WO2024042691A1 - Traffic estimation device, traffic estimation method, and traffic estimation program - Google Patents

Traffic estimation device, traffic estimation method, and traffic estimation program Download PDF

Info

Publication number
WO2024042691A1
WO2024042691A1 PCT/JP2022/032129 JP2022032129W WO2024042691A1 WO 2024042691 A1 WO2024042691 A1 WO 2024042691A1 JP 2022032129 W JP2022032129 W JP 2022032129W WO 2024042691 A1 WO2024042691 A1 WO 2024042691A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic volume
traffic
road section
unit
travel time
Prior art date
Application number
PCT/JP2022/032129
Other languages
French (fr)
Japanese (ja)
Inventor
雅 高木
賢士 小宮
亮太 中田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/032129 priority Critical patent/WO2024042691A1/en
Publication of WO2024042691A1 publication Critical patent/WO2024042691A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a traffic estimation device, a traffic estimation method, and a traffic estimation program.
  • map data indicating when to depart and where to travel
  • traffic demand data indicating when to depart and where to travel is obtained through questionnaire surveys such as person trip surveys or from vehicle probe data of connected cars.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain traffic demand data that is easy to utilize.
  • the traffic estimation device includes a search unit that searches for a road section running parallel to a road section to be processed, among road sections where the traffic volume is known. and an estimating unit that estimates the travel time of the searched road section; A calculation unit that calculates the amount.
  • FIG. 1 is a diagram for explaining an overview of a traffic volume estimation device according to a first embodiment.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of a traffic volume estimation device according to the first embodiment.
  • FIG. 3 is a diagram for explaining the processing of the dividing section.
  • FIG. 4 is a diagram for explaining the processing of the distribution unit.
  • FIG. 5 is a flowchart showing a traffic volume estimation processing procedure according to the first embodiment.
  • FIG. 6 is a diagram for explaining an overview of a traffic volume estimation device according to the second embodiment.
  • FIG. 7 is a diagram for explaining an overview of a traffic volume estimation device according to the second embodiment.
  • FIG. 8 is a schematic diagram illustrating a schematic configuration of a traffic volume estimating device according to the second embodiment.
  • FIG. 9 is a flowchart showing a traffic volume estimation processing procedure according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of a computer that executes a traffic volume estimation program.
  • the traffic estimation device uses OD (Origin-Destination ) to estimate the data.
  • OD Oil-Destination
  • cross-sectional traffic data it is possible to obtain easily-utilized traffic demand data that has finer temporal and spatial granularity that can be used for traffic flow simulations than person trip surveys.
  • FIG. 1 is a diagram for explaining an overview of a traffic volume estimation device according to a first embodiment. Specifically, the traffic estimation device first extracts the arterial road network and cross-sectional traffic measurement points within the target area, as illustrated in FIG. 1(a). Next, the traffic estimation device defines an area with the measurement point as a boundary, as illustrated in FIG. 1(b). This is equivalent to converting cross-sectional traffic volume data of a main road into traffic demand data between adjacent areas.
  • the traffic estimation device connects the cross-sectional traffic volume between adjacent areas, that is, the traffic demand data, and derives the traffic volume on the main road within each area. This makes it possible to generate traffic demand data for traveling on arterial roads. Further, the traffic estimation device disperses the departure points and destinations at both ends of the traffic demand data within each area of the departure/arrival area, as illustrated in FIG. 1(d). That is, movement across areas is allowed only on main roads, and traffic demand data that always passes through the measurement point is generated. In this case, departure times are also dispersed within a predetermined time frame. This makes it possible to obtain traffic demand data with appropriate temporal and spatial granularity.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of a traffic volume estimation device according to the first embodiment.
  • the traffic estimation device 10 of this embodiment is realized by a general-purpose computer such as a personal computer, and includes an input section 11, an output section 12, a communication control section 13, a storage section 14, and a control section 15. Be prepared.
  • the input unit 11 is realized using an input device such as a keyboard or a mouse, and inputs various instruction information such as starting a process to the control unit 15 in response to an input operation by an operator.
  • the output unit 12 is realized by a display device such as a liquid crystal display, a printer, or the like. For example, the output unit 12 displays the results of traffic volume estimation processing, which will be described later.
  • the communication control unit 13 is realized by a NIC (Network Interface Card) or the like, and controls communication between an external device and the control unit 15 via a telecommunication line such as a LAN (Local Area Network) or the Internet.
  • a NIC Network Interface Card
  • the communication control unit 13 controls communication between the control unit 15 and a management device that manages various information such as map data, PoI information, facility information, and population distribution in the area to be processed.
  • the storage unit 14 is realized by a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory, or a storage device such as a hard disk or an optical disk.
  • a processing program for operating the traffic volume estimating device 10 data used during execution of the processing program, and the like are stored in advance, or are temporarily stored each time processing is performed.
  • the storage unit 14 may be configured to communicate with the control unit 15 via the communication control unit 13.
  • the storage unit 14 may also acquire and store in advance various information necessary for the traffic volume estimation process described below, such as map data, PoI information of large facilities, etc. in the area to be processed, and population distribution. .
  • the control unit 15 is realized using a CPU (Central Processing Unit) or the like, and executes a processing program stored in a memory. Thereby, the control unit 15 functions as an acquisition unit 15a, a division unit 15b, a connection unit 15c, and a distribution unit 15d, as illustrated in FIG. Note that each or a part of these functional units may be implemented in different hardware. Further, the control unit 15 may include other functional units.
  • a CPU Central Processing Unit
  • the acquisition unit 15a acquires cross-sectional traffic volume indicating the traffic volume at a predetermined measurement point on the main road. For example, the acquisition unit 15a acquires a main road network in the area to be processed, a cross-sectional traffic volume measurement point, and a cross-sectional traffic volume at the measurement point.
  • the acquisition unit 15a acquires map data, PoI information of large facilities, etc. within the processing target area, population distribution, etc.
  • the acquisition unit 15a acquires this information via the input unit 11 or from a management device or the like via the communication control unit 13.
  • the acquisition unit 15a may cause the storage unit 14 to store the acquired information.
  • the dividing unit 15b divides an area including alleys around the main road on the map at traffic measurement points. That is, the dividing unit 15b divides the area to be processed using the measurement point on the main road as a boundary. Thereby, the cross-sectional traffic volume data of the main road is converted into traffic demand data between divided adjacent areas.
  • the dividing unit 15b determines alleys around the main road to be included in each divided area. For example, the dividing unit 15b determines the alleys included in the area based on the travel time through the alleys. That is, the dividing unit 15b determines the alley to be associated with each section between the measurement points on the main road, not based on the geometric distance, but based on the travel time in consideration of one-way streets, speed limits, and the like.
  • FIG. 3 is a diagram for explaining the processing of the dividing section.
  • the dividing unit 15b lists alleys associated with each section of the main road. At this time, if the traffic volume measurement points are different for the up line and the down line of the main road, the dividing unit 15b manages the areas divided by the up line and the down line.
  • section B#01 and section B#12+section B#13 of the main road are distinguished. Therefore, there is an alley associated with section B#01 of the main road indicated by a solid line in FIG. 3(a), an alley associated with section B#12 indicated by a dashed line in FIG. 3(b), and an alley indicated by a dotted line It is managed separately from the alley associated with B#13.
  • the dividing unit 15b excludes alleys that straddle the divided area from the alleys included in the area.
  • the alley shown surrounded by an ellipse in FIG. 3(b) is not associated with either section B#12 or section B#13 because both ends straddle the measurement point. This makes it possible to prevent the traffic volume of the main road from deviating from the cross-sectional traffic volume in the processing of the distribution unit 15d, which will be described later.
  • the connecting unit 15c connects the cross-sectional traffic volumes between the divided areas and derives the traffic volume of the main road in each area. For example, the connecting unit 15c generates a route along a specific highway and connects the cross-sectional traffic volumes of areas on the generated route, thereby creating a route on the highway as illustrated in FIG. 1(c). Derive the traffic volume of the route. In this way, the connecting unit 15c generates a route along the main road and generates traffic demand data for the main road.
  • the connecting unit 15c identifies the departure area or destination area of each traffic using at least one of the distribution data of the average trip length or the statistical data of the right-left-turn-straight ratio at a predetermined intersection. That is, the connecting unit 15c generates a route along the main road by referring to the average trip length, right/left turn/straight ratio, etc., and specifies the departure area or destination area of each traffic. Note that the connecting unit 15c may estimate the average trip length and the right/left turn/straight ratio from the vehicle probe data.
  • the dispersion unit 15d disperses the departure points or destinations in each of the specified departure areas or destination areas among the divided areas. That is, as illustrated in FIG. 1(d), the distribution unit 15d distributes the routes of the traffic demand data of the main road so that vehicles enter and exit the alley as well.
  • the dispersion unit 15d distributes departure points or destinations by randomly selecting alleys within the departure area or the destination area.
  • the dispersion unit 15d may disperse the departure points or destinations according to the daytime population distribution or nighttime population distribution within the departure area or destination area.
  • the dispersion unit 15d may disperse the departure points or destinations using PoI information such as the number of people that can be accommodated in a large commercial facility or the like in the departure area or the destination area, the number of cars that can be accommodated in a parking lot, etc. This makes it possible to generate traffic demand data with fine spatial granularity and ease of use.
  • FIG. 4 is a diagram for explaining the processing of the dispersion section.
  • the distribution unit 15d causes traffic passing through the area to pass on the main road of the area.
  • the dispersion unit 15d controls traffic passing through an area that flows in from outside the area and flows out of the area from the end point of the main road in the area. Be sure to pass through the measurement point and do not disperse the departure point or destination. This prevents the traffic volume on the main road from deviating from the cross-sectional traffic volume.
  • the distribution unit 15d may further distribute the departure times at the departure points within a predetermined time frame. This makes it possible to generate traffic demand data with finer time granularity and ease of use.
  • FIG. 5 is a flowchart showing a traffic volume estimation processing procedure according to the first embodiment.
  • the flowchart in FIG. 5 is started, for example, at the timing when the user performs an operation input instructing to start.
  • the acquisition unit 15a acquires cross-sectional traffic volume indicating the traffic volume at a predetermined measurement point on the main road (step S1). For example, the acquisition unit 15a acquires a main road network in the area to be processed, a cross-sectional traffic volume measurement point, and a cross-sectional traffic volume at the measurement point. The acquisition unit 15a also acquires map data, PoI information of large facilities, etc. within the processing target area, population distribution, and the like.
  • the dividing unit 15b divides an area including alleys around the main road on the map at the measurement point (step S2). That is, the dividing unit 15b divides the area to be processed using the measurement point on the highway as a boundary, and determines alleys around the highway to be included in each divided area.
  • the dividing unit 15b determines the alleys to be included in the area based on the travel time through the alleys. That is, the dividing unit 15b determines the alley to be associated with each section between the measurement points on the main road, not based on the geometric distance, but based on the travel time in consideration of one-way streets, speed limits, and the like. At this time, the dividing unit 15b excludes alleys that straddle the divided area from the alleys included in the area.
  • the connecting unit 15c connects the cross-sectional traffic volumes between the divided areas and derives the traffic volume of the main road in each area (step S3).
  • the connecting unit 15c generates a route along a specific highway and connects the cross-sectional traffic volumes of areas on the generated route, thereby deriving the traffic volume of the route on the highway.
  • the connecting unit 15c uses at least one of the distribution data of the average trip length or the statistical data of the right/left turn/go straight ratio at a predetermined intersection to generate a route along the main road and determine the origin of each traffic. Identify the area or destination area and generate traffic demand data.
  • the dispersion unit 15d disperses the departure points or destinations in each of the specified departure areas or destination areas among the divided areas (step S4).
  • the distribution unit 15d distributes the routes of traffic demand data for main roads so that vehicles enter and exit alleys as well.
  • the dispersion unit 15d causes traffic passing through the area to pass on the main road of the area so that it always passes through the measurement point.
  • the distribution unit 15d may distribute the departure times at the departure points within a predetermined time frame.
  • the distribution unit 15d outputs the generated traffic demand data (step S5). This completes a series of traffic volume estimation processes.
  • the traffic estimation device of the second embodiment applies a balanced distribution method to cross-sectional traffic data for sections where no traffic counters (traffic counters) are installed to measure cross-sectional traffic, and the traffic volume is known. Estimating the traffic volume on routes without trackers installed from the traffic volume on the route. In this way, by using cross-sectional traffic data, it is possible to obtain traffic data with fine granularity both temporally and spatially.
  • FIGS. 6 and 7 are diagrams for explaining an overview of a traffic volume estimation device according to the second embodiment. Specifically, as shown in FIG. 6(a), if there are multiple routes connecting the departure point and destination, the driver attempts to select the route with the minimum travel time.
  • the travel time depends on the traffic volume and changes depending on the congestion/congestion situation of the selected route.
  • This relationship between traffic volume and travel time is formulated, and as illustrated in FIG. 6(c), there is a point at which the balance of demand and supply of traffic (traffic volume distribution) on a route becomes balanced.
  • the well-known first principle of Wardrop will converge to the state that ⁇ the travel times of all routes used are equal and are shorter than, or at best equal to, the travel times of routes that are not used.'' To establish.
  • the traffic estimation device selects a road section where the traffic volume is known and runs parallel to this road section. Explore. Then, as shown in Figure 7(b), the balanced allocation method is applied to the road section where the tracker is installed and the traffic volume is known (route 1) and the road section for which the traffic volume is to be estimated (route 2). By applying this, the traffic volume of route 2 is estimated.
  • the travel time in the parallel section where the traffic volume is known (route 1) and the travel time in the section where the traffic volume is estimated (route 2) are approximately the same.
  • a simulation is performed to estimate the traffic volume in the estimation target section.
  • FIG. 8 is a schematic diagram illustrating a schematic configuration of a traffic volume estimating device according to the second embodiment.
  • the traffic volume estimating device 10a shown in FIG. 8 is different from the first one shown in FIG. This is different from the traffic estimation device 10 of the embodiment. Descriptions of other functional units similar to those of the traffic volume estimating device 10 shown in FIG. 2 will be omitted.
  • the acquisition unit 15a acquires cross-sectional traffic volume indicating the traffic volume at a predetermined measurement point on the main road.
  • the search unit 15e searches for a road section running parallel to the road section to be processed, among road sections with known traffic volume. For example, the search unit 15e searches for a road section of an arterial road whose both ends are the same as the road section whose traffic volume is unknown. Then, the search unit 15e obtains the traffic volume of the searched road section using the cross-sectional traffic volume at each measurement point on the main road.
  • the estimation unit 15f estimates the travel time of the searched road section (parallel section). For example, the estimation unit 15f performs a known traffic flow simulation to estimate the travel time at each time in the parallel section.
  • the estimation unit 15f may estimate the travel time using a predetermined relationship between the traffic volume and travel time in the searched road section. For example, the estimating unit 15f may express the relationship between the traffic volume and travel time in the road section illustrated in FIG. 6(b) using a formula, and estimate the travel time using the formula.
  • the calculation unit 15g calculates the traffic volume of the road section to be processed so that the estimated travel time and the travel time of the road section to be processed are the same. For example, various traffic volumes are applied to the road section to be processed, and a traffic volume that is the same as the travel time estimated for the searched road section is calculated.
  • the calculation unit 15g may calculate the traffic volume using a predetermined relationship between the traffic volume and travel time in the road section to be processed.
  • the traffic volume of the road section to be processed may be calculated using an equation representing the relationship between the traffic volume and travel time in the road section.
  • the traffic volume estimating device 10a estimates the traffic volume of the road section to be processed whose traffic volume is unknown. This makes it possible to generate traffic demand data for the road section to be processed.
  • FIG. 9 is a flowchart showing a traffic volume estimation processing procedure according to the second embodiment.
  • the flowchart in FIG. 9 is started, for example, at the timing when the user performs an operation input instructing to start.
  • the acquisition unit 15a acquires cross-sectional traffic volume indicating the traffic volume at a predetermined measurement point on the main road, similarly to the first embodiment described above. Furthermore, the search unit 15e searches for a road section running parallel to the road section to be processed, among the road sections for which the traffic volume is known (step S1). For example, the search unit 15e searches for a road section of an arterial road whose both ends are the same as the road section whose traffic volume is unknown. Then, the search unit 15e obtains the traffic volume of the searched road section using the cross-sectional traffic volume at each measurement point on the main road.
  • the estimation unit 15f estimates the travel time of the searched road section (step S2). For example, the estimation unit 15f estimates the travel time using a predetermined relationship between the traffic volume and the travel time in the searched road section.
  • the calculation unit 15g calculates the traffic volume of the road section to be processed so that the estimated travel time and the travel time of the road section to be processed are the same (step S3). For example, the calculation unit 15g calculates the traffic volume using a predetermined relationship between the traffic volume and travel time in the road section to be processed. This generates traffic demand data for the road section to be processed.
  • calculation unit 15g outputs the generated traffic demand data (step S4). This completes the series of traffic volume estimation processes.
  • the traffic estimation device 10 of the first embodiment and the traffic estimation device 10a of the second embodiment described above may be devices that cooperate. For example, using the route of the traffic demand data generated by the traffic volume estimating device 10 of the first embodiment, the traffic volume estimating device 10a of the second embodiment determines the route for which the traffic volume running parallel to the route is unknown. estimates the traffic volume. In that case, the traffic estimation device 10 of the first embodiment and the traffic estimation device 10a of the second embodiment may be implemented in the same hardware.
  • the search unit 15e searches for a road section running parallel to the road section to be processed, among road sections where the traffic volume is known.
  • the estimation unit 15f estimates the travel time of the searched road section.
  • the calculation unit 15g calculates the traffic volume of the road section to be processed so that the estimated travel time and the travel time of the road section to be processed are the same.
  • the search unit 15e obtains the known traffic volume of the road section using the cross-sectional traffic volume that indicates the traffic volume at a predetermined measurement point on the main road.
  • the traffic volume estimating device 10a applies an equal distribution method to the traffic volume of a road section where the traffic volume is unknown, such as where a truck is not installed, to the known traffic volume such as cross-sectional traffic volume data. Estimated by. Therefore, by using the cross-sectional traffic data, the traffic volume estimation device 10a can obtain traffic data with fine granularity both temporally and spatially.
  • the estimation unit 15f estimates the travel time using a predetermined relationship between the traffic volume and travel time in the searched road section, and the calculation unit 15g estimates the travel time and traffic volume in the road section to be processed.
  • the traffic volume is calculated using a predetermined relationship. This makes it possible to estimate the traffic volume of a road section where the traffic volume is unknown with high accuracy.
  • the traffic estimation devices 10 and 10a can be implemented by installing a traffic estimation program that executes the above-mentioned traffic estimation processing into a desired computer as package software or online software.
  • the information processing device can be made to function as the traffic volume estimation device 10, 10a.
  • the information processing device referred to here includes a desktop or notebook personal computer.
  • information processing devices include mobile communication terminals such as smartphones, mobile phones, and PHSs (Personal Handyphone Systems), as well as slate terminals such as PDAs (Personal Digital Assistants).
  • the functions of the traffic estimation devices 10 and 10a may be implemented in a cloud server.
  • FIG. 10 is a diagram showing an example of a computer that executes a traffic volume estimation program.
  • Computer 1000 includes, for example, memory 1010, CPU 1020, hard disk drive interface 1030, disk drive interface 1040, serial port interface 1050, video adapter 1060, and network interface 1070. These parts are connected by a bus 1080.
  • the memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM 1012.
  • the ROM 1011 stores, for example, a boot program such as BIOS (Basic Input Output System).
  • Hard disk drive interface 1030 is connected to hard disk drive 1031.
  • Disk drive interface 1040 is connected to disk drive 1041.
  • a removable storage medium such as a magnetic disk or an optical disk is inserted into the disk drive 1041, for example.
  • a mouse 1051 and a keyboard 1052 are connected to the serial port interface 1050.
  • a display 1061 is connected to the video adapter 1060.
  • the hard disk drive 1031 stores, for example, an OS 1091, an application program 1092, a program module 1093, and program data 1094. Each piece of information described in the above embodiments is stored in, for example, the hard disk drive 1031 or the memory 1010.
  • the traffic estimation program is stored in the hard disk drive 1031, for example, as a program module 1093 in which commands to be executed by the computer 1000 are written. Specifically, a program module 1093 in which each process executed by the traffic estimation device 10 described in the above embodiment is described is stored in the hard disk drive 1031.
  • data used for information processing by the traffic estimation program is stored as program data 1094 in, for example, the hard disk drive 1031.
  • the CPU 1020 reads out the program module 1093 and program data 1094 stored in the hard disk drive 1031 to the RAM 1012 as necessary, and executes each of the above-described procedures.
  • program module 1093 and program data 1094 related to the traffic volume estimation program are not limited to being stored in the hard disk drive 1031; for example, they may be stored in a removable storage medium and read by the CPU 1020 via the disk drive 1041 or the like. May be read.
  • the program module 1093 and program data 1094 related to the traffic estimation program are stored in another computer connected via a network such as a LAN or WAN (Wide Area Network), and read by the CPU 1020 via the network interface 1070. May be served.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

In the present invention, a retrieval unit (15e) retrieves, from among road sections for which the traffic is known, a road section that runs side-by-side with a road section subject to processing. An estimation unit (15f) estimates a travel time for the retrieved road section. A calculation unit (15g) calculates the traffic in the road section subject to processing, so that the travel time which was estimated and the travel time for the road section subject to processing are identical.

Description

交通量推定装置、交通量推定方法および交通量推定プログラムTraffic volume estimation device, traffic volume estimation method, and traffic volume estimation program
 本発明は、交通量推定装置、交通量推定方法および交通量推定プログラムに関する。 The present invention relates to a traffic estimation device, a traffic estimation method, and a traffic estimation program.
 従来、交通流シミュレーション、すなわち道路の渋滞シミュレーションを行うためには、地図データ、車両モデル、交通需要データの3つの要素が必要となる。このうち、いつ出発してどこからどこに移動するかを示す交通需要データは、パーソントリップ調査等のアンケート調査により、あるいは、コネクティッドカーの車両プローブデータから取得している。 Conventionally, in order to perform a traffic flow simulation, that is, a road congestion simulation, three elements are required: map data, a vehicle model, and traffic demand data. Among these, traffic demand data indicating when to depart and where to travel is obtained through questionnaire surveys such as person trip surveys or from vehicle probe data of connected cars.
 しかしながら、従来技術によれば、活用しやすい交通需要データを取得することが困難であった。例えば、パーソントリップ調査は、5年に一度の調査であり、曜日や季節による変動がわかりづらい。また、車両プローブデータは、コネクティッドサービスに対応する車両が少ないうえ、自動車メーカの外部で取得することが困難である。 However, according to the conventional technology, it is difficult to obtain traffic demand data that is easy to utilize. For example, the Person Trip Survey is conducted once every five years, and it is difficult to understand changes depending on the day of the week or season. Furthermore, there are few vehicles that support connected services, and it is difficult to obtain vehicle probe data outside the automobile manufacturer.
 本発明は、上記に鑑みてなされたものであって、活用しやすい交通需要データを取得することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain traffic demand data that is easy to utilize.
 上述した課題を解決し、目的を達成するために、本発明に係る交通量推定装置は、交通量が既知の道路区間のうち、処理対象の道路区間と並走する道路区間を探索する探索部と、探索された前記道路区間の旅行時間を推定する推定部と、推定された前記旅行時間と前記処理対象の道路区間の旅行時間とが同一になるように、該処理対象の道路区間の交通量を算定する算定部と、を有することを特徴とする。 In order to solve the above-mentioned problems and achieve the purpose, the traffic estimation device according to the present invention includes a search unit that searches for a road section running parallel to a road section to be processed, among road sections where the traffic volume is known. and an estimating unit that estimates the travel time of the searched road section; A calculation unit that calculates the amount.
 本発明によれば、活用しやすい交通需要データを取得することが可能となる。 According to the present invention, it is possible to obtain traffic demand data that is easy to utilize.
図1は、第1の実施形態に係る交通量推定装置の概要を説明するための図である。FIG. 1 is a diagram for explaining an overview of a traffic volume estimation device according to a first embodiment. 図2は、第1の実施形態に係る交通量推定装置の概略構成を例示する模式図である。FIG. 2 is a schematic diagram illustrating a schematic configuration of a traffic volume estimation device according to the first embodiment. 図3は、分割部の処理を説明するための図である。FIG. 3 is a diagram for explaining the processing of the dividing section. 図4は、分散部の処理を説明するための図である。FIG. 4 is a diagram for explaining the processing of the distribution unit. 図5は、第1の実施形態に係る交通量推定処理手順を示すフローチャートである。FIG. 5 is a flowchart showing a traffic volume estimation processing procedure according to the first embodiment. 図6は、第2の実施形態に係る交通量推定装置の概要を説明するための図である。FIG. 6 is a diagram for explaining an overview of a traffic volume estimation device according to the second embodiment. 図7は、第2の実施形態に係る交通量推定装置の概要を説明するための図である。FIG. 7 is a diagram for explaining an overview of a traffic volume estimation device according to the second embodiment. 図8は、第2の実施形態に係る交通量推定装置の概略構成を例示する模式図である。FIG. 8 is a schematic diagram illustrating a schematic configuration of a traffic volume estimating device according to the second embodiment. 図9は、第2の実施形態に係る交通量推定処理手順を示すフローチャートである。FIG. 9 is a flowchart showing a traffic volume estimation processing procedure according to the second embodiment. 図10は、交通量推定プログラムを実行するコンピュータの一例を示す図である。FIG. 10 is a diagram illustrating an example of a computer that executes a traffic volume estimation program.
 以下、図面を参照して、本発明の一実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to this embodiment. In addition, in the description of the drawings, the same parts are denoted by the same reference numerals.
[第1の実施形態]
 第1の実施形態に係る交通量推定装置は、全国の主要幹線道路で5分毎に計測され公開配布されている断面交通量データを用いて、交通需要データの一種であるOD(Origin-Destination)データを推定する。このように、断面交通量データを用いることにより、パーソントリップ調査よりも時間粒度が細かく空間粒度も交通流シミュレーションに利用可能な細かい粒度で、活用しやすい交通需要データを取得することが可能となる。
[First embodiment]
The traffic estimation device according to the first embodiment uses OD (Origin-Destination ) to estimate the data. In this way, by using cross-sectional traffic data, it is possible to obtain easily-utilized traffic demand data that has finer temporal and spatial granularity that can be used for traffic flow simulations than person trip surveys.
 図1は、第1の実施形態に係る交通量推定装置の概要を説明するための図である。具体的には、交通量推定装置は、まず、図1(a)に例示するように、対象エリア内の幹線道路網と断面交通量の計測地点とを抽出する。次に、交通量推定装置は、図1(b)に例示するように、計測地点を境界としたエリアを定義する。これは、幹線道路の断面交通量データを隣接エリア間の交通需要データに変換したことと同義である。 FIG. 1 is a diagram for explaining an overview of a traffic volume estimation device according to a first embodiment. Specifically, the traffic estimation device first extracts the arterial road network and cross-sectional traffic measurement points within the target area, as illustrated in FIG. 1(a). Next, the traffic estimation device defines an area with the measurement point as a boundary, as illustrated in FIG. 1(b). This is equivalent to converting cross-sectional traffic volume data of a main road into traffic demand data between adjacent areas.
 さらに、交通量推定装置は、図1(c)に例示するように、隣接エリア間の断面交通量すなわち交通需要データを連結して各エリア内の幹線道路の交通量を導出する。これにより、幹線道路を走行する交通需要データを生成することが可能となる。また、交通量推定装置は、図1(d)に例示するように、交通需要データの両端の出発地と目的地とを、発着エリアのそれぞれのエリア内で分散させる。すなわち、エリアをまたぐ移動は幹線道路上でのみ許容して、計測地点を必ず通過する交通需要データを生成する。その際には、出発時刻も所定の時間枠内で分散させる。これにより、時間粒度も空間粒度も適度に細かい交通需要データを取得することが可能となる。 Further, as illustrated in FIG. 1(c), the traffic estimation device connects the cross-sectional traffic volume between adjacent areas, that is, the traffic demand data, and derives the traffic volume on the main road within each area. This makes it possible to generate traffic demand data for traveling on arterial roads. Further, the traffic estimation device disperses the departure points and destinations at both ends of the traffic demand data within each area of the departure/arrival area, as illustrated in FIG. 1(d). That is, movement across areas is allowed only on main roads, and traffic demand data that always passes through the measurement point is generated. In this case, departure times are also dispersed within a predetermined time frame. This makes it possible to obtain traffic demand data with appropriate temporal and spatial granularity.
[交通量推定装置の構成]
 図2は、第1の実施形態に係る交通量推定装置の概略構成を例示する模式図である。図2に例示するように、本実施形態の交通量推定装置10は、パソコン等の汎用コンピュータで実現され、入力部11、出力部12、通信制御部13、記憶部14、および制御部15を備える。
[Configuration of traffic volume estimation device]
FIG. 2 is a schematic diagram illustrating a schematic configuration of a traffic volume estimation device according to the first embodiment. As illustrated in FIG. 2, the traffic estimation device 10 of this embodiment is realized by a general-purpose computer such as a personal computer, and includes an input section 11, an output section 12, a communication control section 13, a storage section 14, and a control section 15. Be prepared.
 入力部11は、キーボードやマウス等の入力デバイスを用いて実現され、操作者による入力操作に対応して、制御部15に対する処理開始などの各種指示情報を入力する。出力部12は、液晶ディスプレイなどの表示装置、プリンター等によって実現される。例えば、出力部12には、後述する交通量推定処理の結果が表示される。 The input unit 11 is realized using an input device such as a keyboard or a mouse, and inputs various instruction information such as starting a process to the control unit 15 in response to an input operation by an operator. The output unit 12 is realized by a display device such as a liquid crystal display, a printer, or the like. For example, the output unit 12 displays the results of traffic volume estimation processing, which will be described later.
 通信制御部13は、NIC(Network Interface Card)等で実現され、LAN(Local Area Network)やインターネットなどの電気通信回線を介した外部の装置と制御部15との通信を制御する。例えば、通信制御部13は、地図データや、処理対象のエリア内のPoI情報や施設情報、人口分布等の各種情報を管理する管理装置等と、制御部15との通信を制御する。 The communication control unit 13 is realized by a NIC (Network Interface Card) or the like, and controls communication between an external device and the control unit 15 via a telecommunication line such as a LAN (Local Area Network) or the Internet. For example, the communication control unit 13 controls communication between the control unit 15 and a management device that manages various information such as map data, PoI information, facility information, and population distribution in the area to be processed.
 記憶部14は、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。記憶部14には、交通量推定装置10を動作させる処理プログラムや、処理プログラムの実行中に使用されるデータなどが予め記憶され、あるいは処理の都度一時的に記憶される。なお、記憶部14は、通信制御部13を介して制御部15と通信する構成でもよい。また、記憶部14は、地図データや、処理対象のエリア内の大型施設等のPoI情報、人口分布等、後述する交通量推定処理に必要な各種情報等を予め取得して記憶してもよい。 The storage unit 14 is realized by a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory, or a storage device such as a hard disk or an optical disk. In the storage unit 14, a processing program for operating the traffic volume estimating device 10, data used during execution of the processing program, and the like are stored in advance, or are temporarily stored each time processing is performed. Note that the storage unit 14 may be configured to communicate with the control unit 15 via the communication control unit 13. The storage unit 14 may also acquire and store in advance various information necessary for the traffic volume estimation process described below, such as map data, PoI information of large facilities, etc. in the area to be processed, and population distribution. .
 制御部15は、CPU(Central Processing Unit)等を用いて実現され、メモリに記憶された処理プログラムを実行する。これにより、制御部15は、図2に例示するように、取得部15a、分割部15b、連結部15cおよび分散部15dとして機能する。なお、これらの機能部は、それぞれ、あるいは一部が異なるハードウェアに実装されてもよい。また、制御部15は、その他の機能部を備えてもよい。 The control unit 15 is realized using a CPU (Central Processing Unit) or the like, and executes a processing program stored in a memory. Thereby, the control unit 15 functions as an acquisition unit 15a, a division unit 15b, a connection unit 15c, and a distribution unit 15d, as illustrated in FIG. Note that each or a part of these functional units may be implemented in different hardware. Further, the control unit 15 may include other functional units.
 取得部15aは、幹線道路の所定の計測地点における交通量を示す断面交通量を取得する。例えば、取得部15aは、処理対象のエリア内の幹線道路網と断面交通量の計測地点と当該計測地点における断面交通量とを取得する。 The acquisition unit 15a acquires cross-sectional traffic volume indicating the traffic volume at a predetermined measurement point on the main road. For example, the acquisition unit 15a acquires a main road network in the area to be processed, a cross-sectional traffic volume measurement point, and a cross-sectional traffic volume at the measurement point.
 また、取得部15aは、地図データや、処理対象のエリア内の大型施設等のPoI情報、人口分布等を取得する。取得部15aは、これらの情報を、入力部11を介して、または管理装置等から通信制御部13を介して取得する。取得部15aは、取得した情報を記憶部14に記憶させてもよい。 Additionally, the acquisition unit 15a acquires map data, PoI information of large facilities, etc. within the processing target area, population distribution, etc. The acquisition unit 15a acquires this information via the input unit 11 or from a management device or the like via the communication control unit 13. The acquisition unit 15a may cause the storage unit 14 to store the acquired information.
 分割部15bは、交通量の計測地点において、地図上の幹線道路の周辺の路地を含むエリアを分割する。すなわち、分割部15bは、幹線道路上の計測地点を境界として、処理対象のエリアを分割する。これにより、幹線道路の断面交通量データが、分割された隣接エリア間の交通需要データに変換される。 The dividing unit 15b divides an area including alleys around the main road on the map at traffic measurement points. That is, the dividing unit 15b divides the area to be processed using the measurement point on the main road as a boundary. Thereby, the cross-sectional traffic volume data of the main road is converted into traffic demand data between divided adjacent areas.
 そして、分割部15bは、分割した各エリアに含める幹線道路の周辺の路地を決定する。例えば、分割部15bは、路地を経由した旅行時間に基づいて、エリアに含む路地を決定する。すなわち、分割部15bは、幹線道路の計測地点間の各区間に対応づける路地を、幾何学的な距離によらず、一方通行や制限速度等を考慮した旅行時間に基づいて決定する。 Then, the dividing unit 15b determines alleys around the main road to be included in each divided area. For example, the dividing unit 15b determines the alleys included in the area based on the travel time through the alleys. That is, the dividing unit 15b determines the alley to be associated with each section between the measurement points on the main road, not based on the geometric distance, but based on the travel time in consideration of one-way streets, speed limits, and the like.
 ここで、図3は、分割部の処理を説明するための図である。分割部15bは、幹線道路の各区間に対応付ける路地をリストアップする。その際に、幹線道路の上り線と下り線とで交通量の計測地点が異なる場合には、分割部15bは、上り線と下り線とで区別して分割したエリアを管理する。 Here, FIG. 3 is a diagram for explaining the processing of the dividing section. The dividing unit 15b lists alleys associated with each section of the main road. At this time, if the traffic volume measurement points are different for the up line and the down line of the main road, the dividing unit 15b manages the areas divided by the up line and the down line.
 例えば、図3に示す例では、幹線道路の区間B#01と、区間B#12+区間B#13とは、区別される。したがって、図3(a)に実線で示す幹線道路の区間B#01に対応付けられる路地と、図3(b)に一点鎖線で示す区間B#12に対応付けられる路地と、点線で示す区間B#13に対応付けられる路地とは、区別して管理されている。 For example, in the example shown in FIG. 3, section B#01 and section B#12+section B#13 of the main road are distinguished. Therefore, there is an alley associated with section B#01 of the main road indicated by a solid line in FIG. 3(a), an alley associated with section B#12 indicated by a dashed line in FIG. 3(b), and an alley indicated by a dotted line It is managed separately from the alley associated with B#13.
 また、分割部15bは、分割したエリアをまたぐ路地を該エリアに含む路地から除外する。例えば、図3(b)に楕円で囲んで示す路地は、両端が計測地点をまたぐため、区間B#12、区間B#13のいずれにも対応付けされない。これにより、後述する分散部15dの処理において、幹線道路の交通量が断面交通量と乖離することを防止することが可能となる。 Furthermore, the dividing unit 15b excludes alleys that straddle the divided area from the alleys included in the area. For example, the alley shown surrounded by an ellipse in FIG. 3(b) is not associated with either section B#12 or section B#13 because both ends straddle the measurement point. This makes it possible to prevent the traffic volume of the main road from deviating from the cross-sectional traffic volume in the processing of the distribution unit 15d, which will be described later.
 図2の説明に戻る。連結部15cは、分割されたエリア間の断面交通量を連結して各エリアの幹線道路の交通量を導出する。例えば、連結部15cは、特定の幹線道路に沿って経路を生成し、生成した経路上のエリアの断面交通量を連結することにより、図1(c)に例示したように、幹線道路上の経路の交通量を導出する。このようにして、連結部15cは、幹線道路に沿った経路を生成し、幹線道路の交通需要データを生成する。 Returning to the explanation of FIG. 2. The connecting unit 15c connects the cross-sectional traffic volumes between the divided areas and derives the traffic volume of the main road in each area. For example, the connecting unit 15c generates a route along a specific highway and connects the cross-sectional traffic volumes of areas on the generated route, thereby creating a route on the highway as illustrated in FIG. 1(c). Derive the traffic volume of the route. In this way, the connecting unit 15c generates a route along the main road and generates traffic demand data for the main road.
 具体的には、連結部15cは、平均トリップ長の分布データまたは所定の交差点における右左折直進比率の統計データの少なくともいずれかを用いて、各交通の発エリアまたは着エリアを特定する。つまり、連結部15cは、平均トリップ長や右左折直進比率等を参照して幹線道路に沿った経路を生成し、各交通の発エリアまたは着エリアを特定する。なお、連結部15cは、車両プローブデータから平均トリップ長や右左折直進比率を推定してもよい。 Specifically, the connecting unit 15c identifies the departure area or destination area of each traffic using at least one of the distribution data of the average trip length or the statistical data of the right-left-turn-straight ratio at a predetermined intersection. That is, the connecting unit 15c generates a route along the main road by referring to the average trip length, right/left turn/straight ratio, etc., and specifies the departure area or destination area of each traffic. Note that the connecting unit 15c may estimate the average trip length and the right/left turn/straight ratio from the vehicle probe data.
 そして、分散部15dは、分割されたエリアのうち、特定された発エリアまたは着エリアのそれぞれにおいて、出発地または目的地を分散させる。すなわち、分散部15dは、図1(d)に例示したように、幹線道路の交通需要データの経路を、路地にも車両が出入りするように分散させる。 Then, the dispersion unit 15d disperses the departure points or destinations in each of the specified departure areas or destination areas among the divided areas. That is, as illustrated in FIG. 1(d), the distribution unit 15d distributes the routes of the traffic demand data of the main road so that vehicles enter and exit the alley as well.
 例えば、分散部15dは、発エリア内または着エリア内の路地をランダムに選択することにより、出発地または目的地を分散させる。あるいは、分散部15dは、発エリア内または着エリア内の昼間人口分布や夜間人口分布に従って、出発地または目的地を分散させてもよい。あるいは、分散部15dは、発エリア内または着エリア内の大型商業施設等の収容可能人数や駐車場の収容可能台数等のPoI情報を用いて、出発地または目的地を分散させてもよい。これにより、空間粒度が細かく活用しやすい交通需要データを生成することが可能となる。 For example, the dispersion unit 15d distributes departure points or destinations by randomly selecting alleys within the departure area or the destination area. Alternatively, the dispersion unit 15d may disperse the departure points or destinations according to the daytime population distribution or nighttime population distribution within the departure area or destination area. Alternatively, the dispersion unit 15d may disperse the departure points or destinations using PoI information such as the number of people that can be accommodated in a large commercial facility or the like in the departure area or the destination area, the number of cars that can be accommodated in a parking lot, etc. This makes it possible to generate traffic demand data with fine spatial granularity and ease of use.
 ここで、図4は、分散部の処理を説明するための図である。分散部15dは、エリアを通過する交通は、該エリアの幹線道路上を通過させる。すなわち、分散部15dは、図4に例示したように、エリア外から流入しエリア外へ流出するようなエリアを通過する交通について、当該エリアの幹線道路の端点から流入させたり流出させたりして必ず計測地点を通過させ、出発地や目的地の分散を行わない。これにより、幹線道路の交通量が断面交通量と乖離することを防止する。 Here, FIG. 4 is a diagram for explaining the processing of the dispersion section. The distribution unit 15d causes traffic passing through the area to pass on the main road of the area. In other words, as illustrated in FIG. 4, the dispersion unit 15d controls traffic passing through an area that flows in from outside the area and flows out of the area from the end point of the main road in the area. Be sure to pass through the measurement point and do not disperse the departure point or destination. This prevents the traffic volume on the main road from deviating from the cross-sectional traffic volume.
 また、分散部15dは、さらに出発地における出発時刻を所定の時間枠内で分散させてもよい。これにより、時間粒度がより細かく活用しやすい交通需要データを生成することが可能となる。 Additionally, the distribution unit 15d may further distribute the departure times at the departure points within a predetermined time frame. This makes it possible to generate traffic demand data with finer time granularity and ease of use.
[交通量推定処理]
 次に、図5を参照して、第1の実施形態に係る交通量推定装置10による交通量推定処理について説明する。図5は、第1の実施形態に係る交通量推定処理手順を示すフローチャートである。図5のフローチャートは、例えば、ユーザが開始を指示する操作入力を行ったタイミングで開始される。
[Traffic volume estimation processing]
Next, with reference to FIG. 5, a traffic volume estimation process by the traffic volume estimation device 10 according to the first embodiment will be described. FIG. 5 is a flowchart showing a traffic volume estimation processing procedure according to the first embodiment. The flowchart in FIG. 5 is started, for example, at the timing when the user performs an operation input instructing to start.
 まず、取得部15aが、幹線道路の所定の計測地点における交通量を示す断面交通量を取得する(ステップS1)。例えば、取得部15aは、処理対象のエリア内の幹線道路網と断面交通量の計測地点と当該計測地点における断面交通量とを取得する。また、取得部15aは、地図データや、処理対象のエリア内の大型施設等のPoI情報、人口分布等を取得する。 First, the acquisition unit 15a acquires cross-sectional traffic volume indicating the traffic volume at a predetermined measurement point on the main road (step S1). For example, the acquisition unit 15a acquires a main road network in the area to be processed, a cross-sectional traffic volume measurement point, and a cross-sectional traffic volume at the measurement point. The acquisition unit 15a also acquires map data, PoI information of large facilities, etc. within the processing target area, population distribution, and the like.
 次に、分割部15bが、計測地点において、地図上の幹線道路の周辺の路地を含むエリアを分割する(ステップS2)。すなわち、分割部15bは、幹線道路上の計測地点を境界として、処理対象のエリアを分割し、分割した各エリアに含める幹線道路の周辺の路地を決定する。 Next, the dividing unit 15b divides an area including alleys around the main road on the map at the measurement point (step S2). That is, the dividing unit 15b divides the area to be processed using the measurement point on the highway as a boundary, and determines alleys around the highway to be included in each divided area.
 例えば、分割部15bは、路地を経由した旅行時間に基づいて、エリアに含む路地を決定する。すなわち、分割部15bは、幹線道路の計測地点間の各区間に対応づける路地を、幾何学的な距離によらず、一方通行や制限速度等を考慮した旅行時間に基づいて決定する。その際に、分割部15bは、分割したエリアをまたぐ路地を該エリアに含む路地から除外する。 For example, the dividing unit 15b determines the alleys to be included in the area based on the travel time through the alleys. That is, the dividing unit 15b determines the alley to be associated with each section between the measurement points on the main road, not based on the geometric distance, but based on the travel time in consideration of one-way streets, speed limits, and the like. At this time, the dividing unit 15b excludes alleys that straddle the divided area from the alleys included in the area.
 次に、連結部15cが、分割されたエリア間の断面交通量を連結して各エリアの幹線道路の交通量を導出する(ステップS3)。例えば、連結部15cは、特定の幹線道路に沿って経路を生成し、生成した経路上のエリアの断面交通量を連結することにより、幹線道路上の経路の交通量を導出する。 Next, the connecting unit 15c connects the cross-sectional traffic volumes between the divided areas and derives the traffic volume of the main road in each area (step S3). For example, the connecting unit 15c generates a route along a specific highway and connects the cross-sectional traffic volumes of areas on the generated route, thereby deriving the traffic volume of the route on the highway.
 具体的には、連結部15cは、平均トリップ長の分布データまたは所定の交差点における右左折直進比率の統計データの少なくともいずれかを用いて、幹線道路に沿った経路を生成して各交通の発エリアまたは着エリアを特定し、交通需要データを生成する。 Specifically, the connecting unit 15c uses at least one of the distribution data of the average trip length or the statistical data of the right/left turn/go straight ratio at a predetermined intersection to generate a route along the main road and determine the origin of each traffic. Identify the area or destination area and generate traffic demand data.
 そして、分散部15dが、分割されたエリアのうち、特定された発エリアまたは着エリアのそれぞれにおいて、出発地または目的地を分散させる(ステップS4)。例えば、分散部15dは、幹線道路の交通需要データの経路を、路地にも車両が出入りするように分散させる。その際に、分散部15dは、エリアを通過する交通は、必ず計測地点を通過するように該エリアの幹線道路上を通過させる。また、分散部15dは、出発地における出発時刻を所定の時間枠内で分散させてもよい。 Then, the dispersion unit 15d disperses the departure points or destinations in each of the specified departure areas or destination areas among the divided areas (step S4). For example, the distribution unit 15d distributes the routes of traffic demand data for main roads so that vehicles enter and exit alleys as well. At this time, the dispersion unit 15d causes traffic passing through the area to pass on the main road of the area so that it always passes through the measurement point. Further, the distribution unit 15d may distribute the departure times at the departure points within a predetermined time frame.
 最後に、分散部15dは、生成した交通需要データを出力する(ステップS5)。これにより、一連の交通量推定処理が終了する。 Finally, the distribution unit 15d outputs the generated traffic demand data (step S5). This completes a series of traffic volume estimation processes.
[第2の実施形態]
 第2の実施形態の交通量推定装置は、断面交通量を計測するトラフィックカウンター(トラカン)が設置されていない区間について、断面交通量データに均衡配分の手法を適用し、交通量が既知である経路の交通量からトラカン非設置の経路の交通量を推定する。このように、断面交通量データを利用することにより、時間的にも空間的にも粒度が細かい交通量データを取得することが可能となる。
[Second embodiment]
The traffic estimation device of the second embodiment applies a balanced distribution method to cross-sectional traffic data for sections where no traffic counters (traffic counters) are installed to measure cross-sectional traffic, and the traffic volume is known. Estimating the traffic volume on routes without trackers installed from the traffic volume on the route. In this way, by using cross-sectional traffic data, it is possible to obtain traffic data with fine granularity both temporally and spatially.
 図6および図7は、第2の実施形態に係る交通量推定装置の概要を説明するための図である。具体的には、図6(a)に示すように、出発地と目的地とを結ぶ経路が複数ある場合には、ドライバーは、旅行時間が最小となる経路を選択しようとする。 FIGS. 6 and 7 are diagrams for explaining an overview of a traffic volume estimation device according to the second embodiment. Specifically, as shown in FIG. 6(a), if there are multiple routes connecting the departure point and destination, the driver attempts to select the route with the minimum travel time.
 ここで、図6(b)に示すように、旅行時間は交通量に依存しており、選択した経路の混雑/渋滞の状況に応じて変化する。この交通量と旅行時間との関係は定式化されており、図6(c)に例示するように、経路の交通量の需給バランス(交通量の配分)に均衡が生じるポイントがある。結果として、情報が十分に行き渡れば、「利用される経路の旅行時間は皆等しく、利用されない経路の旅行時間よりも短いか、せいぜい等しい」状態に収束するという既知のWardropの第1原則が成立する。 Here, as shown in FIG. 6(b), the travel time depends on the traffic volume and changes depending on the congestion/congestion situation of the selected route. This relationship between traffic volume and travel time is formulated, and as illustrated in FIG. 6(c), there is a point at which the balance of demand and supply of traffic (traffic volume distribution) on a route becomes balanced. As a result, if enough information is distributed, the well-known first principle of Wardrop will converge to the state that ``the travel times of all routes used are equal and are shorter than, or at best equal to, the travel times of routes that are not used.'' To establish.
 そこで、図7(a)に示すように、交通量推定装置は、トラカンが設置されておらず交通量を推定したい道路区間について、この道路区間と並走する、交通量が既知の道路区間を探索する。そして、図7(b)に示すように、トラカンが設置されていて交通量が既知の道路区間(経路1)と交通量を推定したい道路区間(経路2)とに対し、均衡配分の手法を適用することにより、経路2の交通量を推定する。 Therefore, as shown in Fig. 7(a), for a road section where no tracker is installed and whose traffic volume is to be estimated, the traffic estimation device selects a road section where the traffic volume is known and runs parallel to this road section. Explore. Then, as shown in Figure 7(b), the balanced allocation method is applied to the road section where the tracker is installed and the traffic volume is known (route 1) and the road section for which the traffic volume is to be estimated (route 2). By applying this, the traffic volume of route 2 is estimated.
 具体的には、図7(c)に示すように、交通量が既知の並走区間(経路1)の旅行時間と交通量の推定対象区間(経路2)の旅行時間とが同程度になるようにシミュレーションを行って、推定対象区間の交通量を推定する。 Specifically, as shown in Fig. 7(c), the travel time in the parallel section where the traffic volume is known (route 1) and the travel time in the section where the traffic volume is estimated (route 2) are approximately the same. A simulation is performed to estimate the traffic volume in the estimation target section.
[交通量推定装置の構成]
 図8は、第2の実施形態に係る交通量推定装置の概略構成を例示する模式図である。図8に示す交通量推定装置10aは、分割部15b、連結部15cおよび分散部15dに代えて、探索部15e、推定部15fおよび算定部15gを備える点が、図2に示した第1の実施形態の交通量推定装置10とは異なる。その他の図2に示した交通量推定装置10と同様の機能部については、説明を省略する。
[Configuration of traffic volume estimation device]
FIG. 8 is a schematic diagram illustrating a schematic configuration of a traffic volume estimating device according to the second embodiment. The traffic volume estimating device 10a shown in FIG. 8 is different from the first one shown in FIG. This is different from the traffic estimation device 10 of the embodiment. Descriptions of other functional units similar to those of the traffic volume estimating device 10 shown in FIG. 2 will be omitted.
 取得部15aは、上記の第1の実施形態と同様に、幹線道路の所定の計測地点における交通量を示す断面交通量を取得する。 Similarly to the first embodiment described above, the acquisition unit 15a acquires cross-sectional traffic volume indicating the traffic volume at a predetermined measurement point on the main road.
 探索部15eは、交通量が既知の道路区間のうち、処理対象の道路区間と並走する道路区間を探索する。例えば、探索部15eは、処理対象の交通量が未知である道路区間と両端が同一である幹線道路の道路区間を探索する。そして、探索部15eは、幹線道路の各計測地点における断面交通量を用いて、探索した当該道路区間の交通量を取得する。 The search unit 15e searches for a road section running parallel to the road section to be processed, among road sections with known traffic volume. For example, the search unit 15e searches for a road section of an arterial road whose both ends are the same as the road section whose traffic volume is unknown. Then, the search unit 15e obtains the traffic volume of the searched road section using the cross-sectional traffic volume at each measurement point on the main road.
 推定部15fが、探索された道路区間(並走区間)の旅行時間を推定する。例えば、推定部15fは、既知の交通流シミュレーションを行って、並走区間の各時刻の旅行時間を推定する。 The estimation unit 15f estimates the travel time of the searched road section (parallel section). For example, the estimation unit 15f performs a known traffic flow simulation to estimate the travel time at each time in the parallel section.
 あるいは、推定部15fは、探索された道路区間における交通量と旅行時間との所定の関係を用いて、旅行時間を推定してもよい。例えば、推定部15fは、図6(b)に例示した当該道路区間における交通量と旅行時間との関係を式で表して、当該式を用いて旅行時間を推定してもよい。 Alternatively, the estimation unit 15f may estimate the travel time using a predetermined relationship between the traffic volume and travel time in the searched road section. For example, the estimating unit 15f may express the relationship between the traffic volume and travel time in the road section illustrated in FIG. 6(b) using a formula, and estimate the travel time using the formula.
 算定部15gは、推定された旅行時間と処理対象の道路区間の旅行時間とが同一になるように、該処理対象の道路区間の交通量を算定する。例えば、処理対象の道路区間について様々な交通量を適用して、探索された道路区間について推定された旅行時間と同一となるような交通量を算定する。 The calculation unit 15g calculates the traffic volume of the road section to be processed so that the estimated travel time and the travel time of the road section to be processed are the same. For example, various traffic volumes are applied to the road section to be processed, and a traffic volume that is the same as the travel time estimated for the searched road section is calculated.
 あるいは、算定部15gは、処理対象の道路区間における交通量と旅行時間と所定の関係を用いて、交通量を算定してもよい。例えば、推定部15fと同様に、処理対象の道路区間における交通量と旅行時間との関係を表す式を用いて、当該道路区間の交通量を算定してもよい。 Alternatively, the calculation unit 15g may calculate the traffic volume using a predetermined relationship between the traffic volume and travel time in the road section to be processed. For example, similarly to the estimating unit 15f, the traffic volume of the road section to be processed may be calculated using an equation representing the relationship between the traffic volume and travel time in the road section.
 このようにして、交通量推定装置10aは、交通量が未知である処理対象の道路区間の交通量を推定する。これにより、処理対象の道路区間の交通需要データを生成することが可能となる。 In this way, the traffic volume estimating device 10a estimates the traffic volume of the road section to be processed whose traffic volume is unknown. This makes it possible to generate traffic demand data for the road section to be processed.
[交通量推定処理]
 次に、図9を参照して、第2の実施形態に係る交通量推定装置10aによる交通量推定処理について説明する。図9は、第2の実施形態に係る交通量推定処理手順を示すフローチャートである。図9のフローチャートは、例えば、ユーザが開始を指示する操作入力を行ったタイミングで開始される。
[Traffic volume estimation processing]
Next, with reference to FIG. 9, a traffic volume estimation process by the traffic volume estimation device 10a according to the second embodiment will be described. FIG. 9 is a flowchart showing a traffic volume estimation processing procedure according to the second embodiment. The flowchart in FIG. 9 is started, for example, at the timing when the user performs an operation input instructing to start.
 まず、取得部15aは、上記の第1の実施形態と同様に、幹線道路の所定の計測地点における交通量を示す断面交通量を取得する。また、探索部15eが、交通量が既知の道路区間のうち、処理対象の道路区間と並走する道路区間を探索する(ステップS1)。例えば、探索部15eは、処理対象の交通量が未知である道路区間と両端が同一である幹線道路の道路区間を探索する。そして、探索部15eは、幹線道路の各計測地点における断面交通量を用いて、探索した当該道路区間の交通量を取得する。 First, the acquisition unit 15a acquires cross-sectional traffic volume indicating the traffic volume at a predetermined measurement point on the main road, similarly to the first embodiment described above. Furthermore, the search unit 15e searches for a road section running parallel to the road section to be processed, among the road sections for which the traffic volume is known (step S1). For example, the search unit 15e searches for a road section of an arterial road whose both ends are the same as the road section whose traffic volume is unknown. Then, the search unit 15e obtains the traffic volume of the searched road section using the cross-sectional traffic volume at each measurement point on the main road.
 次に、推定部15fが、探索された道路区間の旅行時間を推定する(ステップS2)。例えば、推定部15fは、探索された道路区間における交通量と旅行時間との所定の関係を用いて、旅行時間を推定する。 Next, the estimation unit 15f estimates the travel time of the searched road section (step S2). For example, the estimation unit 15f estimates the travel time using a predetermined relationship between the traffic volume and the travel time in the searched road section.
 次に、算定部15gが、推定された旅行時間と処理対象の道路区間の旅行時間とが同一になるように、該処理対象の道路区間の交通量を算定する(ステップS3)。例えば、算定部15gは、処理対象の道路区間における交通量と旅行時間と所定の関係を用いて、交通量を算定する。これにより、処理対象の道路区間の交通需要データを生成する。 Next, the calculation unit 15g calculates the traffic volume of the road section to be processed so that the estimated travel time and the travel time of the road section to be processed are the same (step S3). For example, the calculation unit 15g calculates the traffic volume using a predetermined relationship between the traffic volume and travel time in the road section to be processed. This generates traffic demand data for the road section to be processed.
 最後に、算定部15gは、生成した交通需要データを出力する(ステップS4)。これにより、一連の交通量推定処理が終了する。 Finally, the calculation unit 15g outputs the generated traffic demand data (step S4). This completes the series of traffic volume estimation processes.
[その他の実施形態]
 上記の第1の実施形態の交通量推定装置10と第2の実施形態の交通量推定装置10aとは、協働する装置であってもよい。例えば、第1の実施形態の交通量推定装置10が生成した交通需要データの経路を用いて、当該経路と並走する交通量が未知の経路について、第2の実施形態の交通量推定装置10aが、交通量を推定する。その場合には、第1の実施形態の交通量推定装置10と第2の実施形態の交通量推定装置10aとが同一のハードウェアに実装されてもよい。
[Other embodiments]
The traffic estimation device 10 of the first embodiment and the traffic estimation device 10a of the second embodiment described above may be devices that cooperate. For example, using the route of the traffic demand data generated by the traffic volume estimating device 10 of the first embodiment, the traffic volume estimating device 10a of the second embodiment determines the route for which the traffic volume running parallel to the route is unknown. estimates the traffic volume. In that case, the traffic estimation device 10 of the first embodiment and the traffic estimation device 10a of the second embodiment may be implemented in the same hardware.
[効果]
 以上、説明したように、本実施形態の交通量推定装置10aにおいて、探索部15eが、交通量が既知の道路区間のうち、処理対象の道路区間と並走する道路区間を探索する。推定部15fが、探索された道路区間の旅行時間を推定する。算定部15gが、推定された旅行時間と処理対象の道路区間の旅行時間とが同一になるように、該処理対象の道路区間の交通量を算定する。
[effect]
As described above, in the traffic volume estimating device 10a of the present embodiment, the search unit 15e searches for a road section running parallel to the road section to be processed, among road sections where the traffic volume is known. The estimation unit 15f estimates the travel time of the searched road section. The calculation unit 15g calculates the traffic volume of the road section to be processed so that the estimated travel time and the travel time of the road section to be processed are the same.
 具体的には、探索部15eは、幹線道路の所定の計測地点における交通量を示す断面交通量を用いて、道路区間の既知の交通量を取得する。 Specifically, the search unit 15e obtains the known traffic volume of the road section using the cross-sectional traffic volume that indicates the traffic volume at a predetermined measurement point on the main road.
 このように、交通量推定装置10aは、トラカンが設置されていないような交通量が未知の道路区間の交通量を、断面交通量データ等の既知の交通量に均等配分の手法を適用することにより推定する。したがって、交通量推定装置10aは、断面交通量データを利用することにより、時間的にも空間的にも粒度が細かい交通量データを取得することが可能となる。 In this way, the traffic volume estimating device 10a applies an equal distribution method to the traffic volume of a road section where the traffic volume is unknown, such as where a truck is not installed, to the known traffic volume such as cross-sectional traffic volume data. Estimated by. Therefore, by using the cross-sectional traffic data, the traffic volume estimation device 10a can obtain traffic data with fine granularity both temporally and spatially.
 また、推定部15fは、探索された道路区間における交通量と旅行時間との所定の関係を用いて、旅行時間を推定し、算定部15gは、処理対象の道路区間における交通量と旅行時間との所定の関係を用いて、交通量を算定する。これにより、交通量が未知の道路区間の交通量を精度高く推定することが可能となる。 Furthermore, the estimation unit 15f estimates the travel time using a predetermined relationship between the traffic volume and travel time in the searched road section, and the calculation unit 15g estimates the travel time and traffic volume in the road section to be processed. The traffic volume is calculated using a predetermined relationship. This makes it possible to estimate the traffic volume of a road section where the traffic volume is unknown with high accuracy.
[プログラム]
 上記実施形態に係る交通量推定装置10、10aが実行する処理をコンピュータが実行可能な言語で記述したプログラムを作成することもできる。一実施形態として、交通量推定装置10、10aは、パッケージソフトウェアやオンラインソフトウェアとして上記の交通量推定処理を実行する交通量推定プログラムを所望のコンピュータにインストールさせることによって実装できる。例えば、上記の交通量推定プログラムを情報処理装置に実行させることにより、情報処理装置を交通量推定装置10、10aとして機能させることができる。ここで言う情報処理装置には、デスクトップ型またはノート型のパーソナルコンピュータが含まれる。また、その他にも、情報処理装置にはスマートフォン、携帯電話機やPHS(Personal Handyphone System)などの移動体通信端末、さらには、PDA(Personal Digital Assistant)などのスレート端末などがその範疇に含まれる。また、交通量推定装置10、10aの機能を、クラウドサーバに実装してもよい。
[program]
It is also possible to create a program in which the processing executed by the traffic estimation devices 10 and 10a according to the embodiments described above is written in a computer-executable language. As one embodiment, the traffic estimation devices 10 and 10a can be implemented by installing a traffic estimation program that executes the above-mentioned traffic estimation processing into a desired computer as package software or online software. For example, by causing the information processing device to execute the above traffic volume estimation program, the information processing device can be made to function as the traffic volume estimation device 10, 10a. The information processing device referred to here includes a desktop or notebook personal computer. In addition, information processing devices include mobile communication terminals such as smartphones, mobile phones, and PHSs (Personal Handyphone Systems), as well as slate terminals such as PDAs (Personal Digital Assistants). Further, the functions of the traffic estimation devices 10 and 10a may be implemented in a cloud server.
 図10は、交通量推定プログラムを実行するコンピュータの一例を示す図である。コンピュータ1000は、例えば、メモリ1010と、CPU1020と、ハードディスクドライブインタフェース1030と、ディスクドライブインタフェース1040と、シリアルポートインタフェース1050と、ビデオアダプタ1060と、ネットワークインタフェース1070とを有する。これらの各部は、バス1080によって接続される。 FIG. 10 is a diagram showing an example of a computer that executes a traffic volume estimation program. Computer 1000 includes, for example, memory 1010, CPU 1020, hard disk drive interface 1030, disk drive interface 1040, serial port interface 1050, video adapter 1060, and network interface 1070. These parts are connected by a bus 1080.
 メモリ1010は、ROM(Read Only Memory)1011およびRAM1012を含む。ROM1011は、例えば、BIOS(Basic Input Output System)等のブートプログラムを記憶する。ハードディスクドライブインタフェース1030は、ハードディスクドライブ1031に接続される。ディスクドライブインタフェース1040は、ディスクドライブ1041に接続される。ディスクドライブ1041には、例えば、磁気ディスクや光ディスク等の着脱可能な記憶媒体が挿入される。シリアルポートインタフェース1050には、例えば、マウス1051およびキーボード1052が接続される。ビデオアダプタ1060には、例えば、ディスプレイ1061が接続される。 The memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM 1012. The ROM 1011 stores, for example, a boot program such as BIOS (Basic Input Output System). Hard disk drive interface 1030 is connected to hard disk drive 1031. Disk drive interface 1040 is connected to disk drive 1041. A removable storage medium such as a magnetic disk or an optical disk is inserted into the disk drive 1041, for example. For example, a mouse 1051 and a keyboard 1052 are connected to the serial port interface 1050. For example, a display 1061 is connected to the video adapter 1060.
 ここで、ハードディスクドライブ1031は、例えば、OS1091、アプリケーションプログラム1092、プログラムモジュール1093およびプログラムデータ1094を記憶する。上記実施形態で説明した各情報は、例えばハードディスクドライブ1031やメモリ1010に記憶される。 Here, the hard disk drive 1031 stores, for example, an OS 1091, an application program 1092, a program module 1093, and program data 1094. Each piece of information described in the above embodiments is stored in, for example, the hard disk drive 1031 or the memory 1010.
 また、交通量推定プログラムは、例えば、コンピュータ1000によって実行される指令が記述されたプログラムモジュール1093として、ハードディスクドライブ1031に記憶される。具体的には、上記実施形態で説明した交通量推定装置10が実行する各処理が記述されたプログラムモジュール1093が、ハードディスクドライブ1031に記憶される。 Further, the traffic estimation program is stored in the hard disk drive 1031, for example, as a program module 1093 in which commands to be executed by the computer 1000 are written. Specifically, a program module 1093 in which each process executed by the traffic estimation device 10 described in the above embodiment is described is stored in the hard disk drive 1031.
 また、交通量推定プログラムによる情報処理に用いられるデータは、プログラムデータ1094として、例えば、ハードディスクドライブ1031に記憶される。そして、CPU1020が、ハードディスクドライブ1031に記憶されたプログラムモジュール1093やプログラムデータ1094を必要に応じてRAM1012に読み出して、上述した各手順を実行する。 Further, data used for information processing by the traffic estimation program is stored as program data 1094 in, for example, the hard disk drive 1031. Then, the CPU 1020 reads out the program module 1093 and program data 1094 stored in the hard disk drive 1031 to the RAM 1012 as necessary, and executes each of the above-described procedures.
 なお、交通量推定プログラムに係るプログラムモジュール1093やプログラムデータ1094は、ハードディスクドライブ1031に記憶される場合に限られず、例えば、着脱可能な記憶媒体に記憶されて、ディスクドライブ1041等を介してCPU1020によって読み出されてもよい。あるいは、交通量推定プログラムに係るプログラムモジュール1093やプログラムデータ1094は、LANやWAN(Wide Area Network)等のネットワークを介して接続された他のコンピュータに記憶され、ネットワークインタフェース1070を介してCPU1020によって読み出されてもよい。 Note that the program module 1093 and program data 1094 related to the traffic volume estimation program are not limited to being stored in the hard disk drive 1031; for example, they may be stored in a removable storage medium and read by the CPU 1020 via the disk drive 1041 or the like. May be read. Alternatively, the program module 1093 and program data 1094 related to the traffic estimation program are stored in another computer connected via a network such as a LAN or WAN (Wide Area Network), and read by the CPU 1020 via the network interface 1070. May be served.
 以上、本発明者によってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本発明の範疇に含まれる。 Although embodiments to which the invention made by the present inventor is applied have been described above, the present invention is not limited by the description and drawings that form part of the disclosure of the present invention by this embodiment. That is, all other embodiments, examples, operational techniques, etc. made by those skilled in the art based on this embodiment are included in the scope of the present invention.
 10、10a 交通量推定装置
 11 入力部
 12 出力部
 13 通信制御部
 14 記憶部
 15 制御部
 15a 取得部
 15b 分割部
 15c 連結部
 15d 分散部
 15e 探索部
 15f 推定部
 15g 算定部
10, 10a traffic estimation device 11 input unit 12 output unit 13 communication control unit 14 storage unit 15 control unit 15a acquisition unit 15b division unit 15c connection unit 15d distribution unit 15e search unit 15f estimation unit 15g calculation unit

Claims (5)

  1.  交通量が既知の道路区間のうち、処理対象の道路区間と並走する道路区間を探索する探索部と、
     探索された前記道路区間の旅行時間を推定する推定部と、
     推定された前記旅行時間と前記処理対象の道路区間の旅行時間とが同一になるように、該処理対象の道路区間の交通量を算定する算定部と、
     を有することを特徴とする交通量推定装置。
    a search unit that searches for a road section running parallel to the road section to be processed among road sections with known traffic volume;
    an estimation unit that estimates travel time for the searched road section;
    a calculation unit that calculates the traffic volume of the road section to be processed so that the estimated travel time and the travel time of the road section to be processed are the same;
    A traffic volume estimation device comprising:
  2.  前記探索部は、幹線道路の所定の計測地点における交通量を示す断面交通量を用いて、道路区間の前記交通量を取得することを特徴とする請求項1に記載の交通量推定装置。 The traffic estimation device according to claim 1, wherein the search unit obtains the traffic volume of the road section using a cross-sectional traffic volume that indicates the traffic volume at a predetermined measurement point on the main road.
  3.  前記推定部は、探索された前記道路区間における交通量と旅行時間との所定の関係を用いて、前記旅行時間を推定し、
     前記算定部は、前記処理対象の道路区間における交通量と旅行時間との所定の関係を用いて、前記交通量を算定する、
     ことを特徴とする請求項1に記載の交通量推定装置。
    The estimation unit estimates the travel time using a predetermined relationship between traffic volume and travel time in the searched road section,
    The calculation unit calculates the traffic volume using a predetermined relationship between traffic volume and travel time in the road section to be processed.
    The traffic volume estimating device according to claim 1, characterized in that:
  4.  交通量推定装置が実行する交通量推定方法であって、
     交通量が既知の道路区間のうち、処理対象の道路区間と並走する道路区間を探索する探索工程と、
     探索された前記道路区間の旅行時間を推定する推定工程と、
     推定された前記旅行時間と前記処理対象の道路区間の旅行時間とが同一になるように、該処理対象の道路区間の交通量を算定する算定工程と、
     を含むことを特徴とする交通量推定方法。
    A traffic volume estimation method executed by a traffic volume estimation device, the method comprising:
    a search step of searching for a road section running parallel to the road section to be processed among road sections with known traffic volume;
    an estimation step of estimating the travel time of the searched road section;
    a calculation step of calculating the traffic volume of the road section to be processed so that the estimated travel time and the travel time of the road section to be processed are the same;
    A traffic volume estimation method characterized by comprising:
  5.  コンピュータを請求項1~3のいずれか1項に記載の交通量推定装置として機能させるための交通量推定プログラム。 A traffic volume estimation program for causing a computer to function as the traffic volume estimation device according to any one of claims 1 to 3.
PCT/JP2022/032129 2022-08-25 2022-08-25 Traffic estimation device, traffic estimation method, and traffic estimation program WO2024042691A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032129 WO2024042691A1 (en) 2022-08-25 2022-08-25 Traffic estimation device, traffic estimation method, and traffic estimation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032129 WO2024042691A1 (en) 2022-08-25 2022-08-25 Traffic estimation device, traffic estimation method, and traffic estimation program

Publications (1)

Publication Number Publication Date
WO2024042691A1 true WO2024042691A1 (en) 2024-02-29

Family

ID=90012811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032129 WO2024042691A1 (en) 2022-08-25 2022-08-25 Traffic estimation device, traffic estimation method, and traffic estimation program

Country Status (1)

Country Link
WO (1) WO2024042691A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063680A (en) * 2000-08-22 2002-02-28 Toshiba Corp Traffic control system
JP2004294371A (en) * 2003-03-28 2004-10-21 Equos Research Co Ltd Method for forming duration database, and method for searching route
WO2014024264A1 (en) * 2012-08-08 2014-02-13 株式会社 日立製作所 Traffic-volume prediction device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063680A (en) * 2000-08-22 2002-02-28 Toshiba Corp Traffic control system
JP2004294371A (en) * 2003-03-28 2004-10-21 Equos Research Co Ltd Method for forming duration database, and method for searching route
WO2014024264A1 (en) * 2012-08-08 2014-02-13 株式会社 日立製作所 Traffic-volume prediction device and method

Similar Documents

Publication Publication Date Title
TWI734941B (en) Systems and methods for monitoring traffic congestion
Angelelli et al. Proactive route guidance to avoid congestion
US8930123B2 (en) Systems and methods for determining traffic intensity using information obtained through crowdsourcing
US9200910B2 (en) Ranking of path segments based on incident probability
US8954266B2 (en) Providing routes through information collection and retrieval
Lee et al. Robust accessibility: Measuring accessibility based on travelers' heterogeneous strategies for managing travel time uncertainty
CN111133277A (en) Method, apparatus and computer program product for generating routes using time and space
Cabannes et al. The impact of GPS-enabled shortest path routing on mobility: a game theoretic approach
CN113808400B (en) Method, device, equipment and medium for displaying traffic flow migration situation
Liu et al. Balanced traffic routing: Design, implementation, and evaluation
JP2019028526A (en) Congestion prediction device
JP2021526246A (en) Systems and methods to improve the visualization of traffic conditions
CN104296763A (en) Method of displaying a map view and navigation device
JP2019220048A (en) Traffic flow prediction device and traffic flow prediction system
Liu et al. Themis: A participatory navigation system for balanced traffic routing
US11181387B2 (en) Dynamic routing system
RU2664034C1 (en) Traffic information creation method and system, which will be used in the implemented on the electronic device cartographic application
WO2019148926A1 (en) Path optimization method and apparatus, electronic device, and computer-reable storage medium
CN111476389A (en) Method and device for pre-estimating order receiving waiting time
JP6633372B2 (en) Route search device and route search method
WO2024042691A1 (en) Traffic estimation device, traffic estimation method, and traffic estimation program
WO2024042690A1 (en) Traffic volume estimation device, traffic volume estimation method, and traffic volume estimation program
CN113959442A (en) Refined navigation method based on traffic plan route planning in area
US20210088339A1 (en) Methods and systems for identifying ramp links of a road
CN111896020A (en) Method for information processing, electronic device, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956517

Country of ref document: EP

Kind code of ref document: A1