WO2024042593A1 - Manufacturing method and blank for press-formed product - Google Patents

Manufacturing method and blank for press-formed product Download PDF

Info

Publication number
WO2024042593A1
WO2024042593A1 PCT/JP2022/031656 JP2022031656W WO2024042593A1 WO 2024042593 A1 WO2024042593 A1 WO 2024042593A1 JP 2022031656 W JP2022031656 W JP 2022031656W WO 2024042593 A1 WO2024042593 A1 WO 2024042593A1
Authority
WO
WIPO (PCT)
Prior art keywords
blank
press
corner
intersection
straight line
Prior art date
Application number
PCT/JP2022/031656
Other languages
French (fr)
Japanese (ja)
Inventor
稔 菅原
康治 田中
貴行 野崎
昂 山本
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2022/031656 priority Critical patent/WO2024042593A1/en
Priority to JP2022568532A priority patent/JP7216937B1/en
Publication of WO2024042593A1 publication Critical patent/WO2024042593A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/22Deep-drawing with devices for holding the edge of the blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/04Blank holders; Mounting means therefor

Definitions

  • the present invention relates to a method for producing a press-formed product and a blank.
  • Electric vehicles are being rapidly deployed with the goal of reducing CO 2 emissions, such as regulations based on CAFE (Corporate Average Fuel Efficiency).
  • CAFE Corporate Average Fuel Efficiency
  • high-priced electric vehicles are the mainstream, but in order to reduce the price of electric vehicles, it is necessary to develop parts that use metals such as steel materials.
  • molding technologies are being developed for battery boxes, front pillar lowers, door inners, etc. that use steel materials.
  • these parts are constructed to include a bottom plate, a vertical wall, and a flange, where the vertical wall has a curved corner (also referred to as a corner) and has multiple members.
  • a curved corner also referred to as a corner
  • Manufactured by welding and assembling when the radius of curvature of the corner is relatively small or when the depth of press forming is deep, wrinkles may occur in the flange near the corner.
  • the width of the flange in the circumferential direction decreases as the flange is formed. Wrinkles occur as a result of the circumferential width of the flange being reduced. This tendency becomes more pronounced as the object to be processed is a high-strength material. Further, as the height of the vertical wall of the tray increases, the amount of shrinkage of the flange increases, and therefore wrinkles are more likely to occur in the flange. The wrinkles created by the shrinkage flange remain even when the workpiece is drawn from the flange into the vertical wall of the tray. That is, wrinkles also occur on the vertical walls of the tray.
  • Patent Document 1 attempts to provide a bead on the pressing surface of the mold to control the flow direction of the material during drawing.
  • the technique of Patent Document 1 there is a high possibility that bead marks or scratches will be formed on the product after press molding, which may impair the appearance.
  • the technique of Patent Document 1 when press forming a high-strength steel material or the like, there is a high possibility that the desired effect cannot be achieved, and it is difficult to perform stable production.
  • the inventors have conducted extensive studies on the causes of suppressing the occurrence of wrinkles and cracks. Geometrically, the outer flanges at the corners of the tray shrink as they become narrower as they are drawn toward the vertical walls. In addition, in a molded product with wrinkles on the outer flange of the corner of the tray, wrinkles also occur on the edges of the molded product. From this, it is easy to think that the entire outer flange of the corner of the tray is shrinking and deforming.
  • the flow resistance from the flange toward the vertical wall is different between the straight ridgeline between the flange and the vertical wall of the tray and the corner
  • the flow resistance from the flange to the vertical wall is different between the flange and corner ridgeline adjacent to the straight ridgeline before and after forming.
  • the flanges adjacent to the corner ridgeline and their surroundings bulge away from the ridgeline. From this, the inventors thought that the end of the flange (the edge of the workpiece) was actually stretched. This hypothesis was confirmed to be correct through finite element analysis and actually forming the blank by scratching it.
  • the inventors further investigated and found that when assuming a rectangular area in the blank that perpendicularly crosses the bisector of the corner of the blank, the rectangular area becomes convex toward the corner of the blank as it is formed.
  • the inventors thought that it deforms into an arch shape.
  • the inventors thought that the concave side of the arch shape is compressively deformed and wrinkles occur.
  • the inventor believes that the convex side of the arch shape undergoes tensile deformation, but if this tensile deformation is alleviated, the deformation to the arch shape is alleviated, and as a result, the compressive deformation of the concave side of the arch shape is also alleviated, thereby suppressing the occurrence of wrinkles. thought.
  • the inventors made the distance between the edge of the corner of the die hole and the edge of the blank wider than before, compared to the distance between the edge of the die hole and the edge of the blank, which extend straight.
  • the inventors have come up with the idea that the occurrence of wrinkles can be suppressed by setting the positional relationship between the edge of the die hole and the edge of the blank in this manner.
  • the inventors came up with the idea of suppressing cracks that occur at the ridgeline of the vertical wall extending from the corner of the tray when the radius of curvature of the corner of the tray is small.
  • FIGS. 17A and 17B are explanatory diagrams for explaining the movement of points (a, b, c, d) to be processed before and after conventional press forming, based on finite element analysis results.
  • FIG. 17A is an explanatory diagram showing points to be processed before conventional press forming based on finite element analysis results.
  • FIG. 17B is an explanatory diagram showing points to be processed after press forming, based on finite element analysis results.
  • Points a and b are points located at the ends of the curved portion of the ridgeline (edge of the die hole) of the mold after molding.
  • Points c and d are points at the end of the press-formed product that are on a line that passes through the end of the curved part of the mold and is perpendicular to the extending direction of the ridgeline of the mold after molding. If you use the function of the finite element analysis software to back-calculate the blank shape from the product shape as shown in the developed diagram, the points (a, b, c, d) to be processed in Fig. 17B will be located at the positions in Fig. 17A before forming. become.
  • the inflow of the workpiece accompanying molding includes an inflow FA that is sucked into the straight ridgeline of the mold, and an inflow FB that is sucked into the curved portion of the ridgeline of the mold.
  • the inflow FA has deformation resistance that causes the workpiece to be bent by the ridgeline of the mold.
  • the inflow F B has deformation resistance in which the workpiece is compressed in a direction that crosses the inflow direction as the workpiece approaches the curved part of the mold ridgeline. . That is, the deformation resistance of the inflow F B is higher than that of the inflow F A. Therefore, the inflow amounts of inflow F A and inflow F B are not uniform.
  • the width of the flange of the molded product becomes wider at the location where the inflow F B occurs. Furthermore, the width of the flange of the molded product is widened by the workpiece pushed out from the location where the inflow F B occurs at the location where the inflow F A occurs around the location where the inflow F B occurs.
  • the flange of the molded product may be damaged by the workpiece being pulled out by the inflow F A from the location where the inflow F B occurs, even at the location where the inflow F A occurs around the location where the inflow F B occurs.
  • the width becomes wider.
  • a region H surrounded by points a, b, c, and d is deformed into an arch-like convex shape in the same direction as the convex curve of the curved portion of the ridgeline of the mold due to molding.
  • the shaded area H in FIG. 17A corresponds to the corner flange after molding. After molding, region H in FIG. 17A transforms into region H shown by diagonal lines in FIG. 17B. As shown in FIGS.
  • points a, b, c, and d move during molding.
  • point a has an inflow trajectory as shown in FIG. 17B. Wrinkles occur in the molded product because points a and b become closer together during molding.
  • the inventor thought that if the arch-like deformation of the region H surrounded by points a, b, c, and d could be alleviated, the generation of wrinkles could be suppressed. It is thought that if the stretch between points c and d can be suppressed, the arch-like deformation can be alleviated.
  • FIGS. 18A and 18B are explanatory diagrams for explaining the movement of the processing target point (a, b, c, d) before and after press forming according to the present disclosure, based on the finite element analysis results.
  • FIG. 18A is an explanatory diagram showing points to be processed before press forming according to the present disclosure, based on finite element analysis results.
  • FIG. 18B is an explanatory diagram showing points to be processed after press forming according to the present disclosure, based on finite element analysis results.
  • the dotted line in FIG. 18A shows the shape of a conventional blank.
  • Point e is the intersection of the straight line passing through points b and c and the edge of the blank.
  • point f is the intersection of the straight line passing through points a and d and the edge of the blank.
  • the blank extends outward from points c and d. It has been found that this reduces the stretching between points c and d due to molding. There are two main reasons for this. First, even if the workpiece is drawn into the curved part of the mold ridge line by the same length, the rate at which the distance between points e and f becomes closer is smaller than the rate at which the distance between points c and d approaches. small.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to provide a method for manufacturing a press-formed product and a blank that can suppress the occurrence of wrinkles in the flange portion of the press-formed product and cracks in the corner portion and the vicinity thereof. shall be.
  • a method for manufacturing a press-formed product includes sandwiching a blank between a support surface of a first press mold and a support surface of a third press mold, and placing the second press mold in the second press mold. drawing and forming the blank by pressing it into a press mold, wherein the edge line of the press hole of the first press mold has a curved area extending in a curved manner, when viewed from the vertical direction of the blank.
  • a first normal line passing through a first end of the curved area in the extending direction of the ridge line is a straight line L1
  • a second normal line passing through a second end of the curved area in the extending direction of the ridge line is a straight line L1.
  • the normal line is a straight line L2, the intersection of the straight line L1 and the edge of the blank is an intersection point M, the intersection of the straight line L2 and the edge of the blank is an intersection point N, and a line that passes through the intersection M and is perpendicular to the straight line L1
  • a straight line is a straight line L4
  • a straight line passing through the intersection N and perpendicular to the straight line L2 is a straight line L3
  • the intersection of the straight line L3 and the straight line L4 is an intersection point O
  • a line segment connecting the intersection point M and the intersection O is a line segment MO.
  • the corner end between the intersection point M and the intersection point N of the blank is the line segment MO and the line segment NO.
  • a portion of the corner end is outside a region between the line segment MO and the line segment NO.
  • the blank according to one aspect of the present disclosure is adjacent to a corner of the first rectangle, each side of which passes only through the edge and the outside of the blank, and the length of one side is 40 mm of the short side of the first rectangle. % square area, the blank touches both two sides of a second rectangle with each side passing only through the edges and inside of the blank, and the two sides of the second rectangle and the two sides of the blank In the region of the rectangle that passes through the contact point and whose corners overlap the first rectangle, the blank touches both two sides of the first rectangle.
  • the blank described in (2) above extends between the two sides of the first rectangle within 10% of the length of the short side of the first rectangle from the corner of the first rectangle. May be in contact with both.
  • the flow control area is defined on the plate surface of the corner of the blank corresponding to the corner area of the mold, so there are wrinkles in the flange part of the press-formed product and cracks in the corner part and its vicinity. The occurrence of can be suppressed.
  • the press-formed product manufacturing method and blank of the present disclosure it is possible to suppress the occurrence of wrinkles in the flange portion of the press-formed product, and cracks in the corner portions and their vicinity.
  • FIG. 2 is a schematic perspective view showing the vicinity of a corner area of a first press mold according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the vicinity of a corner region of a first press mold according to an embodiment of the present disclosure, and is a schematic plan view in a plan view in a direction perpendicular to the bottom surface.
  • 3 is a schematic cross-sectional view of the first press mold taken along a plane passing along the line A-A' in FIG. 2.
  • FIG. FIG. 1 is a schematic perspective view for explaining a set of press molds according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic plan view for explaining a method for manufacturing a press-formed product according to an embodiment of the present disclosure.
  • FIG. 5A is a plan view showing the vicinity of a part of the corner ends shown in FIG. 5A.
  • FIG. FIG. 3 is a schematic plan view for explaining a method for manufacturing a press-formed product of a comparative example.
  • FIG. 7 is a schematic plan view for explaining a modification of the method for manufacturing a press-formed product according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic plan view for explaining a modified example of the blank according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic perspective view for explaining a corner area according to an embodiment of the present disclosure.
  • 1 is a diagram illustrating an example of a product in which the present disclosure can be preferably used.
  • FIG. 1 is a diagram illustrating an example of a product in which the present disclosure can be preferably used.
  • FIG. 1 is a diagram illustrating an example of a product in which the present disclosure can be preferably used.
  • FIG. 1 is a diagram illustrating an example of a product in which the present disclosure can be preferably used.
  • FIG. 1 is a diagram illustrating an example of a product in which the present disclosure can be preferably used.
  • FIG. 3 is a schematic plan view of the blank of Experimental Example 1.
  • FIG. 3 is a diagram showing the distribution of maximum principal strain obtained by finite element analysis when the blank of Experimental Example 1 was press-formed.
  • FIG. 3 is a schematic plan view of the blank of Experimental Example 2.
  • FIG. 7 is a schematic plan view of the blank of Experimental Example 3.
  • FIG. 4 is a schematic plan view of a blank of Experimental Example 4.
  • FIG. 2 is an explanatory diagram showing points to be processed before conventional press forming based on finite element analysis results.
  • FIG. 2 is an explanatory diagram showing points to be processed after conventional press forming based on finite element analysis results.
  • FIG. 2 is an explanatory diagram showing points to be processed before press forming according to the present disclosure, based on finite element analysis results.
  • FIG. 2 is an explanatory diagram showing points to be processed after press forming according to the present disclosure, based on finite element analysis results.
  • the present inventors investigated the shape of a blank to be press-formed in order to suppress wrinkles that occur in the flange part of a press-formed product, and found that by providing an extra part in the shape of a conventional blank, it was possible to suppress wrinkles during press-forming. It has been found that the flow direction of the material can be controlled, leading to the suppression of wrinkles in the flange, cracks in the corners, and their vicinity. However, on the other hand, the present inventors have also found that simply providing a surplus portion does not effectively suppress such wrinkles. As a result of extensive research, they discovered that wrinkles in the flange portion of a press-formed product can be effectively suppressed by setting an appropriate area according to the shape of the blank and the shape of the mold.
  • the method for manufacturing a press-formed product includes sandwiching a blank between a support surface of a first press mold and a support surface of a third press mold (blank clamping step), and inserting a second press mold into the second press mold. 1) Pressing the blank into a press mold and drawing the blank (blank drawing process).
  • a press mold that can carry out the blank clamping process and the blank drawing process will be described.
  • FIG. 1 shows an example of a press mold (first press mold 100) that can be employed in the method for manufacturing a press-formed product according to the present embodiment.
  • FIG. 2 is a schematic diagram showing the vicinity of the corner region 121 of the side surface 120 of the first press mold 100, and shows a plan view in a direction perpendicular to the bottom surface 110.
  • the X axis is parallel to the direction in which one plane area (plane area 122a) of the side surface 120 extends
  • the Y axis is parallel to the direction in which the other plane area (plane area 122b) of the side surface 120 extends. It is parallel to the extending direction
  • the Z axis is parallel to the perpendicular to the bottom surface 110.
  • FIG. 1 is a schematic perspective view showing the vicinity of a corner region 121 of a side surface 120 of the first press mold 100.
  • the bottom surface 110 may be a substantially planar surface.
  • the bottom surface 110 is connected to the side surface 120 at its outer edge 111.
  • the entire outer edge 111 of the bottom surface 110 may be connected to the side surface 120, or a part of the outer edge 111 may be connected to the side surface 120.
  • a portion of the outer edge 111 includes a corner 111 a corresponding to a corner region 121 of the side surface 120 .
  • the bottom surface 110 and the side surface 120 may be connected via a bottom surface side ridgeline 112 provided along the outer edge 111. In a cross-sectional view perpendicular to the extending direction of the bottom side ridgeline 112 at each point of the bottom side ridgeline 112, the bottom surface 110 and the side surface 120 are smoothly connected via the bottom side ridgeline 112.
  • a portion of the bottom side ridgeline 112 that is connected to the corner region 121 of the side surface 120 is referred to as a corner 112a.
  • the bottom surface 110 may have a concave portion or a convex portion facing out of the surface of the bottom surface 110 to provide an uneven portion on the press-formed product.
  • the side surface 120 is connected to the bottom surface 110 and stands up toward the outside of the bottom surface 110. Part or all of the side surface 120 may be parallel to the normal to the bottom surface 110 or may be inclined relative to the normal to the bottom surface 110. As shown in FIG. 1 or 2, the side surface 120 has a corner region 121 that is curved in a plan view in a direction perpendicular to the bottom surface 110. The corner area 121 is connected to the plane area 122 (plane area 122a and plane area 122b) of the side surface 120 at the end portion 121a and the end portion 121b.
  • the corner region 121 may be connected to another corner region having a different radius of curvature in a plan view perpendicular to the bottom surface 110 or to a region of the side surface 120 that is gently curved. Alternatively, the end of the corner region 121 may be the end of the side surface 120.
  • the plane area 122a and the plane area 122b are orthogonal to each other when viewed from above in a direction perpendicular to the bottom surface 110, but when viewed from above in a direction perpendicular to the bottom surface 110, the plane area 122a The angle formed by 122b is not limited to this.
  • the side surface 120 is connected to the support surface 140 via the ridgeline 130 at the end opposite to the end to which the bottom surface 110 is connected.
  • the support surface 140 is provided on the side opposite to the bottom surface 110 with respect to the side surface 120.
  • a portion of the ridgeline 130 that is connected to the corner region 121 of the side surface 120 is referred to as a curved region 131.
  • the curved region 131 of the ridgeline 130 is connected to the straight region 132 (straight region 132a and straight region 132b) of the ridgeline 130 at the terminal end 131a and the terminal end 131b.
  • the curved region 131 may be connected to another curved region having a different radius of curvature in a plan view perpendicular to the bottom surface 110 or to a region of the ridge line 130 that curves gently.
  • the terminal end of the curved region 131 may be the end of the ridgeline 130.
  • the terminal ends (terminal end 131a and terminal end 131b) of the curved region 131 each include a terminal point (first end) P1 and a terminal point (second end) P2, which will be described later.
  • FIG. 3 shows a schematic cross-sectional view of the first press mold 100 taken along a plane passing along the line A-A' in FIG. 2.
  • the bottom surface 110 and the corner region 121 of the side surface 120 are smoothly connected via the corner 112a of the bottom surface side ridgeline 112, and the corner region 121 of the side surface 120 and the support surface 140 are connected to each other through the curve of the ridgeline 130. They are smoothly connected via region 131.
  • the corner region 121 of the side surface 120 is inclined with respect to the normal to the bottom surface 110.
  • the corner region 121 may be perpendicular to the bottom surface 110 in each cross section orthogonal to the bottom surface 110.
  • the first press mold 100 has a press hole 123.
  • the second press mold 200 is pushed into the press hole 123 by relatively moving the first press mold 100 and the second press mold 200, which will be described later, in a direction in which they approach each other.
  • the ridgeline 130 of the edge of the press hole 123 (the edge on the second press mold 200 side) includes a curved region 131 that extends in a curved manner.
  • the first press mold 100 may include one or more corner regions 121.
  • the bottom surface 110 of the first press mold 100 corresponds to the bottom plate part of the press molded product
  • the side surface 120 corresponds to the vertical wall part of the press molded product
  • the support surface 140 corresponds to the flange part of the press molded product.
  • Press molding is performed by a set of press molds 1000 including the first press mold 100, the second press mold 200, and the third press mold 300 described above.
  • FIG. 4 shows an example of a set of press molds 1000 including a first press mold 100, a second press mold 200, and a third press mold 300.
  • FIG. 4 illustrates a press mold 1000 including a first press mold 100 having four corner regions 121, the shape of the press mold is not limited to this, and the number of corner regions 121 and the shape of the bottom surface 110 are not limited to this shape. is not particularly limited.
  • the second press mold 200 has a bottom surface 210 corresponding to the bottom surface 110 of the first press mold 100, a side surface 220 corresponding to the side surface 120 of the first press mold 100, and a corner area 121 of the first press mold 100.
  • a corner area 221 corresponding to the corner area 221 is provided.
  • the outer surface shapes of the bottom surface 210 and side surfaces 220 of the second press mold 200 correspond to the outer surface shapes of the bottom surface 110 and side surfaces 120 of the first press mold 100.
  • the first press die 100 and the second press die 200 By relatively moving the first press die 100 and the second press die 200 in the direction (pressing direction), the blank is plastically deformed between the first press die 100 and the second press die 200. let The first press mold 100 is also called a die.
  • the second press die 200 is also referred to as a punch.
  • the third press mold 300 includes a support surface 340 corresponding to the support surface 140 of the first press mold 100.
  • the support surface 140 of the first press mold 100 and the support surface 340 of the third press mold 300 are arranged to face each other. , can hold the blank, which is the workpiece.
  • the blank is held between the support surface 140 of the first press mold 100 and the support surface 340 of the third press mold 300 so that it can move in the in-plane direction without moving in the out-of-plane direction.
  • the third press mold 300 is also referred to as a holder.
  • the first press mold 100, the second press mold 200, and the third press mold 300 may each be constructed from a single member, or each may be constructed from a divided mold. Further, the press mold 1000 may include molds other than these molds.
  • FIG. 5A is a schematic plan view for explaining the method for manufacturing a press-formed product according to the present embodiment of the present disclosure.
  • FIG. 5A is a plan view of the plate-shaped blank 10 in a direction perpendicular to the plate surface.
  • FIG. 5B shows the vicinity of a part of the corner ends 11 of the blank 10 shown in FIG. 5A.
  • FIG. 5B shows the ridgeline 130 of the die hole (press hole 123) and the ridge line 130 of the blank 10 when the blank 10 is placed on the die (first press mold 100) and sandwiched between the blank holders (third press mold 300). Indicates the position of the edge.
  • the first normal line passing through the first end P1 in the extending direction of the ridgeline 130 of the curved region 131 is the straight line L1
  • the second normal line in the extending direction of the ridgeline 130 of the curved region 131 is The second normal passing through the end P2 of is the straight line L2
  • the intersection of L1 and the end of the blank 10 is the intersection M
  • the intersection of the straight line L2 and the end of the blank 10 is the intersection N
  • the straight line perpendicular to L1 is the straight line L4
  • the straight line perpendicular to the straight line L2 is the straight line L3
  • the straight line L4 is the intersection point O
  • the line segment connecting the intersection point M and the intersection point O is the line segment MO
  • the intersection point A line segment connecting N and intersection O is defined as line segment NO.
  • the end of the blank 10 between the intersection M and the intersection N is defined as a corner end 11.
  • the corner end portion 11 is a portion outside the blank 10 from the line segment MN connecting the intersection point M and the intersection point N.
  • the corner end 11 includes all the line segments MO and NO, and one part of the corner end 11 includes the line segment MO and the line segment NO. is outside the area between line segment MO and line segment NO.
  • line segment MO and line segment NO have the shapes of the ends of a conventional blank.
  • the edge of the corner end 11 of the blank 10 is located outside the region sandwiched between the line segment MO and the line segment NO, and the edge of the corner end 11 of the blank 10 is located inside the region sandwiched between the line segment MO and the line segment NO. There isn't.
  • the corner end 11 of the blank 10 is outside the area between the line segment MO and the line segment NO. That is, the blank 10 has a shape in which the corner end portions 11 protrude outward.
  • the corner end portion 11 has a convex shape toward the outside of the corner of the blank 10.
  • the corner end portion 11 can also be said to have an arch shape toward the outside of the corner of the blank 10.
  • corner ends 11 do not need to be set at all corners in the blank 10, and the corner ends 11 may be set only at some of the corners.
  • the method for manufacturing a press-formed product it is possible to define an appropriate corner end 11 for the blank, so wrinkles in the flange portion of the press-formed product and cracks in the corner portion and the vicinity thereof can be prevented. It can be suppressed. In the corner portions, cracking can be particularly suppressed at the corner portions 112a.
  • the corner portion 112a is a portion that continues to be stretched from the start to the end of press molding, and is the portion where cracks are most likely to occur.
  • FIG. 6 is a schematic plan view for explaining a modification of the method for manufacturing a press-formed product according to an embodiment of the present disclosure.
  • FIG. 6 shows the position of the edge line 130 of the die hole and the edge of the blank 10 when the blank 10 is placed on the die (first press die 100) and sandwiched between the blank holders (third press die 300). ing.
  • FIG. 6 shows the vicinity of one corner end 11 of the corner ends of the blank 10.
  • a part of the corner end 11 of the blank 10 is located outside the region between the line segment MO and the line segment NO, similar to FIG. 5B. That is, the blank 10 has a shape in which the corners protrude outward.
  • the corner end portion 11 has a convex shape toward the outside of the corner of the blank 10. Further, the corner end portion 11 can also be said to have an arch shape toward the outside of the corner of the blank 10.
  • FIGS. 5A and 5B show the vicinity of some of the corner ends 11 of the blank 10, but the corner ends 11 are approximately straight lines in a plan view in a direction perpendicular to the plate surface of the blank 10. This is the point where the first side S1 and the second side S2 of the shaped blank 10 intersect.
  • the field of view in FIGS. 5A and 5B is a square of 40% of the short side of a rectangular cutting board, adjacent to a corner of a first rectangle R1, each side of which passes only the edge and outside of the blank 10. An area A1 is assumed.
  • the blank 10 is molded so deeply that the corner of the ridgeline 1300 of the mold does not fit within this area A1 as shown in FIG. 5C, there is a concern that cracks may occur even using the knowledge of the present disclosure. If the corner of the ridge line 1300 of the mold does not fall within this region A1 and molding is performed to the extent that cracks do not occur, the width of the flange becomes excessive. In other words, the yield is poor.
  • the blank 10 is in contact with both two sides of the second rectangle R2, each side of which passes only through the edges and inside of the blank 10, and the two sides of the second rectangle R2 and the two contact points of the blank 10.
  • the blank 10 touches both of the two sides of the first rectangle R1.
  • blank 10 touches two points X1 and X2 on both sides of first rectangle R1.
  • the edge of the blank 10 and the edge of the rectangular cutting plate may coincide with each other from the two points X1 and X2 to the corner of the rectangular cutting plate.
  • Each side of the first rectangle R1 passes only through the edge and outside of the blank.
  • the first rectangle R1 has the shape of a rectangular cut plate.
  • Each side of the second rectangle R2 passes only through the edge and inside of the blank.
  • the second rectangle passes through intersections N and M with intersection O as its corner.
  • the blank 10 is placed on both two sides of the second rectangle R2. come into contact with In the region illustrated in FIG. 5B, the edge of the blank 10 passes through the intersections M and N.
  • the blank 10 contacts both of the two sides of the first rectangle R1.
  • the edge of the blank 10 touches the edge of the cutting plate in a region surrounded by the edge of the cutting plate, the straight line L1, and the straight line L2.
  • Press forming is performed by arranging the positions of the intersection point M and the intersection point N of the blank 10 having such a shape and the ridge line 130 of the die hole (press hole 123) as explained in the above-mentioned method for manufacturing a press-formed product. Then, the method for manufacturing a press-formed product of the present disclosure can be carried out.
  • FIG. 7 is a schematic plan view for explaining a modification of the blank according to an embodiment of the present disclosure.
  • a rectangular (rectangular) blank 10 is shown, but the shape of the blank 10 is not limited to this. may be provided. A part of the corner end 11 may become a part of the flange of the press-formed product after press-forming. The shape of the press-formed product may be adjusted by trimming the flange. In this case, the blank 10 has a shape that includes corner ends 11 at the corners of the blank 10 .
  • the blank 10 may be a steel plate, an aluminum alloy plate, a titanium alloy plate, or a composite material thereof. As the blank 10, it is more preferable to use a steel plate having a tensile strength of 270 to 440 MPa from the viewpoint of material elongation. Further, the blank 10 may be a high-strength steel plate, for example, a steel plate having a tensile strength of 980 MPa or more. Even when the tensile strength of the blank 10 according to this embodiment is high, the effect of suppressing wrinkles and cracks can be obtained. Furthermore, the blank 10 may be subjected to processing such as plating for the purpose of rust prevention and corrosion prevention.
  • a corner end 11 is defined on the plate surface of the corner of the blank 10. Therefore, it is possible to suppress the occurrence of wrinkles in the flange portion of a press-formed product press-formed from this blank 10 and cracks in the corner portion and the vicinity thereof.
  • the corner region where the corner end portion 11 is set is convex from the bottom side to the supporting surface side with respect to the side surface in a plan view in a direction perpendicular to the bottom surface of the first press mold.
  • the corner area is That is, in a plan view in a direction perpendicular to the bottom surface of the first press mold, a corner region that is convex from the support surface side to the bottom surface side with respect to the side surface is not a target of the above embodiment.
  • the side area B of the first press die shown in FIG. 8 is convex from the supporting surface side to the bottom side with respect to the side surface, and is not subject to the method for setting the corner end 11 according to the present disclosure. .
  • the above-mentioned corner end portion is set with these plurality of corner regions as one corner region.
  • the side region C of the first press mold shown in FIG. 8 includes a plurality of corner regions 121' and 121'' having different radii of curvature.
  • the side surface area C of the first press die shown in FIG. 8 is convex from the bottom side to the supporting surface side with respect to the side surface, and can be set as a setting target of the setting method of the corner end 11 according to the present disclosure.
  • the thickness of the blank is appropriately set depending on the characteristics required of a press-formed product obtained by press-molding the blank.
  • the thickness of the blank may be the average thickness of the metal plate that is the workpiece.
  • the average plate thickness may be the average value of the plate thicknesses at a plurality of arbitrary points on the metal plate (for example, three points in the range formed into the vertical wall portion or the bottom plate portion).
  • the thickness of the metal plate may be substantially the same as the thickness of the vertical wall preformed part or the bottom plate preformed part of the preformed product, or the thickness of the vertical wall part or the bottom plate part of the press formed product.
  • the thickness of the metal plate may be substantially the same as the clearance between the first mold and the second mold, or the clearance between the fourth mold and the fifth mold.
  • the radius of curvature of the corners is small, problems with cracks and wrinkles become apparent. Even in such a case, by implementing the press molding method of the present disclosure, the occurrence of cracks and wrinkles can be suppressed.
  • the smallest radius of curvature of the curvature in the extending direction of the ridge line 130 of the die hole (press hole 123) where the problem of cracking becomes apparent is 20 mm or less. This radius of curvature corresponds to 30 times the thickness of the blank.
  • the angle between the tangent to the ridgeline at the termination point P1 and the tangent to the ridgeline at the termination point P2 is not particularly limited.
  • it can be an acute angle as shown in FIG.
  • the angle between the tangent to the ridgeline at the termination point P1 and the tangent to the ridgeline at the termination point P2 is 30° or more and 150° or less. .
  • the planar region of the side surface of the first press die has a radius of curvature of 500 mm or more when viewed from above in a direction perpendicular to the bottom surface. Further, in the embodiment described above, it is more preferable that the height of the side surface of the first press mold is 20 times or more and 200 times or less the thickness of the blank 10.
  • the width of the flange portion of the blank 10 may be asymmetrical. That is, the length of the line segment OM and the length of the line segment ON may be different. Even in such a case, since an appropriate flow control region can be defined for the blank 10, it is possible to suppress the occurrence of wrinkles in the flange portion of the press-formed product and cracks in the corner portion and the vicinity thereof.
  • the press-formed product may be a final product, or an intermediate product to be further processed (press-forming, cutting, bending, welding, heating/cooling, plating, painting) into a final product. There may be.
  • the press-formed product according to the above embodiment has a corner portion corresponding to the corner area of the first press mold, and is suitable for use in vehicles such as battery boxes, front pillar lowers, door inners, etc. represented by battery boxes for vehicles. It can be preferably used for parts.
  • 9A to 12 are diagrams for explaining an example of a product in which the press-formed product manufacturing method and blank according to the present disclosure can be preferably used.
  • the press-molded product illustrated in FIG. 9A is a corner part 301 of a battery box, and has two corner parts 331 and 331'.
  • the press-molded product illustrated in FIG. 9B is a corner part 302 of a battery box, and has a corner part 332.
  • the entire battery box may be formed by joining these press-molded products with other members.
  • the press-molded product illustrated in FIG. 10 is a front pillar 303 having a corner portion 333.
  • the present disclosure can also be preferably applied to such a member whose entire body is curved into an L-shape.
  • the press-molded product illustrated in FIG. 11 is a C-pillar stiffener 304, and the vertical wall is high near the corner portion 334. In this way, the present disclosure can be preferably applied to members whose vertical walls are not uniform in height.
  • the press-molded product illustrated in FIG. 12 is a door inner 305.
  • the present disclosure can also be preferably applied to a press-molded product having a plurality of corner portions 335 and 335' having different curvature radii and opening angles, such as the door inner 305.
  • press forming was performed on each blank having corner portions shaped as shown in FIGS. 13A, 14, 15, and 16, and the strain distribution at the flange portion of the press-formed product was verified by finite element analysis. .
  • the figures shown in FIGS. 13A, 14, 15, and 16 show the vicinity of some corners of each blank. Common to all blanks, the tensile strength of the blank was 270 MPa, and the plate thickness was 0.8 mm.
  • the principal strain is three vertical strain components when the coordinate system Cp in which the shear strain is zero is used as a reference.
  • the principal strains are defined as "maximum principal strain ( ⁇ 1),” “intermediate principal strain ( ⁇ 2),” and “minimum principal strain ( ⁇ 3)” in order from the largest value.
  • Maximum principal strain is generally used to evaluate the maximum tensile strain that can be applied to a material. If this maximum principal strain is large, it can be determined that the material is likely to break. Note that the maximum principal strain can be determined using general finite element analysis software.
  • One of the functions of software commonly used in forming analysis is the function of back calculating the blank shape from the product shape as in a developed diagram (developed blank analysis).
  • a common blank design for those skilled in the art is to analyze using this function and consider the shape of the developed blank as a reference.
  • FIG. 13A is a schematic plan view of the blank 500 of Experimental Example 1. Corner end 511 of blank 500 is inside the area between line segment MO and line segment NO. That is, blank 500 is a conventional example.
  • FIG. 13B the blank 500 is shown by a two-dot chain line, and the shape after molding is shown by a solid line. The location showing the maximum value of the maximum principal strain in Experimental Example 1 was the location surrounded by the dotted line circle in FIG. 13B (near the curved region), and the maximum value was 0.85.
  • FIG. 14 is a schematic plan view of the blank 600 of Experimental Example 2. Corner end 611 of blank 600 is inside the area between line segment MO and line segment NO. That is, blank 600 is a conventional example.
  • FIG. 15 is a schematic plan view of the blank 700 of Experimental Example 3. A part of the corner end 711 of the blank 700 is outside the area between the line segment MO and the line segment NO, but the corner end 711 does not entirely include the line segment MO and the line segment NO.
  • the location showing the maximum value of the maximum principal strain in Experimental Example 3 corresponds to the location surrounded by the dotted line circle in FIG. 13B, and the maximum value was 0.92.
  • FIG. 16 is a schematic plan view of the blank 10 of Experimental Example 4. All of the corner edges 11 of the blank 10 are outside the area between the line segments MO and NO. That is, blank 10 is an example of the invention.
  • the location showing the maximum value of the maximum principal strain in Experimental Example 4 corresponds to the location surrounded by the dotted line in FIG. 13B, and the maximum value was 0.73.
  • Blank 10 showed an improvement in maximum principal strain compared to the conventional example.
  • the corner end 11 should include all of the line segments MO and NO, and a part of the corner end 11 should be an area between the line segments MO and NO. It turns out that it is necessary to be outside of the corner end 11

Abstract

This manufacturing method for a press-formed product comprises: sandwiching a blank (10) between a support surface (140) of a first press mold (100) and a support surface (340) of a third press mold (300); and pushing a second press mold (200) into the first press mold (100) to draw-form the blank (10). A ridgeline (130) at an edge of a press hole (123) of the first press mold (100) is provided with a curved region (131) that extends in a curved manner. When a prescribed corner end (11) is defined, the corner end (11) between an intersection M and an intersection N of the blank (10) includes all of a line segment MO and all of a line segment NO, and a portion of the corner end (11) is outside an area between the line segment MO and the line segment NO.

Description

プレス成形品の製造方法及びブランクManufacturing method and blank for press-formed products
 本発明は、プレス成形品の製造方法及びブランクに関する。 The present invention relates to a method for producing a press-formed product and a blank.
 CAFE(Corporate Average Fuel Efficiency)に基づく規制等のCO排出量削減を目標として、電気自動車(Electric Vehicle)の展開が急速に進められている。現在は高価格帯の電気自動車が主流であるが、電気自動車の低価格化のためには鉄鋼材料等の金属を採用した部品の開発が必要である。その一例として、鉄鋼材料等を採用した、バッテリーボックス、フロントピラーロア、ドアインナー等の成形技術の開発が行なわれている。 2. Description of the Related Art Electric vehicles are being rapidly deployed with the goal of reducing CO 2 emissions, such as regulations based on CAFE (Corporate Average Fuel Efficiency). Currently, high-priced electric vehicles are the mainstream, but in order to reduce the price of electric vehicles, it is necessary to develop parts that use metals such as steel materials. As an example, molding technologies are being developed for battery boxes, front pillar lowers, door inners, etc. that use steel materials.
 通常、これらの部品(例えば、トレー)は、底板部、縦壁部及びフランジ部を含むように構成され、縦壁部が湾曲した角部(コーナー部とも称する)を有し、複数の部材を溶接して組み立てることで製造される。しかし、従来の成形技術では角部の曲率半径が比較的小さい場合やプレス成形の深さが深い場合、角部近傍のフランジにおいてしわが生じることがあった。詳細には、トレーのような形状の製品を絞り成形で製造することは一般に行われている。トレーの角部に隣接するフランジは絞り成形された結果、しわが発生することがある。このフランジの成形は縮みフランジ成形と呼ばれる。成形に伴い、フランジの周長方向の幅が縮んでいくからである。フランジの周長方向の幅が縮んだ結果、しわが発生する。この傾向は加工対象が高強度材であるほど顕著になる。また、トレーの縦壁の高さが高くなる成形になるほどフランジの縮み量が増えるため、フランジにしわが発生しやすくなる。縮みフランジで発生したしわは、被加工材がフランジからトレーの縦壁に引き込まれても残留する。すなわち、トレーの縦壁にもしわが発生する。トレーの角部の曲率半径が小さくてもフランジと縦壁にしわが発生しやすくなる。更にトレーの角部の曲率半径が小さいと、トレーの角部から伸びる縦壁の稜線において、縦壁の稜線に沿った亀裂が発生することがある。この亀裂はトレーの角部の曲率半径が小さいほど発生しやすい。また、この亀裂は加工対象が高強度材であるほど発生しやすい。 Typically, these parts (e.g., trays) are constructed to include a bottom plate, a vertical wall, and a flange, where the vertical wall has a curved corner (also referred to as a corner) and has multiple members. Manufactured by welding and assembling. However, with conventional forming techniques, when the radius of curvature of the corner is relatively small or when the depth of press forming is deep, wrinkles may occur in the flange near the corner. Specifically, it is common practice to manufacture products shaped like trays by drawing. The flanges adjacent the corners of the tray may be drawn and wrinkled as a result. This flange forming is called shrinkage flange forming. This is because the width of the flange in the circumferential direction decreases as the flange is formed. Wrinkles occur as a result of the circumferential width of the flange being reduced. This tendency becomes more pronounced as the object to be processed is a high-strength material. Further, as the height of the vertical wall of the tray increases, the amount of shrinkage of the flange increases, and therefore wrinkles are more likely to occur in the flange. The wrinkles created by the shrinkage flange remain even when the workpiece is drawn from the flange into the vertical wall of the tray. That is, wrinkles also occur on the vertical walls of the tray. Even if the radius of curvature of the corners of the tray is small, wrinkles are likely to occur on the flanges and vertical walls. Furthermore, if the radius of curvature of the corner of the tray is small, cracks may occur along the ridgeline of the vertical wall extending from the corner of the tray. This crack is more likely to occur as the radius of curvature of the corner of the tray becomes smaller. Furthermore, the higher the strength of the material to be processed, the more likely this crack will occur.
 フランジ部のしわを抑制する手法として、例えば特許文献1の技術では、金型の押さえ面にビードを設け、絞り成形時の材料の流れる方向を制御しようと試みている。しかしながら、特許文献1の技術では、プレス成形後の製品にビードの跡や疵がつく可能性が高く、外観を損なう虞がある。また特許文献1の技術では、高強度の鉄鋼材料等をプレス成形する場合、所望の効果が発揮できない可能性が高く、安定した生産を行うことが難しい。 As a method for suppressing wrinkles in the flange portion, for example, the technique disclosed in Patent Document 1 attempts to provide a bead on the pressing surface of the mold to control the flow direction of the material during drawing. However, with the technique of Patent Document 1, there is a high possibility that bead marks or scratches will be formed on the product after press molding, which may impair the appearance. Further, with the technique of Patent Document 1, when press forming a high-strength steel material or the like, there is a high possibility that the desired effect cannot be achieved, and it is difficult to perform stable production.
日本国特許第2560416号公報Japanese Patent No. 2560416
 発明者らは、しわやき裂の発生を抑制する原因について鋭意検討した。
 幾何学的にはトレーの角部の外側のフランジは、縦壁に向かって引き込まれるに従い幅が狭くなるので縮む。また、トレーの角部の外側のフランジにしわの発生した成形品では、成形品の縁にもしわが発生している。このことからトレーの角部の外側のフランジは全体が縮み変形をしていると考えがちである。
 トレーのフランジと縦壁の間の稜線が真直ぐな箇所と角部とではフランジから縦壁に向かう流入抵抗が異なるため、成形前後で稜線が真直ぐな箇所に隣接するフランジと角部の稜線に隣接するフランジの相対的な位置に着目すると、成形後は角部の稜線に隣接するフランジとその周辺が稜線から離れるように膨らんでいる。このことから、実際にはフランジの端部(被加工材の縁)は引き伸ばされているのではないかと発明者らは考えた。この仮説は、有限要素解析や実際にブランクに傷をつけて成形した結果、正しいと確認できた。
 発明者らは更に検討を重ね、ブランクの中にブランクの角の2等分線を垂直に横切る長方形の領域を想定したとき、成形時に長方形の領域が成形に伴いブランクの角に向かって凸のアーチ形状に変形すると発明者らは考えた。アーチ形状の凹側が圧縮変形してしわが発生すると発明者らは考えた。アーチ形状の凸側は引張変形するが、この引張変形を緩和すればアーチ形状への変形が緩和され、その結果アーチ形状の凹側の圧縮変形も緩和されてしわの発生が抑制できると発明者らは考えた。具体的には、発明者らは、真直ぐに延在するダイ穴の縁とブランクの縁の間隔に比べ、ダイ穴の角部の縁とブランクの縁の間隔を従来に比べ広くすることで、アーチ形状への変形を抑制できることに想到した。発明者らは、ダイ穴の縁とブランクの縁の位置関係をこのようにすることによってしわの発生を抑制できることに想到した。更に、発明者らは、上述のトレーの角部の曲率半径が小さい場合にトレーの角部から伸びる縦壁の稜線で発生する亀裂を抑制することに想到した。
The inventors have conducted extensive studies on the causes of suppressing the occurrence of wrinkles and cracks.
Geometrically, the outer flanges at the corners of the tray shrink as they become narrower as they are drawn toward the vertical walls. In addition, in a molded product with wrinkles on the outer flange of the corner of the tray, wrinkles also occur on the edges of the molded product. From this, it is easy to think that the entire outer flange of the corner of the tray is shrinking and deforming.
Because the inflow resistance from the flange toward the vertical wall is different between the straight ridgeline between the flange and the vertical wall of the tray and the corner, the flow resistance from the flange to the vertical wall is different between the flange and corner ridgeline adjacent to the straight ridgeline before and after forming. Looking at the relative positions of the flanges, after molding, the flanges adjacent to the corner ridgeline and their surroundings bulge away from the ridgeline. From this, the inventors thought that the end of the flange (the edge of the workpiece) was actually stretched. This hypothesis was confirmed to be correct through finite element analysis and actually forming the blank by scratching it.
The inventors further investigated and found that when assuming a rectangular area in the blank that perpendicularly crosses the bisector of the corner of the blank, the rectangular area becomes convex toward the corner of the blank as it is formed. The inventors thought that it deforms into an arch shape. The inventors thought that the concave side of the arch shape is compressively deformed and wrinkles occur. The inventor believes that the convex side of the arch shape undergoes tensile deformation, but if this tensile deformation is alleviated, the deformation to the arch shape is alleviated, and as a result, the compressive deformation of the concave side of the arch shape is also alleviated, thereby suppressing the occurrence of wrinkles. thought. Specifically, the inventors made the distance between the edge of the corner of the die hole and the edge of the blank wider than before, compared to the distance between the edge of the die hole and the edge of the blank, which extend straight. We came up with the idea of suppressing deformation into an arch shape. The inventors have come up with the idea that the occurrence of wrinkles can be suppressed by setting the positional relationship between the edge of the die hole and the edge of the blank in this manner. Furthermore, the inventors came up with the idea of suppressing cracks that occur at the ridgeline of the vertical wall extending from the corner of the tray when the radius of curvature of the corner of the tray is small.
 ここで、プレス成形前後の加工対象の点の移動について説明する。
 図17A及び図17Bは、有限要素解析結果に基づく、従来のプレス成形前後の加工対象の点(a,b,c,d)の移動を説明するための説明図である。図17Aは、有限要素解析結果に基づく、従来のプレス成形前の加工対象の点を示す説明図である。図17Bは、有限要素解析結果に基づく、プレス成形後の加工対象の点を示す説明図である。
 点aと点bは成形後に金型の稜線(ダイ穴の縁)の湾曲部の端部にあった点である。点cと点dは成形後に金型の湾曲部の端部を通る金型の稜線の延在方向に垂直な線上にあるプレス成形品の端部の点である。有限要素解析ソフトに備えられた製品形状から展開図のようにブランク形状を逆算する機能を用いると、図17Bの加工対象の点(a,b,c,d)は成形前の図17Aの位置になる。
 成形に伴う加工対象の流入には、真直ぐな金型の稜線に吸い込まれる流入Fと金型の稜線の湾曲部に吸い込まれる流入Fがある。流入Fには加工対象が金型の稜線で曲げられる変形抵抗がある。流入Fには加工対象が金型の稜線で曲げられる変形抵抗に加え、加工対象が金型の稜線の湾曲部に近づくほど流入方向を横断する向きに加工対象が圧縮される変形抵抗がある。すなわち、流入Fより流入Fの方が変形抵抗は高い。このため、流入Fと流入Fの流入量は均一ではない。流入Fと流入Fの流入量が均一ではない結果、成形品のフランジの幅(金型の稜線から成形品の縁までの幅)は流入Fの発生する箇所で広くなる。また、流入Fの発生する箇所の周囲の流入Fの発生する箇所でも流入Fの発生する箇所から押し出された加工対象により成形品のフランジの幅は広くなる。別の観点では、流入Fの発生する箇所の周囲の流入Fの発生する箇所でも流入Fの発生する箇所から流入Fに巻き込まれて引っ張り出された加工対象により成形品のフランジの幅は広くなる。
 点a,点b,点c,点dに囲まれた領域Hは成形により金型の稜線の湾曲部が凸に湾曲する向きと同じ方向にアーチ状に凸に変形する。図17Aで斜線で示す領域Hは、成形後のコーナー部フランジに相当する範囲である。図17Aの領域Hは、成形後、図17Bで斜線で示す領域Hに変形する。図17A及び図17Bに示すように、成形に伴い点a,点b,点c,点dは移動する。例えば、点aは、図17Bに示すような流入軌跡となる。
 成形により点a,点bの間が接近するため成形品にしわが発生する。発明者は点a,点b,点c,点dに囲まれた領域Hがアーチ状に変形するのを緩和できればしわの発生が抑制できると考えた。点c,点d間が伸びるのを抑制できればアーチ状に変形するのを緩和できると考えられる。
Here, the movement of the point to be processed before and after press forming will be explained.
FIGS. 17A and 17B are explanatory diagrams for explaining the movement of points (a, b, c, d) to be processed before and after conventional press forming, based on finite element analysis results. FIG. 17A is an explanatory diagram showing points to be processed before conventional press forming based on finite element analysis results. FIG. 17B is an explanatory diagram showing points to be processed after press forming, based on finite element analysis results.
Points a and b are points located at the ends of the curved portion of the ridgeline (edge of the die hole) of the mold after molding. Points c and d are points at the end of the press-formed product that are on a line that passes through the end of the curved part of the mold and is perpendicular to the extending direction of the ridgeline of the mold after molding. If you use the function of the finite element analysis software to back-calculate the blank shape from the product shape as shown in the developed diagram, the points (a, b, c, d) to be processed in Fig. 17B will be located at the positions in Fig. 17A before forming. become.
The inflow of the workpiece accompanying molding includes an inflow FA that is sucked into the straight ridgeline of the mold, and an inflow FB that is sucked into the curved portion of the ridgeline of the mold. The inflow FA has deformation resistance that causes the workpiece to be bent by the ridgeline of the mold. In addition to the deformation resistance in which the workpiece is bent by the ridgeline of the mold, the inflow F B has deformation resistance in which the workpiece is compressed in a direction that crosses the inflow direction as the workpiece approaches the curved part of the mold ridgeline. . That is, the deformation resistance of the inflow F B is higher than that of the inflow F A. Therefore, the inflow amounts of inflow F A and inflow F B are not uniform. As a result of the fact that the inflow amounts of the inflow F A and the inflow F B are not uniform, the width of the flange of the molded product (width from the ridgeline of the mold to the edge of the molded product) becomes wider at the location where the inflow F B occurs. Furthermore, the width of the flange of the molded product is widened by the workpiece pushed out from the location where the inflow F B occurs at the location where the inflow F A occurs around the location where the inflow F B occurs. From another point of view, the flange of the molded product may be damaged by the workpiece being pulled out by the inflow F A from the location where the inflow F B occurs, even at the location where the inflow F A occurs around the location where the inflow F B occurs. The width becomes wider.
A region H surrounded by points a, b, c, and d is deformed into an arch-like convex shape in the same direction as the convex curve of the curved portion of the ridgeline of the mold due to molding. The shaded area H in FIG. 17A corresponds to the corner flange after molding. After molding, region H in FIG. 17A transforms into region H shown by diagonal lines in FIG. 17B. As shown in FIGS. 17A and 17B, points a, b, c, and d move during molding. For example, point a has an inflow trajectory as shown in FIG. 17B.
Wrinkles occur in the molded product because points a and b become closer together during molding. The inventor thought that if the arch-like deformation of the region H surrounded by points a, b, c, and d could be alleviated, the generation of wrinkles could be suppressed. It is thought that if the stretch between points c and d can be suppressed, the arch-like deformation can be alleviated.
 発明者らは、ブランクの角部を外側に引き伸ばせば、点c,点d間が伸びるのを抑制できると考えた。図18A及び図18Bは、有限要素解析結果に基づく、本開示のプレス成形前後の加工対象の点(a,b,c,d)の移動を説明するための説明図である。図18Aは、有限要素解析結果に基づく、本開示のプレス成形前の加工対象の点を示す説明図である。図18Bは、有限要素解析結果に基づく、本開示のプレス成形後の加工対象の点を示す説明図である。
 図18Aの点線は従来のブランクの形状を示す。点eは点b,点cを通る直線とブランクの縁の交点である。同様に、点fは点a,点dを通る直線とブランクの縁の交点である。図18Aに示すように、点c,点dより外側にブランク(被加工材)が広がっている。これにより、成形により点cと点dとの間が伸びることが緩和されることを見出した。その理由は主に2つある。第1に、加工対象が金型の稜線の湾曲部に同じ長さ引き込まれたとしても、点cと点dとの間隔の接近する割合より点eと点fとの間隔の接近する割合は小さい。すなわち、ブランクの点cと点dより端にある箇所はブランクの点cと点dが接近するのを阻害する。第2に、点cと点eとの間(点dと点fとの間)の分、流入Fにより引き込まれる箇所が増えたため、点cと点dとの間を伸ばす応力が緩和される。応力が緩和されると伸び変形も緩和される。
The inventors thought that by stretching the corners of the blank outward, it would be possible to suppress the stretching between points c and d. FIGS. 18A and 18B are explanatory diagrams for explaining the movement of the processing target point (a, b, c, d) before and after press forming according to the present disclosure, based on the finite element analysis results. FIG. 18A is an explanatory diagram showing points to be processed before press forming according to the present disclosure, based on finite element analysis results. FIG. 18B is an explanatory diagram showing points to be processed after press forming according to the present disclosure, based on finite element analysis results.
The dotted line in FIG. 18A shows the shape of a conventional blank. Point e is the intersection of the straight line passing through points b and c and the edge of the blank. Similarly, point f is the intersection of the straight line passing through points a and d and the edge of the blank. As shown in FIG. 18A, the blank (workpiece) extends outward from points c and d. It has been found that this reduces the stretching between points c and d due to molding. There are two main reasons for this. First, even if the workpiece is drawn into the curved part of the mold ridge line by the same length, the rate at which the distance between points e and f becomes closer is smaller than the rate at which the distance between points c and d approaches. small. That is, a portion of the blank located at the edge of points c and d prevents points c and d of the blank from approaching each other. Second, since the number of points drawn in by the inflow F A has increased between points c and e (between points d and f), the stress stretching between points c and d has been alleviated. Ru. When the stress is relaxed, the elongation deformation is also relaxed.
 本開示は、上記に鑑みてなされたものであり、プレス成形品のフランジ部におけるしわやコーナー部とその近傍における割れの発生を抑制できる、プレス成形品の製造方法及びブランクを提供することを課題とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to provide a method for manufacturing a press-formed product and a blank that can suppress the occurrence of wrinkles in the flange portion of the press-formed product and cracks in the corner portion and the vicinity thereof. shall be.
(1)本開示の一態様に係るプレス成形品の製造方法は、ブランクを第一プレス金型の支持面と第三プレス金型の支持面とで挟むこと、第二プレス金型を前記第一プレス金型に押し込んで前記ブランクを絞り成形すること、を含み、前記第一プレス金型のプレス穴の縁の稜線は湾曲して延在する湾曲領域を備え、前記ブランクの垂直方向からみたとき、前記湾曲領域の前記稜線の延在方向の第1の端部を通る第1の法線を直線L1、前記湾曲領域の前記稜線の延在方向の第2の端部を通る第2の法線を直線L2、前記直線L1と前記ブランクの端部との交点を交点M、前記直線L2と前記ブランクの端部との交点を交点N、前記交点Mを通り、前記直線L1に垂直な直線を直線L4、前記交点Nを通り、前記直線L2に垂直な直線を直線L3、前記直線L3と前記直線L4の交点を交点O、前記交点Mと前記交点Oを結ぶ線分を線分MO、前記交点Nと前記交点Oを結ぶ線分を線分NO、と定義したとき、前記ブランクの前記交点Mと前記交点Nの間の角端部は前記線分MOと前記線分NOを全て含み、前記角端部の一部は前記線分MOと前記線分NOの間の領域の外側にある。 (1) A method for manufacturing a press-formed product according to one aspect of the present disclosure includes sandwiching a blank between a support surface of a first press mold and a support surface of a third press mold, and placing the second press mold in the second press mold. drawing and forming the blank by pressing it into a press mold, wherein the edge line of the press hole of the first press mold has a curved area extending in a curved manner, when viewed from the vertical direction of the blank. In this case, a first normal line passing through a first end of the curved area in the extending direction of the ridge line is a straight line L1, and a second normal line passing through a second end of the curved area in the extending direction of the ridge line is a straight line L1. The normal line is a straight line L2, the intersection of the straight line L1 and the edge of the blank is an intersection point M, the intersection of the straight line L2 and the edge of the blank is an intersection point N, and a line that passes through the intersection M and is perpendicular to the straight line L1 A straight line is a straight line L4, a straight line passing through the intersection N and perpendicular to the straight line L2 is a straight line L3, the intersection of the straight line L3 and the straight line L4 is an intersection point O, and a line segment connecting the intersection point M and the intersection O is a line segment MO. , when the line segment connecting the intersection point N and the intersection point O is defined as a line segment NO, the corner end between the intersection point M and the intersection point N of the blank is the line segment MO and the line segment NO. A portion of the corner end is outside a region between the line segment MO and the line segment NO.
 上記の構成からなるプレス成形品の製造方法では、ブランクに対して適切な流動制御領域を定義することができるため、プレス成形品のフランジ部におけるしわやコーナー部とその近傍における割れの発生を抑制できる。 In the method for manufacturing a press-formed product with the above configuration, it is possible to define an appropriate flow control area for the blank, thereby suppressing the occurrence of wrinkles in the flange portion of the press-formed product and cracks at the corner and its vicinity. can.
(2)本開示の一態様に係るブランクは、各辺がブランクの縁と外側のみを通る第1の長方形の角に隣接する、1辺の長さが前記第1の長方形の短辺の40%の正方形の領域において、前記ブランクは各辺が前記ブランクの縁と内側のみを通る第2の長方形の2つの辺の両方に接し、前記第2の長方形の2つの辺と前記ブランクの2つの接点を通り、角が前記第1の長方形と重なる長方形の領域において、前記ブランクは前記第1の長方形の2つの辺の両方に接する。
(3)上記(2)に記載のブランクは、前記第1の長方形の前記角から前記第1の長方形の短辺の長さの10%以内の範囲で前記第1の長方形の前記2つの辺の両方に接してもよい。
(2) The blank according to one aspect of the present disclosure is adjacent to a corner of the first rectangle, each side of which passes only through the edge and the outside of the blank, and the length of one side is 40 mm of the short side of the first rectangle. % square area, the blank touches both two sides of a second rectangle with each side passing only through the edges and inside of the blank, and the two sides of the second rectangle and the two sides of the blank In the region of the rectangle that passes through the contact point and whose corners overlap the first rectangle, the blank touches both two sides of the first rectangle.
(3) The blank described in (2) above extends between the two sides of the first rectangle within 10% of the length of the short side of the first rectangle from the corner of the first rectangle. May be in contact with both.
 上記の構成からなるブランクでは、金型のコーナー領域に対応するブランクの角部の板面において流動制御領域が規定されているため、プレス成形品のフランジ部におけるしわやコーナー部とその近傍における割れの発生を抑制できる。 In the blank with the above configuration, the flow control area is defined on the plate surface of the corner of the blank corresponding to the corner area of the mold, so there are wrinkles in the flange part of the press-formed product and cracks in the corner part and its vicinity. The occurrence of can be suppressed.
 本開示のプレス成形品の製造方法及びブランクによれば、プレス成形品のフランジ部におけるしわやコーナー部とその近傍における割れの発生を抑制できる。 According to the press-formed product manufacturing method and blank of the present disclosure, it is possible to suppress the occurrence of wrinkles in the flange portion of the press-formed product, and cracks in the corner portions and their vicinity.
本開示の一実施形態に係る第一プレス金型のコーナー領域の付近を示す概略的な斜視図である。FIG. 2 is a schematic perspective view showing the vicinity of a corner area of a first press mold according to an embodiment of the present disclosure. 本開示の一実施形態に係る第一プレス金型のコーナー領域の付近を示す図であって、底面に垂直な方向の平面視での概略的な平面図である。FIG. 2 is a diagram showing the vicinity of a corner region of a first press mold according to an embodiment of the present disclosure, and is a schematic plan view in a plan view in a direction perpendicular to the bottom surface. 図2のA-A’の位置を通る平面で第一プレス金型を断面視した概略的な断面図である。3 is a schematic cross-sectional view of the first press mold taken along a plane passing along the line A-A' in FIG. 2. FIG. 本開示の一実施形態に係る一組のプレス金型を説明するための概略的な斜視図である。FIG. 1 is a schematic perspective view for explaining a set of press molds according to an embodiment of the present disclosure. 本開示の一実施形態に係るプレス成形品の製造方法を説明するための概略的な平面図である。FIG. 1 is a schematic plan view for explaining a method for manufacturing a press-formed product according to an embodiment of the present disclosure. 図5Aで示す角端部のうちの一部の角端部付近を示す平面図である。5A is a plan view showing the vicinity of a part of the corner ends shown in FIG. 5A. FIG. 比較例のプレス成形品の製造方法を説明するための概略的な平面図である。FIG. 3 is a schematic plan view for explaining a method for manufacturing a press-formed product of a comparative example. 本開示の一実施形態に係るプレス成形品の製造方法の変形例を説明するための概略的な平面図である。FIG. 7 is a schematic plan view for explaining a modification of the method for manufacturing a press-formed product according to an embodiment of the present disclosure. 本開示の一実施形態に係るブランクの変形例を説明するための概略的な平面図である。FIG. 7 is a schematic plan view for explaining a modified example of the blank according to an embodiment of the present disclosure. 本開示の一実施形態に係るコーナー領域を説明するための概略的な斜視図である。FIG. 3 is a schematic perspective view for explaining a corner area according to an embodiment of the present disclosure. 本開示を好ましく用いることができる製品の一例を示す図である。1 is a diagram illustrating an example of a product in which the present disclosure can be preferably used. FIG. 本開示を好ましく用いることができる製品の一例を示す図である。1 is a diagram illustrating an example of a product in which the present disclosure can be preferably used. FIG. 本開示を好ましく用いることができる製品の一例を示す図である。1 is a diagram illustrating an example of a product in which the present disclosure can be preferably used. FIG. 本開示を好ましく用いることができる製品の一例を示す図である。1 is a diagram illustrating an example of a product in which the present disclosure can be preferably used. FIG. 本開示を好ましく用いることができる製品の一例を示す図である。1 is a diagram illustrating an example of a product in which the present disclosure can be preferably used. FIG. 実験例1のブランクの概略的な平面図である。FIG. 3 is a schematic plan view of the blank of Experimental Example 1. 実験例1のブランクをプレス成形した場合に有限要素解析して得られた最大主ひずみの分布を示す図である。FIG. 3 is a diagram showing the distribution of maximum principal strain obtained by finite element analysis when the blank of Experimental Example 1 was press-formed. 実験例2のブランクの概略的な平面図である。FIG. 3 is a schematic plan view of the blank of Experimental Example 2. 実験例3のブランクの概略的な平面図である。FIG. 7 is a schematic plan view of the blank of Experimental Example 3. 実験例4のブランクの概略的な平面図である。FIG. 4 is a schematic plan view of a blank of Experimental Example 4. 有限要素解析結果に基づく、従来のプレス成形前の加工対象の点を示す説明図である。FIG. 2 is an explanatory diagram showing points to be processed before conventional press forming based on finite element analysis results. 有限要素解析結果に基づく、従来のプレス成形後の加工対象の点を示す説明図である。FIG. 2 is an explanatory diagram showing points to be processed after conventional press forming based on finite element analysis results. 有限要素解析結果に基づく、本開示のプレス成形前の加工対象の点を示す説明図である。FIG. 2 is an explanatory diagram showing points to be processed before press forming according to the present disclosure, based on finite element analysis results. 有限要素解析結果に基づく、本開示のプレス成形後の加工対象の点を示す説明図である。FIG. 2 is an explanatory diagram showing points to be processed after press forming according to the present disclosure, based on finite element analysis results.
 本発明者らは、プレス成形品のフランジ部に生じるしわを抑制するために、プレス成形されるブランクの形状を検討したところ、従来のブランクの形状に余剰部を設けることで、プレス成形時の材料の流動方向を制御でき、フランジ部のしわやコーナー部とその近傍における割れの抑制につながることを見出した。しかし一方、本発明者らは、単に余剰部を設けただけでは、このようなしわを効果的に抑制することができないことも見出した。そして、鋭意検討の結果、ブランクの形状や金型の形状に応じた適切な領域を設定することで、プレス成形品のフランジ部のしわを効果的に抑制できることを見出した。 The present inventors investigated the shape of a blank to be press-formed in order to suppress wrinkles that occur in the flange part of a press-formed product, and found that by providing an extra part in the shape of a conventional blank, it was possible to suppress wrinkles during press-forming. It has been found that the flow direction of the material can be controlled, leading to the suppression of wrinkles in the flange, cracks in the corners, and their vicinity. However, on the other hand, the present inventors have also found that simply providing a surplus portion does not effectively suppress such wrinkles. As a result of extensive research, they discovered that wrinkles in the flange portion of a press-formed product can be effectively suppressed by setting an appropriate area according to the shape of the blank and the shape of the mold.
 以下、本開示の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されないことは自明である。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。また、以下の実施形態の各構成要素は、互いに組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described using examples, but it is obvious that the present disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be illustrated, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained. Moreover, each component of the following embodiments can be combined with each other.
 (プレス成形品の製造方法)
 本実施形態に係るプレス成形品の製造方法は、ブランクを第一プレス金型の支持面と第三プレス金型の支持面とで挟むこと(ブランク挟持工程)、第二プレス金型を前記第一プレス金型に押し込んでブランクを絞り成形すること(ブランク絞り成形工程)、を含む。
 先ず、ブランク挟持工程及びブランク絞り成形工程を実施可能なプレス金型の一例について説明する。
(Manufacturing method of press molded product)
The method for manufacturing a press-formed product according to the present embodiment includes sandwiching a blank between a support surface of a first press mold and a support surface of a third press mold (blank clamping step), and inserting a second press mold into the second press mold. 1) Pressing the blank into a press mold and drawing the blank (blank drawing process).
First, an example of a press mold that can carry out the blank clamping process and the blank drawing process will be described.
(プレス金型)
 図1に、本実施形態に係るプレス成形品の製造方法に採用可能なプレス金型(第一プレス金型100)の一例を示す。また、図2は、第一プレス金型100の側面120のコーナー領域121の付近を示す概略的な図であって、底面110に垂直な方向の平面視での平面図を示す。図1及び図2の例では、X軸は側面120の一方の平面領域(平面領域122a)が延在する方向と平行であり、Y軸は側面120の他方の平面領域(平面領域122b)が延在する方向と平行であり、Z軸は底面110の垂線に平行である。
(Press mold)
FIG. 1 shows an example of a press mold (first press mold 100) that can be employed in the method for manufacturing a press-formed product according to the present embodiment. Moreover, FIG. 2 is a schematic diagram showing the vicinity of the corner region 121 of the side surface 120 of the first press mold 100, and shows a plan view in a direction perpendicular to the bottom surface 110. In the example of FIGS. 1 and 2, the X axis is parallel to the direction in which one plane area (plane area 122a) of the side surface 120 extends, and the Y axis is parallel to the direction in which the other plane area (plane area 122b) of the side surface 120 extends. It is parallel to the extending direction, and the Z axis is parallel to the perpendicular to the bottom surface 110.
 図1は第一プレス金型100の側面120のコーナー領域121の付近を示す概略的な斜視図である。図1に示す第一プレス金型100は、底面110と、底面110から立ち上がりかつ底面110に垂直な方向の平面視において湾曲するコーナー領域121を有する側面120と、稜線130を介して側面120と接続される支持面140とを備える。 FIG. 1 is a schematic perspective view showing the vicinity of a corner region 121 of a side surface 120 of the first press mold 100. The first press mold 100 shown in FIG. and a supporting surface 140 to be connected.
 底面110は、略平面状の面であってもよい。底面110は、その外縁111において側面120と接続される。底面110の外縁111の全てが側面120と接続されていてもよく、外縁111の一部が側面120と接続されていてもよい。外縁111の一部は、側面120のコーナー領域121に対応する、角部111aを備えている。底面110と側面120とは、外縁111に沿って設けられた底面側稜線112を介して接続されていてもよい。底面側稜線112の各点における底面側稜線112の延在方向に垂直な断面視では、底面110と側面120とは底面側稜線112を介して滑らかに接続されている。底面側稜線112のうちで側面120のコーナー領域121と接続される部分を隅部112aと称する。底面110は、プレス成形品に凹凸部を設けるための、底面110の面外方向に向く凹部又は凸部を有していてもよい。 The bottom surface 110 may be a substantially planar surface. The bottom surface 110 is connected to the side surface 120 at its outer edge 111. The entire outer edge 111 of the bottom surface 110 may be connected to the side surface 120, or a part of the outer edge 111 may be connected to the side surface 120. A portion of the outer edge 111 includes a corner 111 a corresponding to a corner region 121 of the side surface 120 . The bottom surface 110 and the side surface 120 may be connected via a bottom surface side ridgeline 112 provided along the outer edge 111. In a cross-sectional view perpendicular to the extending direction of the bottom side ridgeline 112 at each point of the bottom side ridgeline 112, the bottom surface 110 and the side surface 120 are smoothly connected via the bottom side ridgeline 112. A portion of the bottom side ridgeline 112 that is connected to the corner region 121 of the side surface 120 is referred to as a corner 112a. The bottom surface 110 may have a concave portion or a convex portion facing out of the surface of the bottom surface 110 to provide an uneven portion on the press-formed product.
 側面120は、底面110に接続されかつ、底面110の面外方向に向けて立ち上がる。側面120の一部又は全部は、底面110の垂線と平行であってもよく、底面110の垂線に対して傾いていてもよい。側面120は、図1又は図2に示すように、底面110に垂直な方向の平面視において湾曲するコーナー領域121を有する。コーナー領域121は、終端部121a及び終端部121bにおいて側面120の平面領域122(平面領域122a及び平面領域122b)に接続されている。コーナー領域121は、底面110に垂直な方向の平面視において異なる曲率半径を有する他のコーナー領域、あるいは緩やかに湾曲する側面120の領域と接続されてもよい。あるいは、コーナー領域121の終端部は側面120の端部であってもよい。図1及び図2の例では、底面110に垂直な方向の平面視において平面領域122aと平面領域122bとは直交しているが、底面110に垂直な方向の平面視において平面領域122aと平面領域122bとがなす角は、これに限定されない。 The side surface 120 is connected to the bottom surface 110 and stands up toward the outside of the bottom surface 110. Part or all of the side surface 120 may be parallel to the normal to the bottom surface 110 or may be inclined relative to the normal to the bottom surface 110. As shown in FIG. 1 or 2, the side surface 120 has a corner region 121 that is curved in a plan view in a direction perpendicular to the bottom surface 110. The corner area 121 is connected to the plane area 122 (plane area 122a and plane area 122b) of the side surface 120 at the end portion 121a and the end portion 121b. The corner region 121 may be connected to another corner region having a different radius of curvature in a plan view perpendicular to the bottom surface 110 or to a region of the side surface 120 that is gently curved. Alternatively, the end of the corner region 121 may be the end of the side surface 120. In the examples of FIGS. 1 and 2, the plane area 122a and the plane area 122b are orthogonal to each other when viewed from above in a direction perpendicular to the bottom surface 110, but when viewed from above in a direction perpendicular to the bottom surface 110, the plane area 122a The angle formed by 122b is not limited to this.
 側面120は、底面110が接続される側の端部とは反対側の端部において、稜線130を介して支持面140と接続される。稜線130の各点における稜線130の延在方向に垂直な断面視で、支持面140は、側面120に対して底面110と反対側に設けられている。側面120のコーナー領域121と接続される稜線130の部分を湾曲領域131と称する。稜線130の湾曲領域131は、終端部131a及び終端部131bにおいて稜線130の直線領域132(直線領域132a及び直線領域132b)に接続されている。湾曲領域131は、底面110に垂直な方向の平面視において異なる曲率半径を有する他の湾曲領域、あるいは緩やかに湾曲する稜線130の領域と接続されてもよい。あるいは、湾曲領域131の終端部は稜線130の端部であってもよい。湾曲領域131の終端部(終端部131a及び終端部131b)は、後述する終端点(第1の端部)P1及び終端点(第2の端部)P2をそれぞれ含む。 The side surface 120 is connected to the support surface 140 via the ridgeline 130 at the end opposite to the end to which the bottom surface 110 is connected. In a cross-sectional view perpendicular to the extending direction of the ridge line 130 at each point of the ridge line 130, the support surface 140 is provided on the side opposite to the bottom surface 110 with respect to the side surface 120. A portion of the ridgeline 130 that is connected to the corner region 121 of the side surface 120 is referred to as a curved region 131. The curved region 131 of the ridgeline 130 is connected to the straight region 132 (straight region 132a and straight region 132b) of the ridgeline 130 at the terminal end 131a and the terminal end 131b. The curved region 131 may be connected to another curved region having a different radius of curvature in a plan view perpendicular to the bottom surface 110 or to a region of the ridge line 130 that curves gently. Alternatively, the terminal end of the curved region 131 may be the end of the ridgeline 130. The terminal ends (terminal end 131a and terminal end 131b) of the curved region 131 each include a terminal point (first end) P1 and a terminal point (second end) P2, which will be described later.
 図3に、図2のA-A’の位置を通る平面で第一プレス金型100を断面視した概略的な断面図を示す。図3に示すように、底面110と側面120のコーナー領域121とは底面側稜線112の隅部112aを介して滑らかに接続され、側面120のコーナー領域121と支持面140とは稜線130の湾曲領域131を介して滑らかに接続されている。図3の例では、側面120のコーナー領域121は、底面110の垂線に対して傾いている。しかし、コーナー領域121は、底面110と直交する各断面において、底面110に対して垂直であってもよい。第一プレス金型100はプレス穴123を有する。第一プレス金型100と後述する第二プレス金型200が近接する方向に相対的に移動することで、第二プレス金型200がプレス穴123に押し込まれる。プレス穴123の縁(第二プレス金型200側の縁)の稜線130は、湾曲して延在する湾曲領域131を備える。 FIG. 3 shows a schematic cross-sectional view of the first press mold 100 taken along a plane passing along the line A-A' in FIG. 2. As shown in FIG. 3, the bottom surface 110 and the corner region 121 of the side surface 120 are smoothly connected via the corner 112a of the bottom surface side ridgeline 112, and the corner region 121 of the side surface 120 and the support surface 140 are connected to each other through the curve of the ridgeline 130. They are smoothly connected via region 131. In the example of FIG. 3, the corner region 121 of the side surface 120 is inclined with respect to the normal to the bottom surface 110. However, the corner region 121 may be perpendicular to the bottom surface 110 in each cross section orthogonal to the bottom surface 110. The first press mold 100 has a press hole 123. The second press mold 200 is pushed into the press hole 123 by relatively moving the first press mold 100 and the second press mold 200, which will be described later, in a direction in which they approach each other. The ridgeline 130 of the edge of the press hole 123 (the edge on the second press mold 200 side) includes a curved region 131 that extends in a curved manner.
 第一プレス金型100は、コーナー領域121を一又は複数備えていてもよい。第一プレス金型100の底面110はプレス成形品の底板部と対応し、側面120はプレス成形品の縦壁部と対応し、支持面140はプレス成形品のフランジ部に対応する。 The first press mold 100 may include one or more corner regions 121. The bottom surface 110 of the first press mold 100 corresponds to the bottom plate part of the press molded product, the side surface 120 corresponds to the vertical wall part of the press molded product, and the support surface 140 corresponds to the flange part of the press molded product.
 上述した第一プレス金型100と、第二プレス金型200と、第三プレス金型300とを含む一組のプレス金型1000によってプレス成形が実施される。第一プレス金型100、第二プレス金型200及び第三プレス金型300を含む、一組のプレス金型1000の一例を図4に示す。図4では、4つのコーナー領域121を備える第一プレス金型100を含むプレス金型1000を例示するが、プレス金型としてはこの形状に限定されず、コーナー領域121の数や底面110の形状は特に限定されない。 Press molding is performed by a set of press molds 1000 including the first press mold 100, the second press mold 200, and the third press mold 300 described above. FIG. 4 shows an example of a set of press molds 1000 including a first press mold 100, a second press mold 200, and a third press mold 300. Although FIG. 4 illustrates a press mold 1000 including a first press mold 100 having four corner regions 121, the shape of the press mold is not limited to this, and the number of corner regions 121 and the shape of the bottom surface 110 are not limited to this shape. is not particularly limited.
 第二プレス金型200は、第一プレス金型100の底面110に対応する底面210と、第一プレス金型100の側面120に対応する側面220と、第一プレス金型100のコーナー領域121に対応するコーナー領域221を備えている。第二プレス金型200の底面210と側面220の外面形状は、第一プレス金型100の底面110と側面120の外面形状と対応する形状とされている。被加工材であるブランクを第一プレス金型100と第二プレス金型200の間に配置した状態で、第一プレス金型100の底面110と第二プレス金型200の底面210が近接する方向(プレス方向)に、第一プレス金型100と第二プレス金型200を相対的に移動させることで、第一プレス金型100と第二プレス金型200との間でブランクを塑性変形させる。第一プレス金型100は、ダイとも称される。第二プレス金型200は、パンチとも称される。 The second press mold 200 has a bottom surface 210 corresponding to the bottom surface 110 of the first press mold 100, a side surface 220 corresponding to the side surface 120 of the first press mold 100, and a corner area 121 of the first press mold 100. A corner area 221 corresponding to the corner area 221 is provided. The outer surface shapes of the bottom surface 210 and side surfaces 220 of the second press mold 200 correspond to the outer surface shapes of the bottom surface 110 and side surfaces 120 of the first press mold 100. With the blank, which is the workpiece, placed between the first press die 100 and the second press die 200, the bottom surface 110 of the first press die 100 and the bottom surface 210 of the second press die 200 are close to each other. By relatively moving the first press die 100 and the second press die 200 in the direction (pressing direction), the blank is plastically deformed between the first press die 100 and the second press die 200. let The first press mold 100 is also called a die. The second press die 200 is also referred to as a punch.
 第三プレス金型300は、第一プレス金型100の支持面140に対応する支持面340を備えている。第一プレス金型100の支持面140と第三プレス金型300の支持面340は対向して配置され、第一プレス金型100の支持面140と第三プレス金型300の支持面340によって、被加工材であるブランクを挟持できる。ブランクは、第一プレス金型100の支持面140と第三プレス金型300の支持面340によって、その面外方向に移動せず、面内方向で移動できるように挟持される。第一プレス金型100と第三プレス金型300とによってブランクを挟持した状態で第一プレス金型100と第二プレス金型200を相対的に移動させる際には、第二プレス金型200は第三プレス金型300と相対的に移動する。第三プレス金型300は、ホルダーとも称される。 The third press mold 300 includes a support surface 340 corresponding to the support surface 140 of the first press mold 100. The support surface 140 of the first press mold 100 and the support surface 340 of the third press mold 300 are arranged to face each other. , can hold the blank, which is the workpiece. The blank is held between the support surface 140 of the first press mold 100 and the support surface 340 of the third press mold 300 so that it can move in the in-plane direction without moving in the out-of-plane direction. When relatively moving the first press die 100 and the second press die 200 with the blank sandwiched between the first press die 100 and the third press die 300, the second press die 200 moves relative to the third press die 300. The third press mold 300 is also referred to as a holder.
 第一プレス金型100、第二プレス金型200及び第三プレス金型300は、それぞれが単一の部材から構成されてもよく、それぞれが分割された分割金型から構成されてもよい。またプレス金型1000は、これらの金型以外の金型を備えていてもよい。 The first press mold 100, the second press mold 200, and the third press mold 300 may each be constructed from a single member, or each may be constructed from a divided mold. Further, the press mold 1000 may include molds other than these molds.
 ブランク10の角端部11について説明する。図5Aは、本開示の本実施形態に係るプレス成形品の製造方法を説明するための概略的な平面図である。図5Aは、板状のブランク10の板面に垂直な方向の平面視である。図5Bでは、図5Aで示すブランク10の角端部11のうちの一部の角端部11付近を示している。図5Bは、ブランク10をダイ(第一プレス金型100)の上に置いてブランクホルダ(第三プレス金型300)で挟んだときのダイ穴(プレス穴123)の稜線130とブランク10の縁の位置を示す。
 ブランク10の垂直方向からみたとき、湾曲領域131の稜線130の延在方向の第1の端部P1を通る第1の法線を直線L1、湾曲領域131の稜線130の延在方向の第2の端部P2を通る第2の法線を直線L2、L1とブランク10の端部との交点を交点M、直線L2とブランク10の端部との交点を交点N、交点Mを通り、直線L1に垂直な直線を直線L4、交点Nを通り、直線L2に垂直な直線を直線L3、直線L3と直線L4の交点を交点O、交点Mと交点Oを結ぶ線分を線分MO、交点Nと交点Oを結ぶ線分を線分NO、と定義する。ブランク10の交点Mと交点Nの間の端部を角端部11とする。角端部11は、交点Mと交点Nを結ぶ線分MNから、ブランク10の外側の部分である。図5Bに示すように、ブランク10を第一プレス金型100と第三プレス金型300で挟んだとき、角端部11は線分MOと線分NOを全て含み、角端部11の一部は線分MOと線分NOの間の領域の外側にある。なお、線分MOと線分NOは、従来のブランクの端部の形状である。線分MOと線分NOに挟まれる領域の外側にブランク10の角端部11の縁があり、ブランク10の角端部11の縁は線分MOと線分NOに挟まれる領域の内側にはない。
The corner end portion 11 of the blank 10 will be explained. FIG. 5A is a schematic plan view for explaining the method for manufacturing a press-formed product according to the present embodiment of the present disclosure. FIG. 5A is a plan view of the plate-shaped blank 10 in a direction perpendicular to the plate surface. FIG. 5B shows the vicinity of a part of the corner ends 11 of the blank 10 shown in FIG. 5A. FIG. 5B shows the ridgeline 130 of the die hole (press hole 123) and the ridge line 130 of the blank 10 when the blank 10 is placed on the die (first press mold 100) and sandwiched between the blank holders (third press mold 300). Indicates the position of the edge.
When viewed from the vertical direction of the blank 10, the first normal line passing through the first end P1 in the extending direction of the ridgeline 130 of the curved region 131 is the straight line L1, and the second normal line in the extending direction of the ridgeline 130 of the curved region 131 is The second normal passing through the end P2 of is the straight line L2, the intersection of L1 and the end of the blank 10 is the intersection M, the intersection of the straight line L2 and the end of the blank 10 is the intersection N, passing through the intersection M, the straight line The straight line perpendicular to L1 is the straight line L4, the straight line passing through the intersection N, the straight line perpendicular to the straight line L2 is the straight line L3, the intersection of the straight line L3 and the straight line L4 is the intersection point O, the line segment connecting the intersection point M and the intersection point O is the line segment MO, the intersection point A line segment connecting N and intersection O is defined as line segment NO. The end of the blank 10 between the intersection M and the intersection N is defined as a corner end 11. The corner end portion 11 is a portion outside the blank 10 from the line segment MN connecting the intersection point M and the intersection point N. As shown in FIG. 5B, when the blank 10 is sandwiched between the first press mold 100 and the third press mold 300, the corner end 11 includes all the line segments MO and NO, and one part of the corner end 11 includes the line segment MO and the line segment NO. is outside the area between line segment MO and line segment NO. Note that line segment MO and line segment NO have the shapes of the ends of a conventional blank. The edge of the corner end 11 of the blank 10 is located outside the region sandwiched between the line segment MO and the line segment NO, and the edge of the corner end 11 of the blank 10 is located inside the region sandwiched between the line segment MO and the line segment NO. There isn't.
 このように、ブランク10の角端部11の一部は線分MOと線分NOの間の領域の外側にある。すなわち、ブランク10は角端部11が外側に張り出した形状である。換言すれば、角端部11は、ブランク10の角の外側に向かって凸形状である。また、角端部11はブランク10の角の外側に向かってアーチ形状とも言える。ブランク10の角端部11をこのような形状とすることで、角端部11での引張変形が緩和され、しわの発生が抑制される。 In this way, a part of the corner end 11 of the blank 10 is outside the area between the line segment MO and the line segment NO. That is, the blank 10 has a shape in which the corner end portions 11 protrude outward. In other words, the corner end portion 11 has a convex shape toward the outside of the corner of the blank 10. Further, the corner end portion 11 can also be said to have an arch shape toward the outside of the corner of the blank 10. By forming the corner end 11 of the blank 10 into such a shape, tensile deformation at the corner end 11 is alleviated, and the generation of wrinkles is suppressed.
 なお、ブランク10中の全ての角部において角端部11が設定される必要はなく、その一部のみに角端部11が設定されてもよい。 Note that the corner ends 11 do not need to be set at all corners in the blank 10, and the corner ends 11 may be set only at some of the corners.
 本実施形態に係るプレス成形品の製造方法では、ブランクに対して適切な角端部11を定義することができるため、プレス成形品のフランジ部におけるしわやコーナー部とその近傍における割れの発生を抑制できる。コーナー部においては特に隅部112aの割れを抑制できる。隅部112aはプレス成形の開始から終了に亘って引き伸ばされ続ける箇所であって、最も割れが発生しやすい箇所である。 In the method for manufacturing a press-formed product according to the present embodiment, it is possible to define an appropriate corner end 11 for the blank, so wrinkles in the flange portion of the press-formed product and cracks in the corner portion and the vicinity thereof can be prevented. It can be suppressed. In the corner portions, cracking can be particularly suppressed at the corner portions 112a. The corner portion 112a is a portion that continues to be stretched from the start to the end of press molding, and is the portion where cracks are most likely to occur.
(プレス成形品の製造方法の変形例)
 図6は、本開示の一実施形態に係るプレス成形品の製造方法の変形例を説明するための概略的な平面図である。図6は、ブランク10をダイ(第一プレス金型100)の上に置いてブランクホルダ(第三プレス金型300)で挟んだときのダイ穴の稜線130とブランク10の縁の位置を示している。なお、図6では、ブランク10の角端部のうちの1箇所の角端部11付近を示している。
 図6に示す変形例においても、図5Bと同様に、ブランク10の角端部11の一部は線分MOと線分NOの間の領域の外側にある。すなわち、ブランク10は角部が外側に張り出した形状である。換言すれば、角端部11は、ブランク10の角の外側に向かって凸形状である。また、角端部11はブランク10の角の外側に向かってアーチ形状とも言える。ブランク10の角端部11をこのような形状とすることで、角端部11での引張変形が緩和され、しわの発生が抑制される。
(Modified example of manufacturing method of press-formed product)
FIG. 6 is a schematic plan view for explaining a modification of the method for manufacturing a press-formed product according to an embodiment of the present disclosure. FIG. 6 shows the position of the edge line 130 of the die hole and the edge of the blank 10 when the blank 10 is placed on the die (first press die 100) and sandwiched between the blank holders (third press die 300). ing. Note that FIG. 6 shows the vicinity of one corner end 11 of the corner ends of the blank 10.
Also in the modification shown in FIG. 6, a part of the corner end 11 of the blank 10 is located outside the region between the line segment MO and the line segment NO, similar to FIG. 5B. That is, the blank 10 has a shape in which the corners protrude outward. In other words, the corner end portion 11 has a convex shape toward the outside of the corner of the blank 10. Further, the corner end portion 11 can also be said to have an arch shape toward the outside of the corner of the blank 10. By forming the corner end 11 of the blank 10 into such a shape, tensile deformation at the corner end 11 is alleviated, and the generation of wrinkles is suppressed.
(ブランク)
 本実施形態に係るブランク10について詳述する。本実施形態では、長方形状(矩形状)であるブランク10について、図5A及び図5Bを用いて説明する。図5Bでは、ブランク10の角端部11のうちの一部の角端部11付近を示しているが、角端部11とはブランク10の板面に垂直な方向の平面視において、略直線状のブランク10の第1の辺S1と第2の辺S2が交わる箇所である。
 図5A及び図5Bの視野は、各辺がブランク10の縁と外側のみを通る第1の長方形R1の角に隣接する、1辺の長さが長方形の切板の短辺の40%の正方形の領域A1を想定している。図5Cに示すような、この領域A1内に金型の稜線1300の角部が入らないほど深くブランク10を成形すると、本開示の知見を用いても割れの発生が懸念される。この領域A1内に金型の稜線1300の角部が入らずに割れの発生しない程度の成形を行う場合、フランジの幅が過剰になる。すなわち、歩留まりが悪い。上記領域A1において、ブランク10は各辺がブランク10の縁と内側のみを通る第2の長方形R2の2つの辺の両方に接し、第2の長方形R2の2つの辺とブランク10の2つの接点を通り、角が第1の長方形R1と重なる長方形の領域A2において、ブランク10は第1の長方形R1の2つの辺の両方に接する。図5Bに示すように、領域A2において、ブランク10は第1の長方形R1の2つの辺の両方において、2つの点X1,X2に接する。また、2つの点X1,X2から長方形の切板の角までブランク10の縁と長方形の切板の縁が一致していてもよい。更に、2つの点X1,X2は長方形の切板の角から長方形の切板の短辺の長さの10%以内の範囲内にあることが望ましい。これらのようにすることでブランク10の角端部11の引張変形をより緩和することができる。
(blank)
The blank 10 according to this embodiment will be explained in detail. In this embodiment, a blank 10 having a rectangular shape will be described using FIGS. 5A and 5B. 5B shows the vicinity of some of the corner ends 11 of the blank 10, but the corner ends 11 are approximately straight lines in a plan view in a direction perpendicular to the plate surface of the blank 10. This is the point where the first side S1 and the second side S2 of the shaped blank 10 intersect.
The field of view in FIGS. 5A and 5B is a square of 40% of the short side of a rectangular cutting board, adjacent to a corner of a first rectangle R1, each side of which passes only the edge and outside of the blank 10. An area A1 is assumed. If the blank 10 is molded so deeply that the corner of the ridgeline 1300 of the mold does not fit within this area A1 as shown in FIG. 5C, there is a concern that cracks may occur even using the knowledge of the present disclosure. If the corner of the ridge line 1300 of the mold does not fall within this region A1 and molding is performed to the extent that cracks do not occur, the width of the flange becomes excessive. In other words, the yield is poor. In the area A1, the blank 10 is in contact with both two sides of the second rectangle R2, each side of which passes only through the edges and inside of the blank 10, and the two sides of the second rectangle R2 and the two contact points of the blank 10. In a rectangular area A2 passing through and whose corners overlap with the first rectangle R1, the blank 10 touches both of the two sides of the first rectangle R1. As shown in FIG. 5B, in area A2, blank 10 touches two points X1 and X2 on both sides of first rectangle R1. Further, the edge of the blank 10 and the edge of the rectangular cutting plate may coincide with each other from the two points X1 and X2 to the corner of the rectangular cutting plate. Furthermore, it is desirable that the two points X1 and X2 be within 10% of the length of the short side of the rectangular cut plate from the corner of the rectangular cut plate. By doing so, the tensile deformation of the corner end portion 11 of the blank 10 can be further alleviated.
 第1の長方形R1は、各辺がブランクの縁と外側のみを通る。第1の長方形R1は、長方形の切板の形状である。第2の長方形R2は、各辺がブランクの縁と内側のみを通る。第2の長方形は、交点Oを角にして交点Nと交点Mを通る。
 第1の長方形R1の角に隣接する、1辺の長さが第1の長方形R1の短辺の40%の正方形の領域A1において、ブランク10は第2の長方形R2の2つの辺の両方に接する。図5Bで図示した領域において、ブランク10の縁は交点Mと交点Nを通る。
 第2の長方形R2の2つの辺とブランクの2つの接点と第1の長方形R1と重なる長方形の領域A2において、ブランク10は第1の長方形R1の2つの辺の両方に接する。切板の縁と直線L1と直線L2に囲まれた領域において、ブランク10の縁は切板の縁に接する。但し、実際のブランク10の切り出しにおいては、切板の縁までブランクに使用する必要はない。
Each side of the first rectangle R1 passes only through the edge and outside of the blank. The first rectangle R1 has the shape of a rectangular cut plate. Each side of the second rectangle R2 passes only through the edge and inside of the blank. The second rectangle passes through intersections N and M with intersection O as its corner.
In a square area A1 adjacent to the corner of the first rectangle R1, the length of one side of which is 40% of the short side of the first rectangle R1, the blank 10 is placed on both two sides of the second rectangle R2. come into contact with In the region illustrated in FIG. 5B, the edge of the blank 10 passes through the intersections M and N.
In a rectangular area A2 where the two sides of the second rectangle R2 and the two contact points of the blank overlap with the first rectangle R1, the blank 10 contacts both of the two sides of the first rectangle R1. The edge of the blank 10 touches the edge of the cutting plate in a region surrounded by the edge of the cutting plate, the straight line L1, and the straight line L2. However, in actually cutting out the blank 10, it is not necessary to use the blank up to the edge of the cutting board.
 このような形状のブランク10の交点Mと交点Nの位置とダイのダイ穴(プレス穴123)の稜線130を、上述したプレス成形品の製造方法で説明したように配置してプレス成形を行うと、本開示のプレス成形品の製造方法を実施できる。 Press forming is performed by arranging the positions of the intersection point M and the intersection point N of the blank 10 having such a shape and the ridge line 130 of the die hole (press hole 123) as explained in the above-mentioned method for manufacturing a press-formed product. Then, the method for manufacturing a press-formed product of the present disclosure can be carried out.
(ブランクの変形例)
 図7は、本開示の一実施形態に係るブランクの変形例を説明するための概略的な平面図である。
(Blank modification example)
FIG. 7 is a schematic plan view for explaining a modification of the blank according to an embodiment of the present disclosure.
 図5Aから図7の例では、長方形状(矩形状)のブランク10を示しているが、ブランク10の形状はこれに限定されず、課題達成の設定対象となる角部にのみ角端部11が設けられてもよい。角端部11の一部は、プレス成型後、プレス成形品のフランジの一部となってもよい。プレス成形品のフランジをトリミングして形状を整えてもよい。この場合、ブランク10は、ブランク10の角部において角端部11を包含する形状である。 In the examples of FIGS. 5A to 7, a rectangular (rectangular) blank 10 is shown, but the shape of the blank 10 is not limited to this. may be provided. A part of the corner end 11 may become a part of the flange of the press-formed product after press-forming. The shape of the press-formed product may be adjusted by trimming the flange. In this case, the blank 10 has a shape that includes corner ends 11 at the corners of the blank 10 .
 ブランク10は、鋼板、アルミ合金板、チタン合金板、又はこれらの複合材であってもよい。ブランク10としては、引張強度が270から440MPaの鋼板を用いることが、材料伸びの点からより好ましい。またブランク10は、高強度鋼板であってもよく、例えば、引張強度が980MPa以上の鋼板であってもよい。本実施形態に係るブランク10の引張強度が高い場合にも、しわや割れの抑制効果が得られる。また、ブランク10には、防錆、防食の目的で、めっき処理等の加工が施されていてもよい。 The blank 10 may be a steel plate, an aluminum alloy plate, a titanium alloy plate, or a composite material thereof. As the blank 10, it is more preferable to use a steel plate having a tensile strength of 270 to 440 MPa from the viewpoint of material elongation. Further, the blank 10 may be a high-strength steel plate, for example, a steel plate having a tensile strength of 980 MPa or more. Even when the tensile strength of the blank 10 according to this embodiment is high, the effect of suppressing wrinkles and cracks can be obtained. Furthermore, the blank 10 may be subjected to processing such as plating for the purpose of rust prevention and corrosion prevention.
 本実施形態に係るブランク10では、ブランク10の角部の板面において角端部11が規定されている。そのため、このブランク10よりプレス成形されるプレス成形品のフランジ部におけるしわやコーナー部とその近傍における割れの発生を抑制できる。 In the blank 10 according to the present embodiment, a corner end 11 is defined on the plate surface of the corner of the blank 10. Therefore, it is possible to suppress the occurrence of wrinkles in the flange portion of a press-formed product press-formed from this blank 10 and cracks in the corner portion and the vicinity thereof.
 上記実施形態において、上記の角端部11を設定する対象とするコーナー領域は、第一プレス金型の底面に垂直な方向の平面視において、側面に対して底面側から支持面側へ凸となるコーナー領域とする。すなわち、第一プレス金型の底面に垂直な方向の平面視において、側面に対して支持面側から底面側へ凸となるコーナー領域は、上記実施形態の対象とはならない。例えば、図8に示す第一プレス金型の側面領域Bは、側面に対して支持面側から底面側へ凸となっており、本開示に係る角端部11の設定方法の対象とはならない。 In the embodiment described above, the corner region where the corner end portion 11 is set is convex from the bottom side to the supporting surface side with respect to the side surface in a plan view in a direction perpendicular to the bottom surface of the first press mold. The corner area is That is, in a plan view in a direction perpendicular to the bottom surface of the first press mold, a corner region that is convex from the support surface side to the bottom surface side with respect to the side surface is not a target of the above embodiment. For example, the side area B of the first press die shown in FIG. 8 is convex from the supporting surface side to the bottom side with respect to the side surface, and is not subject to the method for setting the corner end 11 according to the present disclosure. .
 上記実施形態において、底面に垂直な方向の平面視において互いに異なる曲率半径を有する複数のコーナー領域が接続されている場合、これら複数のコーナー領域を一つのコーナー領域として、上記の角端部を設定する。例えば、図8に示す第一プレス金型の側面領域Cでは、コーナー領域121’とコーナー領域121’’という互いに異なる曲率半径を有する複数のコーナー領域を備える。図8に示す第一プレス金型の側面領域Cは、側面に対して底面側から支持面側へ凸となっており、本開示に係る角端部11の設定方法の設定対象とできる。 In the above embodiment, when a plurality of corner regions having mutually different radii of curvature are connected in a plan view in a direction perpendicular to the bottom surface, the above-mentioned corner end portion is set with these plurality of corner regions as one corner region. do. For example, the side region C of the first press mold shown in FIG. 8 includes a plurality of corner regions 121' and 121'' having different radii of curvature. The side surface area C of the first press die shown in FIG. 8 is convex from the bottom side to the supporting surface side with respect to the side surface, and can be set as a setting target of the setting method of the corner end 11 according to the present disclosure.
 上記実施形態に係るブランクの板厚は、ブランクをプレス成形して得られるプレス成形品に求められる特性によって適宜設定することがより好ましい。ブランクの板厚は、被加工材である金属板の平均板厚であってもよい。平均板厚は、金属板の複数の任意の点(例えば、縦壁部や底板部に成形される範囲における3点)における板厚の平均値としてもよい。また金属板の板厚は、予成形品の縦壁予成形部又は底板予成形部の板厚、又はプレス成形品の縦壁部又は底板部の板厚と実質的に同じであってもよい。また金属板の板厚は、第一金型と第二金型と間のクリアランス、又は第四金型と第五金型と間のクリアランスと実質的に同じであってもよい。 It is more preferable that the thickness of the blank according to the above embodiment is appropriately set depending on the characteristics required of a press-formed product obtained by press-molding the blank. The thickness of the blank may be the average thickness of the metal plate that is the workpiece. The average plate thickness may be the average value of the plate thicknesses at a plurality of arbitrary points on the metal plate (for example, three points in the range formed into the vertical wall portion or the bottom plate portion). Further, the thickness of the metal plate may be substantially the same as the thickness of the vertical wall preformed part or the bottom plate preformed part of the preformed product, or the thickness of the vertical wall part or the bottom plate part of the press formed product. . Further, the thickness of the metal plate may be substantially the same as the clearance between the first mold and the second mold, or the clearance between the fourth mold and the fifth mold.
 角部の曲率半径が小さいと割れやしわの問題が顕在化する。そういった場合においても、本開示のプレス成形方法を実施すれば、割れやしわの発生を抑制できる。引張強さが980MPa以上のブランク10において、割れの問題が顕在化するダイのダイ穴(プレス穴123)の稜線130の延在方向の湾曲は、湾曲の最も小さな曲率半径が20mm以下である。この曲率半径は、ブランクの板厚の30倍に相当する。すなわち、引張強さが980MPa以上のブランクにおいて、ダイ穴の縁の稜線130の延在方向の湾曲の最も小さな曲率半径がブランクの30倍以下のとき、本開示のプレス成形方法を実施すれば、割れやしわの発生を抑制できる。
 また、プレス深さが大きい場合も割れやしわの問題が顕在化する。その場合でも本開示のプレス成形方法によって割れしわの発生を抑制できる。
If the radius of curvature of the corners is small, problems with cracks and wrinkles become apparent. Even in such a case, by implementing the press molding method of the present disclosure, the occurrence of cracks and wrinkles can be suppressed. In the blank 10 having a tensile strength of 980 MPa or more, the smallest radius of curvature of the curvature in the extending direction of the ridge line 130 of the die hole (press hole 123) where the problem of cracking becomes apparent is 20 mm or less. This radius of curvature corresponds to 30 times the thickness of the blank. That is, in a blank having a tensile strength of 980 MPa or more, when the smallest radius of curvature in the extending direction of the ridge line 130 at the edge of the die hole is 30 times or less of the blank, if the press forming method of the present disclosure is performed, It can suppress the occurrence of cracks and wrinkles.
Furthermore, when the pressing depth is large, problems such as cracks and wrinkles become apparent. Even in that case, the occurrence of cracks and wrinkles can be suppressed by the press forming method of the present disclosure.
 上記実施形態において、終端点P1における稜線の接線と終端点P2における稜線の接線とのなす角度は特に限定されない。例えば、図6に示すような鋭角とすることができる。また、第一プレス金型の底面に垂直な方向の平面視において、終端点P1における稜線の接線と終端点P2における稜線の接線とのなす角度が30°以上150°以下であることがより好ましい。また、上記実施形態において、第一プレス金型の側面の平面領域は、底面に垂直な方向の平面視においてその曲率半径が500mm以上である領域とすることが好ましい。また、上記実施形態において、第一プレス金型の側面の高さがブランク10の板厚の20倍以上200倍以下であることがより好ましい。 In the above embodiment, the angle between the tangent to the ridgeline at the termination point P1 and the tangent to the ridgeline at the termination point P2 is not particularly limited. For example, it can be an acute angle as shown in FIG. Further, in a plan view in a direction perpendicular to the bottom surface of the first press mold, it is more preferable that the angle between the tangent to the ridgeline at the termination point P1 and the tangent to the ridgeline at the termination point P2 is 30° or more and 150° or less. . Further, in the above embodiment, it is preferable that the planar region of the side surface of the first press die has a radius of curvature of 500 mm or more when viewed from above in a direction perpendicular to the bottom surface. Further, in the embodiment described above, it is more preferable that the height of the side surface of the first press mold is 20 times or more and 200 times or less the thickness of the blank 10.
 上記実施形態において、ブランク10のフランジ部の幅が非対称でもよい。すなわち、線分OMの長さと線分ONの長さが異なってもよい。このような場合においても、ブランク10に対して適切な流動制御領域を定義することができるため、プレス成形品のフランジ部におけるしわやコーナー部とその近傍における割れの発生を抑制できる。 In the above embodiment, the width of the flange portion of the blank 10 may be asymmetrical. That is, the length of the line segment OM and the length of the line segment ON may be different. Even in such a case, since an appropriate flow control region can be defined for the blank 10, it is possible to suppress the occurrence of wrinkles in the flange portion of the press-formed product and cracks in the corner portion and the vicinity thereof.
 上記実施形態において、プレス成形品は、最終製品であってもよく、さらに加工(プレス成形、切削、曲げ、溶接、加熱・冷却、めっき、塗装)を施して最終製品とするための中間品であってもよい。 In the above embodiments, the press-formed product may be a final product, or an intermediate product to be further processed (press-forming, cutting, bending, welding, heating/cooling, plating, painting) into a final product. There may be.
 上記実施形態に係るプレス成形品は、第一プレス金型のコーナー領域に対応するコーナー部を有する、車両用のバッテリーボックスに代表されるバッテリーボックス、フロントピラーロア、ドアインナー、等の車両用の部品に好ましく用いることができる。図9A~図12は、本開示に係るプレス成形品の製造方法及びブランクを好ましく用いることができる製品の一例を説明するための図である。図9Aに例示するプレス成形品はバッテリーボックスのコーナー部品301であり、二つのコーナー部331及び331’を有している。図9Bに例示するプレス成形品はバッテリーボックスのコーナー部品302であり、コーナー部332を有している。これらのプレス成形品を他の部材と接合するなどして、バッテリーボックス全体を形成するようにしてもよい。図10に例示するプレス成形品は、コーナー部333を有するフロントピラー303である。このような全体がL字形状に湾曲した部材にも本開示は好ましく適用できる。図11に例示するプレス成形品は、Cピラーのスティフナー304であり、コーナー部334近傍において縦壁が高くなっている。このように、縦壁の高さが均一ではない部材にも本開示は好ましく適用できる。図12に例示するプレス成形品は、ドアインナー305である。本開示は、ドアインナー305のような曲率半径や開き角が異なる複数のコーナー部335及び335’を有するプレス成形品にも好ましく適用できる。 The press-formed product according to the above embodiment has a corner portion corresponding to the corner area of the first press mold, and is suitable for use in vehicles such as battery boxes, front pillar lowers, door inners, etc. represented by battery boxes for vehicles. It can be preferably used for parts. 9A to 12 are diagrams for explaining an example of a product in which the press-formed product manufacturing method and blank according to the present disclosure can be preferably used. The press-molded product illustrated in FIG. 9A is a corner part 301 of a battery box, and has two corner parts 331 and 331'. The press-molded product illustrated in FIG. 9B is a corner part 302 of a battery box, and has a corner part 332. The entire battery box may be formed by joining these press-molded products with other members. The press-molded product illustrated in FIG. 10 is a front pillar 303 having a corner portion 333. The present disclosure can also be preferably applied to such a member whose entire body is curved into an L-shape. The press-molded product illustrated in FIG. 11 is a C-pillar stiffener 304, and the vertical wall is high near the corner portion 334. In this way, the present disclosure can be preferably applied to members whose vertical walls are not uniform in height. The press-molded product illustrated in FIG. 12 is a door inner 305. The present disclosure can also be preferably applied to a press-molded product having a plurality of corner portions 335 and 335' having different curvature radii and opening angles, such as the door inner 305.
 以下に、本開示の実施例について説明する。
 本実施例では、図13A、図14、図15、図16に示すような形状の角部を有する各ブランクについてプレス成形を行い、プレス成形品のフランジ部における有限要素解析によるひずみ分布を検証した。図13A、図14、図15、図16で示す図では、各ブランクの一部の角部付近を示している。全てのブランクに共通して、ブランクの引張強度は270MPa、板厚は0.8mmとした。
Examples of the present disclosure will be described below.
In this example, press forming was performed on each blank having corner portions shaped as shown in FIGS. 13A, 14, 15, and 16, and the strain distribution at the flange portion of the press-formed product was verified by finite element analysis. . The figures shown in FIGS. 13A, 14, 15, and 16 show the vicinity of some corners of each blank. Common to all blanks, the tensile strength of the blank was 270 MPa, and the plate thickness was 0.8 mm.
 各ブランク500,600,700,10について、プレス成形をした場合を有限要素解析して得られた最大主ひずみの分布を検証した。主ひずみとは、せん断ひずみがゼロになる座標系Cpを基準としたときの垂直ひずみ3成分である。この主ひずみは、値の大きい方から順に「最大主ひずみ(ε1)」、「中間主ひずみ(ε2)」、「最小主ひずみ(ε3)」と定義さる。最大主ひずみは、一般に材料にかかる最大の引張りひずみの評価に使用される。この最大主ひずみが大きければ割れやすいと判断することができる。なお、最大主ひずみは一般の有限要素解析ソフトで求められる。一般に成形解析で用いられているソフトの機能として、製品形状から展開図のようにブランク形状を逆算する機能(展開ブランク解析)がある。この機能を使って解析することで、展開ブランクの形状を基準に検討するのが当業者の一般的なブランク設計である。 For each blank 500, 600, 700, and 10, the distribution of the maximum principal strain obtained by performing finite element analysis on press forming was verified. The principal strain is three vertical strain components when the coordinate system Cp in which the shear strain is zero is used as a reference. The principal strains are defined as "maximum principal strain (ε1)," "intermediate principal strain (ε2)," and "minimum principal strain (ε3)" in order from the largest value. Maximum principal strain is generally used to evaluate the maximum tensile strain that can be applied to a material. If this maximum principal strain is large, it can be determined that the material is likely to break. Note that the maximum principal strain can be determined using general finite element analysis software. One of the functions of software commonly used in forming analysis is the function of back calculating the blank shape from the product shape as in a developed diagram (developed blank analysis). A common blank design for those skilled in the art is to analyze using this function and consider the shape of the developed blank as a reference.
(実験例1)
 図13Aは、実験例1のブランク500の概略的な平面図である。ブランク500の角端部511は線分MOと線分NOの間の領域の内側にある。すなわち、ブランク500は従来例である。
 図13Bにおいて、ブランク500を二点鎖線、成形後の形状を実線で示す。実験例1の最大主ひずみの最大値を示した箇所は図13Bの点線で示す丸で囲まれる箇所(湾曲領域付近)であり、最大値は0.85であった。
(実験例2)
 図14は、実験例2のブランク600の概略的な平面図である。ブランク600の角端部611は線分MOと線分NOの間の領域の内側にある。すなわち、ブランク600は従来例である。
 実験例2の最大主ひずみの最大値を示した箇所は図13Bの点線で示す丸で囲まれる箇所に相当する箇所であり、最大値は1.09であった。つまり、当業者の一般的なブランク設計ではプレス成形品が割れやすくなることが分かった。
(実験例3)
 図15は、実験例3のブランク700の概略的な平面図である。ブランク700の角端部711の一部は線分MOと線分NOの間の領域の外側にあるが、角端部711は線分MOと線分NOを全て含んでいない。
 実験例3の最大主ひずみの最大値を示した箇所は図13Bの点線で示す丸で囲まれる箇所に相当する箇所であり、最大値は0.92であった。つまり、角端部711の一部が線分MOと線分NOの間の領域の外側にあったとしても、角端部711が線分MOと線分NOを全て含んでいないと、プレス成形品が割れやすくなることが分かった。
(実験例4)
 図16は、実験例4のブランク10の概略的な平面図である。ブランク10の角端部11の全ては線分MOと線分NOの間の領域の外側にある。すなわち、ブランク10は発明例である。
 実験例4の最大主ひずみの最大値を示した箇所は図13Bの点線で示す丸で囲まれる箇所に相当する箇所であり、最大値は0.73であった。ブランク10は、従来例に比べ最大主ひずみに改善が見られた。
(Experiment example 1)
FIG. 13A is a schematic plan view of the blank 500 of Experimental Example 1. Corner end 511 of blank 500 is inside the area between line segment MO and line segment NO. That is, blank 500 is a conventional example.
In FIG. 13B, the blank 500 is shown by a two-dot chain line, and the shape after molding is shown by a solid line. The location showing the maximum value of the maximum principal strain in Experimental Example 1 was the location surrounded by the dotted line circle in FIG. 13B (near the curved region), and the maximum value was 0.85.
(Experiment example 2)
FIG. 14 is a schematic plan view of the blank 600 of Experimental Example 2. Corner end 611 of blank 600 is inside the area between line segment MO and line segment NO. That is, blank 600 is a conventional example.
The location showing the maximum value of the maximum principal strain in Experimental Example 2 corresponds to the location surrounded by the dotted line circle in FIG. 13B, and the maximum value was 1.09. In other words, it has been found that the press-formed product is likely to break if the blank is commonly designed by those skilled in the art.
(Experiment example 3)
FIG. 15 is a schematic plan view of the blank 700 of Experimental Example 3. A part of the corner end 711 of the blank 700 is outside the area between the line segment MO and the line segment NO, but the corner end 711 does not entirely include the line segment MO and the line segment NO.
The location showing the maximum value of the maximum principal strain in Experimental Example 3 corresponds to the location surrounded by the dotted line circle in FIG. 13B, and the maximum value was 0.92. In other words, even if a part of the corner end 711 is outside the area between the line segment MO and the line segment NO, if the corner end 711 does not include all of the line segments MO and NO, press forming It was found that the product was more likely to break.
(Experiment example 4)
FIG. 16 is a schematic plan view of the blank 10 of Experimental Example 4. All of the corner edges 11 of the blank 10 are outside the area between the line segments MO and NO. That is, blank 10 is an example of the invention.
The location showing the maximum value of the maximum principal strain in Experimental Example 4 corresponds to the location surrounded by the dotted line in FIG. 13B, and the maximum value was 0.73. Blank 10 showed an improvement in maximum principal strain compared to the conventional example.
 実施例より、従来例に比べ改善するには、角端部11が線分MOと線分NOを全て含み、且つ、角端部11の一部が線分MOと線分NOの間の領域の外側にあることが必要であることが分かった。 From the embodiment, in order to improve compared to the conventional example, the corner end 11 should include all of the line segments MO and NO, and a part of the corner end 11 should be an area between the line segments MO and NO. It turns out that it is necessary to be outside of the
 本開示のプレス成形品の製造方法及びブランクによれば、プレス成形品のフランジ部におけるしわやコーナー部とその近傍における割れの発生を抑制できるため、産業上極めて有用である。 According to the method for manufacturing a press-formed product and the blank of the present disclosure, it is possible to suppress the occurrence of wrinkles in the flange portion of the press-formed product and the occurrence of cracks in the corner portions and their vicinity, which is extremely useful industrially.
10 ブランク
11 角端部
12 縁部
100 第一プレス金型
110 底面
120 側面
121 コーナー領域
130 稜線
131 湾曲領域
140 支持面
200 第二プレス金型
300 第三プレス金型
10 blank 11 corner end 12 edge 100 first press mold 110 bottom surface 120 side surface 121 corner region 130 ridgeline 131 curved region 140 support surface 200 second press mold 300 third press mold

Claims (3)

  1.  ブランクを第一プレス金型の支持面と第三プレス金型の支持面とで挟むこと、
     第二プレス金型を前記第一プレス金型に押し込んで前記ブランクを絞り成形すること、
    を含み、
     前記第一プレス金型のプレス穴の縁の稜線は湾曲して延在する湾曲領域を備え、
     前記ブランクの垂直方向からみたとき、
     前記湾曲領域の前記稜線の延在方向の第1の端部を通る第1の法線を直線L1、
     前記湾曲領域の前記稜線の延在方向の第2の端部を通る第2の法線を直線L2、
     前記直線L1と前記ブランクの端部との交点を交点M、前記直線L2と前記ブランクの端部との交点を交点N、
     前記交点Mを通り、前記直線L1に垂直な直線を直線L4、
     前記交点Nを通り、前記直線L2に垂直な直線を直線L3、
     前記直線L3と前記直線L4の交点を交点O、
     前記交点Mと前記交点Oを結ぶ線分を線分MO、
     前記交点Nと前記交点Oを結ぶ線分を線分NO、
    と定義したとき、
     前記ブランクを前記第一プレス金型と前記第三プレス金型で挟んだとき、
     前記ブランクの前記交点Mと前記交点Nの間の角端部11は前記線分MOと前記線分NOを全て含み、
     前記角端部11の一部は前記線分MOと前記線分NOの間の領域の外側にある、
    プレス成形品の製造方法。
    sandwiching the blank between the support surface of the first press die and the support surface of the third press die;
    pushing a second press mold into the first press mold to draw and form the blank;
    including;
    The ridgeline of the edge of the press hole of the first press mold includes a curved area extending in a curved manner,
    When viewed from the vertical direction of the blank,
    A first normal passing through the first end of the curved area in the extending direction of the ridge line is a straight line L1,
    A second normal passing through the second end of the curved area in the extending direction of the ridge line is a straight line L2,
    The intersection of the straight line L1 and the edge of the blank is an intersection M, the intersection of the straight line L2 and the edge of the blank is an intersection N,
    A straight line passing through the intersection M and perpendicular to the straight line L1 is a straight line L4,
    A straight line passing through the intersection N and perpendicular to the straight line L2 is a straight line L3,
    The intersection of the straight line L3 and the straight line L4 is an intersection point O,
    A line segment connecting the intersection point M and the intersection point O is a line segment MO,
    The line segment connecting the intersection point N and the intersection point O is a line segment NO,
    When defined as
    When the blank is sandwiched between the first press mold and the third press mold,
    A corner end 11 between the intersection point M and the intersection N of the blank includes all of the line segment MO and the line segment NO,
    A part of the corner end 11 is outside the area between the line segment MO and the line segment NO,
    A method for manufacturing press-formed products.
  2.  各辺がブランクの縁と外側のみを通る第1の長方形の角に隣接する、1辺の長さが前記第1の長方形の短辺の40%の正方形の領域において、前記ブランクは各辺が前記ブランクの縁と内側のみを通る第2の長方形の2つの辺の両方に接し、
     前記第2の長方形の2つの辺と前記ブランクの2つの接点を通り、角が前記第1の長方形と重なる長方形の領域において、前記ブランクは前記第1の長方形の2つの辺の両方に接するブランク。
    In a square area of 40% of the short side of the first rectangle, adjacent to a corner of a first rectangle with each side passing only through the edges and outside of the blank, the blank has touching both of the two sides of the second rectangle that passes only through the edge and inside of the blank,
    In a rectangular region that passes through two contact points of the two sides of the second rectangle and the blank and whose corners overlap with the first rectangle, the blank is a blank that touches both of the two sides of the first rectangle. .
  3.  前記第1の長方形の前記角から前記第1の長方形の短辺の長さの10%以内の範囲で前記第1の長方形の前記2つの辺の両方に接する請求項2に記載のブランク。 The blank according to claim 2, wherein the blank contacts both of the two sides of the first rectangle within a range of 10% of the length of the short side of the first rectangle from the corner of the first rectangle.
PCT/JP2022/031656 2022-08-23 2022-08-23 Manufacturing method and blank for press-formed product WO2024042593A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/031656 WO2024042593A1 (en) 2022-08-23 2022-08-23 Manufacturing method and blank for press-formed product
JP2022568532A JP7216937B1 (en) 2022-08-23 2022-08-23 Method for manufacturing press-molded product and blank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031656 WO2024042593A1 (en) 2022-08-23 2022-08-23 Manufacturing method and blank for press-formed product

Publications (1)

Publication Number Publication Date
WO2024042593A1 true WO2024042593A1 (en) 2024-02-29

Family

ID=85129938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031656 WO2024042593A1 (en) 2022-08-23 2022-08-23 Manufacturing method and blank for press-formed product

Country Status (2)

Country Link
JP (1) JP7216937B1 (en)
WO (1) WO2024042593A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112029A (en) * 1986-10-30 1988-05-17 Nippon Denso Co Ltd Cupping drawing method
JPH0428424A (en) * 1990-05-21 1992-01-31 Nissan Motor Co Ltd Press die
JP2002170529A (en) * 2000-12-01 2002-06-14 Hara Press Engineering:Kk Battery case, blank for battery case and manufacturing method for the battery case
JP2017192972A (en) * 2016-04-21 2017-10-26 三菱アルミニウム株式会社 Blank material for draw molding of aluminum resin composite laminate board and method for manufacturing three-dimensional molded article using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112029A (en) * 1986-10-30 1988-05-17 Nippon Denso Co Ltd Cupping drawing method
JPH0428424A (en) * 1990-05-21 1992-01-31 Nissan Motor Co Ltd Press die
JP2002170529A (en) * 2000-12-01 2002-06-14 Hara Press Engineering:Kk Battery case, blank for battery case and manufacturing method for the battery case
JP2017192972A (en) * 2016-04-21 2017-10-26 三菱アルミニウム株式会社 Blank material for draw molding of aluminum resin composite laminate board and method for manufacturing three-dimensional molded article using the same

Also Published As

Publication number Publication date
JP7216937B1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
US10730092B2 (en) Pressed article manufacturing method and press mold
CN112584944B (en) Press forming method
US11020785B2 (en) Method and apparatus for manufacturing press component
US11712729B2 (en) Production method for pressed components, press forming device, and metal sheet for press forming
KR102220417B1 (en) Press-molded product manufacturing method and manufacturing device
US11628486B2 (en) Production method for pressed components, press forming device, and metal sheet for press forming
WO2016171229A1 (en) Method for producing press-molded product, press-molded product, and pressing device
CN111093852B (en) Hot press molded article, method and apparatus for producing the same
EP3970873A1 (en) Press-forming method
WO2024042593A1 (en) Manufacturing method and blank for press-formed product
US20210023601A1 (en) Method of designing press-formed product, press-forming die, press-formed product, and method of producing press-formed product
JP7364905B2 (en) Sheet metal molded product manufacturing method, sheet metal molded product manufacturing device, and flange up tool
JP6112226B2 (en) Press molding method and method of manufacturing press molded parts
JP7070287B2 (en) Manufacturing method of press-molded parts and press-molded parts
US20220332373A1 (en) Method for manufacturing press-formed product, press forming die, and press-formed product
WO2022075464A1 (en) Method for manufacturing press-molded item, and press line
JP2022129137A (en) Blank, flow control region setting method, blank designing method, and blank manufacturing method
JP7364904B2 (en) Sheet metal molded product manufacturing method, sheet metal molded product manufacturing equipment, and flange up tools
TWI480110B (en) Method for manufacturing closed structure parts and apparatus for the same
JP7343766B2 (en) Press molding mold and press molding equipment
EP3778057A1 (en) Rigidity improvement method for press-molded article, press-molding die, press-molded article, and production method for press-molded article
JP2024001837A (en) Press forming method and manufacturing method for press-formed product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956421

Country of ref document: EP

Kind code of ref document: A1