WO2024042733A1 - Failure probability evaluation system - Google Patents

Failure probability evaluation system Download PDF

Info

Publication number
WO2024042733A1
WO2024042733A1 PCT/JP2023/001915 JP2023001915W WO2024042733A1 WO 2024042733 A1 WO2024042733 A1 WO 2024042733A1 JP 2023001915 W JP2023001915 W JP 2023001915W WO 2024042733 A1 WO2024042733 A1 WO 2024042733A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure probability
data
failure
operation data
time
Prior art date
Application number
PCT/JP2023/001915
Other languages
French (fr)
Japanese (ja)
Inventor
将央 渡辺
寛 新谷
洋輔 植木
薫 網本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024042733A1 publication Critical patent/WO2024042733A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance

Definitions

  • the present invention relates to a technique for evaluating the failure probability of an object. Among these, it particularly relates to failure diagnosis and prediction (premonition), including calculation of failure probability.
  • the objects include equipment, facilities, mechanical systems, and parts that constitute these.
  • the mechanical systems perform their specified functions normally.
  • statistical analysis of maintenance records that have occurred in the past can be used to determine the number of corrective maintenance and preliminary maintenance that may occur in the future, and the remaining life of the target equipment. It is possible to predict.
  • the maintenance record refers to data in which the content of maintenance and the time of occurrence are recorded as a pair.
  • failure probability density function f(t) and failure probability function F are required to predict the number of corrective maintenance and preliminary maintenance that may occur in the future, and the remaining life of the target equipment.
  • (t), failure rate function ⁇ (t), etc. Techniques for this purpose are disclosed in Non-Patent Document 1 and the like.
  • t is the operating time of the equipment.
  • the failure probability density function f, the failure probability function F, and the failure rate function ⁇ are functions of the variable t, the respective relationships can be expressed by (Equation 1) and (Equation 2).
  • Non-Patent Document 1 assumes that the operating status of a mechanical system is a static status, that is, there is no variation in space and time, the operating status of a mechanical system is generally not constant in space and time.
  • the operating status of a wind power generator changes from moment to moment depending on the wind conditions, and the load varies depending on the location conditions.
  • the load on construction machinery and the like changes depending on the work environment, such as the work items that change from day to day, the driving characteristics of the driver, and the characteristics of the soil. Therefore, there is a limit to the accuracy of estimating the number of maintenance cycles and remaining life when evaluating a failure probability function or a failure rate function simply based on operating time.
  • Patent Document 1 evaluates the operating status that differs for each individual from time-series operating data measured by sensors, and takes this into account appropriately. This makes it possible to estimate the number of maintenance cycles and remaining life.
  • Patent Document 1 does not disclose a technique for pre-selecting only time-series operation data related to a failure. Therefore, an object of the present invention is to further improve the accuracy of estimation regarding maintenance of an object, such as the number of maintenance cycles and remaining life.
  • the present invention calculates the failure probability using operation data (for example, time-series operation data).
  • operation data for example, time-series operation data.
  • the present invention also includes a configuration that indicates the degree of dispersion of the failure probability function for calculating the failure probability, specifies the degree of dispersion according to the correlation with failure, and selects operation data accordingly. It will be done. More preferably, it is desirable to select operation data with a small degree of dispersion.
  • a more specific configuration of the present invention includes, in a failure probability evaluation system for evaluating the failure probability of failure in parts constituting a mechanical system, a maintenance history database that stores maintenance history data of the mechanical system; An operation database that stores a plurality of operation data indicating the operation status of parts, and a degree of variation in a failure probability function for calculating a failure probability for each operation data based on the operation data and maintenance history data, a dispersion degree calculation section that calculates a dispersion degree according to the correlation with failures in the parts; and an operation data selection section that selects operation data according to the calculated dispersion degree;
  • This is a failure probability evaluation system that implements evaluation of the failure probability by preferentially using data.
  • the present invention also includes a failure probability evaluation method using the failure probability evaluation system, a failure probability evaluation program that causes the failure probability evaluation system to function as a computer, and a storage medium that stores the same.
  • Example 1 Diagram showing an example of maintenance history data used in Example 1 A diagram showing an example of time-series operation data and a division flag table stored in the time-series operation database 2 used in the first embodiment.
  • Diagram showing an example of survival analysis data used in Example 1 A diagram showing the failure probability function and its coefficient of variation for the cumulative value of time-series operation data in Example 1 Flowchart for calculating the number of time-series operating data N s in Example 1 in Example 1 Graph showing the relationship between the deviation rate R and the number of selected time-series operation data Ns in Example 1 Graph showing the relationship between failure probability and cumulative damage in Example 1
  • GUI graphical user interface
  • a failure probability evaluation system 100 of the present embodiment includes a maintenance history database that stores maintenance history data of the mechanical system; An operation database that stores a plurality of operation data indicating the operation status of the component, and a degree of variation in a failure probability function for calculating a failure probability for each operation data based on the operation data and maintenance history data. , a dispersion degree calculation section that calculates a dispersion degree according to the correlation with failures in the parts, and an operation data selection section that selects operation data according to the calculated dispersion degree, The evaluation of the failure probability is realized by preferentially using operation data.
  • the failure probability of components of a mechanical system can be predicted with high accuracy by selecting operational data of sensors related to failure from a large amount of operational data and using it for failure probability evaluation. I can do it.
  • the failure probability evaluation system 100 is realized on a computer, and its functions are executed by a processing device according to a program.
  • the function may be realized by dedicated hardware, and the present invention is not limited to the use of a program (software).
  • the wind power generator 1 is used as a mechanical system, and the failure probability of the wind power generator 1 and its component parts is evaluated.
  • the application of the present invention is not limited only to the wind power generator 1.
  • FIG. 1 is a system configuration diagram in the first embodiment.
  • the failure probability evaluation system 100 of this embodiment includes a maintenance history database 3, a time-series operation database 2, a time-series operation data selection section 13, and a failure probability evaluation section 10. Note that the time-series operation database 2 and the maintenance history database 3 may be provided outside the failure probability evaluation system 100, or may be configured as a single database.
  • FIG. 2 is a diagram showing an example of maintenance history data 6 used in this embodiment.
  • the maintenance history data 6, as shown in FIG. 2 is data in which individuals in which maintenance has occurred are associated with dates and times when maintenance has occurred.
  • the site name and machine number to which the wind power generator 1, which is the object, belongs are used as information for identifying an individual. Note that an individual number or the like may be used as information for identifying an individual. This also applies to each data described below.
  • the maintenance history data 6 include a maintenance history including events (maintenance events) related to maintenance performed on the individual. As shown in FIG. 2, in this embodiment, each item of maintenance content, part name, and content is used as the maintenance history.
  • the maintenance content indicates the type of maintenance performed, and in this embodiment, "pre-maintenance” and “post-maintenance” are used.
  • Preliminary maintenance refers to maintenance such as replacing parts before a failure occurs, such as through periodic replacement.
  • Corrective maintenance refers to maintenance such as replacing parts after an abnormality or failure occurs.
  • the component name identifies the component or location that has been maintained or where an abnormality has occurred. Additionally, the content indicates the content of the maintenance performed.
  • the maintenance history data 6 may include the following items.
  • the reason for carrying out the maintenance can be used.
  • the occurrence events of failures, etc. can be used.
  • the wind power generator 1 is equipped with a function to automatically detect the maintenance history
  • the wind power generator 1 and the maintenance history database 3 are connected via a network, and the maintenance history data 6 is automatically transferred to the maintenance history database 3. May be accumulated.
  • the worker 4 in charge of maintenance may register the maintenance history in the maintenance history database 3. With this configuration, maintenance history including maintenance details for a plurality of component parts is accumulated in the maintenance history database 3.
  • time-series operation data 5 such as operation data regarding the components of the wind power generator 1 is accumulated in a time-series operation database 2 via a communication means such as a network.
  • the collection interval of each data is not particularly limited, it can be set to the maximum interval within a range that does not lose the amount of information about the target physical phenomenon. In this case, it is possible to collect meaningful data for failure probability evaluation while reducing data volume. For example, in the failure probability evaluation of the wind power generator 1 according to the present embodiment, since relatively long-term predictions such as several months or several years are handled, an interval of approximately one day is ideal. Note that the time-series operation data 5 is a type of operation data.
  • time-series operation data 5 may be measured values sampled at arbitrary intervals, it is more preferable to use statistical values such as the maximum value, minimum value, average value, and standard deviation within the collection interval. This makes it possible to make the most of information while significantly reducing the amount of data. For example, the average wind speed per day can be considered.
  • the information accumulated in the time-series operation database 2 is not limited to information obtained from the component parts themselves. For example, weather data such as temperature measured by weather observation equipment installed near the component is also useful in evaluating the load state of the component.
  • FIG. 3 is a diagram showing an example of the time-series operation data 5 and the division flag table 41 stored in the time-series operation database 2 used in this embodiment.
  • FIG. 3(a) is an example of the time-series performance data 5 output to the time-series performance data selection unit 13.
  • the time-series operation data 5 includes the following items: date and time, site name, machine number, and sensors 1 to N.
  • the date and time indicates the date and time when measurements were taken by sensors 1 to N.
  • the site name and machine number are the same as those in maintenance history data 6, and indicate the measurement targets of sensors 1 to N.
  • Sensors 1 to N indicate sensors that measure time-series operation data 5, respectively.
  • the average wind speed is measured as the time-series operation data 5 of the sensor 1.
  • other sensors 2 to N measure time-series operation data other than the average wind speed. That is, in this embodiment, N pieces of time-series operating data are measured by a total of N sensors 1 to N.
  • the data collection interval is one day. Note that here, for convenience, information other than information obtained directly from component parts, such as temperature measured by weather observation equipment, is also referred to as a sensor.
  • division flag table 41 Similar to general machine learning, failure probability evaluation devices need to have high prediction accuracy not only for the data used for learning but also for unknown data. In addition, in order to evaluate the prediction performance for unknown data, we divide the learning data used in the learning of the failure probability evaluation unit 10, which will be described later, and the test data used as a substitute for the unknown data, and calculate the failure probability for each. It is necessary to compare. Furthermore, in the division flag table 41, division flags are associated with each object (wind power generator 1). Specifically, in FIG. 3(b), the site name and machine number, which are examples of information for identifying the individual object, are used.
  • the time-series operation data 5 is assigned a division flag (learning or testing) according to the site name and machine number.
  • the time-series operating data 5 is divided into learning data and test data.
  • the division flag according to the individual number shown in FIG. 3(b) is applied to the time-series operation data 5 shown in FIG. 3(a).
  • the time-series operating data 5 is divided into learning data and test data.
  • FIG. 3(b) the maintenance history data 6 can also be divided into learning data and test data.
  • the division method is not particularly limited, but it is preferable to divide it so that there is no bias in the number of failure occurrences between learning and testing.
  • the time-series operating data selection unit 13 includes a feature quantity calculation unit 14, a failure correlation calculation unit 15, and a selected time-series operating data number determining unit 16. Further, the time-series operation data selection unit 13 selects time-series operation data of the sensor related to the failure from the time-series operation data 5 . Then, the time-series operation data selection unit 13 adds a division flag to the selected time-series operation data using the division flag table 41, and outputs this and the maintenance history data 6.
  • the time-series operation data selection unit 13 selects 10 pieces of time-series operation data of sensors related to the failure. Then, the time-series operation data selection unit 13 outputs the maintenance history data and the data set 9 and the data set 91 of the selected time-series operation data.
  • the data set 9 includes both learning data and test data
  • the data set 91 includes only learning data. Descriptions of the feature value calculation section 14, the failure correlation calculation section 15, and the selected time-series operation data number determining section 16, as well as a specific method for selecting time-series operation data of sensors related to failures, will be described later.
  • the failure probability evaluation section 10 includes a life modeling section 17, a life model recording section 18, and a failure probability output section 19.
  • the lifespan modeling section 17 receives the data set 91 (learning data), generates a lifespan model 20, and records it in the lifespan model recording section 18.
  • the failure probability output unit 19 receives the data set 9 (learning data, test data) as input, calls the life model 21 recorded in the life model recording unit 18, and outputs the failure probability 11.
  • the lifespan model 20 refers to a machine learning model, a statistical model, etc. that calculates failure probability from a selected set of time-series operation data. These models take time-series operation data (operation information) as input and output the corresponding failure probability. Below is a detailed explanation of each model.
  • a machine learning model is a model that uses machine learning methods such as neural networks (deep learning, etc.) and random forests to directly calculate failure probabilities up to the point of input based on time-series operating data (operating information). It is. Note that the machine learning method is not particularly limited to the above method. Parameters of the trained machine learning model (for example, weighting coefficients of neurons in each layer of the neural network) are recorded in the lifespan model recording unit 18.
  • a statistical model is a model that generates explanatory variables from a set of time-series operation data, learns the correspondence between the failure probability and explanatory variables using probability and statistical methods based on maintenance history data, and then operates over time based on the correspondence.
  • This is a model that calculates failure probability from data.
  • the parameters of the probability distribution are determined by maximum likelihood estimation, Bayesian estimation, or the like.
  • a non-parametric method such as the Kaplan-Meier method can be used. Note that the probability/statistical method is not particularly limited to the above method.
  • A is a constant corresponding to the deterioration reaction rate
  • R a is a gas constant
  • E a is activation energy.
  • the parameters ⁇ and ⁇ are the shape parameter and scale parameter of the Weibull distribution, respectively.
  • the life span model recording unit 18 records parameters A and E a of explanatory variables and the type of probability function used for identification (Weibull distribution in the above example) as a statistical model.
  • the function identified as the failure probability function includes, in addition to the Weibull distribution, a gamma distribution, a lognormal distribution, etc., but is not particularly limited to the above.
  • the square value of the average wind speed is proportional to the wind load applied to the blades and the like. Therefore, the cumulative value of the square value of the average wind speed may be used as the explanatory variable.
  • the cumulative values calculated using counting methods such as the rainflow method as explanatory variables to calculate the correspondence with the failure probability (objective variable).
  • a statistical model may be constructed to represent the The rainflow method is one of the methods of counting the stress frequency of a member subjected to repeated fluctuating loads, and is effective when the failure mechanism is fatigue fracture.
  • lifespan models Although specific examples of machine learning models and statistical models have been shown above as lifespan models, the learning method of lifespan models is not limited to the above.
  • the failure probability output unit 19 inputs the maintenance history data including learning data and test data, the selected data set 9, and the life model 21 stored in the life model recording unit 18. Then, the failure probability output unit 19 outputs the correspondence relationships F 1 and F 2 of the failure probabilities (outputs) to the time-series operation data (inputs) of the learning data and the test data.
  • failure probabilities can be directly output for the selected data set (input). Therefore, the above correspondence relationship is represented by a set of pairs of input and output values obtained for each individual.
  • the correspondence between the maintenance history data, the selected data set (input), and the failure probability (output) is the failure probability function for a parametric model, or the failure probability function for a nonparametric model. For example, it is represented by a Kaplan-Meier curve.
  • the feature calculation unit 14 receives as input the time-series operation data 5 and maintenance history data 6 of each sensor. Then, the feature amount calculation unit 14 calculates the feature amounts for these and outputs survival analysis data 7.
  • the method of calculating the feature amount is not particularly limited, but it is preferable to use the cumulative value of time-series operation data of each sensor. During use of the object or its constituent parts, damage may accumulate and failure may occur. In the case of such a failure, for example, a wear-out failure, it is considered that the cumulative value of time-series operation data has a correlation with the failure.
  • the cumulative value calculation method since damage accumulation is an irreversible process, it is desirable that the cumulative value also be a monotonically increasing value. Therefore, when the time-series operating data 5 is negative, it is desirable to convert it using a function that does not take a negative value, such as an absolute value function or a soft plus function, and then calculate the accumulation. Note that it is preferable that the feature calculation unit 14 specify a division flag for the input data using the division flag table 41 and include this in the survival analysis data 7.
  • the cumulative value can be made to increase monotonically. Further, depending on the failure mechanism, as explained in the life modeling section, even higher precision can be achieved by applying conversion or counting methods to the time-series operation data itself and then taking cumulative values. For example, physical knowledge regarding failure mechanisms can be incorporated by applying the Arrhenius formula to temperature data, the square value to average wind speed data, and the rainflow method to stress data. Note that in calculating the cumulative value, the above conversion and counting method, or a combination of other methods may be used.
  • FIG. 4 shows an example of the survival analysis data 7 used in this example.
  • the survival analysis data 7 is the cumulative value of the instantaneous values of the time-series operation data 5 in FIG. 3, that is, the cumulative value of the time-series operation data of each sensor at the time of measurement. recorded.
  • a survival analysis flag (survival or failure) is added to the survival analysis data 7 based on the maintenance history data 6 in accordance with a maintenance event.
  • survival analysis flags a survival flag is added in the case of preliminary maintenance, and a failure flag is added in the case of corrective maintenance.
  • the failure correlation calculation section 15 can function as a dispersion degree calculation section that indicates the degree of dispersion of the failure probability function and calculates the degree of dispersion according to the correlation with failures in parts.
  • the failure correlation calculation unit 15 inputs learning data whose division flag is “learning” in the survival analysis data 7, and calculates the time-series operation of each sensor using the feature calculated by the feature calculation unit 14. Calculate the correlation between data and failures, and the correlation between operating time and failures. Specifically, the failure correlation calculation unit 15 uses the cumulative value of time-series operation data of each sensor as the feature amount. Then, the failure correlation calculation unit 15 outputs a list 8 in which the dispersion of the failure probability function with respect to the cumulative value and the dispersion of the failure probability function based on the total operating time are estimated.
  • the failure correlation calculation unit 15 evaluates the failure probability function that matches the cumulative value and total operation time of the time-series operation data of each sensor of the survival analysis data 7 through the same process, and calculates the number of time-series operation data. (N)+1 failure probability functions can be obtained. Once the failure probability function is determined, its variation can be easily quantified using, for example, the coefficient of variation.
  • the mean E(x) and variance V(x) of the random variable x according to the failure probability function of the two-variable Weibull distribution shown in (Equation 4) can be calculated using the following (Equation 5) and (Equation 6).
  • FIG. 5 is a diagram showing the failure probability function and its coefficient of variation for the cumulative value of time-series operating data in this embodiment.
  • FIG. 5(a) shows a failure probability function 22 that matches the time-series operational data cumulative value (average wind speed cumulative value) of the sensor 1 related to the failure.
  • FIG. 5(b) shows a failure probability function 23 that is adapted to the cumulative value of time-series operating data of sensor N that is not related to failure.
  • FIG. 5C shows the failure probability function 24 based on operating time.
  • FIG. 5 shows a failure probability function 22 that matches the time-series operational data cumulative value (average wind speed cumulative value) of the sensor 1 related to the failure.
  • FIG. 5(b) shows a failure probability function 23 that is adapted to the cumulative value of time-series operating data of sensor N that is not related to failure.
  • FIG. 5C shows the failure probability function 24 based on operating time.
  • the failure probability function of the parts in the case of the wind power generator 1, is the cumulative value of the time-series operation data (average wind speed) of the sensor 1.
  • the probability of failure increases rapidly at locations where the value exceeds a certain value. This is because the average wind speed is a physical quantity that correlates with the wind load applied to the wind power generator.
  • Fig. 5 (a) shows that the variation in the failure probability function becomes smaller when the average wind speed is used as the standard. show.
  • the operating time-based failure probability function 24 is identified based on the cumulative value of operating hours (corresponding to the number of operating days in FIG. 4) without using time-series operating data. It is.
  • list 8 is shown in FIG. 5(d).
  • FIGS. 5(a) to 5(d) can be displayed on the display unit 12.
  • the selected time-series operating data number determining unit 16 includes the list 8, the maintenance history data 6, the correspondence relationship F 1 between the failure probability (output) and the time-series operation data (input) of the learning data, and the time-series operation data of the test data.
  • the correspondence relationship F 2 between failure probability (output) and (input) is input.
  • the selected time-series operating data number determining unit 16 outputs the maintenance history data 6 used for failure probability evaluation and a data set 9 of N s time-series operating data.
  • the selected time-series operating data number determination unit 16 can function as an operating data selection unit that selects operating data.
  • step S50 the time-series operational data selection unit 13 selects N s pieces of high-order time-series operational data with small variations in failure probability functions. This is done by deleting the columns of time-series operation data of each sensor shown in Figure 3 other than the selected time-series operation data of the top sensors with the smallest coefficient of variation, and only selecting the time-series operation data of the top sensors with the smallest variation. means to select.
  • An example of the maximum value N max of N s is the total number N of time-series operating data.
  • N s the maximum value of N s to the total number of time-series operation data corresponding to the feature quantity whose failure probability function has a smaller variation than the operation time.
  • the minimum value is 1.
  • the range of N s can be initially varied from 1 to N max at logarithmic intervals, and a rough search is performed to find a range that improves the predictive performance index described later, and then a detailed search is performed within that range in increments of 1. good.
  • the failure probability evaluation unit 10 inputs the selected time-series operation data and maintenance history data 6, and obtains the correspondence between the failure probability (output) and the time-series operation data (input). As a result, the failure probability evaluation unit 10 identifies the learning data correspondence relationship F 1 for the learning data, and the test data correspondence relationship F 2 for the test data.
  • the failure probability evaluation unit 10 calculates a predicted performance index of the life model from the correspondence relationship F 1 of the learning data and the correspondence relationship F 2 of the test data.
  • the above correspondence becomes a set of pairs of failure probabilities (outputs) for time-series operating data (inputs).
  • the degree of dissimilarity between sets may be calculated and used as an evaluation index. Examples of the degree of dissimilarity include Minkowski distance (eg, Euclidean distance and Manhattan distance), Mahalanobis distance, and cosine similarity multiplied by a negative value.
  • the above correspondence can be obtained as a failure probability function or Kaplan-Meier curve that defines the input-output relationship between time-series operating data (input) and failure probability (output). It will be done.
  • a failure probability function or a deviation rate R between Kaplan-Meier curves can be used as an evaluation index.
  • the deviation rate R can be calculated using (Equation 8). Note that this deviation rate R is an example of a degree of dispersion indicating a correlation.
  • the deviation rate R can be calculated by calculating the difference in failure probability at each point. Furthermore, when the failure probability function is obtained as a continuous probability distribution function, the Kullback-Leibler divergence D KL (F 1
  • the performance index of the lifespan model is not limited to the above-mentioned index.
  • the difference in the variation itself in the correspondence relationship of the failure probability (output) to the time-series operating data (input) for example, the coefficient of variation of the failure probability function F1 of the learning data and the failure probability function F2 of the test data
  • the difference in coefficient of variation can also be used.
  • steps S50 to S52 are repeated by changing the number N s of selected time-series operating data, and in step S53, the time-series operating data selection unit 13 determines the number N s of selected time-series operating data for which the evaluation index is the best. .
  • the number of time-series operating data measured by virtual sensors is set to 100.
  • the time-series operation data of 10 sensors are damage sensors related to the failure
  • 90 are the time-series operation data of dummy sensors not related to the failure.
  • Failures in the virtual data are generated according to the Weibull distribution of cumulative damage expressed as a linear sum of ten time-series operating data of the damage sensor.
  • the damage model D(x) obtained by the damage model generation/updating unit 303 in the failure probability evaluation unit 10, which will be described later with reference to FIG. 9, is used, which is desirable for this embodiment.
  • the failure probability evaluation unit identifies the Weibull distribution as the correspondence relationship between failure probabilities (output) with respect to time-series operating data (input) for learning and testing.
  • FIG. 7 is a graph showing the relationship between the deviation rate R and the number of selected time-series operating data N s in this embodiment.
  • the deviation rate R is plotted on the Y-axis
  • the number of selected time-series operating data N s is plotted on the X-axis.
  • the broken line in FIG. 7 is the deviation rate based on the total operating time, and the thick solid line indicates the deviation rate of 0. The closer the deviation rate is to 0, the better the prediction performance is, but in FIG. 7, the deviation rate is the smallest when the number of selected time-series operating data is 10. Therefore, 10 can be selected as the number N a of selected time-series operating data.
  • FIG. 8 is a graph showing the relationship between failure probability and cumulative damage in this example.
  • the failure probability function F 1 solid line A
  • the failure probability function F 2 broken line B
  • FIGS. 8(a) and 8(b) can be displayed on the display unit 12.
  • the selected time-series operation data number determining unit 16 determines the difference between the correspondence of operation history data during learning (for learning) and the correspondence between operation history data during testing (for testing).
  • the operation history data with the minimum rate (degree of deviation), that is, the minimum degree of deviation, is selected.
  • this correspondence relationship is a set of a predetermined number of pairs of time-series operational data and failure probabilities that are highly correlated with failures among the time-series operational data, or a parametric or non-parametric failure probability function. shown.
  • FIG. 9 is a system configuration diagram including a modification of the failure probability evaluation section 10 in this embodiment.
  • the time-series operation data selection unit 13 selects time-series operation data of sensors related to wear-out failures. Therefore, the failure probability evaluation unit 10 automatically generates an explanatory variable D(x t ) that appropriately expresses the cumulative damage to the equipment, and builds a statistical model for the explanatory variable to achieve higher effectiveness. can be expected.
  • the failure probability evaluation section 10 includes a life modeling section 17, a life model recording section 18, and a failure probability output section 19.
  • the life modeling section 17 includes an explanatory variable generation/updating section 30 and a failure probability function identification section 33.
  • the life modeling section 17 in this modification includes an explanatory variable generation/updating section 30 and a failure probability function identification section 33, and outputs an explanatory variable D(x).
  • the function for this can be realized by the technology described in Patent Document 1.
  • the explanatory variable D(X t ) is expressed as a function of the time-series operation data X t by (Equation 10).
  • d(x) is the damage to equipment per unit time
  • x is an operating data vector representing a time-series operating data set at a certain moment.
  • the time integral D(x) of damage d(x) per unit time is used as an explanatory variable that causes a device to fail.
  • the shape of the formula for calculating the explanatory variable D(x) is not particularly limited.
  • the explanatory variable D(x) can be expressed in the simplest form as a linear combination of the selected N s time-series operation data, and the optimization calculation can be performed at a relatively low calculation cost. It's over.
  • C (c1, c2, ... cNs) is a coefficient vector representing the weighting of each time series operation data
  • x (x 1, x 2, ..., xNs) is the coefficient vector representing the weighting of each time series operation data
  • x (x 1, x 2, ..., xNs) is the coefficient vector representing the weighting of each time series operation data. This is the moment-to-moment value of operating data.
  • failure probability function identification section 33 The processing of the failure probability function identification section 33, that is, the identification method of the failure probability function, is well-known like the failure probability output section 19 and the failure correlation calculation section 15.
  • the explanatory variable generating/updating section 30 minimizes variations in the failure probability function while repeatedly calling the failure probability function identification section 33.
  • the explanatory variable generation/update section 30 receives the time-series operation data and maintenance history data 6 used for failure probability evaluation as input, and outputs an explanatory variable D(x) and standard survival analysis data 32.
  • the explanatory variable-based survival analysis data 32 is the survival analysis data 7 to which a column of explanatory variables D(x) is added.
  • a failure probability function is obtained by identifying the failure probability function described above. Therefore, variations in the failure probability function, such as the coefficient of variation, can be easily evaluated.
  • the explanatory variable generation/updating unit 30 automatically searches for an explanatory variable that takes into account time-series operating data that minimizes the variation 31 of the failure probability function.
  • the explanatory variables obtained as a result are reflected in survival analysis data 7 to generate survival analysis data 32 based on the damage model.
  • the search for explanatory variables can be reduced to an optimization problem in which the objective function is varied and the explanatory variable D(x) is the parameter.
  • the failure mechanism is known to some extent, a method may be adopted in which only the shape of the equation is defined in advance by the user according to the failure mechanism, and the coefficients thereof are searched.
  • the conversion method and counting method as shown in the description of the life modeling section 17 and the feature value calculation section 14, and their combinations can be used.
  • the optimization calculation method for obtaining the coefficient vector representing the weighting of each time-series operational data is not particularly limited.
  • the objective function may be non-convex, it is desirable to use metaheuristics such as genetic algorithms or particle swarm optimization.
  • the explanatory variable D(x) learned as described above is stored in the life model recording section 18, and then called as appropriate by the failure probability output section 19 and used for calculating the failure probability.
  • the display unit 12 displays the failure probability up to the present time from the failure probability output unit 19, the variation in the failure probability function of the cumulative value of time-series operation data of each sensor, and the operation A list 8 that estimates the dispersion of the time-based failure probability function is input.
  • the display unit 12 then displays these.
  • the display unit 12 is specifically composed of a computer equipped with a screen drawing program and a display device, but the computer used here may have different functions from those of the arithmetic unit described above.
  • FIG. 10 is a diagram showing an example of the graphical user interface (GUI 40) on the display unit 12 in this embodiment.
  • the illustrated GUI 40 shows the correlation with the failure, the sensor number, the sensor name, and the coefficient of variation for time-series operation data that are highly relevant to the failure.
  • the correlation with the failure indicates the degree of association with the failure of the device, and the higher the rank, the higher the correlation.
  • the sensor number and sensor name indicate the sensor that measured the failure.
  • the coefficient of variation indicates the dispersion of the failure probability function. Therefore, in FIG. 10, the sensor numbers, sensor names, and coefficients of variation of the higher ranks (1st to 5th) that are highly relevant to failures from the time-series operation data are displayed.
  • the time-series performance data selected by the time-series performance data selection unit 13 is displayed on the screen of the display unit 12.
  • the user can quantitatively grasp information such as what kind of factor is the cause of component failure and how much the factor is related to the failure compared to the total operating time standard. Therefore, in this embodiment, it is possible to provide useful information not only for the maintenance and operation of the wind power generator 1 but also for the design and development of the wind power generator.
  • FIG. 11 is a system configuration diagram in the second embodiment.
  • the failure probability evaluation unit 10 predicts and evaluates future failure probabilities.
  • the difference from the failure probability evaluation unit 10 shown in FIG. 9 in the first embodiment is that it includes an operating status prediction unit 34.
  • the operating status prediction unit 34 receives the time-series operating data 5 and the learned life model 21 as input, and outputs an explanatory variable D(x) at a future point in time.
  • the method for calculating future failure probability is shown below. For the individuals alive at the present moment (t 0 ), the probability of failure after an arbitrary period of time is calculated separately. First, the predicted value 35 of the explanatory variable D(x) after an arbitrary time ( ⁇ t) has elapsed is predicted in advance by the operating status prediction unit 34. At this time, it is necessary to make predictions for each individual individually. The simplest method is to make an assumption that the average value of the values of the time-series operation data 5 recorded up to the present time will continue in the future. When using seasonally dependent operational data such as wind conditions and temperature, it is desirable to make estimates with reference to seasonal trends and forecasts from weather forecasting organizations.
  • time-series operation data may be arbitrarily generated for each of them.
  • time series prediction may be performed using a state space model such as a Kalman filter. Note that the specific prediction method is not limited to the above.
  • F(D) is the correspondence relationship of failure probability (output) to time-series operating data (input) identified as a failure probability function.
  • the failure probability is the expected value of the number of failure events occurring after an arbitrary time ( ⁇ t) has elapsed. The longer ⁇ t is, the larger this value will be, but it is usually desirable to set ⁇ t taking into account the periodic inspection interval of the mechanical system. .It is unlikely that the value will be close to 0. However, it is possible that the total value of failure probabilities for all individuals exceeds 1.0. This total value is the expected value of the number of failure event occurrences for the entire target individual.
  • the operation planning system 37 when the operation planning system 37 is connected to the wind power generator system, a method of changing the operation plan using failure probability may be adopted. For example, if the probability of failure is higher than expected until the periodic inspection scheduled for the future, it is possible to extend the life of the parts by changing the operation plan to actively stop the wind turbine or reduce output. It becomes possible. Due to this change in the operation plan, the future operation status will also change, and the future cumulative damage will also change, so in this case, the operation plan should be reflected in the calculation of future cumulative damage in the operation status prediction unit. is desirable. With such a configuration, the user can easily confirm the relationship between changes in the operation plan and changes in failure probability.
  • the calculation method in this example and the current and future failure probabilities calculated using this method can be used for management (inventory management and operation planning) of mechanical systems and facilities such as factories and plants other than wind power generator systems. Can be applied. An example of this application will be explained in Example 3.
  • Embodiment 3 applies the failure probability at a future point in time calculated in Embodiment 2 to machinery insurance.
  • a machinery insurance premium rate is determined using failure probability.
  • this embodiment is applied to insured equipment to construct a life prediction model.
  • machinery insurance rates based on this lifespan prediction model.
  • the lifespan prediction model is updated based on newly obtained time-series operation data and maintenance history data, and the model is updated.
  • the present invention may be applied not only to machinery insurance but also to insurance that covers fire, corrosion due to aging, rust, etc. in the category of failure.
  • FIG. 12 is a system configuration diagram in the third embodiment.
  • a failure probability evaluation system 100 excluding the display unit 12 is connected to an insurance company system 101 and an asset owner system 102 via a network 1000.
  • the insurance company system 101 and the asset owner system 102 have a network such as an intranet, and each information processing device (terminal or server) can access the failure probability evaluation system 100.
  • each information processing device terminal or server
  • it may be connected to the network 1000 without going through an intranet or the like. It is assumed that the display unit 12 is held by each of these terminals. Note that even when performing failure probability evaluation on a cloud system as described above, it is not always necessary to generate and update the damage model, and it may be performed as appropriate. Note that each of these devices can be realized by a so-called computer.
  • FIG. 13 is a hardware configuration diagram of the failure probability evaluation system 100 in the fourth embodiment.
  • the failure probability evaluation system 100 includes a processing device 111, a memory 112, a network interface 113, and a secondary storage device 114, which are connected to each other via a communication path such as a bus.
  • the processing device 111 is a so-called processor such as a CPU, and executes processing according to the failure probability evaluation program 115 stored in the secondary storage device 114. This process is the process of each part shown in Examples 1 to 3. Further, the memory 112 stores the failure probability evaluation program 115 used for processing in the processing device 111 and the above-mentioned data.
  • the secondary storage device 114 stores a failure probability evaluation program 115 and each of the above-mentioned data, that is, a time-series operation database 2 and a maintenance history database 3.
  • the secondary storage device 114 may be realized by various storage media such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a memory card.
  • the failure probability evaluation system 100 may be implemented in a separate device, such as a file server.

Abstract

The purpose of the present invention is to select failure-related time-series operation data from time-series operation data measured by a large quantity of sensors, and more accurately predict the remaining life of components constituting a mechanical system. The present invention is a failure probability evaluation system for evaluating the failure probability of components constituting a mechanical system, said failure probability evaluation system comprising: a maintenance history database that stores maintenance history data of the mechanical system; an operation database that stores a plurality of sets of operation data indicating the operation status of the components; a degree-of-dispersion calculation unit that, on the basis of the plurality of sets of operation data and the maintenance history data, calculates a degree of dispersion, which indicates the degree of variation of a failure probability function for calculating a failure probability for each set of operation data, and which corresponds to a correlation with failures of the components; and an operation data selection unit that selects operation data according to the calculated degree of dispersion. The failure probability evaluation system achieves the evaluation of the failure probability using, preferentially, the selected operation data.

Description

故障確率評価システムFailure probability evaluation system
 本発明は、対象物の故障確率を評価する技術に関する。この中でも特に、故障確率の算出を含む故障診断や予測(予兆)に関する。ここで対象物には、設備、施設や機械システム、これらを構成する部品が含まれる。 The present invention relates to a technique for evaluating the failure probability of an object. Among these, it particularly relates to failure diagnosis and prediction (premonition), including calculation of failure probability. Here, the objects include equipment, facilities, mechanical systems, and parts that constitute these.
 機械システムの一種である発電設備や輸送機器など各種産業機械においては、機械システムが正常に所定の機能を発揮することが望まれる。このためには、産業機械を構成する各部品の故障リスクを適切に把握・管理し、各部品の修理や交換といった保全を適切なタイミングで実施することが重要である。また、産業機械について複数の同型機を管理・運用する場合には、過去に発生した保全記録を統計的に分析すれば、将来に発生し得る事後保全回数や事前保全回数、対象機器の余寿命を予測することが可能である。ここで、保全記録とは、保全の内容と発生時刻が対になって記録されているデータを表す。 In various types of industrial machinery, such as power generation equipment and transportation equipment, which are a type of mechanical system, it is desired that the mechanical systems perform their specified functions normally. To this end, it is important to appropriately understand and manage the risk of failure of each part that makes up industrial machinery, and to perform maintenance such as repair or replacement of each part at an appropriate time. In addition, when managing and operating multiple industrial machines of the same type, statistical analysis of maintenance records that have occurred in the past can be used to determine the number of corrective maintenance and preliminary maintenance that may occur in the future, and the remaining life of the target equipment. It is possible to predict. Here, the maintenance record refers to data in which the content of maintenance and the time of occurrence are recorded as a pair.
 保全記録を用いた統計的な分析において、将来に発生し得る事後保全回数や事前保全回数、対象機器の余寿命を予測するために必要となる故障確率密度関数f(t)、故障確率関数F(t)、故障率関数λ(t)などを推定することになる。このための技術は、非特許文献1などで示されている。ここでtは機器の稼働時間である。なお、故障確率密度関数f、故障確率関数F、故障率関数λが変数tの関数である場合、それぞれの関係は(数1)(数2)で表すことが出来る。 In statistical analysis using maintenance records, failure probability density function f(t) and failure probability function F are required to predict the number of corrective maintenance and preliminary maintenance that may occur in the future, and the remaining life of the target equipment. (t), failure rate function λ(t), etc. Techniques for this purpose are disclosed in Non-Patent Document 1 and the like. Here, t is the operating time of the equipment. Note that when the failure probability density function f, the failure probability function F, and the failure rate function λ are functions of the variable t, the respective relationships can be expressed by (Equation 1) and (Equation 2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 非特許文献1では、機械システムの稼働状況は静的な状況、つまり時空間的に変動がないことを前提としているが、一般的に機械システムの稼働状況は時空間的に一定ではない。例えば、風力発電機の稼働状況は、風況に応じて時々刻々変化し、その立地条件によっても負荷は異なる。また、建設機械などは、日々異なる作業項目や運転者の運転特性、土壌特性などの作業環境によって、機器への負荷が変化する。したがって、単純に稼働時間を基準とした故障確率関数や故障率関数の評価では、保全回数や余寿命の推定精度に限界がある。 Although Non-Patent Document 1 assumes that the operating status of a mechanical system is a static status, that is, there is no variation in space and time, the operating status of a mechanical system is generally not constant in space and time. For example, the operating status of a wind power generator changes from moment to moment depending on the wind conditions, and the load varies depending on the location conditions. In addition, the load on construction machinery and the like changes depending on the work environment, such as the work items that change from day to day, the driving characteristics of the driver, and the characteristics of the soil. Therefore, there is a limit to the accuracy of estimating the number of maintenance cycles and remaining life when evaluating a failure probability function or a failure rate function simply based on operating time.
 ここで、近年、さまざまなセンサが機械システムに取り付けられ、ネットワークを介して、これらのセンサが計測する時系列稼働データにアクセスすることが容易となっている。そこで、特許文献1では、上述の推定精度を向上させるために、センサで計測される時系列稼働データから個体ごとに異なる稼働状況を評価し、それを適切に考慮することで、より高精度な保全回数や余寿命の推定を可能としている。 In recent years, various sensors have been attached to mechanical systems, and it has become easy to access time-series operational data measured by these sensors via networks. Therefore, in order to improve the above-mentioned estimation accuracy, Patent Document 1 evaluates the operating status that differs for each individual from time-series operating data measured by sensors, and takes this into account appropriately. This makes it possible to estimate the number of maintenance cycles and remaining life.
特開2019-160128号公報JP2019-160128A
 ここで、近年の機械システムでは、数百から数千の多量のセンサが機器に取り付けられることも珍しくない。但し、全ての時系列稼働データが必ずしも故障と関連している訳ではなく、故障と無関係な時系列稼働データも多量に含まれている。このため、保全回数や余寿命の推定精度をより向上させるには、故障に関連する時系列稼働データのみを予め選択し、故障確率評価を行うことが望ましい。しかしながら、特許文献1では、故障に関連する時系列稼働データのみを予め選択する技術は開示されていない。そこで、本発明では、保全回数や余寿命などの対象物に対する保全に関する推定精度をより向上させること課題とする。 Here, in recent mechanical systems, it is not uncommon for a large number of sensors, ranging from hundreds to thousands, to be attached to the equipment. However, not all time-series operation data is necessarily related to failures, and a large amount of time-series operation data unrelated to failures is also included. Therefore, in order to further improve the accuracy of estimating the number of maintenance cycles and remaining service life, it is desirable to select in advance only time-series operation data related to failure and perform failure probability evaluation. However, Patent Document 1 does not disclose a technique for pre-selecting only time-series operation data related to a failure. Therefore, an object of the present invention is to further improve the accuracy of estimation regarding maintenance of an object, such as the number of maintenance cycles and remaining life.
 上記の課題を解決するために、本発明では、稼働データ(例えば、時系列の稼働データ)を用いて故障確率を算出する。また、本発明には、故障確率を算出するための故障確率関数のばらつきの程度を示し、故障との相関性に応じた散布度を特定し、これに応じた稼働データを選択する構成も含まれる。より好適には、散布度の小さな稼働データを選択することが望ましい。より具体的な本発明の構成には、機械システムを構成する部品での故障の故障確率を評価するための故障確率評価システムにおいて、前記機械システムの保全履歴データを記憶する保全履歴データベースと、前記部品の稼働状況を示す複数の稼働データを記憶する稼働データベースと、前記稼働データおよび保全履歴データに基づいて、前記稼働データごとの故障確率を算出するための故障確率関数のばらつきの程度を示し、前記部品での故障との相関性に応じた散布度を算出する散布度算出部と、算出された前記散布度に応じて稼働データを選択する稼働データ選択部を有し、選択された前記稼働データを優先的に用いて、前記故障確率の評価を実現する故障確率評価システムである。 In order to solve the above problems, the present invention calculates the failure probability using operation data (for example, time-series operation data). The present invention also includes a configuration that indicates the degree of dispersion of the failure probability function for calculating the failure probability, specifies the degree of dispersion according to the correlation with failure, and selects operation data accordingly. It will be done. More preferably, it is desirable to select operation data with a small degree of dispersion. A more specific configuration of the present invention includes, in a failure probability evaluation system for evaluating the failure probability of failure in parts constituting a mechanical system, a maintenance history database that stores maintenance history data of the mechanical system; An operation database that stores a plurality of operation data indicating the operation status of parts, and a degree of variation in a failure probability function for calculating a failure probability for each operation data based on the operation data and maintenance history data, a dispersion degree calculation section that calculates a dispersion degree according to the correlation with failures in the parts; and an operation data selection section that selects operation data according to the calculated dispersion degree; This is a failure probability evaluation system that implements evaluation of the failure probability by preferentially using data.
 また、本発明には、故障確率評価システムを用いた故障確率評価方法や故障確率評価システムをコンピュータとして機能させる故障確率評価プログラムやこれを格納する記憶媒体も本発明に含まれる。 The present invention also includes a failure probability evaluation method using the failure probability evaluation system, a failure probability evaluation program that causes the failure probability evaluation system to function as a computer, and a storage medium that stores the same.
 本発明によれば、従来に比較して、対象物に対する保全に関する推定精度をより向上することが可能となる。前述した以外の課題、構成及び効果は、以下の実施例の説明によって明らかにされる。 According to the present invention, it is possible to further improve the accuracy of estimation regarding maintenance of a target object compared to the conventional method. Problems, configurations, and effects other than those described above will be made clear by the description of the following examples.
実施例1におけるシステム構成図System configuration diagram in Example 1 実施例1で用いられる保全履歴データの一例を示す図Diagram showing an example of maintenance history data used in Example 1 実施例1で用いられる時系列稼働データベース2に格納される時系列稼働データおよび分割フラグテーブルの一例を示す図A diagram showing an example of time-series operation data and a division flag table stored in the time-series operation database 2 used in the first embodiment. 実施例1で用いられる生存解析用データの一例を示す図Diagram showing an example of survival analysis data used in Example 1 実施例1における時系列稼働データ累積値に対する故障確率関数とその変動係数を示す図A diagram showing the failure probability function and its coefficient of variation for the cumulative value of time-series operation data in Example 1 実施例1における実施例1における時系列稼働データ数Ns求めるフローチャートFlowchart for calculating the number of time-series operating data N s in Example 1 in Example 1 実施例1における乖離率Rと選択時系列稼働データ数Nsの関係を示すグラフGraph showing the relationship between the deviation rate R and the number of selected time-series operation data Ns in Example 1 実施例1における故障確率と累積ダメージの関係を示すグラフGraph showing the relationship between failure probability and cumulative damage in Example 1 実施例1における故障確率評価部の変形例を含むシステム構成図System configuration diagram including a modified example of the failure probability evaluation unit in Example 1 実施例1における表示部でのグラフィカルユーザインターフェイス(GUI)の一例を示す図A diagram showing an example of a graphical user interface (GUI) on the display unit in Example 1 実施例2におけるシステム構成図System configuration diagram in Example 2 実施例3におけるシステム構成図System configuration diagram in Example 3 実施例4における故障確率評価システムのハードウエア構成図Hardware configuration diagram of failure probability evaluation system in Example 4
 以下、本発明の実施形態における故障確率評価システム100について説明する。本実施形態の故障確率評価システム100は、機械システムを構成する部品での故障の故障確率を評価するための故障確率評価システム100において、前記機械システムの保全履歴データを記憶する保全履歴データベースと、前記部品の稼働状況を示す複数の稼働データを記憶する稼働データベースと、前記稼働データおよび保全履歴データに基づいて、前記稼働データごとの故障確率を算出するための故障確率関数のばらつきの程度を示し、前記部品での故障との相関性に応じた散布度を算出する散布度算出部と、算出された前記散布度に応じて稼働データを選択する稼働データ選択部を有し、選択された前記稼働データを優先的に用いて、前記故障確率の評価を実現するものである。 Hereinafter, a failure probability evaluation system 100 according to an embodiment of the present invention will be described. A failure probability evaluation system 100 of the present embodiment includes a maintenance history database that stores maintenance history data of the mechanical system; An operation database that stores a plurality of operation data indicating the operation status of the component, and a degree of variation in a failure probability function for calculating a failure probability for each operation data based on the operation data and maintenance history data. , a dispersion degree calculation section that calculates a dispersion degree according to the correlation with failures in the parts, and an operation data selection section that selects operation data according to the calculated dispersion degree, The evaluation of the failure probability is realized by preferentially using operation data.
 本実施形態によれば、多量の稼働データの中から、故障に関連するセンサの稼働データを選択し、故障確率評価に用いることで、機械システムの構成部品の故障確率を高精度に予測することが出来る。 According to this embodiment, the failure probability of components of a mechanical system can be predicted with high accuracy by selecting operational data of sensors related to failure from a large amount of operational data and using it for failure probability evaluation. I can do it.
 以下では、本実施形態のより具体例を示す各実施例を、図面を用いて説明する。なお、故障確率評価システム100は、計算機(コンピュータ)上で実現され、その機能はプログラムに従った処理装置で実行される。但し、専用ハードウエアでその機能を実現してもよく、本発明はプログラム(ソフトウエア)の利用に限定されない。 Hereinafter, each example showing more specific examples of this embodiment will be described using the drawings. The failure probability evaluation system 100 is realized on a computer, and its functions are executed by a processing device according to a program. However, the function may be realized by dedicated hardware, and the present invention is not limited to the use of a program (software).
 また、以下の各実施例においては、機械システムとして風力発電機1を用い、風力発電機1とこの構成部品の故障確率を評価する。但し、本発明の適用対象は風力発電機1のみに限定されるものではない。 Furthermore, in each of the following examples, the wind power generator 1 is used as a mechanical system, and the failure probability of the wind power generator 1 and its component parts is evaluated. However, the application of the present invention is not limited only to the wind power generator 1.
 また、本実施形態でも、上述の(数1)(数2)を用いるが、これらから明らかなように、故障確率密度関数f、故障確率関数F、故障率関数λの何れかを同定することができれば、他の関数を算出することが出来る。よって、以下の実施例では、故障の確率分布を同定する際に、必要に応じて故障確率密度関数fと故障確率関数Fを使い分けている。 Further, in this embodiment, the above-mentioned (Equation 1) and (Equation 2) are used, but as is clear from these, it is necessary to identify any one of the failure probability density function f, the failure probability function F, and the failure rate function λ. If we can do this, we can calculate other functions. Therefore, in the following embodiments, when identifying the probability distribution of failures, the failure probability density function f and the failure probability function F are used depending on necessity.
 図1は、実施例1におけるシステム構成図である。本実施例の故障確率評価システム100は、保全履歴データベース3、時系列稼働データベース2、時系列稼働データ選択部13、故障確率評価部10を有している。なお、時系列稼働データベース2や保全履歴データベース3は、故障確率評価システム100の外部に設けてもよいし、1つのデータベースで構成してもよい。 FIG. 1 is a system configuration diagram in the first embodiment. The failure probability evaluation system 100 of this embodiment includes a maintenance history database 3, a time-series operation database 2, a time-series operation data selection section 13, and a failure probability evaluation section 10. Note that the time-series operation database 2 and the maintenance history database 3 may be provided outside the failure probability evaluation system 100, or may be configured as a single database.
 まず、保全履歴データベース3およびそこに格納される保全履歴データ6について説明する。図1に示す保全履歴データベース3には、風力発電機1の構成部品の保全履歴データ6が蓄積される。図2は、本実施例で用いられる保全履歴データ6の一例を示す図である。保全履歴データ6は、図2に示すように保全が発生した個体と保全発生日時が対応付けられれたデータである。本実施例では、個体を識別する情報として、対象物である風力発電機1の属するサイト名および号機を用いる。なお、個体を識別する情報として、個体番号などを用いてもよい。このことは、後述の各データでも同様である。また、保全履歴データ6には、個体に対して、実行された保全に関連した事象(保全事象)を含む保全履歴が含まれることが望ましい。図2に示すように、本実施例では、保全履歴として、保全内容、部品名および内容の各項目が用いられる。 First, the maintenance history database 3 and the maintenance history data 6 stored therein will be explained. In the maintenance history database 3 shown in FIG. 1, maintenance history data 6 of the components of the wind power generator 1 is accumulated. FIG. 2 is a diagram showing an example of maintenance history data 6 used in this embodiment. The maintenance history data 6, as shown in FIG. 2, is data in which individuals in which maintenance has occurred are associated with dates and times when maintenance has occurred. In this embodiment, the site name and machine number to which the wind power generator 1, which is the object, belongs are used as information for identifying an individual. Note that an individual number or the like may be used as information for identifying an individual. This also applies to each data described below. Furthermore, it is desirable that the maintenance history data 6 include a maintenance history including events (maintenance events) related to maintenance performed on the individual. As shown in FIG. 2, in this embodiment, each item of maintenance content, part name, and content is used as the maintenance history.
 ここで、保全内容は、実行された保全の種別を示し、本実施例では「事前保全」と「事後保全」が用いられる。「事前保全」とは、定期交換などにより、故障発生前に部品交換などの保全を実施するものを指す。「事後保全」とは、異常や故障発生後に部品交換などの保全を行うことを指す。また、部品名は、保全されたもしくは異常が発生した部品や箇所を識別する。さらに、内容は、実行された保全の内容を示す。 Here, the maintenance content indicates the type of maintenance performed, and in this embodiment, "pre-maintenance" and "post-maintenance" are used. "Preliminary maintenance" refers to maintenance such as replacing parts before a failure occurs, such as through periodic replacement. "Corrective maintenance" refers to maintenance such as replacing parts after an abnormality or failure occurs. Further, the component name identifies the component or location that has been maintained or where an abnormality has occurred. Additionally, the content indicates the content of the maintenance performed.
 また、保全履歴データ6には、以下の項目を含めてもよい。例えば、事前保全の場合は、保全実施理由などを用いることができる。また、事後保全の場合は、故障の発生事象などを用いることができる。 Additionally, the maintenance history data 6 may include the following items. For example, in the case of preliminary maintenance, the reason for carrying out the maintenance can be used. Furthermore, in the case of corrective maintenance, occurrence events of failures, etc. can be used.
 また、風力発電機1に保全履歴を自動検出する機能が備わっている場合は、風力発電機1と保全履歴データベース3とをネットワークを介して接続し、保全履歴データ6を保全履歴データベース3に自動蓄積してもよい。或いは、保全を担当する作業担当者4が、保全履歴を保全履歴データベース3に登録してもよい。本構成により、複数の構成部品ついての保全内容を含む保全履歴が保全履歴データベース3に蓄積される。 In addition, if the wind power generator 1 is equipped with a function to automatically detect the maintenance history, the wind power generator 1 and the maintenance history database 3 are connected via a network, and the maintenance history data 6 is automatically transferred to the maintenance history database 3. May be accumulated. Alternatively, the worker 4 in charge of maintenance may register the maintenance history in the maintenance history database 3. With this configuration, maintenance history including maintenance details for a plurality of component parts is accumulated in the maintenance history database 3.
 次に、時系列稼働データベース2およびそこに格納される時系列稼働データ5について説明する。本実施例では、風力発電機1の構成部品に関する運転データといった時系列稼働データ5が、ネットワークなどの通信手段を介して、時系列稼働データベース2に蓄積されていく。このとき、各データの収集間隔は特に限定されないが、対象とする物理現象の情報量を失わない範囲内で、最大の間隔にすることができる。この場合、データ容量を削減しながら、故障確率評価に意味のあるデータを収集することが出来る。例えば、本実施例の風力発電機1の故障確率評価では、数か月や数年といった比較的長期の予測を扱うため、1日間隔程度が理想的である。なお、時系列稼働データ5は、稼働データの一種である。 Next, the time-series operation database 2 and the time-series operation data 5 stored therein will be explained. In this embodiment, time-series operation data 5 such as operation data regarding the components of the wind power generator 1 is accumulated in a time-series operation database 2 via a communication means such as a network. At this time, although the collection interval of each data is not particularly limited, it can be set to the maximum interval within a range that does not lose the amount of information about the target physical phenomenon. In this case, it is possible to collect meaningful data for failure probability evaluation while reducing data volume. For example, in the failure probability evaluation of the wind power generator 1 according to the present embodiment, since relatively long-term predictions such as several months or several years are handled, an interval of approximately one day is ideal. Note that the time-series operation data 5 is a type of operation data.
 また、時系列稼働データ5は、任意間隔でサンプリングされた計測値でも良いが、収集間隔内における最大値、最小値、平均値、標準偏差といった統計値を用いることがより好適である。これにより、データ量を大幅に削減しながらも情報を最大限に活用することが可能となる。例えば、一日あたりの平均風速などが考えられる。また、時系列稼働データベース2に蓄積される情報は、構成部品自身から得られる情報に限定されない。例えば、構成部品の近隣に設けられた気象観測設備で計測された気温などの気象データなども、構成部品の負荷状態を評価する上では有用である。 Although the time-series operation data 5 may be measured values sampled at arbitrary intervals, it is more preferable to use statistical values such as the maximum value, minimum value, average value, and standard deviation within the collection interval. This makes it possible to make the most of information while significantly reducing the amount of data. For example, the average wind speed per day can be considered. Further, the information accumulated in the time-series operation database 2 is not limited to information obtained from the component parts themselves. For example, weather data such as temperature measured by weather observation equipment installed near the component is also useful in evaluating the load state of the component.
 ここで、図3は、本実施例で用いられる時系列稼働データベース2に格納される時系列稼働データ5および分割フラグテーブル41の一例を示す図である。まず、図3(a)は、時系列稼働データ選択部13へ出力する時系列稼働データ5の一例である。図3(a)に示すように、時系列稼働データ5は、日時、サイト名、号機、センサ1~Nの各項目を有する。日時は、センサ1~Nでの計測された日時を示す。サイト名や号機は、保全履歴データ6と同様であり、センサ1~Nでの計測対象を示す。そして、センサ1~Nは、それぞれ時系列稼働データ5を計測するセンサを示す。ここで、風力発電機1では、センサ1の時系列稼働データ5として平均風速が計測されている。また、その他のセンサ2~Nで平均風速以外の時系列稼働データが計測される。つまり、本実施例では、総計N個のセンサ1~Nにより、N個の時系列稼働データが計測されている。図3(a)の例では、データの収集間隔(計測間隔)は1日としている。なお、ここでは気象観測設備で計測された気温などのように、構成部品から直接得られた情報以外も、便宜的にセンサと表記している。 Here, FIG. 3 is a diagram showing an example of the time-series operation data 5 and the division flag table 41 stored in the time-series operation database 2 used in this embodiment. First, FIG. 3(a) is an example of the time-series performance data 5 output to the time-series performance data selection unit 13. As shown in FIG. 3(a), the time-series operation data 5 includes the following items: date and time, site name, machine number, and sensors 1 to N. The date and time indicates the date and time when measurements were taken by sensors 1 to N. The site name and machine number are the same as those in maintenance history data 6, and indicate the measurement targets of sensors 1 to N. Sensors 1 to N indicate sensors that measure time-series operation data 5, respectively. Here, in the wind power generator 1, the average wind speed is measured as the time-series operation data 5 of the sensor 1. In addition, other sensors 2 to N measure time-series operation data other than the average wind speed. That is, in this embodiment, N pieces of time-series operating data are measured by a total of N sensors 1 to N. In the example of FIG. 3(a), the data collection interval (measurement interval) is one day. Note that here, for convenience, information other than information obtained directly from component parts, such as temperature measured by weather observation equipment, is also referred to as a sensor.
 また、図3(b)に示す分割フラグテーブル41の詳細説明に先立ち、その必要性について述べる。一般的な機械学習と同様に、故障確率評価装置においても、学習に用いたデータだけでなく、未知のデータに対する予測精度が高い必要がある。また、未知のデータに対する予測性能を評価するため、後述する故障確率評価部10の学習で使用する学習用データと、未知のデータの代替として使用するテスト用データを分割し、それぞれに対する故障確率を比較する必要がある。また、分割フラグテーブル41は、対象物(風力発電機1)ごとに、分割フラグが対応付けられている。具体的には、図3(b)において、対象物の個体を識別する情報の一例であるサイト名、号機が用いられる。 Furthermore, prior to a detailed explanation of the division flag table 41 shown in FIG. 3(b), the necessity thereof will be described. Similar to general machine learning, failure probability evaluation devices need to have high prediction accuracy not only for the data used for learning but also for unknown data. In addition, in order to evaluate the prediction performance for unknown data, we divide the learning data used in the learning of the failure probability evaluation unit 10, which will be described later, and the test data used as a substitute for the unknown data, and calculate the failure probability for each. It is necessary to compare. Furthermore, in the division flag table 41, division flags are associated with each object (wind power generator 1). Specifically, in FIG. 3(b), the site name and machine number, which are examples of information for identifying the individual object, are used.
 そこで、本実施例では、分割フラグテーブル41に基づき、時系列稼働データ5が、サイト名称や号機に応じて、分割フラグ(学習あるいはテスト)が付与される。この結果、時系列稼働データ5が、学習用データ、テスト用データへと分割する。具体的には、図3(b)の個体番号に応じた分割フラグを図3(a)の時系列稼働データ5に適用する。このことで、時系列稼働データ5を学習用データ、テスト用データへと分割される。図3(b)を同様に保全履歴データ6に適用することで、保全履歴データ6も学習用データ、テスト用データへと分割できる。分割方法は特に限定されないが、故障発生回数に学習用とテスト用で偏りがでないように分割したほうが望ましい。 Therefore, in this embodiment, based on the division flag table 41, the time-series operation data 5 is assigned a division flag (learning or testing) according to the site name and machine number. As a result, the time-series operating data 5 is divided into learning data and test data. Specifically, the division flag according to the individual number shown in FIG. 3(b) is applied to the time-series operation data 5 shown in FIG. 3(a). As a result, the time-series operating data 5 is divided into learning data and test data. By similarly applying FIG. 3(b) to the maintenance history data 6, the maintenance history data 6 can also be divided into learning data and test data. The division method is not particularly limited, but it is preferable to divide it so that there is no bias in the number of failure occurrences between learning and testing.
 次に、時系列稼働データ選択部13について説明する。時系列稼働データ選択部13は、特徴量計算部14、故障相関計算部15、選択時系列稼働データ数決定部16を有する。また、時系列稼働データ選択部13は、時系列稼働データ5から故障に関連するセンサの時系列稼働データを選択する。そして、時系列稼働データ選択部13は、分割フラグテーブル41を用いて、選択された時系列稼働データに分割フラグを付加し、これと保全履歴データ6を出力する。 Next, the time-series operating data selection unit 13 will be explained. The time-series operating data selection unit 13 includes a feature quantity calculation unit 14, a failure correlation calculation unit 15, and a selected time-series operating data number determining unit 16. Further, the time-series operation data selection unit 13 selects time-series operation data of the sensor related to the failure from the time-series operation data 5 . Then, the time-series operation data selection unit 13 adds a division flag to the selected time-series operation data using the division flag table 41, and outputs this and the maintenance history data 6.
 例えば、時系列稼働データ選択部13は、各センサの時系列稼働データ5が100個ある場合に、故障に関連のあるセンサの時系列稼働データ10個を選択する。そして、時系列稼働データ選択部13は、保全履歴データと選択した時系列稼働データのデータセット9およびデータセット91を出力する。ここで、データセット9は学習用データとテスト用データの両者を含み、データセット91は学習用データのみを含む。特徴量計算部14、故障相関計算部15、選択時系列稼働データ数決定部16の説明、および故障に関連するセンサの時系列稼働データの具体的な選択方法は後述する。 For example, when there are 100 pieces of time-series operation data 5 of each sensor, the time-series operation data selection unit 13 selects 10 pieces of time-series operation data of sensors related to the failure. Then, the time-series operation data selection unit 13 outputs the maintenance history data and the data set 9 and the data set 91 of the selected time-series operation data. Here, the data set 9 includes both learning data and test data, and the data set 91 includes only learning data. Descriptions of the feature value calculation section 14, the failure correlation calculation section 15, and the selected time-series operation data number determining section 16, as well as a specific method for selecting time-series operation data of sensors related to failures, will be described later.
 次に、故障確率評価部10について説明する。故障確率評価部10は、寿命モデリング部17、寿命モデル記録部18、故障確率出力部19を有する。寿命モデリング部17は、データセット91(学習用データ)を入力とし、寿命モデル20を生成して、寿命モデル記録部18に記録する。また、故障確率出力部19は、データセット9(学習用データ、テスト用データ)を入力とし、寿命モデル記録部18に記録された寿命モデル21を呼び出して故障確率11を出力する。 Next, the failure probability evaluation section 10 will be explained. The failure probability evaluation section 10 includes a life modeling section 17, a life model recording section 18, and a failure probability output section 19. The lifespan modeling section 17 receives the data set 91 (learning data), generates a lifespan model 20, and records it in the lifespan model recording section 18. Furthermore, the failure probability output unit 19 receives the data set 9 (learning data, test data) as input, calls the life model 21 recorded in the life model recording unit 18, and outputs the failure probability 11.
 ここで、寿命モデル20は、選択した時系列稼働データのセットから故障確率を算出する機械学習モデルや統計モデルなどを指す。これらのモデルでは、時系列稼働データ(稼働情報)を入力として、それに対応する故障確率を出力する。以下に、各モデルの具体的な説明を記す。 Here, the lifespan model 20 refers to a machine learning model, a statistical model, etc. that calculates failure probability from a selected set of time-series operation data. These models take time-series operation data (operation information) as input and output the corresponding failure probability. Below is a detailed explanation of each model.
 機械学習モデルとは、ニューラルネットワーク(深層学習など)やランダムフォレストなどの機械学習手法により、時系列稼働データ(稼働情報)の入力に対して、直接的に入力時点までの故障確率を算出するモデルである。なお、機械学習手法は、特に上記手法に限定されない。学習済の機械学習モデルのパラメータ(例えばニューラルネットワークの各層ニューロンの重み係数など)は、寿命モデル記録部18に記録される。 A machine learning model is a model that uses machine learning methods such as neural networks (deep learning, etc.) and random forests to directly calculate failure probabilities up to the point of input based on time-series operating data (operating information). It is. Note that the machine learning method is not particularly limited to the above method. Parameters of the trained machine learning model (for example, weighting coefficients of neurons in each layer of the neural network) are recorded in the lifespan model recording unit 18.
 また、統計モデルとは、時系列稼働データのセットから説明変数を生成し、故障確率と説明変数の対応関係を保全履歴データに基づき確率・統計手法により学習し、対応関係に基づいて時系列稼働データから故障確率を算出するモデルである。ここで、統計モデルにより対応関係を確率分布としてパラメトリックに表す際には、最尤推定やベイズ推定などにより確率分布のパラメータを決定する。また、統計モデルにより確率分布を仮定しない場合は、カプラン・マイヤー法に代表されるノンパラメトリック法を利用できる。なお、確率・統計手法は、特に上記手法に限定されない。 In addition, a statistical model is a model that generates explanatory variables from a set of time-series operation data, learns the correspondence between the failure probability and explanatory variables using probability and statistical methods based on maintenance history data, and then operates over time based on the correspondence. This is a model that calculates failure probability from data. Here, when representing the correspondence relationship parametrically as a probability distribution using a statistical model, the parameters of the probability distribution are determined by maximum likelihood estimation, Bayesian estimation, or the like. Furthermore, if a statistical model does not assume a probability distribution, a non-parametric method such as the Kaplan-Meier method can be used. Note that the probability/statistical method is not particularly limited to the above method.
 また、寿命モデリング部17での統計モデル学習の際には、故障メカニズムに応じて、時系列稼働データを変換し、統計モデルの説明変数とすることが望ましい。例えば、材料劣化など対象の劣化要因として熱負荷が支配的である場合、いかのように説明変数を特定できる。(数3)に示すアレニウス式により、学習データ用の温度の時系列稼働データTを、劣化反応の速度に比例する時刻iで発生する劣化量Dに変換して、保全発生までの累積値D=ΣDiを説明変数とすることができる。 Further, when learning the statistical model in the life modeling unit 17, it is desirable to convert the time-series operation data according to the failure mechanism and use it as an explanatory variable of the statistical model. For example, when heat load is the dominant deterioration factor for a target such as material deterioration, how can explanatory variables be identified? Using the Arrhenius equation shown in (Equation 3), the time-series operation data T of temperature for learning data is converted into the amount of deterioration D i that occurs at time i that is proportional to the speed of the deterioration reaction, and the cumulative value until maintenance occurs is D=ΣDi can be used as an explanatory variable.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、Aは劣化反応速度に対応する定数、Rは気体定数、Eは活性化エネルギーである。説明変数Dと故障確率の対応関係をパラメトリックな確率分布F(D)として表す際には、例えば、(数4)示したワイブル分布Fを仮定することができる。 Here, A is a constant corresponding to the deterioration reaction rate, R a is a gas constant, and E a is activation energy. When expressing the correspondence between the explanatory variable D and the failure probability as a parametric probability distribution F(D), for example, the Weibull distribution F shown in (Equation 4) can be assumed.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、パラメータα、βは、それぞれワイブル分布の形状パラメータと尺度パラメータである。ここで、全個体に対する累積値D(説明変数)と保全履歴データから、アレニウス式の未知パラメータA、Eと故障確率関数F(ワイブル分布)のパラメータα、βを同定するためには、非特許文献1、特許文献1に記載される技術を用いるウことができる。また、寿命モデル記録部18には、統計モデルとして、説明変数のパラメータAとE、および同定に用いた確率関数の種類(上記の例ではワイブル分布)が記録される。なお、故障確率関数として同定する関数はワイブル分布の他にガンマ分布、対数正規分布などが挙げられるが、特に上記に限定されない。 Here, the parameters α and β are the shape parameter and scale parameter of the Weibull distribution, respectively. Here, in order to identify the unknown parameters A and E a of the Arrhenius equation and the parameters α and β of the failure probability function F (Weibull distribution) from the cumulative value D (explanatory variable) and maintenance history data for all individuals, it is necessary to The techniques described in Patent Document 1 and Patent Document 1 can be used. Furthermore, the life span model recording unit 18 records parameters A and E a of explanatory variables and the type of probability function used for identification (Weibull distribution in the above example) as a statistical model. Note that the function identified as the failure probability function includes, in addition to the Weibull distribution, a gamma distribution, a lognormal distribution, etc., but is not particularly limited to the above.
 また、風力発電機1においては、平均風速の2乗値がブレードなどにかかる風荷重と比例することが知られている。このため、平均風速の2乗値の累積値を説明変数としてもよい。また、説明変数の計算の際に、上述した物理量の変換値だけでなく、レインフロー法などの計数法を用いて算出した累積値を説明変数として、故障確率(目的変数)との対応関係を表す統計モデルを構築してもよい。レインフロー法は、繰り返しの変動荷重を受ける部材の応力頻度を数える手法の一つであり、故障メカニズムが疲労破壊の際に有効である。 Furthermore, in the wind power generator 1, it is known that the square value of the average wind speed is proportional to the wind load applied to the blades and the like. Therefore, the cumulative value of the square value of the average wind speed may be used as the explanatory variable. In addition, when calculating explanatory variables, we use not only the converted values of the physical quantities described above, but also the cumulative values calculated using counting methods such as the rainflow method as explanatory variables to calculate the correspondence with the failure probability (objective variable). A statistical model may be constructed to represent the The rainflow method is one of the methods of counting the stress frequency of a member subjected to repeated fluctuating loads, and is effective when the failure mechanism is fatigue fracture.
 上記では単純な説明変数をいくつか例示したが、複数の時系列稼働データから説明変数を生成することも可能である。各センサの時系列稼働データ5に対する故障メカニズムと物理法則が未知の場合でも、対象機器の時系列稼働データxの組み合わせから、説明変数D(x)を自動的に学習し、統計モデルに利用することもできる。この方法については、本実施例の望ましい故障確率評価部10の説明(図9)にて後述する。 Although some simple explanatory variables were illustrated above, it is also possible to generate explanatory variables from multiple time-series operational data. Even if the failure mechanism and physical laws for the time-series operation data 5 of each sensor are unknown, the explanatory variable D(x) is automatically learned from the combination of the time-series operation data x of the target equipment and used in the statistical model. You can also do that. This method will be described later in the description of the preferred failure probability evaluation unit 10 of this embodiment (FIG. 9).
 以上、寿命モデルとして機械学習モデル、統計モデルの具体例を示したが、寿命モデルの学習方法は上記のみに限定されるものではない。 Although specific examples of machine learning models and statistical models have been shown above as lifespan models, the learning method of lifespan models is not limited to the above.
 次に、故障確率出力部19は、学習用データとテスト用データを含む保全履歴データと選択したデータセット9、寿命モデル記録部18に保存された寿命モデル21を入力とする。そして、故障確率出力部19は、学習用データとテスト用データの時系列稼働データ(入力)に対する故障確率の(出力)の対応関係F、F2を出力する。 Next, the failure probability output unit 19 inputs the maintenance history data including learning data and test data, the selected data set 9, and the life model 21 stored in the life model recording unit 18. Then, the failure probability output unit 19 outputs the correspondence relationships F 1 and F 2 of the failure probabilities (outputs) to the time-series operation data (inputs) of the learning data and the test data.
 ここで、寿命モデルとして、機械学習モデルを用いる場合は、選択したデータセット(入力)に対して、直接的に故障確率を出力できる。このため、上記の対応関係は、各個体に対して得られる入出力値のペアの集合で表される。 Here, when a machine learning model is used as the life model, failure probabilities can be directly output for the selected data set (input). Therefore, the above correspondence relationship is represented by a set of pairs of input and output values obtained for each individual.
 また、寿命モデルとして、統計モデルを用いる場合は、保全履歴データと選択したデータのセット(入力)と故障確率(出力)の対応関係は、パラメトリックなモデルでは故障確率関数、ノンパラメトリックな場合は、例えばカプラン・マイヤー曲線で表される。 In addition, when using a statistical model as a lifespan model, the correspondence between the maintenance history data, the selected data set (input), and the failure probability (output) is the failure probability function for a parametric model, or the failure probability function for a nonparametric model. For example, it is represented by a Kaplan-Meier curve.
 次に、特徴量計算部14、故障相関計算部15、選択時系列稼働データ数決定部16の具体的な説明を行う。 Next, the feature quantity calculation unit 14, failure correlation calculation unit 15, and selected time-series operating data number determination unit 16 will be specifically explained.
 初めに、特徴量計算部14について説明する。特徴量計算部14では、各センサの時系列稼働データ5、保全履歴データ6を入力とする。そして、特徴量計算部14は、これらについての特徴量を計算し、生存解析用データ7を出力する。特徴量の算出方法としては、特に限定はされないが、各センサの時系列稼働データの累積値であることが望ましい。
対象物やこれを構成する部品の使用中にダメージが累積し故障が発生することがある。このような故障、例えば、摩耗故障の場合、時系列稼働データの累積値が故障と相関を有すると考えられる。ここで、累積値計算方法については、何ら限定を設けないが、ダメージの蓄積は不可逆の過程であるため、累積値も単調増加の値となることが望ましい。そのため、時系列稼働データ5が負となる場合には、絶対値関数やソフトプラス関数など、負値をとらない関数による変換をした上で累積を取ることが望ましい。なお、特徴量計算部14は、入力されたデータに対して、分割フラグテーブル41を用いて分割フラグを特定し、これを生存解析用データ7に含めることが望ましい。
First, the feature calculation section 14 will be explained. The feature calculation unit 14 receives as input the time-series operation data 5 and maintenance history data 6 of each sensor. Then, the feature amount calculation unit 14 calculates the feature amounts for these and outputs survival analysis data 7. The method of calculating the feature amount is not particularly limited, but it is preferable to use the cumulative value of time-series operation data of each sensor.
During use of the object or its constituent parts, damage may accumulate and failure may occur. In the case of such a failure, for example, a wear-out failure, it is considered that the cumulative value of time-series operation data has a correlation with the failure. Here, no limitations are placed on the cumulative value calculation method, but since damage accumulation is an irreversible process, it is desirable that the cumulative value also be a monotonically increasing value. Therefore, when the time-series operating data 5 is negative, it is desirable to convert it using a function that does not take a negative value, such as an absolute value function or a soft plus function, and then calculate the accumulation. Note that it is preferable that the feature calculation unit 14 specify a division flag for the input data using the division flag table 41 and include this in the survival analysis data 7.
 以上により、累積値を単調増加とすることが出来る。また、故障メカニズムに応じて、寿命モデリング部で説明したように、時系列稼働データ自体に変換や計数法を適用した上で、累積値をとることにより、更なる高精度化が可能となる。例えば、温度データに対してアレニウス式、平均風速データに対して2乗値、応力データに対してレインフロー法など適用し、故障メカニズムに関する物理的知見を組み入れることができる。なお、累積値の計算では、上記の変換や計数法、またはそれ以外を組み合わせて用いてもよい。 With the above, the cumulative value can be made to increase monotonically. Further, depending on the failure mechanism, as explained in the life modeling section, even higher precision can be achieved by applying conversion or counting methods to the time-series operation data itself and then taking cumulative values. For example, physical knowledge regarding failure mechanisms can be incorporated by applying the Arrhenius formula to temperature data, the square value to average wind speed data, and the rainflow method to stress data. Note that in calculating the cumulative value, the above conversion and counting method, or a combination of other methods may be used.
 ここで、図4に、本実施例で用いられる生存解析用データ7の一例を示す。図4に示すとおり、生存解析用データ7では、図3の時系列稼働データ5の瞬間瞬間の値が累積された累積値、つまり、計測時点での各センサの時系列稼働データの累積値が記録されている。また、生存解析用データ7には、保全履歴データ6に基づき、保全事象に応じて、生存解析用フラグ(生存あるいは故障)が付加される。生存解析用フラグとしては、事前保全の場合は生存フラグ、事後保全の場合は故障フラグが付加される。 Here, FIG. 4 shows an example of the survival analysis data 7 used in this example. As shown in FIG. 4, the survival analysis data 7 is the cumulative value of the instantaneous values of the time-series operation data 5 in FIG. 3, that is, the cumulative value of the time-series operation data of each sensor at the time of measurement. recorded. Furthermore, a survival analysis flag (survival or failure) is added to the survival analysis data 7 based on the maintenance history data 6 in accordance with a maintenance event. As survival analysis flags, a survival flag is added in the case of preliminary maintenance, and a failure flag is added in the case of corrective maintenance.
 また、最初の稼働時から一度も保全が発生せず、現在も稼働中の個体の場合(図4中の〇〇サイト1号機など)、保全履歴データベースに記録がない。この場合、図4中の保全事象カラムには「保全なし」と記録される。「保全なし」の場合も生存解析用フラグとしては、事前保全と同様に生存フラグが付加される。このことにより、個体ごとの計測時点での各センサの時系列稼働データの累積値と生存解析用フラグ(生存あるいは故障)が対となった、生存解析用データ7が得られる。なお、特徴量計算部14は、生存解析用データ7に対して、分割フラグテーブル41を適用し、個体(サイト名称とその号機)を紐づけることで、分割カラムを追加し、学習用データ、テスト用データへと分割することができる。 In addition, in the case of an individual that has never undergone maintenance since its first operation and is still in operation (such as Unit 1 at 〇〇 site in Figure 4), there is no record in the maintenance history database. In this case, "no maintenance" is recorded in the maintenance event column in FIG. Even in the case of "no maintenance", a survival flag is added as a survival analysis flag in the same way as in advance maintenance. As a result, survival analysis data 7 is obtained in which the cumulative value of time-series operation data of each sensor at the time of measurement for each individual is paired with a survival analysis flag (survival or failure). Note that the feature amount calculation unit 14 applies the division flag table 41 to the survival analysis data 7, and adds a division column by linking the individual (site name and its machine number) to the learning data, It can be divided into test data.
 次に、故障相関計算部15について説明する。なお、故障相関計算部15での操作は学習用データに対してのみ行う。これは故障相関計算部15の出力値(各センサの時系列稼働データの特徴量と故障との相関)に基づいて、時系列稼働データ選択を行い、寿命モデルを学習するためである。つまり、予測精度検証用に用いるテストデータを、故障相関計算部15では用いるべきではないからである。なお、故障相関計算部15は、故障確率関数のばらつきの程度を示し、部品での故障との相関性に応じた散布度を算出する散布度算出部として機能できる。 Next, the failure correlation calculation section 15 will be explained. Note that the operation in the failure correlation calculation unit 15 is performed only on the learning data. This is to select the time-series operating data based on the output value of the failure correlation calculation unit 15 (the correlation between the feature amount of the time-series operating data of each sensor and the failure) and learn the life model. In other words, the test data used for prediction accuracy verification should not be used in the failure correlation calculation unit 15. The failure correlation calculation section 15 can function as a dispersion degree calculation section that indicates the degree of dispersion of the failure probability function and calculates the degree of dispersion according to the correlation with failures in parts.
 故障相関計算部15では、生存解析用データ7の中で分割フラグが「学習」となる学習用データを入力として、特徴量計算部14で算出した特徴量を用いて、各センサの時系列稼働データと故障との相関、稼働時間の故障との相関を算出する。具体的には、故障相関計算部15は、特徴量として各センサの時系列稼働データの累積値を用いる。そして、故障相関計算部15は、累積値に対する故障確率関数のばらつき、及び総稼働時間基準の故障確率関数のばらつきを推定したリスト8を出力する。寿命モデリング部17の説明でも示したように、生存解析用データ7のデータセットにおいて、例えばセンサ1の時系列稼働データ(平均風速)の累積値のみに着目する。そして、着目した変数を説明変数として、それに適合する故障確率関数を推定する手法は公知の技術を用いることができる。よって、故障相関計算部15は、同様の処理により、生存解析用データ7の各センサの時系列稼働データの累積値および総稼働時間に適合する故障確率関数を評価し、時系列稼働データの個数(N)+1個の故障確率関数を得ることができる。故障確率関数が定まれば、そのばらつきは、例えば変動係数などで容易に定量化することができる。例えば、(数4)で示した2変数のワイブル分布の故障確率関数に従う確率変数xの平均E(x)、分散V(x)は以下の(数5)(数6)で算出できる。 The failure correlation calculation unit 15 inputs learning data whose division flag is “learning” in the survival analysis data 7, and calculates the time-series operation of each sensor using the feature calculated by the feature calculation unit 14. Calculate the correlation between data and failures, and the correlation between operating time and failures. Specifically, the failure correlation calculation unit 15 uses the cumulative value of time-series operation data of each sensor as the feature amount. Then, the failure correlation calculation unit 15 outputs a list 8 in which the dispersion of the failure probability function with respect to the cumulative value and the dispersion of the failure probability function based on the total operating time are estimated. As shown in the explanation of the life modeling unit 17, in the data set of the survival analysis data 7, for example, only the cumulative value of the time-series operation data (average wind speed) of the sensor 1 is focused. Then, a known technique can be used to estimate a failure probability function that fits the variable of interest as an explanatory variable. Therefore, the failure correlation calculation unit 15 evaluates the failure probability function that matches the cumulative value and total operation time of the time-series operation data of each sensor of the survival analysis data 7 through the same process, and calculates the number of time-series operation data. (N)+1 failure probability functions can be obtained. Once the failure probability function is determined, its variation can be easily quantified using, for example, the coefficient of variation. For example, the mean E(x) and variance V(x) of the random variable x according to the failure probability function of the two-variable Weibull distribution shown in (Equation 4) can be calculated using the following (Equation 5) and (Equation 6).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記から変動係数Cvは、以下の(数7)ように形状パラメータαのみの関数となる。 From the above, the variation coefficient C v becomes a function only of the shape parameter α as shown in (Equation 7) below.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、図5は、本実施例における時系列稼働データ累積値に対する故障確率関数とその変動係数を示す図である。具体的には、図5(a)は、故障に関連のあるセンサ1の時系列稼働データ累積値(平均風速累積値)に適合する故障確率関数22である。また、図5(b)は、故障に関連のないセンサNの時系列稼働データ累積値に適合する故障確率関数23である。図5(c)は、稼働時間基準の故障確率関数24である。ここで、図5(a)に示すように、風力発電機1の場合、部品(例えば増速機やブレードなど)の故障確率関数は、センサ1の時系列稼働データ(平均風速)の累積値が一定の値を超えた箇所で急激に故障確率が増大する。これは、平均風速が風力発電機に加わる風荷重と相関する物理量であるためである、なお、図5(a)では平均風速を基準とした際に、故障確率関数のばらつきが小さくなることを示す。 Here, FIG. 5 is a diagram showing the failure probability function and its coefficient of variation for the cumulative value of time-series operating data in this embodiment. Specifically, FIG. 5(a) shows a failure probability function 22 that matches the time-series operational data cumulative value (average wind speed cumulative value) of the sensor 1 related to the failure. Further, FIG. 5(b) shows a failure probability function 23 that is adapted to the cumulative value of time-series operating data of sensor N that is not related to failure. FIG. 5C shows the failure probability function 24 based on operating time. Here, as shown in FIG. 5(a), in the case of the wind power generator 1, the failure probability function of the parts (for example, the speed increaser and blades) is the cumulative value of the time-series operation data (average wind speed) of the sensor 1. The probability of failure increases rapidly at locations where the value exceeds a certain value. This is because the average wind speed is a physical quantity that correlates with the wind load applied to the wind power generator. In addition, Fig. 5 (a) shows that the variation in the failure probability function becomes smaller when the average wind speed is used as the standard. show.
 図5(b)に示すように、累積値の大小と故障確率の相関がない(より小さい)これは、センサNの時系列稼働データは故障と関連しないもしくは関連性がより小さいためである。よって、センサNの時系列稼働データの累積値が大きくなっても、故障確率関数は必ずしも急激に多くなるとは限らず、故障確率関数のばらつきは大きくなる。 As shown in FIG. 5(b), there is no correlation between the magnitude of the cumulative value and the failure probability (it is smaller). This is because the time-series operation data of sensor N is not associated with failure or has a smaller correlation. Therefore, even if the cumulative value of the time-series operation data of sensor N increases, the failure probability function does not necessarily increase rapidly, and the dispersion of the failure probability function increases.
 また、図5(c)に示すように、稼働時間基準の故障確率関数24は、時系列稼働データを用いず、稼働時間の累積値(図4の稼働日数に相当)に対して同定したものである。
ここで、時系列稼働情報を活用して時間軸基準の故障確率評価よりも予測精度を高めるには、以下の条件を満たすことが必要となる。つまり、故障に関連するセンサの時系列稼働データの累積値に対する故障確率関数のばらつきは、少なくとも総稼働時間に対する故障確率関数のばらつきより小さくなることが必要である。また、図5(d)に、リスト8を示す。これは、故障相関計算部15から、選択時系列稼働データ数決定部16へと出力値となる、各センサの時系列稼働データ累積値基準、総稼働時間基準の故障確率関数のばらつきを変動係数として定量化したものである。なお、図5(a)~(d)については、表示部12に表示することができる。
In addition, as shown in FIG. 5(c), the operating time-based failure probability function 24 is identified based on the cumulative value of operating hours (corresponding to the number of operating days in FIG. 4) without using time-series operating data. It is.
Here, in order to utilize time-series operation information to improve prediction accuracy over time-based failure probability evaluation, it is necessary to satisfy the following conditions. In other words, it is necessary that the variation in the failure probability function with respect to the cumulative value of time-series operation data of the sensor related to failure is at least smaller than the variation in the failure probability function with respect to the total operating time. Moreover, list 8 is shown in FIG. 5(d). This is the variation coefficient of the failure probability function based on the cumulative value of time-series operating data of each sensor and the total operating time, which is output from the failure correlation calculation unit 15 to the selected time-series operating data number determining unit 16. It is quantified as . Note that FIGS. 5(a) to 5(d) can be displayed on the display unit 12.
 次に、選択時系列稼働データ数決定部16について説明する。選択時系列稼働データ数決定部16は、リスト8、保全履歴データ6、学習用データの時系列稼働データ(入力)に対する故障確率(出力)の対応関係F1、テスト用データの時系列稼働データ(入力)に対する故障確率(出力)の対応関係F2を入力とする。そして、選択時系列稼働データ数決定部16は、故障確率評価に用いる保全履歴データ6とNs個の時系列稼働データのデータセット9を出力する。なお、選択時系列稼働データ数決定部16は、稼働データを選択する稼働データ選択部として機能できる。 Next, the selected time-series operating data number determination unit 16 will be explained. The selected time-series operation data number determining unit 16 includes the list 8, the maintenance history data 6, the correspondence relationship F 1 between the failure probability (output) and the time-series operation data (input) of the learning data, and the time-series operation data of the test data. The correspondence relationship F 2 between failure probability (output) and (input) is input. Then, the selected time-series operating data number determining unit 16 outputs the maintenance history data 6 used for failure probability evaluation and a data set 9 of N s time-series operating data. Note that the selected time-series operating data number determination unit 16 can function as an operating data selection unit that selects operating data.
 次に、上述の各構成を用いた選択時系列稼働データ数Nsを求める手順について、図6に示すフローチャートを用いて説明する。まず、ステップS50において、時系列稼働データ選択部13が、故障確率関数のばらつきの小さい上位時系列稼働データをNs個選択する。これは図3に示した各センサの時系列稼働データのカラムのうち、変動係数の小さい上位センサの選択時系列稼働データのカラム以外を削除し、ばらつきの小さい上位センサの選択時系列稼働データのみを選択することを意味する。Nsの最大値Nmaxの一例としては、全時系列稼働データ数Nがある。 Next, a procedure for determining the number N s of selected time-series operating data using each of the above-described configurations will be explained using the flowchart shown in FIG. 6. First, in step S50, the time-series operational data selection unit 13 selects N s pieces of high-order time-series operational data with small variations in failure probability functions. This is done by deleting the columns of time-series operation data of each sensor shown in Figure 3 other than the selected time-series operation data of the top sensors with the smallest coefficient of variation, and only selecting the time-series operation data of the top sensors with the smallest variation. means to select. An example of the maximum value N max of N s is the total number N of time-series operating data.
 ここで、計算時間を短縮するため、Nsの最大値として、稼働時間よりも故障確率関数のばらつきが小さい特徴量に対応した時系列稼働データの総数とすることも有効である。
なお、最小値は1である。Nsの範囲は、最初は1~Nmaxまで対数間隔で変化させ、後述する予測性能指標が良くなる範囲を粗探索し、その後、1刻みでその範囲内を詳細に探索するなどしてもよい。
Here, in order to shorten the calculation time, it is also effective to set the maximum value of N s to the total number of time-series operation data corresponding to the feature quantity whose failure probability function has a smaller variation than the operation time.
Note that the minimum value is 1. The range of N s can be initially varied from 1 to N max at logarithmic intervals, and a rough search is performed to find a range that improves the predictive performance index described later, and then a detailed search is performed within that range in increments of 1. good.
 また、ステップS51において、故障確率評価部10が、選択した時系列稼働データと保全履歴データ6を入力し、時系列稼働データ(入力)に対する故障確率(出力)の対応関係を取得する。この結果、故障確率評価部10が、学習用データに対しては学習用データの対応関係F1、テスト用データに対してはテスト用データの対応関係F2を同定する。 Further, in step S51, the failure probability evaluation unit 10 inputs the selected time-series operation data and maintenance history data 6, and obtains the correspondence between the failure probability (output) and the time-series operation data (input). As a result, the failure probability evaluation unit 10 identifies the learning data correspondence relationship F 1 for the learning data, and the test data correspondence relationship F 2 for the test data.
 また、ステップS52において、故障確率評価部10が、学習用データの対応関係F、テスト用データの対応関係F2から、寿命モデルの予測性能指標を算出する。寿命モデルとして機械学習モデルを用いた場合は、上記の対応関係は、時系列稼働データ(入力)に対する故障確率(出力)のペアの集合となる。この場合は、集合間の非類似度を算出し、評価指標とすればよい。非類似度としては、例えばミンコフスキー距離(例えば、ユークリッド距離やマンハッタン距離など)、マハラノビス距離、コサイン類似度にマイナスをかけたものなどが考えられる。 Further, in step S52, the failure probability evaluation unit 10 calculates a predicted performance index of the life model from the correspondence relationship F 1 of the learning data and the correspondence relationship F 2 of the test data. When a machine learning model is used as the life model, the above correspondence becomes a set of pairs of failure probabilities (outputs) for time-series operating data (inputs). In this case, the degree of dissimilarity between sets may be calculated and used as an evaluation index. Examples of the degree of dissimilarity include Minkowski distance (eg, Euclidean distance and Manhattan distance), Mahalanobis distance, and cosine similarity multiplied by a negative value.
 また、寿命モデルとして、統計モデルを用いた場合は、上記の対応関係は、時系列稼働データ(入力)と故障確率(出力)の入出力関係を規定する故障確率関数やカプラン・マイヤー曲線として得られる。評価指標としては、故障確率関数やカプラン・マイヤー曲線の間の乖離率Rが利用できる。乖離率Rは、(数8)で計算することができる。なお、この乖離率Rは、相関関係を示す散布度の一例である。 In addition, when a statistical model is used as the life model, the above correspondence can be obtained as a failure probability function or Kaplan-Meier curve that defines the input-output relationship between time-series operating data (input) and failure probability (output). It will be done. As an evaluation index, a failure probability function or a deviation rate R between Kaplan-Meier curves can be used. The deviation rate R can be calculated using (Equation 8). Note that this deviation rate R is an example of a degree of dispersion indicating a correlation.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記乖離率Rは、上記対応関係が連続な関数として得られない場合でも、各点における故障確率の差を計算することで算出することができる。また、故障確率関数が連続な確率分布関数として得られる場合は、2つの分布関数の相違を定量化するカルバック・ライブラーダイバージェンスDKL(F||F)が利用できる。(数9)では、例として連続確率分布の場合のカルバック・ライブラーダイバージェンスの計算式を示す。 Even if the correspondence relationship cannot be obtained as a continuous function, the deviation rate R can be calculated by calculating the difference in failure probability at each point. Furthermore, when the failure probability function is obtained as a continuous probability distribution function, the Kullback-Leibler divergence D KL (F 1 ||F 2 ) can be used to quantify the difference between two distribution functions. (Equation 9) shows a calculation formula for the Kullback-Leibler divergence in the case of a continuous probability distribution as an example.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また寿命モデルの性能指標としては、上記の指標に限定されない。例えば、時系列稼働データ(入力)に対する故障確率の(出力)の対応関係のばらつき自体の差(例えば、学習用データの故障確率関数Fの変動係数とテスト用データの故障確率関数Fの変動係数の差など)も用いることが可能である。 Furthermore, the performance index of the lifespan model is not limited to the above-mentioned index. For example, the difference in the variation itself in the correspondence relationship of the failure probability (output) to the time-series operating data (input) (for example, the coefficient of variation of the failure probability function F1 of the learning data and the failure probability function F2 of the test data) (such as a difference in coefficient of variation) can also be used.
 また、ステップS50~S52について選択時系列稼働データ数Nsを変化させて繰り返し、ステップS53において時系列稼働データ選択部13が、評価指標が最良となる選択時系列稼働データ数Nsを決定する。 Further, steps S50 to S52 are repeated by changing the number N s of selected time-series operating data, and in step S53, the time-series operating data selection unit 13 determines the number N s of selected time-series operating data for which the evaluation index is the best. .
 以下に仮想データを例に、本実施例の効果を説明する。多数のセンサから時系列稼働データを所得する機械システムを模擬して、仮想的なセンサで計測される時系列稼働データ数は100個としている。また、そのうち、10個のセンサの時系列稼働データは故障に関連するダメージセンサであり、90個は故障に関連しないダミ―センサの時系列稼働データとしている。仮想データでの故障は、ダメージセンサの時系列稼働データ10個の線形和で表される累積ダメージのワイブル分布に従って発生させている。 The effects of this embodiment will be explained below using virtual data as an example. To simulate a mechanical system that obtains time-series operating data from a large number of sensors, the number of time-series operating data measured by virtual sensors is set to 100. Moreover, among them, the time-series operation data of 10 sensors are damage sensors related to the failure, and 90 are the time-series operation data of dummy sensors not related to the failure. Failures in the virtual data are generated according to the Weibull distribution of cumulative damage expressed as a linear sum of ten time-series operating data of the damage sensor.
 寿命モデルとしては、図9で後述する本実施例に望ましい故障確率評価部10内のダメージモデル生成・更新部303で得られたダメージモデルD(x)を用いている。また、故障確率評価部では、学習用とテスト用の時系列稼働データ(入力)に対する故障確率の(出力)の対応関係として、ワイブル分布を同定している。 As the life model, the damage model D(x) obtained by the damage model generation/updating unit 303 in the failure probability evaluation unit 10, which will be described later with reference to FIG. 9, is used, which is desirable for this embodiment. Furthermore, the failure probability evaluation unit identifies the Weibull distribution as the correspondence relationship between failure probabilities (output) with respect to time-series operating data (input) for learning and testing.
 ここで、図7は、本実施例における乖離率Rと選択時系列稼働データ数Nsの関係を示すグラフである。図7では、Y軸に上記乖離率R、X軸に選択時系列稼働データ数Nsをプロットしている。また、図7の破線は総稼働時間基準での乖離率であり、太実線は乖離率0の線を示している。乖離率は0に近いほど予測性能が良いことを示すが、図7では選択時系列稼働データ数10において最も乖離率が小さくなっている。このため、選択時系列稼働データ数Naとして10を選択することができる。これは、時系列稼働データ選択を行わない場合(Ns=100)と比較して、時系列稼働データ選択を行った場合(Nw=10)の方が、乖離率Rが低減し予測性能が向上していることを示す。 Here, FIG. 7 is a graph showing the relationship between the deviation rate R and the number of selected time-series operating data N s in this embodiment. In FIG. 7, the deviation rate R is plotted on the Y-axis, and the number of selected time-series operating data N s is plotted on the X-axis. Further, the broken line in FIG. 7 is the deviation rate based on the total operating time, and the thick solid line indicates the deviation rate of 0. The closer the deviation rate is to 0, the better the prediction performance is, but in FIG. 7, the deviation rate is the smallest when the number of selected time-series operating data is 10. Therefore, 10 can be selected as the number N a of selected time-series operating data. This means that the deviation rate R is lower and the prediction performance is better when time-series operating data is selected (N w =10) than when time-series operating data is not selected (N s =100). This shows that the results are improved.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 また、図8は、本実施例における故障確率と累積ダメージの関係を示すグラフである。
このうち、図8(a)では、時系列稼働データ選択部13で、故障確率関数のばらつきが小さい上位の時系列稼働データNs=10個を選択した場合の故障確率評価結果27を示す。また、図8(b)では、選択しなかった場合、つまり、Ns=100個のグラフ28の故障確率評価結果を示す。これら図8(a)(b)では、学習の際の故障確率関数F1(実線A)とテストの際の故障確率関数F2(破線B)を比較できる。図5(a)では、実線Aと破線Bの乖離は小さく、高精度な予測ができている一方、図5(b)では、実線Aと破線Bの乖離が大きくなり、予測性能が低下している。これは故障に関連する時系列稼働データ選択を行うことで学習データに対する過剰適合が防止され、未知データに対する予測精度(汎化性能)が向上する効果を有することを示している。なお、なお、図8(a)(b)については、表示部12に表示することができる。以上のように、本実施例では、選択時系列稼働データ数決定部16が、学習の際(学習用)稼働履歴データの対応関係とテストの際(テスト用)稼働履歴データの対応関係の乖離率(乖離の程度)が最小、つまり、乖離度が最小の稼働履歴データを選択することになる。そして、上述のように、この対応関係は、時系列稼働データのうち故障と相関の高い所定数の上位の時系列稼働データと故障確率のペアの集合もしくは、パラメトリックもしくはノンパラメトリックな故障確率関数で示される。
Further, FIG. 8 is a graph showing the relationship between failure probability and cumulative damage in this example.
Among them, FIG. 8A shows the failure probability evaluation result 27 when the time-series operational data selection unit 13 selects N s =10 pieces of time-series operational data with small variations in the failure probability function. Further, FIG. 8(b) shows the failure probability evaluation results for the graph 28 when no selection is made, that is, N s =100. In FIGS. 8(a) and 8(b), the failure probability function F 1 (solid line A) during learning and the failure probability function F 2 (broken line B) during testing can be compared. In Fig. 5(a), the deviation between the solid line A and the broken line B is small, and highly accurate prediction is possible, whereas in Fig. 5(b), the deviation between the solid line A and the broken line B is large, and the prediction performance deteriorates. ing. This shows that selecting time-series operational data related to failures prevents overfitting to learning data and has the effect of improving prediction accuracy (generalization performance) for unknown data. Note that FIGS. 8(a) and 8(b) can be displayed on the display unit 12. As described above, in this embodiment, the selected time-series operation data number determining unit 16 determines the difference between the correspondence of operation history data during learning (for learning) and the correspondence between operation history data during testing (for testing). The operation history data with the minimum rate (degree of deviation), that is, the minimum degree of deviation, is selected. As mentioned above, this correspondence relationship is a set of a predetermined number of pairs of time-series operational data and failure probabilities that are highly correlated with failures among the time-series operational data, or a parametric or non-parametric failure probability function. shown.
 次に、本実施例における図1とは別の故障確率評価部10の変形例について説明する。
図9は、本実施例における故障確率評価部10の変形例を含むシステム構成図である。本変形例では、摩耗故障に関連するセンサの時系列稼働データを時系列稼働データ選択部13において選択している。したがって、故障確率評価部10において、機器に累積する損傷を適切に表現する説明変数D(xt)を自動的に生成し、その説明変数に対して統計モデルを構築することで、より高い効果が期待できる。
Next, a modification of the failure probability evaluation unit 10 in this embodiment different from that shown in FIG. 1 will be described.
FIG. 9 is a system configuration diagram including a modification of the failure probability evaluation section 10 in this embodiment. In this modification, the time-series operation data selection unit 13 selects time-series operation data of sensors related to wear-out failures. Therefore, the failure probability evaluation unit 10 automatically generates an explanatory variable D(x t ) that appropriately expresses the cumulative damage to the equipment, and builds a statistical model for the explanatory variable to achieve higher effectiveness. can be expected.
 以下に、本変形例の故障確率評価部10の詳細を示す。故障確率評価部10は、寿命モデリング部17、寿命モデル記録部18、故障確率出力部19を有する。そして、寿命モデリング部17は、説明変数生成・更新部30、故障確率関数同定部33から構成されている。 Details of the failure probability evaluation unit 10 of this modification are shown below. The failure probability evaluation section 10 includes a life modeling section 17, a life model recording section 18, and a failure probability output section 19. The life modeling section 17 includes an explanatory variable generation/updating section 30 and a failure probability function identification section 33.
 まず、本変形例における寿命モデリング部17について説明する。ここで、寿命モデリング部17は、説明変数生成・更新部30、故障確率関数同定部33を有し、説明変数D(x)を出力する。なお、このための機能は、特許文献1に記載の技術で実現できる。また、説明変数D(Xt)は、時系列稼働データXの関数として(数10)で示される。 First, the life modeling section 17 in this modification will be explained. Here, the life modeling section 17 includes an explanatory variable generation/updating section 30 and a failure probability function identification section 33, and outputs an explanatory variable D(x). Note that the function for this can be realized by the technology described in Patent Document 1. Further, the explanatory variable D(X t ) is expressed as a function of the time-series operation data X t by (Equation 10).
 ここで、d(x)は単位時間あたりの機器への損傷であり、xはある瞬間の時系列稼働データセットを表す稼働データベクトルである。本変形例では、摩耗故障の故障を対象としているため、単位時間当たりの損傷d(x)の時間積分D(x)を、機器が故障に至らしめる説明変数とする。また、本変形例では、説明変数D(x)を算出するための数式の形状については、特に限定しない。例えば、(数11)のとおり、説明変数D(x)は選択したNs個の時系列稼働データの線形結合の形で表す数式が最も単純であり、最適化計算も比較的少ない計算コストで済む。 Here, d(x) is the damage to equipment per unit time, and x is an operating data vector representing a time-series operating data set at a certain moment. In this modification, since a wear-out failure is targeted, the time integral D(x) of damage d(x) per unit time is used as an explanatory variable that causes a device to fail. Further, in this modification, the shape of the formula for calculating the explanatory variable D(x) is not particularly limited. For example, as shown in (Equation 11), the explanatory variable D(x) can be expressed in the simplest form as a linear combination of the selected N s time-series operation data, and the optimization calculation can be performed at a relatively low calculation cost. It's over.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここでC=(c1,c2,…cNs)は各時系列稼働データの重み付けを表す係数ベクトルであり、x=(x1,2,…,xNs)は、選択したNs個の時系列稼働データの瞬間瞬間の値である。 Here, C = (c1, c2, ... cNs) is a coefficient vector representing the weighting of each time series operation data, and x = (x 1, x 2, ..., xNs) is the coefficient vector representing the weighting of each time series operation data, and x = (x 1, x 2, ..., xNs) is the coefficient vector representing the weighting of each time series operation data. This is the moment-to-moment value of operating data.
 次に、故障確率関数同定部33について説明する。故障確率関数同定部33の処理、つまり、故障確率関数の同定法は、故障確率出力部19、故障相関計算部15と同様に公知である。説明変数D(x)生成の際には、説明変数生成・更新部30が、故障確率関数同定部33を繰り返し呼び出しながら、故障確率関数のばらつきを最小化する。 Next, the failure probability function identification section 33 will be explained. The processing of the failure probability function identification section 33, that is, the identification method of the failure probability function, is well-known like the failure probability output section 19 and the failure correlation calculation section 15. When generating the explanatory variable D(x), the explanatory variable generating/updating section 30 minimizes variations in the failure probability function while repeatedly calling the failure probability function identification section 33.
 次に、説明変数生成・更新部30について説明する。説明変数生成・更新部30では、故障確率評価に用いる時系列稼働データと保全履歴データ6を入力として、説明変数D(x)、基準の生存解析用データ32を出力する。ここで、説明変数基準の生存解析用データ32とは、生存解析用データ7に説明変数D(x)のカラムが追加されたものである。生存解析用データ32は、上述の故障確率関数の同定により故障確率関数が得られる。このため、変動係数などの、故障確率関数のばらつきは容易に評価できる。 Next, the explanatory variable generation/update section 30 will be explained. The explanatory variable generation/updating unit 30 receives the time-series operation data and maintenance history data 6 used for failure probability evaluation as input, and outputs an explanatory variable D(x) and standard survival analysis data 32. Here, the explanatory variable-based survival analysis data 32 is the survival analysis data 7 to which a column of explanatory variables D(x) is added. In the survival analysis data 32, a failure probability function is obtained by identifying the failure probability function described above. Therefore, variations in the failure probability function, such as the coefficient of variation, can be easily evaluated.
 また、説明変数生成・更新部30では、故障確率関数のばらつき31が最小となるような時系列稼働データを考慮した説明変数を自動探索する。この結果得られる説明変数を生存解析用データ7に反映し、ダメージモデル基準の生存解析用データ32を生成する。説明変数の探索は、目的関数をばらつき、パラメータを説明変数D(x)とした最適化問題に帰着できる。 Furthermore, the explanatory variable generation/updating unit 30 automatically searches for an explanatory variable that takes into account time-series operating data that minimizes the variation 31 of the failure probability function. The explanatory variables obtained as a result are reflected in survival analysis data 7 to generate survival analysis data 32 based on the damage model. The search for explanatory variables can be reduced to an optimization problem in which the objective function is varied and the explanatory variable D(x) is the parameter.
 また、故障メカニズムがある程度既知となっている場合には、式の形状のみを故障メカニズムに則ってユーザが予め定義しておき、その係数を探索するような方式を採用してもよい。寿命モデリング部17、特徴量計算部14の説明で示したような変換法や計数法、その組み合わせが利用できる。 Furthermore, if the failure mechanism is known to some extent, a method may be adopted in which only the shape of the equation is defined in advance by the user according to the failure mechanism, and the coefficients thereof are searched. The conversion method and counting method as shown in the description of the life modeling section 17 and the feature value calculation section 14, and their combinations can be used.
 各時系列稼働データの重み付けを表す係数ベクトルを得るための最適化計算法は特に限定されない。但し、目的関数が非凸となる場合もあるので、遺伝的アルゴリズムや粒子群最適化などのメタヒューリスティクスを用いることが望ましい。 The optimization calculation method for obtaining the coefficient vector representing the weighting of each time-series operational data is not particularly limited. However, since the objective function may be non-convex, it is desirable to use metaheuristics such as genetic algorithms or particle swarm optimization.
 上述のように学習した説明変数D(x)は、寿命モデル記録部18で保存された後、故障確率出力部19で適宜呼び出され、故障確率の算出に用いられる。 The explanatory variable D(x) learned as described above is stored in the life model recording section 18, and then called as appropriate by the failure probability output section 19 and used for calculating the failure probability.
 次に、表示部12について説明する。表示部12には、故障確率出力部19から現時点までの故障確率、時系列稼働データ選択部13内の故障相関計算部15から各センサの時系列稼働データ累積値の故障確率関数のばらつき、稼働時間基準の故障確率関数のばらつきを推定したリスト8が入力される。そして、表示部12は、これらを表示する。表示部12は、具体的には画面描画プログラムを実装した計算機および表示装置から構成されるが、ここで用いられる計算機は、上述した演算部の各機能とは異なるもので合っても差し支えない。 Next, the display section 12 will be explained. The display unit 12 displays the failure probability up to the present time from the failure probability output unit 19, the variation in the failure probability function of the cumulative value of time-series operation data of each sensor, and the operation A list 8 that estimates the dispersion of the time-based failure probability function is input. The display unit 12 then displays these. The display unit 12 is specifically composed of a computer equipped with a screen drawing program and a display device, but the computer used here may have different functions from those of the arithmetic unit described above.
 次に、表示部12での表示について説明する。図10は、本実施例における表示部12でのグラフィカルユーザインターフェイス(GUI40)の一例を示す図である。図示したGUI40は、時系列稼働データの中から故障に関連性が高いものについて、故障との相関性、センサ番号、センサ名称および変動係数を示す。ここで、故障との相関性は、機器の故障に関連する度合いを示し、上位ほど相関性が高いことを示す。また、センサ番号、センサ名称は、故障を計測したセンサを示す。さらに、変動係数は、故障確率関数のばらつきを示す。このため、図10では、時系列稼働データの中から故障に関連性が高い上位(1st~5th)のセンサ番号、センサ名称および変動係数が表示されることになる。この表示では、時系列稼働データ選択部13で選択された時系列稼働データが、表示部12の画面上で表示されることになる。これにより、ユーザはどのような因子が部品の故障要因となっているのか、及びその因子が総稼働時間基準と比較して、どの程度故障と関連しているかといった情報を定量的に把握できる。このため、本実施例では、風力発電機1の保守・運用だけでなく、風力発電機の設計・開発にも有益な情報をもたらすことが可能である。 Next, the display on the display unit 12 will be explained. FIG. 10 is a diagram showing an example of the graphical user interface (GUI 40) on the display unit 12 in this embodiment. The illustrated GUI 40 shows the correlation with the failure, the sensor number, the sensor name, and the coefficient of variation for time-series operation data that are highly relevant to the failure. Here, the correlation with the failure indicates the degree of association with the failure of the device, and the higher the rank, the higher the correlation. Further, the sensor number and sensor name indicate the sensor that measured the failure. Furthermore, the coefficient of variation indicates the dispersion of the failure probability function. Therefore, in FIG. 10, the sensor numbers, sensor names, and coefficients of variation of the higher ranks (1st to 5th) that are highly relevant to failures from the time-series operation data are displayed. In this display, the time-series performance data selected by the time-series performance data selection unit 13 is displayed on the screen of the display unit 12. As a result, the user can quantitatively grasp information such as what kind of factor is the cause of component failure and how much the factor is related to the failure compared to the total operating time standard. Therefore, in this embodiment, it is possible to provide useful information not only for the maintenance and operation of the wind power generator 1 but also for the design and development of the wind power generator.
 実施例1では、発生した故障についての故障確率を評価したが、実施例2では、将来の故障確率を予測、評価する。図11は、実施例2におけるシステム構成図である。本実施例では、故障確率評価部10において、将来の故障確率を予測し、評価する。実施例1における図9に示す故障確率評価部10との違いは、稼働状況予測部34を有する点である。稼働状況予測部34は、時系列稼働データ5、学習した寿命モデル21を入力として、将来時点の説明変数D(x)を出力する。 In Example 1, the failure probability for the failure that has occurred was evaluated, but in Example 2, the future failure probability is predicted and evaluated. FIG. 11 is a system configuration diagram in the second embodiment. In this embodiment, the failure probability evaluation unit 10 predicts and evaluates future failure probabilities. The difference from the failure probability evaluation unit 10 shown in FIG. 9 in the first embodiment is that it includes an operating status prediction unit 34. The operating status prediction unit 34 receives the time-series operating data 5 and the learned life model 21 as input, and outputs an explanatory variable D(x) at a future point in time.
 以下では将来の故障確率の計算方法を示す。現時点(t)で生存している個体について、任意時間経過後の故障確率を別途計算する。まず、任意時間(Δt)経過後までの説明変数D(x)の予測値35を、予め稼働状況予測部34で予測する。このとき、各個体について個別に予測を行う必要がある。最も単純な手法は、現時点までに記録された時系列稼働データ5の値の平均値が今後も継続するという仮定を設ける手法である。風況や気温といった季節依存性のある稼働データを用いる場合おいては、季節ごとの傾向や気象予報機関による予報を参照して推定することが望ましい。 The method for calculating future failure probability is shown below. For the individuals alive at the present moment (t 0 ), the probability of failure after an arbitrary period of time is calculated separately. First, the predicted value 35 of the explanatory variable D(x) after an arbitrary time (Δt) has elapsed is predicted in advance by the operating status prediction unit 34. At this time, it is necessary to make predictions for each individual individually. The simplest method is to make an assumption that the average value of the values of the time-series operation data 5 recorded up to the present time will continue in the future. When using seasonally dependent operational data such as wind conditions and temperature, it is desirable to make estimates with reference to seasonal trends and forecasts from weather forecasting organizations.
 或いは、今後の稼働シナリオをいくつか想定し、そのそれぞれについて時系列稼働データを任意に生成してもよい。上記以外にも、カルマンフィルタなどの状態空間モデルによる時系列予測を行ってもよい。なお、具体的な予測方法は上記に限定されない。 Alternatively, several future operation scenarios may be assumed, and time-series operation data may be arbitrarily generated for each of them. In addition to the above, time series prediction may be performed using a state space model such as a Kalman filter. Note that the specific prediction method is not limited to the above.
 推定あるいは生成された時系列稼働データの推定値を、寿命モデル記録部18に記録された寿命モデル21に適用し、将来時点の説明変数値35 D(t0+Δt)を計算することができる。これと、現時点の説明変数D(t0)に基づき、現時点で稼働している個体が、任意時間(Δt)経過後までに故障する確率Pは、故障確率出力部19において、(数12)に従って条件付確率として計算できる。 By applying the estimated value of the estimated or generated time-series operation data to the life model 21 recorded in the life model recording unit 18, it is possible to calculate the explanatory variable value 35 D(t 0 +Δt) at a future point in time. . Based on this and the current explanatory variable D(t 0 ), the probability P that the currently operating individual will fail before an arbitrary time (Δt) has elapsed is determined by the failure probability output unit 19 as follows: (Equation 12) It can be calculated as a conditional probability according to
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 ここでF(D)は、時系列稼働データ(入力)に対する故障確率の(出力)の対応関係を故障確率関数として同定したものである。故障確率は任意時間(Δt)経過後までの、故障事象発生回数の期待値である。Δtを長く取ればこの値は大きくなるが、通常Δtはその機械システムの定期点検間隔などを想定して設定することが望ましく、このようなΔtの設定範囲内では、各個体の故障確率が1。0に近い値となることは考えにくい。しかし、故障確率の個体全体での合計値が1。0を超えることは起こりうる。この合計値は、対象としている個体全体での故障事象発生回数の期待値である。 Here, F(D) is the correspondence relationship of failure probability (output) to time-series operating data (input) identified as a failure probability function. The failure probability is the expected value of the number of failure events occurring after an arbitrary time (Δt) has elapsed. The longer Δt is, the larger this value will be, but it is usually desirable to set Δt taking into account the periodic inspection interval of the mechanical system. .It is unlikely that the value will be close to 0. However, it is possible that the total value of failure probabilities for all individuals exceeds 1.0. This total value is the expected value of the number of failure event occurrences for the entire target individual.
 したがって、故障確率の合計値を例えば部品在庫管理システム36に反映させることにより、交換部品の在庫状況を適正化することが可能となる。あるいは、風力発電機システムに運用計画システム37が接続されている場合には、故障確率を用いて運用計画を変更する方式を採用してもよい。例えば、将来実施予定の定期点検までの故障確率が想定より高い場合は、風力発電機を積極的に停止させたり出力を抑制したりする運用計画に変更することで、部品の延命を図ることが可能となる。この運用計画の変更によって、将来の稼働状況も変化し、必然的に将来の累積ダメージも変化するため、この場合には、運用計画を稼働状況予測部における将来の累積ダメージの計算に反映させることが望ましい。このような構成とすることで、運用計画の変更と故障確率変化の関係を、ユーザは容易に確認することが可能となる。 Therefore, by reflecting the total value of failure probabilities in, for example, the parts inventory management system 36, it is possible to optimize the inventory status of replacement parts. Alternatively, when the operation planning system 37 is connected to the wind power generator system, a method of changing the operation plan using failure probability may be adopted. For example, if the probability of failure is higher than expected until the periodic inspection scheduled for the future, it is possible to extend the life of the parts by changing the operation plan to actively stop the wind turbine or reduce output. It becomes possible. Due to this change in the operation plan, the future operation status will also change, and the future cumulative damage will also change, so in this case, the operation plan should be reflected in the calculation of future cumulative damage in the operation status prediction unit. is desirable. With such a configuration, the user can easily confirm the relationship between changes in the operation plan and changes in failure probability.
 なお、本実施例での算出手法やこれを用いて算出した現時点および将来時点での故障確率を、風力発電機システム以外の工場、プラントなど機械システム、施設に対する管理(在庫管理や運用計画)に適用することができる。この適用例を、実施例3で説明する。 The calculation method in this example and the current and future failure probabilities calculated using this method can be used for management (inventory management and operation planning) of mechanical systems and facilities such as factories and plants other than wind power generator systems. Can be applied. An example of this application will be explained in Example 3.
 実施例3は、実施例2で算出した将来時点での故障確率を機械保険へと適用する。その一例として、故障確率を用いて機械保険の料率を定める場合を説明する。具体的には、保険運用開始前に、本実施例を保険対象機器に適用し、寿命予測モデルを構築する。この寿命予測モデルを基に機械保険の料率設計を行う。計算コストを抑えるため、保険期間中(通常1年)は、モデルの生成・更新は必ずしも実施しなくてもよい。保険更新時(料率算定時)に、新たに得られた時系列稼働データ、保全履歴データを基に寿命予測モデルを更新し、モデルのアップデートを実施する。また、機械保険だけでなく、故障の範疇に火災や経年変化による腐食、さびなども対象とする保険に適用してもよい。 Embodiment 3 applies the failure probability at a future point in time calculated in Embodiment 2 to machinery insurance. As an example, a case will be explained in which a machinery insurance premium rate is determined using failure probability. Specifically, before the start of insurance operation, this embodiment is applied to insured equipment to construct a life prediction model. We will design machinery insurance rates based on this lifespan prediction model. In order to reduce calculation costs, it is not necessary to generate and update the model during the insurance period (usually one year). At the time of insurance renewal (rate calculation), the lifespan prediction model is updated based on newly obtained time-series operation data and maintenance history data, and the model is updated. Furthermore, the present invention may be applied not only to machinery insurance but also to insurance that covers fire, corrosion due to aging, rust, etc. in the category of failure.
 このように、保険に適用する場合、図12に示すクラウドシステムで処理を実行してもよい。図12は、実施例3におけるシステム構成図である。図12において、表示部12を除く故障確率評価システム100がネットワーク1000を介して、保険会社システム101や、アセットオーナーシステム102と接続されている。これら保険会社システム101や、アセットオーナーシステム102は、イントラネット等のネットワークを有し、各情報処理装置(端末やサーバ)が故障確率評価システム100へアクセス可能となっている。また、端末103のようにイントラネット等を介さずネットワーク1000と接続しても構わない。なお、表示部12はこれら各端末が保持しているものとする。なお、上記のようにクラウドシステム上で故障確率評価を行う場合でも、必ずしもダメージモデルの生成・更新を常時実施する必要はなく、適宜実施すればよい。なお、これら各装置は、いわゆるコンピュータで実現できる。 In this way, when applied to insurance, the process may be executed in the cloud system shown in FIG. 12. FIG. 12 is a system configuration diagram in the third embodiment. In FIG. 12, a failure probability evaluation system 100 excluding the display unit 12 is connected to an insurance company system 101 and an asset owner system 102 via a network 1000. The insurance company system 101 and the asset owner system 102 have a network such as an intranet, and each information processing device (terminal or server) can access the failure probability evaluation system 100. Furthermore, like the terminal 103, it may be connected to the network 1000 without going through an intranet or the like. It is assumed that the display unit 12 is held by each of these terminals. Note that even when performing failure probability evaluation on a cloud system as described above, it is not always necessary to generate and update the damage model, and it may be performed as appropriate. Note that each of these devices can be realized by a so-called computer.
 実施例1~3の故障確率評価システム100は、それぞれコンピュータで実現できる。
この実現例を図13に示す。図13は、実施例4における故障確率評価システム100のハードウエア構成図である。図13に示すように、故障確率評価システム100は、処理装置111、メモリ112、ネットワークインターフェース113および副記憶装置114を有し、これらはバス等の通信路を介して互いに接続される。
Each of the failure probability evaluation systems 100 of Examples 1 to 3 can be realized by a computer.
An example of this implementation is shown in FIG. FIG. 13 is a hardware configuration diagram of the failure probability evaluation system 100 in the fourth embodiment. As shown in FIG. 13, the failure probability evaluation system 100 includes a processing device 111, a memory 112, a network interface 113, and a secondary storage device 114, which are connected to each other via a communication path such as a bus.
 まず、処理装置111は、CPU等のいわゆるプロセッサであり、副記憶装置114に記憶される故障確率評価プログラム115に従って処理を実行する。この処理は、実施例1~3に示す各部の処理である。また、メモリ112は、処理装置111での処理に用いられる故障確率評価プログラム115や上述の各データが展開される。 First, the processing device 111 is a so-called processor such as a CPU, and executes processing according to the failure probability evaluation program 115 stored in the secondary storage device 114. This process is the process of each part shown in Examples 1 to 3. Further, the memory 112 stores the failure probability evaluation program 115 used for processing in the processing device 111 and the above-mentioned data.
 さらに、副記憶装置114は、故障確率評価プログラム115や上述の各データ、つまり、時系列稼働データベース2、保全履歴データベース3を記憶する。副記憶装置114は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、メモリカードなどの各種記憶媒体で実現してもよい。さらに、ファイルサーバのように、故障確率評価システム100とは別装置で実現してもよい。 Furthermore, the secondary storage device 114 stores a failure probability evaluation program 115 and each of the above-mentioned data, that is, a time-series operation database 2 and a maintenance history database 3. The secondary storage device 114 may be realized by various storage media such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a memory card. Furthermore, the failure probability evaluation system 100 may be implemented in a separate device, such as a file server.
1…風力発電機、2…時系列稼働データベース、3…保全履歴データベース、4…作業担当者、5…時系列稼働データ、6…保全履歴データ、12…表示部、13…時系列稼働データ選択部、14…特徴量計算部、15…故障相関計算部、16…選択時系列稼働データ数決定部、17…寿命モデリング部、18…寿命モデル記録部、19…故障確率出力部、20…寿命モデル、100…故障確率評価システム、101…保険会社システム、102…アセットオーナーシステム、103…端末、1000…ネットワーク 1...Wind generator, 2...Time series operation database, 3...Maintenance history database, 4...Worker in charge, 5...Time series operation data, 6...Maintenance history data, 12...Display section, 13...Time series operation data selection Parts, 14...Feature value calculation unit, 15...Failure correlation calculation unit, 16...Selected time series operation data number determination unit, 17...Life modeling unit, 18...Life span model recording unit, 19...Failure probability output unit, 20...Life span Model, 100... Failure probability evaluation system, 101... Insurance company system, 102... Asset owner system, 103... Terminal, 1000... Network

Claims (10)

  1.  機械システムを構成する部品での故障の故障確率を評価するための故障確率評価システムにおいて、
     前記機械システムの保全履歴データを記憶する保全履歴データベースと、
     前記部品の稼働状況を示す複数の稼働データを記憶する稼働データベースと、
     前記稼働データおよび保全履歴データに基づいて、前記稼働データごとの故障確率を算出するための故障確率関数のばらつきの程度を示し、前記部品での故障との相関性に応じた散布度を算出する散布度算出部と、
     算出された前記散布度に応じて稼働データを選択する稼働データ選択部を有し、
     選択された前記稼働データを優先的に用いて、前記故障確率の評価を実現する故障確率評価システム。
    In a failure probability evaluation system for evaluating the probability of failure in parts constituting a mechanical system,
    a maintenance history database that stores maintenance history data of the mechanical system;
    an operation database that stores a plurality of operation data indicating the operation status of the component;
    Based on the operation data and maintenance history data, the degree of dispersion of a failure probability function for calculating the failure probability for each of the operation data is indicated, and a degree of dispersion is calculated according to the correlation with failures in the parts. a dispersion calculation unit;
    an operation data selection unit that selects operation data according to the calculated dispersion degree;
    A failure probability evaluation system that realizes evaluation of the failure probability by preferentially using the selected operation data.
  2.  請求項1に記載の故障確率評価システムにおいて、
     さらに、前記保全履歴データおよび選択された前記稼働データを用いて、故障確率を計算する故障確率評価部を有する故障確率評価システム。
    The failure probability evaluation system according to claim 1,
    Furthermore, a failure probability evaluation system includes a failure probability evaluation unit that calculates a failure probability using the maintenance history data and the selected operation data.
  3.  請求項2に記載の故障確率評価システムにおいて、
     前記故障確率評価部は、前記保全履歴データに基づく統計処理により機械システムの故障確率関数を算出する故障確率関数同定部と、
     前記稼働データを用いて、前記故障確率関数のばらつきが最小となる故障確率関数の説明変数を生成する機能を有する説明変数生成・更新部を有し、
     前記故障確率関数同定部は、寿命のばらつきが最小となる故障確率関数を与える故障確率評価システム。
    The failure probability evaluation system according to claim 2,
    The failure probability evaluation unit includes a failure probability function identification unit that calculates a failure probability function of the mechanical system through statistical processing based on the maintenance history data;
    an explanatory variable generation/updating unit having a function of generating an explanatory variable of a failure probability function that minimizes variation in the failure probability function using the operation data;
    The failure probability function identification unit is a failure probability evaluation system that provides a failure probability function that minimizes variation in life.
  4.  請求項1に記載の故障確率評価システムにおいて、
     前記稼働データ選択部は、学習用稼働履歴データの対応関係とテスト用稼働履歴データの対応関係の乖離の程度を示す乖離度が最小の稼働履歴データを選択する故障確率評価システム。
    The failure probability evaluation system according to claim 1,
    The operation data selection unit is a failure probability evaluation system that selects operation history data with a minimum degree of deviation indicating the degree of deviation between the correspondence between the learning operation history data and the test operation history data.
  5.  請求項4に記載の故障確率評価システムにおいて、
     前記対応関係は、前記稼働データのうち故障と相関の高い所定数の上位の稼働データと故障確率のペアの集合もしくは、パラメトリックもしくはノンパラメトリックな故障確率関数で示される故障確率評価システム。
    The failure probability evaluation system according to claim 4,
    The correspondence relationship is a failure probability evaluation system in which the correspondence relationship is expressed by a set of pairs of a predetermined number of upper-order operation data and failure probabilities that are highly correlated with failures among the operation data, or by a parametric or non-parametric failure probability function.
  6.  機械システムを構成する部品での故障の故障確率を評価するための故障確率評価方法において、
     前記機械システムの保全履歴データを保全履歴データベースに記憶し、
     前記部品の稼働状況を示す複数の稼働データを稼働データベースに記憶し、
     前記稼働データおよび保全履歴データに基づいて、前記稼働データごとの故障確率を算出するための故障確率関数のばらつきの程度を示し、前記部品での故障との相関性に応じた散布度を算出し、
     算出された前記散布度に応じて稼働データを選択し、
     選択された前記稼働データを優先的に用いて、前記故障確率の評価を実現する故障確率評価方法。
    In a failure probability evaluation method for evaluating the probability of failure in parts constituting a mechanical system,
    storing maintenance history data of the mechanical system in a maintenance history database;
    storing a plurality of operation data indicating the operation status of the parts in an operation database;
    Based on the operation data and maintenance history data, the degree of dispersion of a failure probability function for calculating the failure probability for each of the operation data is indicated, and a degree of dispersion is calculated according to the correlation with failures in the parts. ,
    Selecting operation data according to the calculated dispersion degree,
    A failure probability evaluation method that implements evaluation of the failure probability by preferentially using the selected operation data.
  7.  請求項6に記載の故障確率評価方法において、
     さらに、前記保全履歴データおよび選択された前記稼働データを用いて、故障確率を計算する故障確率評価方法。
    In the failure probability evaluation method according to claim 6,
    Furthermore, a failure probability evaluation method that calculates a failure probability using the maintenance history data and the selected operation data.
  8.  請求項7に記載の故障確率評価方法において、
     前記保全履歴データに基づく統計処理により機械システムの故障確率関数を算出し、
     前記稼働データを用いて、前記故障確率関数のばらつきが最小となる故障確率関数の説明変数を生成し、
     寿命のばらつきが最小となる故障確率関数を与える障確率評価方法。
    In the failure probability evaluation method according to claim 7,
    Calculating a failure probability function of the mechanical system by statistical processing based on the maintenance history data,
    Using the operating data, generating an explanatory variable for the failure probability function that minimizes the variation in the failure probability function,
    A failure probability evaluation method that provides a failure probability function that minimizes life dispersion.
  9.  請求項6に記載の故障確率評価方法において、
     学習用稼働履歴データの対応関係とテスト用稼働履歴データの対応関係の乖離の程度を示す乖離度が最小の稼働履歴データを選択する故障確率評価方法。
    In the failure probability evaluation method according to claim 6,
    A failure probability evaluation method that selects operation history data with the minimum degree of deviation indicating the degree of deviation between the correspondence relationship of operation history data for learning and the correspondence relationship of operation history data for testing.
  10.  請求項9に記載の故障確率評価方法において、
     前記対応関係は、前記稼働データのうち故障と相関の高い所定数の上位の稼働データと故障確率のペアの集合もしくは、パラメトリックもしくはノンパラメトリックな故障確率関数で示される故障確率評価方法。
    The failure probability evaluation method according to claim 9,
    The correspondence relationship is a failure probability evaluation method in which the correspondence relationship is expressed by a set of pairs of a predetermined number of upper-order operation data and failure probabilities that are highly correlated with failures among the operation data, or by a parametric or non-parametric failure probability function.
PCT/JP2023/001915 2022-08-24 2023-01-23 Failure probability evaluation system WO2024042733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-133253 2022-08-24
JP2022133253A JP2024030392A (en) 2022-08-24 2022-08-24 Failure probability evaluation system

Publications (1)

Publication Number Publication Date
WO2024042733A1 true WO2024042733A1 (en) 2024-02-29

Family

ID=90012875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001915 WO2024042733A1 (en) 2022-08-24 2023-01-23 Failure probability evaluation system

Country Status (2)

Country Link
JP (1) JP2024030392A (en)
WO (1) WO2024042733A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160128A (en) * 2018-03-16 2019-09-19 株式会社日立製作所 Fault probability evaluation system and method
JP2021028751A (en) * 2019-08-09 2021-02-25 株式会社日立製作所 Failure sign diagnosis system and method for the same
US20210240559A1 (en) * 2019-08-29 2021-08-05 Sap Se Failure mode specific analytics using parametric models
JP2022055475A (en) * 2020-09-29 2022-04-08 株式会社日立製作所 Maintenance simulation device and maintenance simulation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160128A (en) * 2018-03-16 2019-09-19 株式会社日立製作所 Fault probability evaluation system and method
JP2021028751A (en) * 2019-08-09 2021-02-25 株式会社日立製作所 Failure sign diagnosis system and method for the same
US20210240559A1 (en) * 2019-08-29 2021-08-05 Sap Se Failure mode specific analytics using parametric models
JP2022055475A (en) * 2020-09-29 2022-04-08 株式会社日立製作所 Maintenance simulation device and maintenance simulation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UEKI YOSUKE, AMAKAWA HIROAKI, NUMATA IPPEI, SANDO ATSUKI, NAKASHIMA MAKOTO: "Lifetime modelling for mechanical equipment by utilizing time-series data based-on the damage-based survival analysis (A trial for applying the model to the equipment in a chemical plant)", TRANSACTIONS OF THE JSME (IN JAPANESE), THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, vol. 86, no. 886, 1 January 2020 (2020-01-01), pages 1 - 13, XP055909199, DOI: 10.1299/transjsme.20-00042 *

Also Published As

Publication number Publication date
JP2024030392A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
Zhang et al. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods
US11055450B2 (en) Industrial asset health model update
JP4237610B2 (en) Maintenance support method and program
TWI607328B (en) Operational auxiliary device and wind power generation system
JP6865189B2 (en) Failure probability evaluation system and method
Baraldi et al. Model-based and data-driven prognostics under different available information
Peng et al. A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction
US20140365271A1 (en) Industrial asset health model update
CN113614359A (en) Method and system for predicting risk of observable damage in wind turbine gearbox assembly
Hellingrath et al. Conceptual approach for integrating condition monitoring information and spare parts forecasting methods
US8676727B2 (en) Abnormality diagnosis filter generator
JP6427357B2 (en) Diagnosis support system and diagnosis support method
WO2021005943A1 (en) Failure probability assessment system and method therefor
JP4952946B2 (en) Device degradation degree calculation method and risk assessment method
US11796992B2 (en) Condition-based method for malfunction prediction
Compare et al. A general model for life-cycle cost analysis of Condition-Based Maintenance enabled by PHM capabilities
US7149659B1 (en) System and method for performing reliability analysis
WO2024042733A1 (en) Failure probability evaluation system
Gray et al. A practical approach to the use of scada data for optimized wind turbine condition based maintenance
En et al. Time-variant reliability analysis of a continuous system with strength deterioration based on subset simulation
Blair et al. Hybrid fault prognostics for nuclear applications: addressing rotating plant model uncertainty
EP4339851A1 (en) Failure predicting device, failure predicting method, and program
Nwadinobi et al. Improved Markov stable state simulation for maintenance planning
JP2024057316A (en) Failure probability evaluation system and failure probability evaluation method
Tinga et al. Reliability Engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856859

Country of ref document: EP

Kind code of ref document: A1