WO2024042734A1 - Ultrasonic inspection system and ultrasonic inspection method - Google Patents

Ultrasonic inspection system and ultrasonic inspection method Download PDF

Info

Publication number
WO2024042734A1
WO2024042734A1 PCT/JP2023/004590 JP2023004590W WO2024042734A1 WO 2024042734 A1 WO2024042734 A1 WO 2024042734A1 JP 2023004590 W JP2023004590 W JP 2023004590W WO 2024042734 A1 WO2024042734 A1 WO 2024042734A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
ultrasonic
model
ultrasonic inspection
inspection system
Prior art date
Application number
PCT/JP2023/004590
Other languages
French (fr)
Japanese (ja)
Inventor
雅則 北岡
裕久 溝田
亮 西水
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024042734A1 publication Critical patent/WO2024042734A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material

Definitions

  • the present invention relates to an ultrasonic inspection system and an ultrasonic inspection method.
  • Ultrasonic flaw detection and radiation flaw detection are useful as non-destructive testing methods for discovering internal defects, and ultrasonic flaw detection in particular is a method that allows safe inspection without the risk of exposure to radiation.
  • Ultrasonic flaw detection uses a sensor to transmit ultrasonic waves into the subject, and detects defects by receiving reflected waves and scattered waves caused by the defect. Therefore, for early detection of defects, it is necessary to be able to appropriately set the sensor installation position and the ultrasonic incident angle. In the past, these flaw detection conditions were determined by experienced inspection personnel, but due to the lack of skilled personnel and the complexity of object shapes such as parts with integrated structures, there are an increasing number of cases where analysis support is required.
  • Patent Document 1 discloses that upon receiving the input of the shape of the surface on which the sensor can be installed on the inspection target, the inspection location, sensor characteristics, and flaw detection conditions, an analysis of the detection strength of the inspection location is performed, and an installation position that maximizes the detection strength is determined.
  • An ultrasonic flaw detection system, program, and ultrasonic flaw detection method are disclosed.
  • Patent Document 1 describes a method of determining by analysis the installation position that maximizes the detection intensity on a surface where the sensor can be installed, the above-mentioned variations are not reflected. For example, even if the flaw detection conditions are the best in terms of detection intensity, the detection intensity tends to drop when variations are taken into consideration, and it is possible that a more robust inspection would be possible if the detection intensity was set under a different flaw detection condition.
  • the present invention has been developed in view of the above-mentioned problems, and is an ultrasonic technology that automatically determines robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) on a complex-shaped object based on a model, taking into account various dispersion factors.
  • the purpose of the present invention is to provide an ultrasonic inspection system and an ultrasonic inspection method.
  • the ultrasonic inspection system of the present invention is an ultrasonic inspection system that automatically determines flaw detection conditions, and includes an object model, a sensor accessible surface, object variation information, a defect model and an object information input section that inputs defect variation information; an analysis section that analyzes the propagation of ultrasonic waves and calculates a defect detection probability; and an analysis section that outputs a spatial distribution in which the sensor accessible surface corresponds to the defect detection probability.
  • An output processing section Other aspects of the present invention will be explained in the embodiments described below.
  • FIG. 1 is a configuration diagram showing functions of an ultrasonic inspection system according to a first embodiment.
  • FIG. 2 is a conceptual diagram showing an example of a subject model according to the first embodiment.
  • FIG. 3 is a conceptual diagram showing an example of object variation information according to the first embodiment.
  • FIG. 3 is a conceptual diagram showing an example of variation information of a defect model according to the first embodiment. It is an explanatory view showing an example of defect shape concerning a 1st embodiment. It is a conceptual diagram explaining the function of the analysis part concerning a 1st embodiment. It is a conceptual diagram explaining the function of the output processing part concerning a 1st embodiment.
  • 3 is a flowchart showing an operation procedure of the ultrasonic inspection system according to the first embodiment.
  • FIG. 7 is a conceptual diagram showing an example of a sound source model according to a second embodiment.
  • FIG. 7 is a conceptual diagram illustrating the functions of an ultrasonic propagation analysis section according to a second embodiment. It is a flowchart showing the detailed procedure of ultrasonic propagation analysis according to a second embodiment.
  • FIG. 1 is a configuration diagram showing the functions of an ultrasonic inspection system 100 according to the first embodiment.
  • FIG. 1 shows an example of functions that an ultrasonic inspection system 100 has.
  • the ultrasonic inspection system 100 includes a processing section 10, a storage section 20, an input section 30, an output section 40, and a communication section 50.
  • the processing section 10 includes a subject information input section 11, an analysis section 12, an output processing section 13, and the like.
  • the analysis section 12 includes an ultrasonic propagation analysis section 121 and a defect detection probability calculation section 122.
  • the output processing section 13 includes a defect detection probability distribution output section 131. Details of the processing unit 10 and the like will be described later.
  • the storage unit 20 contains object model information 21 that is information about the object model 111, sensor accessible surface information 22 that is information about the sensor accessible surface of the object model 111, and information about the dimensions of the object model 111. Dimensional information 23 , material property information 24 that is information on material properties constituting the object model 111 , defect model information 25 that is information on the defect model 114 in the object model 111 , and POD space created by the output processing unit 13 Distribution 72 etc. are stored. Information etc. in the storage unit 20 will be described later with reference to FIGS. 2 to 7. Note that POD is an abbreviation for Probability Of Detection and will be described later.
  • sensor-accessible surface is meant a surface that can be contacted by a sensor.
  • the processing unit 10 is a central processing unit (CPU), and executes various programs stored in a RAM (main storage device), HDD (auxiliary storage device), etc.
  • the storage unit 20 is an HDD, and stores various data for the ultrasonic inspection system 100 to perform processing.
  • the input unit 30 is a device such as a keyboard and a mouse for inputting instructions to the computer, and inputs instructions such as starting a program.
  • the output unit 40 is a display or the like, and displays the execution status and execution results of processing by the ultrasonic inspection system 100.
  • the communication unit 50 exchanges various data and commands with other devices via the network. Examples of the auxiliary storage device include a magnetic disk, a magneto-optical disk, and a semiconductor memory.
  • a series of processes for realizing various functions constituting the present invention are, for example, stored in an auxiliary storage device in the form of a program, and the CPU reads this program into the main storage device to process and calculate information. By executing the processing, various functions are realized.
  • the program may be pre-installed in an auxiliary storage device, stored in another computer-readable storage medium, distributed via wired or wireless communication means, or distributed via wired or wireless communication means.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • the object information input unit 11 inputs an object model 111 and a defect model 114, which are CAD (Computer-Aided Design) data, and stores them in the storage unit 20.
  • CAD Computer-Aided Design
  • FIG. 2 is a conceptual diagram showing an example of the subject model 111 according to the first embodiment.
  • the subject model 111 is displayed on an interface for inputting CAD data, and the designer can specify a file to load the data stored in the auxiliary storage device onto the program, or edit it directly on the screen. Enter using the following method.
  • the CAD data includes material properties (Young's modulus, Poisson's ratio, rigidity, density, etc.) given to each part of the structure. Furthermore, the subject model 111 holds a sensor accessible surface 112 and subject variation information 113.
  • the defect model 114 holds defect information such as the size, position, and angle of the assumed defect given to the subject model 111 with respect to the subject model. Furthermore, the defect model 114 holds defect variation information 115.
  • the object model 111 illustrated in FIG. 2 is composed of three materials: material (1), material (2), and material (3), and material (1) and material (2) are welded.
  • the defect model is set as a crack in the weld between material (1) and material (2).
  • Sensor accessible surfaces SA, SB, and SC which are surfaces accessible by the sensor S, are set.
  • the sensor accessible surface SA is set in the narrow area between the material (3) and the material (2), and variations in sensor access are likely to occur.
  • the sensor accessible surface SB is composed of a curved surface.
  • the sensor accessible surface SC is a flat surface.
  • a sensor S is temporarily installed on the sensor accessible surface SC.
  • FIG. 3 is a conceptual diagram showing an example of the subject variation information 113 according to the first embodiment.
  • variation factors set in the sensor accessible surface shown in the sensor accessible surface information 22 include sensor contact variation, sensor position variation, sensor contact angle variation, and the like.
  • Dispersion is given as a parameter of a probability distribution such as the mean and standard deviation. These variations are actually parameters that reflect variations in the technique of the inspection worker, the surface roughness of the object to be inspected, the state of rust, the accuracy of sensor installation, and the like.
  • the sensor-accessible surface shown in the sensor-accessible surface information 22 is a curved surface or in a narrow part, these variations generally tend to increase.
  • the dimensional variations shown in the dimensional information 23 are held for each part of the CAD data as dimensional information such as the thickness of the member and their processing variations.
  • the variations in material properties shown in the material property information 24 are held as parameters related to ultrasonic propagation, such as the material type, its density, Young's modulus, and Poisson's ratio. In addition to density, Young's modulus, and Poisson's ratio, longitudinal sound velocity, transverse sound velocity, and elastic stiffness may be input.
  • FIG. 4 is a conceptual diagram showing an example of variation information of the defect model 114 according to the first embodiment.
  • FIG. 4 shows defect model information 25 as an example of variation information of the defect model 114.
  • Basic information on the defect model 114 includes shape, size, positional deviation, installation angle with respect to the object model, etc. There is a variation for each, and the mean and standard deviation are specified as the variation information.
  • the shape can be selected and input from candidates such as planar, spherical, or cylindrical, or an arbitrary shape can be input using a CAD model.
  • FIG. 5 is an explanatory diagram showing an example of a defect shape according to the first embodiment.
  • FIG. 5 shows an example of defect shapes that can be specified in FIG. 4.
  • a planar defect model 51, a spherical defect model 52, and a cylindrical defect model 53 are illustrated.
  • a defect model of a specified size is set at a specified position in the object model at a specified angle, and an ultrasonic wave is emitted from the sensor S, and the way it is reflected is analyzed by the analysis unit 12. That will happen.
  • the analysis unit 12 will be described later.
  • FIG. 6 is a conceptual diagram illustrating the functions of the analysis section 12 according to the first embodiment.
  • the analysis section 12 includes the ultrasonic propagation analysis section 121 and the defect detection probability calculation section 122.
  • An explanatory diagram 61 is a graph showing the variation information shown in FIGS. 3 and 4. Probability distributions of variations in multiple pieces of object information and variations in defect models are shown. From each probability distribution, information necessary to construct an ultrasound propagation model is randomly sampled one by one.
  • An explanatory diagram 62 shows that an ultrasonic propagation model is constructed from the sampled inspection object and defect model, and the detected amount of ultrasonic waves at each point on the sensor accessible surface is analyzed by ultrasonic propagation analysis. A so-called Monte Carlo calculation is performed by repeating this random sampling and ultrasound propagation analysis many times.
  • Explanatory diagram 63 shows a graph in which the results of the Monte Carlo calculation are plotted with the calculated detection amount on the vertical axis and the defect size at that time on the horizontal axis. Further, a threshold value is set, and when the detected amount exceeds the threshold value, it is determined that the detection is possible, and when it is less than the threshold value, it is determined that the detection is impossible. This threshold value can be input from a separate input interface.
  • the probability of defect detection can be estimated using the results of the Monte Carlo calculation.
  • Maximum likelihood estimation methods such as the Berans method and the Hit/Miss method are known as estimation methods for estimating POD.
  • Explanatory diagram 64 illustrates the results estimated by the Hit/Miss method, and is a curve of the defect detection probability when the vertical axis is the defect detection probability and the defect size is the horizontal axis, and is a so-called POD curve. .
  • a result in which the detected amount exceeds a threshold value is plotted as a hit with a detection probability of 1
  • a result in which the detected amount is less than a threshold is plotted as a miss with a detection probability of 0
  • a POD curve is estimated from the ratio of hits and misses.
  • the POD curve of ultrasonic flaw detection is useful for setting pass/fail criteria in non-destructive testing of structures, setting inspection frequency, quantitatively understanding the performance of new non-destructive testing technology or equipment, and quantifying different non-destructive testing methods. It is known that the method can be applied to such applications as comparisons between systems, quantitative evaluation of the degree of deterioration in equipment in use, and understanding of the abilities of inspection engineers.
  • POD is used as an indicator of the suitability of flaw detection conditions (sensor installation, ultrasonic wave incident direction).
  • sensor installation ultrasonic wave incident direction.
  • the output processing section 13 includes a defect detection probability distribution output section 131. Note that other displays necessary for operations can be displayed on the output section 40 (display section).
  • FIG. 7 is a conceptual diagram illustrating the functions of the output processing section 13 according to the first embodiment.
  • FIG. 7 shows a subject model 71 and a POD spatial distribution 72.
  • the defect detection probability distribution output unit 131 outputs a spatial distribution in which sensor accessible surfaces and PODs correspond to each other.
  • a to D of the subject model 71 in FIG. 7 correspond to each point on the sensor-accessible surface.
  • the horizontal axis of the POD spatial distribution 72 corresponds to the sensor installation position on the surface of the subject.
  • points B and C near the defect position are the optimal sensor installation positions.
  • point D which is on the sensor accessible surface and has the highest POD, is selected as the optimal sensor installation position.
  • the angle used when the POD at point D was analyzed by the ultrasonic propagation analysis unit 121 is the optimum angle.
  • the POD can be used as an indicator of the appropriateness of the flaw detection conditions (sensor installation, ultrasonic wave incident direction).
  • the average value and standard deviation of the ultrasonic detection amount are displayed in correspondence with each point on the sensor accessible surface, and these results are judged comprehensively to determine the flaw detection conditions. Good too.
  • the ultrasonic inspection system 100 it is possible to automatically determine, on a model basis, robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) that take into account various variation factors.
  • inspection plans can be determined rationally.
  • by applying the present invention at the time of design and using defect detection probability as an inspection index it is possible to support a design that is easy to inspect.
  • FIG. 8 is a flowchart showing the operating procedure of the ultrasonic testing system 100 according to the first embodiment.
  • the ultrasonic inspection method described below is realized, for example, by a CPU reading out a design support program stored in an auxiliary storage device to a main storage device, and processing and calculating the information.
  • the user inputs the subject model 111 and subject variation information 113 in step S11, and the defect model 114 and defect variation information 115 in step S12.
  • an appropriate input interface may be prepared and the user may input an arbitrary value, or, for example, a candidate list may be prepared and the user may select from among the candidates. It's okay.
  • step S13 the ultrasound propagation analysis unit 121 randomly samples one value for each item based on the distribution information (average and standard deviation) from the object variation and defect variation.
  • step S14 the ultrasonic propagation analysis section 121 performs ultrasonic propagation analysis.
  • An ultrasonic propagation analysis model is constructed using the randomly sampled values, and the ultrasonic detection amount for each point on the sensor accessible surface is calculated by ultrasonic propagation analysis.
  • step S15 the ultrasonic propagation analysis unit 121 determines whether a sufficient number of samples have been calculated in the estimation of POD, which will be described later. Whether the number of samples is sufficient is determined by the user's direct input or by whether the confidence interval of the estimated detection probability falls within the range specified by the user.
  • step S15 If it is determined in step S15 that a sufficient number of samples has not been calculated (step S15: No), the ultrasonic propagation analysis unit 121 returns to step S13 and performs random calculation again based on the object variation and defect variation. Build an ultrasonic propagation analysis model by sampling. If it is determined in step S15 that a sufficient number of samples has been calculated (step S15: Yes), the ultrasonic propagation analysis unit 121 proceeds to step S16.
  • step S16 the defect detection probability calculation unit 122 calculates POD from the ultrasonic detection intensity calculated multiple times up to step S15.
  • Maximum likelihood estimation methods such as the Berans method and the Hit/Miss method are known as methods for estimating the POD curve from the ultrasonic detection intensity.
  • step S17 the defect detection probability distribution output unit 131 associates the POD with each point on the access surface and displays the result on the display unit.
  • the user selects flaw detection conditions based on the displayed results. By comparing the PODs for the same defect size, it is possible to quantitatively compare the flaw detection conditions in terms of inspectability.
  • the defect size is selected by the user using an interface such as a slider.
  • an interface such as a slider.
  • the POD value itself, it is also possible to display the spatial distribution of defect sizes at which the POD is equal to a specific value, such as 50%.
  • the average value and standard deviation of the detected amount of ultrasonic waves can be displayed in correspondence with each point on the sensor-accessible surface.
  • the POD can be used as an indicator of the appropriateness of the flaw detection conditions (sensor installation, ultrasonic wave incident direction).
  • the average value and standard deviation of the ultrasonic detection amount are displayed in correspondence with each point on the sensor accessible surface, and these results are judged comprehensively to determine the flaw detection conditions. Good too.
  • the ultrasonic inspection method it is possible to automatically determine robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) based on a model, taking into account various variation factors.
  • inspection plans can be determined rationally.
  • by applying the present invention at the time of design and using defect detection probability as an inspection index it is possible to support a design that is easy to inspect.
  • ⁇ Second embodiment> (Ultrasonic inspection system)
  • ultrasonic propagation analysis was realized using a general physical simulation method. In that case, it is necessary to virtually install the sensor S at each point on the sensor-accessible surface and perform Monte Carlo calculations for each condition while changing the ultrasonic incident angle.
  • Monte Carlo calculations for each condition while changing the ultrasonic incident angle.
  • the second embodiment a configuration in which the amount of analysis is further reduced will be described. Below, only the differences from the first embodiment will be explained.
  • FIG. 9 is a configuration diagram showing the functions of an ultrasonic inspection system 100A according to the second embodiment.
  • FIG. 9 is a functional block diagram showing an example of the functions of the ultrasonic inspection system 100A.
  • the defect model 114 of the object information input unit 11 includes defect information such as the size, position, and angle of the assumed defect with respect to the object model described in the first embodiment, as well as defect variation information 115. , holds a sound source model 116.
  • FIG. 10 is a conceptual diagram showing an example of the sound source model 116 according to the second embodiment.
  • the sound source model 116 represents a reflection response characteristic when a plane wave is incident on a defect.
  • a contour diagram shows the reflection intensity distribution when a plane wave is incident on each defect of a planar defect model 51A, a spherical defect model 52A, and a cylindrical defect model 53A from the positive direction of the x-axis.
  • These reflection response characteristics are maintained within the system for typical shapes such as planar, spherical, and cylindrical defects, and are selected from a list-like interface. For shapes that are not on the list, enter a mathematical formula or pre-calculated results for the reflection response characteristics.
  • FIG. 11 is a conceptual diagram illustrating the functions of the ultrasonic propagation analysis section 121 according to the second embodiment.
  • the ultrasonic propagation analysis unit 121 of this embodiment provides one method for reducing the amount of analysis. First, (1) assume a virtual defect, and (2) assume a plane wave that is incident on the defect at a certain angle. At this time, (3) geometrically find the intersection between the sensor and the sensor-accessible surface from the defect position and the incident angle of the plane wave. (4) Calculate the plane wave response intensity from the defect at this intersection using the sound source model 116. Calculating the detected amount using the response to a plane wave essentially corresponds to considering the defect as a sound source and calculating the ultrasonic propagation from the defect to the sensor-accessible surface in the opposite direction.
  • FIG. 12 is a flowchart showing detailed procedures for ultrasonic propagation analysis according to the second embodiment.
  • FIG. 12 shows the detailed procedure of step S14 (ultrasonic propagation analysis) in FIG. 8.
  • the ultrasonic propagation analysis unit 121 assumes a plane wave that is incident on the defect at a certain angle.
  • one direction is selected from two-dimensional angles and 2 ⁇ radian directions with appropriate resolution.
  • one direction is selected from the 4 ⁇ steradian directions at a three-dimensional solid angle with an appropriate resolution.
  • step S202 the ultrasonic propagation analysis unit 121 geometrically determines the intersection between the sensor and the sensor-accessible surface from the defect position and the incident angle of the plane wave.
  • the ultrasonic propagation analysis unit 121 calculates the plane wave response intensity from the defect at the intersection.
  • plane wave responses it is possible to obtain analytical solutions for relatively simple defect shapes such as planar defects, cylindrical defects, and spherical defects, and these plane wave response characteristics can be calculated at high speed.
  • relatively complex defect shapes it is possible to calculate the amount of ultrasonic detection at the intersection with the sensor-accessible surface by performing a physical simulation in the microscopic area around the defect and extending the solution. , the amount of calculation can be reduced compared to calculations involving the entire area.
  • step S204 the ultrasonic propagation analysis unit 121 determines whether calculation of all angles to be calculated has been completed. If it is determined that all the angles to be calculated have not been completed yet (step S204: No), the process returns to step S201, selects another angle, and executes steps S202 and S203 again. If it is determined in step S204 that all angles to be calculated have been completed (step S204: Yes), step S14 is completed.
  • the ultrasonic inspection system of the present invention can be configured and the POD can be used as an indicator of the appropriateness of the flaw detection conditions (sensor installation, ultrasonic incident direction). .
  • the ultrasonic inspection system 100 of this embodiment has the following features.
  • An ultrasonic inspection system that automatically determines flaw detection conditions, in which an object model 111, a sensor accessible surface 112, object variation information 113, and a defect model 114 and defect variation information 115 are input.
  • An information input unit 11 an analysis unit 12 that analyzes the propagation of ultrasonic waves and calculates a defect detection probability, and an output processing unit 13 that outputs a spatial distribution that corresponds to the sensor accessible surface 112 and the defect detection probability. It is characterized by having. This makes it possible to automatically determine, on a model basis, robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) for complex-shaped objects, taking into account various variation factors.
  • the object information input unit 11 receives the sound source model 116 in addition to the defect model 114 and the defect variation information 115 (see FIG. 9).
  • An ultrasonic inspection system that automatically determines flaw detection conditions, in which an object model 111, a sensor accessible surface 112, object variation information 113, and a defect model 114 and defect variation information 115 are input.
  • An information input section 11 an analysis section 12 that analyzes the propagation of ultrasonic waves and calculates the ultrasonic detection intensity and its dispersion, and outputs a spatial distribution that corresponds to the sensor accessible surface, the ultrasonic detection intensity, and its dispersion. It is characterized by having an output processing section 13.
  • the object information input unit 11 receives the sound source model 116 in addition to the defect model 114 and the defect variation information 115 (see FIG. 9).
  • the object variation information is the object shape variation (see dimension information 23 in FIG. 3).
  • the object variation information is the variation in object material properties (see material property information 24 in FIG. 3).
  • the subject variation information is the variation in the technique of the inspection worker for each sensor-accessible surface 112 (see sensor-accessible surface information 22 in FIG. 3).
  • the defect variation information is variation in defect properties (see defect model information 25 in Figure 4).
  • An ultrasonic inspection method that automatically determines flaw detection conditions, including an object information input step (inputting the object model, sensor accessible surface, and object variation information, as well as the defect model and defect variation information). (see steps S11 and S12), an ultrasonic propagation analysis step for analyzing the propagation of ultrasonic waves (see step S14), and a calculation step for calculating the defect detection probability based on the analysis of the ultrasonic propagation analysis step (see step S16). and an output processing step (step S17) for outputting a spatial distribution in which the sensor accessible surface corresponds to the defect detection probability.
  • the ultrasound propagation analysis step can analyze ultrasound propagating from the defective sound source model.
  • the calculation step calculates the ultrasonic detection intensity and its variation instead of calculating the defect detection probability
  • the output processing step calculates the sensor accessible surface and the ultrasonic detection intensity. It is possible to output a spatial distribution that corresponds to the information and its variations.
  • the ultrasonic inspection system 100 of this embodiment it is possible to automatically determine, on a model basis, robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) for complex-shaped objects, taking into account various variation factors. It is.
  • this embodiment is applied to maintenance work such as periodic inspection items, it is possible to rationally determine an inspection plan.
  • this embodiment at the time of design and using defect detection probability as an inspection index, it is possible to support a design that is easy to inspect.
  • the scope of this embodiment an apparatus independent from the ultrasonic examination system, it is also possible to use it as an ultrasonic examination support apparatus that supports an operator of ultrasonic examination.
  • each of the above-mentioned configurations, functions, processing units, processing means, etc. may be partially or entirely realized by hardware, for example, by designing an integrated circuit.
  • each of the configurations, functions, etc. described above may be realized by software by a processor interpreting and executing programs for realizing the respective functions.
  • Information such as programs, tables, files, etc. that implement each function can be stored in a memory, a recording device such as a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
  • control lines and information lines are shown that are considered necessary for explanation, and not all control lines and information lines are necessarily shown in the product. In reality, almost all configurations may be considered interconnected.
  • processing section 11 object information input section 12 analysis section 13 output processing section 20 storage section 21 object model information 22 sensor accessible surface information 23 dimension information 24 material property information 25 defect model information 30 input section 40 output section 50 communication section 51, 52, 53 Defect model 51A, 52A, 53A Defect model (sound source model) 72 POD spatial distribution 100 Ultrasonic inspection system 111 Object model 112 Sensor accessible surface 113 Object variation information 114 Defect model 115 Defect variation information 116 Sound source model 121 Ultrasonic propagation analysis section 122 Defect detection probability calculation section 131 Defect detection probability distribution Output section S Sensor SA, SB, SC Sensor accessible surface

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

This ultrasonic inspection system (100) for automatically determining defect detection conditions has: a subject information input unit (11) for inputting a subject model (111), sensor accessible surfaces (112), subject variation information (113), and a defect model (114) and defect variation information (115); an analysis unit (12) which analyzes the propagation of an ultrasonic wave and calculates a defect detection probability; and an output processing unit (13) which outputs a space distribution in which the sensor accessible surfaces (112) and the defect detection probability have been matched. The subject variation information includes the variation in subject shapes, the variation in subject material characteristics, and variations in manual skill of inspection operators for each of the sensor accessible surfaces.

Description

超音波検査システム及び超音波検査方法Ultrasonic inspection system and ultrasonic inspection method
 本発明は、超音波検査システム及び超音波検査方法に関するものである。 The present invention relates to an ultrasonic inspection system and an ultrasonic inspection method.
 原子力発電所、鉄道台車などに代表される社会インフラ機器を維持管理していくためには、検査技術の高度化による高効率化が求められている。老朽化により生じる欠陥は、表面にあらわれるものと、内部に生じるものがある。特に、内部に生じる欠陥を早期に発見することが事故を防ぐために重要である。内部に生じる欠陥を発見するための非破壊検査手法としては、超音波探傷と放射線探傷が有用であり、特に超音波は被ばくリスクのない安全な検査が可能な手法である。 In order to maintain and manage social infrastructure equipment, such as nuclear power plants and railway bogies, there is a need for higher efficiency through the advancement of inspection technology. Defects caused by aging include those that appear on the surface and those that occur internally. In particular, early detection of internal defects is important to prevent accidents. Ultrasonic flaw detection and radiation flaw detection are useful as non-destructive testing methods for discovering internal defects, and ultrasonic flaw detection in particular is a method that allows safe inspection without the risk of exposure to radiation.
 超音波探傷は、センサを用いて被検体内に超音波を送信し、欠陥による反射波や散乱波を受信することで、欠陥を発見する。したがって、欠陥の早期発見のためには、センサ設置位置や超音波入射角度を適切に設定できる必要がある。従来は検査熟練者がこれらの探傷条件を決めていたが、熟練者不足、一体化構造の部品など対象物形状が複雑化のため、解析の支援が必要なケースが増加している。 Ultrasonic flaw detection uses a sensor to transmit ultrasonic waves into the subject, and detects defects by receiving reflected waves and scattered waves caused by the defect. Therefore, for early detection of defects, it is necessary to be able to appropriately set the sensor installation position and the ultrasonic incident angle. In the past, these flaw detection conditions were determined by experienced inspection personnel, but due to the lack of skilled personnel and the complexity of object shapes such as parts with integrated structures, there are an increasing number of cases where analysis support is required.
 特許文献1には、検査対象におけるセンサ設置可能面の形状と検査箇所、センサ特性、および探傷条件の入力を受けて、検査箇所の検出強度の解析を実行し、検出強度を最大化する設置位置を求める超音波探傷システム、プログラムおよび超音波探傷方法が開示されている。 Patent Document 1 discloses that upon receiving the input of the shape of the surface on which the sensor can be installed on the inspection target, the inspection location, sensor characteristics, and flaw detection conditions, an analysis of the detection strength of the inspection location is performed, and an installation position that maximizes the detection strength is determined. An ultrasonic flaw detection system, program, and ultrasonic flaw detection method are disclosed.
特開2019-184409号公報Japanese Patent Application Publication No. 2019-184409
 一般に、超音波探傷においては、欠陥の形などの欠陥性状や、対象形状、材料特性、検査作業者の手技のばらつきなどを含む、多くのばらつき要因が存在する。これらのばらつきによって超音波検出強度は解析結果よりも低下する。 In general, in ultrasonic flaw detection, there are many sources of variation, including defect properties such as defect shape, target shape, material properties, and variations in the technique of the inspection operator. Due to these variations, the ultrasonic detection intensity is lower than the analysis result.
 特許文献1は、センサ設置可能面における検出強度を最大化する設置位置を解析により求める方法が記載されているものの、上記ばらつきは反映されていない。例えば、検出強度で最も良い探傷条件だったとしても、ばらつきまで考慮すると検出強度が低下しやすく、別の探傷条件での検出強度の方がロバストな検査が可能であることなどが考えられる。 Although Patent Document 1 describes a method of determining by analysis the installation position that maximizes the detection intensity on a surface where the sensor can be installed, the above-mentioned variations are not reflected. For example, even if the flaw detection conditions are the best in terms of detection intensity, the detection intensity tends to drop when variations are taken into consideration, and it is possible that a more robust inspection would be possible if the detection intensity was set under a different flaw detection condition.
 本発明は、上記課題に鑑みなされたものであって、複雑形状物に対して、様々なばらつき要因を考慮したロバストな探傷条件(センサ設置、超音波入射方向)をモデルベースで自動決定する超音波検査システム及び超音波検査方法を提供することを目的とする。 The present invention has been developed in view of the above-mentioned problems, and is an ultrasonic technology that automatically determines robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) on a complex-shaped object based on a model, taking into account various dispersion factors. The purpose of the present invention is to provide an ultrasonic inspection system and an ultrasonic inspection method.
 前記課題を解決するために、本発明の超音波検査システムは、探傷条件を自動決定する超音波検査システムであって、被検体モデル、センサアクセス可能面、及び被検体ばらつき情報と、欠陥モデル及び欠陥ばらつき情報とを入力する被検体情報入力部と、超音波の伝搬を解析し、欠陥検出確率を算出する解析部と、前記センサアクセス可能面と欠陥検出確率を対応させた空間分布を出力する出力処理部と、を有することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。 In order to solve the above problems, the ultrasonic inspection system of the present invention is an ultrasonic inspection system that automatically determines flaw detection conditions, and includes an object model, a sensor accessible surface, object variation information, a defect model and an object information input section that inputs defect variation information; an analysis section that analyzes the propagation of ultrasonic waves and calculates a defect detection probability; and an analysis section that outputs a spatial distribution in which the sensor accessible surface corresponds to the defect detection probability. An output processing section. Other aspects of the present invention will be explained in the embodiments described below.
 複雑形状物に対して、様々なばらつき要因を考慮したロバストな探傷条件(センサ設置、超音波入射方向)をモデルベースで自動決定することが可能である。 For complex-shaped objects, it is possible to automatically determine robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) based on a model, taking into account various variation factors.
第1実施形態に係る超音波検査システムの機能を示す構成図である。FIG. 1 is a configuration diagram showing functions of an ultrasonic inspection system according to a first embodiment. 第1実施形態に係る被検体モデルの一例を示す概念図である。FIG. 2 is a conceptual diagram showing an example of a subject model according to the first embodiment. 第1実施形態に係る被検体ばらつき情報の一例を示す概念図である。FIG. 3 is a conceptual diagram showing an example of object variation information according to the first embodiment. 第1実施形態に係る欠陥モデルのばらつき情報の一例を示す概念図である。FIG. 3 is a conceptual diagram showing an example of variation information of a defect model according to the first embodiment. 第1実施形態に係る欠陥形状の例を示す説明図である。It is an explanatory view showing an example of defect shape concerning a 1st embodiment. 第1実施形態に係る解析部の機能を説明する概念図である。It is a conceptual diagram explaining the function of the analysis part concerning a 1st embodiment. 第1実施形態に係る出力処理部の機能を説明する概念図である。It is a conceptual diagram explaining the function of the output processing part concerning a 1st embodiment. 第1実施形態に係る超音波検査システムの動作手順を示したフローチャートである。3 is a flowchart showing an operation procedure of the ultrasonic inspection system according to the first embodiment. 第2実施形態に係る超音波検査システムの機能を示す構成図である。It is a block diagram which shows the function of the ultrasonic examination system based on 2nd Embodiment. 第2実施形態に係る音源モデルの一例を示す概念図である。FIG. 7 is a conceptual diagram showing an example of a sound source model according to a second embodiment. 第2実施形態に係る超音波伝搬解析部の機能を説明する概念図である。FIG. 7 is a conceptual diagram illustrating the functions of an ultrasonic propagation analysis section according to a second embodiment. 第2実施形態に係る超音波伝搬解析の詳細手順を示したフローチャートである。It is a flowchart showing the detailed procedure of ultrasonic propagation analysis according to a second embodiment.
 以下,本発明の実施形態を,図面を用いて説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Hereinafter, embodiments of the present invention will be described using the drawings. Note that in each drawing, the same components are denoted by the same reference numerals, and detailed explanations of overlapping parts will be omitted.
<第1実施形態>
(超音波検査システム)
 図1は、第1実施形態に係る超音波検査システム100の機能を示す構成図である。図1は、超音波検査システム100が有する機能の一例を示す。超音波検査システム100は、処理部10、記憶部20、入力部30、出力部40、通信部50を有する。処理部10は、被検体情報入力部11、解析部12、出力処理部13等を有する。解析部12は、超音波伝搬解析部121、欠陥検出確率算出部122を有する。出力処理部13は、欠陥検出確率分布出力部131を有する。処理部10等の詳細は後述する。
<First embodiment>
(Ultrasonic inspection system)
FIG. 1 is a configuration diagram showing the functions of an ultrasonic inspection system 100 according to the first embodiment. FIG. 1 shows an example of functions that an ultrasonic inspection system 100 has. The ultrasonic inspection system 100 includes a processing section 10, a storage section 20, an input section 30, an output section 40, and a communication section 50. The processing section 10 includes a subject information input section 11, an analysis section 12, an output processing section 13, and the like. The analysis section 12 includes an ultrasonic propagation analysis section 121 and a defect detection probability calculation section 122. The output processing section 13 includes a defect detection probability distribution output section 131. Details of the processing unit 10 and the like will be described later.
 記憶部20には、被検体モデル111の情報である被検体モデル情報21、被検体モデル111のセンサアクセス可能面の情報であるセンサアクセス可能面情報22、被検体モデル111の寸法の情報である寸法情報23、被検体モデル111を構成する材料特性の情報である材料特性情報24、被検体モデル111にある欠陥モデル114の情報である欠陥モデル情報25、出力処理部13で作成されたPOD空間分布72等が記憶されている。記憶部20の情報等は、図2~図7で後述する。なお、PODは、Probability Of Detectionの略であり後述する。センサアクセス可能面とは、センサを接触させることができる面を意味する。 The storage unit 20 contains object model information 21 that is information about the object model 111, sensor accessible surface information 22 that is information about the sensor accessible surface of the object model 111, and information about the dimensions of the object model 111. Dimensional information 23 , material property information 24 that is information on material properties constituting the object model 111 , defect model information 25 that is information on the defect model 114 in the object model 111 , and POD space created by the output processing unit 13 Distribution 72 etc. are stored. Information etc. in the storage unit 20 will be described later with reference to FIGS. 2 to 7. Note that POD is an abbreviation for Probability Of Detection and will be described later. By sensor-accessible surface is meant a surface that can be contacted by a sensor.
 図1において、処理部10は、中央演算処理装置(CPU)であり、RAM(主記憶装置)やHDD(補助記憶装置)等に格納される各種プログラムを実行する。記憶部20は、HDDであり、超音波検査システム100が処理を実行するための各種データを保存する。入力部30は、キーボードやマウス等のコンピュータに指示を入力するための装置であり、プログラム起動等の指示を入力する。出力部40は、ディスプレイ等であり、超音波検査システム100による処理の実行状況や実行結果等を表示する。通信部50は、ネットワークを介して、他の装置と各種データやコマンドを交換する。補助記憶装置は、例えば、磁気ディスク、光磁気ディスク、半導体メモリ等が挙げられる。 In FIG. 1, the processing unit 10 is a central processing unit (CPU), and executes various programs stored in a RAM (main storage device), HDD (auxiliary storage device), etc. The storage unit 20 is an HDD, and stores various data for the ultrasonic inspection system 100 to perform processing. The input unit 30 is a device such as a keyboard and a mouse for inputting instructions to the computer, and inputs instructions such as starting a program. The output unit 40 is a display or the like, and displays the execution status and execution results of processing by the ultrasonic inspection system 100. The communication unit 50 exchanges various data and commands with other devices via the network. Examples of the auxiliary storage device include a magnetic disk, a magneto-optical disk, and a semiconductor memory.
 本発明を構成する各種機能を実現するための一連の処理は、一例として、プログラムの形式で補助記憶装置に記憶されており、このプログラムをCPUが主記憶装置に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、補助記憶装置に予めインストールされている形態や、他のコンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態や複数のコンピュータが協働してプログラムを実行する形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 A series of processes for realizing various functions constituting the present invention are, for example, stored in an auxiliary storage device in the form of a program, and the CPU reads this program into the main storage device to process and calculate information. By executing the processing, various functions are realized. The program may be pre-installed in an auxiliary storage device, stored in another computer-readable storage medium, distributed via wired or wireless communication means, or distributed via wired or wireless communication means. A mode in which a plurality of computers cooperate to execute a program may also be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
(被検体情報入力部の構成と機能)
 被検体情報入力部11は、CAD(Computer-Aided Design)データである被検体モデル111及び欠陥モデル114を入力し、記憶部20に保持する。
(Structure and function of subject information input section)
The object information input unit 11 inputs an object model 111 and a defect model 114, which are CAD (Computer-Aided Design) data, and stores them in the storage unit 20.
 図2は、第1実施形態に係る被検体モデル111の一例を示す概念図である。被検体モデル111は、CADデータを入力するインターフェース上に表示されており、あらかじめ補助記憶装置に保存したデータを、設計者がファイル指定してプログラム上にロードしたり、画面上で直接編集するなどの方法で入力する。 FIG. 2 is a conceptual diagram showing an example of the subject model 111 according to the first embodiment. The subject model 111 is displayed on an interface for inputting CAD data, and the designer can specify a file to load the data stored in the auxiliary storage device onto the program, or edit it directly on the screen. Enter using the following method.
 CADデータには、構造物の各部位に与えられる材料特性(ヤング率、ポアソン比、剛性率、密度等)が含まれている。さらに、被検体モデル111は、センサアクセス可能面112および被検体ばらつき情報113を保持している。 The CAD data includes material properties (Young's modulus, Poisson's ratio, rigidity, density, etc.) given to each part of the structure. Furthermore, the subject model 111 holds a sensor accessible surface 112 and subject variation information 113.
 欠陥モデル114は、被検体モデル111に付与する想定欠陥のサイズ、位置、被検体モデルに対する角度などの欠陥情報を保持している。さらに、欠陥モデル114は欠陥ばらつき情報115を保持している。 The defect model 114 holds defect information such as the size, position, and angle of the assumed defect given to the subject model 111 with respect to the subject model. Furthermore, the defect model 114 holds defect variation information 115.
 図2に例示した被検体モデル111は材料(1)、材料(2)、材料(3)の三種の材料から構成され、材料(1)と材料(2)は溶接されている。欠陥モデルは材料(1)と材料(2)の間の溶接部にき裂として設定されている。センサSがアクセス可能な面であるセンサアクセス可能面SA、SB、SCが設定されている。センサアクセス可能面SAは、材料(3)と材料(2)の間の狭隘部に設定されており、センサアクセスのばらつきが生じやすい。センサアクセス可能面SBは、曲面で構成されている。センサアクセス可能面SCは、平面部である。センサアクセス可能面SCにセンサSが仮に設置されている。 The object model 111 illustrated in FIG. 2 is composed of three materials: material (1), material (2), and material (3), and material (1) and material (2) are welded. The defect model is set as a crack in the weld between material (1) and material (2). Sensor accessible surfaces SA, SB, and SC, which are surfaces accessible by the sensor S, are set. The sensor accessible surface SA is set in the narrow area between the material (3) and the material (2), and variations in sensor access are likely to occur. The sensor accessible surface SB is composed of a curved surface. The sensor accessible surface SC is a flat surface. A sensor S is temporarily installed on the sensor accessible surface SC.
 図3は、第1実施形態に係る被検体ばらつき情報113の一例を示す概念図である。センサアクセス可能面情報22に示すセンサアクセス可能面に設定するばらつき要因として、センサ接触ばらつき、センサ位置ばらつき、センサ接触角度ばらつきなどを例示している。ばらつきは平均と標準偏差といった確率分布のパラメータとして与えられる。これらのばらつきは、現実的には検査作業者の手技のばらつきや、被検体の表面粗さ、さびの状態、センサの設置精度などを反映したパラメータである。 FIG. 3 is a conceptual diagram showing an example of the subject variation information 113 according to the first embodiment. Examples of variation factors set in the sensor accessible surface shown in the sensor accessible surface information 22 include sensor contact variation, sensor position variation, sensor contact angle variation, and the like. Dispersion is given as a parameter of a probability distribution such as the mean and standard deviation. These variations are actually parameters that reflect variations in the technique of the inspection worker, the surface roughness of the object to be inspected, the state of rust, the accuracy of sensor installation, and the like.
 センサアクセス可能面情報22に示すセンサアクセス可能面は、曲面であったり、狭隘部にあったりすると、これらのばらつきは増加する傾向であることが一般的である。 If the sensor-accessible surface shown in the sensor-accessible surface information 22 is a curved surface or in a narrow part, these variations generally tend to increase.
 寸法情報23に示す寸法に関するばらつきは、CADデータの各部位について、例えば部材の厚さなどの寸法情報とそれらの加工ばらつきとして保持されている。 The dimensional variations shown in the dimensional information 23 are held for each part of the CAD data as dimensional information such as the thickness of the member and their processing variations.
 材料特性情報24に示す材料特性に関するばらつきは、材料種とその密度、ヤング率、ポアソン比などの超音波伝搬に関するパラメータとして保持されている。密度、ヤング率、ポアソン比以外にも、縦波音速、横波音速や、弾性スティフネスとして入力してもよい。 The variations in material properties shown in the material property information 24 are held as parameters related to ultrasonic propagation, such as the material type, its density, Young's modulus, and Poisson's ratio. In addition to density, Young's modulus, and Poisson's ratio, longitudinal sound velocity, transverse sound velocity, and elastic stiffness may be input.
 図4は、第1実施形態に係る欠陥モデル114のばらつき情報の一例を示す概念図である。図4は、欠陥モデル114のばらつき情報の一例として欠陥モデル情報25を示す。欠陥モデル114の基本情報として形状とサイズ、位置ずれ、被検体モデルに対する設置角度などがある。それぞれのばらつきがあり、ばらつき情報が平均と標準偏差が指定されている。形状は面状、球状、円筒状などの候補から選択して入力するか、任意形状をCADモデルで入力する。 FIG. 4 is a conceptual diagram showing an example of variation information of the defect model 114 according to the first embodiment. FIG. 4 shows defect model information 25 as an example of variation information of the defect model 114. Basic information on the defect model 114 includes shape, size, positional deviation, installation angle with respect to the object model, etc. There is a variation for each, and the mean and standard deviation are specified as the variation information. The shape can be selected and input from candidates such as planar, spherical, or cylindrical, or an arbitrary shape can be input using a CAD model.
 図5は、第1実施形態に係る欠陥形状の例を示す説明図である。図5は、図4で指定できる欠陥形状の例を示している。図5中、面状の欠陥モデル51、球状の欠陥モデル52、円筒状の欠陥モデル53を例示している。被検体モデルの中の指定された位置に、指定されたサイズの欠陥モデルが、指定された角度で設定されており、センサSから超音波が発せられ、反射する様子が解析部12で解析されることになる。解析部12については後述する。 FIG. 5 is an explanatory diagram showing an example of a defect shape according to the first embodiment. FIG. 5 shows an example of defect shapes that can be specified in FIG. 4. In FIG. 5, a planar defect model 51, a spherical defect model 52, and a cylindrical defect model 53 are illustrated. A defect model of a specified size is set at a specified position in the object model at a specified angle, and an ultrasonic wave is emitted from the sensor S, and the way it is reflected is analyzed by the analysis unit 12. That will happen. The analysis unit 12 will be described later.
(解析部の構成と機能)
 図6は、第1実施形態に係る解析部12の機能を説明する概念図である。解析部12は、前記したように、超音波伝搬解析部121、欠陥検出確率算出部122で構成されている。
(Configuration and functions of analysis section)
FIG. 6 is a conceptual diagram illustrating the functions of the analysis section 12 according to the first embodiment. As described above, the analysis section 12 includes the ultrasonic propagation analysis section 121 and the defect detection probability calculation section 122.
 説明図61は、図3及び図4で示したばらつき情報をグラフで示したものである。複数の被検体情報のばらつきや欠陥モデルのばらつきの確率分布が示されている。各確率分布から、超音波伝搬モデルを構成するために必要な情報を一つ一つランダムサンプリングする。 An explanatory diagram 61 is a graph showing the variation information shown in FIGS. 3 and 4. Probability distributions of variations in multiple pieces of object information and variations in defect models are shown. From each probability distribution, information necessary to construct an ultrasound propagation model is randomly sampled one by one.
 説明図62は、サンプリングされた被検査体及び欠陥モデルから超音波伝搬モデルを構成し、センサアクセス可能面の各点における超音波検出量を超音波伝搬解析により解析することを示している。このランダムサンプリングと超音波伝搬解析を多数回繰り返すことで、いわゆるモンテカルロ計算が実行される。 An explanatory diagram 62 shows that an ultrasonic propagation model is constructed from the sampled inspection object and defect model, and the detected amount of ultrasonic waves at each point on the sensor accessible surface is analyzed by ultrasonic propagation analysis. A so-called Monte Carlo calculation is performed by repeating this random sampling and ultrasound propagation analysis many times.
 説明図63は、算出された検出量を縦軸に、その時の欠陥サイズを横軸にとってモンテカルロ計算の結果をプロットしたグラフを示している。また、閾値が設定されており、検出量が閾値を上回る場合は検出可能、下回る場合は検出不可能と判定される。この閾値は別途入力インターフェースから入力できるようにしておく。 Explanatory diagram 63 shows a graph in which the results of the Monte Carlo calculation are plotted with the calculated detection amount on the vertical axis and the defect size at that time on the horizontal axis. Further, a threshold value is set, and when the detected amount exceeds the threshold value, it is determined that the detection is possible, and when it is less than the threshold value, it is determined that the detection is impossible. This threshold value can be input from a separate input interface.
 モンテカルロ計算の結果を用いて、欠陥検出確率(POD:Probability Of Detection)を推定することができる。PODを推定する推定手法として、Berans法やHit/Miss法といった最尤推定法が知られている。 The probability of defect detection (POD) can be estimated using the results of the Monte Carlo calculation. Maximum likelihood estimation methods such as the Berans method and the Hit/Miss method are known as estimation methods for estimating POD.
 説明図64は、Hit/Miss法で推定した結果を例示しており、欠陥検出確率を縦軸に、欠陥サイズを横軸に取ったときの欠陥検出確率の曲線であり、いわゆるPOD曲線である。Hit/Miss法では、検出量が閾値を上回った結果をHitとして検出確率1に、下回った結果をMissとして検出確率0にプロットし、HitとMissの割合からPOD曲線を推定する。 Explanatory diagram 64 illustrates the results estimated by the Hit/Miss method, and is a curve of the defect detection probability when the vertical axis is the defect detection probability and the defect size is the horizontal axis, and is a so-called POD curve. . In the Hit/Miss method, a result in which the detected amount exceeds a threshold value is plotted as a hit with a detection probability of 1, a result in which the detected amount is less than a threshold is plotted as a miss with a detection probability of 0, and a POD curve is estimated from the ratio of hits and misses.
 従来技術として、超音波探傷のPOD曲線は、構造物の非破壊検査における合否基準の設定、点検頻度の設定、新しい非破壊検査技術又は装置の定量的性能把握、異なった非破壊試験方法の定量的な比較、使用中の装置における劣化度合いの定量的評価、検査技術者の能力把握のような用途に適用することができることが知られている。 As a conventional technology, the POD curve of ultrasonic flaw detection is useful for setting pass/fail criteria in non-destructive testing of structures, setting inspection frequency, quantitatively understanding the performance of new non-destructive testing technology or equipment, and quantifying different non-destructive testing methods. It is known that the method can be applied to such applications as comparisons between systems, quantitative evaluation of the degree of deterioration in equipment in use, and understanding of the abilities of inspection engineers.
 本実施形態では、PODを探傷条件(センサ設置、超音波入射方向)の適切さの指標として使用する。そのために、PODの空間分布という新規なアイデアを採用する。前記の伝搬解析により、センサアクセス可能面の各点におけるPOD曲線が求まり、同一欠陥サイズに対するPODを比較することができるようになる。 In this embodiment, POD is used as an indicator of the suitability of flaw detection conditions (sensor installation, ultrasonic wave incident direction). To this end, we adopt a novel idea of spatial distribution of POD. The propagation analysis described above yields a POD curve at each point on the sensor accessible surface, allowing comparison of POD for the same defect size.
(出力処理部の構成と機能)
 出力処理部13は欠陥検出確率分布出力部131を有する。なお、その他操作に必要な表示を出力部40(表示部)に表示することができる。
(Configuration and functions of output processing section)
The output processing section 13 includes a defect detection probability distribution output section 131. Note that other displays necessary for operations can be displayed on the output section 40 (display section).
 図7は、第1実施形態に係る出力処理部13の機能を説明する概念図である。図7には、被検体モデル71と、POD空間分布72が示されている。欠陥検出確率分布出力部131は、センサアクセス可能面とPODを対応させた空間分布を出力する。図7の被検体モデル71のA~Dがセンサアクセス可能面の各点に対応している。POD空間分布72の横軸が被検体表面のセンサ設置位置に対応している。 FIG. 7 is a conceptual diagram illustrating the functions of the output processing section 13 according to the first embodiment. FIG. 7 shows a subject model 71 and a POD spatial distribution 72. The defect detection probability distribution output unit 131 outputs a spatial distribution in which sensor accessible surfaces and PODs correspond to each other. A to D of the subject model 71 in FIG. 7 correspond to each point on the sensor-accessible surface. The horizontal axis of the POD spatial distribution 72 corresponds to the sensor installation position on the surface of the subject.
 図7に示した例では、検出強度の観点では、欠陥位置に近い点Bや点Cが最適センサ設置位置となる。しかし、PODの観点では、点Cはセンサアクセス可能面に含まれず、点Bは狭隘部に存在することから、センサ設置が不安定となり、PODが低下してしまい、最適センサ設置位置にならない。この例では、センサアクセス可能面にあり、最もPODが高くなる点Dが最適センサ設置位置として選択される。超音波入射角度に関しては、点DでのPODを超音波伝搬解析部121で解析した際に利用した角度が最適角度となる。 In the example shown in FIG. 7, from the viewpoint of detection strength, points B and C near the defect position are the optimal sensor installation positions. However, from the viewpoint of POD, since point C is not included in the sensor accessible surface and point B is present in a narrow area, sensor installation becomes unstable, POD decreases, and the optimum sensor installation position is not achieved. In this example, point D, which is on the sensor accessible surface and has the highest POD, is selected as the optimal sensor installation position. Regarding the ultrasonic incidence angle, the angle used when the POD at point D was analyzed by the ultrasonic propagation analysis unit 121 is the optimum angle.
 このようにすることで、PODを探傷条件(センサ設置、超音波入射方向)の適切さの指標として使用することができる。なお、PODに替えて、超音波検出量の平均値と標準偏差をセンサアクセス可能面の各点に対応させて表示し、これらの結果を総合的に判断して探傷条件を決定するようにしてもよい。 By doing so, the POD can be used as an indicator of the appropriateness of the flaw detection conditions (sensor installation, ultrasonic wave incident direction). In addition, instead of POD, the average value and standard deviation of the ultrasonic detection amount are displayed in correspondence with each point on the sensor accessible surface, and these results are judged comprehensively to determine the flaw detection conditions. Good too.
 超音波検査システム100によれば、様々なばらつき要因を考慮したロバストな探傷条件(センサ設置、超音波入射方向)をモデルベースで自動決定することが可能である。定期点検項目などの保守作業時に適用すると、検査計画を合理的に決定することが可能である。また、本発明を設計時に適用し、検査の指標として欠陥検出確率を用いることで、検査しやすい設計を支援できる。 According to the ultrasonic inspection system 100, it is possible to automatically determine, on a model basis, robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) that take into account various variation factors. When applied during maintenance work such as periodic inspection items, inspection plans can be determined rationally. Further, by applying the present invention at the time of design and using defect detection probability as an inspection index, it is possible to support a design that is easy to inspect.
(超音波検査方法)
 次に、本実施形態に係る超音波検査システム100によって実現される超音波検査方法について図1、図8を参照して説明する。
(Ultrasonic testing method)
Next, an ultrasonic inspection method realized by the ultrasonic inspection system 100 according to this embodiment will be described with reference to FIGS. 1 and 8.
 図8は、第1実施形態に係る超音波検査システム100の動作手順を示したフローチャートである。後述する超音波検査方法は、例えば、補助記憶装置に格納されている設計支援プログラムをCPUが主記憶装置に読み出して、情報の加工・演算処理を実行することにより実現される。 FIG. 8 is a flowchart showing the operating procedure of the ultrasonic testing system 100 according to the first embodiment. The ultrasonic inspection method described below is realized, for example, by a CPU reading out a design support program stored in an auxiliary storage device to a main storage device, and processing and calculating the information.
 まず、ユーザは、ステップS11にて被検体モデル111と被検体ばらつき情報113を、ステップS12にて欠陥モデル114と欠陥ばらつき情報115を入力する。これらは、適当な入力インターフェースを準備しておいて、ユーザに任意の値を入力させるようにしてもよいし、例えば、候補リストを準備しておいて、候補の中からユーザに選択させるようにしてもよい。 First, the user inputs the subject model 111 and subject variation information 113 in step S11, and the defect model 114 and defect variation information 115 in step S12. For these, an appropriate input interface may be prepared and the user may input an arbitrary value, or, for example, a candidate list may be prepared and the user may select from among the candidates. It's okay.
 次に、ステップS13では、超音波伝搬解析部121は、被検体ばらつき、欠陥ばらつきから、分布情報(平均と標準偏差)に基づき、各項目についてそれぞれの一つの値をランダムサンプリングする。 Next, in step S13, the ultrasound propagation analysis unit 121 randomly samples one value for each item based on the distribution information (average and standard deviation) from the object variation and defect variation.
 ステップS14では、超音波伝搬解析部121にて、超音波伝搬解析を実施する。前記のランダムサンプリングされた値を用いて、超音波伝搬解析モデルを構築し、超音波伝搬解析によって、センサアクセス可能面の各点ごとの超音波検出量を算出する。 In step S14, the ultrasonic propagation analysis section 121 performs ultrasonic propagation analysis. An ultrasonic propagation analysis model is constructed using the randomly sampled values, and the ultrasonic detection amount for each point on the sensor accessible surface is calculated by ultrasonic propagation analysis.
 ステップS15では、超音波伝搬解析部121は、後述するPODの推定において、十分なサンプル数の計算がなされたかどうかを判定する。十分なサンプル数かどうかは、ユーザが直接入力するか、検出確率の推定値の信頼区間がユーザの指定する範囲に収まるかどうかで判定する。 In step S15, the ultrasonic propagation analysis unit 121 determines whether a sufficient number of samples have been calculated in the estimation of POD, which will be described later. Whether the number of samples is sufficient is determined by the user's direct input or by whether the confidence interval of the estimated detection probability falls within the range specified by the user.
 ステップS15において、十分なサンプル数の計算がなされていないと判定された場合には(ステップS15:No)、超音波伝搬解析部121は、ステップS13に戻り、被検体ばらつき、欠陥ばらつきから再びランダムサンプリングにより超音波伝搬解析モデルを構築する。ステップS15において、十分なサンプル数の計算がなされたと判定された場合には(ステップS15:Yes)、超音波伝搬解析部121は、ステップS16に進む。 If it is determined in step S15 that a sufficient number of samples has not been calculated (step S15: No), the ultrasonic propagation analysis unit 121 returns to step S13 and performs random calculation again based on the object variation and defect variation. Build an ultrasonic propagation analysis model by sampling. If it is determined in step S15 that a sufficient number of samples has been calculated (step S15: Yes), the ultrasonic propagation analysis unit 121 proceeds to step S16.
 ステップS16では、欠陥検出確率算出部122は、ステップS15までで複数回計算された超音波検出強度からPODを計算する。超音波検出強度からPOD曲線を推定する手法として、Berans法やHit/Miss法といった最尤推定法が知られている。 In step S16, the defect detection probability calculation unit 122 calculates POD from the ultrasonic detection intensity calculated multiple times up to step S15. Maximum likelihood estimation methods such as the Berans method and the Hit/Miss method are known as methods for estimating the POD curve from the ultrasonic detection intensity.
 ステップS17では、欠陥検出確率分布出力部131は、PODをアクセス面の各点と対応させて結果を表示部に表示する。ユーザは、表示されて結果に基づき、探傷条件を選択する。同一欠陥サイズでのPODを比較することで、検査性について、定量的に探傷条件を比較することができる。 In step S17, the defect detection probability distribution output unit 131 associates the POD with each point on the access surface and displays the result on the display unit. The user selects flaw detection conditions based on the displayed results. By comparing the PODs for the same defect size, it is possible to quantitatively compare the flaw detection conditions in terms of inspectability.
 欠陥サイズはスライダーなどのインターフェースでユーザに選択させる。PODの値そのものではなくPODが50%などの特定の値に等しくなる欠陥サイズの空間分布を表示させることもできる。また、超音波検出量の平均値と標準偏差をセンサアクセス可能面の各点に対応させて表示させることもできる。 The defect size is selected by the user using an interface such as a slider. Instead of the POD value itself, it is also possible to display the spatial distribution of defect sizes at which the POD is equal to a specific value, such as 50%. Furthermore, the average value and standard deviation of the detected amount of ultrasonic waves can be displayed in correspondence with each point on the sensor-accessible surface.
 このようにすることで、PODを探傷条件(センサ設置、超音波入射方向)の適切さの指標として使用することができる。なお、PODに替えて、超音波検出量の平均値と標準偏差をセンサアクセス可能面の各点に対応させて表示し、これらの結果を総合的に判断して探傷条件を決定するようにしてもよい。 By doing so, the POD can be used as an indicator of the appropriateness of the flaw detection conditions (sensor installation, ultrasonic wave incident direction). In addition, instead of POD, the average value and standard deviation of the ultrasonic detection amount are displayed in correspondence with each point on the sensor accessible surface, and these results are judged comprehensively to determine the flaw detection conditions. Good too.
 超音波検査方法によれば、様々なばらつき要因を考慮したロバストな探傷条件(センサ設置、超音波入射方向)をモデルベースで自動決定することが可能である。定期点検項目などの保守作業時に適用すると、検査計画を合理的に決定することが可能である。また、本発明を設計時に適用し、検査の指標として欠陥検出確率を用いることで、検査しやすい設計を支援できる。 According to the ultrasonic inspection method, it is possible to automatically determine robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) based on a model, taking into account various variation factors. When applied during maintenance work such as periodic inspection items, inspection plans can be determined rationally. Further, by applying the present invention at the time of design and using defect detection probability as an inspection index, it is possible to support a design that is easy to inspect.
<第2実施形態>
(超音波検査システム)
 第1実施形態では、超音波伝搬解析は、一般的な物理シミュレーション手法を用いて実現した。その場合、センサSをセンサアクセス可能面の各点に仮想的に設置し、超音波入射角を変更しながらそれぞれの条件に対してモンテカルロ計算を実施する必要がある。このような解析手法でもPODの分布を算出することは可能であるが、第2実施形態では、より解析量を少なくする構成を説明する。以下では第1実施形態との差異のみ説明する。
<Second embodiment>
(Ultrasonic inspection system)
In the first embodiment, ultrasonic propagation analysis was realized using a general physical simulation method. In that case, it is necessary to virtually install the sensor S at each point on the sensor-accessible surface and perform Monte Carlo calculations for each condition while changing the ultrasonic incident angle. Although it is possible to calculate the POD distribution using such an analysis method, in the second embodiment, a configuration in which the amount of analysis is further reduced will be described. Below, only the differences from the first embodiment will be explained.
(システムの構成)
 図9は、第2実施形態に係る超音波検査システム100Aの機能を示す構成図である。図9は、超音波検査システム100Aが有する機能の一例を示した機能ブロック図である。超音波検査システム100Aにおいて、被検体情報入力部11の欠陥モデル114は、第1実施形態で説明した想定欠陥のサイズ、位置、被検体モデルに対する角度などの欠陥情報、欠陥ばらつき情報115に加えて、音源モデル116を保持している。
(System configuration)
FIG. 9 is a configuration diagram showing the functions of an ultrasonic inspection system 100A according to the second embodiment. FIG. 9 is a functional block diagram showing an example of the functions of the ultrasonic inspection system 100A. In the ultrasonic inspection system 100A, the defect model 114 of the object information input unit 11 includes defect information such as the size, position, and angle of the assumed defect with respect to the object model described in the first embodiment, as well as defect variation information 115. , holds a sound source model 116.
(被検体情報入力部の構成と機能)
 図10は、第2実施形態に係る音源モデル116の一例を示す概念図である。音源モデル116は、欠陥に対して平面波が入射された時の反射応答特性を表している。図10では、面状の欠陥モデル51A、球状の欠陥モデル52A、円筒状の欠陥モデル53Aの各欠陥に対してx軸正の方向から平面波が入射した時の反射強度分布を等高線図で示している。これらの反射応答特性は、面状、球状、円筒欠陥のような代表的な形状についてはシステム内部で保持しており、リストのようなインターフェースから選択する。また、リストにない形状については、反射応答特性を数式や事前に計算した結果を入力する。
(Structure and function of subject information input section)
FIG. 10 is a conceptual diagram showing an example of the sound source model 116 according to the second embodiment. The sound source model 116 represents a reflection response characteristic when a plane wave is incident on a defect. In FIG. 10, a contour diagram shows the reflection intensity distribution when a plane wave is incident on each defect of a planar defect model 51A, a spherical defect model 52A, and a cylindrical defect model 53A from the positive direction of the x-axis. There is. These reflection response characteristics are maintained within the system for typical shapes such as planar, spherical, and cylindrical defects, and are selected from a list-like interface. For shapes that are not on the list, enter a mathematical formula or pre-calculated results for the reflection response characteristics.
(解析部の構成と機能)
 図11は、第2実施形態に係る超音波伝搬解析部121の機能を説明する概念図である。本実施形態の超音波伝搬解析部121は、解析量を減らすための一つの方法を提供する。まず、(1)仮想欠陥を仮定し、(2)欠陥に対してある角度で入射する平面波を仮定する。このとき、(3)欠陥位置と平面波の入射角度から幾何学的にセンサとセンサアクセス可能面との交点を求める。(4)この交点での欠陥からの平面波応答強度を、音源モデル116を用いて算出する。平面波に対する応答を用いて検出量を計算することは、実質的に欠陥を音源と考え、欠陥からセンサアクセス可能面に対する超音波伝搬を逆方向に計算したことに相当する。
(Configuration and functions of analysis section)
FIG. 11 is a conceptual diagram illustrating the functions of the ultrasonic propagation analysis section 121 according to the second embodiment. The ultrasonic propagation analysis unit 121 of this embodiment provides one method for reducing the amount of analysis. First, (1) assume a virtual defect, and (2) assume a plane wave that is incident on the defect at a certain angle. At this time, (3) geometrically find the intersection between the sensor and the sensor-accessible surface from the defect position and the incident angle of the plane wave. (4) Calculate the plane wave response intensity from the defect at this intersection using the sound source model 116. Calculating the detected amount using the response to a plane wave essentially corresponds to considering the defect as a sound source and calculating the ultrasonic propagation from the defect to the sensor-accessible surface in the opposite direction.
(超音波伝搬解析方法)
 図12は、第2実施形態に係る超音波伝搬解析の詳細手順を示したフローチャートである。図12は、図8中のステップS14(超音波伝搬解析)の詳細手順について示す。
(Ultrasonic propagation analysis method)
FIG. 12 is a flowchart showing detailed procedures for ultrasonic propagation analysis according to the second embodiment. FIG. 12 shows the detailed procedure of step S14 (ultrasonic propagation analysis) in FIG. 8.
 まず、ステップS201では、超音波伝搬解析部121は、欠陥に対してある角度で入射する平面波を仮定する。角度は、二次元解析の場合は二次元的な角度から2πラジアン方向から、適当な分解能で一つの方向を選択する。三次元解析の場合は、三次元的な立体角で4πステラジアン方向から適当な分解能で一つの方向を選択する。 First, in step S201, the ultrasonic propagation analysis unit 121 assumes a plane wave that is incident on the defect at a certain angle. In the case of two-dimensional analysis, one direction is selected from two-dimensional angles and 2π radian directions with appropriate resolution. In the case of three-dimensional analysis, one direction is selected from the 4π steradian directions at a three-dimensional solid angle with an appropriate resolution.
 次に、ステップS202では、超音波伝搬解析部121は、欠陥位置と平面波の入射角度から幾何学的にセンサとセンサアクセス可能面との交点を求める。異なる媒質同士の境界では、反射・屈折の法則によって伝搬方向が変化することを考慮する。 Next, in step S202, the ultrasonic propagation analysis unit 121 geometrically determines the intersection between the sensor and the sensor-accessible surface from the defect position and the incident angle of the plane wave. Consider that at the boundary between different media, the propagation direction changes due to the laws of reflection and refraction.
 続いて、ステップS203では、超音波伝搬解析部121は、交点での欠陥からの平面波応答強度を算出する。平面波応答は、平面欠陥や円筒欠陥、球状欠陥などの比較的単純な欠陥形状については解析解を得ることが可能であり、これらの平面波応答特性は高速に計算することが可能である。比較的複雑な欠陥形状に関しては、欠陥周辺の微小領域において物理シミュレーションを実施し、その解を延長することで、センサアクセス可能面との交点での超音波検出量を算出することが可能であり、全領域を含む計算に比較して計算量を削減することができる。 Subsequently, in step S203, the ultrasonic propagation analysis unit 121 calculates the plane wave response intensity from the defect at the intersection. For plane wave responses, it is possible to obtain analytical solutions for relatively simple defect shapes such as planar defects, cylindrical defects, and spherical defects, and these plane wave response characteristics can be calculated at high speed. For relatively complex defect shapes, it is possible to calculate the amount of ultrasonic detection at the intersection with the sensor-accessible surface by performing a physical simulation in the microscopic area around the defect and extending the solution. , the amount of calculation can be reduced compared to calculations involving the entire area.
 最後に、ステップS204では、超音波伝搬解析部121は、計算すべき全角度の計算が完了したかどうかを判定する。まだ計算すべき全角度の計算が完了していないと判定された場合には(ステップS204:No)、ステップS201に戻り、別の角度を選択し、再度ステップS202、ステップS203を実行する。ステップS204において、計算すべき全角度の計算が完了したと判定された場合には(ステップS204:Yes)、ステップS14を完了する。 Finally, in step S204, the ultrasonic propagation analysis unit 121 determines whether calculation of all angles to be calculated has been completed. If it is determined that all the angles to be calculated have not been completed yet (step S204: No), the process returns to step S201, selects another angle, and executes steps S202 and S203 again. If it is determined in step S204 that all angles to be calculated have been completed (step S204: Yes), step S14 is completed.
 超音波検査方法によれば、解析量を少なくても、本発明の超音波検査システムを構成し、PODを探傷条件(センサ設置、超音波入射方向)の適切さの指標として使用することができる。 According to the ultrasonic inspection method, even if the amount of analysis is small, the ultrasonic inspection system of the present invention can be configured and the POD can be used as an indicator of the appropriateness of the flaw detection conditions (sensor installation, ultrasonic incident direction). .
 以上、本実施形態の超音波検査システム100は、次の特徴を有する。
(1)探傷条件を自動決定する超音波検査システムであって、被検体モデル111、センサアクセス可能面112、及び被検体ばらつき情報113と、欠陥モデル114及び欠陥ばらつき情報115とを入力する被検体情報入力部11と、超音波の伝搬を解析し、欠陥検出確率を算出する解析部12と、センサアクセス可能面112と欠陥検出確率を対応させた空間分布を出力する出力処理部13と、を有することを特徴とする。これにより、複雑形状物に対して、様々なばらつき要因を考慮したロバストな探傷条件(センサ設置、超音波入射方向)をモデルベースで自動決定することが可能である。
As described above, the ultrasonic inspection system 100 of this embodiment has the following features.
(1) An ultrasonic inspection system that automatically determines flaw detection conditions, in which an object model 111, a sensor accessible surface 112, object variation information 113, and a defect model 114 and defect variation information 115 are input. An information input unit 11, an analysis unit 12 that analyzes the propagation of ultrasonic waves and calculates a defect detection probability, and an output processing unit 13 that outputs a spatial distribution that corresponds to the sensor accessible surface 112 and the defect detection probability. It is characterized by having. This makes it possible to automatically determine, on a model basis, robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) for complex-shaped objects, taking into account various variation factors.
(2)(1)において、被検体情報入力部11は、欠陥モデル114及び欠陥ばらつき情報115に加えて、音源モデル116が入力される(図9参照)。 (2) In (1), the object information input unit 11 receives the sound source model 116 in addition to the defect model 114 and the defect variation information 115 (see FIG. 9).
(3)探傷条件を自動決定する超音波検査システムであって、被検体モデル111、センサアクセス可能面112、及び被検体ばらつき情報113と、欠陥モデル114及び欠陥ばらつき情報115とを入力する被検体情報入力部11と、超音波の伝搬を解析し、超音波検出強度とそのばらつきを算出する解析部12と、センサアクセス可能面と超音波検出強度とそのばらつきを対応させた空間分布を出力する出力処理部13と、を有することを特徴とする。これにより、複雑形状物に対して、様々なばらつき要因を考慮したロバストな探傷条件(センサ設置、超音波入射方向)をモデルベースで自動決定することが可能である。 (3) An ultrasonic inspection system that automatically determines flaw detection conditions, in which an object model 111, a sensor accessible surface 112, object variation information 113, and a defect model 114 and defect variation information 115 are input. An information input section 11, an analysis section 12 that analyzes the propagation of ultrasonic waves and calculates the ultrasonic detection intensity and its dispersion, and outputs a spatial distribution that corresponds to the sensor accessible surface, the ultrasonic detection intensity, and its dispersion. It is characterized by having an output processing section 13. As a result, it is possible to automatically determine robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) for complex-shaped objects based on a model, taking into account various variation factors.
(4)(3)において、被検体情報入力部11は、欠陥モデル114及び欠陥ばらつき情報115に加えて、音源モデル116が入力される(図9参照)。 (4) In (3), the object information input unit 11 receives the sound source model 116 in addition to the defect model 114 and the defect variation information 115 (see FIG. 9).
(5)(1)ないし(4)において、被検体ばらつき情報として、被検体形状のばらつきである(図3の寸法情報23参照)。 (5) In (1) to (4), the object variation information is the object shape variation (see dimension information 23 in FIG. 3).
(6)(1)ないし(4)において、被検体ばらつき情報として、被検体材料特性のばらつきである(図3の材料特性情報24参照)。 (6) In (1) to (4), the object variation information is the variation in object material properties (see material property information 24 in FIG. 3).
(7)(1)ないし(4)において、被検体ばらつき情報は、センサアクセス可能面112ごとの検査作業者の手技のばらつきである(図3のセンサアクセス可能面情報22参照)。 (7) In (1) to (4), the subject variation information is the variation in the technique of the inspection worker for each sensor-accessible surface 112 (see sensor-accessible surface information 22 in FIG. 3).
(8)(1)ないし(4)において、欠陥ばらつき情報として、欠陥性状のばらつきである(図4の欠陥モデル情報25参照) (8) In (1) to (4), the defect variation information is variation in defect properties (see defect model information 25 in Figure 4).
(9)探傷条件を自動決定する超音波検査方法であって、被検体モデル、センサアクセス可能面、及び被検体ばらつき情報と、欠陥モデル及び欠陥ばらつき情報とを入力すされる被検体情報入力ステップ(ステップS11,S12参照)と、超音波の伝搬を解析する超音波伝搬解析ステップ(ステップS14参照)と、超音波伝搬解析ステップの解析に基づき、欠陥検出確率を算出する算出ステップ(ステップS16参照)と、センサアクセス可能面と欠陥検出確率を対応させた空間分布を出力する出力処理ステップ(ステップS17)と、を有することを特徴とする。 (9) An ultrasonic inspection method that automatically determines flaw detection conditions, including an object information input step (inputting the object model, sensor accessible surface, and object variation information, as well as the defect model and defect variation information). (see steps S11 and S12), an ultrasonic propagation analysis step for analyzing the propagation of ultrasonic waves (see step S14), and a calculation step for calculating the defect detection probability based on the analysis of the ultrasonic propagation analysis step (see step S16). and an output processing step (step S17) for outputting a spatial distribution in which the sensor accessible surface corresponds to the defect detection probability.
(10)(9)において、被検体情報入力ステップは、欠陥モデル114及び欠陥ばらつき情報115に加えて、音源モデル116が入力され、
 超音波伝搬解析ステップは、欠陥音源モデルから伝搬する超音波を解析することができる。
(10) In (9), in the object information input step, in addition to the defect model 114 and the defect variation information 115, the sound source model 116 is input,
The ultrasound propagation analysis step can analyze ultrasound propagating from the defective sound source model.
(11)(9)又は(10)において、算出ステップは、欠陥検出確率の算出に替えて、超音波検出強度とそのばらつきを算出し、出力処理ステップは、センサアクセス可能面と超音波検出強度とそのばらつきを対応させた空間分布を出力することができる。 (11) In (9) or (10), the calculation step calculates the ultrasonic detection intensity and its variation instead of calculating the defect detection probability, and the output processing step calculates the sensor accessible surface and the ultrasonic detection intensity. It is possible to output a spatial distribution that corresponds to the information and its variations.
 本実施形態の超音波検査システム100によれば、複雑形状物に対して、様々なばらつき要因を考慮したロバストな探傷条件(センサ設置、超音波入射方向)をモデルベースで自動決定することが可能である。本実施形態を定期点検項目などの保守作業時に適用すると、検査計画を合理的に決定することが可能である。また、本実施形態を設計時に適用し、検査の指標として欠陥検出確率を用いることで、検査しやすい設計を支援できる。また、本実施形態の範囲を超音波検査システムから独立した装置とすることで、超音波検査の作業者を支援する超音波検査支援装置として利用することも可能である。 According to the ultrasonic inspection system 100 of this embodiment, it is possible to automatically determine, on a model basis, robust flaw detection conditions (sensor installation, ultrasonic wave incident direction) for complex-shaped objects, taking into account various variation factors. It is. When this embodiment is applied to maintenance work such as periodic inspection items, it is possible to rationally determine an inspection plan. Further, by applying this embodiment at the time of design and using defect detection probability as an inspection index, it is possible to support a design that is easy to inspect. Moreover, by making the scope of this embodiment an apparatus independent from the ultrasonic examination system, it is also possible to use it as an ultrasonic examination support apparatus that supports an operator of ultrasonic examination.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 Note that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
 また、前記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウエアで実現してもよい。また、前記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウエアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。 Further, each of the above-mentioned configurations, functions, processing units, processing means, etc. may be partially or entirely realized by hardware, for example, by designing an integrated circuit. Furthermore, each of the configurations, functions, etc. described above may be realized by software by a processor interpreting and executing programs for realizing the respective functions. Information such as programs, tables, files, etc. that implement each function can be stored in a memory, a recording device such as a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には殆どすべての構成が相互に接続されていると考えてもよい。 In addition, control lines and information lines are shown that are considered necessary for explanation, and not all control lines and information lines are necessarily shown in the product. In reality, almost all configurations may be considered interconnected.
 10  処理部
 11  被検体情報入力部
 12  解析部
 13  出力処理部
 20  記憶部
 21  被検体モデル情報
 22  センサアクセス可能面情報
 23  寸法情報
 24  材料特性情報
 25  欠陥モデル情報
 30  入力部
 40  出力部
 50  通信部
 51,52,53  欠陥モデル
 51A,52A,53A  欠陥モデル(音源モデル)
 72  POD空間分布
 100  超音波検査システム
 111  被検体モデル
 112  センサアクセス可能面
 113  被検体ばらつき情報
 114  欠陥モデル
 115  欠陥ばらつき情報
 116  音源モデル
 121  超音波伝搬解析部
 122  欠陥検出確率算出部
 131  欠陥検出確率分布出力部
 S  センサ
 SA,SB,SC  センサアクセス可能面
10 processing section 11 object information input section 12 analysis section 13 output processing section 20 storage section 21 object model information 22 sensor accessible surface information 23 dimension information 24 material property information 25 defect model information 30 input section 40 output section 50 communication section 51, 52, 53 Defect model 51A, 52A, 53A Defect model (sound source model)
72 POD spatial distribution 100 Ultrasonic inspection system 111 Object model 112 Sensor accessible surface 113 Object variation information 114 Defect model 115 Defect variation information 116 Sound source model 121 Ultrasonic propagation analysis section 122 Defect detection probability calculation section 131 Defect detection probability distribution Output section S Sensor SA, SB, SC Sensor accessible surface

Claims (11)

  1.  探傷条件を自動決定する超音波検査システムであって、
     被検体モデル、センサアクセス可能面、及び被検体ばらつき情報と、欠陥モデル及び欠陥ばらつき情報とを入力する被検体情報入力部と、
     超音波の伝搬を解析し、欠陥検出確率を算出する解析部と、
     前記センサアクセス可能面と欠陥検出確率を対応させた空間分布を出力する出力処理部と、を有する
     ことを特徴とする超音波検査システム。
    An ultrasonic inspection system that automatically determines flaw detection conditions,
    a subject information input unit for inputting a subject model, a sensor accessible surface, and subject variation information, and a defect model and defect variation information;
    an analysis section that analyzes the propagation of ultrasonic waves and calculates the defect detection probability;
    An ultrasonic inspection system comprising: an output processing unit that outputs a spatial distribution in which the sensor-accessible surface corresponds to a defect detection probability.
  2.  請求項1に記載の超音波検査システムであって、
     前記被検体情報入力部は、前記欠陥モデル及び前記欠陥ばらつき情報加えて、音源モデルが入力される
     ことを特徴とする超音波検査システム。
    The ultrasonic inspection system according to claim 1,
    The ultrasonic inspection system is characterized in that the object information input unit receives a sound source model in addition to the defect model and the defect variation information.
  3.  探傷条件を自動決定する超音波検査システムであって、
     被検体モデル、センサアクセス可能面、及び被検体ばらつき情報と、欠陥モデル及び欠陥ばらつき情報とを入力する被検体情報入力部と、
     超音波の伝搬を解析し、超音波検出強度とそのばらつきを算出する解析部と、
     前記センサアクセス可能面と前記超音波検出強度とそのばらつきを対応させた空間分布を出力する出力処理部と、を有する
     ことを特徴とする超音波検査システム。
    An ultrasonic inspection system that automatically determines flaw detection conditions,
    a subject information input unit for inputting a subject model, a sensor accessible surface, and subject variation information, and a defect model and defect variation information;
    an analysis section that analyzes the propagation of ultrasound and calculates the ultrasound detection intensity and its dispersion;
    An ultrasonic inspection system comprising: an output processing unit that outputs a spatial distribution that corresponds to the sensor-accessible surface, the ultrasonic detection intensity, and its dispersion.
  4.  請求項3に記載の超音波検査システムであって、
     前記被検体情報入力部は、前記欠陥モデル及び前記欠陥ばらつき情報加えて、音源モデルが入力される
     ことを特徴とする超音波検査システム。
    The ultrasonic inspection system according to claim 3,
    The ultrasonic inspection system is characterized in that the object information input unit receives a sound source model in addition to the defect model and the defect variation information.
  5.  請求項1ないし請求項4のいずれか1項に記載の超音波検査システムであって、
     前記被検体ばらつき情報は、被検体形状のばらつきである
     ことを特徴とする超音波検査システム。
    The ultrasonic inspection system according to any one of claims 1 to 4,
    An ultrasonic inspection system, wherein the object variation information is a variation in the shape of the object.
  6.  請求項1ないし請求項4のいずれか1項に記載の超音波検査システムであって、
     前記被検体ばらつき情報は、被検体材料特性のばらつきである
     ことを特徴とする超音波検査システム。
    The ultrasonic inspection system according to any one of claims 1 to 4,
    An ultrasonic inspection system, wherein the object variation information is a variation in material characteristics of the object.
  7.  請求項1ないし請求項4のいずれか1項に記載の超音波検査システムあって、
     前記被検体ばらつき情報は、前記センサアクセス可能面ごとの検査作業者の手技のばらつきであることを特徴とする超音波検査システム。
    The ultrasonic inspection system according to any one of claims 1 to 4,
    The ultrasonic inspection system is characterized in that the object variation information is a variation in the technique of an inspection worker for each of the sensor-accessible surfaces.
  8.  請求項1ないし請求項4のいずれか1項に記載の超音波検査システムであって、
     前記欠陥ばらつき情報は、欠陥性状のばらつきである
     ことを特徴とする超音波検査システム。
    The ultrasonic inspection system according to any one of claims 1 to 4,
    An ultrasonic inspection system characterized in that the defect variation information is variation in defect properties.
  9.  探傷条件を自動決定する超音波検査方法であって、
     被検体モデル、センサアクセス可能面、及び被検体ばらつき情報と、欠陥モデル及び欠陥ばらつき情報とを入力すされる被検体情報入力ステップと、
     超音波の伝搬を解析する超音波伝搬解析ステップと、
     前記超音波伝搬解析ステップの解析に基づき、欠陥検出確率を算出する算出ステップと、
     前記センサアクセス可能面と前記欠陥検出確率を対応させた空間分布を出力する出力処理ステップと、を有する
     ことを特徴とする超音波検査方法。
    An ultrasonic inspection method that automatically determines flaw detection conditions,
    a test object information input step of inputting a test object model, a sensor accessible surface, and test object variation information, and a defect model and defect variation information;
    an ultrasonic propagation analysis step for analyzing the propagation of ultrasonic waves;
    a calculation step of calculating a defect detection probability based on the analysis in the ultrasonic propagation analysis step;
    An ultrasonic inspection method comprising: an output processing step of outputting a spatial distribution in which the sensor-accessible surface corresponds to the defect detection probability.
  10.  請求項9に記載の超音波検査方法であって、
     前記被検体情報入力ステップは、前記欠陥モデル及び欠陥ばらつき情報に加えて、欠陥音源モデルが入力され、
     前記超音波伝搬解析ステップは、前記欠陥音源モデルから伝搬する超音波を解析する
     ことを特徴とする超音波検査方法。
    The ultrasonic testing method according to claim 9,
    In the object information input step, in addition to the defect model and defect variation information, a defect sound source model is input;
    The ultrasonic inspection method is characterized in that the ultrasonic propagation analysis step analyzes ultrasonic waves propagating from the defective sound source model.
  11.  請求項9又は請求項10に記載の超音波検査方法であって、
     前記算出ステップは、前記欠陥検出確率の算出に替えて、超音波検出強度とそのばらつきを算出し、
     前記出力処理ステップは、前記センサアクセス可能面と前記超音波検出強度とそのばらつきを対応させた空間分布を出力する
     ことを特徴とする超音波検査方法。
    The ultrasonic testing method according to claim 9 or 10,
    In the calculation step, instead of calculating the defect detection probability, the ultrasonic detection intensity and its dispersion are calculated,
    The ultrasonic inspection method is characterized in that the output processing step outputs a spatial distribution that corresponds to the sensor accessible surface, the ultrasonic detection intensity, and its dispersion.
PCT/JP2023/004590 2022-08-22 2023-02-10 Ultrasonic inspection system and ultrasonic inspection method WO2024042734A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022131905A JP2024029573A (en) 2022-08-22 2022-08-22 Ultrasonic inspection system and ultrasonic inspection method
JP2022-131905 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024042734A1 true WO2024042734A1 (en) 2024-02-29

Family

ID=90012849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004590 WO2024042734A1 (en) 2022-08-22 2023-02-10 Ultrasonic inspection system and ultrasonic inspection method

Country Status (2)

Country Link
JP (1) JP2024029573A (en)
WO (1) WO2024042734A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132963A (en) * 1987-11-18 1989-05-25 Kawasaki Steel Corp Sensitivity calibrating device of ultrasonic wave flaw detector
JPH05240722A (en) * 1992-02-29 1993-09-17 Suzuki Motor Corp Ultrasonic measuring device
JPH0611491A (en) * 1992-06-25 1994-01-21 Hitachi Constr Mach Co Ltd Cast item physical property measuring method and ultrasonic measuring device
US20110016978A1 (en) * 2008-01-04 2011-01-27 Ge Sensing & Inspection Technologies Gmbh Method for the non-destructive testing of a test object by way of ultrasound and apparatus therefor
JP2011120795A (en) * 2009-12-11 2011-06-23 Canon Inc Photoacoustic apparatus and method for controlling the same
JP2013064668A (en) * 2011-09-20 2013-04-11 Ihi Inspection & Instrumentation Co Ltd Method for analyzing defect detection probability by ultrasonic test
CN109612806A (en) * 2019-02-25 2019-04-12 北京航空航天大学 A kind of efficient test material preparation and test method suitable for the test of surface crack defect detection probability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132963A (en) * 1987-11-18 1989-05-25 Kawasaki Steel Corp Sensitivity calibrating device of ultrasonic wave flaw detector
JPH05240722A (en) * 1992-02-29 1993-09-17 Suzuki Motor Corp Ultrasonic measuring device
JPH0611491A (en) * 1992-06-25 1994-01-21 Hitachi Constr Mach Co Ltd Cast item physical property measuring method and ultrasonic measuring device
US20110016978A1 (en) * 2008-01-04 2011-01-27 Ge Sensing & Inspection Technologies Gmbh Method for the non-destructive testing of a test object by way of ultrasound and apparatus therefor
JP2011120795A (en) * 2009-12-11 2011-06-23 Canon Inc Photoacoustic apparatus and method for controlling the same
JP2013064668A (en) * 2011-09-20 2013-04-11 Ihi Inspection & Instrumentation Co Ltd Method for analyzing defect detection probability by ultrasonic test
CN109612806A (en) * 2019-02-25 2019-04-12 北京航空航天大学 A kind of efficient test material preparation and test method suitable for the test of surface crack defect detection probability

Also Published As

Publication number Publication date
JP2024029573A (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US9792555B2 (en) Probabilistic modeling and sizing of embedded flaws in ultrasonic nondestructive inspections for fatigue damage prognostics and structural integrity assessment
Giagopoulos et al. Structural health monitoring and fatigue damage estimation using vibration measurements and finite element model updating
Jassim et al. A review on the vibration analysis for a damage occurrence of a cantilever beam
Shirazi et al. Damage assessment in laminated composite plates using modal Strain Energy and YUKI-ANN algorithm
Nanda et al. Vibration based structural damage detection technique using particle swarm optimization with incremental swarm size
Yang et al. Hybrid two‐step method of damage detection for plate‐like structures
WO2022015804A1 (en) Machine learning-based methods and systems for deffect detection and analysis using ultrasound scans
WO2022015862A1 (en) A machine learning method for the denoising of ultrasound scans of composite slabs and pipes
Shakya et al. Structural health monitoring based on the hybrid ant colony algorithm by using Hooke–Jeeves pattern search
JP2015528119A (en) Method and system for determination of geometric features in objects
Slimani et al. Improved ANN for damage identification in laminated composite plate
Sausto et al. Benchmark of a probabilistic fatigue software based on machined and as-built components manufactured in AlSi10Mg by L-PBF
WO2024042734A1 (en) Ultrasonic inspection system and ultrasonic inspection method
Uwayed et al. Improved vibration based damage detection in laminated composite plate structures under free and forced modal analysis
Benstock et al. Sample selection for extreme value analysis of inspection data collected from corroded surfaces
Wu et al. A general approach to assessing SHM reliability considering sensor failures based on information theory
Smith et al. Model‐Assisted Probability of Detection Validation for Immersion Ultrasonic Application
Caicedo et al. Frequency-based methods for the detection of damage in structures: A chronological review
Zhang et al. A novel surrogate-based crack identification method for cantilever beam based on the change of natural frequencies
Keßler et al. „Reliability Assessment of NDT in Civil Engineering–the German Approach for Standardization (normPOD)”
Rummel A path forward for NDE reliability
WO2023171116A1 (en) Design supporting device and design supporting method
JP2007227705A (en) Simulation system, simulation program, and simulation method
Parker Multi-objective design optimization framework for structural health monitoring
Boubakir et al. Application of improved accelerated random search algorithm for structural damage detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856860

Country of ref document: EP

Kind code of ref document: A1