受けやすいので、測定サンプル6が懸濁液である場合は高精度な測定が難しいが、金属有機構造体4aを担体粒子に担持させて略透明な上澄み液を得ることによって、可視光の透過光強度の測定を精度よく行うことが可能になる。 When the sedimentation rate of the metal-organic structure 4a becomes high, a substantially transparent supernatant can be obtained by simply leaving the suspension for a while without centrifugation, and this supernatant can be used to Since it is possible to measure a physical quantity that correlates with the concentration of dye molecules 4b in the measurement sample 6, measurement accuracy can be improved. The physical quantity to be measured is preferably the transmitted light intensity of visible light irradiated onto the measurement sample 6. Measurement of the transmitted light intensity of visible light is easily affected by suspended particles, so if the measurement sample 6 is a suspension, highly accurate measurement is difficult. By obtaining a substantially transparent supernatant liquid, it becomes possible to measure the transmitted light intensity of visible light with high accuracy.
 また、金属有機構造体4aに非特異的に吸着している色素分子4bが測定精度低下の原因となるので、できるだけ除去しておくことが好ましいところ、この除去は、一例では、「2.色素分子4bの配位」に示すように、溶媒(例:エタノール)追加→振とう→遠心分離→上澄み液除去、というプロセスを何度も繰り返す必要があり、このプロセスの繰り返しには大量の溶媒が必要となり、かつ非常に長い時間と多大な手間がかかってしまう。金属有機構造体4aが沈降しにくい場合には、このようなプロセスを行わざるを得ないが、金属有機構造体4aを担体に担持させて沈降速度を高めることによって遠心分離を行わなくても、金属有機構造体4aを沈降させることができるようになり、上記プロセスを簡略化できる。 In addition, since the dye molecules 4b non-specifically adsorbed to the metal-organic structure 4a cause a decrease in measurement accuracy, it is preferable to remove them as much as possible. As shown in ``Coordination of molecule 4b'', it is necessary to repeat the process of adding a solvent (e.g. ethanol) → shaking → centrifuging → removing the supernatant liquid many times, and repeating this process requires a large amount of solvent. This is necessary and takes a very long time and a lot of effort. If the metal-organic structure 4a is difficult to sediment, such a process is unavoidable, but by supporting the metal-organic structure 4a on a carrier and increasing the sedimentation rate, it is possible to do so without centrifugation. The metal-organic structure 4a can now be precipitated, and the above process can be simplified.
 さらに、金属有機構造体4aを担体に担持させると、ソックスレー抽出器を用いて、非特異的に吸着している色素分子4bを除去することができる。ソックスレー抽出器では、所定量の溶媒を還流させて繰り返し使用するので、溶媒の使用量を劇的に低減可能であると共に、人手による作業が少ないないので、手間も劇的に低減することができる。 Further, when the metal-organic structure 4a is supported on a carrier, the non-specifically adsorbed dye molecules 4b can be removed using a Soxhlet extractor. In a Soxhlet extractor, a predetermined amount of solvent is refluxed and used repeatedly, so it is possible to dramatically reduce the amount of solvent used, and because it requires less manual work, it can also dramatically reduce labor. .
 担体粒子としては、金属有機構造体4aが担持可能であり、且つ金属有機構造体4aの沈降速度を高めることができる任意のものが利用可能である。担体粒子は、比重や取り扱い性の観点から、無機酸化物で構成されることが好ましい。無機酸化物としては、アルミナやシリカが挙げられる。無機酸化物は、粒度(45~150μm)が90%以上であることが好ましい。無機酸化物の粒子径が大きいほど、沈降速度が高くなる。無機酸化物の平均粒子径は、例えば、20~500μmであり、具体的には例えば、20、30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、250、300、350、400、450、500μmであり、ここで例示した数値の何れか2つの間の範囲であってもよい。粒子径の変動係数(=標準偏差÷平均粒子径)は、例えば、80%以下であり、50%以下が好ましく、30%以下がさらに好ましい。この変動係数は、例えば0~80%であり、具体的には例えば、0、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80%であり、ここで例示した数値の何れか2つの間の範囲であってもよい。平均粒子径は、拡大率80倍で無機酸化物の粒子のSEM画像を撮影し、得られたSEM画像中の30個以上の粒子について粒子径を測定し、その粒子径を算術平均することによって行うことができる。 Any carrier particles that can support the metal-organic structure 4a and increase the sedimentation rate of the metal-organic structure 4a can be used as the carrier particles. The carrier particles are preferably composed of an inorganic oxide from the viewpoint of specific gravity and ease of handling. Examples of inorganic oxides include alumina and silica. The inorganic oxide preferably has a particle size (45 to 150 μm) of 90% or more. The larger the particle size of the inorganic oxide, the higher the sedimentation rate. The average particle size of the inorganic oxide is, for example, 20 to 500 μm, specifically, for example, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150. , 160, 170, 180, 190, 200, 250, 300, 350, 400, 450, 500 μm, and the range may be between any two of the numerical values exemplified here. The coefficient of variation of particle diameter (=standard deviation/average particle diameter) is, for example, 80% or less, preferably 50% or less, and more preferably 30% or less. This variation coefficient is, for example, 0 to 80%, and specifically, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 , 80%, and may be in the range between any two of the numerical values exemplified here. The average particle diameter is determined by taking a SEM image of the inorganic oxide particles at a magnification of 80 times, measuring the particle diameters of 30 or more particles in the obtained SEM image, and taking the arithmetic average of the particle diameters. It can be carried out.
 無機酸化物の平均粒子径をD1とし、無機酸化物に金属有機構造体4aを担持して得られる粒子の平均粒子径D2とすると、D2/D1は、例えば、1.5以下であり、1.2以下がさらに好ましい。この値は、例えば、1~1.5であり、具体的には例えば、1.00、1.01、1.02、1.03、1.04、1.05、1.06、1.07、1.08、1.09、1.1、1.2、1.3、1.4、1.5であり、ここで例示した数値の何れか2つの間の範囲又は何れか以下であってもよい。 When the average particle size of the inorganic oxide is D1 and the average particle size D2 of the particles obtained by supporting the metal-organic structure 4a on the inorganic oxide, D2/D1 is, for example, 1.5 or less, and 1 .2 or less is more preferable. This value is, for example, 1 to 1.5, and specifically, for example, 1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1. 07, 1.08, 1.09, 1.1, 1.2, 1.3, 1.4, 1.5, and in the range between any two of the numerical values exemplified here or below any one. There may be.
 金属有機構造体4aは、金属有機構造体4aと担体粒子を混合して撹拌することによって、担体粒子に担持させることができる。色素分子4bは、金属有機構造体4aを担体粒子に担持させる際に金属有機構造体4aに配位させてもよく、金属有機構造体4aを担体粒子に担持させる前又は後に金属有機構造体4aに配位させてもよい。 The metal-organic structure 4a can be supported on the carrier particles by mixing and stirring the metal-organic structure 4a and the carrier particles. The dye molecules 4b may be coordinated to the metal-organic structure 4a when the metal-organic structure 4a is supported on the carrier particles, and the dye molecules 4b may be coordinated with the metal-organic structure 4a before or after the metal-organic structure 4a is supported on the carrier particles. It may be coordinated to
1.金属有機構造体4aの調製
1-1.UiO-66
 UiO-66は、以下に示す方法で調製した。まず、ZrOCl・8HO,テレフタル酸(BDC)およびトリフルオロ酢酸(TFA)を、超音波浴中において、室温でジメチルホルムアミド(DMF)に溶解し、ガラス瓶内で120℃まで72時間加熱した。サンプルを遠心分離により単離し、70℃で3時間、DMFで3回洗浄し、同じ温度で一晩、DMFで1回、60℃でエタノールで2回洗浄した。サンプルは80℃で乾燥させた。サンプル調製に使用したモル比と量を表1に示す。
1. Preparation of metal organic framework 4a 1-1. UiO-66
UiO-66 was prepared by the method shown below. First, ZrOCl 2.8H 2 O, terephthalic acid (BDC) and trifluoroacetic acid (TFA) were dissolved in dimethylformamide (DMF) at room temperature in an ultrasonic bath and heated to 120 °C in a glass bottle for 72 hours. . Samples were isolated by centrifugation and washed three times with DMF for 3 hours at 70°C, once with DMF and twice with ethanol at 60°C overnight at the same temperature. Samples were dried at 80°C. The molar ratios and amounts used for sample preparation are shown in Table 1.
 欠陥のないサンプルであるUiO-66NDは、以下に示す方法で調製した。まず、3.781gのZrOCl(16.22mmol)、2.865mlの35%HCl(32.45mmol)、5.391gのBDC(32.45mmol)、および97.40mlのN、N'-ジメチルホルムアミド(1258mmol)を混合した。得られた混合物を穏やかな加熱(約70℃)で完全に溶解するまで撹拌した。すべてのサンプルが溶解したら、溶液をテフロンライナーに移し、220°Cに予熱したオーブンに移した。24時間の反応後、固形物を遠心分離により回収した。 A defect-free sample, UiO-66 ND , was prepared by the method shown below. First, 3.781 g of ZrOCl 2 (16.22 mmol), 2.865 ml of 35% HCl (32.45 mmol), 5.391 g of BDC (32.45 mmol), and 97.40 ml of N,N'-dimethylformamide (1258 mmol) were mixed. The resulting mixture was stirred with gentle heating (approximately 70° C.) until complete dissolution. Once all samples were dissolved, the solution was transferred to a Teflon liner and transferred to an oven preheated to 220°C. After 24 hours of reaction, the solids were collected by centrifugation.
・TGA測定
 得られたサンプルについて、熱重量測定(TGA測定)を行った。この測定は、Seiko Instruments EXSTAR TG/DTA6200を用い、窒素ガスフロー下、スキャンレート5℃/分で850℃まで行った。α-アルミナを標準として用いた。各UiO-66サンプルについて、2mgの試料をマイクロ天秤で測定し、蓋のないアルミナパンに入れて、測定を行った。その結果を図8~図10に示す。
-TGA measurement The obtained sample was subjected to thermogravimetric measurement (TGA measurement). This measurement was performed using Seiko Instruments EXSTAR TG/DTA6200 under nitrogen gas flow at a scan rate of 5° C./min up to 850° C. α-alumina was used as a standard. For each UiO-66 sample, 2 mg of sample was weighed on a microbalance and placed in an open alumina pan for measurements. The results are shown in FIGS. 8 to 10.
・欠陥分析
 TGA測定の結果から、UiO-66セル内のZrユニット当たりの欠陥数を算出した。その結果を図11に示す。欠陥数の算出は、非特許文献1のsupplementary informationに記載の方法によって行った。
- Defect analysis From the results of TGA measurement, the number of defects per 6 units of Zr in the UiO-66 cell was calculated. The results are shown in FIG. The number of defects was calculated by the method described in the supplementary information of Non-Patent Document 1.
 図11に示すように、UiO-66NDの場合、目立った欠陥は見られず、配位子の数は、Zrユニットあたり6個であった。UiO-6600は、TFAは加えていないものの、UiO-66NDよりも微細な粒子で構成されているために、欠陥の数がUiO-66NDよりも多かった。また、単座の有機配位子であるTFAを加えたサンプル(UiO-6606、UiO-6612、UiO-6624)では、TFAの添加量が多いほど、欠陥の数が増加し、Zrユニットあたりのリガンドの数が減少した。本試験条件下では、TFA/Zr=24で最大の欠陥数に達した。 As shown in FIG. 11, in the case of UiO-66 NDs , no noticeable defects were observed, and the number of ligands was 6 per 6 units of Zr. Although UiO-66 00 did not contain TFA, it was composed of finer particles than UiO-66 NDs , so it had more defects than UiO-66 NDs . In addition, in the samples to which TFA, which is a monodentate organic ligand, was added (UiO-66 06 , UiO-66 12 , UiO-66 24 ), the number of defects increased as the amount of TFA added increased, and Zr 6 The number of ligands per unit was reduced. Under the present test conditions, the maximum number of defects was reached at TFA/Zr=24.
1-2.Al-BDC
 Al-BDCサンプルは、以下に示す方法で調製した。まず、AlCl・9HO及びBDCを、超音波浴を使用して60分間でDMFに溶解した。表2に従って金属と配位子を完全に溶解した後、ギ酸を添加した。次に、ガラス反応器は120℃で24時間維持した。サンプルを遠心分離によって単離し、70℃で3時間、DMFで洗浄し、70℃で一晩DMFで、ブタノンで室温で3時間、そして再びブタノンで一晩洗浄した。サンプルは80℃で乾燥した。
1-2. Al-BDC
Al-BDC samples were prepared by the method shown below. First, AlCl 3 .9H 2 O and BDC were dissolved in DMF for 60 minutes using an ultrasonic bath. After completely dissolving the metal and ligand according to Table 2, formic acid was added. The glass reactor was then maintained at 120°C for 24 hours. Samples were isolated by centrifugation and washed with DMF for 3 hours at 70°C, overnight with DMF at 70°C, 3 hours at room temperature with butanone, and again overnight with butanone. Samples were dried at 80°C.
 欠陥のないサンプルAl-BDCNDは、水熱合成法により、AlとBDCを60mLの脱イオン水に混合し、テフロンで覆った水熱反応器に移し、自己生成の圧力下で200℃で72時間保持した。得られた粉末をDMFで130℃で4時間及び一晩洗浄し、室温でEtOHを使用して手順を3回繰り返した。サンプルは80℃で乾燥した。 The defect-free sample Al-BDC ND was prepared by hydrothermal synthesis method by mixing Al2O3 and BDC in 60 mL deionized water, transferring it to a Teflon-covered hydrothermal reactor, and adding 200 mL under self-generating pressure. It was kept at ℃ for 72 hours. The resulting powder was washed with DMF at 130° C. for 4 hours and overnight, and the procedure was repeated three times using EtOH at room temperature. Samples were dried at 80°C.
 Al-BDCND及びAl-BDC00の電子顕微鏡写真を図12に示す。図12Aに示すAl-BDCNDは、くっきりとした面を持つ角柱状の結晶であった。一方、Al-BDC00の結晶は、より丸く、凝集しており、粒子サイズはより均一であった。 Electron micrographs of Al-BDC ND and Al-BDC 00 are shown in FIG. The Al-BDC ND shown in FIG. 12A was a prismatic crystal with sharp surfaces. On the other hand, the crystals of Al-BDC 00 were more rounded and aggregated, and the particle size was more uniform.
2.色素分子4bの配位
 金属有機構造体4aのサンプルをローダミンBの飽和エタノール溶液に超音波浴で20分間分散させ、一晩振とうした。固体を遠心分離し、80℃で乾燥させ、粉末化し、140℃で60時間保持した。サンプルを超音波浴の助けを借りてエタノールに分散させ、少なくとも6時間振とうし、遠心分離した。上澄み溶液の吸光度が一定になるまでこのプロセスを繰り返したが、これは通常8サイクル後に達成された。
2. Coordination of Dye Molecule 4b A sample of metal-organic framework 4a was dispersed in a saturated ethanol solution of Rhodamine B in an ultrasonic bath for 20 minutes and shaken overnight. The solid was centrifuged, dried at 80°C, powdered and kept at 140°C for 60 hours. The samples were dispersed in ethanol with the help of an ultrasound bath, shaken for at least 6 hours, and centrifuged. This process was repeated until the absorbance of the supernatant solution became constant, which was usually achieved after 8 cycles.
3.X線回折
 色素分子4bを配位させる前後の金属有機構造体4aのサンプルについて、ADDモデルのBragg-Brentano構成でのX線回折(XRD)によって、分析を行った。その結果を図13に示す。図13中、点線は、色素分子4bを配位させる前のパターン、実線は、色素分子4bを配位させた後のパターンを示す。
3. X-ray Diffraction Samples of the metal-organic framework 4a before and after the coordination of the dye molecules 4b were analyzed by X-ray diffraction (XRD) in the Bragg-Brentano configuration of the ADD model. The results are shown in FIG. In FIG. 13, the dotted line shows the pattern before the dye molecule 4b is coordinated, and the solid line shows the pattern after the dye molecule 4b is coordinated.
 UiO-66は、トリフルオロ酢酸(TFA)の量が減少するにつれてピークの広がりが大きくなった。これは、粒子サイズの減少を示している。また、色素分子4bの配位前後でXRDパターンは変化しなかった。 For UiO-66, the peak broadened as the amount of trifluoroacetic acid (TFA) decreased. This indicates a decrease in particle size. Moreover, the XRD pattern did not change before and after coordination of the dye molecule 4b.
 ソルボサーマル条件で調製されたサンプル(Al-BDCx、x=0、30、100)は、色素分子4bが配位していないときは、MIL-53-it相が支配的であった。これに色素分子4bを配置させると、MIL-53-ht相がMIL-53-it相とともに観察された。また、熱水条件で得られたサンプルAl-BDCNDの場合、MIL-53-it相とMIL-53-ht相の混合が観察され、色素分子4bを配置させると、MIL-53-ht相の割合が増加した。 In the samples prepared under solvothermal conditions (Al-BDCx, x=0, 30, 100), the MIL-53-it phase was dominant when the dye molecule 4b was not coordinated. When dye molecule 4b was placed on this, a MIL-53-ht phase was observed together with a MIL-53-it phase. In addition, in the case of the sample Al-BDC ND obtained under hydrothermal conditions, a mixture of the MIL-53-it phase and the MIL-53-ht phase was observed, and when the dye molecule 4b was placed, the MIL-53-ht phase The proportion of
4.合成条件の最適化
 バックグラウンドシグナル、非特異的吸着、総吸着および最大吸光度を評価するために、色素分子4bを配位させた金属有機構造体4aの懸濁液(以下、「MOF懸濁液」)(10mg/mL)を準備し、超音波浴補助を使用して60分間分散させた。非特異的吸着は、MOF懸濁液50μLを5mLの脱イオン水に加えることによって評価した。総吸着は、フッ素イオン濃度が1000ppmの溶液を使用して評価した。
4. Optimization of synthesis conditions In order to evaluate the background signal, nonspecific adsorption, total adsorption, and maximum absorbance, a suspension of the metal-organic framework 4a (hereinafter referred to as “MOF suspension”) coordinated with the dye molecule 4b was prepared. ) (10 mg/mL) was prepared and dispersed for 60 minutes using ultrasonic bath assistance. Non-specific adsorption was evaluated by adding 50 μL of MOF suspension to 5 mL of deionized water. Total adsorption was evaluated using a solution with a fluoride ion concentration of 1000 ppm.
 全てのMOF懸濁液をオービタルシェーカーで90分間振とうし、6000RPMで3分間遠心分離し、上澄みを523nmで測定した(Ocean Optics Flame Uv-Vis分光計)。固体の性能は、性能指数(AbsF--AbsMQ)/AbsMQを使用して評価した。ここで、AbsMQは、脱イオン水を使用して得られた溶液の吸光度であり、AbsF-は、フッ素イオン濃度が1000ppmの溶液を使用して得られた吸光度である。 All MOF suspensions were shaken on an orbital shaker for 90 min, centrifuged at 6000 RPM for 3 min, and the supernatants were measured at 523 nm (Ocean Optics Flame Uv-Vis spectrometer). The performance of the solids was evaluated using the figure of merit (Abs F --Abs MQ )/Abs MQ . Here, Abs MQ is the absorbance of a solution obtained using deionized water, and Abs F- is the absorbance obtained using a solution with a fluorine ion concentration of 1000 ppm.
 各サンプルについて、AbsF-、AbsMQ、及び性能指数を求めた。その結果を図14A及び図14Bに示す。これらの図に示すように、UiO-66については、UiO-6600の性能指数が最も高く、Al-BDCについては、Al-BDC30の性能指数が最も高かった。 Abs F- , Abs MQ , and figure of merit were determined for each sample. The results are shown in FIGS. 14A and 14B. As shown in these figures, for UiO-66, UiO-66 00 had the highest figure of merit, and for Al-BDC, Al-BDC 30 had the highest figure of merit.
 性能指数は、2以上が好ましく、5以上がさらに好ましく、10以上がさらに好ましい。性能指数は、例えば、2~50であり、具体的には例えば、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、30、40、50であり、ここで例示した数値の何れか2つの間の範囲内又は何れか以上であってもよい。 The figure of merit is preferably 2 or more, more preferably 5 or more, and even more preferably 10 or more. The figure of merit is, for example, 2 to 50, specifically, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, and may be within a range between any two of the numerical values exemplified here or more than any one.
5.反応速度
 色素分子4bを配位させた金属有機構造体4aから、色素分子4bを遊離させる反応の反応速度を測定した。反応速度は、Ocean Optics Flame Uv-Vis分光計で、検出器に対して90°の下部照明用の市販の緑色LEDを使用して測定した。マグネチックスターラーと3mmの攪拌棒を使用して、色素分子4bを配位させた金属有機構造体4aを懸濁状態に保った。
5. Reaction Rate The reaction rate of the reaction for liberating the dye molecule 4b from the metal-organic structure 4a to which the dye molecule 4b was coordinated was measured. Reaction rates were measured on an Ocean Optics Flame Uv-Vis spectrometer using a commercially available green LED for bottom illumination at 90° to the detector. The metal-organic framework 4a to which the dye molecules 4b were coordinated was kept in suspension using a magnetic stirrer and a 3 mm stirring bar.
 UiO-6600及びAl-BDC30について得られた結果を図15に示す。UiO-6600は、Al-BDC30に比べて信号の立ち上がりが速く、同じ質量で信号が高くなっている。信号強度は、どちらも約200秒で最高となり、その後、徐々に減衰した。減衰は、色素分子4bが金属有機構造体4aに再付着したためであると考えられる。 The results obtained for UiO-66 00 and Al-BDC 30 are shown in FIG. UiO- 6600 has a faster signal rise than Al-BDC 30 , and the signal is higher at the same mass. The signal strength reached its maximum at about 200 seconds in both cases, and then gradually decreased. It is believed that the attenuation is due to the dye molecules 4b reattaching to the metal-organic structure 4a.
6.検量線
 フッ素イオン濃度が1000ppmのフッ素イオン溶液を二重脱イオン水で希釈して、フッ素イオン濃度が0~20ppmの範囲の標準溶液を作成した。検量線は、10mg/mLのMOF懸濁液と3mLの標準溶液を使用して作成した。測定は、後述するラボ製デバイスを使用して、蛍光モードで実行した。信号サンプリングの標準化された時間は、Al-BDCの場合は1500秒、UiO-66の場合は200秒とした。得られた結果を図16に示す。UiO-6600及びAl-BDC30の何れにおいても、MOF懸濁液の使用量の増大に応じて、感度が低下し、検量線が線形となる濃度範囲が広がった。
6. Calibration Curve A fluoride ion solution with a fluoride ion concentration of 1000 ppm was diluted with double deionized water to create a standard solution with a fluoride ion concentration in the range of 0 to 20 ppm. A calibration curve was created using 10 mg/mL MOF suspension and 3 mL of standard solution. Measurements were performed in fluorescence mode using a laboratory device as described below. The standardized time of signal sampling was 1500 seconds for Al-BDC and 200 seconds for UiO-66. The obtained results are shown in FIG. 16. For both UiO-66 00 and Al-BDC 30 , as the amount of MOF suspension used increased, the sensitivity decreased and the concentration range in which the calibration curve became linear expanded.
7.付随するイオンの干渉の影響
 色素分子4bが配置された金属有機構造体4aを使用して開発された分析手法の特異性を検証するために、天然水中で一般的に見られる付随イオンの存在下で5ppmのフッ素イオン溶液のシグナル回復テストを実施した。金属有機構造体4aとしては、UiO-6600及びAl-BDC30を用いた。
7. Influence of interference of accompanying ions. In order to verify the specificity of the analytical method developed using the metal-organic framework 4a on which the dye molecule 4b is placed, we investigated it in the presence of accompanying ions commonly found in natural waters. A signal recovery test was conducted using a 5 ppm fluoride ion solution. UiO- 6600 and Al-BDC 30 were used as the metal-organic structure 4a.
 付随イオンの干渉は、Cl、SO 2-、Ca2+、Mg2+、HCO 、HPO 2-のうちの1種を5~100ppmの範囲の濃度で含む5ppmのフッ素イオン溶液を使用してテストした。測定は、検量線で使用したのと同じラボ製デバイスを使用して、蛍光モードで実行した。HCO 、HPO 2-については、TRIS/HCl 0.1M pH=7.5を使用した緩衝液もテストした。0.1Mバッファーは、12.1gのトリス(ヒドロキシメチル)アミノメタン(PA、和光、日本)を80mLの二重脱イオン水に溶解して調製した。pHメーターを使用して、HCl(c)(36.5~38.0%、和光)を使用してpHを7.5に調整し、最終容量を調整した。次に、このバッファーの適切な量を、付随イオン及びフッ素イオンを含む溶液に加えて、最終バッファー濃度を0.1Mにした。 For the interference of accompanying ions, a 5 ppm fluoride ion solution containing one of Cl , SO 4 2− , Ca 2+ , Mg 2+ , HCO 3 , and HPO 4 2− at a concentration ranging from 5 to 100 ppm was used. I tested it. Measurements were performed in fluorescence mode using the same laboratory device used for the calibration curve. For HCO 3 , HPO 4 2− , a buffer using TRIS/HCl 0.1M pH=7.5 was also tested. A 0.1 M buffer was prepared by dissolving 12.1 g of tris(hydroxymethyl)aminomethane (PA, Wako, Japan) in 80 mL of double deionized water. Using a pH meter, the pH was adjusted to 7.5 using HCl(c) (36.5-38.0%, Wako) and the final volume was adjusted. An appropriate amount of this buffer was then added to the solution containing the satellite ions and fluoride ions to give a final buffer concentration of 0.1M.
 テストの結果を図17~図18に示す。図17中の、各付随イオン濃度についての6本の棒グラフは、左から順に、Cl、SO 2-、Ca2+、Mg2+、HCO 、HPO 2-についての結果が示す。このうち、HCO 、HPO 2-については、バッファーを添加した状態での結果である。図18中の、各付随イオン濃度についての4本の棒グラフは、左から順に、HCO (バッファーなし)、HPO 2-(バッファーなし)、HCO (バッファーあり)、HPO 2-(バッファーあり)についての結果を示す。 The test results are shown in FIGS. 17 and 18. The six bar graphs for each accompanying ion concentration in FIG. 17 show the results for Cl , SO 4 2− , Ca 2+ , Mg 2+ , HCO 3 , and HPO 4 2− in order from the left. Among these, the results for HCO 3 and HPO 4 2− are obtained with the addition of buffer. The four bar graphs for each accompanying ion concentration in FIG. 18 are, from left to right, HCO 3 (without buffer), HPO 4 2− (without buffer), HCO 3 (with buffer), and HPO 4 2− The results for (with buffer) are shown.
 UiO-6600の場合、図17Aに示すように、濃度が100ppm未満のすべてのイオンは、純粋なフッ素イオン溶液との回収率に有意差を示さなかった。主な干渉は、図18Aに示すように、10ppm以上の炭酸塩およびリン酸塩(自然のpHでの関連種)で生じたが、これらの干渉は、図18Aに示すように、バッファーを使用することで、克服することができた。 For UiO- 6600 , all ions with concentrations below 100 ppm showed no significant difference in recovery with the pure fluoride ion solution, as shown in Figure 17A. The main interferences occurred with carbonate and phosphate (related species at natural pH) above 10 ppm, as shown in Figure 18A; By doing so, I was able to overcome it.
 一方、Al-BDC30は、図17Bに示すように、100ppmの付随イオンでもフッ素イオンシグナルの完全な回復を示した。主な干渉は、図18Bに示すように、10ppm以上の濃度の炭酸塩およびリン酸塩(自然のpHでの関連種)で生じた。しかし、これらの干渉は、図18Bに示すように、バッファーを使用することで克服できた。このように、最適化された条件下では、回収率に有意差は見られなかった。 On the other hand, Al-BDC 30 showed complete recovery of the fluorine ion signal even at 100 ppm of concomitant ions, as shown in FIG. 17B. The main interference occurred at concentrations of carbonate and phosphate (related species at natural pH) above 10 ppm, as shown in Figure 18B. However, these interferences could be overcome by using a buffer, as shown in Figure 18B. Thus, no significant difference in recovery was observed under the optimized conditions.
 バッファーを使用することによって回収率が向上する作用について説明する。HCO 、又はHPO 2-が高濃度でサンプルに含まれている場合、サンプルのpHが、塩基性pHに向かって変化する。このpHの変化により、金属有機構造体4aの溶解度と、放出された色素分子4bの電荷が変化し、発光スペクトルが変化する可能性がある。バッファーを使用することによって、サンプルのpHが変化することによって抑制される結果、回収率が向上する。 The effect of improving the recovery rate by using a buffer will be explained. When HCO 3 or HPO 4 2− is present in a sample at high concentrations, the pH of the sample changes toward basic pH. This pH change may change the solubility of the metal-organic structure 4a and the charge of the released dye molecules 4b, leading to a change in the emission spectrum. By using a buffer, the pH of the sample is suppressed by changing, resulting in improved recovery.
8.ラボ製デバイス
 蛍光測定用のデバイスは、AS7262 6チャネル検出器、市販の緑色LED(530nm)、およびSDカードシールド付きのArduinoUNOを使用して構築した。フィールドアプリケーション用のデバイスは、同じ検出器とLEDを使用し、SeeeduinoXIAOとSeeeduinoXIAO拡張ボードを使用して構築した。これらの部材は、比較的安価であり、本実施形態によれば、デバイスを安価に構築することが可能である。
8. Lab Device The device for fluorescence measurements was constructed using an AS7262 6-channel detector, a commercially available green LED (530 nm), and an Arduino UNO with an SD card shield. The device for field applications was built using the same detectors and LEDs and using SeeduinoXIAO and SeeedunoXIAO expansion boards. These members are relatively inexpensive, and according to this embodiment, it is possible to construct the device at low cost.
 AS7262のオレンジチャネルからは、中心波長600nm・FWHM40nmの範囲の光の強度を出力する。このチャネルからの出力を用いて検量線を作成した。その結果を図19に示す。3点が直線上に並んでおり、上記チャネルからの出力は、フッ素イオン濃度に対して線形性を示していることが分かる。 The orange channel of AS7262 outputs light intensity in the range of center wavelength 600 nm and FWHM 40 nm. A calibration curve was created using the output from this channel. The results are shown in FIG. The three points are lined up on a straight line, and it can be seen that the output from the channel exhibits linearity with respect to the fluorine ion concentration.
9.画像解析によるフッ素イオン濃度の決定
 図20は、自然光の下で撮影した画像を示す。この画像は、実際にはカラー画像であるが、ここでは便宜上、白黒で表示している。図20では、サンプルホルダ16に、2枚の市販のカラーフィルタ(疑似参照サンプル)14,15と、5つの測定サンプル6が保持されている。サンプルホルダ16の背景は、青空に白雲が散在している状態である。カラーフィルタ14の画像14aは、薄いマゼンダ色であり、カラーフィルタ15の画像15aは、濃いマゼンダ色である。5つの測定サンプル6は、ローダミンBの濃度が左から右に向かって徐々に濃くなっており、測定サンプル6の画像6aのマゼンダ色は、左から右に向かって徐々に濃くなっている。従って、マゼンダ色の濃さは、ローダミンBの濃度に対応している。ローダミンBの濃度は、フッ素イオン濃度と関連付けることができる。図20の画像ファイルには、画像14a,15a,6aに含まれる各画素のR,G,Bの階調値が含まれており、このうち、Gの階調値がローダミンBの濃度による変化が大きいので、Gの階調値の平均値を各サンプルのマゼンダ色の平均強度(以下、マゼンダ強度)とした。この画像解析は、Matlabを用いて行った。
9. Determination of fluorine ion concentration by image analysis Figure 20 shows images taken under natural light. Although this image is actually a color image, it is displayed here in black and white for convenience. In FIG. 20, a sample holder 16 holds two commercially available color filters (pseudo reference samples) 14 and 15 and five measurement samples 6. The background of the sample holder 16 is a blue sky with scattered white clouds. The image 14a of the color filter 14 is a light magenta color, and the image 15a of the color filter 15 is a dark magenta color. In the five measurement samples 6, the concentration of rhodamine B gradually increases from left to right, and the magenta color of the image 6a of the measurement samples 6 gradually increases from left to right. Therefore, the depth of magenta color corresponds to the concentration of Rhodamine B. Rhodamine B concentration can be related to fluoride ion concentration. The image file in FIG. 20 includes R, G, and B gradation values of each pixel included in images 14a, 15a, and 6a, and among these, the G gradation value changes depending on the concentration of rhodamine B. is large, the average value of the G gradation values was taken as the average intensity of the magenta color of each sample (hereinafter referred to as magenta intensity). This image analysis was performed using Matlab.
 図21Aは、2つのカラーフィルタ14,15と5つの測定サンプル6についての、ローダミンBの濃度とマゼンダ強度の関係を示すグラフである。5つの測定サンプル6についてのプロットを見ると、ローダミンBの濃度とマゼンダ強度が線形的に変化していることが分かる。この平均強度は、環境光のスペクトル変化に応じて変化するものであり、この平均強度をそのままフッ素イオン濃度に変換することはできない。しかし、2つのカラーフィルタ14,15は、それぞれ、既知のフッ素イオン濃度と関連付けられており、これらのフィルタについてのマゼンダ強度とフッ素イオン濃度との関係を利用して、各測定サンプル6のマゼンダ強度をフッ素イオン濃度に変換することができる。 FIG. 21A is a graph showing the relationship between rhodamine B concentration and magenta intensity for two color filters 14 and 15 and five measurement samples 6. Looking at the plots for the five measurement samples 6, it can be seen that the concentration of Rhodamine B and the magenta intensity change linearly. This average intensity changes in response to changes in the spectrum of environmental light, and cannot be directly converted into a fluorine ion concentration. However, the two color filters 14 and 15 are each associated with a known fluorine ion concentration, and the magenta intensity of each measurement sample 6 is determined by using the relationship between the magenta intensity and the fluorine ion concentration for these filters. can be converted to fluorine ion concentration.
 図21Bは、2つのカラーフィルタ14,15と5つの測定サンプル6についての、ローダミンBの濃度とマゼンダ強度の関係を示すグラフであり、5つの測定サンプル6のローダミンBの濃度が図21Aとは異なっている。カラーフィルタ14,15は、図21Aと同じものであるが、環境光のスペクトルが図21Aとは異なっているので、マゼンダ強度が異なっている。図21Bは、ローダミンBの濃度の範囲が図21Aよりも広いが、図21Aと同様に、ローダミンBの濃度とマゼンダ強度が線形的に変化している。 FIG. 21B is a graph showing the relationship between rhodamine B concentration and magenta intensity for two color filters 14 and 15 and five measurement samples 6, and the rhodamine B concentration of five measurement samples 6 is different from that in FIG. 21A. It's different. The color filters 14 and 15 are the same as in FIG. 21A, but the spectrum of the ambient light is different from that in FIG. 21A, so the magenta intensity is different. In FIG. 21B, the range of rhodamine B concentration is wider than in FIG. 21A, but similarly to FIG. 21A, the rhodamine B concentration and magenta intensity change linearly.
 ローダミンBの濃度がさらに高くなると、ローダミンBの濃度とマゼンダ強度が線形関係にならない場合がある。このような濃度域で測定を行う場合は、光路長を短くすることが好ましい。つまり、光路長を変化させることによって線形範囲を変えることができる。一例では、容器3の内面形状が、容器3の回転(例:90度回転)によって変化する形状(例:直方体)である場合、容器3を回転させることによって、光路長を変化させることができる。この場合、1つの装置で、2種類の感度を実現することができる。 When the concentration of Rhodamine B becomes higher, the concentration of Rhodamine B and the magenta intensity may not have a linear relationship. When measuring in such a concentration range, it is preferable to shorten the optical path length. In other words, the linear range can be changed by changing the optical path length. For example, if the inner surface shape of the container 3 is a shape (e.g. rectangular parallelepiped) that changes depending on the rotation (e.g. 90 degree rotation) of the container 3, the optical path length can be changed by rotating the container 3. . In this case, two types of sensitivity can be achieved with one device.
 なお、本実施例では、ローダミンBの極大吸収波長が約550nmであるので、画像中のG成分を画像解析に用いたが、画像解析に用いる成分は、用いられる色素分子4bの吸収スペクトルに応じて適宜変更可能である。例えば、用いられる色素分子4bが赤色領域に極大吸収波長を有するものであれば、画像中のR成分を画像解析に用いることが好ましい。 In this example, the maximum absorption wavelength of rhodamine B is approximately 550 nm, so the G component in the image was used for image analysis, but the component used for image analysis was determined according to the absorption spectrum of the dye molecule 4b used. It can be changed as appropriate. For example, if the dye molecule 4b used has a maximum absorption wavelength in the red region, it is preferable to use the R component in the image for image analysis.
10.担体に担持された金属有機構造体4aの調製
 ZrOCl・8HO(1.19g、3.7mmol)及びテレフタル酸(BDC)(0.615g、3.7mmol)を、超音波浴中において、室温でジメチルホルムアミド(DMF)(100ml)に溶解し、ガラス瓶内で120℃まで72時間加熱してゲル化した。得られたゲルを超音波で均質化し、DMFを用いて100℃で3時間を2回、室温で3時間を2回の溶媒交換を行って洗浄した。このサンプルは、洗浄中にも、超音波ホモジナイザーで均質化した。
10. Preparation of metal-organic framework 4a supported on carrier ZrOCl 2.8H 2 O (1.19 g, 3.7 mmol) and terephthalic acid (BDC) (0.615 g, 3.7 mmol) were placed in an ultrasonic bath. It was dissolved in dimethylformamide (DMF) (100 ml) at room temperature and heated to 120° C. for 72 hours in a glass bottle to form a gel. The resulting gel was homogenized by ultrasonication and washed with DMF using solvent exchange twice at 100° C. for 3 hours and twice at room temperature for 3 hours. The sample was also homogenized with an ultrasonic homogenizer during washing.
 次に、11.2gの均質化後のサンプルと2.2gのアルミナ(Al)(富士フィルム和光純薬株式会社製、活性アルミナ、粒度(45~150μm)が90%以上)を混合したものに、20mlのローダミンB飽和溶液を加え、実験用ガラス製攪拌棒を使用して機械的に均質化した。得られた混合物を、実験室用ガラス攪拌棒を使用して絶えず攪拌しながら乾燥させ、ホットプレートを使用して乾燥させることによって複合体を得た。この複合体を140℃で一晩乾燥させた後、ソックスレー抽出器を使用して過剰のローダミンBを除去して、アルミナに担持された金属有機構造体4aにローダミンBが配位した試薬Aを得た。 Next, 11.2 g of the homogenized sample and 2.2 g of alumina (Al 2 O 3 ) (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., activated alumina, particle size (45-150 μm) of 90% or more) were mixed. To this was added 20 ml of a saturated Rhodamine B solution and mechanically homogenized using a laboratory glass stir bar. The resulting mixture was dried with constant stirring using a laboratory glass stir bar and dried using a hot plate to obtain the composite. After drying this complex overnight at 140°C, excess rhodamine B was removed using a Soxhlet extractor, and reagent A in which rhodamine B was coordinated to the metal-organic framework 4a supported on alumina was obtained. Obtained.
11.試薬Aについて検量線の作成
 フッ素イオン濃度が1000ppmのフッ素イオン溶液を二重脱イオン水で希釈して、フッ素イオン濃度が0~15ppmの範囲の標準溶液を作成した。次に、キャップ付きのプラスチック製コニカルチューブを使用して、分析天秤を使用して10mgの試薬Aを秤量した。次に、5mLの標準溶液を試薬Aの入ったプラスチックチューブに加え、蓋を閉め、ロータリーシェーカーを使用して100rpmで1~5分間、攪拌した。次に、試薬Aを重力でデカントし、使い捨てのプラスチックピペット(v:3mL)を使用して上澄み液を採取し、光路長10mmのキュベット内に収容した。次いで、波長=525nmの吸光度モードでUV-VIS分光計を使用して、この溶液について測定を行った。次に、吸光度値を記録し、検量線を作成した。その結果を図22Aに示す。
11. Creation of a calibration curve for reagent A A fluoride ion solution with a fluoride ion concentration of 1000 ppm was diluted with double deionized water to create a standard solution with a fluorine ion concentration in the range of 0 to 15 ppm. A plastic conical tube with a cap was then used to weigh out 10 mg of Reagent A using an analytical balance. Next, 5 mL of the standard solution was added to the plastic tube containing Reagent A, the lid was closed, and the tube was stirred for 1 to 5 minutes at 100 rpm using a rotary shaker. Reagent A was then decanted by gravity, and the supernatant was collected using a disposable plastic pipette (v: 3 mL) and placed in a cuvette with an optical path length of 10 mm. Measurements were then performed on this solution using a UV-VIS spectrometer in absorbance mode at wavelength = 525 nm. Next, absorbance values were recorded and a calibration curve was created. The results are shown in FIG. 22A.
 また、同様の方法で採取した上澄み液について、「9.画像解析によるフッ素イオン濃度の決定」と同様の方法で画像解析を行ってマゼンダ強度を算出した。その結果を図22Bに示す。 In addition, for the supernatant liquid collected in the same manner, image analysis was performed in the same manner as in "9. Determination of fluorine ion concentration by image analysis" to calculate magenta intensity. The results are shown in FIG. 22B.
 図22Aと図22Bは、どちらも、フッ素イオン濃度に対する吸光度又はマゼンダ強度が線形関係になっていることが分かる。この結果は、画像解析によるフッ素イオン濃度の特定の精度が、分光計を用いたフッ素イオン濃度の特定の精度とほぼ同等であることを示している。 In both FIGS. 22A and 22B, it can be seen that the absorbance or magenta intensity has a linear relationship with the fluorine ion concentration. This result shows that the accuracy of determining fluorine ion concentration by image analysis is almost equivalent to the accuracy of determining fluorine ion concentration using a spectrometer.
12.粒子径の測定
 「10.担体に担持された金属有機構造体4aの調製」で用いたアルミナ粒子と、このアルミナ粒子に金属有機構造体4aを担持させて得られた粒子について、SEM画像を用いて粒子径の測定を行った。この粒子径の測定は、拡大率80倍で得られたSEM画像中の多数の粒子について行った。その結果得られた粒度分布を図23に示す。図23Aは、アルミナ粒子(Al)について得られた結果を示し、図23Bは、金属有機構造体4aを担持させたアルミナ粒子(Al+MOF)について得られた結果を示す。アルミナ粒子は、平均粒子径が102μm、標準偏差が20μm、測定粒子数が71であった。金属有機構造体4aを担持させたアルミナ粒子は、平均粒子径が103μm、標準偏差が32μm、測定粒子数が77であった。この結果は、金属有機構造体4aの担持によってアルミナ粒子の粒子径がほとんど変化しないことを示している。また、このことは、金属有機構造体4aの粒子径がアルミナ粒子の粒子径に比べてはるかに小さいことを示している。
12. Measurement of particle diameter Using SEM images of the alumina particles used in "10. Preparation of metal-organic structure 4a supported on carrier" and particles obtained by supporting metal-organic structure 4a on these alumina particles. The particle size was measured. This particle diameter measurement was performed on a large number of particles in a SEM image obtained at a magnification of 80 times. The resulting particle size distribution is shown in FIG. FIG. 23A shows the results obtained for alumina particles (Al 2 O 3 ), and FIG. 23B shows the results obtained for alumina particles (Al 2 O 3 +MOF) supporting the metal-organic framework 4a. The alumina particles had an average particle diameter of 102 μm, a standard deviation of 20 μm, and the number of measured particles was 71. The alumina particles supporting the metal-organic structure 4a had an average particle diameter of 103 μm, a standard deviation of 32 μm, and the number of measured particles was 77. This result shows that the particle diameter of the alumina particles hardly changes due to the support of the metal-organic structure 4a. This also indicates that the particle size of the metal-organic structure 4a is much smaller than the particle size of the alumina particles.
1:フッ素イオン濃度測定装置、2:蓋、3:容器、3a:マーク、4:試薬、4a:金属有機構造体、4b:色素分子、4c:有機配位子、4c1:帯、4d:二次構造単位、4d1:多面体、5:試料水、6:測定サンプル、6a:画像、7:アダプタ、7a:サンプル保持部、7b:端子、7:通信部、7d:蓋、9:情報処理装置、9a:表示部、9b:測定制御部、9c:濃度決定部、9d:測位部、9e:記憶部、9f:重畳表示部、9g:通信部、10:測定部、10a:投光部、10b:受光部、12:可視光、13:蛍光、14,15:カラーフィルタ、14a,15a:画像 1: Fluorine ion concentration measuring device, 2: Lid, 3: Container, 3a: Mark, 4: Reagent, 4a: Metal-organic structure, 4b: Dye molecule, 4c: Organic ligand, 4c1: Band, 4d: Two Next structural unit, 4d1: polyhedron, 5: sample water, 6: measurement sample, 6a: image, 7: adapter, 7a: sample holding section, 7b: terminal, 7: communication section, 7d: lid, 9: information processing device , 9a: display section, 9b: measurement control section, 9c: concentration determination section, 9d: positioning section, 9e: storage section, 9f: superimposition display section, 9g: communication section, 10: measurement section, 10a: light projection section, 10b: Light receiving section, 12: Visible light, 13: Fluorescence, 14, 15: Color filter, 14a, 15a: Image

Claims (21)

  1.  金属有機構造体と、可視光を吸収可能な色素分子を備える、フッ素イオン濃度測定用試薬であって、
     前記色素分子は、前記金属有機構造体に配位結合されており、
     前記試薬は、フッ素イオンを含み得る試料水と、前記試薬を混合したときに、前記フッ素イオンが前記金属有機構造体の金属に配位するとともに、前記色素分子が前記金属有機構造体から遊離するように構成される、試薬。
    A reagent for measuring fluorine ion concentration, comprising a metal-organic structure and a dye molecule capable of absorbing visible light,
    the dye molecule is coordinately bonded to the metal-organic framework;
    When the reagent is mixed with sample water that may contain fluorine ions, the fluorine ions are coordinated to the metal of the metal-organic structure, and the dye molecules are liberated from the metal-organic structure. A reagent composed of:
  2.  請求項1に記載の試薬であって、
     前記色素分子は、カルボキシル基を有する、試薬。
    The reagent according to claim 1,
    The dye molecule has a carboxyl group.
  3.  請求項1に記載の試薬であって、
     前記色素分子は、前記可視光で励起されて蛍光を放出可能である、試薬。
    The reagent according to claim 1,
    The dye molecule is capable of emitting fluorescence upon being excited by the visible light.
  4.  請求項1に記載の試薬であって、
     前記色素分子は、カルボキシル基を有する、キサンテン色素分子、アゾ系色素、又はフタレイン系色素である、試薬。
    The reagent according to claim 1,
    The reagent, wherein the dye molecule is a xanthene dye molecule, an azo dye, or a phthalein dye having a carboxyl group.
  5.  請求項4に記載の試薬であって、
     前記色素分子が、前記キサンテン色素分子であって、
     前記キサンテン色素分子は、ローズベンガル、エリスロシン、エオシンY、フルオレセイン、ローダミン、又はカルセインである、試薬。
    5. The reagent according to claim 4,
    The dye molecule is the xanthene dye molecule,
    The reagent, wherein the xanthene dye molecule is rose bengal, erythrosin, eosin Y, fluorescein, rhodamine, or calcein.
  6.  請求項1に記載の試薬であって、
     前記金属有機構造体の金属は、鉄、ジルコニウム、アルミニウム、イットリウム又はランタノイド系希土類金属元素を含む、試薬。
    The reagent according to claim 1,
    The metal of the metal-organic framework includes iron, zirconium, aluminum, yttrium, or a lanthanoid rare earth metal element.
  7.  請求項1に記載の試薬であって、
     前記金属有機構造体は、金属多核クラスターで構成される二次構造単位同士が多座有機配位子で結合されて構成された周期構造を有する、試薬。
    The reagent according to claim 1,
    The metal-organic framework is a reagent having a periodic structure in which secondary structural units constituted by metal polynuclear clusters are bonded to each other by polydentate organic ligands.
  8.  請求項7に記載の試薬であって、
     前記金属多核クラスターは、金属六核クラスターである、試薬。
    8. The reagent according to claim 7,
    The reagent, wherein the metal polynuclear cluster is a metal hexanuclear cluster.
  9.  請求項1に記載の試薬であって、
     前記金属有機構造体は、MOF76、MOF199、UiO-66、UiO-67、UiO-66の等網状系列(isoreticular series)、MIL-53、MIL-67、又はMIL-101である、試薬。
    The reagent according to claim 1,
    The reagent, wherein the metal-organic framework is MOF76, MOF199, UiO-66, UiO-67, isoreticular series of UiO-66, MIL-53, MIL-67, or MIL-101.
  10.  請求項1に記載の試薬であって、
     前記金属有機構造体は、担体粒子に担持されている、試薬。
    The reagent according to claim 1,
    A reagent, wherein the metal-organic framework is supported on carrier particles.
  11.  請求項10に記載の試薬であって、
     前記担体粒子は、無機酸化物で構成される、試薬。
    The reagent according to claim 10,
    The reagent, wherein the carrier particles are composed of an inorganic oxide.
  12.  請求項11に記載の試薬であって、
     前記無機酸化物の平均粒子径をD1とし、前記無機酸化物に前記金属有機構造体を担持して得られる粒子の平均粒子径D2とすると、D2/D1が1.5以下である、試薬。
    12. The reagent according to claim 11,
    A reagent in which D2/D1 is 1.5 or less, where D1 is the average particle diameter of the inorganic oxide and D2 is the average particle diameter of particles obtained by supporting the metal-organic structure on the inorganic oxide.
  13.  サンプル作成工程と、測定工程と、濃度決定工程を備える、フッ素イオン濃度測定方法であって、
     前記サンプル作成では、請求項1~請求項12の何れか1つに記載の試薬と、フッ素イオンを含み得る試料水を混合して測定サンプルを作成し、
     前記測定工程では、前記測定サンプル中の前記色素分子の濃度と相関する物理量を、可視光を用いて測定し、
     前記濃度決定工程では、前記物理量に基づいて前記試料水のフッ素イオン濃度を決定する、方法。
    A method for measuring fluorine ion concentration, comprising a sample preparation step, a measurement step, and a concentration determination step,
    In the sample preparation, a measurement sample is prepared by mixing the reagent according to any one of claims 1 to 12 and sample water that may contain fluorine ions,
    In the measurement step, a physical quantity correlated with the concentration of the dye molecules in the measurement sample is measured using visible light,
    In the concentration determining step, the fluorine ion concentration of the sample water is determined based on the physical quantity.
  14.  請求項13に記載の方法であって、
     前記試料水中のフッ素イオン濃度は、20ppm以下である、方法。
    14. The method according to claim 13,
    The method, wherein the fluorine ion concentration in the sample water is 20 ppm or less.
  15.  請求項13に記載の方法であって、
     前記測定サンプル中の前記試薬の濃度は、0.05~1mg/mLである、方法。
    14. The method according to claim 13,
    The method, wherein the concentration of the reagent in the measurement sample is 0.05 to 1 mg/mL.
  16.  請求項13に記載の方法であって、
     前記物理量は、前記可視光の透過光強度、又は前記可視光によって前記色素分子が励起されて放出される蛍光の強度である、方法。
    14. The method according to claim 13,
    The method, wherein the physical quantity is the transmitted light intensity of the visible light or the intensity of fluorescence emitted when the dye molecules are excited by the visible light.
  17.  請求項13に記載の方法であって、
     前記金属有機構造体は、担体粒子に担持されており、
     前記測定工程では、前記測定サンプルに可視光を照射した状態で、複数の受光素子を有するイメージセンサを用いて前記測定サンプルの画像を撮影し、
     前記濃度決定工程では、前記画像中の少なくとも1つの色成分の階調値について得られた代表値に基づいて前記試料水のフッ素イオン濃度を決定する、方法。
    14. The method according to claim 13,
    The metal organic framework is supported on carrier particles,
    In the measurement step, an image of the measurement sample is taken using an image sensor having a plurality of light receiving elements while the measurement sample is irradiated with visible light;
    In the concentration determining step, the fluorine ion concentration of the sample water is determined based on a representative value obtained for the gradation value of at least one color component in the image.
  18.  サンプル保持部と、測定部と、濃度決定部を備える、フッ素イオン濃度測定装置であって、
     前記サンプル保持部は、請求項1~請求項12の何れか1つに記載の試薬と、フッ素イオンを含み得る試料水を混合して作製した測定サンプルを保持し、
     前記測定部は、前記測定サンプル中の前記色素分子の濃度と相関する物理量を、可視光を用いて測定し、
     前記濃度決定部は、前記物理量に基づいて前記試料水のフッ素イオン濃度を決定する、装置。
    A fluorine ion concentration measuring device comprising a sample holding section, a measuring section, and a concentration determining section,
    The sample holding unit holds a measurement sample prepared by mixing the reagent according to any one of claims 1 to 12 and sample water that may contain fluorine ions,
    The measurement unit measures a physical quantity correlated with the concentration of the dye molecule in the measurement sample using visible light,
    The concentration determination unit is a device that determines the fluorine ion concentration of the sample water based on the physical quantity.
  19.  請求項18に記載の装置であって、
     前記装置は、情報処理装置と、前記情報処理装置と通信可能に接続可能なアダプタを備え、
     前記情報処理装置は、前記濃度決定部を備え、
     前記アダプタは、前記サンプル保持部と、前記測定部を備える、装置。
    19. The device according to claim 18,
    The device includes an information processing device and an adapter that can be communicatively connected to the information processing device,
    The information processing device includes the concentration determining section,
    The adapter includes the sample holding section and the measuring section.
  20.  請求項19に記載の装置であって、
     前記アダプタの測定部は、前記情報処理装置から給電されて動作可能に構成される、装置。
    20. The device according to claim 19,
    The measurement unit of the adapter is configured to be operable by being supplied with power from the information processing device.
  21.  請求項19に記載の装置であって、
     前記情報処理装置は、測位部と、記憶部と、重畳表示部を備え、
     前記測位部は、前記測定の時点での現在位置データを取得し、
     前記記憶部は、前記フッ素イオン濃度と前記現在位置データを関連付けて測定データとして記憶し、
     前記重畳表示部は、前記記憶部から呼び出した前記測定データを地図上に重ねて表示する、装置。
    20. The device according to claim 19,
    The information processing device includes a positioning unit, a storage unit, and a superimposed display unit,
    The positioning unit acquires current position data at the time of the measurement,
    The storage unit stores the fluorine ion concentration and the current position data in association with each other as measurement data,
    The superimposition display section is a device that displays the measurement data read from the storage section in a superimposed manner on a map.
PCT/JP2023/011011 2022-08-23 2023-03-20 Reagent for measuring fluorine ion concentration, method for measuring fluorine ion concentration, and device for measuring fluorine ion concentration WO2024042756A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022132799 2022-08-23
JP2022-132799 2022-08-23

Publications (1)

Publication Number Publication Date
WO2024042756A1 true WO2024042756A1 (en) 2024-02-29

Family

ID=90012939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011011 WO2024042756A1 (en) 2022-08-23 2023-03-20 Reagent for measuring fluorine ion concentration, method for measuring fluorine ion concentration, and device for measuring fluorine ion concentration

Country Status (1)

Country Link
WO (1) WO2024042756A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026588A (en) * 1996-07-12 1998-01-27 Nec Corp Analyzing method for fluoride ion and analyzing reagent
JP2003254909A (en) * 2002-03-06 2003-09-10 Japan Science & Technology Corp Fluorescent sensor for detecting anion
JP2005265474A (en) * 2004-03-16 2005-09-29 National Institute Of Advanced Industrial & Technology Method for determinating fluoride ions
US20150369746A1 (en) * 2013-02-11 2015-12-24 The American University Of Cairo Chemosensors, compositions and uses thereof
WO2020175442A1 (en) * 2019-02-25 2020-09-03 国立大学法人信州大学 Method for measuring fluorine ion concentration, measurement device for fluorine ion concentration, method for producing fluorine ion concentration detecting material, and fluorine ion concentration detecting material
JP2021152471A (en) * 2020-03-24 2021-09-30 国立大学法人信州大学 Fluorine ion concentration detection test paper, fluorine ion concentration measuring method, and fluorine ion concentration measuring device
JP2023012339A (en) * 2021-07-13 2023-01-25 大成建設株式会社 Method for analyzing concentrations of fluorine and compound thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026588A (en) * 1996-07-12 1998-01-27 Nec Corp Analyzing method for fluoride ion and analyzing reagent
JP2003254909A (en) * 2002-03-06 2003-09-10 Japan Science & Technology Corp Fluorescent sensor for detecting anion
JP2005265474A (en) * 2004-03-16 2005-09-29 National Institute Of Advanced Industrial & Technology Method for determinating fluoride ions
US20150369746A1 (en) * 2013-02-11 2015-12-24 The American University Of Cairo Chemosensors, compositions and uses thereof
WO2020175442A1 (en) * 2019-02-25 2020-09-03 国立大学法人信州大学 Method for measuring fluorine ion concentration, measurement device for fluorine ion concentration, method for producing fluorine ion concentration detecting material, and fluorine ion concentration detecting material
JP2021152471A (en) * 2020-03-24 2021-09-30 国立大学法人信州大学 Fluorine ion concentration detection test paper, fluorine ion concentration measuring method, and fluorine ion concentration measuring device
JP2023012339A (en) * 2021-07-13 2023-01-25 大成建設株式会社 Method for analyzing concentrations of fluorine and compound thereof

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Fluoride", 2 November 2022, INTECHOPEN, ISBN: 978-1-80355-643-7, article HERNAN OTAL EUGENIO, LETICIA KIM MANUELA, KIMURA MUTSUMI: "Fluoride Detection and Quantification, an Overview from Traditional to Innovative Material-Based Methods", pages: 1 - 22, XP009552873, DOI: 10.5772/intechopen.102879 *
DEY SHUVANKAR, KUMAR ANSHU, MONDAL PRADIP KUMAR, CHOPRA DEEPAK, ROY RUPAM, JINDANI SANA, GANGULY BISHWAJIT, MAYYA CHAITHRA, BHATIA: "Ultrasensitive colorimetric detection of fluoride and arsenate in water and mammalian cells using recyclable metal oxacalixarene probe: a lateral flow assay", SCIENTIFIC REPORTS, NATURE PUBLISHING GROUP, US, vol. 12, no. 1, 12 October 2022 (2022-10-12), US , pages 17119, XP093143309, ISSN: 2045-2322, DOI: 10.1038/s41598-022-21407-w *
FLORIAN M. HINTERHOLZINGER, BASTIAN RüHLE, STEFAN WUTTKE, KONSTANTIN KARAGHIOSOFF, THOMAS BEIN: "Highly sensitive and selective fluoride detection in water through fluorophore release from a metal-organic framework", SCIENTIFIC REPORTS, vol. 3, no. 1, 1 December 2013 (2013-12-01), XP055720571, DOI: 10.1038/srep02562 *
LI QIAOYIN, CHEN HAIYAN, YOU SHUMIN, LIN ZHENYU, CHEN ZHITAO, HUANG FENGPING, QIU BIN: "Colorimetric and fluorescent Dual-Modality sensing platform based on UiO-66 for fluorion detection", MICROCHEMICAL JOURNAL, NEW YORK, NY, US, vol. 186, 1 March 2023 (2023-03-01), US , pages 108318, XP093143308, ISSN: 0026-265X, DOI: 10.1016/j.microc.2022.108318 *
OTAL EUGENIO H., KIM MANUELA LETICIA, DIETRICH STEFFEN, TAKADA RYOGO, NAKAYA SHINJI, KIMURA MUTSUMI: "Open-Source Portable Device for the Determination of Fluoride in Drinking Water", ACS SENSORS, AMERICAN CHEMICAL SOCIETY, US, vol. 6, no. 1, 22 January 2021 (2021-01-22), US, pages 259 - 266, XP093143317, ISSN: 2379-3694, DOI: 10.1021/acssensors.0c02273 *
OTAL EUGENIO HERNAN, KIM MANUELA LETICIA, HATTORI YOSHIYUKI, KITAZAWA YU, HINESTROZA JUAN PAULO, KIMURA MUTSUMI: "Versatile Covalent Postsynthetic Modification of Metal Organic Frameworks via Thermal Condensation for Fluoride Sensing in Waters", BIOENGINEERING, vol. 8, no. 12, 29 November 2021 (2021-11-29), pages 196, XP093143315, ISSN: 2306-5354, DOI: 10.3390/bioengineering8120196 *
OTAL EUGENIO HERNÁN, TANAKA HIDEKI, KIM MANUELA LETICIA, HINESTROZA JUAN PAULO, KIMURA MUTSUMI: "The Long and Bright Path of a Lanthanide MOF: From Basics towards the Application", CHEMISTRY - A EUROPEAN JOURNAL, JOHN WILEY & SONS, INC, DE, vol. 27, no. 26, 6 May 2021 (2021-05-06), DE, pages 7376 - 7382, XP093143316, ISSN: 0947-6539, DOI: 10.1002/chem.202005222 *
R. R. OZER, J. P. HINESTROZA: "One-step growth of isoreticular luminescent metal–organic frameworks on cotton fibers", RSC ADVANCES, vol. 5, no. 20, 1 January 2015 (2015-01-01), pages 15198 - 15204, XP055734243, DOI: 10.1039/C4RA15161E *
RUBIO-MARTINEZ MARTA, AVCI-CAMUR CEREN, THORNTON AARON W., IMAZ INHAR, MASPOCH DANIEL, HILL MATTHEW R.: "New synthetic routes towards MOF production at scale", CHEMICAL SOCIETY REVIEWS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 46, no. 11, 1 January 2017 (2017-01-01), UK , pages 3453 - 3480, XP093139467, ISSN: 0306-0012, DOI: 10.1039/C7CS00109F *

Similar Documents

Publication Publication Date Title
Wang et al. A fluorescent metal–organic framework for food real‐time visual monitoring
Shahat et al. Novel nano-conjugate materials for effective arsenic (V) and phosphate capturing in aqueous media
Shahat et al. Optical recognition and removal of Hg (II) using a new self-chemosensor based on a modified amino-functionalized Al-MOF
Yang et al. Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury (II) ions in aqueous phase
Tran-Thi et al. Optical chemical sensors based on hybrid organic–inorganic sol–gel nanoreactors
Huber et al. Optical sensor for seawater salinity
Wang et al. Synthesis of yttrium (III)-based rare-earth metal-organic framework nanoplates and its applications for sensing of fluoride ions and pH
US6653148B2 (en) Optical sensor for determining an analyte, and method of manufacturing the optical sensor
Zeng et al. Facile colorimetric sensing of Pb2+ using bimetallic lanthanide metal-organic frameworks as luminescent probe for field screen analysis of lead-polluted environmental water
El-Safty et al. Optical supermicrosensor responses for simple recognition and sensitive removal of Cu (II) ion target
El-Safty et al. Visual detection and revisable supermicrostructure sensor systems of Cu (II) analytes
CN109916864A (en) Stable fluorescence metal-organic framework compounds preparation and the method for detecting organophosphorus pesticide in water
DeGraff et al. Luminescence-based oxygen sensors
CN108489945A (en) It is a kind of to prepare the method and its application that carbon quantum dot detects hexavalent chromium based on gelatin
Huang et al. One-pot trapping luminescent rhodamine 110 into the cage of MOF-801 for nitrite detection in aqueous solution
JP4883577B2 (en) Chemical sensor material
JP6176636B2 (en) Mesoporous silica supporting iodine ion adsorbing compound, iodine ion collector and iodine recovery method using the same
Tolan et al. Cubically cage-shaped mesoporous ordered silica for simultaneous visual detection and removal of uranium ions from contaminated seawater
Otal et al. The long and bright path of a lanthanide MOF: From basics towards the application
WO2024042756A1 (en) Reagent for measuring fluorine ion concentration, method for measuring fluorine ion concentration, and device for measuring fluorine ion concentration
JP4810639B2 (en) Quantitative method using infrared fluorescent particles
JP5867681B2 (en) Oxygen sensor based on the ratio method
CN109154548A (en) The method and apparatus of Physico-Chemical Characterization for material
JP2013010082A (en) Mesoporous silica carrying compound having iodine ion adsorptivity, and iodine ion collector and method for collecting iodine using the same
Esmaeili et al. Modification of MCM-410-Based Core-Shell for Construction of a Colorimetric Gas Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856877

Country of ref document: EP

Kind code of ref document: A1