WO2024042008A1 - Polymerizable liquid crystal material and polymerized liquid crystal film - Google Patents
Polymerizable liquid crystal material and polymerized liquid crystal film Download PDFInfo
- Publication number
- WO2024042008A1 WO2024042008A1 PCT/EP2023/072877 EP2023072877W WO2024042008A1 WO 2024042008 A1 WO2024042008 A1 WO 2024042008A1 EP 2023072877 W EP2023072877 W EP 2023072877W WO 2024042008 A1 WO2024042008 A1 WO 2024042008A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compounds
- polymerizable
- formula
- optionally
- group
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 121
- 239000004973 liquid crystal related substance Substances 0.000 title description 16
- 150000001875 compounds Chemical class 0.000 claims abstract description 194
- 229920006254 polymer film Polymers 0.000 claims abstract description 31
- 230000003287 optical effect Effects 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 27
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- -1 1 ,4-phenylene, pyridine- 2.5-diyl Chemical group 0.000 claims description 80
- 125000004432 carbon atom Chemical group C* 0.000 claims description 57
- 125000000217 alkyl group Chemical group 0.000 claims description 55
- 239000000758 substrate Substances 0.000 claims description 51
- 229910052731 fluorine Inorganic materials 0.000 claims description 44
- 239000002518 antifoaming agent Substances 0.000 claims description 42
- 229910052801 chlorine Inorganic materials 0.000 claims description 42
- 125000003545 alkoxy group Chemical group 0.000 claims description 28
- 125000003118 aryl group Chemical group 0.000 claims description 25
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 19
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 claims description 19
- 125000004448 alkyl carbonyl group Chemical group 0.000 claims description 19
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 claims description 18
- 125000005842 heteroatom Chemical group 0.000 claims description 16
- 125000006850 spacer group Chemical group 0.000 claims description 16
- 239000004094 surface-active agent Substances 0.000 claims description 16
- 239000000654 additive Substances 0.000 claims description 15
- 125000001072 heteroaryl group Chemical group 0.000 claims description 13
- 108010027775 interleukin-1beta-converting enzyme inhibitor Proteins 0.000 claims description 13
- 229910052740 iodine Inorganic materials 0.000 claims description 12
- 229910052794 bromium Inorganic materials 0.000 claims description 11
- 239000000314 lubricant Substances 0.000 claims description 11
- 239000003085 diluting agent Substances 0.000 claims description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 9
- 125000002723 alicyclic group Chemical group 0.000 claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 claims description 7
- 239000000049 pigment Substances 0.000 claims description 7
- 125000001624 naphthyl group Chemical group 0.000 claims description 6
- 239000003381 stabilizer Substances 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 125000000962 organic group Chemical group 0.000 claims description 4
- 125000004001 thioalkyl group Chemical group 0.000 claims description 4
- 125000005407 trans-1,4-cyclohexylene group Chemical group [H]C1([H])C([H])([H])[C@]([H])([*:2])C([H])([H])C([H])([H])[C@@]1([H])[*:1] 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 3
- 239000003054 catalyst Substances 0.000 claims description 3
- 125000004956 cyclohexylene group Chemical group 0.000 claims description 3
- 239000000975 dye Substances 0.000 claims description 3
- 239000003112 inhibitor Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000004890 Hydrophobing Agent Substances 0.000 claims description 2
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical compound O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 claims description 2
- 238000007872 degassing Methods 0.000 claims description 2
- 239000002270 dispersing agent Substances 0.000 claims description 2
- 239000003999 initiator Substances 0.000 claims description 2
- 239000002105 nanoparticle Substances 0.000 claims description 2
- 239000000080 wetting agent Substances 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims 1
- 230000003190 augmentative effect Effects 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 59
- 239000010408 film Substances 0.000 description 42
- 229920000642 polymer Polymers 0.000 description 35
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 31
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 21
- 238000007639 printing Methods 0.000 description 19
- 150000001298 alcohols Chemical class 0.000 description 15
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- DMKSVUSAATWOCU-HROMYWEYSA-N loteprednol etabonate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)OCCl)(OC(=O)OCC)[C@@]1(C)C[C@@H]2O DMKSVUSAATWOCU-HROMYWEYSA-N 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 230000005855 radiation Effects 0.000 description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 11
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 11
- 150000003254 radicals Chemical class 0.000 description 11
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 10
- 230000003098 cholesteric effect Effects 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 239000002318 adhesion promoter Substances 0.000 description 9
- 125000000129 anionic group Chemical group 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- 238000009736 wetting Methods 0.000 description 9
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 8
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 8
- AIXAANGOTKPUOY-UHFFFAOYSA-N carbachol Chemical group [Cl-].C[N+](C)(C)CCOC(N)=O AIXAANGOTKPUOY-UHFFFAOYSA-N 0.000 description 8
- 239000007859 condensation product Substances 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 8
- 150000002148 esters Chemical class 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000000976 ink Substances 0.000 description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000008199 coating composition Substances 0.000 description 7
- 150000002118 epoxides Chemical group 0.000 description 7
- QUPDWYMUPZLYJZ-UHFFFAOYSA-N ethyl Chemical compound C[CH2] QUPDWYMUPZLYJZ-UHFFFAOYSA-N 0.000 description 7
- 229940093476 ethylene glycol Drugs 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 125000001183 hydrocarbyl group Chemical group 0.000 description 7
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 229920001451 polypropylene glycol Polymers 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- 150000002430 hydrocarbons Chemical group 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 6
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 6
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 6
- 229920002284 Cellulose triacetate Polymers 0.000 description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 5
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 5
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 5
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 125000006193 alkinyl group Chemical group 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 5
- 239000012964 benzotriazole Substances 0.000 description 5
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 5
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 5
- 239000002178 crystalline material Substances 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N diethyl ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 125000004434 sulfur atom Chemical group 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 5
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 4
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 4
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 4
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 4
- 150000002334 glycols Chemical class 0.000 description 4
- 229930182470 glycoside Natural products 0.000 description 4
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 4
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 4
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920000570 polyether Polymers 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 229960004063 propylene glycol Drugs 0.000 description 4
- 235000013772 propylene glycol Nutrition 0.000 description 4
- 238000003847 radiation curing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000003107 substituted aryl group Chemical group 0.000 description 4
- 125000003396 thiol group Chemical class [H]S* 0.000 description 4
- 239000011732 tocopherol Substances 0.000 description 4
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 4
- OGQVROWWFUXRST-FNORWQNLSA-N (3e)-hepta-1,3-diene Chemical compound CCC\C=C\C=C OGQVROWWFUXRST-FNORWQNLSA-N 0.000 description 3
- SZTBMYHIYNGYIA-UHFFFAOYSA-M 2-chloroacrylate Chemical compound [O-]C(=O)C(Cl)=C SZTBMYHIYNGYIA-UHFFFAOYSA-M 0.000 description 3
- WWQRDAMGSQVYAE-UHFFFAOYSA-N 2-ethenoxyprop-2-enoic acid Chemical compound OC(=O)C(=C)OC=C WWQRDAMGSQVYAE-UHFFFAOYSA-N 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- RXFCIXRFAJRBSG-UHFFFAOYSA-N 3,2,3-tetramine Chemical compound NCCCNCCNCCCN RXFCIXRFAJRBSG-UHFFFAOYSA-N 0.000 description 3
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- 229920000106 Liquid crystal polymer Polymers 0.000 description 3
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 150000005215 alkyl ethers Chemical class 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 description 3
- 125000004786 difluoromethoxy group Chemical group [H]C(F)(F)O* 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005670 electromagnetic radiation Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- ZYMKZMDQUPCXRP-UHFFFAOYSA-N fluoro prop-2-enoate Chemical compound FOC(=O)C=C ZYMKZMDQUPCXRP-UHFFFAOYSA-N 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 3
- 239000004569 hydrophobicizing agent Substances 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 3
- 125000005647 linker group Chemical group 0.000 description 3
- 125000005395 methacrylic acid group Chemical group 0.000 description 3
- UKJARPDLRWBRAX-UHFFFAOYSA-N n,n'-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexane-1,6-diamine Chemical compound C1C(C)(C)NC(C)(C)CC1NCCCCCCNC1CC(C)(C)NC(C)(C)C1 UKJARPDLRWBRAX-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 239000012788 optical film Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920006294 polydialkylsiloxane Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 229920005573 silicon-containing polymer Polymers 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 229960001295 tocopherol Drugs 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- ZQMPWXFHAUDENN-UHFFFAOYSA-N 1,2-bis[(2-methylphenyl)amino]ethane Natural products CC1=CC=CC=C1NCCNC1=CC=CC=C1C ZQMPWXFHAUDENN-UHFFFAOYSA-N 0.000 description 2
- QNLZIZAQLLYXTC-UHFFFAOYSA-N 1,2-dimethylnaphthalene Chemical compound C1=CC=CC2=C(C)C(C)=CC=C21 QNLZIZAQLLYXTC-UHFFFAOYSA-N 0.000 description 2
- BPXVHIRIPLPOPT-UHFFFAOYSA-N 1,3,5-tris(2-hydroxyethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound OCCN1C(=O)N(CCO)C(=O)N(CCO)C1=O BPXVHIRIPLPOPT-UHFFFAOYSA-N 0.000 description 2
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 2
- WQADWIOXOXRPLN-UHFFFAOYSA-N 1,3-dithiane Chemical compound C1CSCSC1 WQADWIOXOXRPLN-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- 125000004955 1,4-cyclohexylene group Chemical group [H]C1([H])C([H])([H])C([H])([*:1])C([H])([H])C([H])([H])C1([H])[*:2] 0.000 description 2
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- BWJKLDGAAPQXGO-UHFFFAOYSA-N 2,2,6,6-tetramethyl-4-octadecoxypiperidine Chemical compound CCCCCCCCCCCCCCCCCCOC1CC(C)(C)NC(C)(C)C1 BWJKLDGAAPQXGO-UHFFFAOYSA-N 0.000 description 2
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 2
- NFIDBGJMFKNGGQ-UHFFFAOYSA-N 2-(2-methylpropyl)phenol Chemical compound CC(C)CC1=CC=CC=C1O NFIDBGJMFKNGGQ-UHFFFAOYSA-N 0.000 description 2
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 101000625237 Homo sapiens rRNA methyltransferase 1, mitochondrial Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- JWUXJYZVKZKLTJ-UHFFFAOYSA-N Triacetonamine Chemical compound CC1(C)CC(=O)CC(C)(C)N1 JWUXJYZVKZKLTJ-UHFFFAOYSA-N 0.000 description 2
- GTTSNKDQDACYLV-UHFFFAOYSA-N Trihydroxybutane Chemical compound CCCC(O)(O)O GTTSNKDQDACYLV-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000005248 alkyl aryloxy group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 150000001559 benzoic acids Chemical class 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- XITRBUPOXXBIJN-UHFFFAOYSA-N bis(2,2,6,6-tetramethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)NC(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)NC(C)(C)C1 XITRBUPOXXBIJN-UHFFFAOYSA-N 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 2
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- HKNRNTYTYUWGLN-UHFFFAOYSA-N dithieno[3,2-a:2',3'-d]thiophene Chemical compound C1=CSC2=C1SC1=C2C=CS1 HKNRNTYTYUWGLN-UHFFFAOYSA-N 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 229940052303 ethers for general anesthesia Drugs 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 2
- 239000013022 formulation composition Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 125000003827 glycol group Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N methyl undecanoic acid Natural products CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- AOHAPDDBNAPPIN-UHFFFAOYSA-N myristicinic acid Natural products COC1=CC(C(O)=O)=CC2=C1OCO2 AOHAPDDBNAPPIN-UHFFFAOYSA-N 0.000 description 2
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N n-hexadecanoic acid Natural products CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 2
- IXQGCWUGDFDQMF-UHFFFAOYSA-N o-Hydroxyethylbenzene Natural products CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 125000003566 oxetanyl group Chemical group 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- ZQBAKBUEJOMQEX-UHFFFAOYSA-N phenyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=CC=C1 ZQBAKBUEJOMQEX-UHFFFAOYSA-N 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 229940090181 propyl acetate Drugs 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 102100024981 rRNA methyltransferase 1, mitochondrial Human genes 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- 229930003799 tocopherol Natural products 0.000 description 2
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- KJYSXRBJOSZLEL-UHFFFAOYSA-N (2,4-ditert-butylphenyl) 3,5-ditert-butyl-4-hydroxybenzoate Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OC(=O)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 KJYSXRBJOSZLEL-UHFFFAOYSA-N 0.000 description 1
- HQEPZWYPQQKFLU-UHFFFAOYSA-N (2,6-dihydroxyphenyl)-phenylmethanone Chemical compound OC1=CC=CC(O)=C1C(=O)C1=CC=CC=C1 HQEPZWYPQQKFLU-UHFFFAOYSA-N 0.000 description 1
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 1
- ATLWFAZCZPSXII-UHFFFAOYSA-N (2-octylphenyl) 2-hydroxybenzoate Chemical compound CCCCCCCCC1=CC=CC=C1OC(=O)C1=CC=CC=C1O ATLWFAZCZPSXII-UHFFFAOYSA-N 0.000 description 1
- FKFOHTUAFNQANW-UHFFFAOYSA-N (3,5-ditert-butyl-4-hydroxyphenyl) octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FKFOHTUAFNQANW-UHFFFAOYSA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- GOZHNJTXLALKRL-UHFFFAOYSA-N (5-benzoyl-2,4-dihydroxyphenyl)-phenylmethanone Chemical compound OC1=CC(O)=C(C(=O)C=2C=CC=CC=2)C=C1C(=O)C1=CC=CC=C1 GOZHNJTXLALKRL-UHFFFAOYSA-N 0.000 description 1
- 125000004642 (C1-C12) alkoxy group Chemical group 0.000 description 1
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 1
- 125000006724 (C1-C5) alkyl ester group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 1
- 125000006737 (C6-C20) arylalkyl group Chemical group 0.000 description 1
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- ICPSWZFVWAPUKF-UHFFFAOYSA-N 1,1'-spirobi[fluorene] Chemical compound C1=CC=C2C=C3C4(C=5C(C6=CC=CC=C6C=5)=CC=C4)C=CC=C3C2=C1 ICPSWZFVWAPUKF-UHFFFAOYSA-N 0.000 description 1
- VCMZIKKVYXGKCI-UHFFFAOYSA-N 1,1-bis(2,4-ditert-butyl-6-methylphenyl)-2,2-bis(hydroxymethyl)propane-1,3-diol dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O.C(C)(C)(C)C1=C(C(=CC(=C1)C(C)(C)C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1C)C(C)(C)C)C(C)(C)C VCMZIKKVYXGKCI-UHFFFAOYSA-N 0.000 description 1
- ZFXBERJDEUDDMX-UHFFFAOYSA-N 1,2,3,5-tetrazine Chemical compound C1=NC=NN=N1 ZFXBERJDEUDDMX-UHFFFAOYSA-N 0.000 description 1
- HTJMXYRLEDBSLT-UHFFFAOYSA-N 1,2,4,5-tetrazine Chemical compound C1=NN=CN=N1 HTJMXYRLEDBSLT-UHFFFAOYSA-N 0.000 description 1
- BBVIDBNAYOIXOE-UHFFFAOYSA-N 1,2,4-oxadiazole Chemical compound C=1N=CON=1 BBVIDBNAYOIXOE-UHFFFAOYSA-N 0.000 description 1
- YGTAZGSLCXNBQL-UHFFFAOYSA-N 1,2,4-thiadiazole Chemical compound C=1N=CSN=1 YGTAZGSLCXNBQL-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- UDGKZGLPXCRRAM-UHFFFAOYSA-N 1,2,5-thiadiazole Chemical compound C=1C=NSN=1 UDGKZGLPXCRRAM-UHFFFAOYSA-N 0.000 description 1
- UUSUFQUCLACDTA-UHFFFAOYSA-N 1,2-dihydropyrene Chemical compound C1=CC=C2C=CC3=CCCC4=CC=C1C2=C43 UUSUFQUCLACDTA-UHFFFAOYSA-N 0.000 description 1
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical compound C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 description 1
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical compound C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 description 1
- LKLLNYWECKEQIB-UHFFFAOYSA-N 1,3,5-triazinane Chemical compound C1NCNCN1 LKLLNYWECKEQIB-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical compound C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- VNQNXQYZMPJLQX-UHFFFAOYSA-N 1,3,5-tris[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-1,3,5-triazinane-2,4,6-trione Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CN2C(N(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C(=O)N(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C2=O)=O)=C1 VNQNXQYZMPJLQX-UHFFFAOYSA-N 0.000 description 1
- BLWNLYFYKIIZKR-UHFFFAOYSA-N 1,3,7,9-tetratert-butyl-11-(6-methylheptoxy)-5h-benzo[d][1,3,2]benzodioxaphosphocine Chemical compound C1C2=CC(C(C)(C)C)=CC(C(C)(C)C)=C2OP(OCCCCCC(C)C)OC2=C1C=C(C(C)(C)C)C=C2C(C)(C)C BLWNLYFYKIIZKR-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- WEERVPDNCOGWJF-UHFFFAOYSA-N 1,4-bis(ethenyl)benzene Chemical compound C=CC1=CC=C(C=C)C=C1 WEERVPDNCOGWJF-UHFFFAOYSA-N 0.000 description 1
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical compound N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- HZRBZHZHAJTPRT-UHFFFAOYSA-N 1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione Chemical compound C1C(C)(C)N(C)C(C)(C)CC1N1C(=O)CCC1=O HZRBZHZHAJTPRT-UHFFFAOYSA-N 0.000 description 1
- SQZCAOHYQSOZCE-UHFFFAOYSA-N 1-(diaminomethylidene)-2-(2-methylphenyl)guanidine Chemical compound CC1=CC=CC=C1N=C(N)N=C(N)N SQZCAOHYQSOZCE-UHFFFAOYSA-N 0.000 description 1
- MQQKTNDBASEZSD-UHFFFAOYSA-N 1-(octadecyldisulfanyl)octadecane Chemical compound CCCCCCCCCCCCCCCCCCSSCCCCCCCCCCCCCCCCCC MQQKTNDBASEZSD-UHFFFAOYSA-N 0.000 description 1
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N 1-Tetradecanol Natural products CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- BBRHQNMMUUMVDE-UHFFFAOYSA-N 1-n,2-n-diphenylpropane-1,2-diamine Chemical compound C=1C=CC=CC=1NC(C)CNC1=CC=CC=C1 BBRHQNMMUUMVDE-UHFFFAOYSA-N 0.000 description 1
- JUHXTONDLXIGGK-UHFFFAOYSA-N 1-n,4-n-bis(5-methylheptan-3-yl)benzene-1,4-diamine Chemical compound CCC(C)CC(CC)NC1=CC=C(NC(CC)CC(C)CC)C=C1 JUHXTONDLXIGGK-UHFFFAOYSA-N 0.000 description 1
- ZJNLYGOUHDJHMG-UHFFFAOYSA-N 1-n,4-n-bis(5-methylhexan-2-yl)benzene-1,4-diamine Chemical compound CC(C)CCC(C)NC1=CC=C(NC(C)CCC(C)C)C=C1 ZJNLYGOUHDJHMG-UHFFFAOYSA-N 0.000 description 1
- BJLNXEQCTFMBTH-UHFFFAOYSA-N 1-n,4-n-di(butan-2-yl)-1-n,4-n-dimethylbenzene-1,4-diamine Chemical compound CCC(C)N(C)C1=CC=C(N(C)C(C)CC)C=C1 BJLNXEQCTFMBTH-UHFFFAOYSA-N 0.000 description 1
- APTGHASZJUAUCP-UHFFFAOYSA-N 1-n,4-n-di(octan-2-yl)benzene-1,4-diamine Chemical compound CCCCCCC(C)NC1=CC=C(NC(C)CCCCCC)C=C1 APTGHASZJUAUCP-UHFFFAOYSA-N 0.000 description 1
- PWNBRRGFUVBTQG-UHFFFAOYSA-N 1-n,4-n-di(propan-2-yl)benzene-1,4-diamine Chemical compound CC(C)NC1=CC=C(NC(C)C)C=C1 PWNBRRGFUVBTQG-UHFFFAOYSA-N 0.000 description 1
- AIMXDOGPMWDCDF-UHFFFAOYSA-N 1-n,4-n-dicyclohexylbenzene-1,4-diamine Chemical compound C1CCCCC1NC(C=C1)=CC=C1NC1CCCCC1 AIMXDOGPMWDCDF-UHFFFAOYSA-N 0.000 description 1
- VETPHHXZEJAYOB-UHFFFAOYSA-N 1-n,4-n-dinaphthalen-2-ylbenzene-1,4-diamine Chemical compound C1=CC=CC2=CC(NC=3C=CC(NC=4C=C5C=CC=CC5=CC=4)=CC=3)=CC=C21 VETPHHXZEJAYOB-UHFFFAOYSA-N 0.000 description 1
- ZRMMVODKVLXCBB-UHFFFAOYSA-N 1-n-cyclohexyl-4-n-phenylbenzene-1,4-diamine Chemical compound C1CCCCC1NC(C=C1)=CC=C1NC1=CC=CC=C1 ZRMMVODKVLXCBB-UHFFFAOYSA-N 0.000 description 1
- KEXRSLVRFLEMHJ-UHFFFAOYSA-N 1-o,4-o-bis[(4-tert-butyl-3-hydroxy-2,6-dimethylphenyl)methyl] benzene-1,4-dicarbothioate Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C)=C1COC(=S)C1=CC=C(C(=S)OCC=2C(=C(O)C(=CC=2C)C(C)(C)C)C)C=C1 KEXRSLVRFLEMHJ-UHFFFAOYSA-N 0.000 description 1
- GFVSLJXVNAYUJE-UHFFFAOYSA-N 10-prop-2-enylphenothiazine Chemical compound C1=CC=C2N(CC=C)C3=CC=CC=C3SC2=C1 GFVSLJXVNAYUJE-UHFFFAOYSA-N 0.000 description 1
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- USYCQABRSUEURP-UHFFFAOYSA-N 1h-benzo[f]benzimidazole Chemical compound C1=CC=C2C=C(NC=N3)C3=CC2=C1 USYCQABRSUEURP-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- FTVFPPFZRRKJIH-UHFFFAOYSA-N 2,2,6,6-tetramethylpiperidin-4-amine Chemical compound CC1(C)CC(N)CC(C)(C)N1 FTVFPPFZRRKJIH-UHFFFAOYSA-N 0.000 description 1
- VDVUCLWJZJHFAV-UHFFFAOYSA-N 2,2,6,6-tetramethylpiperidin-4-ol Chemical compound CC1(C)CC(O)CC(C)(C)N1 VDVUCLWJZJHFAV-UHFFFAOYSA-N 0.000 description 1
- GXURZKWLMYOCDX-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol;dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O.OCC(CO)(CO)CO GXURZKWLMYOCDX-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- UUAIOYWXCDLHKT-UHFFFAOYSA-N 2,4,6-tricyclohexylphenol Chemical compound OC1=C(C2CCCCC2)C=C(C2CCCCC2)C=C1C1CCCCC1 UUAIOYWXCDLHKT-UHFFFAOYSA-N 0.000 description 1
- LXWZXEJDKYWBOW-UHFFFAOYSA-N 2,4-ditert-butyl-6-[(3,5-ditert-butyl-2-hydroxyphenyl)methyl]phenol Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)C)C(C)(C)C)O)=C1O LXWZXEJDKYWBOW-UHFFFAOYSA-N 0.000 description 1
- DXCHWXWXYPEZKM-UHFFFAOYSA-N 2,4-ditert-butyl-6-[1-(3,5-ditert-butyl-2-hydroxyphenyl)ethyl]phenol Chemical compound C=1C(C(C)(C)C)=CC(C(C)(C)C)=C(O)C=1C(C)C1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1O DXCHWXWXYPEZKM-UHFFFAOYSA-N 0.000 description 1
- JZODKRWQWUWGCD-UHFFFAOYSA-N 2,5-di-tert-butylbenzene-1,4-diol Chemical compound CC(C)(C)C1=CC(O)=C(C(C)(C)C)C=C1O JZODKRWQWUWGCD-UHFFFAOYSA-N 0.000 description 1
- RLFZYIUUQBHRNV-UHFFFAOYSA-N 2,5-dihydrooxadiazole Chemical compound C1ONN=C1 RLFZYIUUQBHRNV-UHFFFAOYSA-N 0.000 description 1
- FLLRQABPKFCXSO-UHFFFAOYSA-N 2,5-ditert-butyl-4-methoxyphenol Chemical compound COC1=CC(C(C)(C)C)=C(O)C=C1C(C)(C)C FLLRQABPKFCXSO-UHFFFAOYSA-N 0.000 description 1
- RPLXHDXNCZNHRA-UHFFFAOYSA-N 2,6-bis(dodecylsulfanylmethyl)-4-nonylphenol Chemical compound CCCCCCCCCCCCSCC1=CC(CCCCCCCCC)=CC(CSCCCCCCCCCCCC)=C1O RPLXHDXNCZNHRA-UHFFFAOYSA-N 0.000 description 1
- LKALLEFLBKHPTQ-UHFFFAOYSA-N 2,6-bis[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound OC=1C(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=CC(C)=CC=1CC1=CC(C)=CC(C(C)(C)C)=C1O LKALLEFLBKHPTQ-UHFFFAOYSA-N 0.000 description 1
- SLUKQUGVTITNSY-UHFFFAOYSA-N 2,6-di-tert-butyl-4-methoxyphenol Chemical compound COC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SLUKQUGVTITNSY-UHFFFAOYSA-N 0.000 description 1
- FRAQIHUDFAFXHT-UHFFFAOYSA-N 2,6-dicyclopentyl-4-methylphenol Chemical compound OC=1C(C2CCCC2)=CC(C)=CC=1C1CCCC1 FRAQIHUDFAFXHT-UHFFFAOYSA-N 0.000 description 1
- JBYWTKPHBLYYFJ-UHFFFAOYSA-N 2,6-ditert-butyl-4-(2-methylpropyl)phenol Chemical compound CC(C)CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 JBYWTKPHBLYYFJ-UHFFFAOYSA-N 0.000 description 1
- GJDRKHHGPHLVNI-UHFFFAOYSA-N 2,6-ditert-butyl-4-(diethoxyphosphorylmethyl)phenol Chemical compound CCOP(=O)(OCC)CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 GJDRKHHGPHLVNI-UHFFFAOYSA-N 0.000 description 1
- SAJFQHPVIYPPEY-UHFFFAOYSA-N 2,6-ditert-butyl-4-(dioctadecoxyphosphorylmethyl)phenol Chemical compound CCCCCCCCCCCCCCCCCCOP(=O)(OCCCCCCCCCCCCCCCCCC)CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SAJFQHPVIYPPEY-UHFFFAOYSA-N 0.000 description 1
- SCXYLTWTWUGEAA-UHFFFAOYSA-N 2,6-ditert-butyl-4-(methoxymethyl)phenol Chemical compound COCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SCXYLTWTWUGEAA-UHFFFAOYSA-N 0.000 description 1
- UDFARPRXWMDFQU-UHFFFAOYSA-N 2,6-ditert-butyl-4-[(3,5-ditert-butyl-4-hydroxyphenyl)methylsulfanylmethyl]phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CSCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 UDFARPRXWMDFQU-UHFFFAOYSA-N 0.000 description 1
- VMZVBRIIHDRYGK-UHFFFAOYSA-N 2,6-ditert-butyl-4-[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VMZVBRIIHDRYGK-UHFFFAOYSA-N 0.000 description 1
- QHPKIUDQDCWRKO-UHFFFAOYSA-N 2,6-ditert-butyl-4-[2-(3,5-ditert-butyl-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C(C)(C)C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 QHPKIUDQDCWRKO-UHFFFAOYSA-N 0.000 description 1
- FURXDDVXYNEWJD-UHFFFAOYSA-N 2,6-ditert-butyl-4-[[4-(3,5-ditert-butyl-4-hydroxyanilino)-6-octylsulfanyl-1,3,5-triazin-2-yl]amino]phenol Chemical compound N=1C(NC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=NC(SCCCCCCCC)=NC=1NC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FURXDDVXYNEWJD-UHFFFAOYSA-N 0.000 description 1
- RTOZVEXLKURGKW-UHFFFAOYSA-N 2,6-ditert-butyl-4-[[4-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,3,5,6-tetramethylphenyl]methyl]phenol Chemical compound CC=1C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(C)C=1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 RTOZVEXLKURGKW-UHFFFAOYSA-N 0.000 description 1
- HWRLEEPNFJNTOP-UHFFFAOYSA-N 2-(1,3,5-triazin-2-yl)phenol Chemical class OC1=CC=CC=C1C1=NC=NC=N1 HWRLEEPNFJNTOP-UHFFFAOYSA-N 0.000 description 1
- LBOGPIWNHXHYHN-UHFFFAOYSA-N 2-(2-hydroxy-5-octylphenyl)sulfanyl-4-octylphenol Chemical compound CCCCCCCCC1=CC=C(O)C(SC=2C(=CC=C(CCCCCCCC)C=2)O)=C1 LBOGPIWNHXHYHN-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- LEVFXWNQQSSNAC-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexoxyphenol Chemical compound OC1=CC(OCCCCCC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 LEVFXWNQQSSNAC-UHFFFAOYSA-N 0.000 description 1
- UUINYPIVWRZHAG-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-methoxyphenol Chemical compound OC1=CC(OC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 UUINYPIVWRZHAG-UHFFFAOYSA-N 0.000 description 1
- KXPXKNBDCUOENF-UHFFFAOYSA-N 2-(Octylthio)ethanol Chemical compound CCCCCCCCSCCO KXPXKNBDCUOENF-UHFFFAOYSA-N 0.000 description 1
- ZMWRRFHBXARRRT-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-bis(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC(C(C)(C)CC)=CC(N2N=C3C=CC=CC3=N2)=C1O ZMWRRFHBXARRRT-UHFFFAOYSA-N 0.000 description 1
- LHPPDQUVECZQSW-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-ditert-butylphenol Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(N2N=C3C=CC=CC3=N2)=C1O LHPPDQUVECZQSW-UHFFFAOYSA-N 0.000 description 1
- IYAZLDLPUNDVAG-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 IYAZLDLPUNDVAG-UHFFFAOYSA-N 0.000 description 1
- WXHVQMGINBSVAY-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 WXHVQMGINBSVAY-UHFFFAOYSA-N 0.000 description 1
- RTNVDKBRTXEWQE-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-6-butan-2-yl-4-tert-butylphenol Chemical compound CCC(C)C1=CC(C(C)(C)C)=CC(N2N=C3C=CC=CC3=N2)=C1O RTNVDKBRTXEWQE-UHFFFAOYSA-N 0.000 description 1
- VQMHSKWEJGIXGA-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-6-dodecyl-4-methylphenol Chemical compound CCCCCCCCCCCCC1=CC(C)=CC(N2N=C3C=CC=CC3=N2)=C1O VQMHSKWEJGIXGA-UHFFFAOYSA-N 0.000 description 1
- FJGQBLRYBUAASW-UHFFFAOYSA-N 2-(benzotriazol-2-yl)phenol Chemical class OC1=CC=CC=C1N1N=C2C=CC=CC2=N1 FJGQBLRYBUAASW-UHFFFAOYSA-N 0.000 description 1
- GJKGAPPUXSSCFI-UHFFFAOYSA-N 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Chemical compound CC(C)(O)C(=O)C1=CC=C(OCCO)C=C1 GJKGAPPUXSSCFI-UHFFFAOYSA-N 0.000 description 1
- XQESJWNDTICJHW-UHFFFAOYSA-N 2-[(2-hydroxy-5-methyl-3-nonylphenyl)methyl]-4-methyl-6-nonylphenol Chemical compound CCCCCCCCCC1=CC(C)=CC(CC=2C(=C(CCCCCCCCC)C=C(C)C=2)O)=C1O XQESJWNDTICJHW-UHFFFAOYSA-N 0.000 description 1
- SITYOOWCYAYOKL-UHFFFAOYSA-N 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(3-dodecoxy-2-hydroxypropoxy)phenol Chemical compound OC1=CC(OCC(O)COCCCCCCCCCCCC)=CC=C1C1=NC(C=2C(=CC(C)=CC=2)C)=NC(C=2C(=CC(C)=CC=2)C)=N1 SITYOOWCYAYOKL-UHFFFAOYSA-N 0.000 description 1
- ZSSVCEUEVMALRD-UHFFFAOYSA-N 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C1=NC(C=2C(=CC(C)=CC=2)C)=NC(C=2C(=CC(C)=CC=2)C)=N1 ZSSVCEUEVMALRD-UHFFFAOYSA-N 0.000 description 1
- DBYBHKQEHCYBQV-UHFFFAOYSA-N 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-dodecoxyphenol Chemical compound OC1=CC(OCCCCCCCCCCCC)=CC=C1C1=NC(C=2C(=CC(C)=CC=2)C)=NC(C=2C(=CC(C)=CC=2)C)=N1 DBYBHKQEHCYBQV-UHFFFAOYSA-N 0.000 description 1
- LSNNLZXIHSJCIE-UHFFFAOYSA-N 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-tridecoxyphenol Chemical compound OC1=CC(OCCCCCCCCCCCCC)=CC=C1C1=NC(C=2C(=CC(C)=CC=2)C)=NC(C=2C(=CC(C)=CC=2)C)=N1 LSNNLZXIHSJCIE-UHFFFAOYSA-N 0.000 description 1
- WPMUMRCRKFBYIH-UHFFFAOYSA-N 2-[4,6-bis(2-hydroxy-4-octoxyphenyl)-1,3,5-triazin-2-yl]-5-octoxyphenol Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C1=NC(C=2C(=CC(OCCCCCCCC)=CC=2)O)=NC(C=2C(=CC(OCCCCCCCC)=CC=2)O)=N1 WPMUMRCRKFBYIH-UHFFFAOYSA-N 0.000 description 1
- NPUPWUDXQCOMBF-UHFFFAOYSA-N 2-[4,6-bis(4-methylphenyl)-1,3,5-triazin-2-yl]-5-octoxyphenol Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C1=NC(C=2C=CC(C)=CC=2)=NC(C=2C=CC(C)=CC=2)=N1 NPUPWUDXQCOMBF-UHFFFAOYSA-N 0.000 description 1
- PIGBIZGGEUNVCV-UHFFFAOYSA-N 2-[4,6-bis[4-(3-butoxy-2-hydroxypropoxy)-2-hydroxyphenyl]-1,3,5-triazin-2-yl]-5-(3-butoxy-2-hydroxypropoxy)phenol Chemical compound OC1=CC(OCC(O)COCCCC)=CC=C1C1=NC(C=2C(=CC(OCC(O)COCCCC)=CC=2)O)=NC(C=2C(=CC(OCC(O)COCCCC)=CC=2)O)=N1 PIGBIZGGEUNVCV-UHFFFAOYSA-N 0.000 description 1
- HHIVRACNDKRDTF-UHFFFAOYSA-N 2-[4-(2,4-dimethylphenyl)-6-(2-hydroxy-4-propoxyphenyl)-1,3,5-triazin-2-yl]-5-propoxyphenol Chemical compound OC1=CC(OCCC)=CC=C1C1=NC(C=2C(=CC(C)=CC=2)C)=NC(C=2C(=CC(OCCC)=CC=2)O)=N1 HHIVRACNDKRDTF-UHFFFAOYSA-N 0.000 description 1
- VARDNKCBWBOEBW-UHFFFAOYSA-N 2-[4-(4-methoxyphenyl)-6-phenyl-1,3,5-triazin-2-yl]phenol Chemical compound C1=CC(OC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C(=CC=CC=2)O)=N1 VARDNKCBWBOEBW-UHFFFAOYSA-N 0.000 description 1
- UXGVMFHEKMGWMA-UHFFFAOYSA-N 2-benzofuran Chemical compound C1=CC=CC2=COC=C21 UXGVMFHEKMGWMA-UHFFFAOYSA-N 0.000 description 1
- LYTMVABTDYMBQK-UHFFFAOYSA-N 2-benzothiophene Chemical compound C1=CC=CC2=CSC=C21 LYTMVABTDYMBQK-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- XAIWORCRUSEZNZ-UHFFFAOYSA-N 2-benzylsulfanyl-2-hydroxyacetic acid Chemical compound OC(=O)C(O)SCC1=CC=CC=C1 XAIWORCRUSEZNZ-UHFFFAOYSA-N 0.000 description 1
- HJXPGCTYMKCLTR-UHFFFAOYSA-N 2-bromo-9,9-diethylfluorene Chemical compound C1=C(Br)C=C2C(CC)(CC)C3=CC=CC=C3C2=C1 HJXPGCTYMKCLTR-UHFFFAOYSA-N 0.000 description 1
- QVJPMNGFKIHZML-UHFFFAOYSA-N 2-butyl-2-[(3,5-ditert-butyl-4-hydroxyphenyl)-bis(1,2,2,6,6-pentamethylpiperidin-4-yl)methyl]propanedioic acid Chemical compound C1C(C)(C)N(C)C(C)(C)CC1C(C=1C=C(C(O)=C(C=1)C(C)(C)C)C(C)(C)C)(C(C(O)=O)(C(O)=O)CCCC)C1CC(C)(C)N(C)C(C)(C)C1 QVJPMNGFKIHZML-UHFFFAOYSA-N 0.000 description 1
- UIXRDRQSWYSVNK-UHFFFAOYSA-N 2-butyl-4,6-dimethylphenol Chemical compound CCCCC1=CC(C)=CC(C)=C1O UIXRDRQSWYSVNK-UHFFFAOYSA-N 0.000 description 1
- XRCRJFOGPCJKPF-UHFFFAOYSA-N 2-butylbenzene-1,4-diol Chemical compound CCCCC1=CC(O)=CC=C1O XRCRJFOGPCJKPF-UHFFFAOYSA-N 0.000 description 1
- IJVRPNIWWODHHA-UHFFFAOYSA-N 2-cyanoprop-2-enoic acid Chemical compound OC(=O)C(=C)C#N IJVRPNIWWODHHA-UHFFFAOYSA-N 0.000 description 1
- AKNMPWVTPUHKCG-UHFFFAOYSA-N 2-cyclohexyl-6-[(3-cyclohexyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound OC=1C(C2CCCCC2)=CC(C)=CC=1CC(C=1O)=CC(C)=CC=1C1CCCCC1 AKNMPWVTPUHKCG-UHFFFAOYSA-N 0.000 description 1
- IXAKLSFFPBJWBS-UHFFFAOYSA-N 2-cycloundecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diazaspiro[4.5]decan-4-one Chemical compound C1C(C)(C)NC(C)(C)CC21C(=O)NC(C1CCCCCCCCCC1)O2 IXAKLSFFPBJWBS-UHFFFAOYSA-N 0.000 description 1
- ZPIRWAHWDCHWLM-UHFFFAOYSA-N 2-dodecylsulfanylethanol Chemical compound CCCCCCCCCCCCSCCO ZPIRWAHWDCHWLM-UHFFFAOYSA-N 0.000 description 1
- PCKZAVNWRLEHIP-UHFFFAOYSA-N 2-hydroxy-1-[4-[[4-(2-hydroxy-2-methylpropanoyl)phenyl]methyl]phenyl]-2-methylpropan-1-one Chemical compound C1=CC(C(=O)C(C)(O)C)=CC=C1CC1=CC=C(C(=O)C(C)(C)O)C=C1 PCKZAVNWRLEHIP-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- GAODDBNJCKQQDY-UHFFFAOYSA-N 2-methyl-4,6-bis(octylsulfanylmethyl)phenol Chemical compound CCCCCCCCSCC1=CC(C)=C(O)C(CSCCCCCCCC)=C1 GAODDBNJCKQQDY-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- ZYJXQDCMXTWHIV-UHFFFAOYSA-N 2-tert-butyl-4,6-bis(octylsulfanylmethyl)phenol Chemical compound CCCCCCCCSCC1=CC(CSCCCCCCCC)=C(O)C(C(C)(C)C)=C1 ZYJXQDCMXTWHIV-UHFFFAOYSA-N 0.000 description 1
- YFHKLSPMRRWLKI-UHFFFAOYSA-N 2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenyl)sulfanyl-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(SC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 YFHKLSPMRRWLKI-UHFFFAOYSA-N 0.000 description 1
- HXIQYSLFEXIOAV-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)sulfanyl-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1SC1=CC(C(C)(C)C)=C(O)C=C1C HXIQYSLFEXIOAV-UHFFFAOYSA-N 0.000 description 1
- WYFBLIAPFJXCBF-UHFFFAOYSA-N 2-tert-butyl-4-(dioctadecoxyphosphorylmethyl)-6-methylphenol Chemical compound CCCCCCCCCCCCCCCCCCOP(=O)(OCCCCCCCCCCCCCCCCCC)CC1=CC(C)=C(O)C(C(C)(C)C)=C1 WYFBLIAPFJXCBF-UHFFFAOYSA-N 0.000 description 1
- RKLRVTKRKFEVQG-UHFFFAOYSA-N 2-tert-butyl-4-[(3-tert-butyl-4-hydroxy-5-methylphenyl)methyl]-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 RKLRVTKRKFEVQG-UHFFFAOYSA-N 0.000 description 1
- MOOLTXVOHPAOAP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-methyl-1-sulfanylpentadecyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(S)(CC(C)CCCCCCCCCCCC)C1=CC(C(C)(C)C)=C(O)C=C1C MOOLTXVOHPAOAP-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- UGXGWRYMSRRFMQ-UHFFFAOYSA-N 2-tert-butyl-4-[2-(5-tert-butyl-4-hydroxy-2-methylphenyl)-1-sulfanylhexadecan-2-yl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CS)(CCCCCCCCCCCCCC)C1=CC(C(C)(C)C)=C(O)C=C1C UGXGWRYMSRRFMQ-UHFFFAOYSA-N 0.000 description 1
- XMUNJUUYEJAAHG-UHFFFAOYSA-N 2-tert-butyl-5-methyl-4-[1,5,5-tris(5-tert-butyl-4-hydroxy-2-methylphenyl)pentyl]phenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1C(C=1C(=CC(O)=C(C=1)C(C)(C)C)C)CCCC(C=1C(=CC(O)=C(C=1)C(C)(C)C)C)C1=CC(C(C)(C)C)=C(O)C=C1C XMUNJUUYEJAAHG-UHFFFAOYSA-N 0.000 description 1
- GPNYZBKIGXGYNU-UHFFFAOYSA-N 2-tert-butyl-6-[(3-tert-butyl-5-ethyl-2-hydroxyphenyl)methyl]-4-ethylphenol Chemical compound CC(C)(C)C1=CC(CC)=CC(CC=2C(=C(C=C(CC)C=2)C(C)(C)C)O)=C1O GPNYZBKIGXGYNU-UHFFFAOYSA-N 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- ODJQKYXPKWQWNK-UHFFFAOYSA-N 3,3'-Thiobispropanoic acid Chemical compound OC(=O)CCSCCC(O)=O ODJQKYXPKWQWNK-UHFFFAOYSA-N 0.000 description 1
- GUCMKIKYKIHUTM-UHFFFAOYSA-N 3,3,5,5-tetramethyl-1-[2-(3,3,5,5-tetramethyl-2-oxopiperazin-1-yl)ethyl]piperazin-2-one Chemical compound O=C1C(C)(C)NC(C)(C)CN1CCN1C(=O)C(C)(C)NC(C)(C)C1 GUCMKIKYKIHUTM-UHFFFAOYSA-N 0.000 description 1
- RWYIKYWUOWLWHZ-UHFFFAOYSA-N 3,3-dimethyl-2,4-dihydro-1,4-benzothiazine Chemical compound C1=CC=C2NC(C)(C)CSC2=C1 RWYIKYWUOWLWHZ-UHFFFAOYSA-N 0.000 description 1
- VTUKKVHSZDBIPA-UHFFFAOYSA-N 3,5,8-trioxabicyclo[2.2.2]octane Chemical compound O1CC2COC1OC2 VTUKKVHSZDBIPA-UHFFFAOYSA-N 0.000 description 1
- BVGUNYMSTQHLIC-UHFFFAOYSA-N 3,5-ditert-butyl-2-(2,4-ditert-butyl-6-methylphenyl)-4-hydroxybenzoic acid Chemical compound CC1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1C1=C(C(O)=O)C=C(C(C)(C)C)C(O)=C1C(C)(C)C BVGUNYMSTQHLIC-UHFFFAOYSA-N 0.000 description 1
- AIBRSVLEQRWAEG-UHFFFAOYSA-N 3,9-bis(2,4-ditert-butylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP1OCC2(COP(OC=3C(=CC(=CC=3)C(C)(C)C)C(C)(C)C)OC2)CO1 AIBRSVLEQRWAEG-UHFFFAOYSA-N 0.000 description 1
- SSADPHQCUURWSW-UHFFFAOYSA-N 3,9-bis(2,6-ditert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C)=CC(C(C)(C)C)=C1OP1OCC2(COP(OC=3C(=CC(C)=CC=3C(C)(C)C)C(C)(C)C)OC2)CO1 SSADPHQCUURWSW-UHFFFAOYSA-N 0.000 description 1
- YLUZWKKWWSCRSR-UHFFFAOYSA-N 3,9-bis(8-methylnonoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound C1OP(OCCCCCCCC(C)C)OCC21COP(OCCCCCCCC(C)C)OC2 YLUZWKKWWSCRSR-UHFFFAOYSA-N 0.000 description 1
- PZRWFKGUFWPFID-UHFFFAOYSA-N 3,9-dioctadecoxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound C1OP(OCCCCCCCCCCCCCCCCCC)OCC21COP(OCCCCCCCCCCCCCCCCCC)OC2 PZRWFKGUFWPFID-UHFFFAOYSA-N 0.000 description 1
- KJEKRODBOPOEGG-UHFFFAOYSA-N 3-(3,5-ditert-butyl-4-hydroxyphenyl)-n-[3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoylamino]propyl]propanamide Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)NCCCNC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 KJEKRODBOPOEGG-UHFFFAOYSA-N 0.000 description 1
- HXLAEGYMDGUSBD-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(OCC)CCCN HXLAEGYMDGUSBD-UHFFFAOYSA-N 0.000 description 1
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 1
- SAEZGDDJKSBNPT-UHFFFAOYSA-N 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione Chemical compound O=C1C(CCCCCCCCCCCC)CC(=O)N1C1CC(C)(C)N(C)C(C)(C)C1 SAEZGDDJKSBNPT-UHFFFAOYSA-N 0.000 description 1
- FBIXXCXCZOZFCO-UHFFFAOYSA-N 3-dodecyl-1-(2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidine-2,5-dione Chemical compound O=C1C(CCCCCCCCCCCC)CC(=O)N1C1CC(C)(C)NC(C)(C)C1 FBIXXCXCZOZFCO-UHFFFAOYSA-N 0.000 description 1
- JPEVEWTZGBSVHD-UHFFFAOYSA-N 3-ethenoxy-1-(3-ethenoxyprop-1-enoxy)prop-1-ene Chemical compound C(=C)OCC=COC=CCOC=C JPEVEWTZGBSVHD-UHFFFAOYSA-N 0.000 description 1
- JDFDHBSESGTDAL-UHFFFAOYSA-N 3-methoxypropan-1-ol Chemical compound COCCCO JDFDHBSESGTDAL-UHFFFAOYSA-N 0.000 description 1
- GBSGXZBOFKJGMG-UHFFFAOYSA-N 3-propan-2-yloxypropan-1-ol Chemical compound CC(C)OCCCO GBSGXZBOFKJGMG-UHFFFAOYSA-N 0.000 description 1
- LVNLBBGBASVLLI-UHFFFAOYSA-N 3-triethoxysilylpropylurea Chemical compound CCO[Si](OCC)(OCC)CCCNC(N)=O LVNLBBGBASVLLI-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- HPFWYRKGZUGGPB-UHFFFAOYSA-N 4,6-dichloro-n-(2,4,4-trimethylpentan-2-yl)-1,3,5-triazin-2-amine Chemical compound CC(C)(C)CC(C)(C)NC1=NC(Cl)=NC(Cl)=N1 HPFWYRKGZUGGPB-UHFFFAOYSA-N 0.000 description 1
- NPYDPROENPLGBR-UHFFFAOYSA-N 4,6-dichloro-n-cyclohexyl-1,3,5-triazin-2-amine Chemical compound ClC1=NC(Cl)=NC(NC2CCCCC2)=N1 NPYDPROENPLGBR-UHFFFAOYSA-N 0.000 description 1
- QRLSTWVLSWCGBT-UHFFFAOYSA-N 4-((4,6-bis(octylthio)-1,3,5-triazin-2-yl)amino)-2,6-di-tert-butylphenol Chemical compound CCCCCCCCSC1=NC(SCCCCCCCC)=NC(NC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=N1 QRLSTWVLSWCGBT-UHFFFAOYSA-N 0.000 description 1
- GQBHYWDCHSZDQU-UHFFFAOYSA-N 4-(2,4,4-trimethylpentan-2-yl)-n-[4-(2,4,4-trimethylpentan-2-yl)phenyl]aniline Chemical compound C1=CC(C(C)(C)CC(C)(C)C)=CC=C1NC1=CC=C(C(C)(C)CC(C)(C)C)C=C1 GQBHYWDCHSZDQU-UHFFFAOYSA-N 0.000 description 1
- UQAMDAUJTXFNAD-UHFFFAOYSA-N 4-(4,6-dichloro-1,3,5-triazin-2-yl)morpholine Chemical compound ClC1=NC(Cl)=NC(N2CCOCC2)=N1 UQAMDAUJTXFNAD-UHFFFAOYSA-N 0.000 description 1
- VAMBUGIXOVLJEA-UHFFFAOYSA-N 4-(butylamino)phenol Chemical compound CCCCNC1=CC=C(O)C=C1 VAMBUGIXOVLJEA-UHFFFAOYSA-N 0.000 description 1
- STEYNUVPFMIUOY-UHFFFAOYSA-N 4-Hydroxy-1-(2-hydroxyethyl)-2,2,6,6-tetramethylpiperidine Chemical compound CC1(C)CC(O)CC(C)(C)N1CCO STEYNUVPFMIUOY-UHFFFAOYSA-N 0.000 description 1
- VGEJJASMUCILJT-UHFFFAOYSA-N 4-[2-[4,6-bis[2-(3,5-ditert-butyl-4-hydroxyphenyl)ethyl]-1,3,5-triazin-2-yl]ethyl]-2,6-ditert-butylphenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC=2N=C(CCC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)N=C(CCC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)N=2)=C1 VGEJJASMUCILJT-UHFFFAOYSA-N 0.000 description 1
- QVXGXGJJEDTQSU-UHFFFAOYSA-N 4-[4-hydroxy-2,5-di(pentan-2-yl)phenyl]sulfanyl-2,5-di(pentan-2-yl)phenol Chemical compound C1=C(O)C(C(C)CCC)=CC(SC=2C(=CC(O)=C(C(C)CCC)C=2)C(C)CCC)=C1C(C)CCC QVXGXGJJEDTQSU-UHFFFAOYSA-N 0.000 description 1
- IYUSCCOBICHICG-UHFFFAOYSA-N 4-[[2,4-bis(3,5-ditert-butyl-4-hydroxyphenoxy)-1h-triazin-6-yl]oxy]-2,6-ditert-butylphenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(ON2N=C(OC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C=C(OC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)N2)=C1 IYUSCCOBICHICG-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- BOQNWBDBDUWBMT-UHFFFAOYSA-N 4-[[bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]amino]methyl]-2,6-ditert-butylphenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CN(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BOQNWBDBDUWBMT-UHFFFAOYSA-N 0.000 description 1
- UVHHADIQQIICAV-UHFFFAOYSA-N 4-amino-3-[[4-[4-[(1-amino-4-sulfonaphthalen-2-yl)diazenyl]-2-methylphenyl]-3-methylphenyl]diazenyl]naphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(N)C(N=NC=3C=C(C(=CC=3)C=3C(=CC(=CC=3)N=NC=3C(=C4C=CC=CC4=C(C=3)S(O)(=O)=O)N)C)C)=CC(S(O)(=O)=O)=C21 UVHHADIQQIICAV-UHFFFAOYSA-N 0.000 description 1
- WTWGHNZAQVTLSQ-UHFFFAOYSA-N 4-butyl-2,6-ditert-butylphenol Chemical compound CCCCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 WTWGHNZAQVTLSQ-UHFFFAOYSA-N 0.000 description 1
- 125000003143 4-hydroxybenzyl group Chemical group [H]C([*])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 1
- VCOONNWIINSFBA-UHFFFAOYSA-N 4-methoxy-n-(4-methoxyphenyl)aniline Chemical compound C1=CC(OC)=CC=C1NC1=CC=C(OC)C=C1 VCOONNWIINSFBA-UHFFFAOYSA-N 0.000 description 1
- UXMKUNDWNZNECH-UHFFFAOYSA-N 4-methyl-2,6-di(nonyl)phenol Chemical compound CCCCCCCCCC1=CC(C)=CC(CCCCCCCCC)=C1O UXMKUNDWNZNECH-UHFFFAOYSA-N 0.000 description 1
- LZAIWKMQABZIDI-UHFFFAOYSA-N 4-methyl-2,6-dioctadecylphenol Chemical compound CCCCCCCCCCCCCCCCCCC1=CC(C)=CC(CCCCCCCCCCCCCCCCCC)=C1O LZAIWKMQABZIDI-UHFFFAOYSA-N 0.000 description 1
- SYRDXMZTIXTUCD-UHFFFAOYSA-N 4-methyl-5h-benzo[d][1,3,2]benzodioxaphosphocine Chemical compound O1POC2=CC=CC=C2CC2=C1C=CC=C2C SYRDXMZTIXTUCD-UHFFFAOYSA-N 0.000 description 1
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 1
- JQTYAZKTBXWQOM-UHFFFAOYSA-N 4-n-octan-2-yl-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CCCCCC)=CC=C1NC1=CC=CC=C1 JQTYAZKTBXWQOM-UHFFFAOYSA-N 0.000 description 1
- JJHKARPEMHIIQC-UHFFFAOYSA-N 4-octadecoxy-2,6-diphenylphenol Chemical compound C=1C(OCCCCCCCCCCCCCCCCCC)=CC(C=2C=CC=CC=2)=C(O)C=1C1=CC=CC=C1 JJHKARPEMHIIQC-UHFFFAOYSA-N 0.000 description 1
- BVNWQSXXRMNYKH-UHFFFAOYSA-N 4-phenyl-2h-benzotriazole Chemical compound C1=CC=CC=C1C1=CC=CC2=C1NN=N2 BVNWQSXXRMNYKH-UHFFFAOYSA-N 0.000 description 1
- DBOSBRHMHBENLP-UHFFFAOYSA-N 4-tert-Butylphenyl Salicylate Chemical compound C1=CC(C(C)(C)C)=CC=C1OC(=O)C1=CC=CC=C1O DBOSBRHMHBENLP-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- 125000001054 5 membered carbocyclic group Chemical group 0.000 description 1
- UWSMKYBKUPAEJQ-UHFFFAOYSA-N 5-Chloro-2-(3,5-di-tert-butyl-2-hydroxyphenyl)-2H-benzotriazole Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O UWSMKYBKUPAEJQ-UHFFFAOYSA-N 0.000 description 1
- SNXAXOIRGVVISE-WNFFOGKESA-M 5-amino-8-[[4-[(E)-2-[4-[(4-amino-7-sulfonaphthalen-1-yl)diazenyl]-2-sulfophenyl]ethenyl]-3-sulfophenyl]diazenyl]naphthalene-2-sulfonate Chemical compound C1=CC(=C(C=C1N=NC2=C3C=C(C=CC3=C(C=C2)N)S(=O)(=O)O)S(=O)(=O)O)/C=C/C4=C(C=C(C=C4)N=NC5=C6C=C(C=CC6=C(C=C5)N)S(=O)(=O)[O-])S(=O)(=O)O SNXAXOIRGVVISE-WNFFOGKESA-M 0.000 description 1
- 125000004008 6 membered carbocyclic group Chemical group 0.000 description 1
- CKPKHTKLLYPGFM-UHFFFAOYSA-N 6,6-dimethylheptane-1,1-diol Chemical compound CC(CCCCC(O)O)(C)C CKPKHTKLLYPGFM-UHFFFAOYSA-N 0.000 description 1
- 125000001960 7 membered carbocyclic group Chemical group 0.000 description 1
- IPRLZACALWPEGS-UHFFFAOYSA-N 7,7,9,9-tetramethyl-2-undecyl-1-oxa-3,8-diazaspiro[4.5]decan-4-one Chemical compound O1C(CCCCCCCCCCC)NC(=O)C11CC(C)(C)NC(C)(C)C1 IPRLZACALWPEGS-UHFFFAOYSA-N 0.000 description 1
- VPOKLVDHXARWQB-UHFFFAOYSA-N 7,7,9,9-tetramethyl-3-octyl-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound O=C1N(CCCCCCCC)C(=O)NC11CC(C)(C)NC(C)(C)C1 VPOKLVDHXARWQB-UHFFFAOYSA-N 0.000 description 1
- 125000003627 8 membered carbocyclic group Chemical group 0.000 description 1
- RAZWNFJQEZAVOT-UHFFFAOYSA-N 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound O=C1N(CCCCCCCCCCCC)C(=O)NC11CC(C)(C)N(C(C)=O)C(C)(C)C1 RAZWNFJQEZAVOT-UHFFFAOYSA-N 0.000 description 1
- BPMFPOGUJAAYHL-UHFFFAOYSA-N 9H-Pyrido[2,3-b]indole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=N1 BPMFPOGUJAAYHL-UHFFFAOYSA-N 0.000 description 1
- FMMWHPNWAFZXNH-UHFFFAOYSA-N Benz[a]pyrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC=CC2=C1 FMMWHPNWAFZXNH-UHFFFAOYSA-N 0.000 description 1
- OGBVRMYSNSKIEF-UHFFFAOYSA-N Benzylphosphonic acid Chemical class OP(O)(=O)CC1=CC=CC=C1 OGBVRMYSNSKIEF-UHFFFAOYSA-N 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- XTJYYRKHFBFRJV-UHFFFAOYSA-N CC1(NC(CC(C1)C(C(=O)O)N(C(C(=O)O)C1CC(NC(C1)(C)C)(C)C)C(C(=O)O)C1CC(NC(C1)(C)C)(C)C)(C)C)C Chemical compound CC1(NC(CC(C1)C(C(=O)O)N(C(C(=O)O)C1CC(NC(C1)(C)C)(C)C)C(C(=O)O)C1CC(NC(C1)(C)C)(C)C)(C)C)C XTJYYRKHFBFRJV-UHFFFAOYSA-N 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole Natural products C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 101000625241 Homo sapiens rRNA methyltransferase 2, mitochondrial Proteins 0.000 description 1
- 101000625245 Homo sapiens rRNA methyltransferase 3, mitochondrial Proteins 0.000 description 1
- OKOBUGCCXMIKDM-UHFFFAOYSA-N Irganox 1098 Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)NCCCCCCNC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 OKOBUGCCXMIKDM-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- 244000278243 Limnocharis flava Species 0.000 description 1
- 235000003403 Limnocharis flava Nutrition 0.000 description 1
- YHBTXTFFTYXOFV-UHFFFAOYSA-N Liquid thiophthene Chemical compound C1=CSC2=C1C=CS2 YHBTXTFFTYXOFV-UHFFFAOYSA-N 0.000 description 1
- WRQNANDWMGAFTP-UHFFFAOYSA-N Methylacetoacetic acid Chemical compound COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 description 1
- UTGQNNCQYDRXCH-UHFFFAOYSA-N N,N'-diphenyl-1,4-phenylenediamine Chemical compound C=1C=C(NC=2C=CC=CC=2)C=CC=1NC1=CC=CC=C1 UTGQNNCQYDRXCH-UHFFFAOYSA-N 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 1
- OUBMGJOQLXMSNT-UHFFFAOYSA-N N-isopropyl-N'-phenyl-p-phenylenediamine Chemical compound C1=CC(NC(C)C)=CC=C1NC1=CC=CC=C1 OUBMGJOQLXMSNT-UHFFFAOYSA-N 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- YIKSCQDJHCMVMK-UHFFFAOYSA-N Oxamide Chemical class NC(=O)C(N)=O YIKSCQDJHCMVMK-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 101000701853 Rattus norvegicus Serine protease inhibitor A3N Proteins 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- DPOPAJRDYZGTIR-UHFFFAOYSA-N Tetrazine Chemical compound C1=CN=NN=N1 DPOPAJRDYZGTIR-UHFFFAOYSA-N 0.000 description 1
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 1
- YPWFISCTZQNZAU-UHFFFAOYSA-N Thiane Chemical compound C1CCSCC1 YPWFISCTZQNZAU-UHFFFAOYSA-N 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- BEIOEBMXPVYLRY-UHFFFAOYSA-N [4-[4-bis(2,4-ditert-butylphenoxy)phosphanylphenyl]phenyl]-bis(2,4-ditert-butylphenoxy)phosphane Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(C=1C=CC(=CC=1)C=1C=CC(=CC=1)P(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C BEIOEBMXPVYLRY-UHFFFAOYSA-N 0.000 description 1
- HHFMFWAFQGUGOB-UHFFFAOYSA-N [5-(4-tert-butylbenzoyl)-2,4-dihydroxyphenyl]-(4-tert-butylphenyl)methanone Chemical compound C1=CC(C(C)(C)C)=CC=C1C(=O)C1=CC(C(=O)C=2C=CC(=CC=2)C(C)(C)C)=C(O)C=C1O HHFMFWAFQGUGOB-UHFFFAOYSA-N 0.000 description 1
- YLVXPXINUWURSG-UHFFFAOYSA-N [hydroxy(phenyl)methyl]phosphonic acid Chemical compound OP(=O)(O)C(O)C1=CC=CC=C1 YLVXPXINUWURSG-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000005129 aryl carbonyl group Chemical group 0.000 description 1
- 125000005199 aryl carbonyloxy group Chemical group 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000005200 aryloxy carbonyloxy group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 125000003289 ascorbyl group Chemical class [H]O[C@@]([H])(C([H])([H])O*)[C@@]1([H])OC(=O)C(O*)=C1O* 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- WMUIZUWOEIQJEH-UHFFFAOYSA-N benzo[e][1,3]benzoxazole Chemical compound C1=CC=C2C(N=CO3)=C3C=CC2=C1 WMUIZUWOEIQJEH-UHFFFAOYSA-N 0.000 description 1
- FZICDBOJOMQACG-UHFFFAOYSA-N benzo[h]isoquinoline Chemical compound C1=NC=C2C3=CC=CC=C3C=CC2=C1 FZICDBOJOMQACG-UHFFFAOYSA-N 0.000 description 1
- ZDZHCHYQNPQSGG-UHFFFAOYSA-N binaphthyl group Chemical group C1(=CC=CC2=CC=CC=C12)C1=CC=CC2=CC=CC=C12 ZDZHCHYQNPQSGG-UHFFFAOYSA-N 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- OPFTVULXPWUBCN-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) 2-butyl-2-[(3,5-ditert-butyl-2-hydroxyphenyl)methyl]propanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)C(C(=O)OC1CC(C)(C)N(C)C(C)(C)C1)(CCCC)CC1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1O OPFTVULXPWUBCN-UHFFFAOYSA-N 0.000 description 1
- RSOILICUEWXSLA-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)N(C)C(C)(C)C1 RSOILICUEWXSLA-UHFFFAOYSA-N 0.000 description 1
- UTJYIWKQDSWNJU-UHFFFAOYSA-N bis(2,2,6,6-tetramethyl-1-octoxypiperidin-4-yl) butanedioate Chemical compound C1C(C)(C)N(OCCCCCCCC)C(C)(C)CC1OC(=O)CCC(=O)OC1CC(C)(C)N(OCCCCCCCC)C(C)(C)C1 UTJYIWKQDSWNJU-UHFFFAOYSA-N 0.000 description 1
- OSIVCXJNIBEGCL-UHFFFAOYSA-N bis(2,2,6,6-tetramethyl-1-octoxypiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)N(OCCCCCCCC)C(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)N(OCCCCCCCC)C(C)(C)C1 OSIVCXJNIBEGCL-UHFFFAOYSA-N 0.000 description 1
- GOJOVSYIGHASEI-UHFFFAOYSA-N bis(2,2,6,6-tetramethylpiperidin-4-yl) butanedioate Chemical compound C1C(C)(C)NC(C)(C)CC1OC(=O)CCC(=O)OC1CC(C)(C)NC(C)(C)C1 GOJOVSYIGHASEI-UHFFFAOYSA-N 0.000 description 1
- ZEFSGHVBJCEKAZ-UHFFFAOYSA-N bis(2,4-ditert-butyl-6-methylphenyl) ethyl phosphite Chemical compound CC=1C=C(C(C)(C)C)C=C(C(C)(C)C)C=1OP(OCC)OC1=C(C)C=C(C(C)(C)C)C=C1C(C)(C)C ZEFSGHVBJCEKAZ-UHFFFAOYSA-N 0.000 description 1
- YTKWTCYBDMELQK-UHFFFAOYSA-N bis(2,4-ditert-butyl-6-methylphenyl)methyl dihydrogen phosphite Chemical compound CC1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1C(OP(O)O)C1=C(C)C=C(C(C)(C)C)C=C1C(C)(C)C YTKWTCYBDMELQK-UHFFFAOYSA-N 0.000 description 1
- OJZRGIRJHDINMJ-UHFFFAOYSA-N bis(3,5-ditert-butyl-4-hydroxyphenyl) hexanedioate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(OC(=O)CCCCC(=O)OC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 OJZRGIRJHDINMJ-UHFFFAOYSA-N 0.000 description 1
- 229920005605 branched copolymer Polymers 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000005569 butenylene group Chemical group 0.000 description 1
- 229940043232 butyl acetate Drugs 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001589 carboacyl group Chemical group 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000005725 cyclohexenylene group Chemical group 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- NLUNLVTVUDIHFE-UHFFFAOYSA-N cyclooctylcyclooctane Chemical compound C1CCCCCCC1C1CCCCCCC1 NLUNLVTVUDIHFE-UHFFFAOYSA-N 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- ZAKOWWREFLAJOT-UHFFFAOYSA-N d-alpha-Tocopheryl acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-UHFFFAOYSA-N 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- ISRJTGUYHVPAOR-UHFFFAOYSA-N dihydrodicyclopentadienyl acrylate Chemical compound C1CC2C3C(OC(=O)C=C)C=CC3C1C2 ISRJTGUYHVPAOR-UHFFFAOYSA-N 0.000 description 1
- ZJIPHXXDPROMEF-UHFFFAOYSA-N dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O ZJIPHXXDPROMEF-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical class C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- JKFAIQOWCVVSKC-UHFFFAOYSA-N furazan Chemical compound C=1C=NON=1 JKFAIQOWCVVSKC-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- FOYKKGHVWRFIBD-UHFFFAOYSA-N gamma-tocopherol acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 FOYKKGHVWRFIBD-UHFFFAOYSA-N 0.000 description 1
- 229940052308 general anesthetics halogenated hydrocarbons Drugs 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- NZYMWGXNIUZYRC-UHFFFAOYSA-N hexadecyl 3,5-ditert-butyl-4-hydroxybenzoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NZYMWGXNIUZYRC-UHFFFAOYSA-N 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- PJULCNAVAGQLAT-UHFFFAOYSA-N indeno[2,1-a]fluorene Chemical compound C1=CC=C2C=C3C4=CC5=CC=CC=C5C4=CC=C3C2=C1 PJULCNAVAGQLAT-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 238000007644 letterpress printing Methods 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 230000002535 lyotropic effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- UJRDRFZCRQNLJM-UHFFFAOYSA-N methyl 3-[3-(benzotriazol-2-yl)-5-tert-butyl-4-hydroxyphenyl]propanoate Chemical compound CC(C)(C)C1=CC(CCC(=O)OC)=CC(N2N=C3C=CC=CC3=N2)=C1O UJRDRFZCRQNLJM-UHFFFAOYSA-N 0.000 description 1
- VRBLLGLKTUGCSG-UHFFFAOYSA-N methyl 3-[3-tert-butyl-5-(5-chlorobenzotriazol-2-yl)-4-hydroxyphenyl]propanoate Chemical compound CC(C)(C)C1=CC(CCC(=O)OC)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O VRBLLGLKTUGCSG-UHFFFAOYSA-N 0.000 description 1
- 150000005217 methyl ethers Chemical class 0.000 description 1
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical compound C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- YIMHRDBSVCPJOV-UHFFFAOYSA-N n'-(2-ethoxyphenyl)-n-(2-ethylphenyl)oxamide Chemical compound CCOC1=CC=CC=C1NC(=O)C(=O)NC1=CC=CC=C1CC YIMHRDBSVCPJOV-UHFFFAOYSA-N 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- FPQJEXTVQZHURJ-UHFFFAOYSA-N n,n'-bis(2-hydroxyethyl)oxamide Chemical compound OCCNC(=O)C(=O)NCCO FPQJEXTVQZHURJ-UHFFFAOYSA-N 0.000 description 1
- ZJFPXDGPJMHQMW-UHFFFAOYSA-N n,n'-bis[3-(dimethylamino)propyl]oxamide Chemical compound CN(C)CCCNC(=O)C(=O)NCCCN(C)C ZJFPXDGPJMHQMW-UHFFFAOYSA-N 0.000 description 1
- FSWDLYNGJBGFJH-UHFFFAOYSA-N n,n'-di-2-butyl-1,4-phenylenediamine Chemical compound CCC(C)NC1=CC=C(NC(C)CC)C=C1 FSWDLYNGJBGFJH-UHFFFAOYSA-N 0.000 description 1
- XRXMSAXBKVILLN-UHFFFAOYSA-N n,n,n',n'-tetraphenylbut-2-ene-1,4-diamine Chemical compound C=1C=CC=CC=1N(C=1C=CC=CC=1)CC=CCN(C=1C=CC=CC=1)C1=CC=CC=C1 XRXMSAXBKVILLN-UHFFFAOYSA-N 0.000 description 1
- KESXDDATSRRGAH-UHFFFAOYSA-N n-(4-hydroxyphenyl)butanamide Chemical compound CCCC(=O)NC1=CC=C(O)C=C1 KESXDDATSRRGAH-UHFFFAOYSA-N 0.000 description 1
- JVKWTDRHWOSRFT-UHFFFAOYSA-N n-(4-hydroxyphenyl)dodecanamide Chemical compound CCCCCCCCCCCC(=O)NC1=CC=C(O)C=C1 JVKWTDRHWOSRFT-UHFFFAOYSA-N 0.000 description 1
- VQLURHRLTDWRLX-UHFFFAOYSA-N n-(4-hydroxyphenyl)nonanamide Chemical compound CCCCCCCCC(=O)NC1=CC=C(O)C=C1 VQLURHRLTDWRLX-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- ZLUHLPGJUZHFAR-UHFFFAOYSA-N n-[4-(2,4,4-trimethylpentan-2-yl)phenyl]naphthalen-1-amine Chemical compound C1=CC(C(C)(C)CC(C)(C)C)=CC=C1NC1=CC=CC2=CC=CC=C12 ZLUHLPGJUZHFAR-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- FDAKZQLBIFPGSV-UHFFFAOYSA-N n-butyl-2,2,6,6-tetramethylpiperidin-4-amine Chemical compound CCCCNC1CC(C)(C)NC(C)(C)C1 FDAKZQLBIFPGSV-UHFFFAOYSA-N 0.000 description 1
- MFAPOSYCSSQBFM-UHFFFAOYSA-N n-butyl-4-[4-[4-(butylamino)-1,2,2,6,6-pentamethylpiperidin-4-yl]-6-chloro-1,3,5-triazin-2-yl]-1,2,2,6,6-pentamethylpiperidin-4-amine Chemical compound N=1C(Cl)=NC(C2(CC(C)(C)N(C)C(C)(C)C2)NCCCC)=NC=1C1(NCCCC)CC(C)(C)N(C)C(C)(C)C1 MFAPOSYCSSQBFM-UHFFFAOYSA-N 0.000 description 1
- SRENRFDRXNVMKN-UHFFFAOYSA-N n-butyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(CCCC)C1=CC=CC=C1 SRENRFDRXNVMKN-UHFFFAOYSA-N 0.000 description 1
- BYYFPVDBAHOLDX-UHFFFAOYSA-N n-dodecyl-n-phenylaniline Chemical class C=1C=CC=CC=1N(CCCCCCCCCCCC)C1=CC=CC=C1 BYYFPVDBAHOLDX-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N n-hexadecyl alcohol Natural products CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- DVYVMJLSUSGYMH-UHFFFAOYSA-N n-methyl-3-trimethoxysilylpropan-1-amine Chemical compound CNCCC[Si](OC)(OC)OC DVYVMJLSUSGYMH-UHFFFAOYSA-N 0.000 description 1
- LVZUNTGFCXNQAF-UHFFFAOYSA-N n-nonyl-n-phenylaniline Chemical class C=1C=CC=CC=1N(CCCCCCCCC)C1=CC=CC=C1 LVZUNTGFCXNQAF-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- CVVFFUKULYKOJR-UHFFFAOYSA-N n-phenyl-4-propan-2-yloxyaniline Chemical compound C1=CC(OC(C)C)=CC=C1NC1=CC=CC=C1 CVVFFUKULYKOJR-UHFFFAOYSA-N 0.000 description 1
- NYLGUNUDTDWXQE-UHFFFAOYSA-N n-phenyl-n-prop-2-enylaniline Chemical compound C=1C=CC=CC=1N(CC=C)C1=CC=CC=C1 NYLGUNUDTDWXQE-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- RNVAPPWJCZTWQL-UHFFFAOYSA-N octadecyl 3,5-ditert-butyl-4-hydroxybenzoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 RNVAPPWJCZTWQL-UHFFFAOYSA-N 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- XQAABEDPVQWFPN-UHFFFAOYSA-N octyl 3-[3-(benzotriazol-2-yl)-5-tert-butyl-4-hydroxyphenyl]propanoate Chemical compound CC(C)(C)C1=CC(CCC(=O)OCCCCCCCC)=CC(N2N=C3C=CC=CC3=N2)=C1O XQAABEDPVQWFPN-UHFFFAOYSA-N 0.000 description 1
- DMFXLIFZVRXRRR-UHFFFAOYSA-N octyl 3-[3-tert-butyl-5-(5-chlorobenzotriazol-2-yl)-4-hydroxyphenyl]propanoate Chemical compound CC(C)(C)C1=CC(CCC(=O)OCCCCCCCC)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O DMFXLIFZVRXRRR-UHFFFAOYSA-N 0.000 description 1
- NTTIENRNNNJCHQ-UHFFFAOYSA-N octyl n-(3,5-ditert-butyl-4-hydroxyphenyl)carbamate Chemical compound CCCCCCCCOC(=O)NC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NTTIENRNNNJCHQ-UHFFFAOYSA-N 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000007649 pad printing Methods 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 125000005005 perfluorohexyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005007 perfluorooctyl group Chemical group FC(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229960000969 phenyl salicylate Drugs 0.000 description 1
- ZPNJBTBYIHBSIG-UHFFFAOYSA-N phenyl-(2,2,6,6-tetramethylpiperidin-4-yl)methanone Chemical compound C1C(C)(C)NC(C)(C)CC1C(=O)C1=CC=CC=C1 ZPNJBTBYIHBSIG-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical class OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229940068886 polyethylene glycol 300 Drugs 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000006410 propenylene group Chemical group 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical class CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 102100024984 rRNA methyltransferase 2, mitochondrial Human genes 0.000 description 1
- 102100024982 rRNA methyltransferase 3, mitochondrial Human genes 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- MABNMNVCOAICNO-UHFFFAOYSA-N selenophene Chemical compound C=1C=C[se]C=1 MABNMNVCOAICNO-UHFFFAOYSA-N 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- VMNDCBPWBMKDBI-UHFFFAOYSA-N silinane Chemical compound C1CC[SiH2]CC1 VMNDCBPWBMKDBI-UHFFFAOYSA-N 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 125000004354 sulfur functional group Chemical group 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- NZNAAUDJKMURFU-UHFFFAOYSA-N tetrakis(2,2,6,6-tetramethylpiperidin-4-yl) butane-1,2,3,4-tetracarboxylate Chemical compound C1C(C)(C)NC(C)(C)CC1OC(=O)CC(C(=O)OC1CC(C)(C)NC(C)(C)C1)C(C(=O)OC1CC(C)(C)NC(C)(C)C1)CC(=O)OC1CC(C)(C)NC(C)(C)C1 NZNAAUDJKMURFU-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- NMFKEMBATXKZSP-UHFFFAOYSA-N thieno[3,2-b]thiophene Chemical compound S1C=CC2=C1C=CS2.S1C=CC2=C1C=CS2 NMFKEMBATXKZSP-UHFFFAOYSA-N 0.000 description 1
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 150000003611 tocopherol derivatives Chemical class 0.000 description 1
- 125000002640 tocopherol group Chemical class 0.000 description 1
- 235000019149 tocopherols Nutrition 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 231100000583 toxicological profile Toxicity 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 125000006168 tricyclic group Chemical group 0.000 description 1
- INNSFNJTGFCSRN-UHFFFAOYSA-N tridecyl 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methylsulfanyl]acetate Chemical compound CCCCCCCCCCCCCOC(=O)CSCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 INNSFNJTGFCSRN-UHFFFAOYSA-N 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- IVIIAEVMQHEPAY-UHFFFAOYSA-N tridodecyl phosphite Chemical compound CCCCCCCCCCCCOP(OCCCCCCCCCCCC)OCCCCCCCCCCCC IVIIAEVMQHEPAY-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- CNUJLMSKURPSHE-UHFFFAOYSA-N trioctadecyl phosphite Chemical compound CCCCCCCCCCCCCCCCCCOP(OCCCCCCCCCCCCCCCCCC)OCCCCCCCCCCCCCCCCCC CNUJLMSKURPSHE-UHFFFAOYSA-N 0.000 description 1
- WGKLOLBTFWFKOD-UHFFFAOYSA-N tris(2-nonylphenyl) phosphite Chemical compound CCCCCCCCCC1=CC=CC=C1OP(OC=1C(=CC=CC=1)CCCCCCCCC)OC1=CC=CC=C1CCCCCCCCC WGKLOLBTFWFKOD-UHFFFAOYSA-N 0.000 description 1
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical compound CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/58—Dopants or charge transfer agents
- C09K19/586—Optically active dopants; chiral dopants
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K2019/0444—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
- C09K2019/0448—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K2019/528—Surfactants
Definitions
- the invention relates to a polymerizable LC material comprising one or more reactive mesogenic compounds and one or more compounds of formula I,
- Y S, SO or SO 2 , m is > 1 and n is > 1 ,
- the present invention relates also to a method for its preparation, a polymer film obtainable from a corresponding polymerizable LC material, to a method of preparation of such polymer film, and to the use of such polymer film and said polymerizable LC material in optical,
- Reactive mesogens can be used to make optical components, like
- RMs or RM mixtures are polymerised through the process of in-situ polymerisation.
- a multilayer film stack or optical component comprising two or more layers e.g. exhibiting different reflection wavelength.
- multilayer cholesteric polymer films have been described in prior art, such as US 6,417,902.
- EP 0 634 674 suggests to prepare a multilayer cholesteric liquid crystal polymer film by bringing together a pair of chiral nematic liquid crystal polymer films, applying pressure and heating the polymers above their glass transition
- side chain polysiloxane comprising chiral and achiral side groups is brought between two glass plates and oriented by shearing at high temperatures.
- JP 01-133003-A (Sumitomo Chem. Ind.) and JP 08-271731 -A (Nitto
- polymers with high glass temperatures like acrylates, styrenes or methacrylates are used, and is highly unsuitable in particular for mass production.
- the polymers have to be selected such that the different polymer layers exhibit different glass temperatures.
- the aligning temperature (and thus the glass temperature) of the second layer has to be lower than the glass temperature of the first layer, so as not to affect the uniform orientation of the first layer, etc. This severely limits the aligning temperature (and thus the glass temperature) of the second layer.
- polymerizable LC materials comprising a leveling agents such as a surfactant are usually required in order to achieve good
- dewetting is defined as the rupture of a thin liquid film on the substrate and the formation of droplets.
- dewetting is defined as the rupture of a thin liquid film on the substrate and the formation of droplets.
- this can lead to inhomogeneous thickness of the second CLC material when drying.
- the film can recede from the edges and in the worst case there is extreme beading of the second coated layer which leads to zero coverage of the coated area.
- the inventors of the present invention have found that the polymerizable LC material in accordance with claim 1 fulfills one or more of the above defined requirements and preferably reaches all aims at the
- the invention relates to a polymerizable LC material comprising one or reactive mesogenic compounds and one or more compounds of formula I
- R 1 a fluorinated, linear or branched alkyl group, optionally containing heteroatoms,
- spacer a single bond or a divalent organic group
- the invention also relates to a corresponding method of production for the polymerizable LC material comprising at least the step of mixing one or more reactive mesogenic compounds with one or more
- the invention further relates to a polymer network or polymer film obtainable, preferably obtained, from the polymerizable LC material, as described above and below and to a method of production of a polymer
- the invention further relates to a method of improving the dewetting behaviour of a polymer film, obtainable, preferably obtained, from a polymerizable LC material as described above and below, by adding a
- the invention further relates to an optical component comprising one or more optical films of which one is selected from the polymer films obtainable from a polymerizable LC materials as described above and
- the invention further relates to the use of a optical component or a polymer film or a polymerizable LC material, as described above and below, in optical, electrooptical, information storage, decorative and
- the invention further relates to a electrooptical device, such as an LCD or an OLED comprising one or more optical components or polymer films or polymerizable LC materials, as described above and below.
- a electrooptical device such as an LCD or an OLED comprising one or more optical components or polymer films or polymerizable LC materials, as described above and below.
- the invention further relates to electrooptical device in the field of augmented or virtual reality such as head mounted devices comprising one or more optical components, a polymer film of a polymerizable material as described above and below.
- polymer will be understood to mean a molecule that encompasses a backbone of one or more distinct types of repeating units (the smallest constitutional unit of the molecule) and is inclusive of
- polymer is inclusive of, in addition to the polymer itself, residues from initiators, catalysts, and other elements attendant to the synthesis of such a polymer, where such residues are understood as not being covalently incorporated thereto.
- (meth)acrylic polymer as used in the present invention includes a polymer obtained from acrylic monomers, a polymer obtainable from methacrylic monomers, and a corresponding co-polymer obtainable from mixtures of such monomers.
- polymerization means the chemical process to form a polymer by bonding together multiple polymerizable groups or polymer precursors (polymerizable compounds) containing such polymerizable groups.
- film and “layer” include rigid or flexible, self-supporting or
- liquid crystal or “LC” relates to materials having liquidcrystalline mesophases in some temperature ranges (thermotropic LCs) or
- mammalsogenic compound and “liquid crystal compound” mean a compound comprising one or more calamitic (rod- or board/lath-shaped) or
- mesogenic group means a group with the ability to induce liquid-crystalline phase (or mesophase) behaviour.
- the compounds comprising mesogenic groups do not necessarily have to exhibit a liquid-crystalline mesophase themselves. It is also possible that they show liquid-crystalline mesophases only in
- a calamitic mesogenic group is usually comprising a mesogenic core consisting of one or more aromatic or non-aromatic cyclic groups connected to each other directly or via linkage groups, optionally comprising terminal groups attached to the ends of the mesogenic core,
- terminal and lateral groups are usually selected e.g. from carbyl or hydrocarbyl groups, polar groups like halogen, nitro, hydroxy, etc., or polymerizable groups.
- reactive mesogen means a polymerizable mesogenic or liquid crystal compound, preferably a monomeric compound. These compounds can be used as pure compounds or as mixtures of reactive mesogens with other compounds functioning as photoinitiators, inhibitors, surfactants, stabilizers, chain transfer agents, non-polymerizable compounds, etc.
- Polymerizable compounds with one polymerizable group are also referred to as “monoreactive” compounds, compounds with two polymerizable groups as “direactive” compounds, and compounds with more than two polymerizable groups as “multireactive” compounds.
- non-mesogenic compound or material means a compound or material that does not contain a mesogenic group as defined above.
- Visible light is electromagnetic radiation that has wavelength in a range from about 400 nm to about 740 nm.
- Ultraviolet (UV) light is electromagnetic radiation with a wavelength in a range from about 200 nm to about 450 nm.
- the Irradiance (E e ) or radiation power is defined as the power of electromagnetic radiation (d0) per unit area (dA) incident on a surface:
- the radiant exposure or radiation dose (He), is as the irradiance or radiation power (E e ) per time (t):
- clearing point means the temperature at which the transition between the mesophase with the highest temperature range and the isotropic phase occurs.
- director is known in prior art and means the preferred orientation direction of the long molecular axes (in case of calamitic compounds) or short molecular axes (in case of discotic compounds) of the liquid-crystalline or RM molecules. In case of uniaxial ordering of such anisotropic molecules, the director is the axis of anisotropy.
- alignment or “orientation” relates to alignment (orientational ordering) of anisotropic units of material such as small molecules or fragments of big molecules in a common direction named “alignment direction”.
- alignment direction In an aligned layer of liquid-crystalline or RM material the liquid ⁇
- 25 crystalline director coincides with the alignment direction so that the alignment direction corresponds to the direction of the anisotropy axis of the material.
- crystalline or RM material for example in a layer of the material, mean that the long molecular axes (in case of calamitic compounds) or the short molecular axes (in case of discotic compounds) of the liquid-crystalline or RM molecules are oriented substantially in the same direction. In other words, the lines of liquid-crystalline director are parallel.
- homeotropic structure or “homeotropic orientation” refers to a film wherein the optical axis is substantially perpendicular to the film plane.
- planar structure or “planar orientation” refers to a film wherein
- the optical axis is substantially parallel to the film plane.
- a plate refers to an optical retarder utilizing a layer of uniaxially birefringent material with its extraordinary axis oriented parallel to the plane of the layer.
- C plate refers to an optical retarder utilizing a layer of uniaxially birefringent material with its extraordinary axis oriented perpendicular to the plane of the layer.
- A/C-plates comprising optically uniaxial birefringent liquid crystal material with uniform orientation
- the optical axis of the film is given by the direction of the extraordinary axis.
- An A (or C) plate comprising optically uniaxial birefringent material with positive birefringence is also referred to as "positive A (or C) plate” or "+ A (or +C) plate".
- An A (or C) plate comprising a film of optically uniaxial birefringent material with negative birefringence, such as discotic anisotropic materials is also referred to as "negative A (or C) A (or C) plate” depending on the orientation of the discotic materials.
- 25 calamitic material with a reflection band in the UV part of the spectrum also has the optics of a negative C plate.
- the birefringence An is defined as follows
- the average effective refractive index n av . and the ordinary refractive index n 0 can be measured using an Abbe refractometer. An can then be calculated from the above equations.
- Hydrocarbyl group denotes a carbyl group, which additionally contains one or more H atoms and optionally one or more heteroatoms, such as, for example, N, O, S, P, Si, Se, As, Te or Ge.
- a carbyl or hydrocarbyl group can be a saturated or unsaturated group. Unsaturated groups are, for example, aryl, alkenyl, or alkinyl groups.
- a carbyl or hydrocarbyl group having more than 3 C atoms can be straight chain, branched and/or cyclic and may contain spiro links or condensed rings.
- Preferred carbyl and hydrocarbyl groups are optionally substituted alkyl, P22-169
- carbyl and hydrocarbyl groups are C1-C40 alkyl, C2-C40 alkenyl, C2-C40 alkinyl, C3-C40 allyl, C4-C40 alkyldienyl, C4-C40 polyenyl, Ce- C40 aryl, C6-C40 alkylaryl, C6-C40 arylalkyl, C6-C40 alkylaryloxy, C6-C40 aryl ⁇
- carbyl and hydrocarbyl groups are straight-chain, branched or cyclic alkyl radicals having 1 to 40, preferably 1 to 25 C atoms, more preferably 1 to 12 C atoms, which are unsubstituted or mono- or polysubstituted by F, Cl, Br, I or CN and in which one or more non- adjacent CH2 groups may each be replaced, independently of one
- R x preferably denotes H, halogen, a straight-chain, branched or
- Preferred alkyl groups are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, 2-methylbutyl, n-pentyl, s-pentyl, n-hexyl, 2-ethylhexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl,
- CH2 groups may each be replaced, independently of one another, by
- Preferred alkenyl groups are, for example, ethenyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octenyl, cyclooctenyl, etc.
- Preferred alkinyl groups are, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, octynyl, etc.
- Preferred alkoxy groups are, for example, methoxy, ethoxy, 2-methoxy- ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, 2-
- Preferred amino groups are, for example, dimethylamino, methylamino, methylphenylamino, phenylamino, etc.
- Aryl and heteroaryl groups can be monocyclic or polycyclic, i.e. they can
- Heteroaryl groups contain one or more heteroatoms, preferably selected from 0, N, S, and Se.
- Preferred aryl groups are, for example, phenyl, biphenyl, terphenyl,
- Preferred heteroaryl groups are, for example, 5-membered rings, such as
- heteroaryl groups may also be substituted by alkyl, alkoxy, thioalkyl, fluorine, fluoroalkyl or further aryl or heteroaryl groups.
- non-aromatic alicyclic and heterocyclic groups encompass both saturated rings, i.e. those that contain exclusively single bonds, and partially unsaturated rings, i.e. those that may also contain multiple bonds.
- Heterocyclic rings contain one or more heteroatoms, preferably selected
- the (non-aromatic) alicyclic and heterocyclic groups can be monocyclic, i.e. contain only one ring (such as, for example, cyclohexane), or polycyclic, i.e. contain a plurality of rings (such as, for example, decahydronaphthalene or bicyclooctane). Particular preference is given to saturated
- Preferred alicyclic and heterocyclic groups are, for example, 5-membered groups, such as cyclopentane, tetrahydrofuran, tetrahydrothiofuran, pyr ⁇
- rolidine 6-membered groups, such as cyclohexane, silinane, cyclohexene, tetrahydropyran, tetrahydrothiopyran, 1 ,3-dioxane, 1 ,3-dithiane, piperidine, 7-membered groups, such as cycloheptane, and fused groups, such as tetrahydronaphthalene, decahydronaphthalene, indane, bicyclo[1 .1 .1 ]- pentane-1 ,3-diyl, bicyclo[2.2.2]octane-1 ,4-diyl, spiro[3.3]heptane-2,6-diyl,
- aryl, heteroaryl, (non-aromatic) alicyclic and heterocyclic groups optionally have one or more substituents, which are preferably selected from the group comprising silyl, sulfo, sulfonyl, formyl, amine, imine, nitrile,
- substituents are, for example, solubility-promoting groups, such as alkyl or alkoxy, electron-withdrawing groups, such as fluorine, nitro or
- Tg glass transition temperature
- Y x denotes halogen, optionally substituted silyl, optionally substituted aryl or heteroaryl having 4 to 40, preferably 4 to 20 ring atoms, and straight-chain or branched alkyl, alkenyl, alkinyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or
- Substituted silyl or aryl preferably means substituted by halogen, -CN, Ry, -ORy, -CO-Ry, -CO-O-Ry, -O-CO-Ry or -O-CO-O-Ry, in which Ry
- H a straight-chain, branched or cyclic alkyl chain having 1 to 12 C atoms.
- L has, on each occurrence identically or differently, one of the meanings given above and below, and is preferably F, Cl, CN, NO2, CH3, C2H5, C(CH 3 ) 3 , CH(CH 3 ) 2 , CH 2 CH(CH3)C2H5, OCH3, OC2H5, COCH3,
- COC2H5, COOCH3, COOC2H5, CF 3 , OCF3, OCHF2, OC2F5 or P-Sp- very preferably F, Cl, CN, CH3, C2H5, OCH3, COCH3, OCF3 or P-Sp-, most preferably F, Cl, CH3, OCH3, COCH3 or OCF3.
- Halogen denotes F, Cl, Br or I, preferably F or Cl, more preferably F.
- W 1 denotes H, F, Cl, CN, CFs, phenyl or alkyl having 1 to 5 C atoms, in
- W 2 denotes H or alkyl having 1 to 5 C atoms, in particular H, methyl, ethyl or n-propyl,
- W 3 and W 4 each, independently of one another, denote H, Cl or alkyl having 1 to 5 C atoms, Phe denotes 1 ,4-phenylene, which is optionally substituted by one or more radicals L as being defined above but being different from P-Sp, preferably preferred substituents L are F, Cl, CN, NO2, CH 3 , C2H5, OCH3, OC2H5, COCH3, COC2H5, COOCH3, COOC2H5, CF 3 ,
- W 2 denotes H or alkyl having 1 to 5 C atoms, in particular H, methyl, ethyl or n-propyl,
- polymerizable groups (P) are vinyloxy, acrylate, methacrylate, fluoroacrylate, chloroacrylate, oxetane and epoxide, most preferably acrylate or methacrylate, in particular acrylate.
- all multireactive polymerizable compounds and sub-formulae thereof contain instead of one or more radicals P-Sp-, one or more branched radicals containing two or more polymerizable groups P (multireactive polymerizable radicals).
- Suitable radicals of this type, and polymerizable compounds containing them, are described, for example, in US 7,060,200 B1 or US 2006/0172090 A1.
- alkyl denotes a single bond or straight-chain or branched alkylene having 1 to 12 C atoms, in which one or more non-adjacent CH2
- a a and bb each, independently of one another, denote 0, 1 , 2, 3, 4, 5 or 6,
- X has one of the meanings indicated for X', and
- P v to P z each, independently of one another, have one of the meanings indicated above for P.
- Preferred spacer groups Sp are selected from alkylene having 1 to 20,
- spacer groups Sp are selected from the formula Sp'-X',
- 10 X' denotes -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-NR ⁇ -,
- R xx and R yy each, independently of one another, denote H or alkyl having 1 to 12 C atoms, and
- X' is preferably -O-, -S- -CO-, -COO-, -OCO-, -O-COO-,
- Typical and preferred spacer groups Sp and/or Sp' are, for example, - (CH 2 ) P 1-, -(CH 2 CH2O) q i-CH 2 CH2-, -CH2CH2-S-CH2CH2-, -CH2CH2-NH- CH2CH2- or -(SiR xx R yy -O) P i-, in which p1 is an integer from 1 to 12, q1 is an integer from 1 to 3, and R xx and R yy have the above-mentioned meanings.
- Particularly preferred groups -X'-Sp'- are -(CH2) P I-, -O-(CH2) P I-, -OCO- (CH2) P I-, -OCOO-(CH2) P I-, in which p1 is an integer from 1 to 12.
- Particularly preferred groups Sp and/or Sp' are, for example, in each case
- “Achiral” (non- chiral) objects are objects that are identical to their mirror image.
- the reflection wavelength X is given by the pitch p of the cholesteric helix and the mean birefringence n of the cholesteric liquid crystal in
- a CLC medium can be prepared, for example, by doping a nematic LC
- Ci is the concentration of each individual dopant and HTPi is the helical twisting power of each individual dopant.
- the groups -COO- or -CO2- denote an ester o group of formula and the groups -OCO-, -O2C- or -OOC- denote
- a “polymer network” is a network in which all polymer chains are interconnected to form a single macroscopic entity by many crosslinks.
- the polymer network can occur in the following types:
- a graft polymer molecule is a branched polymer molecule in which one or more the side chains are different, structurally or configurationally, from the main chain.
- a star polymer molecule is a branched polymer molecule in which a single branch point gives rise to multiple linear chains or arms. If the arms are identical, the star polymer molecule is said to be regular. If adjacent arms are composed of different repeating subunits, the star polymer molecule is said to be variegated.
- a comb polymer molecule consists of a main chain with two or more three-way branch points and linear side chains. If the arms are identical the comb polymer molecule is said to be regular.
- a brush polymer molecule consists of a main chain with linear
- the words “obtainable” and “obtained” and variations of the words mean “including but not limited to”, and are not intended to (and do not) exclude other components. On the other hand, the word “obtainable” also encompasses the term “obtained” but is not limited to it.
- the compounds of formula I preferably do not contain -O-O- bonds.
- the novel compounds preferably contain the following variables:
- R 1 perfluorinated alkyl, linear or branched, optionally containing hetero ⁇
- spacer a saturated or unsaturated, branched or unbranched hydrocarbon unit, optionally containing heteroatoms, where no -0-0- bonds are present,
- 35 X an anionic, cationic, nonionic or amphoteric group
- Particularly preferred compounds of the formula (I) are those in which all
- the fluorinated group R 1 is preferably selected from the groups: CF 3 -(CF 2 )O-3-, CF 3 -(CF 2 )O-3-0-, CF3-(CF2)O-3-0-(CF 2 )I-3-
- the fluorinated group R 1 is particularly preferably a CFS-(CF2)I-2-O- group, in particular a CF3-CF2-CF2-O group.
- a preferred anionic group X can be selected from
- s stands for an integer from the range from 1 to 1000
- t stands for an integer selected from 1 , 2, 3 or 4
- w stands for an integer selected
- the preferred anionic groups here include, in particular, -COO -SO3; -OSO3; -PO3 2 ; -OPO3 2 ; -OP(O)(O’)O-, sub-formula A, and -(OCH 2 CH2)s-O-(CH 2 )t-COO-, -(OCH 2 CH2)s-O-(CH 2 )t-SO3- and
- the very particularly preferred anionic groups here include -SO3 -OSO3 -COO -PO3 2 ', -OP(O)(O’)O- or OPO3 2 -.
- a sulfonate group -SO3- is preferred.
- Preferred counterion for anionic groups X is a monovalent cation
- H + an alkali-metal cation or NR4 +
- R H or C1 - C6-alkyl which is optionally substituted by OH and all R may be identical or different.
- Particular preference is given to H + , Na + , K + , Li + and NH4 + and HO-(CH2)2-NH3 + , especially preferably Na + .
- a preferred cationic group X can be selected from
- R stands for H or Ci-4-alky I in any desired position
- Z- stands for Ch, Br, h, CH3SO3-, CF3SO3-, CHsPhSOs’, PhSO 3 ’, R 1 , R 2 and R 3 each, independently of one another, stand for H, Ci-30-alkyl, Ar or -CH2Ar and
- Ar stands for an unsubstituted or mono- or polysubstituted aromatic ring or condensed ring systems having 6 to 18 C atoms, in which, in addition, one or two CH groups may be replaced by N.
- the preferred cationic groups here include, in particular, -NR 1 R 2 R 3 + Z’ and
- a preferred nonionic group X can be selected from: linear or branched alkyl, where one or more non-adjacent C atoms have been replaced by 0,
- 10 u stands for an integer from the range from 1 to 6, preferably 1 to 4, o' stands for an integer from the range from 1 to 10, p' stands for 1 or 2,
- Ar stands for an unsubstituted, mono- or polysubstituted aromatic ring or
- the preferred nonionic groups X include, in particular, linear or
- m" an integer preferably from the range from 1 to 100, particularly preferably 1 to 30.
- R 4 and R 5 H or C1 -4-alkyl, in particular H or CH3.
- R 4 -(B-A)m"- is particularly preferably a polyethylene glycol or polypropylene glycol unit.
- a preferred amphoteric group X can be selected from the functional
- Particularly preferred compounds according to the invention are those which contain, as hydrophilic group X, one of the preferred anionic groups, the preferred nonionic groups or the preferred zwitterionic groups. Particular preference is given to compounds which contain the groups
- the hydrocarbon units of the spacer of the compounds of the formula (I) can be aliphatic or aromatic units, optionally provided with heteroatoms.
- the spacer is preferably a saturated, branched or unbranched hydrocarbon unit, preferably a saturated branched or unbranched alkylene
- C1 -C6-alkylene groups in particular C1 -C4-alkylene groups.
- the preferred heteroatom-containing hydrocarbon unit used is a polyethylene glycol or polypropylene glycol unit.
- hydrophilic group in particular an anionic, cationic, nonionic or amphoteric group, preferably one of the groups preferred for X, or in the formulae (Ila), (lib), (He) and (V) are also equal to H: P22-169
- X 2 independently of one another, are an anionic or nonionic group, in particular the groups preferred for X, and R 1 and R 2 , independently of one another, are a CFS-(CF2)I-2-O- group. R 1 and R 2 , and X 1 and X 2 are preferably identical.
- Preferred counterions here are H + , Na + , K + and NH4 + , in particular Na + .
- the fluorinated compounds are preferably based on esters of maleic acid and aconitic acid.
- L 1 , L 2 and L 3 independently of one another, are a saturated or unsaturated, branched or unbranched hydrocarbon unit, optionally containing heteroatoms, where no -0-0- bonds are present, in particular a linear or branched C1 -C6-alkyl group, particularly preferably a C1 -C4-alkyl group, X is a hydrophilic group
- R 1 , R 2 and R 3 independently of one another, are a fluorinated, linear or branched alkyl group, optionally containing heteroatoms:
- L 1 , L 2 and L 3 are a linear or branched C1 -C6-
- alkyl group particularly preferably a C1 -C4-alkyl group
- X is an anionic or nonionic group
- R 1 , R 2 and R 3 independently of one another, are a CF3-(CF2)i-2-O-group.
- L 1 , L 2 and L 3 are identical and R 1 , R 2 and R 3 are identical.
- Alkyl ethers are preferably C1 -C4-alkyl ethers, in particular C1 -C2-alkyl ethers, especially methyl ethers:
- fluorinated groups R 1 and R 2 or R 1 , R 2 and R 3 are selected, independently of one another, from the groups: CF 3 -(CF 2 )O- 3 -, CF3-(CF 2 )O-3-0-, CF3-(CF 2 )O-3-0-(CF 2 )I-3-, CF3-(CF2)0-3-O-(CF 2 )l-3-O-, CF3-(CF2)0-3-O-(CF 2 )l-3-O-CF2-, CF3-(CF 2 )O-30-(CF2-0)I-8- and CF3-(CF 2 )O-3-0-(CF2-0)I-8-CF2-.
- the fluorinated groups R 1 and R 2 or R 1 , R 2 and R 3 are especially preferably, independently of one another, a CFS-(CF2)I-2-O group, in particular a CF3-CF2-CF2-O group.
- R 1 and R 2 are identical and R 1 , R 2 and R 3 are identical, o is preferably equal to 1 -30, in particular 3, 5, 6, 10, 12, 15, 18, 20 or 24, in particular 3, 10 or 18.
- the fluorosurfactants of the formulae (I) to (XXIX) have lower stability than conventional fluorosurfactants and can therefore be degraded more easily by physical/chemical processes, and are preferably not persistent.
- they are distinguished by a very efficient reduction of the surface tension energy in aqueous solutions. Also, they have a low CMC and a
- the fluorosurfactants of the formulae (I) to (XXIX) are easily biodegradable and beneficial in terms of their eco toxicological profile.
- sulfide bridge enables a broadening of the variation of the molecule structure.
- sulfides can be converted into sulfoxides using methods which are known to the person skilled in the art from the literature, which allows additional “trimming” of the molecule polarity with respect to hydrophilicity.
- the thiol educts used for the preparation of the fluorosurfactants show a significantly higher reactivity, compared to the corresponding alcohols, due to their increased nucleophilicity. This advantage can be utilized by etherification of mono- or polyfunctional alcohols, which do
- 35 additionally contain one or more thiol groups, selectively at the thiol groups to form thioethers, without the need of protecting the free OH groups of the P22-169
- the compounds of the formulae (I) to (XXIX) can preferably be used as surface-active agents, preferably as surfactant, hydrophobicisation agent, interface promoter, viscosity reducer, foam stabiliser or emulsifier.
- the polymerizable LC material is 0.01 to 5%, more preferably 0.01 to 1 % by weight, based on the entire formulation.
- the polymerizable LC material comprises one or more reactive mesogens selected from formula RMT,
- 25 P is a polymerisable group
- Sp is a spacer group or a single bond
- r2 and r3 are independently of each other 0, 1 , 2, 3 or 4,
- R 11 is P-Sp-, alkyl, alkoxy, thioalkyl, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy preferably with 1 to 15 C atoms which is more preferably optionally fluorinated.
- a and B denote, in case of multiple occurrence independently of one another, an aromatic or alicyclic group, which optionally contains one or more heteroatoms selected from N, 0 and S, and is optionally mono- or
- L polysubstituted by L, preferably 1 ,4-phenylene, pyridine-
- 10 groups are optionally replaced by 0 and/or S, wherein these groups are unsubstituted or substituted by 1 , 2, 3 or 4 groups L
- L is P-Sp-, F, Cl, Br, I, -CN, -NO2 , -NCO, -NCS, -OCN, -
- R x and R y independently of each other denote H or alkyl with 1 to
- Z 11 and Z 12 denotes, in case of multiple occurrence independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -S-CO-, -CO-S-, -O-COO-, -CO-NR 00 -, -NR 00 -CO-,
- Y 1 and Y 2 independently of each other denote H, F, Cl or CN, n is 1 , 2, 3 or 4, preferably 1 or 2, most preferably 1 ,
- n1 is an integer from 1 to 10, preferably 1 , 2, 3 or 4.
- Preferred compounds of formula RMT are those selected of formula RMTa wherein
- Sp is a spacer group or a single bond
- r1 , r2 , r3 are independently of each other 0, 1 , 2, 3 or 4, preferably 0, 1 or
- L, R 11 , Z 12 , ring B and m have one of the meanings as given above under formula RMT.
- L, P, Sp, and R 11 are as defined in formula RMT, r1 to r3 denotes 1 , 2, 3, or 4, preferably 1 or 2.
- Preferred compounds of formula RMTal to RMTa6 are selected of the
- P 11 denotes selected from the group consisting of heptadiene, vinyloxy, acrylate, methacrylate, fluoroacrylate, chloroacrylate, oxetane and epoxide groups, and very preferably denotes an acrylate, methacrylate or oxetane group, especially an acrylate or methacrylate
- x is an integer from 0 to 12, preferably from 1 to 8, more preferably 3, 4, 5 or 6, in particular x denotes 3 or 6, especially 6 and R 11 denotes alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy preferably with 1 to 15 C atoms which is more preferably optionally fluorinated and L has on
- R 11 has one of the meanings as given above under formula RMT, preferably R 11 denotes alkyl or alkoxy, more preferably, methoxy, ethoxy, propoxy, methyl, ethyl, propyl, butyl, pentyl, isopropyl or isobutyl, in particular methoxy.
- Preferred compounds of formula RMTb are those selected of formula
- RMTbO to RMTb6 5 wherein L, P, Sp, and R 11 are as defined in formula RMT, r1 to r3 denotes 1 , 2, 3, or 4, preferably 1 or 2. P22-169
- Preferred compounds of formula RMTbO to RMTb6 are selected of the following formulae 5 P22-169
- P 11 denotes selected from the group consisting of heptadiene, vinyloxy, acrylate, methacrylate, fluoroacrylate, chloroacrylate, oxetane and epoxide groups, and very preferably denotes an acrylate,
- x is an integer from 0 to 12, preferably from 1 to 8, more preferably 3, 4, 5 or 6, in particular x denotes 3 or 6, especially 6 and R 11 denotes alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy preferably with 1 to
- R 11 has one of the meanings as given above under formula RMT. preferably R 11 denotes alkyl or alkoxy.
- R 11 has one of the meanings as given above under formula RMT,
- R 11 denotes alkyl or alkoxy, more preferably, methoxy, ethoxy, propoxy, methyl, ethyl, propyl, butyl, pentyl, isopropyl or isobutyl, in particular methoxy.
- the polymerizable LC material comprises one or more,
- the polymerizable LC material comprises one or more compounds of formula RMTb2-A3, in particular the polymerizable LC material comprises a combination of compounds of formulae RMTa2-A4 and/or RMTa2-A5 with RMTb2-A3.
- the birefringence of a polymer film can be beneficially increased.
- the corresponding reflection bandwidth is related to birefringence by the following formula:
- the concentration of compounds of formula RMT and its subformulae, in the polymerizable LC material is preferably from 10% to 99 %, more preferably from 20 to 95%, especially from 25 to 90%.
- the polymerizable LC material comprises one or
- P 1 and P 2 independently of each other denote a polymerisable group
- Sp 1 and Sp 2 independently of each other are a spacer group or a single bond
- MG is a rod-shaped mesogenic group, which is preferably selected of formula MG
- a 1 and A 2 denote, in case of multiple occurrence independently of one another, an aromatic or alicyclic group, which optionally
- 30 contains one or more heteroatoms selected from N, O and S, and is optionally mono- or polysubstituted by L,
- L is P-Sp-, F, Cl, Br, I, -CN, -NO 2 , -NCO, -NCS, -OCN, -SCN, -
- R x and R y independently of each other denote H or alkyl with 1 to 12 C- atoms
- Z 1 denotes, in case of multiple occurrence independently of one
- Y 1 and Y 2 independently of each other denote H, F, Cl or CN,
- n is 1 , 2, 3 or 4, preferably 1 or 2, most preferably 2, n1 is an integer from 1 to 10, preferably 1 , 2, 3 or 4, however, under the condition that compounds of formula RMT are excluded from the compounds of formula DRM.
- Preferred groups A 1 and A 2 include, without limitation, furan, pyrrol, thiophene, oxazole, thiazole, thiadiazole, imidazole, phenylene, cyclohexylene, bicyclooctylene, cyclohexenylene, pyridine, pyrimidine, pyrazine, azulene, indane, fluorene, naphthalene, tetrahydronaphthalene,
- anthracene, phenanthrene and dithienothiophene all of which are unsubstituted or substituted by 1 , 2, 3 or 4 groups L as defined above.
- Particular preferred groups A 1 and A 2 are selected from 1 ,4-phenylene, pyridine-2,5-diyl, pyrim idine-2,5-diyl, thiophene-2, 5-diyl, naphthalene-2,6-
- CH2 groups are optionally replaced by 0 and/or S, wherein these groups are unsubstituted or substituted by 1 , 2, 3 or 4 groups L as defined above.
- Preferred RMs of formula DRM are selected of formula DRMa
- P° is, in case of multiple occurrence independently of one another, a polymerisable group, preferably an acryl, methacryl, oxetane, epoxy, vinyl, heptadiene, vinyloxy, propenyl ether or styrene
- 20 L has on each occurrence identically or differently one of the meanings given for L in formula DRM, and is preferably, in case of multiple occurrence independently of one another, selected from F, Cl, CN or optionally halogenated alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or
- Very preferred RMs of formula DRM are selected from the following
- the concentration of di- or multireactive RMs, preferably those of formula DRM and its subformulae, in the RM mixture is preferably from 1 % to 90 %, very preferably from 10 to 80%.
- monoreactive RMs 15 monoreactive RMs. These additional monoreactive RMs are preferably selected from formula MRM:
- R denotes P-Sp-, F, Cl, Br, I, -CN, -NO 2 , -NCO, -NCS, -OCN, -
- halogen preferably F or Cl
- R x and R y are independently of each other H or alkyl with 1 to 12 C- atoms, however, under the condition that compounds of formula RMT are excluded from the compound of formula MRM.
- the compounds of formula MRM are selected from the following formulae. P22-169
- R° is alkyl, alkoxy, thioalkyl, alkylcarbonyl, alkoxycarbonyl,
- X° is -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-NR 01 -, -NR 01 - CO-, -NR 01 -CO-NR 01 -, -OCH2-, -CH2O-, -SCH2-, -CH2S-
- Y° is F, Cl, CN, NO2, OCH3, OCN, SCN, SFs, or mono- oligo- or
- a 0 is, in case of multiple occurrence independently of one another,
- R 01 02 are independently of each other H, R° or Y°,
- MRM1 Especially preferred are compounds of formula MRM1 , MRM2, MRM3, MRM4, MRM5, MRM6, MRM7, in particular those of formula MRM1 , MRM4, MRM6, and MRM7.
- the concentration of all monoreactive RMs, including those of formula RMT, in the polymerizable LC material is preferably from 1 to 80%, very preferably from 5 to 50%.
- L is preferably selected from F, Cl, CN, NO2 or straight chain or branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonlyoxy or alkoxycarbonyloxy with 1 to 12 C atoms, wherein the alkyl groups are optionally perfluorinated, or P-Sp-.
- L is selected from F, Cl, CN, NO2, CH3, C2H5, C(CHs)3, CH(CH 3 ) 2 , CH 2 CH(CH3)C2H5, OCH3, OC2H5, COCH3, COC2H5, COOCH3, COOC2H5, CF3, OCF3, OCHF2, OC2F5 or P-Sp-, in particular F, Cl, CN, CH 3 , C2H5, C(CH 3 ) 3 , CH(CH 3 ) 2 , OCH3, COCH3 or OCF3, most preferably
- the polymerizable LC material according to the present invention comprises one or more chiral compounds.
- These chiral compounds may be non-mesogenic compounds or mesogenic compounds. Additionally, these chiral compounds, whether mesogenic or
- 5 non-mesogenic may be non-reactive, monoreactive or multireactive.
- the utilized chiral compounds have each alone or in combination with each other an absolute value of the helical twisting power (IHTPtotail) of 20 pm’ 1 or more, preferably of 40 pm’ 1 or more, more
- non-polymerisable chiral compounds are selected from the
- E and F are each independently 1 ,4-phenylene or trans-1 ,4-cyclo- hexylene, v is 0 or 1 , Z° is -COO- -OCO-, -CH2CH2- or a single bond, and R is alkyl, alkoxy or alkanoyl with 1 to 12 C atoms.
- Particularly preferred polymerizable LC materials that comprise one or more chiral compounds, which do not necessarily have to show a liquid crystalline phase.
- typically used chiral compounds are e.g. the commercially available R/S-5011 , CD-1 , R/S-811 and CB-15 (from Merck KGaA, Darmstadt, Germany).
- the polymerizable LC material preferably comprises 1 to 5, in particular 1
- the polymerizable LC material comprise one or more non- reactive chiral compound and/or one or more reactive chiral compounds, which are preferably selected from mono- and/or multireactive chiral compounds.
- Suitable mesogenic reactive chiral compounds preferably comprise one or more ring elements, linked together by a direct bond or via a linking group P22-169
- ring elements are preferably selected from the group of four-, five-, six- or seven-, preferably
- Preferred mono-reactive chiral compounds are selected from compounds of formula CRMa to CRMc,
- Sp* denotes a spacer Sp
- a 0 and B° are, in case of multiple occurrence independently of one another, 1 ,4-phenylene that is unsubstituted or substituted with 1 , 2, 3 or 4 groups L as defined above, or trans-1 ,4-
- X 1 and X 2 are independently of each other -O-, -COO-, -OCO-, -O-CO-O- or a single bond,
- Z°* is, in case of multiple occurrence independently of one another
- naphthalene rings in formula CRMa can additionally be
- L is, independently of each other F, Cl, CN, halogenated alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy with 1 to 5 C atoms.
- the compounds of formula CRMa are preferably selected from the group of compounds of formulae CRMa-1 .
- R is -X 2 -(CH2)x-P°* as defined in formula CRM-a, and the benzene and naphthalene rings are unsubstituted or substituted with 1 , 2, 3 or 4 groups L as defined above and below.
- the compounds of formula CRMb are preferably selected from the group of compounds of formulae CRMb-1 to CRMb-3,
- CRMb-3 wherein X 2 , A 0 , B°, Z°‘, P°‘and b have the meanings given in formula CRMa
- Preferred compounds of formula CRMb-1 are preferably selected from the group of compounds of formulae CRMb-1 a and CRMb-1 b,
- X 2 , Z°‘, P°‘and b have the meanings given in formula CRMa or one of the preferred meanings given above and below.
- Z° denotes OCOO, COO, OCO or a single bond.
- X 2 denotes OCOO, OCO, COO or a single bond.
- the compound CRMb-1 bl wherein P°* denotes in each occurrence an acrylate group and b denotes in each occurrence 4, is especially preferred and commercially available from BASF, Germany under tradename LC756.
- the compounds of formula CRMc are preferably selected from the group of compounds of formulae CRMc-1 , - 70 - wherein X 2 , A 0 , B°, Z°‘, P 0 ‘and b have the meanings given in formula CRMa
- Preferred compounds of formula CRMc-1 are preferably selected from the wherein X 2 , Z°‘, P°‘and b have the meanings given in formula CRMa or one of the preferred meanings given above and below.
- Z° denotes OCOO, COO,
- X 2 denotes 0, OCOO, OCO, COO or a single bond.
- the amount of chiral compounds in the liquid-crystalline medium is
- 20 compounds in the polymerizable liquid-crystalline material according to the present invention as a whole is in the range from 30 to 99 % by weight, more preferably in the range from 40 to 97 % by weight and even more preferably in the range from 50 to 95% by weight.
- the proportion of said mono-, di- or multireactive liquidcrystalline compounds is preferably in the range from 30 to 99.9 % by weight, more preferably in the
- 30 range from 40 to 99.9 % by weight and even more preferably in the range from 50 to 99.9% by weight.
- the proportion of di- or multireactive polymerizable mesogenic compounds in the polymerizable liquid ⁇
- 35 crystalline material according to the present invention as a whole is preferably in the range from 1 to 70 % by weight, more preferably in the P22-169
- - 72 - range from 2 to 60 % by weight and even more preferably in the range from 3 to 50% by weight.
- polymerizable mesogenic compounds of formula MRM excluding compounds of formula RMT in a polymerizable liquid-crystalline material according to the present invention as a whole is, if present, preferably in the range from 1 to 50% by weight, more preferably in the range from 2 to 45 % by weight and even more preferably in the range from 5 to 40 % by
- the proportion of multireactive polymerizable mesogenic compounds in a polymerizable liquid-crystalline material according to the present invention as a whole is, if present,
- the polymerizable LC material comprises one or more monoreactive mesogenic compounds, preferably
- MRM-1 selected from formulae MRM-1 , MRM-4, MRM-6, and/or MRM-7, one or more direactive mesogenic compounds, preferably selected from formula DRMa-1.
- the polymerizable LC material should in
- the cholesteric pitch of the polymerizable LC material is selected such, that their wavelength of reflection is in the in the range in the infrared range of the electromagnetic spectrum i.e. in the range from of
- - 73 - reflection wavelength of the liquid crystalline medium is in the range of 400 nm to 800 nm.
- the polymerizable LC material according to the present invention are
- the polymerizable LC material optionally comprises one or more further additives selected from the group consisting of further polymerization initiators, antioxidants, surfactants, stabilisers, catalysts, sensitizers, inhibitors, chain-transfer agents, co ⁇
- the polymerizable LC material optionally comprises one or more additives selected from polymerizable non- mesogenic compounds (reactive thinners).
- the amount of these additives in the polymerizable LC material is preferably from 0 to 30 %, very
- the reactive thinners used are not only substances which are referred to in the actual sense as reactive thinners, but also auxiliary compounds already mentioned above which contain one or more complementary
- the substances which are usually capable of photopolymerization,
- 35 include, for example, mono-, bi- and polyfunctional compounds containing at least one olefinic double bond. Examples thereof are vinyl esters of P22-169
- carboxylic acids for example of lauric, myristic, palmitic and stearic acid, and of dicarboxylic acids, for example of succinic acid, adipic acid, allyl and vinyl ethers and methacrylic and acrylic esters of monofunctional alcohols, for example of lauryl, myristyl, palmityl and stearyl alcohol, and
- methacrylic and acrylic esters of polyfunctional alcohols are also suitable.
- methacrylic and acrylic esters of polyfunctional alcohols in particular those which contain no further
- alcohols are bifunctional alcohols, such as ethylene glycol, propylene glycol and their more highly condensed representatives, for example diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol etc., butanediol, pentanediol, hexanediol, neopentyl
- alkoxylated phenolic compounds such as ethoxylated and propoxylated bisphenols, cyclohexanedimethanol, trifunctional and polyfunctional alcohols, such as glycerol, trimethylolpropane, butanetriol, trimethylolethane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, sorbitol, mannitol, and the corresponding alkoxylated, in particular
- polyester (meth)acrylates which are the (meth)acrylic ester of polyesterols.
- polyesterols examples are those which can be prepared by
- dicarboxylic acids preferably dicarboxylic acids
- polyols preferably diols.
- the starting materials for such hydroxylcontaining polyesters are known to the person skilled in the art.
- Dicarboxylic acids which can be employed are succinic, glutaric acid, adipic acid, sebacic acid, o-phthalic acid and isomers and hydrogenation
- Suitable polyols are the abovementioned alcohols, preferably ethyleneglycol, 1 ,2- and 1 ,3- propylene glycol, 1 ,4-butanediol, 1 ,6-hexanediol, neopentyl glycol, cyclohexanedimethanol and polyglycols of the ethylene glycol and
- Suitable reactive thinners are furthermore 1 ,4-divinylbenzene, trial ly I cyanurate, acrylic esters of tricyclodecenyl alcohol of the following formula also known under the name dihydrodicyclopentadienyl acrylate, and the allyl esters of acrylic acid, methacrylic acid and cyanoacrylic acid.
- This group includes, for example, dihydric and polyhydric alcohols, for example ethylene glycol, propylene glycol and more highly condensed representatives thereof, for example diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol etc., butanediol, pentanediol, hexanediol, neopentyl glycol, cyclohexanedimethanol, glycerol,
- dihydric and polyhydric alcohols for example ethylene glycol, propylene glycol and more highly condensed representatives thereof, for example diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol etc., butanediol, pentanediol, hexanediol, neopentyl glycol, cyclohexanedimethanol, glycerol,
- the group furthermore also includes, for example, alkoxylated phenolic compounds, for example ethoxylated and propoxylated bisphenols.
- These reactive thinners may furthermore be, for example, epoxide or urethane (meth)acrylates.
- Epoxide (meth)acrylates are, for example, those as obtainable by the reaction, known to the person skilled in the art, of epoxidized olefins or poly- or diglycidyl ether, such as bisphenol A diglycidyl ether, with (meth)acrylic acid.
- Urethane (meth)acrylates are, in particular, the products of a reaction, likewise known to the person skilled in the art, of hydroxylalkyl (meth)acrylates with poly- or diisocyanates.
- the low-crosslinking (high-crosslinking) liquidcrystalline compositions can be prepared, for example, using
- the group of diluents include, for example:
- C1-C4-alcohols for example methanol, ethanol, n-propanol, isopropanol, butanol, isobutanol, sec-butanol and, in particular, the C5-C12-alcohols n- pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, n-decanol, n- undecanol and n-dodecanol, and isomers thereof, glycols, for example 1 ,2-ethylene glycol, 1 ,2- and 1 ,3-propylene glycol, 1 ,2-, 2,3- and 1 ,4-
- glycols for example 1 ,2-ethylene glycol, 1 ,2- and 1 ,3-propylene glycol, 1 ,2-, 2,3- and 1 ,4-
- ethers for example methyl tert-butyl ether, 1 ,2-ethylene glycol mono- and dimethyl ether, 1 ,2-ethylene glycol mono- and -diethylether, 3- methoxypropanol, 3-isopropoxypropanol, tetrahydrofuran and dioxane, ketones, for example acetone, methyl ethyl ketone, methyl isobutyl ketone
- C1-C5-alkyl esters for example methyl acetate, ethyl acetate, propyl acetate, butyl acetate and amyl acetate, aliphatic and aromatic hydrocarbons, for example pentane, hexane, heptane, octane, isooctane, petroleum ether, toluene, xylene, ethylbenzene, tetralin, decalin, dimethylnaphthalene,
- oils for example olive oil, soya oil, rapeseed oil, linseed oil and sunflower oil.
- these diluents can also be mixed with water.
- suitable diluents are C1-C4-alcohols, for example methanol, ethanol, n-propanol, isopropanol, butanol,
- glycols for example 1 ,2-ethylene glycol, 1 ,2- and 1 ,3-propylene glycol, 1 ,2-, 2,3- and 1 ,4-butylene glycol, di- and triethylene glycol, and di- and tripropylene glycol
- ethers for example tetrahydrofuran and dioxane
- ketones for example acetone, methyl ethyl ketone and diacetone alcohol (4-hydroxy-4-methyl-2-pentanone)
- C4-alkyl esters for example methyl, ethyl, propyl and butyl acetate.
- the diluents are optionally employed in a proportion of from about 0 to 10.0% by weight, preferably from about 0 to 5.0% by weight, based on the total weight of the polymerizable LC material.
- lubricants and flow auxiliaries often also act as antifoams and/or deaerators and/or as auxiliaries for improving scratch resistance.
- Radiation-curing auxiliaries can also act as lubricants and flow auxiliaries and/or deaerators and/or as substrate wetting auxiliaries. In individual cases, some of these auxiliaries can also fulfil the function of an adhesion promoter (c8)).
- the antifoams in group c1 include silicon-free and silicon-containing polymers.
- the silicon-containing polymers are, for example, unmodified or modified polydialkylsiloxanes or branched copolymers, comb or block
- copolymers comprising polydialkylsiloxane and polyether units, the latter being obtainable from ethylene oxide or propylene oxide.
- the deaerators in group c1 include, for example, organic polymers, for example polyethers and polyacrylates, dialkylpolysiloxanes, in particular
- dimethylpolysiloxanes organically modified polysiloxanes, for example arylalkyl-modified polysiloxanes, and fluorosilicones.
- the action of the antifoams is essentially based on preventing foam formation or destroying foam that has already formed.
- auxiliaries are, for example, commercially available from Tego as TEGO® Foamex 800, TEGO® Foamex 805, TEGO® Foamex 810, TEGO® Foamex 815, TEGO® Foamex 825, TEGO® Foamex 835,
- TEGO® Antifoam 50 TEGO® Antifoam 105, TEGO® Antifoam 730, TEGO® Antifoam MR 1015, TEGO® Antifoam MR 1016, TEGO® Antifoam 1435, TEGO® Antifoam N, TEGO® Antifoam KS 6, TEGO® Antifoam KS 10, TEGO® Antifoam KS 53, TEGO® Antifoam KS 95,
- BYK®-021 BYK®-022, BYK®-023, BYK®-024, BYK®-025, BYK®-027, BYK®-031 , BYK®-032, BYK®-033, BYK®-034, BYK®-035, BYK®-036, BYK®-037, BYK®-045, BYK®-051 , BYK®-052, BYK®-053, BYK®-055, BYK®-057, BYK®-065, BYK®-066, BYK®-070, BYK®-080, BYK®-088, BYK®-141 and BYK®-A 530.
- auxiliaries in group c1 are optionally employed in a proportion of from about 0 to 3.0% by weight, preferably from about 0 to 2.0% by weight, based on the total weight of the polymerizable LC material.
- the lubricants and flow auxiliaries typically include silicon- free, but also silicon-containing polymers, for example polyacrylates or modifiers, low-molecular-weight polydialkylsiloxanes.
- the modification consists in some of the alkyl groups having been replaced by a wide variety of organic radicals. These organic radicals are, for example,
- polyethers 25 polyethers, polyesters or even long-chain (fluorinated)alkyl radicals, the former being used the most frequently.
- polyether radicals in the correspondingly modified polysiloxanes are usually built up from ethylene oxide and/or propylene oxide units.
- auxiliaries are, for example, commercially available from Tego as TEGO® Glide 100, TEGO® Glide ZG 400, TEGO® Glide 406, TEGO®
- TEGO® Glide B 1484 can also be used as antifoam and deaerator
- TEGO® Flow ATF TEGO® Flow 300
- TEGO® Flow 460 TEGO® Flow 425
- TEGO® Flow ZFS 460 Suitable radiation-curable lubricants and flow auxiliaries, which can also be used to improve the
- Such-auxiliaries are also available, for example, from BYK as BYK®-300
- Such-auxiliaries are also available, for example, from 3M as FC4430®.
- Such-auxiliaries are also available, for example, from Cytonix as FluorN®561 or FluorN®562.
- Such-auxiliaries are also available, for example, from Merck KGaA as Tivida® FL 2300 and Tivida® FL 2500
- the auxiliaries in group c2) are optionally employed in a proportion of from about 0 to 3.0% by weight, preferably from about 0 to 2.0% by weight, based on the total weight of the polymerizable LC material.
- the radiation-curing auxiliaries include, in particular, polysiloxanes having terminal double bonds which are, for example, a constituent of an acrylate group.
- Such auxiliaries can be crosslinked by actinic or, for example, electron radiation. These auxiliaries generally combine a number of properties together. In the uncrosslinked state, they
- auxiliaries as antifoams, deaerators and/or lubricants and flow auxiliaries (in the uncrosslinked state).
- Suitable radiation-curing auxiliaries are the products TEGO®
- Thermally curing auxiliaries in group c3) contain, for example, primary OH
- thermally curing auxiliaries which can be used, are the products BYK®-370, BYK®-373 and BYK®-375 available from BYK.
- the auxiliaries in group c3) are optionally employed in a proportion of from about 0 to 5.0% by weight, preferably from about 0 to 3.0% by weight, based on the total weight of the polymerizable LC material.
- the substrate wetting auxiliaries in group c4) serve, in particular, to increase the wettability of the substrate to be printed or coated, for example, by printing inks or coating compositions, for example compositions according to the invention.
- 25 coating compositions has an effect on the appearance of the finished (for example crosslinked) print or coating.
- auxiliaries are commercially available, for example from Tego as TEGO® Wet KL 245, TEGO® Wet 250, TEGO® Wet 260
- BYK wet ZFS 453 and from BYK as BYK®-306, BYK®-307, BYK®-310, BYK®-333, BYK®-344, BYK®-345, BYK®-346 and Byk®-348.
- the auxiliaries in group c4) are optionally employed in a proportion of from about 0 to 3.0% by weight, preferably from about 0 to 1 .5% by weight,
- the wetting and dispersion auxiliaries in group c5) serve, in particular, to prevent the flooding and floating and the sedimentation of pigments and are therefore, if necessary, suitable in particular in pigmented compositions.
- auxiliaries stabilize pigment dispersions essentially through electrostatic repulsion and/or steric hindrance of the pigment particles containing these additives, where, in the latter case, the interaction of the auxiliary with the ambient medium (for example binder) plays a major role.
- Such wetting and dispersion auxiliaries are commercially available, for example from Tego, as TEGO® Dispers 610, TEGO® Dispers 610 S, TEGO® Dispers 630, TEGO® Dispers 700, TEGO® Dispers 705, TEGO® Dispers 710, TEGO® Dispers 720 W, TEGO® Dispers 725 W, TEGO®
- the hydrophobicizing agents in group c6) can be used to give water- repellent properties to prints or coatings produced, for example, using compositions according to the invention. This prevents or at least greatly suppresses swelling due to water absorption and thus a change in, for
- the optical properties of such prints or coatings when used, for example, as a printing ink in offset printing, water absorption can thereby be prevented or at least greatly reduced.
- Such hydrophobicizing agents are commercially available, for example, from Tego as Tego® Phobe WF, Tego® Phobe 1000, Tego® Phobe 1000 S, Tego® Phobe 1010, Tego® Phobe 1030, Tego® Phobe 1010, Tego® Phobe 1010, Tego® Phobe 1030, Tego® Phobe 1040, Tego® Phobe 1050, Tego® Phobe 1200, Tego® Phobe 1300, Tego® Phobe 1310 and
- the auxiliaries in group c6) are optionally employed in a proportion of from about 0 to 5.0% by weight, preferably from about 0 to 3.0% by weight, based on the total weight of the polymerizable LC material.
- adhesion promoters from group c7) serve to improve the adhesion of two interfaces in contact. It is directly evident from this that essentially the only fraction of the adhesion promoter that is effective is that located at one or the other or at both interfaces. If, for example, it is desired to apply
- adhesion promoter must be added directly to the latter or the substrate must be pre-treated with the adhesion promoters (also known as priming), i.e. this substrate is given modified chemical and/or physical surface properties.
- the substrate has previously been primed with a primer
- the adhesion properties between the substrate and the primer not only the adhesion properties between the substrate and the primer, but
- Adhesion promoters in the broader sense which may be mentioned are
- Adhesion promoters based on silanes are, for example, 3- aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-
- silanes 20 glycidyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3- chloropropyltrimethoxysilane and vinyltrimethoxysilane.
- silanes are commercially available from Huis, for example under the tradename DYNASILAN®.
- additives are to be added as auxiliaries from group c7) to the polymerizable LC materials according to the invention, their proportion optionally corresponds to from about 0 to 5.0% by weight, based on the total weight of the polymerizable LC material.
- concentration data serve merely as guidance, since the amount and
- the auxiliaries for improving the scratch resistance in group c8) include, for example, the abovementioned products TEGO® Rad 2100, TEGO® Rad 2200, TEGO® Rad 2500, TEGO® Rad 2600 and TEGO® Rad 2700, which are available from Tego.
- the amount data given for group c3) are likewise suitable, i.e. these additives are optionally employed in a proportion of from about 0 to 5.0% by weight, preferably from about 0 to 3.0% by weight, based on the total weight of the liquid-crystalline composition.
- alkylated monophenols such as 2,6-di-tert-butyl-4-methylphenol, 2-tert-
- 25 chain for example 2,6-dinonyl-4-methylphenol, 2,4-dimethyl-6-(1 '- methylundec-1 '-yl)phenol, 2,4-dimethyl-6-(1 '-methylheptadec-1 '-yl)phenol, 2,4-dimethyl-6-(T-methyltridec-T-yl)phenol and mixtures of these compounds, alkylthiomethylphenols, such as 2,4-dioctylthiomethyl-6-tert- butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-
- Hydroquinones and alkylated hydroquinones such as 2,6-di-tert-butyl-4- methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert- amylhydrocrainone, 2,6-diphenyl-4-octadecyloxyphenol, 2,6-di-tert-
- Tocopherols such as a-tocopherol, [3-tocopherol, y-tocopherol, 5-
- tocopherol and mixtures of these compounds and tocopherol derivatives, such as tocopheryl acetate, succinate, nicotinate and polyoxyethylenesuccinate (“tocofersolate”), hydroxylated diphenyl thioethers, such as 2,2'-thiobis(6-tert-butyl-4-
- Alkylidenebisphenols such as 2,2'-methylenebis(6-tert-butyl-4-
- aromatic hydroxybenzyl compounds such as 1 ,3,5-tris(3,5-di-tert-butyl-4- hydroxybenzyl)-2,4,6-trimethyl-benzene, 1 ,4-bis(3,5-di-tert-butyl-4- hydroxybenzyl)-2,3,5,6-tetramethyl-benzene and 2,4,6-tris(3,5-di-tert-butyl-
- Triazine compounds such as 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4- hydroxyanilino)-1 ,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4- hydroxyanilino)-1 ,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-
- Benzylphosphonates such as dimethyl 2,5-di-tert-butyl-4-
- Propionic and acetic esters for example of monohydric or polyhydric
- alcohols such as methanol, ethanol, n-octanol, i-octanol, octadecanol, 1 ,6-hexanediol, 1 ,9-nonanediol, ethylene glycol, 1 ,2-propanediol, P22-169
- - 88 - neopentyl glycol thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'- bis(hydroxyethyl)oxalamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane and 4-hydroxymethyl-1-phospha-
- Propionamides based on amine derivatives such as N , N'-bis(3,5-di-tert- butyl-4-hydroxyphenylpropionyl)hexamethylenediamine, N, N'-bis(3,5-di- tert-butyl-4-hydroxyphenylpropionyl)trimethylenediamine and N,N'-bis(3,5-
- Ascorbic acid (Vitamin C) and ascorbic acid derivatives, such as ascorbyl palmitate, laurate and stearate, and ascorbyl sulfate and phosphate,
- Antioxidants based on amine compounds such as N,N'-diisopropyl-p- phenylenediamine, N,N'-di-sec-butyl-p-phenylenediamine, N , N'-bis( 1 ,4- dimethylpentyl)-p-phenylenediamine, N,N'-bis(1-ethyl-3-methylpentyl)-p- phenylenediamine, N,N'-bis(1-methylheptyl)-p-phenylenediamine, N,N'- dicyclohexyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine,
- allyldiphenylamine 4-isopropoxydiphenylamine, N-phenyl-1- naphthylamine, N-(4-tert-octylphenyl)-1 -naphthylamine, N-phenyl-2- naphthylamine, octyl-substituted diphenylamine, such as p,p'-di-tert- octyldiphenylamine, 4-n-butylaminophenol, 4-butyrylaminophenol, 4- nonanoylaminophenol, 4-dodecanoylaminophenol, 4-
- Phosphines such as triphenylphosnine triphenylphosphite, diphenyl alkyl phosphite, phenyl dialkyl phosphite,
- diphosphite bis(2,4-di-tert-butyl-6-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tris(tert-butylphenyl))pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis(2,4-di-tert-butylphenyl)4,4'- biphenylenediphosphonite, 6-isooctyloxy-2,4,8, 10-tetra-tert-butyl-12H- dibenz[d,g]-1 ,3,2-dioxaphosphocine, 6-fluoro-2,4,8, 10-tetra-tert-butyl-12-
- 2-hydroxybenzophenones such as the 4-hydroxy, 4-methoxy, 4-octyloxy,
- Esters of unsubstituted and substituted benzoic acids such as 4-tert- butylphenyl salicylate, phenyl salicylate, octylphenyl salicylate,
- dibenzoylresorcinol bis(4-tert-butylbenzoyl)resorcinol, benzoylresorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl-3, 5- di-tert-butyl-4-hydroxybenzoate, octadecyl-3, 5-di-tert-butyl-4- hydroxybenzoate and 2-methyl-4,6-di-tert-butylphenyl-3,5-di-tert-butyl-4- hydroxybenzoate,
- Acrylates such as ethyl a-cyano-[3,[3-diphenylacrylate, isooctyl a-cyano- [3,[3-diphenylacrylate, methyl a-methoxycarbonylcinnamate, methyl a- cyano-[3-methyl-p-methoxycinnamate, butyl-a-cyano-[3-methyl-p- methoxycinnamate and methyl-a-methoxycarbonyl-p-methoxycinnamate,
- 5 sterically hindered amines such as bis(2,2,6,6-tetramethylpiperidin-4- yl)sebacate, bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate, bis(1 , 2, 2,6,6- pentamethylpiperidin-4-yl)sebacate, bis( 1 -octyloxy-2, 2,6,6- tetramethylpiperidin-4-yl)sebacate, bis(1 , 2,2,6, 6-pentamethylpiperidin-4- yl)-n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate, the condensation
- Oxalamides such as 4,4'-dioctyloxyoxanilide, 2,2'-diethoxyoxanilide, 2,2'-
- 2-(2-hydroxyphenyl)-1 ,3,5-triazines such as 2,4,6-tris-(2-hydroxy-4- octyloxyphenyl)-1 ,3,5-triazine, 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis(2,4- dimethylphenyl)-1 ,3,5-triazine, 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-
- the polymerizable LC material comprises one or more specific antioxidant additives, preferably selected from the P22-169
- Irganox® series e.g. the commercially available antioxidants lrganox®1076 and lrganox®1010, from Ciba, Switzerland.
- the polymerizable LC material in another preferred embodiment, the polymerizable LC material
- photoinitiators for example, selected from the commercially available Irgacure® or Darocure® (Ciba AG) series, in particular, Irgacure 127, Irgacure 184, Irgacure 369, Irgacure 651 , Irgacure 817, Irgacure 907, Irgacure 1300, Irgacure, Irgacure 2022, Irgacure 2100, Irgacure 2959, or Darcure TPO.
- Irgacure® or Darocure® Ciba AG
- Photoinitiators are selected from oxime ester photoinitiators, such as selected from the commercially available OXE02 (Ciba AG), NCI 930, N1919T (Adeka), SPI-03 or SPI-04 (Samyang).
- polymerizable LC material is preferably from 0.5 to 10%, very preferably from 0.8 to 8%, more preferably 1 to 7%.
- the polymerizable LC material is dissolved in a suitable solvent, which are preferably selected from organic solvents.
- the solvents are preferably selected from ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone or cyclohexanone; acetates such as methyl, ethyl or butyl acetate or methyl acetoacetate; alcohols such as methanol, ethanol or isopropyl alcohol;
- aromatic solvents such as toluene or xylene; alicyclic hydrocarbons such as cyclopentane or cyclohexane; halogenated hydrocarbons such as di- or trichloromethane; glycols or their esters such as PGMEA (propyl glycol monomethyl ether acetate), y-butyrolactone. It is also possible to use binary, ternary or higher mixtures of the above solvents. In particular, for
- methyl iso butyl ketone is the preferred utilized solvent
- the total concentration of all solids, including the RMs, in the solvent(s) is
- 35 preferably from 10 to 60%, more preferably from 20 to 50%, in particular from 30 to 45% P22-169
- the polymerizable LC material comprises besides one or more block copolymers, a) one or more polymerizable mesogenic compounds of formula I and
- non-mesogenic compounds j) optionally one or more dyes showing an absorption maximum at the wavelength used to initiate photo polymerization, k) optionally one or more chain transfer agents, l) optionally one or more further stabilizers,
- the polymerizable LC material comprises, a) one or more compounds of formula I or its corresponding preferred subformulae, b) optionally one or more, preferably two or more polymerizable
- subformulae preferably selected from compounds of subformulae RMTa2-A4, and/or RMTa2-A5 and/or RMTb-A3 c) one or more, preferably two or more, direactive polymerizable mesogenic compounds, preferably selected from the compounds of
- esters of unsubstituted and substituted benzoic acids in particular lrganox®1076, and if present, preferably in an amount of 0.01 to 2 % by weight, very preferably 0.05 to 1 % by weight, g) optionally one or more photoinitiators, preferably carbazole oxime
- ester photoinitiators h) optionally one or more organic solvents, preferably methyl isobutyl ketone.
- the invention further relates to a method of preparing a polymer film by
- This polymerizable LC material can be coated or printed onto the substrate, for example by spin-coating, printing, or other known techniques, and the solvent is evaporated off before polymerization.
- the polymerizable LC material can be applied onto a substrate by conventional coating techniques like spin coating, bar coating or blade coating. It can also be applied to the substrate by conventional printing
- Suitable substrate materials and substrates are known to the expert and described in the literature, as for example conventional substrates used in the optical films industry, such as glass or plastic.
- Especially suitable and preferred substrates for polymerization are polyester such as
- PET polyethyleneterephthalate
- PEN polyethylenenaphthalate
- PVA polyvinylalcohol
- PC polycarbonate
- TAC triacetylcellulose
- COP cyclo olefin polymers
- color filter materials in particular triacetylcellulose (TAC), cyclo olefin polymers (COP), or commonly known colour filter materials.
- the polymerizable LC material preferably exhibits a uniform alignment throughout the whole layer.
- the polymerizable LC material preferably exhibits a uniform planar, a uniform homeotropic, uniform cholesteric or patterned alignment.
- the Friedel-Creagh-Kmetz rule can be used to predict whether a mixture will adopt planar or homeotropic alignment, by comparing the surface energies of the RM layer (YRM) and the substrate (y s ):
- amphiphilic material and the RMs promote homeotropic alignment.
- amphiphilic surfactants are described above.
- Another method used to promote homeotropic alignment is to apply corona discharge treatment to plastic substrates, generating alcohol or
- the force across the interface dominates.
- the interface energy is minimised if the reactive mesogens align parallel with the substrate, so the long axis of the RM can interact with the substrate.
- planar alignment is by coating the substrate with a polyimide layer, and then rubbing the alignment layer with a velvet cloth.
- planar alignment layers are known in the art, like for example rubbed polyimide or alignment layers prepared by photoalignment as described in US 5,602,661 , US 5,389,698 or US 6,717,644.
- polymerizable compounds in the polymerizable LC material are polymerized or crosslinked (if one compound contains two or more polymerizable groups) by in-situ photopolymerization.
- the photopolymerization can be carried out in one step. It is also possible
- the polymerizable LC material is coated onto a substrate and subsequently photopolymerized for example
- Photopolymerization of the LC material is preferably achieved by exposing it to actinic radiation.
- Actinic radiation means irradiation with light, like UV
- polymerization is carried out by photo irradiation, in particular with UV light.
- a source for actinic radiation for example a single UV lamp or a set of UV lamps can be used.
- the curing time can be used.
- Another possible source for photo radiation is a laser, like e.g. a UV laser, an IR laser, or a visible laser.
- Another possible source for photo radiation is a LED lamp.
- the curing time is dependent, inter alia, on the reactivity of the
- the curing time is preferably ⁇ 5 minutes, very preferably ⁇ 3 minutes, most preferably ⁇ 1 minute. For mass production, short curing times of ⁇ 30 seconds are preferred.
- a suitable UV radiation power is preferably in the range from 5 to 200 mWcm-2, more preferably in the range from 50 to 175 mWcrrr 2 and most preferably in the range from 100 to 150 mWcm’ 2 .
- a suitable UV dose is preferably in the range from 25 to 7200 m Jem’ 2 more preferably in the range from 100 to 7200 mJcrrr 2 and most preferably in the range from 200 to 7200 m Jem’ 2 .
- Photopolymerization is preferably performed under an inert gas atmosphere, preferably in a heated nitrogen atmosphere, but also polymerization in air is possible.
- Photopolymerization is preferably performed at a temperature from 1 to
- the polymerized LC film according to the present invention has good adhesion to plastic substrates, in particular to TAC, COP, and colour filters. Accordingly, it can be used as adhesive or base coating for
- the polymer film preferably has a thickness of from 0.5 to 10 pm, very preferably from 0.5 to 5 pm, in particular from 0.5
- optical retardation (6(A)) of a polymer film as a function of the wavelength of the incident beam (A) is given by the following equation (7):
- the birefringence as a function of the direction of the incident beam is defined as P22-169
- 15 invention is preferably in the range from 0.01 to 0.4, more preferable in the range from 0.01 to 0.3 and even more preferable in the range from 0.01 to 0.25.
- 20 according to the present invention is less than 200 nm, preferable less than 180 nm and even more preferable less than 150 nm.
- the polymer film of the present invention can also be used as alignment film or substrate for other liquid-crystalline or RM materials.
- the polymer film obtainable from a polymerizable LC material as described above and below is in particular useful for multilayer applications due to its improved dewetting characteristics. In this way, stacks of optical films or preferably polymerized LC films can be prepared.
- the polymerized LC films and polymerizable LC materials according to the present invention are useful in optical elements like polarisers, compensators, alignment layer, circular polarisers or colour filters in liquid crystal displays or projection systems, decorative images, for the preparation of liquid crystal or effect pigments, and especially in
- 35 reflective films with spatially varying reflection colours e.g. as multicolour P22-169
- the polymerized LC films according to the present invention can be used
- displays of the transmissive or reflective type can be used in conventional OLED displays or LCDs, in particular LCDs.
- Irganox 1076, LC756 and LC242 are commercially available from BASF, Germany, SPI-3 is commercially available from Samyang Corporation, Korea.
- Each of Mixtures 1 , 2 and 3 is doped with a surfactant at the concentration indicated above to create comparative formulations 1 to 27 and formulations 28 to 30 in accordance with the present invention.
- the formulation compositions are summarized in Table 1 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Liquid Crystal Substances (AREA)
Abstract
The invention relates to a polymerizable LC material comprising one or more reactive mesogenic compounds and one or more compounds of formula I, (R1-CHF-CF2-Y-)mspacer(X)n I wherein the individual radicals have one of the meaning as given in the claims. Furthermore, the present invention relates also to a method for its preparation, a polymer film obtainable from a corresponding polymerizable LC material, to a method of preparation of such polymer film, and to the use of such polymer film and said polymerizable LC material in optical, electro-optical, decorative or security devices, in particular in optical or electrooptical devices in the field of augmented or virtual reality.
Description
P22-169
- 1 -
Polymerizable Liquid Crystal Material and Polymerized Liquid Crystal Film
Field of Invention
5 The invention relates to a polymerizable LC material comprising one or more reactive mesogenic compounds and one or more compounds of formula I,
(R1-CHF-CF2-Y-)mspacer(X)n I
10 where
R1 = a fluorinated, linear or branched alkyl group, optionally containing heteroatoms, spacer = a single bond or a divalent organic group,
X = a hydrophilic group,
15
Y = S, SO or SO2, m is > 1 and n is > 1 ,
20 wherein the individual radicals have one of the meaning as given in the claims. Furthermore, the present invention relates also to a method for its preparation, a polymer film obtainable from a corresponding polymerizable LC material, to a method of preparation of such polymer film, and to the use of such polymer film and said polymerizable LC material in optical,
25 electro-optical, decorative or security devices.
Background and Prior Art
Reactive mesogens (RMs), mixtures or formulations comprising them, and polymers obtained thereof, can be used to make optical components, like
30 compensation, retardation or polarisation films, or lenses. These optical components can be used in optical or electrooptical devices like LC displays. Usually the RMs or RM mixtures are polymerised through the process of in-situ polymerisation.
35
P22-169
- 2 -
For some applications, it is desirable to form a multilayer film stack or optical component, comprising two or more layers e.g. exhibiting different reflection wavelength.
5 For instance, multilayer cholesteric polymer films have been described in prior art, such as US 6,417,902. Moreover, EP 0 634 674 suggests to prepare a multilayer cholesteric liquid crystal polymer film by bringing together a pair of chiral nematic liquid crystal polymer films, applying pressure and heating the polymers above their glass transition
10 temperature to allow the films to adhere.
Maurer et al., SID 90 Digest, Vol. 21 , pp. 110 (1990) describes a polarizing colour filter obtained by combining several polarizing films with different reflection wavelength. For the preparation of each film, a layer of a CLC
15 side chain polysiloxane comprising chiral and achiral side groups is brought between two glass plates and oriented by shearing at high temperatures.
JP 01-133003-A (Sumitomo Chem. Ind.) and JP 08-271731 -A (Nitto
20 Denko) disclose polarizing plates that are obtained by lamination of one or more CLC polymer layers onto a quarter wave plate.
However, the methods of preparing multilayer cholesteric films as described in the above documents bear several disadvantages. Thus, it is
25 often very difficult and requires high temperatures to achieve uniform alignment in the CLC polymer layer. For example, Maurer et al. mentions an aligning temperature of 150 °C, whereas JP 01-133003-A and JP OS- 271731 -A mention that temperatures well above the glass temperature of the CLC polymers are required. This is especially disadvantageous when
30 polymers with high glass temperatures, like acrylates, styrenes or methacrylates are used, and is highly unsuitable in particular for mass production.
Furthermore, according to the method of multilayer preparation as
35 described e.g. in JP 01-133003-A, the polymers have to be selected such that the different polymer layers exhibit different glass temperatures. Thus,
P22-169
- 3 - when laminating and aligning e.g. a second layer on top of a first layer, the aligning temperature (and thus the glass temperature) of the second layer has to be lower than the glass temperature of the first layer, so as not to affect the uniform orientation of the first layer, etc. This severely limits the
5 choice of suitable materials and makes the production process more complicated.
Another aspect is, that polymerizable LC materials comprising a leveling agents such as a surfactant are usually required in order to achieve good
10 alignment of the resulting polymers. Typically, without utilizing a surfactant in the formulation, increased haze, bad alignment of the helix in the CLC polymer and inhomogeneous thickness across the film can be observed. On the other hand, due to the levelling agents normally used in such formulations, it can be difficult to achieve good alignment and coating
15 qualities with the second coating of CLC material which is required for multilayer applications.
In this regard, dewetting is defined as the rupture of a thin liquid film on the substrate and the formation of droplets. In the case of an multilayer
20 application, this can lead to inhomogeneous thickness of the second CLC material when drying. In some cases, the film can recede from the edges and in the worst case there is extreme beading of the second coated layer which leads to zero coverage of the coated area.
25 It is therefore an aim of the present invention to provide improved polymerizable LC materials or RM mixtures and RM formulations, which do not have the drawbacks of materials known from prior art. In particular it is an aim to provide RM mixtures and RM formulations that are suitable for preparing polymers by in situ UV photopolymerisation, and exhibit at
30 the same time a high birefringence, exhibit a good solubility, show an improved broadening potential, have favorable transition temperatures, and show high resistance against yellowing after being exposed to UV light. Another aim is to provide improved multilayer stack that does not show the drawbacks of materials known from prior art. Other aims of the
35 invention are immediately evident to the expert from the following description.
P22-169
- 4 -
Surprisingly, the inventors of the present invention have found that the polymerizable LC material in accordance with claim 1 fulfills one or more of the above defined requirements and preferably reaches all aims at the
5 same time.
Summary of the invention
The invention relates to a polymerizable LC material comprising one or reactive mesogenic compounds and one or more compounds of formula I
10
(R1-CHF-CF2-Y-)mspacer(X)n I where
R1 = a fluorinated, linear or branched alkyl group, optionally containing heteroatoms,
15 spacer = a single bond or a divalent organic group,
X = a hydrophilic group,
Y = S, SO or SO2, m is > 1
20 and n is > 1.
Further, the invention also relates to a corresponding method of production for the polymerizable LC material comprising at least the step of mixing one or more reactive mesogenic compounds with one or more
25 compounds of formula I.
The invention further relates to a polymer network or polymer film obtainable, preferably obtained, from the polymerizable LC material, as described above and below and to a method of production of a polymer
30 film, as described above and below.
The invention further relates to a method of improving the dewetting behaviour of a polymer film, obtainable, preferably obtained, from a polymerizable LC material as described above and below, by adding a
35 block copolymer as described above and below to the polymerizable LC material before polymerization.
P22-169
- 5 -
The invention further relates to an optical component comprising one or more optical films of which one is selected from the polymer films obtainable from a polymerizable LC materials as described above and
5 below.
The invention further relates to the use of a optical component or a polymer film or a polymerizable LC material, as described above and below, in optical, electrooptical, information storage, decorative and
10 security applications, like liquid crystal displays, projection systems, polarisers, compensators, alignment layers, circular polarisers, colour filters, decorative images, liquid crystal pigments, reflective films with spatially varying reflection colours, multicolour images, non-forgeable documents like identity or credit cards or banknotes.
15
The invention further relates to a electrooptical device, such as an LCD or an OLED comprising one or more optical components or polymer films or polymerizable LC materials, as described above and below.
20 The invention further relates to electrooptical device in the field of augmented or virtual reality such as head mounted devices comprising one or more optical components, a polymer film of a polymerizable material as described above and below.
25 Terms and definitions
As used herein, the term "polymer" will be understood to mean a molecule that encompasses a backbone of one or more distinct types of repeating units (the smallest constitutional unit of the molecule) and is inclusive of
30 the commonly known terms “oligomer”, “copolymer”, “homopolymer” and the like. Further, it will be understood that the term polymer is inclusive of, in addition to the polymer itself, residues from initiators, catalysts, and other elements attendant to the synthesis of such a polymer, where such residues are understood as not being covalently incorporated thereto.
35 Further, such residues and other elements, while normally removed during post polymerization purification processes, are typically mixed or co-
P22-169
- 6 - mingled with the polymer such that they generally remain with the polymer when it is transferred between vessels or between solvents or dispersion media.
5 The term “(meth)acrylic polymer” as used in the present invention includes a polymer obtained from acrylic monomers, a polymer obtainable from methacrylic monomers, and a corresponding co-polymer obtainable from mixtures of such monomers.
10 The term “polymerization” means the chemical process to form a polymer by bonding together multiple polymerizable groups or polymer precursors (polymerizable compounds) containing such polymerizable groups.
The terms "film" and "layer" include rigid or flexible, self-supporting or
15 freestanding films with mechanical stability, as well as coatings or layers on a supporting substrate or between two substrates.
The term “liquid crystal” or “LC” relates to materials having liquidcrystalline mesophases in some temperature ranges (thermotropic LCs) or
20 in some concentration ranges in solutions (lyotropic LCs). They obligatorily contain mesogenic compounds.
The terms "mesogenic compound” and "liquid crystal compound" mean a compound comprising one or more calamitic (rod- or board/lath-shaped) or
25 discotic (disk-shaped) mesogenic groups. The term "mesogenic group" means a group with the ability to induce liquid-crystalline phase (or mesophase) behaviour. The compounds comprising mesogenic groups do not necessarily have to exhibit a liquid-crystalline mesophase themselves. It is also possible that they show liquid-crystalline mesophases only in
30 mixtures with other compounds, or when the mesogenic compounds or materials, or the mixtures thereof, are polymerized. This includes low- molecular-weight non-reactive liquid-crystalline compounds, reactive or polymerizable liquid-crystalline compounds, and liquid-crystalline polymers.
P22-169
- 7 -
A calamitic mesogenic group is usually comprising a mesogenic core consisting of one or more aromatic or non-aromatic cyclic groups connected to each other directly or via linkage groups, optionally comprising terminal groups attached to the ends of the mesogenic core,
5 and optionally comprising one or more lateral groups attached to the long side of the mesogenic core, wherein these terminal and lateral groups are usually selected e.g. from carbyl or hydrocarbyl groups, polar groups like halogen, nitro, hydroxy, etc., or polymerizable groups.
10 The term "reactive mesogen" means a polymerizable mesogenic or liquid crystal compound, preferably a monomeric compound. These compounds can be used as pure compounds or as mixtures of reactive mesogens with other compounds functioning as photoinitiators, inhibitors, surfactants, stabilizers, chain transfer agents, non-polymerizable compounds, etc.
15
Polymerizable compounds with one polymerizable group are also referred to as "monoreactive" compounds, compounds with two polymerizable groups as "direactive" compounds, and compounds with more than two polymerizable groups as "multireactive" compounds. Compounds without
20 a polymerizable group are also referred to as "non-reactive or non- polymerizable “compounds.
The term “non-mesogenic compound or material” means a compound or material that does not contain a mesogenic group as defined above.
25
Visible light is electromagnetic radiation that has wavelength in a range from about 400 nm to about 740 nm. Ultraviolet (UV) light is electromagnetic radiation with a wavelength in a range from about 200 nm to about 450 nm.
30
The Irradiance (Ee) or radiation power is defined as the power of electromagnetic radiation (d0) per unit area (dA) incident on a surface:
Ee = d0/dA.
35
P22-169
- 8 -
The radiant exposure or radiation dose (He), is as the irradiance or radiation power (Ee) per time (t):
He = Ee ■ t.
5
All temperatures, such as, for example, the melting point T(C,N) or T(C,S), the transition from the smectic (S) to the nematic (N) phase T(S,N) and the clearing point T(N, I) of the liquid crystals, are quoted in degrees Celsius. All temperature differences are quoted in differential degrees.
10
The term “clearing point” means the temperature at which the transition between the mesophase with the highest temperature range and the isotropic phase occurs.
15 The term "director" is known in prior art and means the preferred orientation direction of the long molecular axes (in case of calamitic compounds) or short molecular axes (in case of discotic compounds) of the liquid-crystalline or RM molecules. In case of uniaxial ordering of such anisotropic molecules, the director is the axis of anisotropy.
20
The term “alignment” or “orientation” relates to alignment (orientational ordering) of anisotropic units of material such as small molecules or fragments of big molecules in a common direction named “alignment direction”. In an aligned layer of liquid-crystalline or RM material the liquid¬
25 crystalline director coincides with the alignment direction so that the alignment direction corresponds to the direction of the anisotropy axis of the material.
The terms "uniform orientation" or "uniform alignment" of an liquid¬
30 crystalline or RM material, for example in a layer of the material, mean that the long molecular axes (in case of calamitic compounds) or the short molecular axes (in case of discotic compounds) of the liquid-crystalline or RM molecules are oriented substantially in the same direction. In other words, the lines of liquid-crystalline director are parallel.
35
P22-169
- 9 -
The term "homeotropic structure" or "homeotropic orientation" refers to a film wherein the optical axis is substantially perpendicular to the film plane.
The term "planar structure" or "planar orientation" refers to a film wherein
5 the optical axis is substantially parallel to the film plane.
The term "A plate" refers to an optical retarder utilizing a layer of uniaxially birefringent material with its extraordinary axis oriented parallel to the plane of the layer.
10
The term "C plate" refers to an optical retarder utilizing a layer of uniaxially birefringent material with its extraordinary axis oriented perpendicular to the plane of the layer.
15 In A/C-plates comprising optically uniaxial birefringent liquid crystal material with uniform orientation, the optical axis of the film is given by the direction of the extraordinary axis. An A (or C) plate comprising optically uniaxial birefringent material with positive birefringence is also referred to as "positive A (or C) plate" or "+ A (or +C) plate".
20
An A (or C) plate comprising a film of optically uniaxial birefringent material with negative birefringence, such as discotic anisotropic materials is also referred to as "negative A (or C)
A (or C) plate" depending on the orientation of the discotic materials. A film made from a cholesteric
25 calamitic material with a reflection band in the UV part of the spectrum also has the optics of a negative C plate.
The birefringence An is defined as follows
30 An = ne -n0 wherein ne is the extraordinary refractive index and n0 is the ordinary refractive index, and the average effective refractive index nav. is given by the following equation:
35 nav. = ((2n0 2 + ne 2)/3) 1/2
P22-169
- 10 -
The average effective refractive index nav. and the ordinary refractive index n0 can be measured using an Abbe refractometer. An can then be calculated from the above equations.
5
Unless the context clearly indicates otherwise, as used herein plural forms of the terms herein are to be construed as including the singular form and vice versa.
10 All physical properties have been and are determined according to "Merck Liquid Crystals, Physical Properties of Liquid Crystals", Status Nov. 1997, Merck KGaA, Germany and are given for a temperature of 20 °C, unless explicitly stated otherwise. The optical anisotropy (An) is determined at a wavelength of 589.3 nm
15
In case of doubt the definitions as given in C. Tschierske, G. Pelzl and S. Diele, Angew. Chem. 2004, 116, 6340-6368 shall apply.
Unless explicitly stated otherwise in the given generic formulae, the
20 following terms have the following meanings:
"Carbyl group" denotes a mono- or polyvalent organic group containing one or more carbon atom which either contains no further atoms (such as, for example, -C=C-) or optionally contains one or more further atoms, such
25 as, for example, N, O, S, P, Si, Se, As, Te or Ge (for example carbonyl, etc.). "Hydrocarbyl group" denotes a carbyl group, which additionally contains one or more H atoms and optionally one or more heteroatoms, such as, for example, N, O, S, P, Si, Se, As, Te or Ge.
30 A carbyl or hydrocarbyl group can be a saturated or unsaturated group. Unsaturated groups are, for example, aryl, alkenyl, or alkinyl groups. A carbyl or hydrocarbyl group having more than 3 C atoms can be straight chain, branched and/or cyclic and may contain spiro links or condensed rings.
35
Preferred carbyl and hydrocarbyl groups are optionally substituted alkyl,
P22-169
- 11 - alkenyl, alkinyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy and alkoxycarbonyloxy having 1 to 40, preferably 1 to 25, particularly preferably 1 to 18 C atoms, optionally substituted aryl or aryloxy having 6 to 40, preferably 6 to 25 C atoms, or optionally substituted alkylaryl, arylalkyl,
5 alkylaryloxy, arylalkyloxy, arylcarbonyl, aryloxycarbonyl, arylcarbonyloxy and aryloxycarbonyloxy having 6 to 40, preferably 6 to 25 C atoms. Further preferred carbyl and hydrocarbyl groups are C1-C40 alkyl, C2-C40 alkenyl, C2-C40 alkinyl, C3-C40 allyl, C4-C40 alkyldienyl, C4-C40 polyenyl, Ce- C40 aryl, C6-C40 alkylaryl, C6-C40 arylalkyl, C6-C40 alkylaryloxy, C6-C40 aryl¬
10 alkyloxy, C2-C40 heteroaryl, C4-C40 cycloalkyl, C4-C40 cycloalkenyl, etc. Particular preference is given to C1-C22 alkyl, C2-C22 alkenyl, C2-C22 alkinyl, C3-C22 allyl, C4-C22 alkyldienyl, C6-C12 aryl, C6-C20 arylalkyl, and C2-C20 heteroaryl.
15 Further preferred carbyl and hydrocarbyl groups are straight-chain, branched or cyclic alkyl radicals having 1 to 40, preferably 1 to 25 C atoms, more preferably 1 to 12 C atoms, which are unsubstituted or mono- or polysubstituted by F, Cl, Br, I or CN and in which one or more non- adjacent CH2 groups may each be replaced, independently of one
20 another, by -C(RX)=C(RX)-, -C=C-, -N(RX)-, -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- in such a way that O and/or S atoms are not linked directly to one another.
Above, Rx preferably denotes H, halogen, a straight-chain, branched or
25 cyclic alkyl chain having 1 to 25 C atoms, in which, in addition, one or more non-adjacent C atoms may be replaced by -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O-, and in which one or more H atoms may be replaced by fluorine, an optionally substituted aryl or aryloxy group having 6 to 40 C atoms or an optionally substituted heteroaryl or heteroaryloxy group
30 having 2 to 40 C atoms.
Preferred alkyl groups are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, 2-methylbutyl, n-pentyl, s-pentyl, n-hexyl, 2-ethylhexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl,
35 dodecanyl, trifluoromethyl, perfluoro-n-butyl, 2,2,2-trifluoroethyl, perfluorooctyl, perfluorohexyl, etc, in which, in addition, one or more non-
P22-169
5
Preferred alkenyl groups are, for example, ethenyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octenyl, cyclooctenyl, etc.
10 Preferred alkinyl groups are, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, octynyl, etc.
Preferred alkoxy groups are, for example, methoxy, ethoxy, 2-methoxy- ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, 2-
15 methylbutoxy, n-pentoxy, n-hexoxy, n-heptyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, n-undecyloxy, n-dodecyloxy, etc, in which, in addition, one or more non-adjacent CH2 groups may each be replaced, independently of one another, by
20
Preferred amino groups are, for example, dimethylamino, methylamino, methylphenylamino, phenylamino, etc.
Aryl and heteroaryl groups can be monocyclic or polycyclic, i.e. they can
25 have one ring (such as, for example, phenyl) or two or more rings, which may also be fused (such as, for example, naphthyl) or covalently linked (such as, for example, biphenyl), or contain a combination of fused and linked rings. Heteroaryl groups contain one or more heteroatoms, preferably selected from 0, N, S, and Se.
30
Preference is given to mono-, bi-, or tricyclic aryl groups having 6 to 25 C atoms and mono-, bi- or tricyclic heteroaryl groups having 2 to 25 C atoms, which optionally contain fused rings, and which are optionally substituted. Preference is furthermore given to 5-, 6-, or 7-membered aryl and
35 heteroaryl groups, in which, in addition, one or more CH groups may be
P22-169
- 13 - replaced by N, S, or 0 in such a way that 0 atoms and/or S atoms are not linked directly to one another.
Preferred aryl groups are, for example, phenyl, biphenyl, terphenyl,
5 [1 ,1':3',1"]terphenyl-2'-yl, naphthyl, anthracene, binaphthyl, phenanthrene, pyrene, dihydropyrene, chrysene, perylene, tetracene, pentacene, benzopyrene, fluorene, indene, indenofluorene, spirobifluorene, etc.
Preferred heteroaryl groups are, for example, 5-membered rings, such as
10 pyrrole, pyrazole, imidazole, 1 ,2,3-triazole, 1 ,2,4-triazole, tetrazole, furan, thiophene, selenophene, oxazole, isoxazole, 1 ,2-thiazole, 1 ,3-thiazole,
1 .2.3-oxadiazole, 1 ,2,4-oxadiazole, 1 ,2,5-oxadiazole, 1 ,3,4-oxadiazole,
1 .2.3-thiadiazole, 1 ,2,4-thiadiazole, 1 ,2,5-thiadiazole, 1 ,3,4-thiadiazole, 6-membered rings, such as pyridine, pyridazine, pyrimidine, pyrazine,
15 1 ,3,5-triazine, 1 ,2,4-triazine, 1 ,2,3-triazine, 1 ,2,4,5-tetrazine, 1 ,2,3,4- tetrazine, 1 ,2,3,5-tetrazine, or condensed groups, such as indole, isoindole, indolizine, indazole, benzimidazole, benzotriazole, purine, naphthimidazole, phenanthrimidazole, pyridimidazole, pyrazinimidazole, quinoxa- linimidazole, benzoxazole, naphthoxazole, anthroxazole, phenanthroxa-
20 zole, isoxazole, benzothiazole, benzofuran, isobenzofuran, dibenzofuran, quinoline, isoquinoline, pteridine, benzo-5,6-quinoline, benzo-6,7-quino- line, benzo-7,8-quinoline, benzoisoquinoline, acridine, phenothiazine, phenoxazine, benzopyridazine, benzopyrimidine, quinoxaline, phenazine, naphthyridine, azacarbazole, benzocarboline, phenanthridine, phenan¬
25 throline, thieno[2,3b]thiophene, thieno[3,2b]thiophene, dithienothiophene, isobenzothiophene, dibenzothiophene, benzothiadiazothiophene, or combinations of these groups. The heteroaryl groups may also be substituted by alkyl, alkoxy, thioalkyl, fluorine, fluoroalkyl or further aryl or heteroaryl groups.
30
The (non-aromatic) alicyclic and heterocyclic groups encompass both saturated rings, i.e. those that contain exclusively single bonds, and partially unsaturated rings, i.e. those that may also contain multiple bonds. Heterocyclic rings contain one or more heteroatoms, preferably selected
35 from Si, 0, N, S, and Se.
P22-169
- 14 -
The (non-aromatic) alicyclic and heterocyclic groups can be monocyclic, i.e. contain only one ring (such as, for example, cyclohexane), or polycyclic, i.e. contain a plurality of rings (such as, for example, decahydronaphthalene or bicyclooctane). Particular preference is given to saturated
5 groups. Preference is furthermore given to mono-, bi-, or tricyclic groups having 3 to 25 C atoms, which optionally contain fused rings and which are optionally substituted. Preference is furthermore given to 5-, 6-, 7- or 8-membered carbocyclic groups in which, in addition, one or more C atoms may be replaced by Si and/or one or more CH groups may be
10 replaced by N and/or one or more non-adjacent CH2 groups may be replaced by -0- and/or -S-.
Preferred alicyclic and heterocyclic groups are, for example, 5-membered groups, such as cyclopentane, tetrahydrofuran, tetrahydrothiofuran, pyr¬
15 rolidine, 6-membered groups, such as cyclohexane, silinane, cyclohexene, tetrahydropyran, tetrahydrothiopyran, 1 ,3-dioxane, 1 ,3-dithiane, piperidine, 7-membered groups, such as cycloheptane, and fused groups, such as tetrahydronaphthalene, decahydronaphthalene, indane, bicyclo[1 .1 .1 ]- pentane-1 ,3-diyl, bicyclo[2.2.2]octane-1 ,4-diyl, spiro[3.3]heptane-2,6-diyl,
20 octahydro-4,7-methanoindane-2,5-diyl.
The aryl, heteroaryl, (non-aromatic) alicyclic and heterocyclic groups optionally have one or more substituents, which are preferably selected from the group comprising silyl, sulfo, sulfonyl, formyl, amine, imine, nitrile,
25 mercapto, nitro, halogen, C1-12 alkyl, C6-12 aryl, C1-12 alkoxy, hydroxyl, or combinations of these groups.
Preferred substituents are, for example, solubility-promoting groups, such as alkyl or alkoxy, electron-withdrawing groups, such as fluorine, nitro or
30 nitrile, or substituents for increasing the glass transition temperature (Tg) in the polymer, in particular bulky groups, such as, for example, t-butyl or optionally substituted aryl groups.
Preferred substituents, also referred to as "L" below, are,
35 for example, F, Cl, Br, I, -OH, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, -C(=O)N(RX)2, -C(=0)YX, -C(=O)RX, -C(=O)ORX, -N(RX)2, in which Rx has
P22-169
- 15 - the above-mentioned meaning, and above Yx denotes halogen, optionally substituted silyl, optionally substituted aryl or heteroaryl having 4 to 40, preferably 4 to 20 ring atoms, and straight-chain or branched alkyl, alkenyl, alkinyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or
5 alkoxycarbonyloxy having 1 to 25 C atoms, in which one or more H atoms may optionally be replaced by F or Cl.
"Substituted silyl or aryl" preferably means substituted by halogen, -CN, Ry, -ORy, -CO-Ry, -CO-O-Ry, -O-CO-Ry or -O-CO-O-Ry, in which Ry
10 denotes H, a straight-chain, branched or cyclic alkyl chain having 1 to 12 C atoms.
In the formula shown above and below, a substituted phenylene ring
20
in which L has, on each occurrence identically or differently, one of the meanings given above and below, and is preferably F, Cl, CN, NO2, CH3, C2H5, C(CH3)3, CH(CH3)2, CH2CH(CH3)C2H5, OCH3, OC2H5, COCH3,
25 COC2H5, COOCH3, COOC2H5, CF3, OCF3, OCHF2, OC2F5 or P-Sp-, very preferably F, Cl, CN, CH3, C2H5, OCH3, COCH3, OCF3 or P-Sp-, most preferably F, Cl, CH3, OCH3, COCH3 or OCF3.
"Halogen" denotes F, Cl, Br or I, preferably F or Cl, more preferably F.
30
“Polymerizable groups” (P) are preferably selected from groups containing a C=C double bond or C=C triple bond, and groups which are suitable for polymerization with ring opening, such as, for example, oxetane or epoxide groups.
35
- 16 -
Preferably, polymerizable groups (P) are selected from the group O 2 ' ' consisting of CH2=CW1 -COO- CH2=CW1-CO- W HC — CH - ,
(COO)ki-Phe-(O)k2- CH2=CH-(CO)ki-Phe-(O)k2- Phe-CH=CH-, in which
W1 denotes H, F, Cl, CN, CFs, phenyl or alkyl having 1 to 5 C atoms, in
15 particular H, F, Cl or CHs,
W2 denotes H or alkyl having 1 to 5 C atoms, in particular H, methyl, ethyl or n-propyl,
20 W3 and W4 each, independently of one another, denote H, Cl or alkyl having 1 to 5 C atoms, Phe denotes 1 ,4-phenylene, which is optionally substituted by one or more radicals L as being defined above but being different from P-Sp, preferably preferred substituents L are F, Cl, CN, NO2, CH3, C2H5, OCH3, OC2H5, COCH3, COC2H5, COOCH3, COOC2H5, CF3,
25 OCF3, OCHF2, OC2F5, furthermore phenyl, and ki, k2 and ks each, independently of one another, denote 0 or 1 , k3 preferably denotes 1 , and k4 is an integer from 1 to 10.
30 Particularly preferred polymerizable groups P are CH2=CH-COO-
CH2=C(CH3)-COO-, CH2=CF-COO- CH2=CH-, CH2=CH-O- 0
2 z (CH2=CH)2CH-OCO-, (CH2=CH)2CH-O-, W HC - CH - and
35
- 17 -
, in which W2 denotes H or alkyl having 1 to 5 C atoms, in particular H, methyl, ethyl or n-propyl,
5
Further preferred polymerizable groups (P) are vinyloxy, acrylate, methacrylate, fluoroacrylate, chloroacrylate, oxetane and epoxide, most preferably acrylate or methacrylate, in particular acrylate.
10 Preferably, all multireactive polymerizable compounds and sub-formulae thereof contain instead of one or more radicals P-Sp-, one or more branched radicals containing two or more polymerizable groups P (multireactive polymerizable radicals).
15 Suitable radicals of this type, and polymerizable compounds containing them, are described, for example, in US 7,060,200 B1 or US 2006/0172090 A1.
Particular preference is given to multireactive polymerizable radicals
20 selected from the following formulae:
-X-alkyl-CHPx-CH2-CH2Py l*a
-X-alkyl-C(CH2Px)(CH2Py)-CH2Pz l*b
25
-X-alkyl-CHPxCHPy-CH2Pz l*c
-X-alkyl-C(CH2Px)(CH2Py)-CaaH2aa+1 l*d
30 -X-alkyl-CHPx-CH2Py l*e
-X-alkyl-CHPxPy l*f
-X-alkyl-CPxPy-CaaH2aa+1 l*g
35
-X-alkyl-C(CH2Pv)(CH2Pw)-CH2OCH2-C(CH2Px)(CH2Py)CH2Pz l*h
P22-169
- 18 -
-X-alkyl-CH((CH2)aaPx)((CH2)bbPy) l*i
-X-alkyl-CHPxCHPy-CaaH2aa+1 l*k
5 in which alkyl denotes a single bond or straight-chain or branched alkylene having 1 to 12 C atoms, in which one or more non-adjacent CH2
10 groups may each be replaced, independently of one another, by -C(RX)=C(RX)-, -C=C- -N(RX)-, -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- in such a way that 0 and/or S atoms are not linked directly to one another, and in which, in addition, one or more H atoms may be replaced by F, Cl or CN, where Rx has one the
15 above-mentioned meaning, aa and bb each, independently of one another, denote 0, 1 , 2, 3, 4, 5 or 6,
X has one of the meanings indicated for X', and
20
Pvto Pz each, independently of one another, have one of the meanings indicated above for P.
Preferred spacer groups Sp are selected from alkylene having 1 to 20,
25 preferably 1 to 12 C atoms, which is optionally mono- or polysubstituted by F, Cl, Br, I or CN and in which, in addition, one or more non-adjacent CH2 groups may each be replaced, independently of one another,
30 r -C=C- in such a way that 0 and/or S atoms are not linked directly to one another, and wherein Rxx and Ryy each, independently of one another, denote H or alkyl having 1 to 12 C atoms.
Further preferred spacer groups Sp are selected from the formula Sp'-X',
35 so that the radical "P-Sp-" conforms to the formula "P-Sp'-X1-", where
P22-169
- 19 -
Sp' denotes alkylene having 1 to 20, preferably 1 to 12 C atoms, which is optionally mono- or polysubstituted by F, Cl, Br, I or CN and in which, in addition, one or more non-adjacent CH2 groups may each be replaced, independently of one another,
-NRxx-CO-NRyy-, -CH=CH- or -C=C- in such a way that 0 and/or S atoms are not linked directly to one another,
10 X' denotes -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-NR^-,
-NRx -CO-, -NRxx-CO-NRyy-, -OCH2-, -CH2O-, -SCH2-, -CH2S-, -CF2O-, -OCF2-, -CF2S-, -SCF2-, -CF2CH2-, -CH2CF2-, -CF2CF2-, -CH=N- -N=CH- -N=N-, -CH=CRXX- -CYXX=CYXX-, -C=C-, -CH=CH-COO-, -OCO-CH=CH- or a
15 single bond,
Rxx and Ryy each, independently of one another, denote H or alkyl having 1 to 12 C atoms, and
20 Yxx and Yyy each, independently of one another, denote H, F, Cl or CN.
X' is preferably -O-, -S- -CO-, -COO-, -OCO-, -O-COO-,
-CO-NRXX-, -NRXX-CO-, -NRxx-CO-NRyy- or a single bond.
25 Typical and preferred spacer groups Sp and/or Sp' are, for example, - (CH2)P1-, -(CH2CH2O)qi-CH2CH2-, -CH2CH2-S-CH2CH2-, -CH2CH2-NH- CH2CH2- or -(SiRxxRyy-O)Pi-, in which p1 is an integer from 1 to 12, q1 is an integer from 1 to 3, and Rxx and Ryy have the above-mentioned meanings.
30
Particularly preferred groups -X'-Sp'- are -(CH2)PI-, -O-(CH2)PI-, -OCO- (CH2)PI-, -OCOO-(CH2)PI-, in which p1 is an integer from 1 to 12.
Particularly preferred groups Sp and/or Sp' are, for example, in each case
35 straight-chain, methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene,
P22-169
- 20 - dodecylene, octadecylene, ethyleneoxyethylene, methyleneoxybutylene, ethylenethioethylene, ethylene-N-methyliminoethylene, 1 -methylalkylene, ethenylene, propenylene and butenylene.
5 The term “chiral” in general is used to describe an object that is non- superimposable on its mirror image.
“Achiral” (non- chiral) objects are objects that are identical to their mirror image.
10
The terms “chiral nematic” and “cholesteric” are used synonymously in this application, unless explicitly stated otherwise.
Chiral nematic textures or cholesteric liquid crystals (CLC) exhibit selective
15 reflection of circular-polarised light, with the direction of rotation of the light vector corresponding to the direction of rotation of the cholesteric helix.
The reflection wavelength X is given by the pitch p of the cholesteric helix and the mean birefringence n of the cholesteric liquid crystal in
20 accordance with the following equation: = n ■ p
A CLC medium can be prepared, for example, by doping a nematic LC
25 medium with a chiral dopant having a high twisting power. The pitch p of the induced cholesteric helix is then given by the concentration c and the helical twisting power HTP of the chiral dopant in accordance with the following equation:
30 p = (HTP c)'1
It is also possible to use two or more dopants, for example in order to compensate for the temperature dependence of the HTP of the individual
35 dopants and thus to achieve low temperature dependence of the helix
- 21 - pitch and the reflection wavelength of the CLC medium. For the total HTP (HTPtotai) holds then approximately the following equation:
HTPtotai = Zi Ci HTPi
5 wherein Ci is the concentration of each individual dopant and HTPi is the helical twisting power of each individual dopant.
For the present invention,
15 denote 1 ,4-phenylene.
For the present invention the groups -COO- or -CO2- denote an ester o group of formula
and the groups -OCO-, -O2C- or -OOC- denote
A “polymer network” is a network in which all polymer chains are interconnected to form a single macroscopic entity by many crosslinks.
25
The polymer network can occur in the following types:
A graft polymer molecule is a branched polymer molecule in which one or more the side chains are different, structurally or configurationally, from the main chain.
30 A star polymer molecule is a branched polymer molecule in which a single branch point gives rise to multiple linear chains or arms. If the arms are identical, the star polymer molecule is said to be regular. If adjacent arms are composed of different repeating subunits, the star polymer molecule is said to be variegated.
35
- 22 -
A comb polymer molecule consists of a main chain with two or more three-way branch points and linear side chains. If the arms are identical the comb polymer molecule is said to be regular.
A brush polymer molecule consists of a main chain with linear,
5 unbranched side chains and where one or more of the branch points has four-way functionality or larger.
Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of the words, for example
10 “comprising” and “comprises”, mean “including but not limited to”, and are not intended to (and do not) exclude other components. On the other hand, the word “comprise” also encompasses the term “consisting of” but is not limited to it.
15 Throughout the description and claims of this specification, the words “obtainable” and “obtained” and variations of the words, mean “including but not limited to”, and are not intended to (and do not) exclude other components. On the other hand, the word “obtainable” also encompasses the term “obtained” but is not limited to it.
20
All concentrations are quoted in percent by weight and relate to the respective mixture as a whole, all temperatures are quoted in degrees Celsius and all temperature differences are quoted in differential degrees.
25 Detailed Description
The compounds of formula I preferably do not contain -O-O- bonds. The novel compounds preferably contain the following variables:
R1 = perfluorinated alkyl, linear or branched, optionally containing hetero¬
30 atoms, preferably perfluorinated C1 -C6-alkyl, particularly preferably perfluorinated C1 -C4-alkyl, in particular perfluorinated C1 -C3-alkyl, spacer = a saturated or unsaturated, branched or unbranched hydrocarbon unit, optionally containing heteroatoms, where no -0-0- bonds are present,
35 X = an anionic, cationic, nonionic or amphoteric group,
Y = S, SO or SO2, preferably S,
m = 1 , 2, 3, 4, 5 or 6, preferably 2-4, in particular 2-3, and n = 1 , 2, 3 or 4, preferably 1 or 2.
Particularly preferred compounds of the formula (I) are those in which all
5 variables have the preferred meanings.
The fluorinated group R1 is preferably selected from the groups: CF3-(CF2)O-3-, CF3-(CF2)O-3-0-, CF3-(CF2)O-3-0-(CF2)I-3-
CF3-(CF2)O-3-0-(CF2)I-3-0-, CF3-(CF2)O-3-0-(CF2)I-3-0-CF2-,
10 CF3-(CF2)O-30-(CF2-0)I-8- and CF3-(CF2)O-3-0-(CF2-0)I-8-CF2-.
The fluorinated group R1 is particularly preferably a CFS-(CF2)I-2-O- group, in particular a CF3-CF2-CF2-O group.
25
where s stands for an integer from the range from 1 to 1000, t stands for an integer selected from 1 , 2, 3 or 4 and w stands for an integer selected
30 from 1 , 2 or 3.
The preferred anionic groups here include, in particular, -COO -SO3; -OSO3; -PO32; -OPO32; -OP(O)(O’)O-, sub-formula A, and -(OCH2CH2)s-O-(CH2)t-COO-, -(OCH2CH2)s-O-(CH2)t-SO3- and
35 -(OCH2CH2)s-O-(CH2)t-OSO3’, where each one of these groups per se may be preferred. X may also stand for corresponding acids.
P22-169
- 24 -
The very particularly preferred anionic groups here include -SO3 -OSO3 -COO -PO32', -OP(O)(O’)O- or OPO32-. In particular, a sulfonate group -SO3- is preferred.
Preferred counterion for anionic groups X is a monovalent cation, in
5 particular H+, an alkali-metal cation or NR4+, where R = H or C1 - C6-alkyl which is optionally substituted by OH and all R may be identical or different. Particular preference is given to H+, Na+, K+, Li+ and NH4+ and HO-(CH2)2-NH3+, especially preferably Na+.
15 where R stands for H or Ci-4-alky I in any desired position,
Z- stands for Ch, Br, h, CH3SO3-, CF3SO3-, CHsPhSOs’, PhSO3’, R1, R2 and R3 each, independently of one another, stand for H, Ci-30-alkyl, Ar or -CH2Ar and
20 Ar stands for an unsubstituted or mono- or polysubstituted aromatic ring or condensed ring systems having 6 to 18 C atoms, in which, in addition, one or two CH groups may be replaced by N.
25 where each one of these groups per se may be preferred.
A preferred nonionic group X can be selected from: linear or branched alkyl, where one or more non-adjacent C atoms have been replaced by 0,
30 S, and/or N,
-OH, -SH, -O-(glycoside)O', -S-(glycoside)O', -OCH2-CHOH-CH2-OH,-O CH2Ar(-NC0)P', -OAr(-NCO)P', amine oxide,
35
P22-169
10 u stands for an integer from the range from 1 to 6, preferably 1 to 4, o' stands for an integer from the range from 1 to 10, p' stands for 1 or 2,
Ar stands for an unsubstituted, mono- or polysubstituted aromatic ring or
15 condensed ring systems having 6 to 18 C atoms, in which, in addition, one or two CH groups may be replaced by C=O and, glycoside stands for an etherified carbohydrate, preferably for a mono- di-, tri- or oligoglucoside.
The preferred nonionic groups X here include, in particular, linear or
20 branched alkyl, where one or more non-adjacent C atoms have been replaced by 0, S and/or N, -OH and -O-(glycoside)O'.
If X = alkyl, where one or more non-adjacent C atoms have been replaced by 0, S, and/or N, it is then preferably equal to R4-(B-A)m"- where R4 = H or C1 -4-alkyl, in particular H or CH3, A = linear or branched alkylene,
25 preferably having 1 to 10 carbon atoms, in particular having 1 to 4 carbon atoms, B = 0 or S, preferably 0, and m" = an integer preferably from the range from 1 to 100, particularly preferably 1 to 30.
The nonionic group X is particularly preferably the group R4-(O-CH2CHR5)m"- where m" = an integer from the range from 1 to 100,
30 preferably 1 to 30, in particular also 1 -25, and R4 and R5 = H or C1 -4-alkyl, in particular H or CH3. R4-(B-A)m"- is particularly preferably a polyethylene glycol or polypropylene glycol unit.
The nonionic group X is particularly preferably the group -CH(OH)-CH2- NH-sach where sach = various sugars and the group -Y-(CH2-CH2-O)v-R
35 4
P22-169
- 26 - where Y = S, 0 or NH, preferably 0, R4 = H or alkyl, preferably H or CH3, and v = 1 -100, preferably 1 -30, in particular also 1-25.
A preferred amphoteric group X can be selected from the functional
5 groups of the acetyldiamines, the N-alkylamino acids, the N- alkylaminosulfonic acids, the betaines, the sulfobetaines, or corresponding derivatives, in particular selected from, where M stands for H or an alkali- metal ion, preferably Li+, Na+ or K+:
10
15
20
25
30
- 27 -
Particularly preferred compounds according to the invention are those which contain, as hydrophilic group X, one of the preferred anionic groups, the preferred nonionic groups or the preferred zwitterionic groups. Particular preference is given to compounds which contain the groups
5 -SO3-, -OSO3-, -COO; -PO32-, -OP(O)(O’)O- or OPO32-, polyethylene glycols or polypropylene glycols, -CH(OH)-CH2-NH-sach, -Y-(CH2-CH2- 0)v-R4, betaines, or sulfobetaines. Preferred counterions here are H+, Na+, K+ and NH4+, in particular Na+. Particular preference is given to: -SOs’ , -COO -OP(O)(O’)O- or -OPO32-, polyethylene glycols or polypropylene
10 glycols, sulfobetaines, the group -CH(OH)-CH2-NH-sach and the group -Y- (CH2-CH2-O)V-R4. Sach here = various sugars and Y = S, 0 or NH, preferably 0, R4 = H or alkyl, preferably H or CH3, and v = 1 -100, preferably 1 -30, in particular also 1 -25. Compounds where X = -SOs’ may also be particularly advantageous.
15
The hydrocarbon units of the spacer of the compounds of the formula (I) can be aliphatic or aromatic units, optionally provided with heteroatoms. The spacer is preferably a saturated, branched or unbranched hydrocarbon unit, preferably a saturated branched or unbranched alkylene
20 group, in which one or more non-adjacent C atoms may be replaced by 0 or N, preferably 0, or connected to 0. Preference is given, for example, to C1 -C6-alkylene groups, in particular C1 -C4-alkylene groups.
In a variant of the invention, the preferred heteroatom-containing hydrocarbon unit used is a polyethylene glycol or polypropylene glycol unit.
25
Preference is given to compounds of the formulae (II) to (V) in which R1 and R2, independently of one another, are a fluorinated, linear or branched alkyl group, optionally containing heteroatoms, o = 0-100, preferably 1 -30 and 5-30, in particular 3, 5, 6, 10, 12, 15, 18, 20 or 24, and X1 and X2,
30 independently of one another, are a hydrophilic group, in particular an anionic, cationic, nonionic or amphoteric group, preferably one of the groups preferred for X, or in the formulae (Ila), (lib), (He) and (V) are also equal to H:
P22-169
In a preferred variant of the compounds of the formulae (II) to (V), X1 and
25 X2, independently of one another, are an anionic or nonionic group, in particular the groups preferred for X, and R1 and R2, independently of one another, are a CFS-(CF2)I-2-O- group. R1 and R2, and X1 and X2 are preferably identical.
30 Particular preference is given to compounds which contain, as X1 and/or X2, the groups -SO3; -OSO3; -COO; -PO32 -OP(O)(O’)O- or -OPO32; polyethylene glycol or polypropylene glycol, -CH(OH)-CH2-NH-sach, -Y- (CH2-CH2-O)V-R4, betaines, or sulfobetaines. Preferred counterions here are H+, Na+, K+ and NH4+, in particular Na+. Particular preference is given
35 to: -SO3 -COO; -OP(O)(O’)O- or -OPO32; polyethylene glycol or polypropylene glycol, sulfobetaines, the group -CH(OH)-CH2-NH-sach and
P22-169
- 29 - the group -Y-(CH2-CH2-O)V-R4. Sach here = various sugars and Y = S, 0 or NH, preferably 0, R4 = H or alkyl, preferably H or CHs, and v = 1 -100, preferably 1 -30, in particular also 1 -25. Compounds where X = -SOs’ may also be particularly advantageous. Compounds of the formulae (Ila) and
5 (III) to (V), especially those having the preferred variables, are particularly preferred.
In another variant of the invention, the fluorinated compounds are preferably based on esters of maleic acid and aconitic acid. These compounds
10 are represented by the formulae (VI) and (VII), where L1, L2 and L3, independently of one another, are a saturated or unsaturated, branched or unbranched hydrocarbon unit, optionally containing heteroatoms, where no -0-0- bonds are present, in particular a linear or branched C1 -C6-alkyl group, particularly preferably a C1 -C4-alkyl group, X is a hydrophilic group
15 and R1, R2 and R3, independently of one another, are a fluorinated, linear or branched alkyl group, optionally containing heteroatoms:
In a preferred variant of the compounds of the formulae (VI) and (VII), L1, L2 and L3, independently of one another, are a linear or branched C1 -C6-
30 alkyl group, particularly preferably a C1 -C4-alkyl group, X is an anionic or nonionic group and R1, R2 and R3, independently of one another, are a CF3-(CF2)i-2-O-group. Preferably, L1, L2 and L3 are identical and R1, R2 and R3 are identical.
35 Compounds of the formulae (I) to (VII) in which one or more of the variables have the preferred meanings are particularly advantageous.
P22-169
- 30 -
Compounds of the formulae (I) to (VII) in which all said variables have the preferred meanings, in particular the particularly preferred meanings, are particularly advantageous.
5 Particular preference is given to compounds of the formulae (VIII) to (XVIII) in which the variables have the meanings indicated for the formulae (I) to (VII), in particular the preferred meanings, and PEG stands for polyethylene glycol, polypropylene glycol, polyethylene glycol alkyl ether or polypropylene glycol alkyl ether and Ra, Rb and Rc = H or C1 -4-alkyl, in
10 particular H or CH3. Alkyl ethers are preferably C1 -C4-alkyl ethers, in particular C1 -C2-alkyl ethers, especially methyl ethers:
30
Particular preference is given to compounds of the formulae (VIII) to
20 (XVIII) in which the fluorinated groups R1 and R2 or R1, R2 and R3 are selected, independently of one another, from the groups: CF3-(CF2)O-3-, CF3-(CF2)O-3-0-, CF3-(CF2)O-3-0-(CF2)I-3-, CF3-(CF2)0-3-O-(CF2)l-3-O-, CF3-(CF2)0-3-O-(CF2)l-3-O-CF2-, CF3-(CF2)O-30-(CF2-0)I-8- and CF3-(CF2)O-3-0-(CF2-0)I-8-CF2-.
25 The fluorinated groups R1 and R2 or R1, R2 and R3 are especially preferably, independently of one another, a CFS-(CF2)I-2-O group, in particular a CF3-CF2-CF2-O group. Particularly preferably, R1 and R2 are identical and R1, R2 and R3 are identical, o is preferably equal to 1 -30, in particular 3, 5, 6, 10, 12, 15, 18, 20 or 24, in particular 3, 10 or 18. Compounds of
30 the formulae (VIII) to (XIV) and (XV), (XVI), (XVII) and (XVIII), especially those having the preferred variables, are especially preferred.
In particular, the following compounds of the formulae (XIX) to (XXIV), where o = 0, 10 or 18 and R = methyl or ethyl, are particularly preferred:
35
P22-169
Compounds of the formulae (XIXa) and (XX) to (XXIX), especially those having the preferred variables, are particularly preferred.
15
The fluorosurfactants of the formulae (I) to (XXIX) have lower stability than conventional fluorosurfactants and can therefore be degraded more easily by physical/chemical processes, and are preferably not persistent. In addition, they are distinguished by a very efficient reduction of the surface tension energy in aqueous solutions. Also, they have a low CMC and a
20 low foaming behaviour.
In particular, the fluorosurfactants of the formulae (I) to (XXIX) are easily biodegradable and beneficial in terms of their eco toxicological profile.
25
Furthermore, the introduction of the sulfide bridge enables a broadening of the variation of the molecule structure. As is known, sulfides can be converted into sulfoxides using methods which are known to the person skilled in the art from the literature, which allows additional “trimming” of the molecule polarity with respect to hydrophilicity.
30
Moreover, the thiol educts used for the preparation of the fluorosurfactants show a significantly higher reactivity, compared to the corresponding alcohols, due to their increased nucleophilicity. This advantage can be utilized by etherification of mono- or polyfunctional alcohols, which do
35 additionally contain one or more thiol groups, selectively at the thiol groups to form thioethers, without the need of protecting the free OH groups of the
P22-169
- 36 - mono- or polyfunctional alcohols. These free OH groups can then be reacted in further steps. This allows to greatly simplify the synthesis of the fuorosurfactants, with less reaction steps and increased yield, compared to the synthesis of corresponding compounds made from alcohols without
5 sulfur groups.
The compounds of the formulae (I) to (XXIX) can be prepared by processes known to the person skilled in the art.
10 The compounds of the formulae (I) to (XXIX) can preferably be used as surface-active agents, preferably as surfactant, hydrophobicisation agent, interface promoter, viscosity reducer, foam stabiliser or emulsifier.
Preferably the concentration of the compounds of formulae (I) to (XXIX) in
15 the polymerizable LC material is 0.01 to 5%, more preferably 0.01 to 1 % by weight, based on the entire formulation.
In a preferred embodiment, the polymerizable LC material comprises one or more reactive mesogens selected from formula RMT,
20
25 P is a polymerisable group,
Sp is a spacer group or a single bond, r2 and r3 are independently of each other 0, 1 , 2, 3 or 4,
30
R11 is P-Sp-, alkyl, alkoxy, thioalkyl, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy preferably with 1 to 15 C atoms which is more preferably optionally fluorinated.
P22-169
A and B denote, in case of multiple occurrence independently of one another, an aromatic or alicyclic group, which optionally contains one or more heteroatoms selected from N, 0 and S, and is optionally mono- or
5 polysubstituted by L, preferably 1 ,4-phenylene, pyridine-
2.5-diyl, pyrim idine-2, 5-diyl, thiophene-2, 5-diyl, naphthalene-2,6-diyl, 1 ,2,3,4-tetrahydro-naphthalene-
2.6-diyl, indane-2, 5-diyl, bicyclooctylene or 1 ,4- cyclohexylene wherein one or two non-adjacent CH2
10 groups are optionally replaced by 0 and/or S, wherein these groups are unsubstituted or substituted by 1 , 2, 3 or 4 groups L
L is P-Sp-, F, Cl, Br, I, -CN, -NO2 , -NCO, -NCS, -OCN, -
15 SCN, -C(=O)NRxRy, -C(=O)ORX, -C(=O)RX, -NRxRy, -OH, -SF5, or straight chain or branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy with 1 to 12, wherein one or more H atoms are optionally replaced by F or Cl, preferably F,
20 -CN or straight chain or branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy 1 to 6 C atoms,
Rx and Ry independently of each other denote H or alkyl with 1 to
25 12 C-atoms,
Z11 and Z12 denotes, in case of multiple occurrence independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -S-CO-, -CO-S-, -O-COO-, -CO-NR00-, -NR00-CO-,
30 -NR00-CO-NR000, -NR00-CO-O-, -O-CO-NR00-, -OCH2-, - CH2O-, -SCH2-, -CH2S-, -CF2O-, -OCF2-, -CF2S-, -SCF2- -CH2CH2-, -(CH2)m, -CF2CH2-, -CH2CF2-, -CF2CF2-, - CH=N- -N=CH- -N=N-, -CH=CR00-, -CY1=CY2-, -C=C-, - CH=CH-COO-, -OCO-CH=CH- or a single bond,
35 preferably -COO-, -OCO- , -C=C-, or a single bond,
P22-169
Y1 and Y2 independently of each other denote H, F, Cl or CN, n is 1 , 2, 3 or 4, preferably 1 or 2, most preferably 1 ,
5 m is 0, 1 , 2, 3 or 4, preferably 0 or 1 , most preferably 0, n1 is an integer from 1 to 10, preferably 1 , 2, 3 or 4.
20 P is a polymerisable group,
Sp is a spacer group or a single bond, r1 , r2 , r3 are independently of each other 0, 1 , 2, 3 or 4, preferably 0, 1 or
25 2 and
L, R11, Z12, ring B and m have one of the meanings as given above under formula RMT.
30 Preferred compounds of formula RMTa are those selected of formula
20 wherein L, P, Sp, and R11 are as defined in formula RMT, r1 to r3 denotes 1 , 2, 3, or 4, preferably 1 or 2.
Preferred compounds of formula RMTal to RMTa6 are selected of the
5
Wherein P11 denotes selected from the group consisting of heptadiene, vinyloxy, acrylate, methacrylate, fluoroacrylate, chloroacrylate, oxetane and epoxide groups, and very preferably denotes an acrylate, methacrylate or oxetane group, especially an acrylate or methacrylate
10 group, in particular an acrylate group, and x is an integer from 0 to 12, preferably from 1 to 8, more preferably 3, 4, 5 or 6, in particular x denotes 3 or 6, especially 6 and R11 denotes alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy preferably with 1 to 15 C atoms which is more preferably optionally fluorinated and L has on
15 each occurrence one of the meanings as given above under formula RMT.
Especially preferred are the compounds of formula RMTa2, which are preferably selected from the following formulae:
35
P22-169
35
P22-169
5 Wherein R11 has one of the meanings as given above under formula RMT, preferably R11 denotes alkyl or alkoxy, more preferably, methoxy, ethoxy, propoxy, methyl, ethyl, propyl, butyl, pentyl, isopropyl or isobutyl, in particular methoxy.
10 Preferred compounds of formula RMTb are those selected of formula
RMTbO to RMTb6
5 wherein L, P, Sp, and R11 are as defined in formula RMT, r1 to r3 denotes 1 , 2, 3, or 4, preferably 1 or 2.
P22-169
Wherein P11 denotes selected from the group consisting of heptadiene, vinyloxy, acrylate, methacrylate, fluoroacrylate, chloroacrylate, oxetane and epoxide groups, and very preferably denotes an acrylate,
25 methacrylate or oxetane group, especially an acrylate or methacrylate group, in particular an acrylate group, and x is an integer from 0 to 12, preferably from 1 to 8, more preferably 3, 4, 5 or 6, in particular x denotes 3 or 6, especially 6 and R11 denotes alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy preferably with 1 to
30 15 C atoms which is more preferably optionally fluorinated and L has on each occurrence one of the meanings as given above under formula RMT.
Especially preferred are the compounds of formula RMTb2, which are preferably selected from the following formulae:
35
P22-169
RMTb2-
30
35
P22-169
35
P22-169
Wherein R11 has one of the meanings as given above under formula RMT. preferably R11 denotes alkyl or alkoxy.
Further preferred are compounds of formula RMTb2-A1 , which are
RMTb2-
25
35
P22-169
Wherein R11 has one of the meanings as given above under formula RMT,
10 preferably R11 denotes alkyl or alkoxy, more preferably, methoxy, ethoxy, propoxy, methyl, ethyl, propyl, butyl, pentyl, isopropyl or isobutyl, in particular methoxy.
Preferably the polymerizable LC material comprises one or more,
15 preferably two or more compounds selected from formulae RMTa2-A3 to RMTa2-A6 or RMTb2-A3, especially the polymerizable LC material comprises one or more compounds of formula RMTb2-A3, in particular the polymerizable LC material comprises a combination of compounds of formulae RMTa2-A4 and/or RMTa2-A5 with RMTb2-A3.
20
By utilizing one or more compounds of formula RMT in the polymerizable LC materials the birefringence of a polymer film can be beneficially increased. The corresponding reflection bandwidth is related to birefringence by the following formula:
25
Bandwidth = An * pitch, it can be seen that by increasing the birefringence of the cholesteric polymer film, it is possible to achieve a wider bandwidth of reflection. By utilizing
30 compounds of formula RMT in a polymerizable LC material, it is possible to widen the reflection bandwidth significantly of a corresponding polymer film while also not negatively affecting film properties such as wet film crystallization or dewetting.
35
P22-169
- 53 -
The concentration of compounds of formula RMT and its subformulae, in the polymerizable LC material is preferably from 10% to 99 %, more preferably from 20 to 95%, especially from 25 to 90%.
5 The compounds of formula RMT are either commercially available from Merck KGaA, Darmstadt or can be synthesized in accordance with the procedures given for example in US 6,514,578 or US 15/575,415.
In preferred embodiment, the polymerizable LC material comprises one or
10 more di- or multireactive reactive mesogens that are preferably selected of formula DRM
P1-Sp1-MG-Sp2-P2 DRM
15 wherein
P1 and P2 independently of each other denote a polymerisable group,
Sp1 and Sp2 independently of each other are a spacer group or a single bond, and
20
MG is a rod-shaped mesogenic group, which is preferably selected of formula MG
-(A1-Z1)n-A2- MG
25 wherein
A1 and A2 denote, in case of multiple occurrence independently of one another, an aromatic or alicyclic group, which optionally
30 contains one or more heteroatoms selected from N, O and S, and is optionally mono- or polysubstituted by L,
L is P-Sp-, F, Cl, Br, I, -CN, -NO2 , -NCO, -NCS, -OCN, -SCN, -
C(=O)NRxRy, -C(=O)ORX, -C(=O)RX, -NRxRy, -OH, -SFs,
35 optionally substituted silyl, aryl or heteroaryl with 1 to 12, preferably 1 to 6 C atoms, and straight chain or branched
P22-169
- 54 - alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy with 1 to 12, preferably 1 to 6 C atoms, wherein one or more H atoms are optionally replaced by F or Cl,
5
Rx and Ry independently of each other denote H or alkyl with 1 to 12 C- atoms,
Z1 denotes, in case of multiple occurrence independently of one
10 another, -O-, -S-, -CO-, -COO-, -OCO-, -S-CO-, -CO-S-, -O-COO-, -CO-NRX-, -NRX-CO-, -NRx-CO-NRy, -NRX-CO-O- -O-CO-NRX-, -OCH2-, -CH2O-, -SCH2-, -CH2S-, -CF2O- -OCF2-, -CF2S-, -SCF2-, -(CH2)n1, -CF2CH2-, -CH2CF2- -CF2CF2-, -CH=N- -N=CH- -N=N-, -CH=CRX-, -CY1=CY2-
15 -C=C-, -CH=CH-COO-, -OCO-CH=CH- or a single bond, preferably -COO-, -OCO- or a single bond,
Y1 and Y2 independently of each other denote H, F, Cl or CN,
20 n is 1 , 2, 3 or 4, preferably 1 or 2, most preferably 2, n1 is an integer from 1 to 10, preferably 1 , 2, 3 or 4, however, under the condition that compounds of formula RMT are excluded from the compounds of formula DRM.
25
Preferred groups A1 and A2 include, without limitation, furan, pyrrol, thiophene, oxazole, thiazole, thiadiazole, imidazole, phenylene, cyclohexylene, bicyclooctylene, cyclohexenylene, pyridine, pyrimidine, pyrazine, azulene, indane, fluorene, naphthalene, tetrahydronaphthalene,
30 anthracene, phenanthrene and dithienothiophene, all of which are unsubstituted or substituted by 1 , 2, 3 or 4 groups L as defined above.
Particular preferred groups A1 and A2 are selected from 1 ,4-phenylene, pyridine-2,5-diyl, pyrim idine-2,5-diyl, thiophene-2, 5-diyl, naphthalene-2,6-
35 diyl, 1 ,2,3,4-tetrahydro-naphthalene-2,6-diyl, indane-2, 5-diyl, bicyclooctylene or 1 ,4-cyclohexylene wherein one or two non-adjacent
P22-169
- 55 -
CH2 groups are optionally replaced by 0 and/or S, wherein these groups are unsubstituted or substituted by 1 , 2, 3 or 4 groups L as defined above.
Preferred RMs of formula DRM are selected of formula DRMa
5
10 wherein
P° is, in case of multiple occurrence independently of one another, a polymerisable group, preferably an acryl, methacryl, oxetane, epoxy, vinyl, heptadiene, vinyloxy, propenyl ether or styrene
15 group,
Z° is -COO-, -OCO-, -CH2CH2-, -CF2O-, -OCF2-, -C=C- -CH=CH-,- OCO-CH=CH-, -CH=CH-COO-, or a single bond,
20 L has on each occurrence identically or differently one of the meanings given for L in formula DRM, and is preferably, in case of multiple occurrence independently of one another, selected from F, Cl, CN or optionally halogenated alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or
25 alkoxycarbonyloxy with 1 to 5 C atoms, r is 0, 1 , 2, 3 or 4, x and y are independently of each other 0 or identical or different
30 integers from 1 to 12, z is 0 or 1 , with z being 0 if the adjacent x or y is 0.
Very preferred RMs of formula DRM are selected from the following
35 formulae:
P22-169
15
DRMa7
5 wherein P°, L, r, x, y and z are as defined in formula DRMa.
Especially preferred are compounds of formula DRMal , DRMa2 and DRMa3, in particular those of formula DRMal .
10 The concentration of di- or multireactive RMs, preferably those of formula DRM and its subformulae, in the RM mixture is preferably from 1 % to 90 %, very preferably from 10 to 80%.
In another preferred embodiment the RM mixture comprises one or more
15 monoreactive RMs. These additional monoreactive RMs are preferably selected from formula MRM:
P1-Sp1-MG-R MRM
20 wherein P1, Sp1 and MG have the meanings given in formula DRM,
R denotes P-Sp-, F, Cl, Br, I, -CN, -NO2 , -NCO, -NCS, -OCN, -
SCN, -C(=O)NRxRy, -C(=O)X, -C(=O)ORX, -C(=O)Ry, -NRxRy, -OH, -SF5, optionally substituted silyl, straight chain or
25 branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy with 1 to 12, preferably 1 to 6 C atoms, wherein one or more H atoms are optionally replaced by F or Cl,
30 is halogen, preferably F or Cl, and
Rx and Ry are independently of each other H or alkyl with 1 to 12 C- atoms, however, under the condition that compounds of formula RMT are excluded from the compound of formula MRM.
35
P22-169
R° is alkyl, alkoxy, thioalkyl, alkylcarbonyl, alkoxycarbonyl,
25 alkylcarbonyloxy or alkoxycarbonyloxy with 1 or more, preferably 1 to 15 C atoms or denotes Y° or P-(CH2)y-(O)z-,
X° is -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-NR01-, -NR01- CO-, -NR01-CO-NR01-, -OCH2-, -CH2O-, -SCH2-, -CH2S-
30 -CF2O-, -OCF2-, -CF2S-, -SCF2-, -CF2CH2-, -CH2CF2-, -CF2CF2-, -CH=N- -N=CH- -N=N-, -CH=CR01-, -CF=CF- -C=C-, -CH=CH-COO-, -OCO-CH=CH- or a single bond
Y° is F, Cl, CN, NO2, OCH3, OCN, SCN, SFs, or mono- oligo- or
35 polyfluorinated alkyl or alkoxy with 1 to 4 C atoms,
P22-169
- 61 -
Z° is -COO-, -OCO-, -CH2CH2-, -CF2O-, -OCF2-, -CH=CH-,-OCO- CH=CH-, -CH=CH-COO- or a single bond,
A0 is, in case of multiple occurrence independently of one another,
5 1 ,4-phenylene that is unsubstituted or substituted with 1 , 2, 3 or 4 groups L, or trans-1 ,4-cyclohexylene,
R01 02 are independently of each other H, R° or Y°,
10 u and v are independently of each other 0, 1 or 2, w is 0 or 1 , and wherein the benzene and naphthalene rings can additionally be
15 substituted with one or more identical or different groups L.
Especially preferred are compounds of formula MRM1 , MRM2, MRM3, MRM4, MRM5, MRM6, MRM7, in particular those of formula MRM1 , MRM4, MRM6, and MRM7.
20
The concentration of all monoreactive RMs, including those of formula RMT, in the polymerizable LC material is preferably from 1 to 80%, very preferably from 5 to 50%.
25 In formulae DRM, MRM and their preferred subformulae, L is preferably selected from F, Cl, CN, NO2 or straight chain or branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonlyoxy or alkoxycarbonyloxy with 1 to 12 C atoms, wherein the alkyl groups are optionally perfluorinated, or P-Sp-.
30
Very preferably L is selected from F, Cl, CN, NO2, CH3, C2H5, C(CHs)3, CH(CH3)2, CH2CH(CH3)C2H5, OCH3, OC2H5, COCH3, COC2H5, COOCH3, COOC2H5, CF3, OCF3, OCHF2, OC2F5 or P-Sp-, in particular F, Cl, CN, CH3, C2H5, C(CH3)3, CH(CH3)2, OCH3, COCH3 or OCF3, most preferably
35 F, Cl, CH3, C(CH3)3, OCH3 or COCH3, or P-Sp-.
P22-169
- 62 -
Preferably the polymerizable LC material according to the present invention comprises one or more chiral compounds. These chiral compounds may be non-mesogenic compounds or mesogenic compounds. Additionally, these chiral compounds, whether mesogenic or
5 non-mesogenic, may be non-reactive, monoreactive or multireactive.
Preferably the utilized chiral compounds have each alone or in combination with each other an absolute value of the helical twisting power (IHTPtotail) of 20 pm’1 or more, preferably of 40 pm’1 or more, more
10 preferably in the range of 60 pm’1 or more, most preferably in the range of 80 pm’1 or more to 260 pm’1, in particular those disclosed in WO 98/00428.
Preferably, non-polymerisable chiral compounds are selected from the
35 the latter ones including the respective (S,S) enantiomers,
P22-169
- 63 - wherein E and F are each independently 1 ,4-phenylene or trans-1 ,4-cyclo- hexylene, v is 0 or 1 , Z° is -COO- -OCO-, -CH2CH2- or a single bond, and R is alkyl, alkoxy or alkanoyl with 1 to 12 C atoms.
5
Particularly preferred polymerizable LC materials that comprise one or more chiral compounds, which do not necessarily have to show a liquid crystalline phase.
10 The compounds of formula C-ll and their synthesis are described in WO 98/00428. Especially preferred is the compound CD-1 , as shown in table D below. The compounds of formula C-lll and their synthesis are described in GB 2 328207.
15 Further, typically used chiral compounds are e.g. the commercially available R/S-5011 , CD-1 , R/S-811 and CB-15 (from Merck KGaA, Darmstadt, Germany).
The above mentioned chiral compounds R/S-5011 and CD-1 and the
20 (other) compounds of formulae C-l, C-ll and C-lll exhibit a very high helical twisting power (HTP), and are therefore particularly useful for the purpose of the present invention.
The polymerizable LC material preferably comprises 1 to 5, in particular 1
25 to 3, very preferably 1 or 2 chiral compounds, preferably selected from the above formula C-ll, in particular CD-1 , and/or formula C-lll and/or R-5011 or S-5011 , very preferably, the chiral compound is R-5011 , S-5011 or CD- 1.
30 Preferably the polymerizable LC material comprise one or more non- reactive chiral compound and/or one or more reactive chiral compounds, which are preferably selected from mono- and/or multireactive chiral compounds.
35 Suitable mesogenic reactive chiral compounds preferably comprise one or more ring elements, linked together by a direct bond or via a linking group
P22-169
- 64 - and, where two of these ring elements optionally may be linked to each other, either directly or via a linking group, which may be identical to or different from the linking group mentioned. The ring elements are preferably selected from the group of four-, five-, six- or seven-, preferably
5 of five- or six-, membered rings.
35 po* denotes a polymerisable group P
P22-169
- 65 -
Sp* denotes a spacer Sp
A0 and B° are, in case of multiple occurrence independently of one another, 1 ,4-phenylene that is unsubstituted or substituted with 1 , 2, 3 or 4 groups L as defined above, or trans-1 ,4-
5 cyclohexylene,
X1 and X2 are independently of each other -O-, -COO-, -OCO-, -O-CO-O- or a single bond,
Z°* is, in case of multiple occurrence independently of one another,
10 -COO-, -OCO-, -O-CO-O-, -OCH2-, -CH2O-, -CF2O-, -OCF2-, -CH2CH2-, -(CH2)4-, -CF2CH2-, -CH2CF2-, -CF2CF2-, -c=c- -CH=CH- -CH=CH-COO-, -OCO-CH=CH- or a single bond, t is, independently of each other 0, 1 , 2 or 3,
15 a is 0, 1 or 2, b is 0 or an integer from 1 to 12, z is 0 or 1 , and wherein the naphthalene rings in formula CRMa can additionally be
20 substituted with one or more identical or different groups L wherein
L is, independently of each other F, Cl, CN, halogenated alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy with 1 to 5 C atoms.
25
The compounds of formula CRMa are preferably selected from the group of compounds of formulae CRMa-1 .
30
- 66 - wherein X2, A0, B°, Z°‘, P0‘and b have the meanings given in formula CRMa or one of the preferred meanings given above and below, and (OCO) denotes -O-CO- or a single bond.
5 Especially preferred compounds of formula CRM are selected from the group consisting of the following subformulae:
20
35
P22-169
5
wherein R is -X2-(CH2)x-P°* as defined in formula CRM-a, and the benzene and naphthalene rings are unsubstituted or substituted with 1 , 2, 3 or 4 groups L as defined above and below.
10
The compounds of formula CRMb are preferably selected from the group of compounds of formulae CRMb-1 to CRMb-3,
20
CRMb-3 wherein X2, A0, B°, Z°‘, P°‘and b have the meanings given in formula CRMa
35 or one of the preferred meanings given above and below.
- 69 -
Preferred compounds of formula CRMb-1 are preferably selected from the group of compounds of formulae CRMb-1 a and CRMb-1 b,
CRMb-1 b
15 wherein X2, Z°‘, P°‘and b have the meanings given in formula CRMa or one of the preferred meanings given above and below. Preferably in the compounds of formulae CRMb-1 a and CRMb-1 b, Z° denotes OCOO, COO, OCO or a single bond. Preferably in the compounds of formulae CRMb-1 a and CRMb-1 b, X2 denotes OCOO, OCO, COO or a single bond. Preferred
20 are compounds of formula and CRMb-1 b that are selected from the following compounds,
wherein P°‘and b have the meanings given in formula CRMa or one of the preferred meanings given above and below.
30
The compound CRMb-1 bl wherein P°* denotes in each occurrence an acrylate group and b denotes in each occurrence 4, is especially preferred and commercially available from BASF, Germany under tradename LC756.
35 The compounds of formula CRMc are preferably selected from the group of compounds of formulae CRMc-1 ,
- 70 -
wherein X2, A0, B°, Z°‘, P0‘and b have the meanings given in formula CRMa
10 or one of the preferred meanings given above and below.
Preferred compounds of formula CRMc-1 are preferably selected from the
wherein X2, Z°‘, P°‘and b have the meanings given in formula CRMa or one of the preferred meanings given above and below. Preferably in the compounds of formulae CRMc-1 a and CRMc-1 b, Z° denotes OCOO, COO,
30 OCO or a single bond. Preferably in the compounds of formulae CRMc-1 a and CRMc-1 b, X2 denotes 0, OCOO, OCO, COO or a single bond.
Preferred are compounds of formula and CRMc-1 a that are selected from the following compounds,
35
P22-169
- 71 -
wherein P0‘and b have the meanings given in formula CRMa or one of the preferred meanings given above and below.
10
The compound CRMc-1 al wherein P°* denotes in each occurrence an acrylate group and b denotes in each occurrence 3 or 6, and X2 denotes in each orccurence 0 or a single bond is especially preferred.
The amount of chiral compounds in the liquid-crystalline medium is
15 preferably from 1 to 20 %, more preferably from 1 to 15 %, even more preferably 1 to 10 %, and most preferably 3 to 7 %, by weight of the total mixture.
In a preferred embodiment, the proportion of polymerizable mesogenic
20 compounds in the polymerizable liquid-crystalline material according to the present invention as a whole, is in the range from 30 to 99 % by weight, more preferably in the range from 40 to 97 % by weight and even more preferably in the range from 50 to 95% by weight.
25 Preferably, the proportion of said mono-, di- or multireactive liquidcrystalline compounds, preferably selected from the compounds of the formulae DRM, MRM as given above and below in the polymerizable liquid-crystalline material according to the present invention as a whole, is preferably in the range from 30 to 99.9 % by weight, more preferably in the
30 range from 40 to 99.9 % by weight and even more preferably in the range from 50 to 99.9% by weight.
In a preferred embodiment, the proportion of di- or multireactive polymerizable mesogenic compounds in the polymerizable liquid¬
35 crystalline material according to the present invention as a whole, is preferably in the range from 1 to 70 % by weight, more preferably in the
P22-169
- 72 - range from 2 to 60 % by weight and even more preferably in the range from 3 to 50% by weight.
In another preferred embodiment, the proportion of monoreactive
5 polymerizable mesogenic compounds of formula MRM excluding compounds of formula RMT in a polymerizable liquid-crystalline material according to the present invention as a whole, is, if present, preferably in the range from 1 to 50% by weight, more preferably in the range from 2 to 45 % by weight and even more preferably in the range from 5 to 40 % by
10 weight.
In another preferred embodiment, the proportion of multireactive polymerizable mesogenic compounds in a polymerizable liquid-crystalline material according to the present invention as a whole is, if present,
15 preferably in the range from 1 to 30 % by weight, more preferably in the range from 2 to 20 % by weight and even more preferably in the range from 3 to 10% by weight.
In another preferred embodiment the polymerizable LC material does not
20 contain polymerizable mesogenic compounds having more than two polymerizable groups.
In a further preferred embodiment, the polymerizable LC material comprises one or more monoreactive mesogenic compounds, preferably
25 selected from formulae MRM-1 , MRM-4, MRM-6, and/or MRM-7, one or more direactive mesogenic compounds, preferably selected from formula DRMa-1.
If chiral compounds are utilized, the polymerizable LC material should in
30 addition be of such a nature that different reflection wavelengths, in particular in the VIS light region, can be achieved by simple and targeted variation. Preferably the cholesteric pitch of the polymerizable LC material is selected such, that their wavelength of reflection is in the in the range in the infrared range of the electromagnetic spectrum i.e. in the range from of
35 300 nm to 900 nm, more preferably form 350 to 850 nm. In particular, the
P22-169
- 73 - reflection wavelength of the liquid crystalline medium is in the range of 400 nm to 800 nm.
The polymerizable LC material according to the present invention are
5 prepared in a manner conventional per se, for example by mixing one or more of the above-mentioned polymerisable compounds with one or more block copolymers as described above and below, and one or more chiral compounds, both as defined above, and optionally with further liquidcrystalline compounds and/or additives, and/or solvents.
10
In a further preferred embodiment the polymerizable LC material optionally comprises one or more further additives selected from the group consisting of further polymerization initiators, antioxidants, surfactants, stabilisers, catalysts, sensitizers, inhibitors, chain-transfer agents, co¬
15 reacting monomers, reactive thinners, surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, degassing or defoaming agents, deaerators, diluents, reactive diluents, auxiliaries, colourants, dyes, pigments and nanoparticles.
20
In another preferred embodiment, the polymerizable LC material optionally comprises one or more additives selected from polymerizable non- mesogenic compounds (reactive thinners). The amount of these additives in the polymerizable LC material is preferably from 0 to 30 %, very
25 preferably from 0 to 25 %.
The reactive thinners used are not only substances which are referred to in the actual sense as reactive thinners, but also auxiliary compounds already mentioned above which contain one or more complementary
30 reactive units or polymerizable groups P, for example hydroxyl, thiol-, or amino groups, via which a reaction with the polymerizable units of the liquid-crystalline compounds can take place.
The substances, which are usually capable of photopolymerization,
35 include, for example, mono-, bi- and polyfunctional compounds containing at least one olefinic double bond. Examples thereof are vinyl esters of
P22-169
- 74 - carboxylic acids, for example of lauric, myristic, palmitic and stearic acid, and of dicarboxylic acids, for example of succinic acid, adipic acid, allyl and vinyl ethers and methacrylic and acrylic esters of monofunctional alcohols, for example of lauryl, myristyl, palmityl and stearyl alcohol, and
5 diallyl and divinyl ethers of bifunctional alcohols, for example ethylene glycol and 1 ,4-butanediol.
Also suitable are, for example, methacrylic and acrylic esters of polyfunctional alcohols, in particular those which contain no further
10 functional groups, or at most ether groups, besides the hydroxyl groups. Examples of such alcohols are bifunctional alcohols, such as ethylene glycol, propylene glycol and their more highly condensed representatives, for example diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol etc., butanediol, pentanediol, hexanediol, neopentyl
15 glycol, alkoxylated phenolic compounds, such as ethoxylated and propoxylated bisphenols, cyclohexanedimethanol, trifunctional and polyfunctional alcohols, such as glycerol, trimethylolpropane, butanetriol, trimethylolethane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, sorbitol, mannitol, and the corresponding alkoxylated, in particular
20 ethoxylated and propoxylated alcohols.
Other suitable reactive thinners are polyester (meth)acrylates, which are the (meth)acrylic ester of polyesterols.
Examples of suitable polyesterols are those which can be prepared by
25 esterification of polycarboxylic acids, preferably dicarboxylic acids, using polyols, preferably diols. The starting materials for such hydroxylcontaining polyesters are known to the person skilled in the art. Dicarboxylic acids which can be employed are succinic, glutaric acid, adipic acid, sebacic acid, o-phthalic acid and isomers and hydrogenation
30 products thereof, and esterifiable and transesterifiable derivatives of said acids, for example anhydrides and dialkyl esters. Suitable polyols are the abovementioned alcohols, preferably ethyleneglycol, 1 ,2- and 1 ,3- propylene glycol, 1 ,4-butanediol, 1 ,6-hexanediol, neopentyl glycol, cyclohexanedimethanol and polyglycols of the ethylene glycol and
35 propylene glycol type.
P22-169
Suitable reactive thinners are furthermore 1 ,4-divinylbenzene, trial ly I cyanurate, acrylic esters of tricyclodecenyl alcohol of the following formula
also known under the name dihydrodicyclopentadienyl acrylate, and the allyl esters of acrylic acid, methacrylic acid and cyanoacrylic acid.
10
Of the reactive thinners, which are mentioned by way of example, those containing photopolymerizable groups are used in particular and in view of the abovementioned preferred compositions.
15
This group includes, for example, dihydric and polyhydric alcohols, for example ethylene glycol, propylene glycol and more highly condensed representatives thereof, for example diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol etc., butanediol, pentanediol, hexanediol, neopentyl glycol, cyclohexanedimethanol, glycerol,
20 trimethylolpropane, butanetriol, trimethylolethane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, sorbitol, mannitol and the corresponding alkoxylated, in particular ethoxylated and propoxylated alcohols.
25
The group furthermore also includes, for example, alkoxylated phenolic compounds, for example ethoxylated and propoxylated bisphenols.
These reactive thinners may furthermore be, for example, epoxide or urethane (meth)acrylates.
30
Epoxide (meth)acrylates are, for example, those as obtainable by the reaction, known to the person skilled in the art, of epoxidized olefins or poly- or diglycidyl ether, such as bisphenol A diglycidyl ether, with (meth)acrylic acid.
35
P22-169
- 76 -
Urethane (meth)acrylates are, in particular, the products of a reaction, likewise known to the person skilled in the art, of hydroxylalkyl (meth)acrylates with poly- or diisocyanates.
5 Such epoxide and urethane (meth)acrylates are included amongst the compounds listed above as “mixed forms”.
If reactive thinners are used, their amount and properties must be matched to the respective conditions in such a way that, on the one hand, a
10 satisfactory desired effect, for example the desired colour of the composition according to the invention, is achieved, but, on the other hand, the phase behaviour of the liquid-crystalline composition is not excessively impaired. The low-crosslinking (high-crosslinking) liquidcrystalline compositions can be prepared, for example, using
15 corresponding reactive thinners, which have a relatively low (high) number of reactive units per molecule.
The group of diluents include, for example:
20 C1-C4-alcohols, for example methanol, ethanol, n-propanol, isopropanol, butanol, isobutanol, sec-butanol and, in particular, the C5-C12-alcohols n- pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, n-decanol, n- undecanol and n-dodecanol, and isomers thereof, glycols, for example 1 ,2-ethylene glycol, 1 ,2- and 1 ,3-propylene glycol, 1 ,2-, 2,3- and 1 ,4-
25 butylene glycol, di- and triethylene glycol and di- and tripropylene glycol, ethers, for example methyl tert-butyl ether, 1 ,2-ethylene glycol mono- and dimethyl ether, 1 ,2-ethylene glycol mono- and -diethylether, 3- methoxypropanol, 3-isopropoxypropanol, tetrahydrofuran and dioxane, ketones, for example acetone, methyl ethyl ketone, methyl isobutyl ketone
30 and diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), C1-C5-alkyl esters, for example methyl acetate, ethyl acetate, propyl acetate, butyl acetate and amyl acetate, aliphatic and aromatic hydrocarbons, for example pentane, hexane, heptane, octane, isooctane, petroleum ether, toluene, xylene, ethylbenzene, tetralin, decalin, dimethylnaphthalene,
35 white spirit, Shellsol® and Solvesso® mineral oils, for example gasoline,
P22-169
- 77 - kerosine, diesel oil and heating oil, but also natural oils, for example olive oil, soya oil, rapeseed oil, linseed oil and sunflower oil.
It is of course also possible to use mixtures of these diluents in the
5 compositions according to the invention.
So long as there is at least partial miscibility, these diluents can also be mixed with water. Examples of suitable diluents here are C1-C4-alcohols, for example methanol, ethanol, n-propanol, isopropanol, butanol,
10 isobutanol and sec-butanol, glycols, for example 1 ,2-ethylene glycol, 1 ,2- and 1 ,3-propylene glycol, 1 ,2-, 2,3- and 1 ,4-butylene glycol, di- and triethylene glycol, and di- and tripropylene glycol, ethers, for example tetrahydrofuran and dioxane, ketones, for example acetone, methyl ethyl ketone and diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), and C1-
15 C4-alkyl esters, for example methyl, ethyl, propyl and butyl acetate.
The diluents are optionally employed in a proportion of from about 0 to 10.0% by weight, preferably from about 0 to 5.0% by weight, based on the total weight of the polymerizable LC material.
20
The antifoams and deaerators (c1 )), lubricants and flow auxiliaries (c2)), thermally curing or radiation-curing auxiliaries (c3)), substrate wetting auxiliaries (c4)), wetting and dispersion auxiliaries (c5)), hydrophobicizing agents (c6)), adhesion promoters (c7)) and auxiliaries for promoting
25 scratch resistance (c8)) cannot strictly be delimited from one another in their action.
For example, lubricants and flow auxiliaries often also act as antifoams and/or deaerators and/or as auxiliaries for improving scratch resistance.
30 Radiation-curing auxiliaries can also act as lubricants and flow auxiliaries and/or deaerators and/or as substrate wetting auxiliaries. In individual cases, some of these auxiliaries can also fulfil the function of an adhesion promoter (c8)).
35 Corresponding to the above-said, a certain additive can therefore be classified in a number of the groups c1 ) to c8) described below.
P22-169
- 78 -
The antifoams in group c1 ) include silicon-free and silicon-containing polymers. The silicon-containing polymers are, for example, unmodified or modified polydialkylsiloxanes or branched copolymers, comb or block
5 copolymers comprising polydialkylsiloxane and polyether units, the latter being obtainable from ethylene oxide or propylene oxide.
The deaerators in group c1 ) include, for example, organic polymers, for example polyethers and polyacrylates, dialkylpolysiloxanes, in particular
10 dimethylpolysiloxanes, organically modified polysiloxanes, for example arylalkyl-modified polysiloxanes, and fluorosilicones.
The action of the antifoams is essentially based on preventing foam formation or destroying foam that has already formed. Antifoams
15 essentially work by promoting coalescence of finely divided gas or air bubbles to give larger bubbles in the medium to be deaerated, for example the compositions according to the invention, and thus accelerate escape of the gas (of the air). Since antifoams can frequently also be employed as deaerators and vice versa, these additives have been included together
20 under group c1 ).
Such auxiliaries are, for example, commercially available from Tego as TEGO® Foamex 800, TEGO® Foamex 805, TEGO® Foamex 810, TEGO® Foamex 815, TEGO® Foamex 825, TEGO® Foamex 835,
25 TEGO® Foamex 840, TEGO® Foamex 842, TEGO® Foamex 1435, TEGO® Foamex 1488, TEGO® Foamex 1495, TEGO® Foamex 3062, TEGO® Foamex 7447, TEGO® Foamex 8020, Tego® Foamex N, TEGO® Foamex K 3, TEGO® Antifoam 2-18, TEGO® Antifoam 2-18, TEGO® Antifoam 2-57, TEGO® Antifoam 2-80, TEGO® Antifoam 2-82, TEGO®
30 Antifoam 2-89, TEGO® Antifoam 2-92, TEGO® Antifoam 14, TEGO® Antifoam 28, TEGO® Antifoam 81 , TEGO® Antifoam D 90, TEGO® Antifoam 93, TEGO® Antifoam 200, TEGO® Antifoam 201 , TEGO® Antifoam 202, TEGO® Antifoam 793, TEGO® Antifoam 1488, TEGO® Antifoam 3062, TEGOPREN® 5803, TEGOPREN® 5852, TEGOPREN®
35 5863, TEGOPREN® 7008, TEGO® Antifoam 1-60, TEGO® Antifoam 1- 62, TEGO® Antifoam 1-85, TEGO® Antifoam 2-67, TEGO® Antifoam WM
P22-169
- 79 -
20, TEGO® Antifoam 50, TEGO® Antifoam 105, TEGO® Antifoam 730, TEGO® Antifoam MR 1015, TEGO® Antifoam MR 1016, TEGO® Antifoam 1435, TEGO® Antifoam N, TEGO® Antifoam KS 6, TEGO® Antifoam KS 10, TEGO® Antifoam KS 53, TEGO® Antifoam KS 95,
5 TEGO® Antifoam KS 100, TEGO® Antifoam KE 600, TEGO® Antifoam KS 911 , TEGO® Antifoam MR 1000, TEGO® Antifoam KS 1100, Tego® Airex 900, Tego® Airex 910, Tego® Airex 931 , Tego® Airex 935, Tego® Airex 936, Tego® Airex 960, Tego® Airex 970, Tego® Airex 980 and Tego® Airex 985 and from BYK as BYK®-011 , BYK®-019, BYK®-020,
10 BYK®-021 , BYK®-022, BYK®-023, BYK®-024, BYK®-025, BYK®-027, BYK®-031 , BYK®-032, BYK®-033, BYK®-034, BYK®-035, BYK®-036, BYK®-037, BYK®-045, BYK®-051 , BYK®-052, BYK®-053, BYK®-055, BYK®-057, BYK®-065, BYK®-066, BYK®-070, BYK®-080, BYK®-088, BYK®-141 and BYK®-A 530.
15
The auxiliaries in group c1 ) are optionally employed in a proportion of from about 0 to 3.0% by weight, preferably from about 0 to 2.0% by weight, based on the total weight of the polymerizable LC material.
20 In group c2), the lubricants and flow auxiliaries typically include silicon- free, but also silicon-containing polymers, for example polyacrylates or modifiers, low-molecular-weight polydialkylsiloxanes. The modification consists in some of the alkyl groups having been replaced by a wide variety of organic radicals. These organic radicals are, for example,
25 polyethers, polyesters or even long-chain (fluorinated)alkyl radicals, the former being used the most frequently.
The polyether radicals in the correspondingly modified polysiloxanes are usually built up from ethylene oxide and/or propylene oxide units.
30 Generally, the higher the proportion of these alkylene oxide units in the modified polysiloxane, the more hydrophilic is the resultant product.
Such auxiliaries are, for example, commercially available from Tego as TEGO® Glide 100, TEGO® Glide ZG 400, TEGO® Glide 406, TEGO®
35 Glide 410, TEGO® Glide 411 , TEGO® Glide 415, TEGO® Glide 420, TEGO® Glide 435, TEGO® Glide 440, TEGO® Glide 450, TEGO® Glide
P22-169
- 80 -
A 115, TEGO® Glide B 1484 (can also be used as antifoam and deaerator), TEGO® Flow ATF, TEGO® Flow 300, TEGO® Flow 460, TEGO® Flow 425 and TEGO® Flow ZFS 460. Suitable radiation-curable lubricants and flow auxiliaries, which can also be used to improve the
5 scratch resistance, are the products TEGO® Rad 2100, TEGO® Rad 2200, TEGO® Rad 2500, TEGO® Rad 2600 and TEGO® Rad 2700, which are likewise obtainable from TEGO.
Such-auxiliaries are also available, for example, from BYK as BYK®-300
10 BYK®-306, BYK®-307, BYK®-310, BYK®-320, BYK®-333, BYK®-341 , Byk® 354, Byk®361 , Byk®361 N, BYK®388.
Such-auxiliaries are also available, for example, from 3M as FC4430®.
15 Such-auxiliaries are also available, for example, from Cytonix as FluorN®561 or FluorN®562.
Such-auxiliaries are also available, for example, from Merck KGaA as Tivida® FL 2300 and Tivida® FL 2500
20
The auxiliaries in group c2) are optionally employed in a proportion of from about 0 to 3.0% by weight, preferably from about 0 to 2.0% by weight, based on the total weight of the polymerizable LC material.
25 In group c3), the radiation-curing auxiliaries include, in particular, polysiloxanes having terminal double bonds which are, for example, a constituent of an acrylate group. Such auxiliaries can be crosslinked by actinic or, for example, electron radiation. These auxiliaries generally combine a number of properties together. In the uncrosslinked state, they
30 can act as antifoams, deaerators, lubricants and flow auxiliaries and/or substrate wetting auxiliaries, while, in the crosslinked state, they increase, in particular, the scratch resistance, for example of coatings or films which can be produced using the compositions according to the invention. The improvement in the gloss properties, for example of precisely those
35 coatings or films, is regarded essentially as a consequence of the action of
P22-169
- 81 - these auxiliaries as antifoams, deaerators and/or lubricants and flow auxiliaries (in the uncrosslinked state).
Examples of suitable radiation-curing auxiliaries are the products TEGO®
5 Rad 2100, TEGO® Rad 2200, TEGO® Rad 2500, TEGO® Rad 2600 and TEGO® Rad 2700 available from TEGO and the product BYK®-371 available from BYK.
Thermally curing auxiliaries in group c3) contain, for example, primary OH
10 groups, which are able to react with isocyanate groups, for example of the binder.
Examples of thermally curing auxiliaries, which can be used, are the products BYK®-370, BYK®-373 and BYK®-375 available from BYK.
15
The auxiliaries in group c3) are optionally employed in a proportion of from about 0 to 5.0% by weight, preferably from about 0 to 3.0% by weight, based on the total weight of the polymerizable LC material.
20 The substrate wetting auxiliaries in group c4) serve, in particular, to increase the wettability of the substrate to be printed or coated, for example, by printing inks or coating compositions, for example compositions according to the invention. The generally attendant improvement in the lubricant and flow behaviour of such printing inks or
25 coating compositions has an effect on the appearance of the finished (for example crosslinked) print or coating.
A wide variety of such auxiliaries are commercially available, for example from Tego as TEGO® Wet KL 245, TEGO® Wet 250, TEGO® Wet 260
30 and TEGO® Wet ZFS 453 and from BYK as BYK®-306, BYK®-307, BYK®-310, BYK®-333, BYK®-344, BYK®-345, BYK®-346 and Byk®-348.
The auxiliaries in group c4) are optionally employed in a proportion of from about 0 to 3.0% by weight, preferably from about 0 to 1 .5% by weight,
35 based on the total weight of the liquid-crystalline composition.
P22-169
- 82 -
The wetting and dispersion auxiliaries in group c5) serve, in particular, to prevent the flooding and floating and the sedimentation of pigments and are therefore, if necessary, suitable in particular in pigmented compositions.
5
These auxiliaries stabilize pigment dispersions essentially through electrostatic repulsion and/or steric hindrance of the pigment particles containing these additives, where, in the latter case, the interaction of the auxiliary with the ambient medium (for example binder) plays a major role.
10
Since the use of such wetting and dispersion auxiliaries is common practice, for example in the technical area of printing inks and paints, the selection of a suitable auxiliary of this type generally does not present the person skilled in the art with any difficulties, if they are used.
15
Such wetting and dispersion auxiliaries are commercially available, for example from Tego, as TEGO® Dispers 610, TEGO® Dispers 610 S, TEGO® Dispers 630, TEGO® Dispers 700, TEGO® Dispers 705, TEGO® Dispers 710, TEGO® Dispers 720 W, TEGO® Dispers 725 W, TEGO®
20 Dispers 730 W, TEGO® Dispers 735 W and TEGO® Dispers 740 W and from BYK as Disperbyk®, Disperbyk®-107, Disperbyk®-108, Disperbyk®- 110, Disperbyk®-111 , Disperbyk®-115, Disperbyk®-130, Disperbyk®-160, Disperbyk®-161 , Disperbyk®-162, Disperbyk®-163, Disperbyk®-164, Disperbyk®-165, Disperbyk®-166, Disperbyk®-167, Disperbyk®-170,
25 Disperbyk®-174, Disperbyk®-180, Disperbyk®-181 , Disperbyk®-182, Disperbyk®-183, Disperbyk®-184, Disperbyk®-185, Disperbyk®-190, Anti- Terra®-!^ Anti-Terra®-U 80, Anti-Terra®-P, Anti-Terra®-203, Anti-Terra®- 204, Anti-Terra®-206, BYK®-151 , BYK®-154, BYK®-155, BYK®-P 104 S, BYK®-P 105, Lactimon®, Lactimon®-WS and Bykumen®.
30
The amount of the auxiliaries in group c5) used on the mean molecular weight of the auxiliary. In any case, a preliminary experiment is therefore advisable, but this can be accomplished simply by the person skilled in the art.
35
P22-169
- 83 -
The hydrophobicizing agents in group c6) can be used to give water- repellent properties to prints or coatings produced, for example, using compositions according to the invention. This prevents or at least greatly suppresses swelling due to water absorption and thus a change in, for
5 example, the optical properties of such prints or coatings. In addition, when the composition is used, for example, as a printing ink in offset printing, water absorption can thereby be prevented or at least greatly reduced.
10 Such hydrophobicizing agents are commercially available, for example, from Tego as Tego® Phobe WF, Tego® Phobe 1000, Tego® Phobe 1000 S, Tego® Phobe 1010, Tego® Phobe 1030, Tego® Phobe 1010, Tego® Phobe 1010, Tego® Phobe 1030, Tego® Phobe 1040, Tego® Phobe 1050, Tego® Phobe 1200, Tego® Phobe 1300, Tego® Phobe 1310 and
15 Tego® Phobe 1400.
The auxiliaries in group c6) are optionally employed in a proportion of from about 0 to 5.0% by weight, preferably from about 0 to 3.0% by weight, based on the total weight of the polymerizable LC material.
20
Further adhesion promoters from group c7) serve to improve the adhesion of two interfaces in contact. It is directly evident from this that essentially the only fraction of the adhesion promoter that is effective is that located at one or the other or at both interfaces. If, for example, it is desired to apply
25 liquid or pasty printing inks, coating compositions or paints to a solid substrate, this generally means that the adhesion promoter must be added directly to the latter or the substrate must be pre-treated with the adhesion promoters (also known as priming), i.e. this substrate is given modified chemical and/or physical surface properties.
30
If the substrate has previously been primed with a primer, this means that the interfaces in contact are that of the primer on the one hand and of the printing ink or coating composition or paint on the other hand. In this case, not only the adhesion properties between the substrate and the primer, but
35 also between the substrate and the printing ink or coating composition or
P22-169
- 84 - paint play a part in adhesion of the overall multilayer structure on the substrate.
Adhesion promoters in the broader sense which may be mentioned are
5 also the substrate wetting auxiliaries already listed under group c4), but these generally do not have the same adhesion promotion capacity.
In view of the widely varying physical and chemical natures of substrates and of printing inks, coating compositions and paints intended, for
10 example, for their printing or coating, the multiplicity of adhesion promoter systems is not surprising.
Adhesion promoters based on silanes are, for example, 3- aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-
15 aminopropylmethyldiethoxysilane, N-aminoethyl-3- aminopropyltrimethoxysilane, N-aminoethyl-3- aminopropylmethyldimethoxysilane, N-methyl-3- aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3- methacryloyloxypropyltrimethoxysilane, 3-
20 glycidyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3- chloropropyltrimethoxysilane and vinyltrimethoxysilane. These and other silanes are commercially available from Huis, for example under the tradename DYNASILAN®.
25 Corresponding technical information from the manufacturers of such additives should generally be used or the person skilled in the art can obtain this information in a simple manner through corresponding preliminary experiments.
30 However, if these additives are to be added as auxiliaries from group c7) to the polymerizable LC materials according to the invention, their proportion optionally corresponds to from about 0 to 5.0% by weight, based on the total weight of the polymerizable LC material. These concentration data serve merely as guidance, since the amount and
35 identity of the additive are determined in each individual case by the nature of the substrate and of the printing/coating composition.
P22-169
- 85 -
Corresponding technical information is usually available from the manufacturers of such additives for this case or can be determined in a simple manner by the person skilled in the art through corresponding preliminary experiments.
5
The auxiliaries for improving the scratch resistance in group c8) include, for example, the abovementioned products TEGO® Rad 2100, TEGO® Rad 2200, TEGO® Rad 2500, TEGO® Rad 2600 and TEGO® Rad 2700, which are available from Tego.
10
For these auxiliaries, the amount data given for group c3) are likewise suitable, i.e. these additives are optionally employed in a proportion of from about 0 to 5.0% by weight, preferably from about 0 to 3.0% by weight, based on the total weight of the liquid-crystalline composition.
15
Examples that may be mentioned of further light, heat and/or oxidation stabilizers are the following: alkylated monophenols, such as 2,6-di-tert-butyl-4-methylphenol, 2-tert-
20 butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4- n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4- methylphenol, 2-(a-methylcyclohexyl)-4,6-dimethylphenol, 2,6-dioctadecyl- 4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4- methoxymethylphenol, nonylphenols which have a linear or branched side
25 chain, for example 2,6-dinonyl-4-methylphenol, 2,4-dimethyl-6-(1 '- methylundec-1 '-yl)phenol, 2,4-dimethyl-6-(1 '-methylheptadec-1 '-yl)phenol, 2,4-dimethyl-6-(T-methyltridec-T-yl)phenol and mixtures of these compounds, alkylthiomethylphenols, such as 2,4-dioctylthiomethyl-6-tert- butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-
30 ethylphenol and 2,6-didodecylthiomethyl-4-nonylphenol,
Hydroquinones and alkylated hydroquinones, such as 2,6-di-tert-butyl-4- methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert- amylhydrocrainone, 2,6-diphenyl-4-octadecyloxyphenol, 2,6-di-tert-
35 butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-
P22-169
- 86 - hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate and bis(3,5-di- tert-butyl-4-hydroxyphenyl)adipate,
Tocopherols, such as a-tocopherol, [3-tocopherol, y-tocopherol, 5-
5 tocopherol and mixtures of these compounds, and tocopherol derivatives, such as tocopheryl acetate, succinate, nicotinate and polyoxyethylenesuccinate (“tocofersolate”), hydroxylated diphenyl thioethers, such as 2,2'-thiobis(6-tert-butyl-4-
10 methylphenol), 2,2'-thiobis(4-octylphenol), 4,4'-thiobis(6-tert-butyl-3- methylphenol), 4,4'-thiobis(6-tert-butyl-2-methylphenol), 4,4'-thiobis(3,6-di- sec-amylphenol) and 4,4'-bis(2,6-dimethyl-4-hydroxyphenyl)disulfide,
Alkylidenebisphenols, such as 2,2'-methylenebis(6-tert-butyl-4-
15 methylphenol), 2,2'-methylenebis(6-tert-butyl-4-ethylphenol), 2,2'- methylenebis[4-methyl-6-(a-methylcyclohexyl)phenol], 2,2'- methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis(6-nonyl-4- methylphenol), 2,2'-methylenebis(4,6-di-tert-butylphenol), 2,2- ethylidenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis(6-tert-butyl-4-
20 isobutylphenol), 2,2'-methylenebis[6-(a-methylbenzyl)-4-nonylphenol], 2,2'- methylenebis[6-(a,a-dimethylbenzyl)-4-nonylphenol], 4,4'- methylenebis(2,6-di-tert-butylphenol), 4,4'-methylenebis(6-tert-butyl-2- methylphenol), 1 ,1 -bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 2,6- bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1 ,1 ,3-tris(5-
25 tert-butyl-4-hydroxy-2-methylphenyl)butane, 1 , 1 -bis(5-tert-butyl-4-hydroxy- 2-methylphenyl)-3-n-dodecyl-mercaptobutane, ethylene glycol bis[3,3- bis(3'-tert-butyl-4'-hydroxyphenyl)butyrate], bis(3-tert-butyl-4-hydroxy-5- methylphenyl)dicyclopentadiene, bis[2-(3'-tert-butyl-2'-hydroxy-5'- methylbenzyl)-6-tert-butyl-4-methylphenyl]terephthalate, 1 , 1 -bis(3, 5-
30 dimethyl-2-hydroxyphenyl)butane, 2,2-bis(3,5-di-tert-butyl-4- hydroxyphenyl)propane, 2,2-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-4- n-dodecyl-mercaptobutane and 1 ,1 ,5,5-tetrakis(5-tert-butyl-4-hydroxy-2- methylphenyl)pentane,
35 O-, N- and S-benzyl compounds, such as 3,5,3',5'-tetra-tert-butyl-4,4'- dihydroxydibenzyl ether, octadecyl 4-hydroxy-3,5-
P22-169
- 87 - dimethylbenzylmercaptoacetate, tridecyl 4-hydroxy-3,5-di-tert- butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, bis(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)dithioterephthalate, bis(3,5- di-tert-butyl-4-hydroxybenzyl)sulfide and isooctyl-3,5-di-tert-butyl-4-
5 hydroxybenzylmercaptoacetate, aromatic hydroxybenzyl compounds, such as 1 ,3,5-tris(3,5-di-tert-butyl-4- hydroxybenzyl)-2,4,6-trimethyl-benzene, 1 ,4-bis(3,5-di-tert-butyl-4- hydroxybenzyl)-2,3,5,6-tetramethyl-benzene and 2,4,6-tris(3,5-di-tert-butyl-
10 4-hydroxybenzyl)phenol,
Triazine compounds, such as 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4- hydroxyanilino)-1 ,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4- hydroxyanilino)-1 ,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-
15 hydroxyphenoxy)-1 ,3,5-triazine, 2,4,6-tris(3, 5-di-tert-butyl-4- hydroxyphenoxy)-1 ,2, 3-triazine, 1 , 3, 5-tris(3, 5-di-tert-butyl-4- hydroxybenzyl)isocyanurate, 1 ,3,5-tris(4-tert-butyl-3-hydroxy-2,6- dimethylbenzyl)isocyanurate, 2,4,6-tris(3,5-di-tert-butyl-4- hydroxyphenylethyl)-1 ,3,5-triazine, 1 , 3, 5-tris-(3, 5-di-tert-butyl-4-
20 hydroxyphenylpropionyl)hexahydro-1 ,3,5-triazine, 1 , 3,5-tris(3, 5- dicyclohexyl-4-hydroxybenzyl)isocyanurate and 1 ,3,5-tris(2- hydroxyethyl)isocyanurate,
Benzylphosphonates, such as dimethyl 2,5-di-tert-butyl-4-
25 hydroxybenzylphosphonate, diethyl 3,5-di-tert-butyl-4- hydroxybenzylphosphonate, dioctadecyl 3,5-di-tert-butyl-4- hydroxybenzylphosphonate and dioctadecyl 5-tert-butyl-4-hydroxy-3- methylbenzylphosphonate,
30 Acylaminophenols, such as 4-hydroxylauroylanilide, 4- hydroxystearoylanilide and octyl N-(3,5-di-tert-butyl-4- hydroxyphenyl)carbamate,
Propionic and acetic esters, for example of monohydric or polyhydric
35 alcohols, such as methanol, ethanol, n-octanol, i-octanol, octadecanol, 1 ,6-hexanediol, 1 ,9-nonanediol, ethylene glycol, 1 ,2-propanediol,
P22-169
- 88 - neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'- bis(hydroxyethyl)oxalamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane and 4-hydroxymethyl-1-phospha-
5 2,6,7-trioxabicyclo[2.2.2]-octane,
Propionamides based on amine derivatives, such as N , N'-bis(3,5-di-tert- butyl-4-hydroxyphenylpropionyl)hexamethylenediamine, N, N'-bis(3,5-di- tert-butyl-4-hydroxyphenylpropionyl)trimethylenediamine and N,N'-bis(3,5-
10 di-tert-butyl-4-hydroxyphenylpropionyl)hydrazine,
Ascorbic acid (Vitamin C) and ascorbic acid derivatives, such as ascorbyl palmitate, laurate and stearate, and ascorbyl sulfate and phosphate,
15 Antioxidants based on amine compounds, such as N,N'-diisopropyl-p- phenylenediamine, N,N'-di-sec-butyl-p-phenylenediamine, N , N'-bis( 1 ,4- dimethylpentyl)-p-phenylenediamine, N,N'-bis(1-ethyl-3-methylpentyl)-p- phenylenediamine, N,N'-bis(1-methylheptyl)-p-phenylenediamine, N,N'- dicyclohexyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine,
20 N,N'-bis(2-naphthyl)-p-phenylenediamine, N-isopropyl-N'-phenyl-p- phenylenediamine, N-(1 ,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, N-(1-methylheptyl)-N'-phenyl-p-phenylenediamine, N-cyclohexyl-N'- phenyl-p-phenylenediamine, 4-(p-toluenesulfamoyl)diphenylamine, N,N'- dimethyl-N,N'-di-sec-butyl-p-phenylenediamine, diphenylamine, N-
25 allyldiphenylamine, 4-isopropoxydiphenylamine, N-phenyl-1- naphthylamine, N-(4-tert-octylphenyl)-1 -naphthylamine, N-phenyl-2- naphthylamine, octyl-substituted diphenylamine, such as p,p'-di-tert- octyldiphenylamine, 4-n-butylaminophenol, 4-butyrylaminophenol, 4- nonanoylaminophenol, 4-dodecanoylaminophenol, 4-
30 octadecanoylaminophenol, bis[4-methoxyphenyl)amine, 2,6-di-tert-butyl-4- dimethylaminomethylphenol, 2,4-diaminodiphenylmethane, 4,4'- diam inodiphenylmethane, N, N, N ' , N'-tetramethyl-4,4'- diaminodiphenylmethane, 1 ,2-bis[(2-methylphenyl)amino]ethane, 1 ,2- bis(phenylamino)propane, (o-tolyl)biguanide, bis[4-(1',3'-
35 dimethylbutyl)phenyl]amine, tert-octyl-substituted N-phenyl-1- naphthylamine, a mixture of mono- and dialkylated tert-butyl/tert-
P22-169
- 89 - octyldiphenylamine, a mixture of mono- and dialkylated nonyldiphenylamine, a mixture of mono- and dialkylated dodecyldiphenylamine, a mixture of mono- and dialkylated isopropyl/isohexyldiphenylamine, a mixture of mono- and dialkylated tert¬
5 butyldiphenylamine, 2,3-dihydro-3,3-dimethyl-4H-1 ,4-benzothiazine, phenothiazine, a mixture of mono- and dialkylated tert-butyl/tert- octylphenothiazine, a mixture of mono- and dialkylated tertoctylphenothiazine, N-allylphenothiazine, N,N,N',N'-tetraphenyl-1 ,4- diaminobut-2-ene, N,N-bis(2,2,6,6-tetramethylpiperidin-4-
10 yl)hexamethylenediamine, bis(2,2,6,6-tetramethylpiperidin-4-yl)sebacate, 2,2,6,6-tetramethylpiperidin-4-one and 2,2,6,6-tetramethylpiperidin-4-ol,
Phosphines, Phosphites and phosphonites, such as triphenylphosnine triphenylphosphite, diphenyl alkyl phosphite, phenyl dialkyl phosphite,
15 tris(nonylphenyl)phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl)phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert- butylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4- methylphenyl)pentaerythritol diphosphite, diisodecyloxy pentaerythritol
20 diphosphite, bis(2,4-di-tert-butyl-6-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tris(tert-butylphenyl))pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis(2,4-di-tert-butylphenyl)4,4'- biphenylenediphosphonite, 6-isooctyloxy-2,4,8, 10-tetra-tert-butyl-12H- dibenz[d,g]-1 ,3,2-dioxaphosphocine, 6-fluoro-2,4,8, 10-tetra-tert-butyl-12-
25 methyl-dibenz[d,g]-1 ,3,2-dioxaphosphocine, bis(2,4-di-tert-butyl-6- methylphenyl)methyl phosphite and bis(2,4-di-tert-butyl-6- methylphenyl)ethyl phosphite,
2-(2'-Hydroxyphenyl)benzotriazoles, such as 2-(2'-hydroxy-5'-
30 methylphenyl)benzotriazole, 2-(3',5'-di-tert-butyl-2'- hydroxyphenyl)benzotriazole, 2-(5'-tert-butyl-2'- hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-5'-(1 ,1 ,3,3- tetramethylbutyl)phenyl)benzotriazole, 2-(3',5'-di-tert-butyl-2'- hydroxyphenyl)-5-chlorobenzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-
35 methylphenyl)-5-chlorobenzotriazole, 2-(3'-sec-butyl-5'-tert-butyl-2'- hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-4'-
P22-169
- 90 - octyloxyphenyl)benzotriazole, 2-(3',5'-di-tert-amyl-2'- hydroxyphenyl)benzotriazole, 2-(3,5'-bis-(a,a-dimethylbenzyl)-2'- hydroxyphenyl)benzotriazole, a mixture of 2-(3'-tert-butyl-2'-hydroxy-5'-(2- octyloxycarbonylethyl)phenyl)-5-chlorobenzotriazole, 2-(3'-tert-butyl-5'-[2-
5 (2-ethylhexyloxy)carbonylethyl]-2'-hydroxy phenyl)-5-chlorobenzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-methoxycarbonylethyl)phenyl)-5- chlorobenzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2- methoxycarbonylethyl)phenyl)benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'- (2-octyloxycarbonylethyl)phenyl)benzotriazole, 2-(3'-tert-butyl-5'-[2-(2-
10 ethylhexyloxy)carbonylethyl]-2'-hydroxy phenyl)benzotriazole, 2-(3'- dodecyl-2'-hydroxy-5'-methylphenyl)benzotriazole and 2-(3'-tert-butyl-2'- hydroxy-5'-(2-isooctyloxycarbonylethyl)phenyl benzotriazole, 2,2'- methylenebis[4-(1 ,1 ,3,3-tetramethylbutyl)-6-benzotriazol-2-ylphenol]; the product of complete esterification of 2-[3'-tert-butyl-5'-(2-
15 methoxycarbonylethyl)-2'-hydroxyphenyl]-2H-benzotriazole with polyethylene glycol 300; sulfur-containing peroxide scavengers and sulfur-containing antioxidants, such as esters of 3, 3'-thiodipropionic acid, for example the lauryl, stearyl,
20 myristyl and tridecyl esters, mercaptobenzimidazole and the zinc salt of 2- mercaptobenzimidazole, dibutylzinc dithiocarbamates, dioctadecyl disulfide and pentaerythritol tetrakis([3-dodecylmercapto)propionate,
2-hydroxybenzophenones, such as the 4-hydroxy, 4-methoxy, 4-octyloxy,
25 4-decycloxy, 4-dodecyloxy, 4-benzyloxy, 4,2',4'-trihydroxy and 2'-hydroxy- 4,4'-dimethoxy derivatives,
Esters of unsubstituted and substituted benzoic acids, such as 4-tert- butylphenyl salicylate, phenyl salicylate, octylphenyl salicylate,
30 dibenzoylresorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoylresorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl-3, 5- di-tert-butyl-4-hydroxybenzoate, octadecyl-3, 5-di-tert-butyl-4- hydroxybenzoate and 2-methyl-4,6-di-tert-butylphenyl-3,5-di-tert-butyl-4- hydroxybenzoate,
35
P22-169
- 91 -
Acrylates, such as ethyl a-cyano-[3,[3-diphenylacrylate, isooctyl a-cyano- [3,[3-diphenylacrylate, methyl a-methoxycarbonylcinnamate, methyl a- cyano-[3-methyl-p-methoxycinnamate, butyl-a-cyano-[3-methyl-p- methoxycinnamate and methyl-a-methoxycarbonyl-p-methoxycinnamate,
5 sterically hindered amines, such as bis(2,2,6,6-tetramethylpiperidin-4- yl)sebacate, bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate, bis(1 , 2, 2,6,6- pentamethylpiperidin-4-yl)sebacate, bis( 1 -octyloxy-2, 2,6,6- tetramethylpiperidin-4-yl)sebacate, bis(1 , 2,2,6, 6-pentamethylpiperidin-4- yl)-n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate, the condensation
10 product of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid, the condensation product of N, N'-bis(2, 2,6,6- tetramethylpiperidin-4-yl)hexamethylenediamine and 4-tert-octylamino-2,6- dichloro-1 ,3,5-triazine, tris(2,2,6,6-tetramethylpiperidin-4-yl)nitrilotriacetate, tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)1 ,2,3,4-butanetetracarboxylate,
15 1 , 1 '-(1 ,2-ethylene)bis(3,3,5,5-tetramethylpiperazinone), 4-benzoyl-2, 2,6,6- tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, bis(1 , 2,2,6, 6-pentamethylpiperidin-4-yl)2-n-butyl-2-(2-hydroxy-3,5-di-tert- butylbenzyl)malonate, 3-n-octyl-7,7,9,9-tetramethyl-1 ,3,8- triazaspiro[4.5]decane-2, 4-dione, bis( 1 -octyloxy-2, 2, 6, 6-
20 tetramethylpiperidin-4-yl)sebacate, bis( 1 -octyloxy-2, 2,6,6- tetramethylpiperidin-4-yl)succinate, the condensation product of N,N'- bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4- morpholino-2,6-dichloro-1 ,3,5-triazine, the condensation product of 2- chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidin-4-yl)-1 ,3,5-
25 triazine and 1 ,2-bis(3-aminopropylamino)ethane, the condensation product of 2-chloro-4,6-di(4-n-butylamino-1 , 2,2,6, 6-pentamethylpiperidin-4-yl)- 1 ,3,5-triazine and 1 ,2-bis(3-aminopropylamino)ethane, 8-acetyl-3-dodecyl- 7,7,9,9-tetramethyl-1 , 3, 8-triazaspiro[4.5]-decane-2, 4-dione, 3-dodecyl-1 - (2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidine-2,5-dione, 3-dodecyl-1-
30 (1 ,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione, a mixture of 4- hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine, the condensation product of N,N'-bis(2,2,6,6-tetramethylpiperidin-4- yl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1 ,3,5- triazine, the condensation product of 1 ,2-bis(3-aminopropylamino)ethane
35 and 2, 4, 6-trichloro-1 ,3,5-triazine, 4-butylamino-2, 2,6,6- tetramethylpiperidine, N-(2,2,6,6-tetramethylpiperidin-4-yl)-n-
P22-169
- 92 - dodecylsuccinimide, N-(1 , 2,2,6, 6-pentamethylpiperidin-4-yl)-n- dodecylsuccinimide, 2-undecyl-7,7,9,9-tetramethyl-1 -oxa-3,8-diaza-4-oxo- spiro[4.5]-decane, the condensation product of 7,7,9,9-tetramethyl-2- cycloundecyl-1 -oxa-3,8-diaza-4-oxospiro-[4.5]decane and epichlorohydrin,
5 the condensation products of 4-amino-2,2,6,6-tetramethylpiperidine with tetramethylolacetylenediureas and poly(methoxypropyl-3-oxy)-[4(2, 2,6,6- tetramethyl)piperidinyl]-siloxane,
Oxalamides, such as 4,4'-dioctyloxyoxanilide, 2,2'-diethoxyoxanilide, 2,2'-
10 dioctyloxy-5,5'-di-tert-butoxanilide, 2,2'-didodecyloxy-5,5'-di-tert- butoxanilide, 2-ethoxy-2'-ethyloxanilide, N,N'-bis(3- dimethylaminopropyl)oxalamide, 2-ethoxy-5-tert-butyl-2'-ethoxanilide and its mixture with 2-ethoxy-2'-ethyl-5,4'-di-tert-butoxanilide, and mixtures of ortho-, para-methoxy-disubstituted oxanilides and mixtures of ortho- and
15 para-ethoxy-disubstituted oxanilides, and
2-(2-hydroxyphenyl)-1 ,3,5-triazines, such as 2,4,6-tris-(2-hydroxy-4- octyloxyphenyl)-1 ,3,5-triazine, 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis(2,4- dimethylphenyl)-1 ,3,5-triazine, 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-
20 dimethylphenyl)-1 ,3,5-triazine, 2,4-bis(2-hydroxy-4-propyloxyphenyl)-6- (2,4-dimethylphenyl)-1 ,3,5-triazine, 2-(2-hydroxy-4-octyloxyphenyl)-4,6- bis(4-methylphenyl)-1 ,3,5-triazine, 2-(2-hydroxy-4-dodecyloxyphenyl)-4,6- bis(2,4-dimethylphenyl)-1 ,3,5-triazine, 2-(2-hydroxy-4-tridecyloxyphenyl)- 4,6-bis(2,4-dimethylphenyl)-1 ,3,5-triazine, 2-[2-hydroxy-4-(2-hydroxy-3-
25 butyloxypropoxy)phenyl]-4,6-bis(2,4-dimethyl)-1 ,3,5-triazine, 2-[2-hydroxy- 4-(2-hydroxy-3-octyloxypropoxy)phenyl]-4,6-bis(2,4-dimethyl)-1 ,3,5- triazine, 2-[4-(dodecyloxy/tridecyloxy-2-hydroxypropoxy)-2-hydroxyphenyl]- 4,6-bis(2,4-dimethylphenyl)-1 ,3,5-triazine, 2-[2-hydroxy-4-(2-hydroxy-3- dodecyloxypropoxy)phenyl]-4,6-bis-(2,4-dimethylphenyl)-1 ,3,5-triazine, 2-
30 (2-hydroxy-4-hexyloxyphenyl)-4,6-diphenyl-1 ,3,5-triazine, 2-(2-hydroxy-4- methoxyphenyl)-4,6-diphenyl-1 ,3,5-triazine, 2,4,6-tris[2-hydroxy-4-(3- butoxy-2-hydroxypropoxy)phenyl]-1 ,3,5-triazine and 2-(2-hydroxyphenyl)- 4-(4-methoxyphenyl)-6-phenyl-1 ,3,5-triazine.
35 In another preferred embodiment the polymerizable LC material comprises one or more specific antioxidant additives, preferably selected from the
P22-169
- 93 -
Irganox® series, e.g. the commercially available antioxidants lrganox®1076 and lrganox®1010, from Ciba, Switzerland.
In another preferred embodiment, the polymerizable LC material
5 comprises one or more, more preferably of two or more, photoinitiators, for example, selected from the commercially available Irgacure® or Darocure® (Ciba AG) series, in particular, Irgacure 127, Irgacure 184, Irgacure 369, Irgacure 651 , Irgacure 817, Irgacure 907, Irgacure 1300, Irgacure, Irgacure 2022, Irgacure 2100, Irgacure 2959, or Darcure TPO.
10 Further preferred photoinitiators are selected from oxime ester photoinitiators, such as selected from the commercially available OXE02 (Ciba AG), NCI 930, N1919T (Adeka), SPI-03 or SPI-04 (Samyang).
The concentration of the polymerization in itiator(s) as a whole in the
15 polymerizable LC material is preferably from 0.5 to 10%, very preferably from 0.8 to 8%, more preferably 1 to 7%.
In a preferred embodiment the polymerizable LC material is dissolved in a suitable solvent, which are preferably selected from organic solvents.
20
The solvents are preferably selected from ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone or cyclohexanone; acetates such as methyl, ethyl or butyl acetate or methyl acetoacetate; alcohols such as methanol, ethanol or isopropyl alcohol;
25 aromatic solvents such as toluene or xylene; alicyclic hydrocarbons such as cyclopentane or cyclohexane; halogenated hydrocarbons such as di- or trichloromethane; glycols or their esters such as PGMEA (propyl glycol monomethyl ether acetate), y-butyrolactone. It is also possible to use binary, ternary or higher mixtures of the above solvents. In particular, for
30 multilayer applications, methyl iso butyl ketone is the preferred utilized solvent
In case the polymerizable LC material contains one or more solvents, the total concentration of all solids, including the RMs, in the solvent(s) is
35 preferably from 10 to 60%, more preferably from 20 to 50%, in particular from 30 to 45%
P22-169
- 94 -
Preferably, the polymerizable LC material comprises besides one or more block copolymers, a) one or more polymerizable mesogenic compounds of formula I and
5 corresponding subformulae, b) optionally one or more multi - or direactive polymerizable mesogenic compounds, preferably selected from compounds of formula DRM and corresponding subformulae, c) optionally one or more chiral mesogenic compounds, preferably
10 selected from compounds of formula CRMa to CRMc, more preferably of CRMb, and its subformulae, d) optionally one or more monoreactive mesogens, preferably selected from compounds of formula MRM and corresponding subformulae,
15 e) optionally one or more photoinitiators, f) optionally one or more antioxidative additives, g) optionally one or more adhesion promotors, h) optionally one or more surfactants, i) optionally one or more mono-, di- or multireactive polymerizable
20 non-mesogenic compounds, j) optionally one or more dyes showing an absorption maximum at the wavelength used to initiate photo polymerization, k) optionally one or more chain transfer agents, l) optionally one or more further stabilizers,
25 m) optionally one or more lubricants and flow auxiliaries, and n) optionally one or more diluents, o) optionally a non-polymerizable nematic component, p) optionally one or more organic solvents.
30 More preferably, the polymerizable LC material comprises, a) one or more compounds of formula I or its corresponding preferred subformulae, b) optionally one or more, preferably two or more polymerizable
35 mesogenic compounds of formula RMT and corresponding
P22-169
- 95 - subformulae, preferably selected from compounds of subformulae RMTa2-A4, and/or RMTa2-A5 and/or RMTb-A3 c) one or more, preferably two or more, direactive polymerizable mesogenic compounds, preferably selected from the compounds of
5 formula DRMa-1 , d) optionally one or more, preferably two or more, monoreactive polymerizable mesogenic compounds, preferably selected from compounds of formulae MRM-1 , and/or MRM-4, and/or MRM-6,
10 and/or MRM-7, e) optionally one or more chiral mesogenic compounds of formula CRMb, in particular of formula CRMb-1 bl, f) optionally one or more antioxidative additives, preferably selected
15 from esters of unsubstituted and substituted benzoic acids, in particular lrganox®1076, and if present, preferably in an amount of 0.01 to 2 % by weight, very preferably 0.05 to 1 % by weight, g) optionally one or more photoinitiators, preferably carbazole oxime
20 ester photoinitiators, h) optionally one or more organic solvents, preferably methyl isobutyl ketone.
The invention further relates to a method of preparing a polymer film by
25 - providing a layer of a polymerizable LC material as described above and below onto a substrate,
- polymerizing the polymerizable components of the polymerizable LC material by photopolymerization, and
- optionally removing the polymerized LC material from the substrate
30 and/or optionally providing it onto another substrate.
This polymerizable LC material can be coated or printed onto the substrate, for example by spin-coating, printing, or other known techniques, and the solvent is evaporated off before polymerization. In
35 most cases, it is suitable to heat the mixture in order to facilitate the evaporation of the solvent.
P22-169
- 96 -
The polymerizable LC material can be applied onto a substrate by conventional coating techniques like spin coating, bar coating or blade coating. It can also be applied to the substrate by conventional printing
5 techniques which are known to the expert, like for example screen printing, offset printing, reel-to-reel printing, letter press printing, gravure printing, rotogravure printing, flexographic printing, intaglio printing, pad printing, heat-seal printing, ink-jet printing or printing by means of a stamp or printing plate.
10
Suitable substrate materials and substrates are known to the expert and described in the literature, as for example conventional substrates used in the optical films industry, such as glass or plastic. Especially suitable and preferred substrates for polymerization are polyester such as
15 polyethyleneterephthalate (PET) or polyethylenenaphthalate (PEN), polyvinylalcohol (PVA), polycarbonate (PC) triacetylcellulose (TAC), or cyclo olefin polymers (COP), or commonly known color filter materials, in particular triacetylcellulose (TAC), cyclo olefin polymers (COP), or commonly known colour filter materials.
20
The polymerizable LC material preferably exhibits a uniform alignment throughout the whole layer. Preferably the polymerizable LC material exhibits a uniform planar, a uniform homeotropic, uniform cholesteric or patterned alignment.
25
The Friedel-Creagh-Kmetz rule can be used to predict whether a mixture will adopt planar or homeotropic alignment, by comparing the surface energies of the RM layer (YRM) and the substrate (ys):
30 If YRM > ys the reactive mesogenic compounds will display homeotropic alignment, If YRM < ys the reactive mesogenic compounds will display homogeneous alignment.
Without to be bound by theory, when the surface energy of a substrate is
35 relatively low, the intermolecular forces between the reactive mesogens are stronger than the forces across the RM-substrate interface and
P22-169
- 97 - consequently, reactive mesogens align perpendicular to the substrate (homeotropic alignment) in order to maximise the intermolecular forces.
Homeotropic alignment can also be achieved by using amphiphilic
5 materials; they can be added directly to the polymerizable LC material, or the substrate can be treated with these materials in the form of a homeotropic alignment layer. The polar head of the amphiphilic material chemically bonds to the substrate, and the hydrocarbon tail points perpendicular to the substrate. Intermolecular interactions between the
10 amphiphilic material and the RMs promote homeotropic alignment. Commonly used amphiphilic surfactants are described above.
Another method used to promote homeotropic alignment is to apply corona discharge treatment to plastic substrates, generating alcohol or
15 ketone functional groups on the substrate surface. These polar groups can interact with the polar groups present in RMs or surfactants to promote homeotropic alignment.
When the surface tension of the substrate is greater than the surface
20 tension of the RMs, the force across the interface dominates. The interface energy is minimised if the reactive mesogens align parallel with the substrate, so the long axis of the RM can interact with the substrate. One way planar alignment can be promoted is by coating the substrate with a polyimide layer, and then rubbing the alignment layer with a velvet cloth.
25
Other suitable planar alignment layers are known in the art, like for example rubbed polyimide or alignment layers prepared by photoalignment as described in US 5,602,661 , US 5,389,698 or US 6,717,644.
30
In general, reviews of alignment techniques are given for example by I. Sage in "Thermotropic Liquid Crystals", edited by G. W. Gray, John Wiley & Sons, 1987, pages 75-77; and by T. Uchida and H. Seki in "Liquid Crystals - Applications and Uses Vol. 3", edited by B. Bahadur, World
35 Scientific Publishing, Singapore 1992, pages 1-63. A further review of
P22-169
- 98 - alignment materials and techniques is given by J. Cognard, Mol. Cryst. Liq. Cryst. 78, Supplement 1 (1981 ), pages 1-77.
For the production of the polymer films according to the invention, the
5 polymerizable compounds in the polymerizable LC material are polymerized or crosslinked (if one compound contains two or more polymerizable groups) by in-situ photopolymerization.
The photopolymerization can be carried out in one step. It is also possible
10 to photopolymerize or crosslink the compounds in a second step, which have not reacted in the first step ("end curing").
In a preferred method of preparation the polymerizable LC material is coated onto a substrate and subsequently photopolymerized for example
15 by exposure to actinic radiation as described for example in WO 01/20394, GB 2,315,072 or WO 98/04651.
Photopolymerization of the LC material is preferably achieved by exposing it to actinic radiation. Actinic radiation means irradiation with light, like UV
20 light, IR light or visible light, irradiation with X-rays or gamma rays, or irradiation with high-energy particles, such as ions or electrons. Preferably, polymerization is carried out by photo irradiation, in particular with UV light. As a source for actinic radiation, for example a single UV lamp or a set of UV lamps can be used. When using a high lamp power the curing time can
25 be reduced. Another possible source for photo radiation is a laser, like e.g. a UV laser, an IR laser, or a visible laser. Another possible source for photo radiation is a LED lamp.
The curing time is dependent, inter alia, on the reactivity of the
30 polymerizable LC material, the thickness of the coated layer, the type of polymerization initiator and the power of the UV lamp. The curing time is preferably < 5 minutes, very preferably < 3 minutes, most preferably < 1 minute. For mass production, short curing times of < 30 seconds are preferred.
35
P22-169
- 99 -
A suitable UV radiation power is preferably in the range from 5 to 200 mWcm-2, more preferably in the range from 50 to 175 mWcrrr2 and most preferably in the range from 100 to 150 mWcm’2.
5 In connection with the applied UV radiation and as a function of time, a suitable UV dose is preferably in the range from 25 to 7200 m Jem’2 more preferably in the range from 100 to 7200 mJcrrr2 and most preferably in the range from 200 to 7200 m Jem’2.
10 Photopolymerization is preferably performed under an inert gas atmosphere, preferably in a heated nitrogen atmosphere, but also polymerization in air is possible.
Photopolymerization is preferably performed at a temperature from 1 to
15 70°C, more preferably 5 to 50°C, even more preferably 15 to 30°C.
The polymerized LC film according to the present invention has good adhesion to plastic substrates, in particular to TAC, COP, and colour filters. Accordingly, it can be used as adhesive or base coating for
20 subsequent LC layers which otherwise would not well adhere to the substrates.
For optical applications of the polymer film, it preferably has a thickness of from 0.5 to 10 pm, very preferably from 0.5 to 5 pm, in particular from 0.5
25 to 3 pm.
The optical retardation (6(A)) of a polymer film as a function of the wavelength of the incident beam (A) is given by the following equation (7):
30 5(A) = (2% An d)/ A (7) wherein (An) is the birefringence of the film, (d) is the thickness of the film and A is the wavelength of the incident beam.
35 According to Snellius law, the birefringence as a function of the direction of the incident beam is defined as
P22-169
- 100 -
An = sin© / sin'P (8) wherein sin© is the incidence angle or the tilt angle of the optical axis in
5 the film and sin is the corresponding reflection angle.
Based on these laws, the birefringence and accordingly optical retardation depends on the thickness of a film and the tilt angle of optical axis in the film (cf. Berek’s compensator). Therefore, the skilled expert is aware that
10 different optical retardations or different birefringence can be induced by adjusting the orientation of the liquid-crystalline molecules in the polymer film.
The birefringence (An) of the polymer film according to the present
15 invention is preferably in the range from 0.01 to 0.4, more preferable in the range from 0.01 to 0.3 and even more preferable in the range from 0.01 to 0.25.
The optical retardation as a function of the thickness of the polymer film
20 according to the present invention is less than 200 nm, preferable less than 180 nm and even more preferable less than 150 nm.
The polymer film of the present invention can also be used as alignment film or substrate for other liquid-crystalline or RM materials. The inventors
25 have found that the polymer film obtainable from a polymerizable LC material as described above and below, is in particular useful for multilayer applications due to its improved dewetting characteristics. In this way, stacks of optical films or preferably polymerized LC films can be prepared.
30 In summary, the polymerized LC films and polymerizable LC materials according to the present invention are useful in optical elements like polarisers, compensators, alignment layer, circular polarisers or colour filters in liquid crystal displays or projection systems, decorative images, for the preparation of liquid crystal or effect pigments, and especially in
35 reflective films with spatially varying reflection colours, e.g. as multicolour
P22-169
- 101 - image for decorative, information storage or security uses, such as non- forgeable documents like identity or credit cards, banknotes etc..
The polymerized LC films according to the present invention can be used
5 in displays of the transmissive or reflective type. They can be used in conventional OLED displays or LCDs, in particular LCDs.
The present invention is described above and below with particular reference to the preferred embodiments. It should be understood that
10 various changes and modifications might be made therein without departing from the spirit and scope of the invention.
Many of the compounds or mixtures thereof mentioned above and below are commercially available. All of these compounds are either known or
15 can be prepared by methods which are known per se, as described in the literature (for example in the standard works such as Houben-Weyl, Methoden der Organischen Chemie [Methods of Organic Chemistry], Georg-Thieme-Verlag, Stuttgart), to be precise under reaction conditions which are known and suitable for said reactions. Use may also be made
20 here of variants which are known per se, but are not mentioned here.
It will be appreciated that variations to the foregoing embodiments of the invention can be made while still falling within the scope of the invention. Alternative features serving the same, equivalent, or similar purpose may
25 replace each feature disclosed in this specification, unless stated otherwise. Thus, unless stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
All of the features disclosed in this specification may be combined in any
30 combination, except combinations where at least some of such features and/or steps are mutually exclusive. In particular, the preferred features of the invention are applicable to all aspects of the invention and may be used in any combination. Likewise, features described in non-essential combinations may be used separately (not in combination).
35
P22-169
- 102 -
It will be appreciated that many of the features described above, particularly of the preferred embodiments, are inventive in their own right and not just as part of an embodiment of the present invention. Independent protection may be sought for these features in addition to or
5 alternative to any invention presently claimed.
The invention will now be described in more detail by reference to the following working examples, which are illustrative only and do not limit the scope of the invention.
10
Examples
Example 1
15 The following mixtures are prepared:
Mixture 1
Surfactant (see Table 1 below) 1.000% Irganox 1076 0.080%
Mixture 2
Surfactant (see Table 1 below) 0.50%
35 Irganox 1076 0.08%
TR-PBG-304 6.80
P22-169
10
Mixture 3
Surfactant (see Table 1 below) 0.25% Irganox 1076 0.08%
25
Irganox 1076, LC756 and LC242 are commercially available from BASF, Germany, SPI-3 is commercially available from Samyang Corporation, Korea.
30 Each of Mixtures 1 , 2 and 3 is doped with a surfactant at the concentration indicated above to create comparative formulations 1 to 27 and formulations 28 to 30 in accordance with the present invention. The formulation compositions are summarized in Table 1 below.
35
P22-169
- 104 -
Table 1 - Formulation compositions
5
10
Tego Airex 980, Tego Airex 920, Tego Airex 931 , Tego Airex 962, Tego Glide 435, Tego Wet 260, Tego Wet 500, Tego Wet 510, Tego Twin 4000
20 are commercially available from Evonik Tego, Germany. Polyfox PF-3320 Polyfox PF-7002 Polyfox PF-656 are commercially available from Omnova Solutions Inc., USA.
Use Example 1
30
Polymer films were produced from the formulations 1 to 30 using the following method:
■ Formulations 1-30 spin coated on polyimide rubbed glass at 3000rpm for 30s
35 ■ Film annealed at 60°C for 60s
P22-169
- 105 -
■ Film cured in Light Hammer 6 Fusion conveyor belt UV lamp (250m J crrr 2) under N2
Each film is visually inspected for RM alignment and visible haze by eye after initial cure and noted in the table below. Each film is visually inspected 5 for dewetting after the second annealing step and noted in Table 2 below.
- 106 -
5
O passed/good X fail/bad A moderate/average
As can be seen from Table 2, using fluorosurfactant XXVa in accordance
15 with the present invention as the surfactant (here in bold) offers in contrast to the comparison examples (here in italics) an extremely wide range of concentrations that can be used to achieve good RM alignment. In contrast to the comparison examples, this surfactant choice also has a wide range of concentrations where it does not cause dewetting of
20 subsequent coated layers and also provides alignment to upper layers so an extra alignment layer is not required between the RM layers.
25
30
35
Claims
1 . Polymerizable LC material comprising one or reactive mesogenic compounds and one or more compounds of formula I
5
(R1-CHF-CF2-Y-)mspacer(X)n I where
R1 = a fluorinated, linear or branched alkyl group, optionally containing heteroatoms,
10 spacer = a single bond or a divalent organic group,
X = a hydrophilic group,
Y = S, SO or SO2, m is > 1
15 and n is > 1.
2. Polymerizable LC material according to claim 1 , wherein the concentration of compounds of formula I is from 0.01 % to 1 %.
20
3. Polymerizable LC material according to claim 1 or 2, comprising one or more reactive mesogens selected from formula RMT,
wherein
P is a polymerisable group,
Sp is a spacer group or a single bond,
30 r2 and r3 are independently of each other 0, 1 , 2, 3 or 4,
R11 is P-Sp-, alkyl, alkoxy, thioalkyl, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy
35 preferably with 1 to 15 C atoms which is more preferably optionally fluorinated.
P22-169
- 108 -
A and B denote, in case of multiple occurrence independently of one another, an aromatic or alicyclic group, which optionally contains one or more heteroatoms selected
5 from N, 0 and S, and is optionally mono- or polysubstituted by L, preferably 1 ,4-phenylene, pyridine-
2.5-diyl, pyrim idine-2, 5-diyl, thiophene-2, 5-diyl, naphthalene-2,6-diyl, 1 ,2,3,4-tetrahydro-naphthalene-
2.6-diyl, indane-2, 5-diyl, bicyclooctylene or 1 ,4-
10 cyclohexylene wherein one or two non-adjacent CH2 groups are optionally replaced by 0 and/or S, wherein these groups are unsubstituted or substituted by 1 , 2, 3 or 4 groups L
15 L is P-Sp-, F, Cl, Br, I, -CN, -NO2 , -NCO, -NCS, -OCN, -
SCN, -C(=O)NRxRy, -C(=O)ORX, -C(=O)RX, -NRxRy, -OH, -SF5, or straight chain or branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy with 1 to 12, wherein one or more H
20 atoms are optionally replaced by F or Cl, preferably F, -CN or straight chain or branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy 1 to 6 C atoms,
25 Rx and Ry independently of each other denote H or alkyl with 1 to 12 C-atoms,
Z11 and Z12 denotes, in case of multiple occurrence independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -S-CO-,
30 -CO-S-, -O-COO-, -CO-NR00-, -NR00-CO-, -NR00-CO-NR000, -NR00-CO-O-, -O-CO-NR00-, -OCH2-, - CH2O-, -SCH2-, -CH2S-, -CF2O-, -OCF2-, -CF2S-, -SCF2- -CH2CH2-, -(CH2)m, -CF2CH2-, -CH2CF2-, -CF2CF2-, - CH=N- -N=CH- -N=N-, -CH=CR00-, -CY1=CY2-, -C=C-, -
35 CH=CH-COO-, -OCO-CH=CH- or a single bond, preferably -COO-, -OCO- , -C=C-, or a single bond,
P22-169
- 109 -
Y1 and Y2 independently of each other denote H, F, Cl or CN, n is 1 , 2, 3 or 4, preferably 1 or 2, most preferably 1 ,
5 m is 0, 1 , 2, 3 or 4, preferably 0 or 1 , most preferably 0, n1 is an integer from 1 to 10, preferably 1 , 2, 3 or 4.
10 4. Polymerizable LC material according to one or more of claims 1 to 3, wherein the concentration of compounds of formula RMT is from 40% to 99 %.
5. Polymerizable LC material according to one or more of claims 1 to 4,
15 comprising one or more compounds selected of formula DRM, P1-Sp1-MG-Sp2-P2 DRM wherein
20 P1 and P2 independently of each other denote a polymerisable group,
Sp1 and Sp2 independently of each other are a spacer group or a single bond, and
25
MG is a rod-shaped mesogenic group, which is preferably selected of formula MG
-(A1-Z1)n-A2- MG
30 wherein
A1 and A2 denote, in case of multiple occurrence independently of one another, an aromatic or alicyclic
35 group, which optionally contains one or more
P22-169
- 110 - heteroatoms selected from N, 0 and S, and is optionally mono- or polysubstituted by L,
L is P-Sp- F, Cl, Br, I, -CN, -NO2 , -NCO,
5 -NCS, -OCN, -SCN, -C(=O)NRxRy, -C(=O)ORX, -C(=O)RX, -NRxRy, -OH, -SF5, optionally substituted silyl, aryl or heteroaryl with 1 to 12, preferably 1 to 6 C atoms, and straight chain or branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or
10 alkoxycarbonyloxy with 1 to 12, preferably 1 to 6 C atoms, wherein one or more H atoms are optionally replaced by F or Cl,
Rx and Ry independently of each other denote H
15 or alkyl with 1 to 12 C-atoms,
Z1 denotes, in case of multiple occurrence independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -S-CO-, -CO-S-, -O-COO-, -CO-NRX-
20 -NRX-CO-, -NRx-CO-NRy, -NRX-CO-O-, -O-CO-NRX-, -OCH2-, -CH2O-, -SCH2-, -CH2S-, -CF2O-, -OCF2-, -CF2S-, -SCF2-, -(CH2)n1, -CF2CH2-, -CH2CF2-, -CF2CF2-, -CH=N- -N=CH- -N=N-, -CH=CRX- -CY1=CY2-, -C=C-, -CH=CH-COO-, -OCO-CH=CH- or a
25 single bond,
Y1 and Y2 independently of each other denote H, F, Cl or CN,
30 n is 1 , 2, 3 or 4, n1 is an integer from 1 to 10, preferably 1 , 2, 3 or 4, however, under the condition that compounds of formula RMT are
35 excluded from the compounds of formula DRM.
P22-169
- 111 -
6. Polymerizable LC material according to one or more of claims 1 to 5, wherein the concentration of di- or multireactive reactive mesogens is from 1 % to 60 %.
5 7. Polymerizable LC material according to one or more of claims 1 to 6, comprising one or more compounds selected from formula MRM:
P1-Sp1-MG-R MRM
10 wherein
P1, Sp1 and MG have the meanings given in formula DRM,
R denotes P-Sp- F, Cl, Br, I, -CN, -NO2 , -NCO, -NCS, -
OCN, -SCN, -C(=O)NRxRy, -C(=O)X, -C(=O)ORX, -
15 C(=O)Ry, -NRxRy, -OH, -SF5, optionally substituted silyl, straight chain or branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy with 1 to 12, preferably 1 to 6 C atoms, wherein one or more H atoms are optionally replaced by F or Cl,
20
X is halogen, preferably F or Cl, and
Rx and Ry are independently of each other H or alkyl with 1 to 12 C-atoms,
25 however, under the condition that compounds of formula RMT are excluded from the compound of formula MRM.
8. Polymerizable LC material according to one or more of claims 1 to 7,
30 comprising optionally one or more reactive chiral compounds selected from compounds of formula CRMa to CRMc,
P22-169
15
25
P°* denotes a polymerisable group P
Sp* denotes a spacer Sp
A0 and B° are, in case of multiple occurrence independently of one another, 1 ,4-phenylene that is unsubstituted or
30 substituted with 1 , 2, 3 or 4 groups L as defined above, or trans-1 ,4-cyclohexylene,
X1 and X2 are independently of each other -O-, -COO-, -OCO-, -0- CO-O- or a single bond,
35 Z°* is, in case of multiple occurrence independently of one another, -COO-, -OCO-, -O-CO-O-, -OCH2-, -CH2O-
P22-169
5 a is 0, 1 or 2, b is 0 or an integer from 1 to 12, z is 0 or 1 ,
10 and wherein the naphthalene rings in formula CRMa can additionally be substituted with one or more identical or different groups L wherein
L is, independently of each other F, Cl, CN, halogenated alkyl, alkoxy, alkylcarbonyl,
15 alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy with 1 to 5 C atoms.
9. Polymerizable LC material according to claim 8, wherein the
20 concentration amount of chiral compounds in the liquid-crystalline medium is preferably from 1 to 20 %.
10. Polymerizable LC material according to one or more of claims 1 to 9, comprising optionally one or more additives selected from the group
25 consisting of, further surfactants, photo initiators, stabilisers, catalysts, sensitizers, inhibitors, chain-transfer agents, co-reacting monomers, reactive thinners, surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, degassing or defoaming agents,
30 deaerators, diluents, reactive diluents, auxiliaries, colourants, dyes, pigments and nanoparticles.
11 . Process for the preparation of the polymerizable LC material according to one or more of claims 1 to 10 comprising the steps of
35 mixing one or more compounds of formula I as defined in claim 1
P22-169
- 114 - with one or more reactive mesogenic compounds, and optionally one or more chiral compounds.
12. Process for the preparation of the of a polymer film by
5 - providing a layer of a polymerizable LC material according to one or more of claims 1 to 10 onto a substrate,
- photopolymerizing the polymerizable LC material, and
- optionally removing the polymerized LC material from the substrate and/or optionally providing it onto another substrate.
10
13. Polymer film obtainable from a polymerizable LC material according to one or more of claims 1 to 10 by a process comprising the steps
- providing a layer of the polymerizable LC material onto a substrate,
15 - photopolymerizing the LC material, and
- optionally, removing the polymerized LC material from the substrate and/or optionally providing it onto another substrate.
14. Use of one or more polymer films according to claim 13 or a
20 polymerizable LC material according to one or more of claims 1 to 10 in an optical component.
15. Optical component comprising one or more polymer films according to claim 13 or a polymerizable LC material according to one or more
25 of claims 1 to 10.
16. Use of an Optical component according to claim 15 in a electrooptical device.
30
35
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22191789.1 | 2022-08-23 | ||
EP22191789 | 2022-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024042008A1 true WO2024042008A1 (en) | 2024-02-29 |
Family
ID=83049997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/072877 WO2024042008A1 (en) | 2022-08-23 | 2023-08-21 | Polymerizable liquid crystal material and polymerized liquid crystal film |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202415750A (en) |
WO (1) | WO2024042008A1 (en) |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3910682A (en) * | 1972-07-15 | 1975-10-07 | Dainippon Ink & Chemicals | Liquid crystal cells |
JPH01133003A (en) | 1987-11-18 | 1989-05-25 | Sumitomo Chem Co Ltd | Polarizing plate |
EP0634674A2 (en) | 1993-06-29 | 1995-01-18 | KAISER AEROSPACE & ELECTRONICS CORPORATION | High efficiency chiral nematic LC polarizer |
US5389698A (en) | 1991-07-26 | 1995-02-14 | Hoffmann-La Roche Inc. | Process for making photopolymers having varying molecular orientation using light to orient and polymerize |
JPH08271731A (en) | 1995-03-28 | 1996-10-18 | Nitto Denko Corp | Polarizing plate |
US5602661A (en) | 1993-02-17 | 1997-02-11 | Hoffmann-La Roche Inc. | Optical component |
WO1998000428A1 (en) | 1996-07-01 | 1998-01-08 | Merck Patent Gmbh | Chiral dopants |
GB2315072A (en) | 1996-07-04 | 1998-01-21 | Merck Patent Gmbh | Circular UV polariser |
WO1998004651A1 (en) | 1996-07-26 | 1998-02-05 | Merck Patent Gmbh | Combination of optical elements |
GB2328207A (en) | 1997-08-13 | 1999-02-17 | Merck Patent Gmbh | Chiral hydrobenzoin derivatives for use as dopants in liquid crystalline mixtures |
WO2001020394A1 (en) | 1999-09-16 | 2001-03-22 | Merck Patent Gmbh | Optical compensator and liquid crystal display i |
US6417902B1 (en) | 1999-07-02 | 2002-07-09 | Merck Patent Gesellschaft | Process of preparing a multilayer cholesteric film I |
EP1256617A1 (en) * | 2001-05-08 | 2002-11-13 | MERCK PATENT GmbH | Polymerizable liquid crystal material |
US6514578B1 (en) | 1999-06-30 | 2003-02-04 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Polymerizable mesogenic tolanes |
US6717644B2 (en) | 1993-02-17 | 2004-04-06 | Rolic Ag | Optical component and method of manufacture |
GB2395201A (en) * | 2002-09-24 | 2004-05-19 | Merck Patent Gmbh | Broadband reflective film |
US7060200B1 (en) | 1999-09-03 | 2006-06-13 | Merck Patent Gmbh | Multireactive polymerizable mesogenic compounds |
US20060172090A1 (en) | 2005-01-28 | 2006-08-03 | Ryushi Syundo | Liquid crystal polyfunctional acrylate derivative and polymer thereof |
-
2023
- 2023-08-21 WO PCT/EP2023/072877 patent/WO2024042008A1/en unknown
- 2023-08-22 TW TW112131440A patent/TW202415750A/en unknown
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3910682A (en) * | 1972-07-15 | 1975-10-07 | Dainippon Ink & Chemicals | Liquid crystal cells |
JPH01133003A (en) | 1987-11-18 | 1989-05-25 | Sumitomo Chem Co Ltd | Polarizing plate |
US5389698A (en) | 1991-07-26 | 1995-02-14 | Hoffmann-La Roche Inc. | Process for making photopolymers having varying molecular orientation using light to orient and polymerize |
US6717644B2 (en) | 1993-02-17 | 2004-04-06 | Rolic Ag | Optical component and method of manufacture |
US5602661A (en) | 1993-02-17 | 1997-02-11 | Hoffmann-La Roche Inc. | Optical component |
EP0634674A2 (en) | 1993-06-29 | 1995-01-18 | KAISER AEROSPACE & ELECTRONICS CORPORATION | High efficiency chiral nematic LC polarizer |
JPH08271731A (en) | 1995-03-28 | 1996-10-18 | Nitto Denko Corp | Polarizing plate |
WO1998000428A1 (en) | 1996-07-01 | 1998-01-08 | Merck Patent Gmbh | Chiral dopants |
GB2315072A (en) | 1996-07-04 | 1998-01-21 | Merck Patent Gmbh | Circular UV polariser |
WO1998004651A1 (en) | 1996-07-26 | 1998-02-05 | Merck Patent Gmbh | Combination of optical elements |
GB2328207A (en) | 1997-08-13 | 1999-02-17 | Merck Patent Gmbh | Chiral hydrobenzoin derivatives for use as dopants in liquid crystalline mixtures |
US6514578B1 (en) | 1999-06-30 | 2003-02-04 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Polymerizable mesogenic tolanes |
US6417902B1 (en) | 1999-07-02 | 2002-07-09 | Merck Patent Gesellschaft | Process of preparing a multilayer cholesteric film I |
US7060200B1 (en) | 1999-09-03 | 2006-06-13 | Merck Patent Gmbh | Multireactive polymerizable mesogenic compounds |
WO2001020394A1 (en) | 1999-09-16 | 2001-03-22 | Merck Patent Gmbh | Optical compensator and liquid crystal display i |
EP1256617A1 (en) * | 2001-05-08 | 2002-11-13 | MERCK PATENT GmbH | Polymerizable liquid crystal material |
GB2395201A (en) * | 2002-09-24 | 2004-05-19 | Merck Patent Gmbh | Broadband reflective film |
US20060172090A1 (en) | 2005-01-28 | 2006-08-03 | Ryushi Syundo | Liquid crystal polyfunctional acrylate derivative and polymer thereof |
Non-Patent Citations (6)
Title |
---|
"Merck Liquid Crystals, Physical Properties of Liquid Crystals", November 1997, MERCK KGAA |
C. TSCHIERSKEG. PELZLS. DIELE, ANGEW. CHEM., vol. 116, 2004, pages 6340 - 6368 |
I. SAGE: "Thermotropic Liquid Crystals", 1987, JOHN WILEY & SONS, pages: 75 - 77 |
J. COGNARD, LIQ. CRYST., vol. 78, no. 1, 1981, pages 1 - 77 |
MAURER ET AL., SID 90 DIGEST, vol. 21, 1990, pages 110 |
T. UCHIDAH. SEKI: "Liquid Crystals - Applications and Uses", vol. 3, 1992, SCIENTIFIC PUBLISHING, pages: 1 - 63 |
Also Published As
Publication number | Publication date |
---|---|
TW202415750A (en) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3784754B1 (en) | Polymerisable liquid crystal material and polymerised liquid crystal film | |
EP3784753B1 (en) | Polymerisable liquid crystal material and polymerised liquid crystal film | |
EP3423545B1 (en) | Polymerisable liquid crystal material and polymerised liquid crystal film | |
EP3914669B1 (en) | Method for the preparation of a liquid crystal polymer film | |
US11697769B2 (en) | Polymerizable liquid crystal material and polymerized liquid crystal film | |
EP3512921A1 (en) | Polymerisable liquid crystal material and polymerised liquid crystal film | |
EP4217442A1 (en) | Polymerizable liquid crystal material and polymerized liquid crystal film | |
EP3837333B1 (en) | Polymerisable liquid crystal material and polymerised liquid crystal film | |
EP3941996A1 (en) | Polymerisable liquid crystal material and polymerised liquid crystal film | |
EP3668948A1 (en) | Polymerisable liquid crystal material and polymerised liquid crystal film | |
EP3548585B1 (en) | Polymerisable liquid crystal material and polymerised liquid crystal film | |
WO2020035401A1 (en) | Polymerizable liquid crystal material and polymerized liquid crystal film | |
KR102443408B1 (en) | Polymeric liquid crystal material and polymerized liquid crystal film | |
EP4008759A1 (en) | Polymerisable liquid crystal material and polymerised liquid crystal film | |
WO2020114901A1 (en) | Polymerisable liquid crystal material and polymerised liquid crystal film | |
WO2024042008A1 (en) | Polymerizable liquid crystal material and polymerized liquid crystal film | |
WO2024052363A1 (en) | Polymerizable liquid crystal material and polymerized liquid crystal film | |
WO2021219765A1 (en) | Polymerizable liquid crystal material and polymerized liquid crystal film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23757646 Country of ref document: EP Kind code of ref document: A1 |