WO2024041454A1 - 一种振动组件 - Google Patents

一种振动组件 Download PDF

Info

Publication number
WO2024041454A1
WO2024041454A1 PCT/CN2023/113720 CN2023113720W WO2024041454A1 WO 2024041454 A1 WO2024041454 A1 WO 2024041454A1 CN 2023113720 W CN2023113720 W CN 2023113720W WO 2024041454 A1 WO2024041454 A1 WO 2024041454A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
reinforcement
vibration
vibration component
elastic element
Prior art date
Application number
PCT/CN2023/113720
Other languages
English (en)
French (fr)
Inventor
周文兵
廖风云
齐心
顾善勇
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Publication of WO2024041454A1 publication Critical patent/WO2024041454A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/11Aspects regarding the frame of loudspeaker transducers

Definitions

  • This specification relates to the field of acoustic technology, and in particular to a vibration component.
  • Speakers generally include three core parts: drive part, vibration part, and support auxiliary part.
  • the vibration part is also the load part of the speaker, which is mainly a vibration component, including elastic elements such as diaphragms.
  • the vibrating part is an important part of the speaker. When the driving force of the driving part is determined, through reasonable design of the vibrating part, the load part and the driving part can achieve good mechanical impedance matching, thereby achieving high sound pressure level and wide bandwidth. output effect.
  • the vibration component can increase the stiffness of the diaphragm center area by setting a layer of mass stiffness structure in the central area of the elastic element, usually made of metal, such as aluminum alloy, stainless steel, titanium alloy, magnesium alloy, magnesium aluminum alloy, etc., to avoid speaker vibration.
  • the central area of the membrane forms a split mode shape in the range of 20Hz-20kHz, resulting in a state of sound cancellation.
  • directly arranging a mass stiffness structure in the central area of the elastic element will increase the overall mass of the vibrating component, increase the load on the speaker, and cause an impedance mismatch between the driving part and the load part, resulting in a reduction in the sound pressure level output by the speaker.
  • a vibration component which includes: an elastic element, the elastic element includes a central area, a ring area provided on the periphery of the central area, and a fixed area provided on the periphery of the ring area.
  • the elastic element is configured to vibrate in a direction perpendicular to the central area, wherein the central area includes an elastic member and a reinforcing member stacked along the vibration direction, and the reinforcing member is provided with a plurality of openings facing The groove structure of the elastic member.
  • a hollow structure is provided in an area other than the groove structure.
  • the ratio of the projected area of the reinforcement to the projected area of the central area ranges from 0.15 to 0.8.
  • the ratio of the projected area of the reinforcement to the projected area of the central area ranges from 0.35 to 0.65.
  • the vibration component when it vibrates, it has a resonance peak at least in the range of 10,000 Hz-20,000 Hz.
  • the groove structure has a height dimension along the vibration direction, a side wall of the groove structure has a thickness dimension, and a ratio range of the height dimension to the thickness dimension is not less than 7.14.
  • the ratio of the height dimension to the thickness dimension ranges from no less than 9.
  • the vibration component has a resonance peak at least in the range of 5000 Hz-10000 Hz when vibrating.
  • the groove structure has a height dimension along the vibration direction, and the height dimension ranges from 50um to 500um.
  • the height dimension ranges from 200um to 350um.
  • the sidewalls of the groove structure have a thickness dimension, and the value range of the thickness dimension is not greater than 50um.
  • the value range of the thickness dimension is no greater than 40um.
  • the opening of the groove structure is provided with a skirt structure extending along the surface of the elastic member, and the width of the skirt structure ranges from 100um to 300um.
  • the width of the skirt structure ranges from 100um to 200um.
  • the shape of the groove structure includes at least one of U-shape, T-shape, I-shape, and tapered shape.
  • the Young's modulus of the material of the reinforcing member is higher than the Young's modulus of the material of the elastic member.
  • the reinforcing member is made of the same material as the elastic member.
  • the groove structure is filled with a filling material, and the filling material has a Young's modulus smaller than the Young's modulus of the material of the reinforcement.
  • a vibration component which includes: an elastic element, the elastic element includes a central area, a ring area provided on the periphery of the central area, and a fixed ring area provided on the periphery of the ring area. area, the elastic element is configured along Vibrates in a direction perpendicular to the central area, wherein the central area includes a reinforced area and an elastic area arranged side by side, and the reinforced area is provided with a plurality of groove structures with openings facing the vibration direction.
  • the ratio of the projected area of the reinforced area to the total projected area of the central area ranges from 0.15 to 0.8.
  • the ratio of the projected area of the reinforced area to the projected area of the central area ranges from 0.35 to 0.65.
  • the vibration component when it vibrates, it has a resonance peak at least in the range of 10,000 Hz-20,000 Hz.
  • the groove structure has a height dimension along the vibration direction, a side wall of the groove structure has a thickness dimension, and a ratio range of the height dimension to the thickness dimension is not less than 7.14.
  • the ratio of the height dimension to the thickness dimension ranges from no less than 9.
  • the vibration component has a resonance peak at least in the range of 5000 Hz-10000 Hz when vibrating.
  • the groove structure has a height dimension along the vibration direction, and the height dimension ranges from 50um to 500um.
  • the height dimension ranges from 200um to 350um.
  • the sidewalls of the groove structure have a thickness dimension, and the value range of the thickness dimension is not greater than 50um.
  • the value range of the thickness dimension is no greater than 40um.
  • the opening of the groove structure is provided with a skirt structure connected to the elastic region, and the width of the skirt structure ranges from 100um to 300um.
  • the width of the skirt structure ranges from 100um to 200um.
  • the shape of the groove structure includes at least one of U-shape, T-shape, I-shape, and tapered shape.
  • the Young's modulus of the material of the reinforcing region is higher than the Young's modulus of the material of the elastic region.
  • the material of the reinforced region is the same as the material of the elastic region.
  • the groove structure is provided with a filling material, and the Young's modulus of the filling material is less than the Young's modulus of the material of the elastic element.
  • Figure 1 is a schematic diagram of a vibration component and its equivalent vibration model according to some embodiments of this specification
  • Figure 2 is a deformation diagram of the first resonance peak of the vibration component according to some embodiments of this specification.
  • Figure 3 is a deformation diagram of the second resonance peak of the vibration component according to some embodiments of this specification.
  • Figure 4 is a deformation diagram of the third resonance peak of the vibration component according to some embodiments of this specification.
  • Figure 5A is a frequency response curve diagram of a vibration assembly according to some embodiments of this specification.
  • Figure 5B is a frequency response curve diagram of a vibrating component without a third resonance peak according to some embodiments of this specification.
  • Figure 6 is a frequency response curve diagram of a vibration component including a groove structure and a vibration component not including a groove structure according to some embodiments of this specification;
  • Figure 7A is a schematic structural diagram of a reinforcement and an elastic element with a groove structure according to some embodiments of this specification.
  • Figure 7B is a schematic structural diagram of a reinforcement member and an elastic element with a groove structure according to some embodiments of this specification;
  • Figure 7C is a schematic structural diagram of a reinforcement member and an elastic element with a groove structure according to some embodiments of this specification;
  • Figure 7D is a schematic structural diagram of a reinforcement member and an elastic element with a groove structure according to some embodiments of this specification;
  • Figure 7E is a schematic structural diagram of a reinforcement member and an elastic element with a groove structure according to some embodiments of this specification.
  • Figure 7F is a schematic structural diagram of a reinforcement member and an elastic element with a groove structure according to some embodiments of this specification.
  • Figure 7G is a schematic structural diagram of a reinforcement member and an elastic element with a groove structure according to some embodiments of this specification.
  • Figure 8 is a structural schematic diagram of a groove structure according to some embodiments of this specification.
  • Figure 9 is another frequency response curve diagram of a vibration component according to some embodiments of this specification.
  • Figure 10 is a frequency response curve diagram of a vibration assembly corresponding to reinforcement members of different heights according to some embodiments of this specification;
  • Figure 11 is a frequency response curve diagram of a vibration component corresponding to reinforcement members of different thicknesses according to some embodiments of this specification;
  • Figure 12 is a schematic diagram of a skirt structure according to some embodiments of the present specification.
  • Figure 13 is a frequency response curve diagram of a vibration component corresponding to reinforcement members with different skirt structure widths according to some embodiments of this specification;
  • Figure 14A is a schematic diagram of the preparation process of non-metal reinforcements according to some embodiments of this specification.
  • Figure 14B is a schematic diagram of the model corresponding to Figure 14A;
  • Figure 15A is a schematic diagram of the preparation process of metal reinforcement parts according to some embodiments of this specification.
  • Figure 15B is a schematic diagram of the model corresponding to Figure 14A;
  • Figure 16 is a schematic structural diagram of a vibration assembly with a reinforcement member of a single ring structure according to some embodiments of this specification;
  • Figure 17 is a partial structural schematic diagram of a vibration component according to some embodiments of this specification.
  • Figure 18 is a schematic diagram of the deformation of the vibration component at the second resonance peak according to other embodiments of this specification.
  • Figure 19 is a schematic diagram of the deformation of the vibration component at the third resonance peak according to other embodiments of this specification.
  • Figure 20 is a frequency response curve diagram of the vibration component shown in Figure 19;
  • Figure 21 is another frequency response curve diagram of a vibration assembly according to some embodiments of this specification.
  • Figure 22A is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 22B is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 23A is a schematic structural diagram of a vibration assembly shown in other embodiments of this specification.
  • Figure 23B is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 23C is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 23D is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 24A is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 24B is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 25A is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 25B is a schematic structural diagram of a vibration assembly according to other embodiments of this specification.
  • Figure 25C is a schematic structural diagram of a vibration assembly according to other embodiments of this specification.
  • Figure 25D is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 25E is a schematic structural diagram of a vibration assembly according to other embodiments of this specification.
  • Figure 26A is a schematic structural diagram of a vibration assembly according to other embodiments of this specification.
  • Figure 26B is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 27A is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 27B is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 27C is a schematic structural diagram of a vibration assembly according to other embodiments of this specification.
  • Figure 28 is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 29 is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 30A is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 30B is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 30C is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 30D is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 30E is a schematic structural diagram of a vibration assembly according to other embodiments of this specification.
  • Figure 31 is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 32 is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 33A is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 33B is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 34A is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 34B is a schematic structural diagram of a vibration assembly according to other embodiments of this specification.
  • Figure 34C is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 35A is a schematic structural diagram of a vibration assembly according to other embodiments of this specification.
  • Figure 35B is a schematic structural diagram of a vibration assembly according to other embodiments of this specification.
  • Figure 35C is a schematic structural diagram of a vibration component according to other embodiments of this specification.
  • Figure 35D is a schematic structural diagram of a vibration assembly according to other embodiments of this specification.
  • system means of distinguishing between different components, elements, parts, portions or assemblies at different levels.
  • unit means of distinguishing between different components, elements, parts, portions or assemblies at different levels.
  • all expressions may be substituted if other words serve the same purpose. Describe words.
  • the embodiment of this specification provides a vibration component that can be applied to various acoustic output devices.
  • Acoustic output devices include, but are not limited to, speakers, hearing aids, etc.
  • the vibration assembly provided in the embodiments of this specification mainly includes an elastic element.
  • the elastic element can be connected to the driving part of the speaker, and the edge of the elastic element is fixed (for example, connected to the housing of the speaker).
  • the driving part of the loudspeaker serves as an electrical energy-mechanical energy conversion unit, which provides driving force for the loudspeaker by converting electrical energy into mechanical energy.
  • the vibration component can receive the force or displacement transmitted by the driving part and generate corresponding vibration output, thus pushing the air to move and generate sound pressure.
  • the elastic element can be regarded as partially connected to the air inertia load through springs and dampers, and achieves the radiation of sound pressure by promoting air movement.
  • the elastic element mainly includes a central area, a folding area arranged on the periphery of the central area, and a fixed area arranged on the periphery of the folding area.
  • a preset pattern is usually designed in the ring area of the elastic element to destroy the ring of the elastic element.
  • the mode shape of the region in the corresponding frequency range avoids the occurrence of sound cancellation caused by local segmentation vibration of the elastic element.
  • the local stiffness of the elastic element is increased through the pattern design.
  • the stiffness of the central area of the elastic element is increased, and the central area of the elastic element of the speaker is prevented from forming a divided vibration shape in the 20Hz-20kHz range, resulting in sound cancellation.
  • designing a thickened layer directly in the central area of the elastic element will increase the overall mass of the vibrating component, increase the speaker load, and cause the impedance mismatch between the driver end and the load end, resulting in a reduction in the sound pressure level output by the speaker.
  • the central area of the elastic element is designed to include elastic members and reinforcement members stacked along the vibration direction, and the reinforcement member is provided with a plurality of groove structures with openings facing the elastic member.
  • the central area of the elastic element can also be designed so that the central area includes a reinforcement area and an elastic area arranged side by side.
  • the reinforcement area is provided with a plurality of groove structures with openings facing the vibration direction.
  • the reinforcement area may correspond to the projection area of the reinforcement member on the elastic member along the vibration direction.
  • the vibration component can appear the required high-order mode at medium and high frequencies (above 3kHz), and through the design of the configuration and size of the reinforcement/reinforcement area with a groove structure, the vibration component can No more than three resonant peaks appear in the appropriate frequency range on the frequency response curve of the vibration component, thereby making the vibration component have higher sensitivity in a wider frequency band; at the same time, by proposing reinforcements/reinforcement areas with groove structures, The vibration component has a smaller mass and a larger stiffness, which improves the overall sensitivity of the speaker.
  • vibration components, elastic components and reinforcements/reinforcement areas please refer to the subsequent descriptions.
  • Figure 1 is a schematic diagram of a vibration component and its equivalent vibration model according to some embodiments of this specification.
  • the vibration component 100 mainly includes an elastic element 110 .
  • the elastic element 110 includes a central area 112 , a ring area 114 disposed on the periphery of the central area 112 , and a fixed area 116 disposed on the periphery of the ring area 114 .
  • the elastic element 110 is configured to vibrate in a direction perpendicular to the central area 112 to transmit the force and displacement received by the vibration assembly 100 to promote air movement.
  • the central area 112 includes elastic members and reinforcement members 120 stacked along the vibration direction.
  • the vibration direction is the vibration direction of the elastic element 110, that is, the direction perpendicular to the central area 112. According to Figure 1, the vibration direction is the direction perpendicular to the drawing of Figure 1.
  • the elastic member may refer to the portion of the elastic element 110 located in the central region.
  • the reinforcing member 120 is connected to the elastic member.
  • the reinforcing member 120 includes a groove structure 121 (as shown in FIG. 7A ), and the opening of the groove structure 121 is opened toward the elastic member.
  • the reinforcement 120 includes one or more annular structures 122 and one or more strip structures 124, each of the one or more strip structures 124 being connected to at least one of the one or more annular structures 122. A connection.
  • the cross section of the strip structure 124 and/or the ring structure 122 is provided with a groove structure 121 .
  • the local stiffness of the central area 112 of the elastic element 110 can be controlled and adjusted to prevent the central area 112 of the elastic element 110 of the vibration assembly 100 from forming segmented vibrations in a large range (for example, 20Hz-20kHz).
  • This type leads to a state of sound cancellation, so that the vibrating component 100 has a flatter sound pressure level curve.
  • one or more strip structures 124 and one or more ring structures 122 are connected to each other to form a hollow structure, so that the reinforcement 120 has an appropriately proportioned groove structure (ie, the strip structure 124 or the ring structure 122) and hollow structures (ie, hollow parts), reducing the mass of the reinforcement 120 and improving the overall sensitivity of the vibration component 100.
  • the positions of multiple resonance peaks of the vibration component 100 can be adjusted, thereby controlling the vibration output of the vibration component 100 .
  • the central region 112 includes a reinforced region and an elastic region arranged side by side (as shown in FIG. 7F ), where the reinforced region and the elastic region may refer to the reinforcing member 120 and the elastic member respectively.
  • the elastic member is connected to the side surface of the structure of the reinforcement member 120 (for example, the skirt structure of the groove structure 121).
  • the reinforcement 120 includes one or more annular structures 122 and one or more strip structures 124, each of the one or more strip structures 124 being connected to at least one of the one or more annular structures 122.
  • the cross section of the strip structure 124 and/or the annular structure 122 is provided with a groove structure 121, and the opening of the groove structure 121 is opened toward the vibration direction.
  • the elastic element 110 may be an element capable of elastic deformation under the action of an external load.
  • the elastic element 110 may be a high-temperature resistant material, so that the elastic element 110 maintains performance during the manufacturing process when the vibration assembly 100 is applied to a vibration sensor or speaker.
  • Young's modulus and shear modulus when the elastic element 110 is in an environment of 200°C to 300°C, its Young's modulus and shear modulus have no change or a very small change (such as a change within 5%), where Young's modulus The modulus can be used to characterize the deformation ability of the elastic element 110 when it is stretched or compressed, and the shear modulus can be used to characterize the deformation ability of the elastic element 110 when it is sheared.
  • the elastic element 110 can be a material with good elasticity (that is, easy to undergo elastic deformation), so that the vibration component 100 has good vibration response capability.
  • the material of the elastic element 110 may be one or more of organic polymer materials, glue materials, and the like.
  • the organic polymer material can be polycarbonate (PC), polyamides (Polyamides, PA), acrylonitrile-butadiene-styrene copolymer (Acrylonitrile Butadiene Styrene, ABS), polystyrene Ethylene (Polystyrene, PS), High Impact Polystyrene (HIPS), Polypropylene (PP), Polyethylene Terephthalate (PET), Polyvinyl Chloride, PVC), polyurethanes (PU), polyethylene (PE), phenolic resin (Phenol Formaldehyde, PF), urea-formaldehyde resin (Urea-Formaldehyde, UF), melamine-formaldehyde resin (MF) , Polyarylate (PAR), Polyetherimide (PEI), Polyimide (PI), Polyethylene Naphthalate two formic acid glycol ester (PEN) , any one or combination of polyetheretherketone (PEEK),
  • PC
  • the organic polymer material can also be various glues, including but not limited to gels, organic silica gels, acrylics, polyurethanes, rubbers, epoxy, hot melt, light curing, etc. , preferably can be silicone bonding glue or silicone sealing glue.
  • the Shore hardness of the elastic element 110 can characterize its ability to resist local deformation. The greater the Shore hardness, the stronger the ability to resist local deformation (especially plastic deformation), and the less likely it is for local deformation to occur.
  • the Shore hardness of the elastic element 110 in order to enable the elastic element 110 to generate vibration under appropriate driving, the Shore hardness of the elastic element 110 may be 1HA-50HA. In some embodiments, in order to reduce the vibration difficulty of the elastic element 110, the Shore hardness of the elastic element 110 may be 1HA-15HA. In some embodiments, in order to provide the elastic element 110 with the ability to resist plastic deformation, the Shore hardness of the elastic element 110 may be 14.9 HA-15.1 HA. The Shore hardness of the elastic element 110 can be measured using a Shore hardness tester.
  • the sample of the elastic element 110 can be placed on a hard platform, and the reset-to-zero Shore hardness tester can be pressed vertically and vertically with the needle on the sample surface at a uniform speed until the needle end surface of the Shore hardness tester completely contacts the sample surface. That's it. At this time, the value tested on the dial of the Shore hardness tester is recorded, which is the Shore hardness of the elastic element 110 .
  • the thickness of the elastic element 110 is thin, samples of the same specifications and batches can be stacked to a certain thickness (for example, 3 mm or more) for measurement.
  • the Young's modulus of the elastic element 110 can characterize its ability to elastically deform under force. The greater the Young's modulus, the stronger the material's ability to resist deformation, the better its rigidity, and the less likely it is to deform. In some embodiments, in order to enable the elastic element 110 to generate vibration under appropriate driving, the Young's modulus of the elastic element 110 ranges from 5E8Pa to 1E10Pa. In some embodiments, in order to make the elastic deformation capability of the elastic element 110 appropriate, the Young's modulus of the elastic element 110 ranges from 1E9Pa to 5E9Pa.
  • the Young's modulus of the elastic element 110 ranges from 1E9Pa to 4E9Pa. In some embodiments, in order to make the elastic deformation capability of the elastic element 110 appropriate, the Young's modulus of the elastic element 110 ranges from 2E9Pa to 5E9Pa. In some embodiments, the Young's modulus of the elastic element 110 can be measured by a variety of methods, such as resonance method, nanoindentation method, dynamic expansion method, visual image tracking system, micro-stretching composite method, etc. For example, the elastic element 110 is used as a film material, and laser pulses can be used to excite surface acoustic waves on the surface of the film.
  • the dispersion relationship of surface acoustic wave speed is determined by the elastic modulus (Young's modulus), density and thickness of the film and the substrate.
  • Young's modulus, density and film thickness of the film can be measured by detecting the wave speed of the surface acoustic wave.
  • the dispersion relationship of the acoustic wave speed detected by the acoustic wave detector can be compared with the dispersion relationship calculated by the theoretical model, and information such as the Young's modulus, density and thickness of the film can be obtained.
  • the density of the elastic element 110 ranges from 1E3kg/m 3 to 4E3kg/m 3 . In some embodiments, in order to make the quality of the elastic element 110 appropriate, the density of the elastic element 110 ranges from 1E3kg/m 3 to 2E3kg/m 3 . In some embodiments, in order to make the quality of the elastic element 110 appropriate, the density of the elastic element 110 ranges from 1E3kg/m 3 to 3E3kg/m 3 . In some embodiments, in order to avoid the mass of the elastic element 110 being too large, the density of the elastic element 110 ranges from 1E3kg/m 3 to 1.5E3kg/m 3 . In some embodiments, in order to avoid the mass of the elastic element 110 being too small, the density of the elastic element 110 ranges from 1.5E3kg/m 3 to 2E3kg/m 3 .
  • the central area 112 refers to a certain area extending from the center (eg, centroid) to the circumferential side of the elastic element 110 .
  • the central area 112 includes an elastic member and a reinforcing member 120, and the reinforcing member 120 is connected to the elastic member.
  • the elastic member may refer to the part of the elastic element 110 located in the central area 112.
  • the elastic member and the reinforcement member 120 are stacked along the vibration direction.
  • the elastic member is close to the surface of the reinforcement member 120 and the groove structure 121 of the reinforcement member 120.
  • One side connection with opening In this case, the surface of the elastic member may completely cover the reinforcement member 120 , that is, the elastic member may cover the opening of the groove structure 121 of the reinforcement member 120 .
  • the elastic members ie, the elastic area in the central area
  • the reinforcing member 120 ie, the reinforced area in the central area
  • the elastic members are connected to the sides of the hollow structure of the reinforcing member 120 .
  • the elastic member may cover the remaining portion of the central area 112 that is not covered by the reinforcement 120 , that is, the elastic member may not cover or partially cover the opening of the groove structure 121 of the reinforcement 120 .
  • the elastic member of the central area 112 when the vibration assembly 100 is applied to a speaker, can be directly connected to the speaker.
  • the drive part is connected.
  • the stiffener 120 of the central region 112 may be connected directly to the driver portion of the speaker.
  • the elastic element 110 is configured to vibrate in a direction perpendicular to the central area 112.
  • the elastic member and the reinforcing member 120 of the central area 112 can transmit the force and displacement of the driving part to promote air movement and output sound pressure.
  • the ring area 114 is located outside the central area 112 .
  • the ring area 114 can be designed with a pattern of a characteristic shape, thereby destroying the mode shape of the ring area 114 of the elastic element 110 in the corresponding frequency range, and avoiding the occurrence of sound cancellation caused by the partial division vibration of the elastic element 110 , and at the same time, the local stiffness of the elastic element 110 is increased through the pattern design.
  • the ring region 114 may include a ring structure.
  • the stiffness of the ring region 114 corresponding to the ring structure can be made different, and the corresponding frequency ranges of the high-frequency local segmented vibration shapes can also be different.
  • the ring width may be the radial width of the projection of the ring area 114 along the vibration direction of the elastic element 110 .
  • the arch height refers to the height of the ring area 114 protruding from the central area 112 or the fixed area 116 along the vibration direction of the elastic element 110 .
  • the maximum area projected along the vibration direction of the elastic element 110 of the outermost annular structure 122 of the reinforcement 120 is smaller than the area of the central region 112 . That is, there is an area that is not supported by the reinforcement 120 between the outermost projection of the reinforcement 120 and the folding ring area 114.
  • This specification refers to a part of the central area 112 between the folding ring area 114 and the reinforcement 120 as a suspended area 1121.
  • the portion of the elastic element 110 corresponding to the suspended area 1121 also serves as an elastic member.
  • the area of the suspended region 1121 can be adjusted, thereby adjusting the mode shape of the vibration assembly.
  • the fixing area 116 is provided on the periphery of the ring area 114 .
  • the elastic element 110 can be connected and fixed through the fixing area 116 .
  • the elastic element 110 may be connected and fixed to a speaker casing or the like through the fixing area 116 .
  • the fixed area 116 is installed and fixed in the housing of the speaker and can be regarded as not participating in the vibration of the elastic element 110 .
  • the fixing area 116 of the elastic element 110 can be connected to the housing of the speaker through a supporting element.
  • the support element may include a soft material that is easily deformed, so that the support element may also deform when the vibration assembly 100 vibrates, thereby providing a greater displacement for the vibration of the vibration assembly 100 .
  • the support element may also include a rigid material that is not easily deformed.
  • the elastic element 110 may further include a connecting area 115 disposed between the fold area 114 and the fixing area 116 .
  • the connection area 115 can provide additional stiffness and damping for the vibration of the elastic element 110, thereby adjusting the mode shape of the vibration assembly 100.
  • the thickness and elastic coefficient of the elastic element 110 can be set within a reasonable range.
  • the thickness of the elastic element 110 may range from 3um to 200um.
  • the thickness of the elastic element 110 in order to avoid excessive stiffness of the elastic element 110, may range from 3um to 100um. In some embodiments, in order to avoid excessive stiffness of the elastic element 110, the thickness of the elastic element 110 may range from 3um to 50um.
  • the reinforcement 120 may be an element used to increase the stiffness of the elastic element 110 .
  • the reinforcement 120 is connected to the central area 112, and the reinforcement 120 and/or the central area 112 are connected to the driving part of the speaker to transmit force and/or displacement, so that the vibration assembly 100 pushes the air to move and output sound. pressure.
  • the reinforcement 120 may include one or more annular structures 122 and one or more strip structures 124, each of the one or more strip structures 124 being in contact with one or more of the one or more annular structures 122. At least one connection is made to form a staggered support in the central region 112 of the elastic element 110 . Wherein, at least one of the one or more strip structures 124 extends toward the center of the central region 112 . In some embodiments, one or more strip structures 124 may pass through the center of the central region 112 to provide support for the center of the central region 112 .
  • the reinforcement 120 may also include a central connection part 123, and one or more strip structures 124 may not pass through the center of the central area 112, but cover the center of the central area 112 with the central connection part 123. Or multiple strip structures 124 are connected to the central connecting portion 123 .
  • the cross-section of one or more annular structures 122 and/or one or more strip structures 124 may be provided with groove structures 121 .
  • the provision of the groove structure 121 can adjust the stiffness and quality of the reinforcement 120 to avoid excessively increasing the speaker load and avoiding impedance mismatch between the driving part and the load part, thereby improving the output effect of the vibration component 100 .
  • the annular structure 122 may be a structure extending around a specific center. In some embodiments, the center around which the annular structure 122 surrounds may be the center of the central region 112 . In other embodiments, the center surrounded by the annular structure 122 may also be other positions on the central area 112 that are off-center. In some embodiments, the annular structure 122 may be a structure with closed outline lines. In some embodiments, the projected shape of the ring structure 122 along the vibration direction of the elastic element 110 may include, but is not limited to, one or a combination of a circular ring, a polygonal ring, a curved ring, or an elliptical ring.
  • the annular structure 122 may also be a structure with unclosed outline lines.
  • the annular structure 122 may be a circular annular shape with a gap, a polygonal annular shape, a curved annular shape or an elliptical annular shape, etc.
  • the number of ring structures 122 may be one.
  • the number of annular structures 122 may also be multiple, and the multiple annular structures may have the same centroid.
  • the number of ring structures 122 may range from 1-10.
  • the number of ring structures 122 may range from 1-5.
  • the number of ring structures 122 may range from 1-3.
  • the quality and stiffness of the reinforcement 120 can be adjusted by designing the number of annular structures 122 .
  • the outermost portion of the reinforcement member 120 The size of the annular structure 122 can be regarded as the largest size of the reinforcement 120 .
  • the size (or area) of the suspended area 1121 between the ring area 114 and the stiffener 120 can be adjusted by setting the size of the outermost annular structure 122 , thereby changing the mode shape of the vibration assembly 100 .
  • one or more annular structures 122 may include a first annular structure and a second annular structure, the first annular structure having a radial dimension that is smaller than the radial dimension of the second annular structure.
  • the first annular structure is disposed inside the second annular structure.
  • the centroids of the first and second annular structures may coincide. In other embodiments, the centroids of the first annular structure and the second annular structure may not coincide with each other.
  • the first annular structure and the second annular structure may be connected by one or more strip structures 124 .
  • the strip structure 124 may be a structure with any extension pattern. In some embodiments, the strip structure 124 may extend along a straight line. In some embodiments, the strip structure 124 may also extend along a curve. In some embodiments, the curved extension may include, but is not limited to, arc-shaped extension, spiral extension, spline-shaped extension, arc-shaped extension, S-shaped extension, etc. In some embodiments, the strip structure 124 is connected to the annular structure 122 to divide the annular structure 122 into multiple hollow structures. That is, on the reinforcement 120, the area other than the groove structure 121 is provided with a hollow structure. In some embodiments, the area on the central area 112 corresponding to the hollow structure may be called a hollow area (ie, an elastic area).
  • the number of bar structures 124 may be one.
  • a bar-shaped structure 124 can be arranged along any radial direction of the annular structure 122, and the bar-shaped structure 124 simultaneously connects the center of the central area (ie, the centroid of the annular structure 122) and the annular structure 122.
  • the number of strip structures 124 may also be multiple.
  • multiple strip structures 124 may be disposed along multiple diameter directions of the annular structure 122 .
  • the plurality of strip structures 124 may extend toward a central location of the central region 112 , which may be the centroid of the elastic element 110 .
  • a plurality of strip structures 124 may be connected to a central location of the central area and form a central connection portion 123 at the central location.
  • the central connecting portion 123 can also be a separate structure, and multiple strip structures 124 can be connected to the central connecting portion 123 .
  • the shape of the central connecting portion 123 may include, but is not limited to, a circle, a square, a polygon, an ellipse, etc. In some embodiments, the shape of the central connecting portion 123 can also be set arbitrarily.
  • the number of strip structures 124 may range from 1 to 100. In some embodiments, in order to avoid excessive stiffness of the elastic element 110, the number of strip structures 124 may range from 1 to 50. In some embodiments, in order to avoid excessive stiffness of the elastic element 110, the number of strip structures 124 may range from 1 to 50. In some embodiments, in order to avoid excessive stiffness of the elastic element 110, the number of strip structures 124 may range from 1 to 30.
  • the projected shape of the strip structure 124 along the vibration direction of the elastic element 110 includes at least one of a rectangle, a trapezoid, a curve, an hourglass shape, and a petal shape.
  • the structural description of the ring structure 122 and the strip structure 124 in the embodiment of this specification is only an optional structure selected to facilitate the reasonable arrangement of the structure of the reinforcement 120, and should not be understood as a description of the reinforcement 120 and its respective structures. Part shape restrictions.
  • the reinforcement 120 in the embodiment of the present description can form a hollow structure between the annular structure 122 and the strip structure 124 by the annular structure 122 and the strip structure 124 having the groove structure 121 (corresponding to the center area 112 Hollow area), the vibration characteristics of the vibration component 100 (for example, the number of resonant peaks and the frequency range) can be controlled by regulating the parameters of the groove structure and the hollow structure (such as area, thickness of the groove structure, etc.).
  • any shape of reinforcement with a groove structure and a hollow structure can be set using the parameter setting method for the groove structure and the hollow structure provided in this specification to adjust the vibration performance of the vibration component (for example, The number and position of the resonant peaks, the shape of the frequency response curve, etc.), these solutions should be included in the scope of this application.
  • connection area 115 between the fixed area 116 of the elastic element 110 and the ring area 114 is suspended.
  • This partial area has an equivalent mass Mm1, and this area is connected to the shell through the spring Km, the damping Rm At the same time, the connection area 115 is connected to the front end air load of the elastic element 110 through the spring Ka1 and the damping Ra1, transmitting force and displacement to promote air movement.
  • the ring area 114 of the elastic element 110 has a local equivalent mass Mm2, and this area is connected to the connection area 115 of the elastic element 110 through the spring Ka1' and the damping Ra1', while the ring area 114 is connected through the spring Ka2 , the damping Ra2 is connected to the air load at the front end of the elastic element 110, transmitting force and displacement to promote air movement.
  • the central area 112 of the elastic element 110 is provided with a reinforcing member 120.
  • the reinforcing member 120 is connected to the elastic member in the central area 112.
  • Area 1121. This area has a local equivalent mass Mm3, and this area is connected to the ring area 114 through the spring Ka2' and the damping Ra2'.
  • the area where the reinforcement 120 is located is connected to the air load at the front end of the elastic element 110 through the spring Ka3 and the damping Ra3 to transmit force. and displacement thereby propelling air movement.
  • the central area 112 of the elastic element 110 corresponding to the reinforcement 120 has no less than one hollow area, and each hollow area can be equivalent to a mass-spring-
  • the damping system has equivalent mass Mmi, equivalent stiffness Kai and Kai', and equivalent damping Rai and Rai'.
  • the hollow area is connected by the spring Kai', the damping Rai' and the adjacent hollow area. connection between.
  • the hollow area is also connected to the suspended area 1121 between the area supported by the reinforcement 120 and the ring area 114 in the central area 112 through the spring Kai' and the damping Rai'.
  • the suspended area 1121 is connected to the elastic area through the spring Kai' and the damping Rai'.
  • the front end of the element 110 is connected to an air load, transmitting force and displacement to promote air movement.
  • the reinforcement 120 itself has an equivalent mass Mmn, and the reinforcement 120 is connected to the central area 112 through the spring Kan' and the damping Ran', while the reinforcement 120 is connected to the air at the front end of the elastic element 110 through the spring Kan' and the damping Ran.
  • the load is connected.
  • the reinforcement 120 itself resonates, it drives the central area 112 to drive the elastic element 110 to produce a greater movement speed and displacement, thereby producing a greater sound pressure level.
  • each mass-spring-damping system has its own resonance peak frequency f0, and a large motion speed and displacement can occur at f0.
  • the vibration component 100 For example, the structural parameters of the elastic element 110 and/or the reinforcement 120
  • the mass-spring-damping system formed by the structures at different positions of the vibration component 100 can resonate in the required frequency range, thereby causing the frequency of the vibration component 100 to resonate.
  • the reinforcement 120 the vibration component 100 can be made to have a lighter mass, and the vibration component 100 can have a higher sound pressure level output. .
  • Figure 2 is a deformation diagram of the first resonance peak of the vibration component according to some embodiments of this specification.
  • Figure 3 is a diagram of the second resonance peak deformation of the vibration component according to some embodiments of this specification.
  • Figure 4 is a diagram of the second resonance peak deformation of the vibration component according to some embodiments of this specification.
  • the third resonance peak deformation diagram of the vibration component is shown in the example.
  • each part of the vibration component 100 will produce velocity resonance in different frequency bands, causing a larger velocity value to be output in the corresponding frequency band, so that the vibration component 100
  • the frequency response curve outputs a larger sound pressure value in the corresponding frequency range and has a corresponding resonance peak; at the same time, through multiple resonance peaks, the frequency response of the vibration component 100 has a relatively high sound pressure value in the audible sound range (for example, 20Hz-20kHz). High sensitivity.
  • the mass of the reinforcement 120, the mass of the elastic element 110, the equivalent air mass, and the equivalent mass of the driving end are combined to form a total equivalent mass Mt, and the equivalent damping of each part forms a total equivalent damping Rt.
  • the elasticity The element 110 (especially the elastic element 110 in the folded ring area 114, the suspended area between the folded ring area 114 and the reinforcement 120) has greater compliance and provides stiffness Kt for the system, thus forming a mass Mt-spring Kt- Damped Rt system, this system has a resonant frequency.
  • the system When the driving end excitation frequency is close to the speed resonance frequency of the system, the system resonates (as shown in Figure 2), and in the frequency band near the speed resonance frequency of the Mt-Kt-Rt system Output a larger speed value va. Since the output sound pressure amplitude of the vibration component 100 is positively related to the sound speed (pa ⁇ va), a resonance peak will appear in the frequency response curve. This is defined as the vibration component 100 in this specification. the first resonance peak.
  • FIG. 2 which shows the vibration condition of the vibration assembly 100 at the A-A cross-sectional position.
  • the white structure in FIG. 2 represents the shape and position of the reinforcement 120 before deformation, and the black structure represents the reinforcement 120 at the cross-section position. The shape and position of a resonance peak.
  • FIG. 2 only shows the structural condition of the vibration assembly 100 from the center of the reinforcement 120 to one edge of the elastic element 110 on the A-A section, that is, half of the A-A section, and the other part of the A-A section that is not shown. One half is symmetrical to the situation shown in Figure 2. From the vibration of the vibration component 100 at the A-A cross-section position, it can be seen that at the position of the first resonance peak, the main deformation position of the vibration component 100 is the part of the elastic element 110 connected to the fixed area 116 .
  • the frequency of the first resonance peak of the vibration component 100 (also referred to as the first resonance frequency) may be related to the ratio of the mass of the vibration component 100 and the elastic coefficient of the elastic element 110 .
  • the frequency range of the first resonance peak in order to improve the sound pressure level output of the speaker in a wider mid-low frequency range (eg, 20 Hz-3500 Hz), includes 200 Hz-2500 Hz. In some embodiments, in order to focus on improving the sound pressure level output of the speaker in a commonly used mid-low frequency range (eg, 80 Hz-2500 Hz), the frequency range of the first resonance peak includes 400 Hz-1500 Hz. Preferably, the frequency range of the first resonance peak includes 500Hz-1200Hz. More preferably, the frequency range of the first resonance peak includes 600Hz-1000Hz. In some embodiments, by configuring the structure of the reinforcement 120, the first resonance peak of the vibration component 100 can be located within the above frequency range.
  • the reinforcement 120 itself has an equivalent mass Mmn, and the reinforcement 120 is connected to the central area 112 through the spring Kan' and the damping Ran'. At the same time, the reinforcement 120 is connected to the air load at the front end of the elastic element 110 through the spring Kan' and the damping Ran. When the reinforcement 120 When 120 itself resonates, it drives the central area 112 to drive the elastic element 110 to produce a greater movement speed and displacement, thereby producing a greater sound pressure level.
  • the reinforcement 120, the connection area 115, the folding area 114, the suspended area 1121 between the area where the reinforcement 120 is provided in the central area 112 and the folding area 114, the equivalent air mass, and the driving end equivalent mass are combined to form a total equivalent
  • the mass Mt1 the equivalent damping of each part forms the total equivalent damping Rt1
  • the reinforcement 120 and the elastic element 110 (especially the area where the central area 112 is covered by the reinforcement 120) have greater stiffness and provide stiffness Kt1 for the system, so A mass Mt1-spring Kt1-damping Rt1 system is formed.
  • This system has a central area 112 that strengthens a certain annular area in the diameter direction as an equivalent fixed fulcrum.
  • the inner edge of the annular area moves in the opposite direction to the outer edge of the annular area, thereby forming a flipping motion.
  • the suspended area 1121 between the connecting area 115, the folding area 114, the central area 112 and the area where the reinforcing member 120 is provided and the folding area 114 vibrates under the driving of the reinforcing member 120, realizing a vibration based on the flipping motion.
  • Type resonant mode shown in Figure 3
  • this resonance is also the resonant frequency point of the equivalent mass Mt1-spring Kt1-damping Rt1 system.
  • the system When the driving end excitation frequency is close to the speed resonance frequency of the system, the system generates Resonance, and outputs a large velocity value va in the frequency band near the velocity resonance frequency of the Mt1-Kt1-Rt1 system. Since the output sound pressure amplitude of the vibration component 100 is positively related to the sound velocity (pa ⁇ va), it will be in the frequency response A resonance peak appears in the curve. In this manual, It is defined as the second resonance peak of the vibration component 100 .
  • FIG. 3 which shows the vibration condition of the vibration assembly 100 at the AA cross-sectional position.
  • the white structure in FIG. 3 represents the shape and position of the reinforcement 120 before deformation, and the black structure represents the reinforcement 120 at the cross-section position.
  • FIG. 3 only shows the structural condition of the vibration assembly 100 from the center of the reinforcement 120 to one edge of the elastic element 110 on the AA cross-section, that is, half of the AA cross-section. The other part of the AA cross-section is not shown. One half is symmetrical to the situation shown in Figure 3. It can be seen from the vibration of the vibration component 100 at the AA cross-sectional position that the main deformation position of the vibration component 100 is the overturning deformation of the reinforcement 120 before and after the second resonance peak frequency (also called the second resonance frequency).
  • the second resonance peak of vibration assembly 100 may be related to the stiffness of stiffener 120 .
  • the frequency range of the second resonance peak may include 5000 Hz-10000 Hz.
  • the frequency range of the second resonance peak may include 6000 Hz-8000 Hz.
  • the frequency range of the second resonance peak includes 6500Hz-7500Hz.
  • the range of the second resonance peak of the vibration component 100 can be within the above frequency range.
  • the reinforcement 120 has no less than one hollow area corresponding to the central area 112.
  • Each hollow area is a mass-spring-damping system with equivalent mass Mmi, equivalent stiffness Kai and Kai', and equivalent damping Rai and Rai. '.
  • the hollow area is connected to the adjacent hollow area through the spring Kai' and the damping Rai', and the hollow area is connected to the area supported by the reinforcement 120 and the ring area 114 in the central area 112 through the spring Kai' and the damping Rai'.
  • the hollow area is connected to the air load at the front end of the elastic element 110 through the spring Kai and the damping Rai, transmitting force and displacement to promote air movement.
  • each hollow area is separated by the strip structure 124 and/or the annular structure 122 of the reinforcement 120 , each hollow area can form a different resonance frequency and independently promote the movement of the air domain connected to it, resulting in corresponding sound pressure; further, by designing the position, size, and quantity of each strip structure 124 and/or ring structure 122 of the reinforcement 120, various hollow areas with different resonant frequencies can be realized, so that at the frequency of the vibration component 100 There is no less than one high-frequency resonance peak (i.e. the third resonance peak) on the response curve.
  • no less than one high-frequency resonance peak (ie, the third resonance peak) as described above ) range may include 12000Hz-18000Hz.
  • the frequency range of the third resonance peak in order to focus on improving the sound pressure level output of the speaker in a commonly used high frequency range (eg, 12000 Hz-18000 Hz), may include 13000 Hz-17000 Hz.
  • the frequency range of the third resonance peak includes 14000Hz-16000Hz. More preferably, the frequency range of the third resonance peak includes 14500Hz-15500Hz.
  • each strip structure 124 and/or ring structure 122 are designed to make the resonant frequencies of each hollow area equal. or close.
  • the difference in resonant frequencies of each hollow area is within the range of 4000 Hz, so that the frequency response curve of the vibration component 100 has a high-frequency resonance peak with a large output sound pressure level, which is defined in this specification. is the third resonance peak of the vibration component 100 .
  • the frequency range of the third resonance peak may include 12000 Hz-18000 Hz.
  • the resonant frequency of each hollow region can be adjusted so that the third resonance peak of the vibration component 100 is located in the above frequency range. That is, by designing the ratio range of the area of each hollow region and the thickness of the elastic element 110, the frequency range of the third resonance peak can be adjusted.
  • the unit of the area of each hollow region may be mm 2
  • the unit of the thickness of the elastic element 110 may be mm
  • the unit of the ratio of the area of each hollow region to the thickness of the elastic element 110 may be mm.
  • the ratio of the area of the hollow region to the thickness of the elastic element 110 is 100 mm.
  • the ratio of the area of each hollow region to the thickness of the elastic element 110 ranges from 100mm to 1000mm.
  • the ratio of the area of each hollow region to the thickness of the elastic element 110 ranges from 120mm to 900mm.
  • the ratio of the area of each hollow region to the thickness of the elastic element 110 ranges from 150 mm to 800 mm. In some embodiments, in order to make the third resonance peak of the vibration component 100 range within the frequency range of 14700 Hz-15200 Hz, the ratio of the area of each hollow region to the thickness of the elastic element 110 ranges from 150 mm to 700 mm.
  • FIG. 5A is a frequency response curve diagram of a vibration component according to some embodiments of this specification.
  • the vibration component 100 can be realized to have multiple resonance peaks in the audible sound range. Furthermore, through the combination of multiple resonance peaks, etc., the vibration component 100 can be uniform in the entire audible sound range. Has higher sensitivity.
  • the third resonance peak 240 of the vibration component 100 can be located in different frequency ranges.
  • the frequency difference between the third resonant peak 240 and the second resonant peak 230 By designing the frequency difference between the third resonant peak 240 and the second resonant peak 230, a relatively flat frequency response curve and a higher sound pressure level can be achieved in the frequency range between the third resonant peak 240 and the second resonant peak 230. , to avoid troughs in the frequency response curve.
  • the vibration component 100 can make the required high-order mode appear in the audible sound range (20Hz-20000Hz).
  • the above-mentioned appearance appears on the frequency response curve of the vibration component 100.
  • the first resonant peak 210, the second resonant peak 230, and the third resonant peak 240, that is, the number of resonant peaks of the frequency response curve of the vibrating component 100 in the frequency range of 20 Hz to 20,000 Hz is 3, thereby allowing the vibrating component 100 to operate in a wider range.
  • the frequency band range has higher sensitivity.
  • the vibration component 100 can have only two resonance peaks in the audible sound range (20 Hz-20000 Hz).
  • the structure of the reinforcement 120 including the overall size of the reinforcement 120, the number and size of the strip structures 124 and/or ring structures 122 having groove structures 121 in cross-section, etc.
  • the size of each hollow area can be designed, so that The resonant frequency corresponding to the suspended area 1121 is adjusted so that the third resonant peak 240 formed by the high frequency of the vibration component 100 is not obvious and is not reflected in the frequency response.
  • each suspended area 1121 When the resonant frequency of each suspended area 1121 is higher than the audible sound range, or the resonant frequency of each suspended area 1121 is different, and the vibration phases of different suspended areas 1121 in different frequency bands are different in the high frequency range (10000Hz-18000Hz), a sound superposition is formed. When canceling the effect, a high-frequency roll-off effect can be obtained, and the third resonance peak 240 is not reflected in the 100 sound pressure level frequency response curve of the vibrating component.
  • FIG. 5B is a frequency response curve diagram of a vibration component without a third resonance peak according to some embodiments of this specification.
  • the reinforcement 120 has no less than one hollow area corresponding to the central area 112.
  • Each hollow area is a mass-spring-damping system, which is strengthened by design.
  • the position, size, and quantity of each strip structure 124 of the component 120 are such that the resonant frequencies of each hollow area are equal or close to each other.
  • the difference in resonant frequencies of each hollow region is within the range of 4000 Hz, which can cause one or more high-frequency resonance peaks with a large output sound pressure level (i.e., the third resonance peak).
  • the resonant frequency of each hollow area is higher than the audible sound range, or so that each The resonant frequencies of the hollow areas are different, and the vibration phases of different hollow areas in different frequency bands are different in the high frequency range (10000Hz-18000Hz), forming a sound superposition and cancellation effect, and a high-frequency roll-off effect can be obtained.
  • the third resonance peak 240 is not reflected in the voltage level frequency response curve.
  • FIG. 6 is a frequency response curve diagram of a vibration component including a groove structure and a vibration component not including a groove structure according to some embodiments of this specification.
  • the structural size and shape of the reinforcement 120 with the groove structure 121, the mass and stiffness distribution of the reinforcement 120 can be effectively adjusted.
  • the stiffness of the reinforcement 120 itself can be changed without changing or changing the mass of the reinforcement 120, so that the reinforcement 120 and the elastic element 110 (especially the central region 112 of the elastic element 110) provide the system with
  • the change in the stiffness Kt1 further causes the resonant frequency of the flipping motion of the mass Mt1-spring Kt1-damping Rt1 system to change, thereby causing the position of the third resonance peak 240 of the vibration component 100 to change.
  • the mass of the reinforcement 120 can be reduced without reducing the stiffness of the reinforcement 120 , thereby increasing the output of the vibration assembly 100 .
  • the vibration component 100 has a relatively flat frequency response output in the range of 1kHz-6kHz, and the vibration component 100 forms the second resonance peak 230 in the range of 6kHz-10kHz and 12k-18kHz respectively. and the third resonance peak 240, which improves the high-frequency output sensitivity.
  • the vibration component 100 has a higher sensitivity output.
  • the design of the groove structure 121 also enables the vibration component 100 to have no less than one resonance peak at high frequency, so that the vibration component 100 has a higher sensitivity output in a wider frequency band.
  • the mass of the reinforcement 120 can be reduced while ensuring the stiffness of the reinforcement 120 and the elastic element 110, thereby increasing the output of the vibration assembly 100 and improving the performance of the vibration assembly 100. Have a positive impact.
  • the reinforcement 120 with the groove structure 121 and the elastic element 110 can be separate structures, and the two can be assembled to form a hollow stiffness-enhancing structure.
  • the width of the groove structure 121 can be kept consistent in the vibration direction.
  • the groove structure 121 shown in Figure 7A is a square U-shaped structure
  • the groove structure 121 shown in Figure 7B is round. Angular U-shaped structure.
  • the width of the groove structure 121 may gradually decrease or increase in the vibration direction.
  • the groove structure 121 shown in FIG. 7E 121 is a cone-shaped protruding structure.
  • the width of the groove structure 121 can be changed arbitrarily (for example, first decrease and then increase, etc.).
  • the groove structure 121 shown in FIG. 7D is an I-shaped structure.
  • the reinforcement 120 with the groove structure 121 and the elastic element 110 can be an integral structure, for example, both can be processed and formed at one time.
  • the groove structure 121 may adopt a U-shaped structure (such as the square U-shaped structure shown in FIG. 7F ) to facilitate design and processing and reduce the difficulty of processing and manufacturing.
  • the elastic parts in the central region 112 of the elastic element 110 are arranged between the groove structures 121 of the reinforcement 120, and the elastic parts serve as elastic regions and are arranged side by side with the reinforcement 120 as reinforcement regions.
  • the groove structure 121 can also adopt other types of hollow structures (such as the above-mentioned I-shaped structure, T-shaped structure, etc.), as long as the stiffness of the reinforcement 120 and the elastic element 110 can be ensured. , just reduce the quality of the reinforcement 120.
  • the hollow portion of the groove structure 121 of the reinforcement 120 can be provided with filling material to adjust the quality and stiffness of the reinforcement 120 and improve the output of the vibration assembly 100 .
  • the Young's modulus of the filling material may be smaller than the Young's modulus of the material of the elastic element 110 to reduce the interference of the filling material on the vibration deformation of the elastic element 110 .
  • filler materials may include non-metallic materials or metallic materials.
  • non-metallic materials as filler materials may include, but are not limited to, polycarbonate (PC), polyamides (PA), acrylonitrile-butadiene-styrene copolymer (Acrylonitrile Butadiene Styrene, ABS), polystyrene (Polystyrene, PS), high impact polystyrene (HIPS), polypropylene (Polypropylene, PP), polyethylene terephthalate (Polyethylene Terephthalate, PET), Polyvinyl Chloride (PVC), Polyurethanes (PU), Polyethylene (PE), Phenol Formaldehyde (PF), Urea-Formaldehyde (UF), Melamine -Formaldehyde resin (Melamine-Formaldehyde, MF), polyarylate (PAR), polyetherimide (PEI), polyimide (PI), polyethylene naphthalate ( Any one of Polyethylene Naphthalate two formic acid glycol ester
  • FIG. 8 is a schematic structural diagram of a groove structure according to some embodiments of this specification.
  • the structural and dimensional parameters of the groove structure 121 have a great influence on the stiffness of the reinforcement 120. Therefore, the stiffness and quality of the reinforcement 120 can be adjusted by adjusting the structural and dimensional parameters of the groove structure 121. As shown in FIG.
  • the groove structure 121 has a height dimension h along the vibration direction, the groove structure 121 has a width dimension w perpendicular to the vibration direction, the side wall of the groove structure 121 has a thickness dimension b, and the opening of the groove structure 121 There is a skirt structure perpendicular to the vibration direction (for example, extending along the surface of the elastic member), and the width of the skirt structure is bm.
  • the stiffness of the reinforcement 120 with the groove structure 121 is mainly provided by the groove structure 121 .
  • the stiffness is mainly the bending stiffness EI
  • E is the Young's modulus
  • I is the moment of inertia.
  • the moment of inertia I of the reinforcement 120 with the groove structure 121 is only determined by the height h, width w, and thickness b of the reinforcement 120, where h and b are cubic parameters.
  • the stiffness effect of the reinforcement 120 of 121 is particularly significant.
  • Increasing the design parameter h can increase the moment of inertia I, further increasing the stiffness of the reinforcement member with the groove structure 121 , thereby causing the second resonant peak 230 of the speaker to move backward; conversely, decreasing the design parameter h, the stiffness of the reinforcement member 120 decreases. is small, the second resonance peak 230 of the vibration component 100 moves forward.
  • increasing the design parameter b can increase the moment of inertia I, further increasing the stiffness of the reinforcement 120 with the groove structure 121, and thus causing the second resonance peak 230 of the vibration component 100 to move backward; conversely, the design parameter b decreases, The stiffness of the reinforcement 120 is reduced, and the second resonance peak 230 of the vibration component 100 moves forward.
  • the stiffness of the reinforcement 120 with the groove structure 121 can be maintained and the mass can be reduced, and the vibration component 100
  • the frequency value of the second resonant peak 230 remains unchanged and the output frequency response of the vibration component 100 is improved; conversely, by optimizing to reduce the h value and synchronously optimizing to increase the b value, the stiffness of the reinforcement 120 with the groove structure 121 can be maintained.
  • the mass increases, the frequency value of the second resonance peak 230 of the vibration component 100 remains unchanged, reducing the output frequency response of the vibration component 100 .
  • the stiffness and mass of the reinforcement 120 with the groove structure 121 can be reduced, so that the vibration component 100
  • the second resonance peak 230 moves forward, improving the output frequency response of the vibration component 100 .
  • the stiffness of the reinforcement 120 with the groove structure 121 can be reduced and the mass can be increased, so that the vibration component 100
  • the second resonance peak 230 moves forward, reducing the speaker output frequency response.
  • FIG. 9 is another frequency response curve diagram of a vibration component according to some embodiments of this specification.
  • the design parameters h and b can be optimized at the same time. By optimizing to increase the h value and synchronously optimizing to decrease the b value, the stiffness of the reinforcement 120 with the groove structure 121 can be maintained and the mass can be reduced.
  • FIG. 9 is another frequency response curve diagram of a vibration component according to some embodiments of this specification.
  • the output of the vibration component 100 gradually increases.
  • the frequency value and output sensitivity of the second resonance peak 230 of the vibration component 100 can be effectively adjusted, so that the second resonance peak 230 of the vibration component 100 is located in the range of 6000Hz-8000Hz and has high sensitivity.
  • the ratio ⁇ of the height h to the thickness b of the reinforcement 120 having the groove structure 121 may range from no less than 7.14. In some embodiments, more preferably, the ratio ⁇ between the height h and the thickness b of the reinforcement 120 having the groove structure 121 may range from no less than 9.
  • the height h and thickness b of the reinforcement part 120 are cubic parameters, which have a particularly significant impact on the stiffness of the reinforcement 120 including the groove structure 121.
  • the reinforcement 120 can have a smaller mass and at the same time have greater stiffness, thereby making the vibration assembly 100 pieces Have greater output.
  • the process difficulty and the overall reliability of the reinforcement 120 will be affected.
  • FIG. 10 is a frequency response curve diagram of a vibration component corresponding to reinforcement members of different heights according to some embodiments of this specification. It can be seen from Figure 10 that as the height h of the reinforcement 120 with the groove structure 121 decreases, its stiffness decreases, the second resonance peak 230 of the vibration component 100 moves forward, and the sensitivity also increases accordingly. Moreover, the height h of the reinforcement 120 with the groove structure 121 has a good output under the dimensions of 170um and 270um.
  • the height h of the reinforcement 120 with the groove structure 121 may range from 50um to 500um. In some embodiments, in order to further reduce actual processing difficulty, the height h of the reinforcement 120 with the groove structure 121 may range from 200um to 350um.
  • FIG. 11 is a frequency response curve diagram of a vibration component corresponding to reinforcement members of different thicknesses shown in some embodiments of this specification. It can be seen from Figure 11 that as the thickness b of the reinforcement 120 with the groove structure 121 decreases, its stiffness decreases, the mass decreases, the second resonance peak 230 of the vibration component 100 moves forward, and the sensitivity also increases accordingly.
  • the thickness b of the reinforcement 120 When the thickness b of the reinforcement 120 is larger, the stiffness and mass of the reinforcement 120 increase, and the load formed by the reinforcement 120 for the vibration component 100 also increases, which in turn causes the second resonance peak 230 to move backward and decrease the output sensitivity of the vibration component 100
  • the output is significantly reduced compared to other thicknesses (such as 20um, 30um, 50um, etc.); as the value of thickness b gradually increases, although the second resonance peak 230 will gradually move forward, It also greatly improves the output sensitivity, so it has advantages in some narrow-band application scenarios. Overall, thickness b should take a smaller value.
  • the thickness b of the reinforcement 120 with the groove structure 121 may range from no more than 50 ⁇ m. In some embodiments, in order to make the reinforcement 120 with the groove structure 121 have a smaller mass while having higher reliability, the thickness b of the reinforcement 120 with the groove structure 121 may range from Greater than 40um.
  • FIG. 12 is a schematic diagram of a skirt structure according to some embodiments of this specification.
  • the area shown in the shaded part in Figure 12 represents the skirt structure.
  • the design of the skirt structure width bm directly determines the area of the suspended area 1121 of the elastic element 110, determines the equivalent mass Mmi, equivalent stiffness Kai and Kai', equivalent damping Rai and Rai', which further affects the vibration components.
  • the position of the third resonance peak 240 of 100 and the frequency response output of the vibration component 100 .
  • Figure 13 is a frequency response curve diagram of a vibration component corresponding to reinforcement members with different skirt structure widths shown in some embodiments of this specification. It can be seen from Figure 13 that as the skirt width bm value increases, the output of the vibration component 100 decreases significantly, and the output of the third resonance peak 240 decreases.
  • the skirt width bm is 500um, compared with other values of the skirt width bm (such as 100um, 150um, 300um, etc.), the output SPL is significantly reduced; but at the same time, the value of the skirt width bm is reduced, which will increase the difficulty of the process.
  • the skirt width bm of the reinforcement 120 having the groove structure 121 may range from 100um to 300um. In some embodiments, in order to reduce process difficulty while allowing the vibration component 100 to have better output performance, the skirt width bm of the reinforcement 120 with the groove structure 121 may range from 100um to 200um.
  • the elastic member at the connection is subject to the greatest stress and amplitude, along the direction of extension of the connection to the surroundings (hereinafter referred to as the extension direction). ), the further away from the connection, the smaller the stress and amplitude of the elastic component.
  • the stiffness of the reinforcing member 120 in the extending direction of the central region 112 may be different.
  • the groove structures 121 of the strip structures 124 and the annular structure 122 in the extending direction of the reinforcement 120 may have different sizes, and/or the distances between adjacent groove structures 121 may be different.
  • the stiffness of the groove structure 121 close to the central connection part 123 gradually increases to the stiffness of the groove structure 121 close to the ring area 114 . decrease.
  • the parameter h of the groove structure 121 close to the central connection part 123 gradually decreases to the parameter h of the groove structure 121 close to the ring region 114 .
  • the parameter b of the groove structure 121 close to the central connection part 123 gradually decreases to the parameter b of the groove structure 121 close to the ring region 114 .
  • the parameter bm of the groove structure 121 close to the central connection part 123 gradually decreases to the parameter bm of the groove structure 121 close to the ring area 114 .
  • the distance between the groove structure 121 close to the central connection part 123 and the adjacent groove structure 121 slightly away from the central connection part 123 (adjacent annular structure 122) is as close to the fold as possible.
  • Some embodiments of this specification also provide a manufacturing process including the reinforcement 120 having the groove structure 121 .
  • the reinforcement 120 with the groove structure 121 may be made of non-metallic material or metallic material.
  • the Young's value of the material of the reinforcement 120 (which can also be said to be the reinforcement area) is The modulus is higher than the Young's modulus of the material of the elastic part (also said to be the elastic region).
  • the material of the reinforcing member 120 is different from the material of the elastic member.
  • the reinforcing member 120 is made of a metallic material with greater rigidity
  • the elastic member is made of a non-metallic material with less rigidity.
  • the reinforcing member 120 is made of the same material as the elastic member.
  • the reinforcing member 120 and the elastic member are both non-metallic materials.
  • the reinforcement 120 can be regarded as a structure that increases the stiffness of the elastic element 110 through structural design.
  • the material of the reinforcement 120 with the groove structure 121 may be PEEK (polyetheretherketone), PI (polyimide), PEN (polyethylene naphthalate), PU (polyurethane) ), TPE (thermoplastic elastomer), PEI (polyetherimide), silicone, carbon fiber, PT (polypropylene), cashmere fiber and other composite materials;
  • the material of the elastic element 110 may include but is not limited to PEEK , PI, PEN, PU, PEI, one or more of silica gel. Compared with metallic materials, non-metallic materials are less difficult to process and processing consistency is easier to ensure.
  • the vibration component can be produced by the following steps: preparing a groove structure and a hollow structure on the reinforcement member; and connecting the reinforcement member and the elastic element to produce the vibration component.
  • the groove structure is produced by a first process.
  • the first process may include one or more of injection molding, thermoforming, etching, tool processing, laser cutting, and electrochemical processing.
  • the hollow structure can be produced by a second process.
  • the second process may include laser cutting.
  • the groove structure and the hollow structure can also be produced through an integrated molding process.
  • glue such as spraying adhesive glue
  • glue can be applied to the reinforcement or the elastic element, and then the reinforcement and the elastic element are connected by hot pressing to form a vibration component.
  • FIG. 14A is a schematic diagram of the preparation process of non-metal reinforcements and vibration components according to some embodiments of this specification.
  • FIG. 14B is a schematic diagram of the model corresponding to FIG. 14A.
  • the reinforcing member 120 when the material of the reinforcing member 120 (which can also be said to be the reinforced area) is the same as the material of the elastic member (which can also be said to be the elastic area), the reinforcing member 120 can be made of non-metallic material.
  • the processing process of the reinforcement 120 with the groove structure 121 may include the following steps:
  • Step 1410 hot pressing mold forming.
  • the reinforcement 120 may be prepared using hot press molding. For example, after heating and processing the mold, a liquid sample can be injected or a solid sample can be placed, the model can be fixed on the heating plate using solid contact pressure or gas pressure, and the melting temperature and time of the sample can be controlled to achieve hardening after melting. After cooling, the finished model is taken out to obtain the initial reinforcement 120 .
  • the reinforcing member 120 can also be prepared by other processes that can process non-metallic materials, which will not be described in this specification.
  • the groove structure 121 can be directly hot-pressed by setting a corresponding mold (that is, the grooves are hot-pressed on the reinforcement 120 ).
  • laser engraving can be used to remove material from a preset area of the reinforcement 120 and process grooves, so that the reinforcement 120 has a groove structure 121 .
  • the reinforcement 120 can also be processed with the groove structure 121 through other processes, such as engraving, etc., which will not be described in detail in this specification.
  • Step 1420 laser engraving.
  • laser engraving can be used to remove material in preset areas of the reinforcement 120 to process a hollow structure.
  • the reinforcement 120 can also be processed into a hollow structure through other processes, such as engraving, etc., which will not be described in detail in this specification.
  • Step 1430 connection forming.
  • the reinforcement 120 with the groove structure 121 and the elastic element 110 can be connected and finally formed.
  • adhesive glue can be sprayed on the surface of the elastic element 110 or the reinforcement 120, and the elastic element 110 and the reinforcement 120 are connected through hot pressing.
  • the elastic element 110 and the reinforcing member 120 may not be coated with glue, but may be connected by direct hot pressing.
  • the reinforcing member 120 can also be connected and fixed with the elastic element 110 in other ways, which will not be described in this specification.
  • the material of the reinforcement 120 may include, but is not limited to, aluminum alloy, copper and its alloys, stainless steel, gold and its alloys, tungsten, and the like. Compared with non-metallic materials, the reinforcement 120 of metallic materials can have higher stiffness under the same mass, thereby increasing the output of the vibration assembly 100 .
  • FIG. 15A is a schematic diagram of the preparation process of metal reinforcements and vibration components according to some embodiments of this specification.
  • FIG. 15B is a schematic diagram of the model corresponding to FIG. 14A .
  • the reinforcing member 120 when the material of the reinforcing member 120 (which can also be said to be the reinforced area) is different from the material of the elastic member (which can also be said to be the elastic area), the reinforcing member 120 can be made of metal.
  • the processing technology of the reinforcement 120 of the groove structure 121 generally includes the following steps:
  • Step 1510 processing and shaping.
  • processing and shaping may include one or more processes capable of processing metal materials, such as chemical etching, tool processing, laser cutting, electrochemical processing, etc.
  • Step 1520 laser engraving.
  • the content of step 1520 may be the same as the content of step 1420, which will not be described again.
  • step 1520 can be performed simultaneously with step 1510 , that is, the groove structure 121 of the reinforcement 120 can be directly integrally formed with the reinforcement 120 .
  • Step 1530 connection forming.
  • the content of step 1530 may be the same as the content of step 1430, which will not be described again.
  • the relationship between the areas of the suspended area 1121 and the ring area 114 and the thickness of the elastic element 110 will affect the local equivalent mass Mm3 and the local equivalent mass Mm2, the local area stiffness Ka2' and the local area stiffness Ka1', Then the second resonance peak 230 of the vibration component 100 is within the range.
  • FIG. 16 is a schematic structural diagram of a vibration assembly having a reinforcement member with a single ring structure according to some embodiments of this specification.
  • the reinforcement 120 includes a central connection portion 123 and a strip structure 124.
  • the strip structure 124 extends from the central connection portion 123 of the reinforcement 120 to all sides.
  • the cross section of the strip structure 124 is provided with a groove structure 121. .
  • Sv horizontal plane projected area of the suspended region 1121
  • Se the horizontal plane projected area of the ring region 114
  • Se the sum of the horizontal plane projected area Sv of the suspended region 1121 and the horizontal plane projected area Se of the ring region 114 is Ss.
  • the ratio ⁇ of Ss to the diaphragm thickness Hi may be in the range of 5000mm-12000mm.
  • the value of ⁇ ranges from 6000mm to 10000mm.
  • the value range of ⁇ may be 6000mm-9000mm.
  • the value range of ⁇ may be 6000mm-8000mm.
  • the value range of ⁇ in order to make the second resonance peak 230 be in the range of 6000Hz-7500Hz, the value range of ⁇ may be 6000mm-7000mm. In some embodiments, in order to make the second resonance peak 230 be in the range of 7000Hz-8500Hz, the value range of ⁇ may be 7000mm-9000mm. In some embodiments, in order to make the second resonance peak 230 be in the range of 7000Hz-8000Hz, the value range of ⁇ may be 7000mm-8000mm.
  • the arch height design of the folding ring of the folding ring region 114 can be used to change the folding height of the elastic element 110 without changing the horizontal projected area of the folding ring region 114 and the suspended region 1121 of the vibration assembly 100 .
  • the three-dimensional size of the ring region 114 changes the stiffness Ka1' of the ring region 114, thereby controlling the second resonance peak of the vibration component 100.
  • FIG. 17 is a partial structural diagram of a vibration component according to some embodiments of this specification.
  • the arch height of the fold ring in the fold region 114 can be defined as ⁇ h
  • the value range of ⁇ may be 50mm-600mm. In some embodiments, in order to make the ring area 114 have a suitable three-dimensional size, the value of ⁇ may range from 100 mm to 500 mm. Preferably, the value range of ⁇ can be 200mm-400mm. More preferably, the value range of ⁇ can be 250mm-400mm. In some embodiments, in order to ensure that the ring area 114 has appropriate stiffness, the value of ⁇ may range from 250 mm to 350 mm. Preferably, the value range of ⁇ can be 250mm-300mm. More preferably, the value range of ⁇ can be 200mm-300mm.
  • the horizontal projected area of the central region 112 is defined as Sc
  • the horizontal projected area of the maximum outline of the reinforcement 120 is Srm
  • the value range is 0.05-0.7. In some embodiments, in order to make the suspended area 1121 have an appropriate size area, The value range is 0.1-0.5. Preferably, The value range is 0.15-0.35. More preferably, The value range is 0.15-0.5. In some embodiments, in order to ensure that the equivalent mass Mt1 and the equivalent stiffness Kt1 have appropriate values, The value range is 0.2-0.5. Preferably, The value range is 0.15-0.25. More preferably, The value range is 0.15-0.2.
  • the strip structures 124 may have different widths, shapes, and quantities to change the hollow area of the reinforcement 120 (corresponding to the suspended area of the central area 112), thereby adjusting the frequency response of the speaker.
  • the strip structures 124 may have different widths, shapes, and quantities to change the hollow area of the reinforcement 120 (corresponding to the suspended area of the central area 112), thereby adjusting the frequency response of the speaker.
  • the resonant frequency of the vibration component 100 can be controlled by designing the area of the hollow region (for example, designing the number and position of the strip structures 124 of the reinforcement 120, the number and position of the ring structures 122, etc.). to enhance the vibrating assembly 100 Use performance.
  • FIG. 18 is a deformation diagram of the C-C cross-section of the vibration component near the third resonance peak frequency according to some embodiments of this specification. It can be seen from FIG. 5A that the frequency difference between the third resonance peak 240 and the second resonance peak 230 has a great influence on the flatness of the high-frequency frequency response curve of the vibration component 100 . In some embodiments, referring to FIG. 18 , it can be seen from the vibration of the vibration component 100 at the C-C cross-sectional position that near the frequency of the third resonance peak, the main deformation position of the vibration component 100 is the deformation produced by the hollow area of the central region 112 .
  • the third resonance peak 240 of the vibration component 100 can be achieved by controlling each hollow area of the reinforcement 120 corresponding to the central area 112 to be a mass-spring-damping system, corresponding to the equivalent mass Mmi and the equivalent stiffness Kai. control.
  • the number and size of the strip structures 124 and the annular structure 122 can be designed to design the area of each hollow area in the central region 112, and the area of each hollow area is defined as Si.
  • FIG. 18 shows the third resonance peak deformation diagram of the vibration assembly 100 with the reinforcement 120 of a single ring structure, this conclusion still applies to the vibration assembly of the reinforcement 120 with a multi-ring structure.
  • the frequency position of the third resonance peak of the vibrating component can be adjusted.
  • the area to thickness ratio ⁇ ranges from 100 to 1000. In some embodiments, in order for each hollow region to have a corresponding appropriate equivalent mass Mmi and equivalent stiffness Kai, the area-to-thickness ratio ⁇ ranges from 150 to 700. In some embodiments, in order for each hollow region to have a corresponding appropriate equivalent mass Mmi and equivalent stiffness Kai, the area-to-thickness ratio ⁇ ranges from 150 to 950. In some embodiments, in order for each hollow region to have a corresponding appropriate equivalent mass Mmi and equivalent stiffness Kai, the area-to-thickness ratio ⁇ ranges from 150 to 900. In some embodiments, the area-to-thickness ratio ⁇ ranges from 150-800.
  • the area-to-thickness ratio ⁇ ranges from 100 to 700.
  • the area-to-thickness ratio ⁇ ranges from 300 to 500. More preferably, the area-to-thickness ratio ⁇ ranges from 400 to 600.
  • the reinforcement 120 has a double ring structure.
  • This specification defines the area of each hollow area of the elastic element 110 inside the first ring structure as S1i, and the area between the first ring structure and the second ring structure is The area of each hollow area of the elastic element 110 is S2i.
  • the reinforcing member 120 may also have more ring structures 122 , and outwardly define the area of each hollow area of the elastic element 110 between the n-1th ring and the nth ring as Sni.
  • Figure 20 is the frequency response curve of the vibration component corresponding to Figure 19.
  • the area ratio ⁇ of each hollow area between the first annular area and the second annular area is S2i and the area of each hollow area inside the first annular area is S1i, which are 5.9, 4.7, 3.9, and 3.2, respectively.
  • S2i the area ratio of each hollow area between the first annular area and the second annular area
  • S1i the area of each hollow area inside the first annular area
  • Figure 19 it can be seen from Figure 19 that at the third resonance peak position of the vibration component 100 in structures one to four, as ⁇ decreases, the radius ⁇ R1 of the first hollow area within the inner annular structure 122 gradually increases, The radius ⁇ R2 of the second hollow area between the annular structure 122 and the outer annular structure 122 gradually decreases.
  • the third resonance peak becomes more obvious and the output sound pressure level of the corresponding frequency band is higher.
  • 5.9 (corresponding to structure one)
  • the third resonance peak has already cannot be formed, resulting in a significant reduction in the output sound pressure level of this frequency band.
  • the ratio ⁇ between the areas of any two hollow areas Ski and Sji ranges from less than or equal to 4.7.
  • the ratio ⁇ between the areas of any two hollow areas Ski and Sji ranges from less than or equal to 3.9. In some embodiments, in order to further enhance the high-frequency sensitivity of the vibration component 100, the ratio ⁇ between the areas of any two hollow areas Ski and Sji ranges from less than or equal to 3.5. In some embodiments, the ratio ⁇ between the areas of any two hollow areas Ski and Sji ranges from less than or equal to 3.2. In some embodiments, in order to further enhance the high-frequency sensitivity of the vibration component 100, the ratio ⁇ between the areas Ski and Sji of any two hollow areas ranges from less than or equal to 3.
  • the mass, center of mass, stiffness of the reinforcement 120 , and the central area 112 can be achieved.
  • the quality and stiffness of the suspended region are adjusted to realize the adjustment of the first resonance peak, the second resonance peak and the third resonance peak of the vibration component 100 .
  • the groove structure of the reinforcement 120 and the lateral area ratio ⁇ (unit: 1) of the reinforcement 120 are defined as the concave shape in the projection shape of the reinforcement 120 along the vibration direction.
  • the projection of the reinforcement 120 along the vibration direction is the projection of the groove structure of the reinforcement 120 .
  • the projection of the largest contour of the reinforcement 120 coincides with the projection of the central area 112 .
  • FIG. 21 is another frequency response curve diagram of a vibration component according to some embodiments of this specification. It can be seen from Figure 21 that as the value of the ratio ⁇ between the projected area Sr of the reinforcement 120 and the maximum contour projection area St of the reinforcement 120 changes, the output of the third resonance peak of the speaker also changes significantly. When the ratio ⁇ is larger, such that The equivalent stiffness Kai' decreases and the equivalent mass Mmi increases, causing the third resonance peak to move forward; when the ratio ⁇ is large, the equivalent stiffness Kai' increases and the equivalent mass Mmi decreases, causing the third resonance peak to move forward. shift.
  • the equivalent stiffness Kai' and equivalent mass Mmi can be adjusted so that the high-frequency third resonance peak of the vibrating component is in a suitable frequency range, and the difference in resonance frequency of each hollow structure is within a suitable range. (for example, less than or equal to 4000Hz).
  • the ratio ⁇ of the groove structure of the reinforcement member 120 to the lateral area of the reinforcement member 120 is 0.15-0.8.
  • the lateral area ratio ⁇ between the groove structure of the reinforcement 120 and the reinforcement 120 is 0.35-0.65.
  • Figures 22A and 22B are schematic structural diagrams of vibration components with different numbers of strip structures according to some embodiments of this specification.
  • the overall mass of the vibration assembly 100 can be adjusted, so that the mass of the reinforcement 120, the mass of the elastic element 110, the equivalent air mass, and the equivalent mass of the driving end are combined to form a total equivalent
  • the mass Mt changes, so the resonant frequency of the mass Mt-spring Kt-damping Rt system changes, which in turn causes the first-order resonant frequency of the vibration component 100 to change, causing the low-frequency band before the first resonant frequency of the vibration component 100 and the first The mid-band sensitivity changes after the resonant frequency.
  • a larger number of strip structures 124 can be designed, so that the total equivalent mass Mt is increased, and the first resonant frequency of the vibration component 100 is advanced, so that the sensitivity of the low frequency band before the first resonant frequency of the vibration component 100 is improved.
  • a smaller number of strip structures 124 is designed, so that the total equivalent mass Mt is reduced, and the first resonant frequency of the vibration component 100 is moved backward, so that the sensitivity of the mid-frequency band after the first resonant frequency of the vibration component 100 is improved, for example , which can improve the sensitivity of the frequency range after 3000Hz.
  • the sensitivity of the frequency range after 2000Hz can be improved.
  • the sensitivity of the frequency range after 1000Hz can be improved.
  • the sensitivity of the frequency range after 500Hz can be improved.
  • the sensitivity of the frequency range after 300Hz can be improved.
  • the stiffness of the reinforcement 120 can also be adjusted, so that if the stiffness Kt1 provided by the reinforcement 120 and the elastic element 110 for the system changes, then the reinforcement 120, the connection area 115, the folding area
  • the suspended area between the ring area 114, the central area 112 covered by the reinforcement 120 and the folded ring area 114, the equivalent air mass, and the driving end equivalent mass combine to form a total equivalent mass Mt1, and the equivalent damping of each part forms a total Equivalent damping Rt1
  • the mass Mt1-spring Kt1-damping Rt1 system formed takes a certain annular area in the diameter direction of the reinforcement 120 as the equivalent fixed fulcrum, and the resonant frequency of the ring's flipping motion changes, thus causing the vibration component 100 to The two resonance positions change.
  • the area size of the reinforcement 120 corresponding to the central area 112 having no less than one suspended area can also be adjusted, so that the equivalent mass Mmi and equivalent stiffness of each hollow area Kai and Kai', and equivalent damping Rai and Rai' change, thereby causing the third resonance peak position of the vibration component to change.
  • the area-to-thickness ratio ⁇ of the vibration component and the lateral area ratio ⁇ of the groove structure of the reinforcement 120 to the reinforcement 120 can also be adjusted, thereby adjusting the third resonance of the vibration component. The position of the peak.
  • the number of the strip structures 124 of the reinforcement 120 is adjustable, and the positions of the first resonance peak, the second resonance peak, and the third resonance peak of the vibration component 100 can be adjusted according to actual application requirements, so that the vibration is improved.
  • the frequency response of the component 100 enables controllable adjustment.
  • the shape of the strip structure 124 along the vibration direction of the elastic element 110 includes at least one of a rectangle, a trapezoid, a curve, an hourglass shape, and a petal shape
  • the shape of the strip structure 124 can be adjusted by adjusting the shape of the strip structure 124 .
  • Figures 23A-23D are schematic structural diagrams of vibration components with bar-shaped structures of different widths according to some embodiments of this specification.
  • the bar-shaped structure 124 in Figure 23A is an inverted trapezoid (i.e. The short side of the trapezoid is close to the center of the reinforcement 120)
  • the strip structure 124 in Figure 23B is a trapezoid (that is, the short side of the trapezoid is far away from the center of the reinforcement 120)
  • the strip structure 124 in Figure 23C is an outer arc shape
  • Figure The strip structure 124 in 23D is an inner arc.
  • the center of mass position of the reinforcement 120 can be effectively adjusted.
  • the stiffness of the reinforcement 120 can also be changed without changing the mass of the reinforcement 120, so that the reinforcement 120 and the elastic element 110 (especially the area where the central area 112 is covered by the reinforcement 120) provide the system with The stiffness Kt1 changes, further causing the resonant frequency of the flipping motion of the mass Mt1-spring Kt1-damping Rt1 system to occur. Change, thereby causing the second resonant frequency of the vibration component 100 to change.
  • the bar-shaped structure 124 can have different local stiffnesses at different locations extending from the center to the periphery.
  • the driving end frequency is close to the resonant frequency of the Mt1-spring Kt1-damping Rt1 system
  • the connection area 115 between the fixed area 116 and the folding area 114, the folding area 114, and the central area 112 are covered by the reinforcement 120 and the folding area
  • the suspended area between 114 vibrates driven by the reinforcement 120 and achieves a resonant peak with an adjustable 3dB bandwidth.
  • the outer arc shape (defined as an outer arc shape that protrudes outward and an inner arc shape that is concave inward), the outer arc shape can be an arc, an ellipse, a higher-order function arc, and any other external arc) strip structure 124, which can obtain the second resonance peak of the vibration component 100 with a larger 3dB bandwidth, and can be applied to scenarios requiring low Q value and wide bandwidth.
  • the inner arc can be an arc, an ellipse, a high-order function arc, and other arbitrary inner arcs
  • the second resonant peak of the vibration component 100 with high sensitivity and small 3dB bandwidth can be obtained, and can be applied to scenes requiring high Q value and local high sensitivity.
  • the area size of the reinforcement 120 corresponding to the central area 112 can also be adjusted to have no less than one suspended area, so that each has an equivalent mass Mmi, equivalent stiffnesses Kai and Kai', etc.
  • the effective damping Rai and Rai' change. Further, the position of the third resonance peak of the vibration component 100 is changed.
  • the strip structures 124 with different lateral widths, the second resonance peak frequency position of the vibration component 100, the 3dB bandwidth at the resonance peak, the sensitivity of the vibration component 100 at the resonance peak, and the third resonance peak position of the vibration component 100 can be achieved.
  • FIG. 24A and FIG. 24B are schematic structural diagrams of vibration components with bar-shaped structures of different shapes according to some embodiments of this specification.
  • the bar-shaped structure 124 in FIG. 24A is a rotating shape.
  • the strip structure 124 in 24B is S-shaped.
  • the stiffness of the reinforcement 120 can be adjusted, so that the reinforcement 120 and the elastic element 110 (especially the area where the central area 112 is covered by the reinforcement 120) are The system provides a change in stiffness Kt1, which further changes the resonant frequency of the flipping motion of the mass Mt1-spring Kt1-damping Rt1 system, thereby causing the second resonance position of the vibration component 100 to change.
  • the size of the suspended area corresponding to the central area 112 of the stiffener can also be adjusted, so that each has an equivalent mass Mmi, an equivalent stiffness Kai and Kai', and an equivalent damping Rai and Rai'. Change occurs, thereby causing the third resonance peak position of the vibration component 100 to change.
  • the stress distribution inside the reinforcement 120 can also be adjusted and the processing deformation of the reinforcement 120 can be controlled.
  • FIGS. 25A-25E are schematic structural diagrams of reinforcement members with strip structures of different shapes according to some embodiments of this specification.
  • the width gradually decreases from the center to the edge.
  • the bar-shaped structure 124 defines the spoke angle as ⁇ , and the resonance peak of the vibrating component can be adjusted by setting the size of ⁇ .
  • the included angle ⁇ is the included angle between the two sides of the spoke.
  • the included angle ⁇ is the angle between the tangent lines of the two sides of the bar-shaped structure 124 .
  • the spoke angle is defined as ⁇ i.
  • the included angle ⁇ i is the included angle between the two sides of the spoke. In some embodiments, for the bar-shaped structure 124 with straight sides, the included angle ⁇ i is the angle between the tangent lines of the two side edges of the spoke.
  • the stiffness of the reinforcement 120 itself can be changed without changing or changing the mass of the reinforcement 120 , so that the reinforcement 120 and the elastic element 110
  • the stiffness Kt1 provided for the system changes, further causing the mass Mt1-spring Kt1-damping Rt1 system to change the resonant frequency of the flipping motion, thereby causing the second resonance position of the vibration component 100 to change, and at the same time, the second resonance position of the vibration component 100 can be controlled.
  • 3dB bandwidth of the resonance peak In some embodiments, the 3dB bandwidth of the third resonance peak of the vibration component 100 can be effectively increased by increasing the angle ⁇ (or ⁇ i) of the strip structure 124 .
  • a larger included angle ⁇ (or ⁇ i) of the strip structure 124 can be designed.
  • the included angle ⁇ of the strip structure 124 may range from 0 to 150°.
  • the included angle ⁇ of the strip structure 124 may range from 0 to 120°.
  • the included angle ⁇ of the strip structure 124 may range from 0 to 90°.
  • the included angle ⁇ of the strip structure 124 may range from 0 to 80°.
  • the included angle ⁇ of the strip structure 124 may range from 0° to 60°.
  • the included angle ⁇ i of the strip structure 124 may range from 0 to 90°. In some embodiments, the included angle ⁇ i of the strip structure 124 may range from 0 to 80°. In some embodiments, the included angle ⁇ i of the strip structure 124 may range from 0 to 70°. In some embodiments, the included angle ⁇ i of the strip structure 124 may range from 0 to 60°. In some embodiments, the included angle ⁇ i of the strip structure 124 may range from 0 to 45°.
  • the included angle ⁇ of the strip structure 124 may range from 0 to 90°. In some embodiments, the included angle ⁇ of the strip structure 124 may range from 0 to 80°. In some embodiments, the included angle ⁇ of the strip structure 124 may range from 0 to 70°. In some embodiments, the included angle ⁇ of the strip structure 124 may range from 0 to 60°. In some embodiments, the clips of strip structure 124 The angle ⁇ can range from 0 to 45°.
  • the included angle ⁇ i of the strip structure 124 may range from 0 to 60°. In some embodiments, the included angle ⁇ i of the strip structure 124 may range from 0 to 80°. In some embodiments, the included angle ⁇ i of the strip structure 124 may range from 0 to 90°. In some embodiments, the included angle ⁇ i of the strip structure 124 may range from 0 to 120°. In some embodiments, the included angle ⁇ i of the strip structure 124 may range from 0 to 150°.
  • a larger included angle ⁇ of the strip structure 124 can be designed.
  • the included angle ⁇ of the strip structure 124 may range from -90° to 150°.
  • the included angle ⁇ of the strip structure 124 may range from -45° to 90°.
  • the included angle ⁇ of the strip structure 124 may range from 0° to 60°.
  • a smaller included angle ⁇ of the bar-shaped structure 124 can be designed.
  • the range of the included angle ⁇ of the bar-shaped structure 124 can be -150°. to 90°.
  • the included angle ⁇ of the strip structure 124 may range from -90° to 45°.
  • the included angle ⁇ of the strip structure 124 may range from -60° to 0°.
  • the area method can be used for design, and the mass of the reinforcement 120 can be unchanged or changed at the same time.
  • Changing the stiffness of the reinforcement 120 causes the stiffness Kt1 provided by the reinforcement 120 and the elastic element 110 to the system to change, further causing the mass Mt1-spring Kt1-damping Rt1 system to change the resonant frequency of the flipping motion, thereby causing the vibration component 100 to The two resonance positions change; further, the 3dB bandwidth of the second resonance peak of the vibration component 100 can also be controlled.
  • FIGS. 26A and 26B are schematic structural views of reinforcements with irregular strip structures according to some embodiments of this specification.
  • a circle with a radius R is defined by the maximum profile of the reinforcement 120, and the radius R of the circle defined by the maximum profile is 1/2 defines the radius as R/2, defines the horizontal projection area of the reinforcement 120 within the range of the radius R/2 as Sin, and defines the horizontal projection of the reinforcement 120 within the range between the circle with the radius R/2 and the radius R (that is, along the The projection area of the vibration direction of the vibrating component is Sout, and the physical quantity ⁇ is defined as the ratio of the horizontal projected area of the reinforcement 120, Sout, to the horizontal projected area of the reinforcement 120, Sin:
  • the mass distribution of the stiffener 120 can be controlled by adjusting the ratio ⁇ of the horizontal projected area of the stiffener 120, which is Sout, to the horizontal projected area of the stiffener 120, which is Sin, so as to realize the bandwidth of the third resonance peak of the vibration component 100. control.
  • the ratio of the horizontal projected area of the stiffener 120, which is Sout
  • Sin the horizontal projected area of the stiffener 120
  • the maximum outline of the reinforcement 120 is defined by a figure similar to the reinforcement 120 for enveloping, and the center area of the figure is defined as Reference point, the distance from the reference point to each point of the contour envelope is R (for example, as shown in Figure 26B, the distances from the reference point to the four sides of the rectangular contour envelope are R i , R i+1 , R i+2 , R respectively i+3 ), all points corresponding to R/2 (for example, as shown in Figure 26B, points with distances R i /2, R i+1 /2, R i+2 /2, R i+3 /2) form a region
  • the horizontal projected area of the reinforcing member 120 is Sin
  • the horizontal projected area of the reinforcing member 120 within the range between the distance R/2 and the distance R is Sout; for other irregular structures of the reinforcing member 120, use its maximum outline as a regular pattern with a similar structure.
  • a larger mass can be designed to be concentrated in the central area of the reinforcement 120 .
  • the ratio ⁇ between the horizontal projected area Sout and the horizontal projected area Sin may range from 0.3 to 2.
  • the ratio ⁇ between the horizontal projected area Sout and the horizontal projected area Sin may range from 0.5 to 1.5.
  • the ratio ⁇ of the horizontal projected area Sout to the horizontal projected area Sin may range from 0.5 to 1.2; in some embodiments, in order to make the reinforcement The central area of the member 120 has a large mass, and the ratio ⁇ between the horizontal projected area Sout and the horizontal projected area Sin can range from 0.5 to 1.3; in some embodiments, in order to make the central area of the reinforcing member 120 have a large mass.
  • the horizontal projected area is Sout and the horizontal projected area is Sin
  • the ratio ⁇ can range from 0.5 to 1.4; in some embodiments, in order to make the central area of the reinforcement 120 have greater mass, the horizontal projected area is Sout and the horizontal projected area is Sout
  • the value range of the ratio ⁇ of the area to Sin can be 0.3-1.2; in some embodiments, in order to make the central area of the reinforcement 120 have a larger mass, the range of the ratio ⁇ of the horizontal projected area Sout to the horizontal projected area Sin can be is 0.3-1.6; in some embodiments, in order to make the central area of the reinforcement 120 have a greater mass, the ratio ⁇ of the horizontal projected area Sout to the horizontal projected area Sin may range from 0.5-2; in some embodiments , in order to make the center area of the reinforcement 120 have a larger mass, the ratio ⁇ between the horizontal projected area Sout and the horizontal projected area Sin can range from 0.5 to 2.2; in some embodiments, in order to make the center area of the reinforcement 120 The area has a large mass,
  • the ratio ⁇ of the horizontal projected area Sout to the horizontal projected area Sin may range from 1 to 3.
  • the horizontal projection The ratio ⁇ between the shadow area Sout and the horizontal projection area Sin can range from 1.2 to 2.8.
  • the ratio ⁇ between the horizontal projected area Sout and the horizontal projected area Sin may range from 1.4 to 2.6.
  • the ratio ⁇ between the horizontal projected area Sout and the horizontal projected area Sin may range from 1.6 to 2.4. In some embodiments, in order to make the edge area of the reinforcement 120 have greater mass, the ratio ⁇ between the horizontal projected area Sout and the horizontal projected area Sin may range from 1.8 to 2.2. In some embodiments, in order to make the edge area of the reinforcement 120 have greater mass, the ratio ⁇ between the horizontal projected area Sout and the horizontal projected area Sin may range from 1.2 to 2. In some embodiments, in order to make the edge area of the reinforcement 120 have greater mass, the ratio ⁇ between the horizontal projected area Sout and the horizontal projected area Sin may range from 1 to 2.
  • the ratio ⁇ between the horizontal projected area Sout and the horizontal projected area Sin may range from 2 to 2.8. In some embodiments, in order to make the edge area of the reinforcement 120 have greater mass, the ratio ⁇ between the horizontal projected area Sout and the horizontal projected area Sin may range from 2 to 2.5.
  • the area of the hollow area of the reinforcement 120 (corresponding to the suspended area of the central area 112 within the projection range of the reinforcement 120) can be changed by adjusting the number of annular structures 122 (needs to be in the range of 1-10), The relationship between the area of the hollow area and the thickness of the elastic element 110 (area to thickness ratio ⁇ ) is adjusted to achieve the purpose of adjusting the third resonance peak; the relationship between the area of the hollow area (the area of the hollow area) between different annular structures 122 of the reinforcement 120 can also be changed.
  • the relationship between the groove structure of the reinforcement 120 and the lateral area of the reinforcement 120 can also be changed (the ratio of the groove structure of the reinforcement 120 to the lateral area ⁇ of the reinforcement 120) , the purpose of adjusting the first resonance peak, the second resonance peak, and the third resonance peak.
  • the annular structure 122 may include a first annular structure and a second annular structure with coincident centroids, in which case the radial size of the first annular structure is smaller than the radial size of the second annular structure.
  • the bar-shaped structure 124 may also include at least one first bar-shaped structure and at least one second bar-shaped structure. The at least one first bar-shaped structure is disposed inside the first annular structure and connected with the first annular structure.
  • at least one second strip structure is disposed between the first annular structure and the second annular structure, and is connected to the first annular structure and the second annular structure respectively, so that the reinforcement 120 forms a plurality of different hollow areas.
  • Figures 27A-27C are schematic structural diagrams of vibration components with different numbers of ring structures according to some embodiments of this specification.
  • the ring structure 122 of Figure 27A is a single ring structure, and the ring structure 122 of Figure 27B
  • the ring structure 122 is a double ring structure, and the ring structure 122 in Figure 27C is a three ring structure.
  • the number of annular structures 122 may range from 1 to 10.
  • the number of ring structures 122 may range from 1 to 5.
  • the number of ring structures 122 may range from 1 to 3.
  • the quality of the reinforcement 120 can be adjusted, so that the mass of the reinforcement 120, the mass of the elastic element 110, the equivalent air mass, and the driving end equivalent mass are combined to form a total equivalent mass Mt. changes, so the resonant frequency of the mass Mt-spring Kt-damping Rt system changes, thereby causing the first-order resonant frequency of the vibration component 100 to change.
  • the stiffness of the reinforcement 120 can also be adjusted, so that the reinforcement 120 and the elastic element 110 (especially the area where the central area 112 is covered by the reinforcement 120 ) provide stiffness Kt1 for the system.
  • the change further causes the resonant frequency of the flipping motion of the mass Mt1-spring Kt1-damping Rt1 system to change, thereby causing the second resonance position of the vibration component 100 to change.
  • the bar structure 124 can also be extended from the center to the surroundings to have different stiffness distributions at different positions.
  • connection The area of the local suspended area between the area 115, the ring area 114, the central area 112 covered by the reinforcement 120 and the ring area 114 vibrates under the driving of the reinforcement 120, and achieves a resonance peak with an adjustable 3dB bandwidth.
  • the size of the hollow area of the central region 112 can also be adjusted, so that each hollow area has an equivalent mass Mmi, an equivalent stiffness Kai and Kai', an equivalent damping Rai and Rai' changes, thereby causing the third resonance peak position of the vibration component 100 to change.
  • the third resonance peak of the vibration component 100 can be located in the range of 10kHz-18kHz, and the ratio of the area Si of each hollow region to the thickness Hi of the diaphragm Hi of each hollow region is the area-thickness ratio ⁇ , and the range is 150-700; the ratio ⁇ between the hollow area areas Ski and Sji of any two elastic elements 110 ranges from 0.25-4; the ratio ⁇ between the groove structure of the reinforcement 120 and the lateral area of the reinforcement 120 ranges from 0.2-0.7.
  • the third resonance peak of the vibration component 100 can be located in the range of 10kHz-18kHz, and the ratio of the area Si of each hollow region to the thickness Hi of the diaphragm Hi of each hollow region is the area-thickness ratio ⁇ , and the range is 100-1000; the ratio ⁇ between the hollow area areas Ski and Sji of any two elastic elements 110 ranges from 0.1-10; the ratio ⁇ between the groove structure of the reinforcement 120 and the lateral area of the reinforcement 120 ranges from 0.1-0.8.
  • Figure 28 is a schematic structural diagram of a vibration component with discontinuous inner and outer ring strip structures according to some embodiments of this specification.
  • the annular structure 122 divides the bar-shaped structure into multiple areas along the direction extending from the center of 124 to the surroundings, and the bar-shaped structures 124 in each area can be continuously arranged. It can also be set discontinuously.
  • the annular structure 122 may include a first annular structure 1221 and a second annular structure 1222 with coincident centroids, and the radial size of the first annular structure 1221 is smaller than the radial size of the second annular structure 1222 .
  • the strip structure 124 may include at least a first strip structure 1241 and at least a first Two strip structures 1242, at least one first strip structure 1241 is disposed inside the first annular structure 1221 and connected to the first annular structure 1221, and at least one second strip structure 1242 is disposed between the first annular structure 1221 and the second annular structure 1221. between structures 1222 and connected to the first annular structure 1221 and the second annular structure 1222 respectively.
  • the connection positions of at least one first strip structure 1241 and at least one second strip structure 1242 on the first ring structure 1221 may be different.
  • the numbers of the first strip structures 1241 and the second strip structures 1242 may be the same or different.
  • the strip structures 124 in the inner and outer areas of the annular structure 122 are arranged in a discontinuous manner, it is possible to realize that the number of the strip structures 124 in the inner and outer areas of the annular structure 122 is different, and the bar structures 124 in the inner and outer areas have different lateral widths.
  • the transverse shapes are different, so that the mass, stiffness and center of mass distribution of the reinforcement 120 can be adjusted within a wide range, as well as the number and area of the hollow areas in the central area 112.
  • the total equivalent mass Mt can be controlled to change, so that the resonant frequency of the mass Mt-spring Kt-damping Rt system changes, thereby causing the first-order resonance of the vibration component 100 Frequency changes.
  • the Mt1-spring Kt1-damping Rt1 system can be adjusted to flip the resonant frequency of the motion, thereby changing the second resonance position of the vibration component 100; causing the bar structure 124 to extend from the center to the surroundings with different stiffness positions
  • the distribution is different to achieve a second resonance peak of the vibration component 100 with an adjustable 3dB bandwidth.
  • the third resonance peak position and sensitivity of the vibration component 100 can be changed.
  • the strip structures 124 in the inner and outer areas of the annular structure 122 are arranged discontinuously, so that the third resonance peak of the vibration component 100 is located in the range of 10kHz-18kHz, and the area Si of each hollow area and the thickness Hi of the elastic element 110 of each hollow area are
  • the ratio is the area-to-thickness ratio ⁇ in the range of 150-700, the ratio ⁇ between the hollow area areas Ski and Sji of any two elastic elements 110 ranges from 0.25-4, and the lateral area ratio ⁇ between the groove structure of the reinforcement 120 and the reinforcement 120 is 0.2. -0.7.
  • the third resonance peak of the vibration component 100 can be located in the range of 10kHz-18kHz, and the area Si of each hollow region and the partial diaphragm thickness Hi of each hollow region
  • the ratio is the area-to-thickness ratio ⁇ in the range of 100-1000; the ratio ⁇ between the hollow area areas Ski and Sji of any two elastic elements 110 ranges from 0.1-10; the lateral area ratio ⁇ between the groove structure of the reinforcement 120 and the reinforcement 120 is 0.1-0.8.
  • FIG. 29 is a schematic structural diagram of a vibration assembly with multiple annular structures according to some embodiments of this specification.
  • the mass distribution design of the reinforcement 120 can be achieved by designing multiple annular structures 122 to design the spacing areas of the multiple annular structures 122, and by designing the number of strip structures 124 in different spacing areas. It should be noted that the number of bar-shaped structures 124 designed in the spacing area of each annular structure 122 may be different, the shapes may be different, and the positions may not correspond to each other.
  • each annular structure 122 from the center outward can be defined as a first annular structure 1221, a second annular structure 1222, a third annular structure 1223, ... the nth annular structure, the nth annular structure and the nth annular structure.
  • -1 Ring structure interval area strip structure 122 is the nth strip structure (such as the first strip structure 1241, the second strip structure 1242, the third strip structure 1243), and the number of the nth strip structure is defined as Qn , where n is a natural number.
  • the ratio q between the number Qi of any i-th strip structure and the number Qj of the j-th strip structure may range from 0.05 to 20. In some embodiments, the ratio q between the number Qi of any i-th strip structure and the number Qj of the j-th strip structure may range from 0.1 to 10. In some embodiments, the ratio q between the number Qi of any i-th strip structure and the number Qj of the j-th strip structure may range from 0.1 to 8. In some embodiments, the ratio q between the number Qi of any i-th strip structure and the number Qj of the j-th strip structure may range from 0.1 to 6.
  • the ratio q between the number Qi of any i-th strip structure and the number Qj of the j-th strip structure may range from 0.5 to 6. In some embodiments, the ratio q between the number Qi of any i-th strip structure and the number Qj of the j-th strip structure may range from 1 to 4. In some embodiments, the ratio q between the number Qi of any i-th strip structure and the number Qj of the j-th strip structure may range from 1 to 2. In some embodiments, the ratio q between the number Qi of any i-th strip structure and the number Qj of the j-th strip structure may range from 0.5 to 2.
  • the shape of the ring structure 122 may include at least one of a circular ring, an elliptical ring, a polygonal ring, and a curved ring.
  • the relationship between the size of the suspended area 1121 and the area of the central area 112 allows the reinforcement 120 to achieve a certain bending deformation in this frequency range, thereby realizing the superposition and subtraction of sound pressures in different areas of the elastic element 110.
  • the value range can be 0.05-0.7.
  • the value range can be 0.1-0.5.
  • the value range can be 0.15-0.35.
  • Figures 30A-30E are schematic structural diagrams of vibration components with different structures according to some embodiments of this specification.
  • the outer contour of the reinforcement 120 may be a structure with outwardly extending spokes (as shown in FIG. 30A ), or may be a circular annular structure, an elliptical annular structure, or a curved annular structure (as shown in FIG. 30B ). (shown), polygons, other irregular Ring structures, etc., wherein the polygons may include triangles, quadrilaterals, pentagons, hexagons (as shown in Figures 30C-30D), heptagons, octagons, nonagons, decagons, etc.
  • the elastic element 110 can also be a polygon, such as a triangle, a quadrilateral (as shown in Figure 30D and Figure 30E), a pentagon, a hexagon, a heptagon, an octagon, a nonagon,
  • the reinforcing member 120 can be designed to have similar or dissimilar structures, thereby controlling the shape of the suspended area 1121 through the shapes of the reinforcing member 120 , the central area 112 , and the ring area 114 , thereby realizing the adjustment of the performance of the vibration component 100.
  • FIG. 31 is a schematic structural diagram of a vibration component with a variable width annular structure according to some embodiments of this specification.
  • the mass of the reinforcement 120 can be effectively adjusted, and the total equivalent mass Mt can be controlled to change, thus forming a mass Mt-spring.
  • the resonant frequency of the Kt-damping Rt system changes, thereby causing the first-order resonant frequency of the vibration component 100 to change.
  • any annular structure 122 by designing local structures with unequal widths at different positions (for example, adjacent positions) of any annular structure 122, the stiffness and center of mass distribution of the reinforcement 120 can be adjusted, thereby adjusting the flipping motion of the Mt1-spring Kt1-damping Rt1 system.
  • the resonant frequency causes the second resonant position of the vibrating component 100 to change.
  • the design of the annular structure 122 with unequal widths can also make the bar structure 124 have different stiffness distributions at different positions extending from the center to the surroundings, thereby achieving a second resonance peak of the vibration component 100 with an adjustable 3dB bandwidth.
  • the design of the annular structure 122 with unequal widths can also adjust the number and area of the suspended areas in the central region 112, so that the third resonance peak position and sensitivity of the vibration component 100 are changed.
  • local structures with unequal widths are designed at any position (for example, adjacent positions) of any annular structure 122, so that the third resonance peak of the vibration component 100 is located in the range of 15kHz-18kHz, and the area Si of each hollow area is consistent with each other.
  • the ratio Hi of the thickness of the elastic element 110 in the hollow area is the area-to-thickness ratio ⁇ in the range of 150-700.
  • the ratio ⁇ of the area Ski to Sji in the hollow area of any two elastic elements 110 ranges from 0.25-4.
  • the groove structure of the reinforcement 120 and the reinforcement The lateral area ratio ⁇ of the piece 120 is 0.2-0.7.
  • local structures with unequal widths are designed at any position of any annular structure 122, so that the third resonance peak of the vibration component 100 is located in the range of 15kHz-18kHz, and the area Si of each hollow area and the thickness Hi of the diaphragm of each hollow area are The ratio is the area-to-thickness ratio ⁇ in the range of 100-1000; the ratio ⁇ between the hollow area areas Ski and Sji of any two elastic elements 110 ranges from 0.1-10; the lateral area ratio ⁇ between the groove structure of the reinforcement 120 and the reinforcement 120 is 0.1-0.8.
  • FIG. 32 is a schematic structural diagram of a vibration component with an irregular annular structure according to some embodiments of this specification.
  • the size, position, and shape of the local area of the annular structure 122 can be more flexibly controlled, the mass of the reinforcement 120 can be effectively adjusted, and the total equivalent mass Mt can be controlled to change, thus forming a mass Mt-spring Kt-damping Rt system.
  • the resonant frequency changes, thereby causing the first resonant frequency of the vibration component 100 to change.
  • the Mt1-spring Kt1-damping Rt1 system can be adjusted to flip the resonant frequency of the motion, thereby causing the second resonance peak position of the vibration component 100 to change; causing the bar structure 124 to move from the center Extending to the surroundings, the stiffness distribution is different at different positions to achieve a second resonance peak of the vibration component 100 with an adjustable 3dB bandwidth.
  • the number and area of the suspended areas in the central region 112 can be effectively adjusted, so that the third resonance peak position and sensitivity of the vibration component 100 are changed.
  • stress concentration can be effectively avoided, resulting in smaller deformation of the reinforcement 120 .
  • the reinforcement 120 includes a double annular structure including a first annular structure 1221 located on the inner side and a second annular structure 1222 located on the outer side.
  • the shapes of the first annular structure 1221 and the second annular structure 1222 may be different.
  • the first annular structure 1221 may be a curved annular shape
  • the second annular structure 1222 may be a circular annular shape.
  • the third resonance peak of the vibration component 100 can be located in the range of 10kHz-18kHz, and the ratio of the area Si of each hollow region to the thickness Hi of the diaphragm Hi of each hollow region is in the area-thickness ratio ⁇ range. is 150-700, the ratio ⁇ between the areas Ski and Sji of any two diaphragm hollow areas ranges from 0.25-4, and the ratio ⁇ between the groove structure of the reinforcement 120 and the lateral area of the reinforcement 120 is 0.2-0.7.
  • the third resonance peak of the vibration component 100 is located in the range of 15kHz-18kHz, and the ratio of the area Si of each hollow region to the thickness Hi of the diaphragm Hi of each hollow region is the area-thickness ratio ⁇ , and the range is 100-1000; the ratio ⁇ between the hollow area areas Ski and Sji of any two elastic elements 110 ranges from 0.1-10; the ratio ⁇ between the groove structure of the reinforcement 120 and the lateral area of the reinforcement 120 ranges from 0.1-0.8.
  • FIG. 33A is a schematic structural diagram of a vibration component with a bar-shaped structure having a step structure shown in some embodiments of this specification.
  • FIG. 33B is a schematic structural diagram of a vibration component with a bar-shaped structure having a step structure shown in other embodiments of this specification. In some embodiments, referring to FIG.
  • the reinforcement 120 by designing the reinforcement 120 with the strip structure 124 of a stepped structure, it can be ensured that the hollow area of the control center area 112 (affecting the third resonance peak of the vibration component 100 ) and the suspended area 1121 are not Under the condition of changing, the stiffness, mass, and center of mass distribution of the reinforcement 120 are changed, so as to realize the adjustment of the first resonance peak position, the second resonance peak position and the bandwidth of the vibration assembly 100 without changing the third resonance peak of the vibration assembly 100. Through effective adjustment, different frequency response curves can be adjusted according to actual application requirements.
  • the mass distribution of the reinforcement 120 may be unchanged or the mass of the reinforcement 120 may be changed simultaneously according to the actual required mass distribution.
  • the stiffness of the reinforcement 120 causes the stiffness Kt1 provided by the reinforcement 120 and the elastic element 110 to the system to change, which further changes the resonant frequency of the flipping motion of the mass Mt1-spring Kt1-damping Rt1 system, thereby causing the vibration component 100 to The position of the second resonance peak changes; further, The 3dB bandwidth of the second resonance peak of the vibration component 100 can be controlled.
  • Figure 33B shows the structure of the reinforcement 120 with the stepped strip structure 124 and the cross-sectional structure of the DD section.
  • the thickness of the most edge step of the structure of the reinforcement 120 as h1
  • the thickness of the secondary edge step as h2...
  • the thickness of the center step as hn
  • the ratio ⁇ of any two step thicknesses hj and hk ranges from 0.1 to 10. In some embodiments, in order to ensure the strength of the reinforcement 120, the ratio ⁇ of any two step thicknesses hj and hk ranges from 0.1 to 8. In some embodiments, in order to ensure the strength of the reinforcement 120, the ratio ⁇ of any two step thicknesses hj and hk ranges from 0.2 to 8. In some embodiments, in order to ensure the strength of the reinforcement 120, the ratio ⁇ of any two step thicknesses hj and hk ranges from 0.1 to 7.
  • the ratio ⁇ of any two step thicknesses hj and hk ranges from 0.1 to 6. In some embodiments, in order to ensure the strength of the reinforcement 120, the ratio ⁇ of any two step thicknesses hj and hk ranges from 0.2 to 6. In some embodiments, in order to ensure the strength of the reinforcement 120, the ratio ⁇ of any two step thicknesses hj and hk ranges from 0.2 to 5.
  • a larger mass can be designed to be concentrated near the center of the reinforcement 120 .
  • the ratio ⁇ of the thickness of the edge step of the structure of the reinforcement 120, h1, to the thickness of the center step, hn ranges from 0.1 to 1.
  • the ratio ⁇ of the thickness of the edge step of the structure of the reinforcement 120, h1, to the thickness of the center step, hn ranges from 0.2 to 0.8.
  • the ratio ⁇ of the thickness of the edge step of the structure of the reinforcement 120, h1, to the thickness of the center step, hn ranges from 0.2 to 0.6. In some embodiments, in order to make the central area of the reinforcement 120 have a greater mass, the ratio ⁇ of the thickness of the edge step of the structure of the reinforcement 120, h1, to the thickness of the center step, hn, ranges from 0.2 to 0.4.
  • the ratio ⁇ of the thickness of the most edge step of the structure of the reinforcement 120, h1, to the thickness of the center step, hn ranges from 1 to 10. In some embodiments, in order to make the edge area of the reinforcement 120 have greater mass, the ratio ⁇ of the thickness of the edge step of the structure of the reinforcement 120, h1, to the thickness of the center step, hn, ranges from 1.2 to 6.
  • the ratio ⁇ of the thickness of the most edge step of the structure of the reinforcement 120, h1, to the thickness of the center step, hn ranges from 2 to 6. In some embodiments, in order to make the edge area of the reinforcement member 120 have a greater mass, the ratio ⁇ of the thickness of the most edge step of the structure of the reinforcement member 120, h1, to the thickness of the center step, hn, ranges from 3 to 6. In some embodiments, in order to make the edge area of the reinforcement 120 have a greater mass, the ratio ⁇ of the thickness of the most edge step of the structure of the reinforcement 120, h1, to the thickness of the center step, hn, ranges from 4 to 6. In some embodiments, in order to make the edge area of the reinforcement 120 have a greater mass, the ratio ⁇ of the thickness of the most edge step of the structure of the reinforcement 120, h1, to the thickness of the center step, hn, ranges from 5 to 6.
  • FIGS. 34A-34C are schematic structural views of vibration assemblies of different shapes of reinforcements according to some embodiments of this specification.
  • the reinforcing member 120 in Figure 34A is rectangular in shape
  • the ring structure 122 is a single ring rectangular structure
  • the strip structure 124 is a trapezoidal structure
  • the reinforcing member 120 in Figure 34B is rectangular in shape
  • the ring structure 122 is a double ring rectangular structure.
  • the strip structure 124 is a trapezoidal structure
  • the reinforcing member 120 in FIG. 34C is hexagonal in shape
  • the ring structure 122 is a single-ring hexagonal structure
  • the strip structure 124 is a trapezoidal structure.
  • the shape of the reinforcement 120 of the vibration assembly 100 may match the shape of the elastic element 110 .
  • the elastic element 110 can also have various structures, such as circular, square, polygonal, etc.
  • the shape of the corresponding reinforcing member 120 can also be designed into different shapes, including but not limited to circles, squares (eg, rectangles, squares), triangles, hexagons, octagons, other polygons, ovals, and other irregular shapes. Structure.
  • Different shapes of reinforcements 120 and different shapes of elastic elements 110 can be flexibly designed to change the mass and stiffness of the reinforcement 120 , the mass and stiffness of the vibration component 100 , etc., thereby changing the resonant frequency of the vibration component 100 .
  • the shape of the reinforcing member 120 and the shape of the elastic element 110 can include a variety of different shapes.
  • different widths and widths can be designed for its lateral direction.
  • the annular structure 122 can also be designed with different shapes, numbers, and sizes.
  • the annular structure 122 can be designed as a whole annular structure or a partial annular structure 122; different annular structures 122 will be bar-shaped.
  • the structure 124 is divided into different areas. In the different areas, the strip structures 124 in different areas from the center to the surrounding areas may be continuous or staggered, and the number may be equal or unequal.
  • the annular structure 122 can also be designed as a circle, a square (eg, a rectangle, a square), a triangle, a hexagon, an octagon, other polygons, an ellipse, and other irregular structures.
  • the vibration component 100 including different shapes of reinforcements 120 can be designed so that the third resonance peak of the vibration component 100 is located in the range of 10kHz-18kHz; the area Si of each hollow area and the thickness of the elastic element 110 of each hollow area
  • the Hi ratio is an area-to-thickness ratio ⁇ ranging from 150 to 700; the ratio ⁇ between the suspended area areas Ski and Sji of any two elastic elements 110 ranges from 0.25-4; and the lateral area ratio ⁇ between the hollow area area and the reinforcement 120 is 0.2-4. 0.7.
  • the vibration component 100 of the reinforcement 120 makes the third resonance peak of the vibration component 100 lie in the range of 10kHz-18kHz; the ratio of the area Si of each hollow area to the thickness Hi of the elastic element 110 of each hollow area is the area-thickness ratio ⁇ , and the range is 100-1000 ; The ratio ⁇ between the suspended area areas Ski and Sji of any two elastic elements 110 ranges from 0.1 to 10; the ratio ⁇ between the area of the hollow area and the lateral area of the reinforcement 120 ranges from 0.1 to 0.8.
  • FIGS. 35A to 35D are schematic structural diagrams of a vibration component including a local mass structure according to some embodiments of this specification.
  • Figure 35A shows a local mass structure 126 with double elastic connections
  • Figure 35B shows a local mass structure 126 with four elastic connections
  • Figure 35C shows an S-shaped local mass structure 126 with four elastic connections
  • Figure 35D shows An S-shaped four-elastically connected irregular local mass structure 126.
  • the equivalent mass Mmi, equivalent stiffness Kai and Kai', and equivalent damping Rai and Rai' of each hollow area can be flexibly adjusted by designing the local mass structure 126 in the suspended area of the central area 112.
  • the third resonance peak of the vibration component 100 is effectively adjusted.
  • the mass and stiffness of the reinforcement 120 can also be adjusted within a wide range, thereby adjusting the first resonance peak and the second resonance peak of the vibration component 100.
  • the local mass structure 126 can be circumferentially connected to the adjacent strip structure 124 through a dual elastic structure (as shown in FIG. 31 ), or can be circumferentially connected to the adjacent annular structure 122 through a dual elastic structure. . In other embodiments, each local mass structure 126 may not be connected to either the strip structure 124 or the annular structure 122 , but only be connected to the elastic element 110 .
  • the local mass structure 126 can also be connected to the adjacent strip structure 124 and the ring structure 122 simultaneously through four elastic structures (as shown in Figure 35B).
  • the planar shape of the elastic structure can be a regular shape (as shown in Figure 35A and Figure 35B) or an irregular shape (as shown in Figure 35C).
  • the local mass structure 126 can be a regular shape (as shown in Figures 35A-35C) or any irregular shape (as shown in Figure 35D).
  • the third resonance peak of the vibration component 100 can be located in the range of 10 kHz to 18 kHz; each hollow The ratio of the area Si to the thickness Hi of the elastic elements 110 in each hollow area is an area-thickness ratio ⁇ ranging from 150 to 700; the ratio ⁇ between the suspended area areas Ski and Sji of any two elastic elements 110 ranges from 0.25 to 4; the hollow area The ratio ⁇ of the area to the lateral area of the reinforcement 120 is 0.2-0.7.
  • the third resonance peak of the vibration component 100 can be located in the range of 10 kHz to 18 kHz; each hollow The ratio of the area Si to the thickness Hi of the elastic elements 110 in each hollow area is an area-thickness ratio ⁇ ranging from 100 to 1000; the ratio ⁇ between the suspended area areas Ski and Sji of any two elastic elements 110 ranges from 0.1 to 10; the hollow area The ratio ⁇ of the area to the lateral area of the reinforcement 120 is 0.1-0.8.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” means a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more at different places in this specification does not necessarily refer to the same embodiment. .
  • certain features, structures or characteristics in one or more embodiments of the present application may be appropriately combined.
  • numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Grooming. Unless otherwise stated, “about,” “approximately,” or “substantially” means that the stated number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical fields and parameters used to confirm the breadth of the ranges in some embodiments of the present application are approximations, in specific embodiments, such numerical values are set as accurately as feasible.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Vibration Prevention Devices (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Abstract

一种振动组件(100),其包括弹性元件(110),弹性元件(110)包括中心区域(112)、设置于中心区域(112)外围的折环区域(114),以及设置于折环区域(114)外围的固定区域(116),弹性元件(110)被配置为沿垂直于中心区域(112)的方向振动,其中,中心区域(112)包括沿振动方向堆叠的弹性件和加强件(120),加强件(120)上设有多个开口朝向弹性件的凹槽结构(121)。

Description

一种振动组件
交叉引用
本申请要求于2022年8月20日提交的申请号为202211003675.2的中国申请的优先权,全部内容通过引用并入本文。
技术领域
本说明书涉及声学技术领域,特别涉及一种振动组件。
背景技术
扬声器一般包括驱动部分、振动部分、支撑辅助部分三大核心部分。其中,振动部分也为扬声器的负载部分,主要为振动组件,包括弹性元件例如振膜等。振动部分为扬声器重要组成部分,在驱动部分的驱动力确定的时,通过合理的设计振动部分,可使得负载部分与驱动部分实现较好的机械阻抗匹配,从而实现高声压级、宽带宽的输出效果。
振动组件可以通过在弹性元件的中心区域设置一层质量刚度结构,通常为金属,例如铝合金、不锈钢、钛合金、镁合金、镁铝合金等,使得振膜中心区域的刚度增加,避免扬声器振膜中心区域在20Hz-20kHz范围形成分割振型导致声相消的状态。但是直接在弹性元件中心区域设置质量刚度结构,会使得振动组件整体质量增加,会使得扬声器负载增加,驱动部分与负载部分阻抗失配,使得扬声器输出的声压级降低。
因此,有必要提出一种合理地在弹性元件的中心区域设置具有凹槽结构的加强件的振动组件。
发明内容
本说明书实施例之一提供一种振动组件,其包括:弹性元件,所述弹性元件包括中心区域、设置于所述中心区域外围的折环区域,以及设置于所述折环区域外围的固定区域,所述弹性元件被配置为沿垂直于所述中心区域的方向振动,其中,所述中心区域包括沿所述振动方向堆叠的弹性件和加强件,所述加强件上设有多个开口朝向所述弹性件的凹槽结构。
在一些实施例中,在所述加强件上,所述凹槽结构以外的区域设有镂空结构。
在一些实施例中,在所述振动方向上,所述加强件的投影面积与所述中心区域的投影面积的比值范围为0.15-0.8。
在一些实施例中,在所述振动方向上,所述加强件的投影面积与所述中心区域的投影面积的比值范围为0.35-0.65。
在一些实施例中,所述振动组件在振动时,至少在10000Hz-20000Hz的范围具有谐振峰。
在一些实施例中,所述凹槽结构具有沿所述振动方向的高度尺寸,所述凹槽结构的侧壁具有厚度尺寸,所述高度尺寸与所述厚度尺寸的比值范围不小于7.14。
在一些实施例中,所述高度尺寸与所述厚度尺寸的比值范围不小于9。
在一些实施例中,所述振动组件在振动时至少在5000Hz-10000Hz的范围内具有谐振峰。
在一些实施例中,所述凹槽结构具有沿所述振动方向的高度尺寸,所述高度尺寸的取值范围为50um-500um。
在一些实施例中,所述高度尺寸的取值范围为200um-350um。
在一些实施例中,所述凹槽结构的侧壁具有厚度尺寸,所述厚度尺寸的取值范围不大于50um。
在一些实施例中,所述厚度尺寸的取值范围不大于40um。
在一些实施例中,所述凹槽结构的开口处设有沿所述弹性件表面延伸的裙边结构,所述裙边结构宽度范围为100um-300um。
在一些实施例中,所述裙边结构宽度范围为100um-200um。
在一些实施例中,所述凹槽结构的形状包括U形、T形、工字形、锥形中的至少一种。
在一些实施例中,所述加强件的材料的杨氏模量高于所述弹性件的材料的杨氏模量。
在一些实施例中,所述加强件的材料与所述弹性件的材料相同。
在一些实施例中,所述凹槽结构内设填充材料,所述填充材料的杨氏模量小于所述加强件的材料的杨氏模量。
本说明书实施例之一还提供一种振动组件,其包括:弹性元件,所述弹性元件包括中心区域、设置于所述中心区域外围的折环区域,以及设置于所述折环区域外围的固定区域,所述弹性元件被配置为沿 垂直于所述中心区域的方向振动,其中,所述中心区域包括并肩排列的加强区域和弹性区域,所述加强区域上设有多个开口朝向所述振动方向的凹槽结构。
在一些实施例中,在所述振动方向上,所述加强区域的投影面积与所述中心区域的总投影面积的比值范围为0.15-0.8。
在一些实施例中,在所述振动方向上,所述加强区域的投影面积与所述中心区域的投影面积的比值范围为0.35-0.65。
在一些实施例中,所述振动组件在振动时,至少在10000Hz-20000Hz的范围具有谐振峰。
在一些实施例中,所述凹槽结构具有沿所述振动方向的高度尺寸,所述凹槽结构的侧壁具有厚度尺寸,所述高度尺寸与所述厚度尺寸的比值范围不小于7.14。
在一些实施例中,所述高度尺寸与所述厚度尺寸的比值范围不小于9。
在一些实施例中,所述振动组件在振动时至少在5000Hz-10000Hz的范围内具有谐振峰。
在一些实施例中,所述凹槽结构具有沿所述振动方向的高度尺寸,所述高度尺寸的取值范围为50um-500um。
在一些实施例中,所述高度尺寸的取值范围为200um-350um。
在一些实施例中,所述凹槽结构的侧壁具有厚度尺寸,所述厚度尺寸的取值范围不大于50um。
在一些实施例中,所述厚度尺寸的取值范围不大于40um。
在一些实施例中,所述凹槽结构的开口处设有与所述弹性区域相连的裙边结构,所述裙边结构宽度范围为100um-300um。
在一些实施例中,所述裙边结构宽度范围为100um-200um。
在一些实施例中,所述凹槽结构的形状包括U形、T形、工字形、锥形中的至少一种。
在一些实施例中,所述加强区域的材料的杨氏模量高于所述弹性区域的材料的杨氏模量。
在一些实施例中,所述加强区域的材料与所述弹性区域的材料相同。
在一些实施例中,所述凹槽结构内设填充材料,所述填充材料的杨氏模量小于所述弹性元件的材料的杨氏模量。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的振动组件及其等效振动模型示意图;
图2是根据本说明书一些实施例所示的振动组件第一谐振峰变形图;
图3是根据本说明书一些实施例所示的振动组件第二谐振峰变形图;
图4是根据本说明书一些实施例所示的振动组件第三谐振峰变形图;
图5A是根据本说明书一些实施例所示的振动组件的频响曲线图;
图5B是根据本说明书一些实施例所示的振动组件无第三谐振峰时的频响曲线图;
图6是根据本说明书一些实施例所示的包括凹槽结构的振动组件与不包括凹槽结构的振动组件的频响曲线图;
图7A是根据本说明书一些实施例所示的具有凹槽结构的加强件与弹性元件的结构示意图;
图7B是根据本说明书一些实施例所示的具有凹槽结构的加强件与弹性元件的结构示意图;
图7C是根据本说明书一些实施例所示的具有凹槽结构的加强件与弹性元件的结构示意图;
图7D是根据本说明书一些实施例所示的具有凹槽结构的加强件与弹性元件的结构示意图;
图7E是根据本说明书一些实施例所示的具有凹槽结构的加强件与弹性元件的结构示意图;
图7F是根据本说明书一些实施例所示的具有凹槽结构的加强件与弹性元件的结构示意图;
图7G是根据本说明书一些实施例所示的具有凹槽结构的加强件与弹性元件的结构示意图;
图8是根据本说明书一些实施例所示的凹槽结构的结构示意图;
图9是根据本说明书一些实施例所示的振动组件的另一频响曲线图;
图10是根据本说明书一些实施例所示的不同高度的加强件对应的振动组件的频响曲线图;
图11是根据本说明书一些实施例所示的不同厚度的加强件对应的振动组件的频响曲线图;
图12是根据本说明书一些实施例所示的裙边结构的示意图;
图13是根据本说明书一些实施例所示的不同裙边结构宽度的加强件对应的振动组件的频响曲线图;
图14A是根据本说明书一些实施例所示的非金属材质的加强件的制备流程示意图;
图14B是图14A对应的模型示意图;
图15A是根据本说明书一些实施例所示的金属材质的加强件制备流程示意图;
图15B是图14A对应的模型示意图;
图16是根据本说明书一些实施例所示的具有单环形结构的加强件的振动组件的结构示意图;
图17是根据本说明书一些实施例所示的振动组件的局部结构示意图;
图18是根据本说明书另一些实施例所示的振动组件在第二谐振峰时的变形示意图;
图19是根据本说明书另一些实施例所示的振动组件在第三谐振峰时的变形示意图;
图20是图19所示的振动组件的频响曲线图;
图21是根据本说明书一些实施例所示的振动组件的另一频响曲线图;
图22A是根据本说明书另一些实施例所示的振动组件的结构示意图;
图22B是根据本说明书另一些实施例所示的振动组件的结构示意图;
图23A是根据本说明书另一些实施例所示的振动组件的结构示意图;
图23B是根据本说明书另一些实施例所示的振动组件的结构示意图;
图23C是根据本说明书另一些实施例所示的振动组件的结构示意图;
图23D是根据本说明书另一些实施例所示的振动组件的结构示意图;
图24A是根据本说明书另一些实施例所示的振动组件的结构示意图;
图24B是根据本说明书另一些实施例所示的振动组件的结构示意图;
图25A是根据本说明书另一些实施例所示的振动组件的结构示意图;
图25B是根据本说明书另一些实施例所示的振动组件的结构示意图;
图25C是根据本说明书另一些实施例所示的振动组件的结构示意图;
图25D是根据本说明书另一些实施例所示的振动组件的结构示意图;
图25E是根据本说明书另一些实施例所示的振动组件的结构示意图;
图26A是根据本说明书另一些实施例所示的振动组件的结构示意图;
图26B是根据本说明书另一些实施例所示的振动组件的结构示意图;
图27A是根据本说明书另一些实施例所示的振动组件的结构示意图;
图27B是根据本说明书另一些实施例所示的振动组件的结构示意图;
图27C是根据本说明书另一些实施例所示的振动组件的结构示意图;
图28是根据本说明书另一些实施例所示的振动组件的结构示意图;
图29是根据本说明书另一些实施例所示的振动组件的结构示意图;
图30A是根据本说明书另一些实施例所示的振动组件的结构示意图;
图30B是根据本说明书另一些实施例所示的振动组件的结构示意图;
图30C是根据本说明书另一些实施例所示的振动组件的结构示意图;
图30D是根据本说明书另一些实施例所示的振动组件的结构示意图;
图30E是根据本说明书另一些实施例所示的振动组件的结构示意图;
图31是根据本说明书另一些实施例所示的振动组件的结构示意图;
图32是根据本说明书另一些实施例所示的振动组件的结构示意图;
图33A是根据本说明书另一些实施例所示的振动组件的结构示意图;
图33B是根据本说明书另一些实施例所示的振动组件的结构示意图;
图34A是根据本说明书另一些实施例所示的振动组件的结构示意图;
图34B是根据本说明书另一些实施例所示的振动组件的结构示意图;
图34C是根据本说明书另一些实施例所示的振动组件的结构示意图;
图35A是根据本说明书另一些实施例所示的振动组件的结构示意图;
图35B是根据本说明书另一些实施例所示的振动组件的结构示意图;
图35C是根据本说明书另一些实施例所示的振动组件的结构示意图;
图35D是根据本说明书另一些实施例所示的振动组件的结构示意图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所 述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书实施例中提供了一种振动组件,可以应用于各种声学输出装置。声学输出装置包括但不限于扬声器、助听器等。本说明书实施例中提供的振动组件主要包括弹性元件,弹性元件可以与扬声器的驱动部分连接,弹性元件的边缘固定(例如,与扬声器的壳体连接)。在扬声器中,扬声器的驱动部分作为电能-机械能转换单元,通过将电能转换为机械能,为扬声器提供驱动力。振动组件可以接收驱动部分传递的力或者位移而产生相应振动输出,从而推动空气运动产生声压。弹性元件可视为通过弹簧、阻尼与空气惯性负载部分连接,通过推动空气运动实现声压的辐射。
弹性元件主要包括中心区域、设置于中心区域外围的折环区域,以及设置于折环区域外围的固定区域。在一些实施例中,为了使扬声器在较大范围内(例如20Hz-20kHz)具有较为平坦的声压级输出,通常在弹性元件的折环区域设计预设的花纹,从而达到破坏弹性元件折环区域在相应频率段的振型,避免弹性元件局部分割振动导致的声相消的发生,同时通过花纹设计使得弹性元件的局部刚度增加。进一步,通过在弹性元件的中心区域设计一层加厚的结构,使得弹性元件的中心区域的刚度增加,避免扬声器弹性元件中心区域在20Hz-20kHz范围形成分割振型导致声相消的状态。但是直接在弹性元件的中心区域设计加厚层,会使得振动组件整体质量增加,使得扬声器负载增加,驱动端与负载端阻抗失配,使得扬声器输出的声压级降低。而本说明书实施例所提供的振动组件,对弹性元件的中心区域进行设计,使其包括沿振动方向堆叠的弹性件和加强件,且加强件上设有多个开口朝向弹性件的凹槽结构。本说明书的实施提供的振动组件,还可以对弹性元件的中心区域进行设计,使中心区域包括并肩排列的加强区域和弹性区域,加强区域上设有多个开口朝向振动方向的凹槽结构。其中,加强区域可以与加强件沿振动方向在弹性件上的投影区域相对应。通过具有凹槽结构的加强件/加强区域设计,使得振动组件在中高频(3kHz以上)出现所需的高阶模态,并通过具有凹槽结构的加强件/加强区域构型、尺寸的设计,使得在振动组件频响曲线上合适的频率段出现不多于3个谐振峰,进而使得振动组件在较宽的频带范围具有较高的灵敏度;同时通过提出具有凹槽结构的加强件/加强区域,使得振动组件的质量较小,且刚度较大,使得扬声器整体灵敏度提升。有关振动组件、弹性元件及加强件/加强区域的具体内容请参照后续相关描述。
参见图1,图1是根据本说明书一些实施例所示的振动组件及其等效振动模型示意图。
在一些实施例中,振动组件100主要包括弹性元件110,弹性元件110包括中心区域112、设置于中心区域112外围的折环区域114,以及设置于折环区域114外围的固定区域116。弹性元件110被配置为沿垂直于中心区域112的方向振动,以传递振动组件100接收到的力与位移从而推动空气运动。中心区域112包括沿振动方向堆叠的弹性件和加强件120。其中,振动方向为弹性元件110的振动方向,即为垂直于中心区域112的方向,依示图1来说,振动方向为垂直于图1所在图纸的方向。在一些实施例中,弹性件可以是指弹性元件110位于中心区域的部分。加强件120与弹性件连接,加强件120包括凹槽结构121(如图7A所示),凹槽结构121的开口朝弹性件开设。在一些实施例中,加强件120包括一个或多个环形结构122以及一个或多个条形结构124,一个或多个条形结构124中的每一个与一个或多个环形结构122中的至少一个连接。条形结构124和/或环形结构122的横截面设置有凹槽结构121。通过合理的设置加强件120,使弹性元件110的中心区域112的局部刚度实现可控调节,避免振动组件100的弹性元件110的中心区域112在较大范围内(例如20Hz-20kHz)形成分割振型导致声相消的状态,使振动组件100具有较平坦的声压级曲线。同时,一个或多个条形结构124和一个或多个环形结构122相互连接围成镂空结构的设置,使得加强件120具有合适比例的凹槽结构(即条形结构124、或环形结构122)和镂空结构(即镂空部分),减小了加强件120的质量,提升了振动组件100的整体灵敏度,同时通过设计条形结构124和/或环形结构122及凹槽结构121的形状、尺寸和数量,可以调节振动组件100的多个谐振峰的位置,从而控制振动组件100的振动输出。
在一些实施例中,中心区域112包括并肩排列的加强区域和弹性区域(如图7F所示),这里的加强区域和弹性区域可以分别指加强件120和弹性件。此时,弹性件与加强件120的结构的侧面(例如凹槽结构121的裙边结构)连接。加强件120包括一个或多个环形结构122以及一个或多个条形结构124,一个或多个条形结构124中的每一个与一个或多个环形结构122中的至少一个连接。条形结构124和/或环形结构122的横截面设置有凹槽结构121,凹槽结构121的开口朝振动方向开设。
弹性元件110可以是在外部载荷的作用下能够发生弹性形变的元件。在一些实施例中,弹性元件 110可以为耐高温的材料,使得弹性元件110在振动组件100应用于振动传感器或扬声器时的加工制造过程中保持性能。在一些实施例中,弹性元件110处于200℃~300℃的环境中时,其杨氏模量和剪切模量无变化或变化很小(如变化量在5%以内),其中,杨氏模量可以用于表征弹性元件110受拉伸或压缩时的变形能力,剪切模量可以用于表征弹性元件110受剪切时的变形能力。在一些实施例中,弹性元件110可以为具有良好弹性(即易发生弹性形变)的材料,使得振动组件100具有良好的振动响应能力。在一些实施例中,弹性元件110的材质可以是有机高分子材料、胶类材料等中的一种或多种。在一些实施例中,有机高分子材料可以为聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High Impact Polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、聚氯乙烯(Polyvinyl Chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚乙烯(Polyethylene,PE)、酚醛树脂(Phenol Formaldehyde,PF)、尿素-甲醛树脂(Urea-Formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine-Formaldehyde,MF)、聚芳酯(Polyarylate,PAR)、聚醚酰亚胺(Polyetherimide,PEI)、聚酰亚胺(Polyimide,PI)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate two formic acid glycol ester,PEN)、聚醚醚酮(Polyetheretherketone,PEEK)、碳纤维、石墨烯、硅胶等中的任意一种或其组合。在一些实施例中,有机高分子材料也可以是各种胶,包括但不限于凝胶类、有机硅胶、丙烯酸类、聚氨酯类、橡胶类、环氧类、热熔类、光固化类等等,优选地可为有机硅粘接类胶水、有机硅密封类胶水。
弹性元件110的邵氏硬度可以表征其抵抗局部变形的能力。邵氏硬度越大,抵抗局部变形(尤其是塑性变形)的能力越强,越不容易发生局部变形。在一些实施例中,为了使弹性元件110能够在适宜的驱动下产生振动,弹性元件110的邵氏硬度可以为1HA-50HA。在一些实施例中,为了降低弹性元件110的振动难度,弹性元件110的邵氏硬度可以为1HA-15HA。在一些实施例中,为了提供弹性元件110抵抗塑性变形的能力,弹性元件110的邵氏硬度可以为14.9HA-15.1HA。其中,弹性元件110的邵氏硬度可以通过邵氏硬度计测得。具体地,可以将弹性元件110的样品放置于硬质平台,将归零后的邵氏硬度计用适当的力匀速垂直将针头按压样品表面,待邵氏硬度计的针头端面完全接触样品表面时即可,此时记录邵氏硬度计的表盘上测试的数值,即为弹性元件110的邵氏硬度。在一些实施例中,若弹性元件110的厚度较薄,可以取同规格同批次的样品叠加至一定厚度(例如3mm以上)进行测量。
弹性元件110的杨氏模量可以表征其在受力时的弹性变形的能力。杨氏模量越大,杨氏模量越大,材料抵抗形变的能力越强,刚性越好,越不易发生形变。在一些实施例中,为了使弹性元件110能够在适宜的驱动下产生振动,弹性元件110的杨氏模量范围为5E8Pa-1E10Pa。在一些实施例中,为了使弹性元件110的弹性形变能力适宜,弹性元件110的杨氏模量范围为1E9Pa-5E9Pa。在一些实施例中,为了使弹性元件110的弹性形变能力适宜,弹性元件110的杨氏模量范围为1E9Pa-4E9Pa。在一些实施例中,为了使弹性元件110的弹性形变能力适宜,弹性元件110的杨氏模量范围为2E9Pa-5E9Pa。在一些实施例中,弹性元件110的杨氏模量的测量方法可以包括多种,例如共振法、纳米压痕法、动态膨胀法、视觉图像跟踪系统与微拉伸复合法等。示例性地,弹性元件110作为薄膜材料,可以利用激光脉冲在薄膜表面激发起表面声波,由于表面声波波速的色散关系由薄膜与衬底的弹性模量(杨氏模量)、密度和厚度决定,基于表面声波在不同材料中的传播速度不同,可以通过检测表面声波的波速实现对薄膜的杨氏模量、密度和膜厚的测量。具体地,可以将声波探测器探测声波波速的色散关系与理论模型计算的色散关系对比,就可以得出薄膜的杨氏模量、密度和厚度等信息。
在一些实施例中,在弹性元件110的体积一起的情况下,为了使弹性元件110的质量适宜,弹性元件110的密度范围为1E3kg/m3-4E3kg/m3。在一些实施例中,为了使弹性元件110的质量适宜,弹性元件110的密度范围为1E3kg/m3-2E3kg/m3。在一些实施例中,为了使弹性元件110的质量适宜,弹性元件110的密度范围为1E3kg/m3-3E3kg/m3。在一些实施例中,为了避免弹性元件110的质量过大,弹性元件110的密度范围为1E3kg/m3-1.5E3kg/m3。在一些实施例中,为了避免弹性元件110的质量过小,弹性元件110的密度范围为1.5E3kg/m3-2E3kg/m3
中心区域112是指弹性元件110上由中心(例如,形心)向周侧延伸一定面积的区域。中心区域112内包括有弹性件及加强件120,加强件120与弹性件相连。在一些实施例中,弹性件可以是指弹性元件110位于中心区域112的部分,弹性件与加强件120沿振动方向堆叠设置,弹性件靠近加强件120的表面与加强件120的凹槽结构121设有开口的一侧连接。在这种情况下,弹性件的表面可以完全覆盖加强件120,即弹性件可以覆盖加强件120的凹槽结构121的开口。在另一些实施例中,弹性件(即中心区域的弹性区域)与加强件120(即中心区域的加强区域)并肩排列,弹性件与加强件120镂空结构的侧面连接。在这种情况下,弹性件可以覆盖中心区域112中没有加强件120覆盖的剩余部分,即弹性件可以不覆盖或部分覆盖加强件120的凹槽结构121的开口。
在一些实施例中,当振动组件100应用于扬声器时,中心区域112的弹性件可以直接与扬声器的 驱动部分相连。在另一些实施例中,中心区域112的加强件120可以直接与扬声器的驱动部分相连。弹性元件110被配置为沿垂直于中心区域112的方向振动,中心区域112的弹性件与加强件120可以传递驱动部分的力与位移从而推动空气运动,输出声压。
折环区域114位于中心区域112外侧。在一些实施例中,折环区域114可以设计有特性形状的花纹,从而破坏弹性元件110的折环区域114在相应频率段的振型,避免弹性元件110局部分割振动导致的声相消的发生,同时通过花纹设计使得弹性元件110的局部刚度增加。
在一些实施例中,折环区域114可以包括折环结构。在一些实施例中,通过调节折环结构的折环宽度、拱高等参数,可以使折环结构所对应的折环区域114的刚度不同,对应的高频局部分割振型的频率段也不同。折环宽度可以是折环区域114沿弹性元件110的振动方向的投影的径向宽度。拱高是指折环区域114沿弹性元件110的振动方向凸出于中心区域112或固定区域116的高度。
在一些实施例中,加强件120的最外围的环形结构122沿弹性元件110的振动方向投影的最大面积小于中心区域112的面积。即加强件120的投影最外侧与折环区域114之间存在未被加强件120支撑的区域,本说明书将折环区域114与加强件120之间的中心区域112的部分区域称为悬空区域1121。悬空区域1121对应的弹性元件110的部分也作为弹性件。在一些实施例中,通过调节加强件120的最大轮廓,可以调节悬空区域1121的面积,从而调节振动组件的模态振型。
固定区域116设置于折环区域114的外围。弹性元件110可以通过固定区域116实现连接固定。例如,弹性元件110可以通过固定区域116连接固定至扬声器的壳体等。在一些实施例中,固定区域116被安装固定于扬声器的壳体中,可以视为不参与弹性元件110的振动。在一些实施例中,弹性元件110的固定区域116可以通过支撑元件与扬声器的壳体实现连接。在一些实施例中,支撑元件可以包括易于变形的软性材料,使得支撑元件在振动组件100振动时也可以发生变形,从而为振动组件100的振动提供更大的位移量。在另一些实施例中,支撑元件也可以包括不易变形的硬性材料。
在一些实施例中,弹性元件110还可以包括设置于折环区域114与固定区域116之间的连接区域115。在一些实施例中,连接区域115可以为弹性元件110的振动提供额外的刚度和阻尼,从而调整振动组件100的模态振型。
为了使弹性元件110能够提供合适的刚度,弹性元件110的厚度和弹性系数可以设置在合理的范围内。在一些实施例中,弹性元件110的厚度范围可以为3um-200um。在一些实施例中,为了避免弹性元件110的刚度过大,弹性元件110的厚度范围可以为3um-100um。在一些实施例中,为了避免弹性元件110的刚度过大,弹性元件110的厚度范围可以为3um-50um。
加强件120可以是用于提升弹性元件110刚度的元件。在一些实施例中,加强件120与中心区域112连接,加强件120和/或中心区域112与扬声器的驱动部分相连,以传递力和/或位移,从而使振动组件100推动空气运动,输出声压。
在一些实施例中,加强件120可以包括一个或多个环形结构122以及一个或多个条形结构124,一个或多个条形结构124中的每一个与一个或多个环形结构122中的至少一个连接,以在弹性元件110的中心区域112形成交错支撑。其中,一个或多个条形结构124中的至少一个朝向中心区域112的中心延伸。在一些实施例中,一个或多个条形结构124可以经过中心区域112的中心,从而对中心区域112的中心提供支撑。在一些实施例中,加强件120还可以包括中心连接部123,一个或多个条形结构124也可以不经过中心区域112的中心,而是由中心连接部123覆盖中心区域112的中心,一个或多个条形结构124与中心连接部123连接。
在一些实施例中,一个或多个环形结构122和/或一个或多个条形结构124的横截面可以设置有凹槽结构121。凹槽结构121的设置可以对加强件120的刚度及质量进行调整,避免过度增加扬声器负载,以避免驱动部分与负载部分阻抗失配,从而便于改善振动组件100的输出效果。
环形结构122可以是围绕特定中心延伸的结构。在一些实施例中,环形结构122所围绕的中心可以是中心区域112的中心。在另一些实施例中,环形结构122所围绕的中心也可以是中心区域112上偏离中心的其它位置。在一些实施例中,环形结构122可以是外形线条闭合的结构。在一些实施例中,环形结构122沿弹性元件110的振动方向的投影形状可以包括但不限于圆环形、多边环形、曲线环形或椭圆环形中的一种或多种的组合。在另一些实施例中,环形结构122也可以是外形线条不闭合的结构。例如,环形结构122可以是具有缺口的圆环形、多边环形、曲线环形或椭圆环形等。在一些实施例中,环形结构122的数量可以是1个。在一些实施例中,环形结构122的数量也可以是多个,多个环形结构可以具有相同的形心。在一些实施例中,环形结构122的数量范围可以为1-10。在一些实施例中,环形结构122的数量范围可以为1-5。在一些实施例中,环形结构122的数量范围可以为1-3。若环形结构122的数量过多,可能会导致加强件120质量过大,进而导致振动组件100的整体灵敏度降低。在一些实施例中,通过设计环形结构122的数量可实现对加强件120的质量、刚度的调节。在一些实施例中,位于加强件120的最外围的 环形结构122的尺寸可以视为加强件120的最大尺寸。在一些实施例中,通过设置最外围的环形结构122的尺寸可以调节折环区域114和加强件120之间的悬空区域1121的尺寸(或面积),从而改变振动组件100的模态振型。
在一些实施例中,一个或多个环形结构122可以包括第一环形结构和第二环形结构,第一环形结构的径向尺寸小于第二环形结构的径向尺寸。在一些实施例中,第一环形结构设置于第二环形结构的内侧。在一些实施例中,第一环形结构和第二环形结构的形心可以重合。在另一些实施例中,第一环形结构和第二环形结构的形心也可以不重合。在一些实施例中,第一环形结构和第二环形结构可以通过一个或多个条形结构124连接。
条形结构124可以是具有任意延伸规律的结构。在一些实施例中,条形结构124可以沿直线延伸。在一些实施例中,条形结构124也可以沿曲线延伸。在一些实施例中,曲线延伸可以包括但不限于弧线形延伸、螺旋延伸、样条曲线形延伸、圆弧形延伸、S形延伸等。在一些实施例中,条形结构124与环形结构122连接而将环形结构122分割为多个镂空结构。即,在加强件120上,凹槽结构121以外的区域设有镂空结构。在一些实施例中,中心区域112上与镂空结构对应的区域可以称为镂空区域(即弹性区域)。在一些实施例中,条形结构124的数量可以是1个。例如,1个条形结构124可以沿环形结构122的任意一个直径方向设置,该条形结构124同时连接中心区域的中心(即环形结构122的形心)和环形结构122。在一些实施例中,条形结构124的数量也可以是多个。在一些实施例中,多个条形结构124可以沿环形结构122的多个直径方向设置。在一些实施例中,多个条形结构124可以朝向中心区域112的中心位置延伸,该中心位置可以是弹性元件110的形心。在一些实施例中,多个条形结构124可以连接于中心区域的中心位置,并在中心位置形成中心连接部123。在一些实施例中,中心连接部123也可以是单独的结构,多个条形结构124可以与中心连接部123连接。在一些实施例中,中心连接部123的形状可以包括但不限于圆形、方形、多边形或椭圆形等。在一些实施例中,中心连接部123的形状也可以任意设置。
在一些实施例中,为了提升弹性元件110的刚度,条形结构124的数量范围可以为1-100。在一些实施例中,为了避免弹性元件110的刚度过大,条形结构124的数量范围可以为1-50。在一些实施例中,为了避免弹性元件110的刚度过大,条形结构124的数量范围可以为1-50。在一些实施例中,为了避免弹性元件110的刚度过大,条形结构124的数量范围可以为1-30。通过设置条形结构124的数量,可以调节振动组件100的整体质量、加强件120的刚度以及弹性元件110的镂空区域的面积大小,从而改变振动组件的模态振型。
在一些实施例中,条形结构124沿弹性元件110的振动方向的投影形状包括矩形、梯形、曲线型、沙漏形、花瓣形中的至少一种。通过设计不同形状的条形结构124,可以调节加强件120的质量分布(如质心位置)、加强件120的刚度、调节镂空区域的面积大小,从而改变振动组件的模态振型。
需要说明的是,本说明书实施例对环形结构122和条形结构124的结构描述只是为了便于合理的设置加强件120的结构而选择的可选结构,不应理解为对加强件120及其各部分的形状的限制。事实上,本说明书实施例中的加强件120可以通过具有凹槽结构121的环形结构122和条形结构124构成位于环形结构122和条形结构124之间的镂空结构(对应于中心区域112的镂空区域),通过调控凹槽结构和镂空结构的参数(如面积、凹槽结构的厚度等)即可实现对振动组件100的振动特性(例如,谐振峰的数量及频率范围)的调控。换句话说,具有凹槽结构和镂空结构的任意形状的加强件,均可以使用本说明书提供的关于凹槽结构和镂空结构的参数设置方式进行设置,以达到调节振动组件的振动性能(例如,谐振峰的数量及位置、频响曲线的形态等)的目的,这些方案均应该包含在本申请的范围内。
在一些实施例中,参见图1,弹性元件110的固定区域116与折环区域114之间的连接区域115悬空设置,该部分区域等效质量Mm1,并且该区域通过弹簧Km、阻尼Rm与壳体固定连接,同时该连接区域115通过弹簧Ka1、阻尼Ra1与弹性元件110的前端空气负载连接,传递力与位移从而推动空气运动。
在一些实施例中,弹性元件110的折环区域114具有局部等效质量Mm2,并且该区域通过弹簧Ka1’、阻尼Ra1’与弹性元件110的连接区域115连接,同时折环区域114通过弹簧Ka2、阻尼Ra2与弹性元件110前端空气负载连接,传递力与位移从而推动空气运动。
在一些实施例中,弹性元件110的中心区域112设置有加强件120,加强件120与中心区域112的弹性件连接,弹性件受加强件120支撑的区域与折环区域114之间具有一部分悬空区域1121。该区域具有局部等效质量Mm3,并且该区域通过弹簧Ka2’、阻尼Ra2’与折环区域114连接,同时加强件120所在区域通过弹簧Ka3、阻尼Ra3与弹性元件110前端空气负载连接,传递力与位移从而推动空气运动。
在一些实施例中,由于加强件120的设计,使得与加强件120对应的弹性元件110的中心区域112具有不少于一个的镂空区域,每个镂空区域均可以等效为一个质量-弹簧-阻尼系统,具有等效质量Mmi、等效刚度Kai与Kai’、等效阻尼Rai与Rai’。镂空区域通过弹簧Kai’、阻尼Rai’与相邻的镂空区域之 间连接。该镂空区域还通过弹簧Kai’、阻尼Rai’与中心区域112内受加强件120支撑的区域和折环区域114之间的悬空区域1121连接,同时该悬空区域1121通过弹簧Kai、阻尼Rai与弹性元件110前端空气负载连接,传递力与位移从而推动空气运动。
在一些实施例中,加强件120本身具有等效质量Mmn,并且加强件120通过弹簧Kan’、阻尼Ran’与中心区域112连接,同时加强件120通过弹簧Kan、阻尼Ran与弹性元件110前端空气负载连接,当加强件120自身产生谐振时,通过带动中心区域112从而带动弹性元件110产生较大的运动速度与位移,从而产生较大的声压级。
根据质量-弹簧-阻尼系统的动力学特性,每一个质量-弹簧-阻尼系统均具有自身的谐振峰频率f0,并且在f0处可发生较大运动速度与位移,通过设计振动组件100的不同参数(例如,弹性元件110和/或加强件120的结构参数),可使得振动组件100不同位置的结构形成的质量-弹簧-阻尼系统在所需的频率段发生谐振,进而使得振动组件100的频响曲线上具有多个谐振峰,使得振动组件100有效频段大大扩宽,同时通过设计加强件120,可以使得振动组件100具有更轻的质量,可使得振动组件100具有更高的声压级输出。
图2是根据本说明书一些实施例所示的振动组件第一谐振峰变形图,图3是根据本说明书一些实施例所示的振动组件第二谐振峰变形图,图4是根据本说明书一些实施例所示的振动组件第三谐振峰变形图。
根据图1所示的振动组件100的等效振动模型示意图,振动组件100的各个部分会在不同的频率段产生速度共振,并使得在对应频率段输出较大的速度值,从而使得振动组件100频响曲线在对应频率段输出较大的声压值,有相应的谐振峰;同时,通过多个谐振峰使得振动组件100的频响在可听声范围(例如,20Hz-20kHz)均具有较高的灵敏度。
请参照图1与图2。在一些实施例中,加强件120的质量、弹性元件110的质量、等效空气质量、驱动端等效质量组合形成总等效质量Mt,各部分等效阻尼形成总的等效阻尼Rt,弹性元件110(尤其是折环区域114、折环区域114与加强件120之间的悬空区域的弹性元件110)具有较大的顺性,为系统提供刚度Kt,故形成一个质量Mt-弹簧Kt-阻尼Rt系统,该系统具有谐振频率,当驱动端激励频率接近该系统的速度共振频率时,系统产生谐振(如图2所示),并在该Mt-Kt-Rt系统的速度共振频率附近频段输出较大的速度值va,由于振动组件100输出声压幅值与声速成正相关(pa∝va),因而会在频响曲线中出现一个谐振峰,本说明书中将其定义为振动组件100的第一谐振峰。在一些实施例中,参见图2,图2示出了振动组件100在A-A截面位置的振动情况,图2中白色结构表示加强件120变形前的形状及位置,黑色结构表示加强件120在第一谐振峰时的形状及位置。需要说明的是,图2仅示出了振动组件100在A-A截面上由加强件120的中心至弹性元件110的一侧边缘的结构情况,即A-A截面的一半,未示出的A-A截面的另一半与图2所示情况对称。由振动组件100在A-A截面位置的振动情况可知,在第一谐振峰的位置,振动组件100的主要变形位置为弹性元件110上连接固定区域116的部分。在一些实施例中,振动组件100的第一谐振峰的频率(也称为第一谐振频率)可以与振动组件100的质量和弹性元件110的弹性系数的比值相关。在一些实施例中,为提升扬声器在较宽的中低频范围内(例如,20Hz-3500Hz)的声压级输出,第一谐振峰的频率范围包括200Hz-2500Hz。在一些实施例中,为着重提升扬声器在常用的中低频范围内(例如,80Hz-2500Hz)的声压级输出,第一谐振峰的频率范围包括400Hz-1500Hz。优选地,第一谐振峰的频率范围包括500Hz-1200Hz。更优选地,第一谐振峰的频率范围包括600Hz-1000Hz。在一些实施例中,通过设置加强件120的结构,可以使振动组件100的第一谐振峰位于上述频率范围内。
请参照图1与图3。加强件120本身具有等效质量Mmn,并且加强件120通过弹簧Kan’、阻尼Ran’与中心区域112连接,同时加强件120通过弹簧Kan、阻尼Ran与弹性元件110前端空气负载连接,当加强件120自身产生谐振时,通过带动中心区域112从而带动弹性元件110产生较大的运动速度与位移,从而产生较大的声压级。
加强件120、连接区域115、折环区域114、中心区域112设置有加强件120的区域与折环区域114之间的悬空区域1121、等效空气质量、驱动端等效质量组合形成总等效质量Mt1,各部分等效阻尼形成总的等效阻尼Rt1,加强件120、弹性元件110(尤其是中心区域112被加强件120覆盖的区域)具有较大的刚度,为系统提供刚度Kt1,故形成一个质量Mt1-弹簧Kt1-阻尼Rt1系统,该系统具有一个以中心区域112加强直径方向某一环形区域为等效固定支点,环形区域内与环形区域外沿相反方向运动,从而形成翻转运动的振动振型,连接区域115、折环区域114、中心区域112设置有加强件120的区域与折环区域114之间的悬空区域1121在加强件120的带动下振动,实现一个以翻转运动为振型的谐振模态(如图3所示),该谐振亦为该等效质量Mt1-弹簧Kt1-阻尼Rt1系统的谐振频率点,当驱动端激励频率接近该系统的速度共振频率时,系统产生谐振,并在该Mt1-Kt1-Rt1系统的速度共振频率附近频段输出较大的速度值va,由于振动组件100输出声压幅值与声速成正相关(pa∝va),因而会在频响曲线中出现一个谐振峰,本说明书中 将其定义为振动组件100的第二谐振峰。在一些实施例中,参见图3,图3示出了振动组件100在A-A截面位置的振动情况,图3中白色结构表示加强件120变形前的形状及位置,黑色结构表示加强件120在第二谐振峰时的形状及位置。需要说明书的是,图3仅示出了振动组件100在A-A截面上由加强件120的中心至弹性元件110的一侧边缘的结构情况,即A-A截面的一半,未示出的A-A截面的另一半与图3所示情况对称。由振动组件100在A-A截面位置的振动情况可知,在第二谐振峰的频率(也称为第二谐振频率)前后,振动组件100的主要变形位置为加强件120的翻转变形。在一些实施例中,振动组件100的第二谐振峰可以与加强件120的刚度相关。在一些实施例中,为提升扬声器在较宽的中高频范围内(例如,3500Hz-11000Hz)的声压级输出,第二谐振峰的频率范围可以包括5000Hz-10000Hz。在一些实施例中,为着重提升扬声器在常用的中高频范围内(例如,4000Hz-10000Hz)的声压级输出,第二谐振峰的频率范围可以包括6000Hz-8000Hz。优选地,第二谐振峰的频率范围包括6500Hz-7500Hz。在一些实施例中,通过设置加强件120的结构,可以使振动组件100的第二谐振峰的范围在上述频率范围内。
请参照图1与图4。加强件120对应中心区域112具有不少于一个的镂空区域,每个镂空区域均为一个质量-弹簧-阻尼系统,具有等效质量Mmi、等效刚度Kai与Kai’、等效阻尼Rai与Rai’。镂空区域通过弹簧Kai’、阻尼Rai’与相邻的镂空区域之间连接,且该镂空区域通过弹簧Kai’、阻尼Rai’与中心区域112内受加强件120支撑的区域和折环区域114之间的悬空区域1121连接以及同时该镂空区域通过弹簧Kai、阻尼Rai与弹性元件110前端空气负载连接,传递力与位移从而推动空气运动。
由于各个镂空区域之间通过加强件120的条形结构124和/或环形结构122隔开设置,因而各个镂空区域可形成各自不同的谐振频率,并单独推动与之相连的空气域运动,产生相应的声压;进一步地,通过设计加强件120的各个条形结构124和/或环形结构122的位置、尺寸、数量,从而可实现具有不同谐振频率的各个镂空区域,从而使得在振动组件100频响曲线上均有不少于1个的高频谐振峰(即第三谐振峰)。在一些实施例中,为提升扬声器在较宽的高频范围内(例如,11000Hz-20000Hz)的声压级输出,如上所述的不少于1个的高频谐振峰(即第三谐振峰)的范围可以包括12000Hz-18000Hz。在一些实施例中,为着重提升扬声器在常用的高频范围内(例如,12000Hz-18000Hz)的声压级输出,第三谐振峰的频率范围可以包括13000Hz-17000Hz。优选地,第三谐振峰的频率范围包括14000Hz-16000Hz。更优选地,第三谐振峰的频率范围包括14500Hz-15500Hz。
进一步地,为了提升振动组件100在高频(10000Hz-20000Hz)输出的声压级,通过设计各个条形结构124和/或环形结构122的位置、尺寸、数量,使得各个镂空区域的谐振频率相等或接近。在一些实施例中,各个镂空区域的谐振频率差值在4000Hz范围内,从而使得在振动组件100的频响曲线上具有一个输出声压级较大的高频谐振峰,本说明书中将其定义为振动组件100的第三谐振峰。在一些实施例中,第三谐振峰的频率范围可以包括12000Hz-18000Hz。
在一些实施例中,通过设计一个或多个镂空区域的面积以及弹性元件110的厚度,可以调节各个镂空区域的谐振频率,从而使振动组件100的第三谐振峰位于上述频率范围内。即,通过设计各个镂空区域的面积与弹性元件110的厚度的比值范围,可以调节第三谐振峰的频率范围。其中,各个镂空区域的面积的单位可以为mm2,弹性元件110的厚度单位可以为mm,各个镂空区域的面积与弹性元件110的厚度的比值的单位可以为mm。示例性地,当某一镂空区域的面积为20mm2,弹性元件110的厚度为0.2mm时,该镂空区域的面积与弹性元件110的厚度的比值即为100mm。在一些实施例中,为了使振动组件100的第三谐振峰的范围在12000Hz-18000Hz频率范围内,各个镂空区域的面积与弹性元件110的厚度的比值范围为100mm-1000mm。在一些实施例中,为了使振动组件100的第三谐振峰的范围在14000Hz-16000Hz频率范围内,各个镂空区域的面积与弹性元件110的厚度的比值范围为120mm-900mm。在一些实施例中,为了使振动组件100的第三谐振峰的范围在14500Hz-15500Hz频率范围内,各个镂空区域的面积与弹性元件110的厚度的比值范围为150mm-800mm。在一些实施例中,为了使振动组件100的第三谐振峰的范围在14700Hz-15200Hz频率范围内,各个镂空区域的面积与弹性元件110的厚度的比值范围为150mm-700mm。
请参照图5A,图5A是根据本说明书一些实施例所示的振动组件的频响曲线图。通过设计加强件120与弹性元件110的结构,可以实现振动组件100在可听声范围具有多个谐振峰,进一步的,通过多个谐振峰等组合,使得振动组件100在整个可听声范围均有较高的灵敏度。通过设计加强件120的结构,可实现振动组件100的第三谐振峰240位于不同的频率范围。通过设计第三谐振峰240与第二谐振峰230的频率差值大小,可实现第三谐振峰240与第二谐振峰230之间频率段输出较为平坦的频响曲线与较高的声压级,避免频响曲线出现低谷。
请参照图5A,通过加强件120与弹性元件110的设计,可以使得振动组件100在可听声范围(20Hz-20000Hz)内出现所需的高阶模态,在振动组件100的频响曲线上出现上述第一谐振峰210、第二谐振峰230、第三谐振峰240,即在20Hz-20000Hz的频率范围内振动组件100的频响曲线的谐振峰数量为3个,进而使得振动组件100在较宽的频带范围具有较高的灵敏度。
在一些实施例中,通过设计加强件120与弹性元件110的结构,振动组件100在可听声范围(20Hz-20000Hz)内可以仅具有2个谐振峰。例如,通过设计加强件120的结构(包括加强件120整体尺寸、横断面具有凹槽结构121的条形结构124和/或环形结构122的数量、尺寸等),可以设计各个镂空区域大小,从而调节对应悬空区域1121的谐振频率,使得振动组件100高频形成的第三谐振峰240不明显,在频响上不体现。当使得各个悬空区域1121的谐振频率高于可听声范围,或者各个悬空区域1121的谐振频率不同、并且在高频范围(10000Hz-18000Hz)不同频率段不同悬空区域1121振动相位不同、形成声音叠加抵消的效果时,可获得一个高频滚降的效果,在振动组件100声压级频响曲线中不体现第三谐振峰240。
请参照图5B,图5B是根据本说明书一些实施例所示的振动组件无第三谐振峰时的频响曲线图。通过设计加强件120的环形结构122和条形结构124),使得加强件120对应中心区域112具有不少于一个的镂空区域,每个镂空区域均为一个质量-弹簧-阻尼系统,通过设计加强件120各个条形结构124的位置、尺寸、数量,使得各个镂空区域的谐振频率相等或接近。在一些实施例中,各个镂空区域的谐振频率差值在4000Hz范围内,可以使得在振动组件100的频响曲线上具有一个或多个输出声压级较大的高频谐振峰(即第三谐振峰)。
在一些实施例中,参见图5B,通过设计加强件120各个条形结构124和/或环形结构122的位置、尺寸、数量,使得各个镂空区域的谐振频率高于可听声范围,或者使得各个镂空区域的谐振频率不同、并且在高频范围(10000Hz-18000Hz)不同频率段不同镂空区域振动相位不同,形成声音叠加抵消的效果,可获得一个高频滚降的效果,在振动组件100的声压级频响曲线中不体现第三谐振峰240。
请参照图6,图6是根据本说明书一些实施例所示的包括凹槽结构的振动组件与不包括凹槽结构的振动组件的频响曲线图。在一些实施例中,通过设计具有凹槽结构121的加强件120的结构尺寸与形状,可以有效调节加强件120的质量与刚度分布。在一些实施例中,可以在不变化或者变化加强件120的质量的同时,改变加强件120自身的刚度,使得加强件120、弹性元件110(尤其是弹性元件110的中心区域112)为系统提供的刚度Kt1发生改变,进一步使得质量Mt1-弹簧Kt1-阻尼Rt1系统翻转运动的谐振频率发生改变,从而使得振动组件100的第三谐振峰240的位置发生改变。在一些实施例中,也可以在不降低加强件120的刚度的基础上,降低加强件120的质量,从而提升振动组件100的输出。
如图6所示,通过凹槽结构121的设计,振动组件100在1kHz-6kHz范围均为较平坦的频响输出,振动组件100在6kHz-10kHz、12k-18kHz范围分别形成第二谐振峰230与第三谐振峰240,提升了高频输出灵敏度。而且,通过凹槽结构121的设计,使得振动组件100具有较高的灵敏度输出。凹槽结构121的设计,还使得振动组件100在高频具有不少于一个谐振峰,使得振动组件100在较宽的频带范围具有较高的灵敏度输出。
在一些实施例中,通过设置凹槽结构121,可以在保证加强件120与弹性元件110的刚度的同时、降低加强件120的质量,从而提升振动组件100的输出,对振动组件100的性能提升具有积极影响。
图7A-图7G是根据本说明书一些实施例所示的具有不同凹槽结构的加强件与弹性元件的结构示意图。如图7A-7E所示,在一些实施例中,具有凹槽结构121的加强件120可以与弹性元件110为分离式结构,两者可以通过组装成型后形成中空的刚度增强结构。在一些实施例中,在振动方向上,凹槽结构121的宽度可以保持一致,例如,图7A所示的凹槽结构121为方U型的结构,图7B所示的凹槽结构121为圆角U型的结构。在一些实施例中,在振动方向上,凹槽结构121的宽度可以逐渐减小或增大,例如,图7C所示的凹槽结构121为T型的结构,图7E所示的凹槽结构121为锥形凸起的结构。在一些实施例中,凹槽结构121的宽度可以任意变化(例如先减小再增大等),例如,图7D所示的凹槽结构121为工字型的结构。通过采用内部中空的结构,实现凹槽结构121的设置,在保证加强件120与弹性元件110的刚度的同时降低加强件120的质量,从而提升振动组件100的输出。
如图7F所示,在一些实施例中,具有凹槽结构121的加强件120可以与弹性元件110为一体式结构,例如两者可以一次加工成型。在一些实施例中,在采用一体式结构的情况下,凹槽结构121可以采用U型结构(例如图7F所示的方U型的结构),以便于设计加工,降低加工制造的难度。此时,弹性元件110的中心区域112的弹性件设置在加强件120的凹槽结构121之间,弹性件作为弹性区域与加强件120作为加强区域并肩排列。在另一些实施例中,凹槽结构121也可以采用其他类型的中空结构(例如上述的工字型结构、T型结构等等),只要能够实现保证加强件120与弹性元件110的刚度的同时、降低加强件120的质量即可。
如图7G所示,在一些实施例中,加强件120的凹槽结构121的中空部分可以设置有填充材料,以对加强件120的质量与刚度进行调整,提升振动组件100的输出。在一些实施例中,填充材料的杨氏模量可以小于弹性元件110的材料的杨氏模量,以减小填充材料对弹性元件110的振动形变的干扰。在一些实施例中,填充材料可以包括非金属材料或金属材料。在一些实施例中,作为填充材料的非金属材料可以包括但不限于聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、丙烯腈-丁二烯-苯乙烯共聚物 (Acrylonitrile Butadiene Styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High Impact Polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、聚氯乙烯(Polyvinyl Chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚乙烯(Polyethylene,PE)、酚醛树脂(Phenol Formaldehyde,PF)、尿素-甲醛树脂(Urea-Formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine-Formaldehyde,MF)、聚芳酯(Polyarylate,PAR)、聚醚酰亚胺(Polyetherimide,PEI)、聚酰亚胺(Polyimide,PI)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate two formic acid glycol ester,PEN)、聚醚醚酮(Polyetheretherketone,PEEK)、碳纤维、石墨烯、硅胶等中的任意一种或其组合。在一些实施例中,作为填充材料的金属材料可以包括铝合金、镁锂合金、铜、不锈钢等。
请参照图7A与图8,图8是根据本说明书一些实施例所示的凹槽结构的结构示意图。在一些实施例中,凹槽结构121的结构、尺寸参数对加强件120的刚度影响非常大,因而可通过调节凹槽结构121的结构、尺寸参数,实现对加强件120刚度与质量的调节。如图8所示,凹槽结构121具有沿振动方向的高度尺寸h,凹槽结构121具有垂直振动方向的宽度尺寸w,凹槽结构121的侧壁具有厚度尺寸b,凹槽结构121的开口处设有垂直振动方向(例如沿弹性件表面延伸)的裙边结构,裙边结构宽度为bm。具有凹槽结构121的加强件120的刚度主要凹槽结构121由提供,对于内部中空的凹槽结构121,其刚度主要为抗弯刚度EI,E为杨氏模量,I为惯性矩。对于如图7A与图8所示的凹槽结构121,其对应的加强件120的惯性矩I计算公式为:
I=[wh^3-(w-2b)〖(h-2b)〗^3]             (公式1)
由公式1可知,具有凹槽结构121的加强件120的惯性矩I仅由加强件120的高度h、宽度w、厚度b决定,其中h与b均属于三次方量参数,对具有凹槽结构121的加强件120的刚度影响尤为显著。
设计参数h增加,可以使得惯性矩I增加,进一步使得具有凹槽结构121的加强件的刚度增加,进而使得扬声器第二谐振峰230后移;反之设计参数h减小,加强件120的刚度减小,振动组件100的第二谐振峰230前移。同样的,设计参数b增加可使得惯性矩I增加,进一步使得具有凹槽结构121的加强件120的刚度增加,进而使得振动组件100的第二谐振峰230后移;反之设计参数b减小,加强件120的刚度减小,振动组件100的第二谐振峰230前移。
在一些实施例中,同时优化设计参数h与b,通过优化增加h值、同步优化减小b值,可实现有凹槽结构121的加强部120的刚度不变、质量减小,振动组件100的第二谐振峰230频率值不变、提升振动组件100的输出频响;反之,优化减小h值、同步优化增加b值,可以实现有凹槽结构121的加强件120的刚度不变、质量增加,振动组件100第二谐振峰230频率值不变、降低振动组件100的输出频响。
在一些实施例中,同时优化设计参数h与b,通过优化增加h值、同步优化减小b值,可实现有凹槽结构121的加强部120的刚度降低、质量减小,使得振动组件100的第二谐振峰230前移、提升振动组件100的输出频响。
在一些实施例中,同时优化设计参数h与b,通过优化增加h值、同步优化减小b值,可实现有凹槽结构121的加强部120的刚度降低、质量增加,使得振动组件100的第二谐振峰230前移、降低扬声器输出频响。
定义物理量λ为具有凹槽结构121的加强件120的高度h与厚度b的比值,即:
λ=h/b                (公式2)
请参照图9,图9是根据本说明书一些实施例所示的振动组件的另一频响曲线图。由图9可知,在一些实施例中,对比曲线λ=5与曲线λ=15,或λ=7.14与λ=9与λ=12,可以得到,通过增加比值λ,可以实现振动组件100的第二谐振峰230频率值不变、输出增加的效果。例如可以同时优化设计参数h与b,通过优化增加h值、同步优化减小b值,可实现有凹槽结构121的加强件120的刚度不变、质量减小。在一些实施例中,由图9可知,随λ的增加,振动组件100的输出逐渐增加。具体的,当λ较小时,例如当λ=5时,相比λ=12、λ=9、λ=7.14、λ=15,输出声压级明显较低,且第二谐振峰230频率降低,使得第一谐振峰210与第二谐振峰230之间相对平坦的带宽降低;当λ=15时,相比于λ=12、λ=9或λ=7.14,虽然第二谐振峰230频率值减小使得第一谐振峰210与第二谐振峰230之间相对平坦的带宽降低,但由于大幅度提升输出声压级,因而在一些窄频段应用的场景具有优势。因而整体来说,λ应取较大的值。
通过对比值λ的设计,可实现振动组件100第二谐振峰230频率值、输出灵敏度的有效调节,使振动组件100的第二谐振峰230位于6000Hz-8000Hz范围,且具有较高的灵敏度。在一些实施例中,具有凹槽结构121的加强件120的高度h与厚度b的比值λ取值范围可以为不小于7.14。在一些实施例中,更优选的,具有凹槽结构121的加强件120的高度h与厚度b的比值λ取值范围可以为不小于9。
由公式1与图9可知,加强部120的高度h与厚度b均属于三次方量参数,对包括凹槽结构121的加强件120的刚度影响尤为显著。且随着包括凹槽结构121的加强件120的高度h与厚度b的比值λ增加,可实现加强件120具有更小的质量的同时、加强件120还具有更大的刚度,从而使得振动组件100具 有更大的输出。但随具有凹槽结构121的加强件120的高度h与厚度b的变化,其工艺难度与加强件120的整体可靠性会受到影响。
请参照图10,图10是根据本说明书一些实施例所示的不同高度的加强件对应的振动组件的频响曲线图。由图10可得,随具有凹槽结构121的加强件120的高度h减小,其刚度减小,振动组件100的第二谐振峰230前移,同时灵敏度也相应提升。且,具有凹槽结构121的加强件120的高度h在170um与270um尺寸下,均有较好的输出。
设计使得高度h较高对扬声器性能是有利的,但随具有凹槽结构121的加强件120的高度h增加,加强件120的加工工艺(例如化学刻蚀、刀具加工、激光切割、电化学加工、或针对非金属材料的注塑成型、热压成型等)难度急剧增加。随着h的增加,加工精度无法保证。考虑实际加工工艺,在一些实施例中,具有凹槽结构121的加强件120的高度h取值范围可以为50um-500um。在一些实施例中,为了进一步降低实际加工难度,具有凹槽结构121的加强件120的高度h取值范围可以为200um-350um。
请参照图11,图11是根据本说明书一些实施例所示的不同厚度的加强件对应的振动组件的频响曲线图。由图11可得,随着具有凹槽结构121的加强件120的厚度b减小,其刚度减小,质量减小,振动组件100的第二谐振峰230前移,同时灵敏度也相应提升。当加强件120的厚度b较大时,加强件120的刚度增加、质量增加,加强件120为振动组件100形成的负载也增加,进而导致第二谐振峰230后移,振动组件100的输出灵敏度明显降低,例如当厚度b为100um时,相比其他厚度(例如20um、30um、50um等)输出明显降低;随厚度b的取值逐渐增大,虽然第二谐振峰230会逐渐前移,但也使得输出灵敏度得到极大提升,因而在一些窄频段应用的场景具有优势。整体来说,厚度b应取较小的值。
设计使得厚度b较小对扬声器性能是有利的,但随具有凹槽结构121的加强件120的厚度b降低,具有凹槽结构121的加强件120的可靠性会受到较大的影响。考虑实际产品的可靠性,在一些实施例中,具有凹槽结构121的加强件120的厚度b取值范围可以为不大于50um。在一些实施例中,为了使具有凹槽结构121的加强件120在具有较高的可靠性的同时具有较小的质量,具有凹槽结构121的加强件120的厚度b取值范围可以为不大于40um。
请参照图7G、图8与图12,图12是根据本说明书一些实施例所示的裙边结构的示意图。其中图12中阴影部分所示区域表示裙边结构。从工艺角度分析,裙边结构的宽度bm的设计值越大,具有凹槽结构121的加强件120与弹性元件110的中心区域112的连接面积越大,从而可获得更高的粘接强度,提升振动组件100的可靠性。同时,裙边结构宽度bm设计,直接决定弹性元件110的悬空区域1121的面积,决定等效质量Mmi、等效刚度Kai与Kai’、等效阻尼Rai与Rai’等值,进一步的影响振动组件100的第三谐振峰240的位置与振动组件100的频响输出。
请参照图13,图13是根据本说明书一些实施例所示的不同裙边结构宽度的加强件对应的振动组件的频响曲线图。由图13可知,随裙边宽度bm值增加,振动组件100的输出明显降低,且第三谐振峰240输出降低。在设计裙边宽度bm时,从性能上考虑,bm值越小越好;如图13所示,当裙边宽度bm为500um时,相比裙边宽度bm为其它值(例如100um、150um、300um等)时,输出SPL明显降低;但同时,裙边宽度bm的取值减小,会使得工艺难度增加。基于性能与工艺的平衡,在一些实施例中,具有凹槽结构121的加强件120的裙边宽度bm的取值范围可以为100um-300um。在一些实施例中,为了在降低工艺难度的同时使振动组件100具有较好的输出性能,具有凹槽结构121的加强件120的裙边宽度bm的取值范围可以为100um-200um。
在一些实施例中,中心区域112的弹性件或加强件120与扬声器的驱动部分连接时,连接处的弹性件所受应力及振幅最大,沿连接处向四周的延伸方向(以下简称为延伸方向),越远离连接处的弹性件所受应力及振幅越小。为适应中心区域112内的各处弹性件的振幅或所受应力不同,中心区域112内,加强件120延伸方向上各处的刚度可以不同。在一些实施例中,加强件120延伸方向上的各处条形结构124、环形结构122的凹槽结构121的尺寸可以不同,和/或,相邻凹槽结构121之间的距离不同。在一些实施例中,当中心连接部123与扬声器的驱动部分连接时,在延伸方向上,靠近中心连接部123的凹槽结构121的刚度至靠近折环区域114的凹槽结构121的刚度逐渐减小。例如,在延伸方向上,靠近中心连接部123的凹槽结构121的参数h至靠近折环区域114的凹槽结构121的参数h逐渐减小。例如,在延伸方向上,靠近中心连接部123的凹槽结构121的参数b至靠近折环区域114的凹槽结构121的参数b逐渐减小。又例如,在延伸方向上,靠近中心连接部123的凹槽结构121的参数bm至靠近折环区域114的凹槽结构121的参数bm逐渐减小。在一些实施例中,在延伸方向上,靠近中心连接部123的凹槽结构121与稍远离中心连接部123的相邻凹槽结构121(相邻的环形结构122)之间的距离至靠近折环区域114的凹槽结构121与稍远离折环区域114的相邻凹槽结构121(相邻的环形结构122)之间的距离的逐渐增大。这里的相邻凹槽结构121之间的距离是指相邻凹槽结构121(相邻的环形结构122)的中心(形心)之间的距离。
本说明书的一些实施例还提供一种包括有具有凹槽结构121的加强件120的制备工艺。在一些实 施例中,具有凹槽结构121的加强件120可以是非金属材料,也可以是金属材料。
在一些实施例中,为增加加强件120的刚度,并通过增加弹性件的弹性增大其振幅,以提升振动组件100的输出,加强件120(也可以说是加强区域)的材料的杨氏模量高于弹性件(也可以说是弹性区域)的材料的杨氏模量。在一些实施例中,加强件120的材料与弹性件的材料不同,例如,加强件120为刚度较大的金属材料,弹性件为刚度较小的非金属材料。在一些实施例中,加强件120的材料与弹性件的材料相同,例如,加强件120和弹性件均为非金属材料。此时,加强件120可以视为通过结构设计增加弹性元件110刚度的结构。
在一些实施例中,具有凹槽结构121的加强件120的材料可以为PEEK(聚醚醚酮)、PI(聚酰亚胺)、PEN(聚萘二甲酸乙二醇酯)、PU(聚氨酯)、TPE(热塑性弹性体)、PEI(聚醚酰亚胺)、硅胶、碳纤维、PT(聚丙烯)、羊绒纤维等一种或多种材料复合;弹性元件110的材质可以包括但不限于PEEK、PI、PEN、PU、PEI、硅胶中的一种或多种。相比金属材料而言,非金属材料的加工难度更小、且加工一致性更容易获得保证。
在一些实施例中,振动组件可以通过以下步骤制得:在所述加强件上制备凹槽结构和镂空结构;连接所述加强件和所述弹性元件制得所述振动组件。在一些实施例中,所述凹槽结构由第一工艺制得。在一些实施例中,第一工艺可以包括注塑成型、热压成型、刻蚀、刀具加工、激光切割、电化学加工中的一种或多种。在一些实施例中,镂空结构可以由第二工艺制得。在一些实施例中,第二工艺可以包括激光切割。在一些实施例中,凹槽结构和镂空结构也可以通过一体成型工艺制得。在一些实施例中,在制得加强件后,可以在加强件或弹性元件上涂胶(如喷涂粘接胶水,再通过热压成型连接加强件和弹性元件制得振动组件。
请参照图14A与图14B,图14A是根据本说明书一些实施例所示的非金属材质的加强件和振动组件的制备流程示意图,图14B是图14A对应的模型示意图。在一些实施例中,加强件120(也可以说是加强区域)的材料与弹性件(也可以说是弹性区域)的材料相同时,加强件120可以采用非金属材质,对于非金属材质的、具有凹槽结构121的加强件120,其加工工艺可以包括以下步骤:
步骤1410,热压模具成型。
在一些实施例中,可以采用热压模具成型对加强件120进行制备。示例性地,可以在加热加工模具后,注入液态试料或放置固态试料,以固体接触压力或气体压力将模型固定于加热板,控制试料之熔融温度及时间,以达融化后硬化、冷却,再予以取出模型成品,即可得到初始的加强件120。在一些实施例中,加强件120也可以通过其他能够对非金属材质进行处理的工艺制备而成,本说明书不对此作过多说明。在一些实施例中,在模具热压成型的过程中,可以通过设置相应的模具直接热压出具有凹槽结构121(即在加强件120上热压出凹槽)。在一些实施例中,可以利用激光雕刻去除加强件120中预设区域的材质,加工出凹槽,从而使得加强件120具有凹槽结构121。在一些实施例中,加强件120也可以通过其他工艺加工出凹槽结构121,例如腐刻等,本说明书不对此做过多说明。
步骤1420,激光雕刻。
在一些实施例中,可以利用激光雕刻去除加强件120中预设区域的材质,加工出镂空结构。在一些实施例中,加强件120也可以通过其他工艺加工出镂空结构,例如腐刻等,本说明书不对此做过多说明。
步骤1430,连接成型。
在一些实施例中,可以将具有凹槽结构121的加强件120与弹性元件110进行连接最终成型。在一些实施例中,可以在弹性元件110或加强件120的表面喷涂粘接胶水,弹性元件110与加强件120再经过热压成型实现连接。在一些实施例中,弹性元件110和加强件120之间也可以不涂覆胶水,而是采用直接热压贴合的方式实现连接。在一些实施例中,加强件120也可以采用其他方式与弹性元件110连接加工固定,本说明书不对此作过多说明。
在一些实施例中,加强件120的材料可以包括但不限于铝合金、铜及其合金、不锈钢、金及其合金、钨等。相比非金属材料而言,金属材料的加强件120可在相同质量下具有更高的刚度,从而提升振动组件100的输出。
请参照图15A与图15B,图15A是根据本说明书一些实施例所示的金属材质的加强件和振动组件制备流程示意图,图15B是图14A对应的模型示意图。在一些实施例中,加强件120(也可以说是加强区域)的材料与弹性件(也可以说是弹性区域)的材料不同时,加强件120可以采用金属材质,对于金属材质的、具有凹槽结构121的加强件120,其加工工艺一般包括以下步骤:
步骤1510,加工成型。
在一些实施例中,加工成型可以包括一种或多种能够对金属材料进行处理的工艺,例如化学刻蚀、刀具加工、激光切割、电化学加工等。
步骤1520,激光雕刻。
在一些实施例中,步骤1520内容可以与步骤1420的内容相同,在此不再赘述。
在一些实施例中,步骤1520可以与步骤1510同步进行,即加强件120的凹槽结构121可以直接与加强件120一体成型。
步骤1530,连接成型。
在一些实施例中,步骤1530的内容可以与步骤1430的内容相同,在此不再赘述。
在一些实施例中,悬空区域1121与折环区域114的面积与弹性元件110的厚度的关系会影响局部等效质量Mm3与局部等效质量Mm2、局部区域刚度Ka2’与局部区域刚度Ka1’,进而振动组件100第二谐振峰230所在范围。
请参照图16,图16是根据本说明书一些实施例所示的具有单环形结构的加强件的振动组件的结构示意图。在一些实施例中,加强件120包括中心连接部123与条形结构124,条形结构124由加强件120的中心连接部123向四周延伸,条形结构124的横截面设置有凹槽结构121。定义悬空区域1121水平面投影面积为Sv、折环区域114水平面投影面积为Se,悬空区域1121水平面投影面积Sv与折环区域114水平面投影面积Se之和为Ss。定义物理量α(单位为mm)为Ss与弹性元件110的厚度(也被称为振膜厚度)Hi的比值:
α=Ss/Hi              (公式3)
在一些实施例中,为了使第二谐振峰230在5000Hz-10000Hz范围内,Ss与振膜厚度Hi的比值α取值范围可以为5000mm-12000mm。在一些实施例中,为了使第二谐振峰230在6000Hz-9000Hz范围内,α取值范围为6000mm-10000mm。在一些实施例中,为了使第二谐振峰230在6000Hz-8500Hz范围内,α取值范围可以为6000mm-9000mm。在一些实施例中,为了使第二谐振峰230在6000Hz-8000Hz范围内,α取值范围可以为6000mm-8000mm。在一些实施例中,为了使第二谐振峰230在6000Hz-7500Hz范围内,α取值范围可以为6000mm-7000mm。在一些实施例中,为了使第二谐振峰230在7000Hz-8500Hz范围内,α取值范围可以为7000mm-9000mm。在一些实施例中,为了使第二谐振峰230在7000Hz-8000Hz范围内,α取值范围可以为7000mm-8000mm。
在一些实施例中,还可以通过折环区域114的折环的拱高设计,可实现振动组件100的折环区域114与悬空区域1121水平方向投影面积不改变情况下,改变弹性元件110的折环区域114的三维尺寸,从而改变折环区域114的刚度Ka1’,进而实现对振动组件100第二谐振峰的控制。
请参照图17,图17是根据本说明书一些实施例所示的振动组件的局部结构示意图。在本说明书中,可以定义折环区域114的折环的拱高为Δh,定义物理量δ(单位为mm)为Ss与振膜折环拱高为Δh的比值:
δ=Ss/Δh                (公式4)
在一些实施例中,δ取值范围可以为50mm-600mm。在一些实施例中,为了使折环区域114具有适宜的三维尺寸,δ取值范围可以为100mm-500mm。优选的,δ取值范围可以为200mm-400mm。更为优选的,δ取值范围可以为250mm-400mm。在一些实施例中,为了使折环区域114具有适宜的刚度,δ取值范围可以为250mm-350mm。优选的,δ取值范围可以为250mm-300mm。更为优选的,δ取值范围可以为200mm-300mm。
在一些实施例中,还通过设置加强件120的最大轮廓的水平投影面积(即最外围的环形结构122的尺寸),调节折环区域114和加强件120之间的悬空区域1121的尺寸(或面积),从而改变等效质量Mt1与等效刚度Kt1,进而振动组件100第二谐振峰230所在范围。
在本说明书中,定义中心区域112的水平投影面积为Sc,加强件120的最大轮廓水平投影面积Srm,悬空区域1121的水平面投影面积为Sv,其中:Srm=Sc-Sv。
在本说明书中,定义物理量(单位为1)为悬空区域1121的水平面投影面积Sv与中心区域112的水平投影面积Sc的比值:
在一些实施例中,取值范围为0.05-0.7。在一些实施例中,为了使悬空区域1121具有适宜的尺寸面积,取值范围为0.1-0.5。优选的,取值范围为0.15-0.35。更为优选的,取值范围为0.15-0.5。在一些实施例中,为了使等效质量Mt1与等效刚度Kt1具有适宜取值,取值范围为0.2-0.5。优选的,取值范围为0.15-0.25。更为优选的,取值范围为0.15-0.2。
在一些实施例中,条形结构124可以具有不同的宽度、形状及数量,以改变加强件120的镂空区域(对应中心区域112的悬空区域),从而对扬声器的频响频率进行调整。具体内容请参照后续图20-图25E及其相关描述。
在一些实施例中,可以通过设计镂空区域的面积(例如,设计加强件120的条形结构124的数量及位置、环形结构122的数量及位置等),对振动组件100的谐振频率进行调控,以提升振动组件100的 使用性能。
请参照图5A与图18,图18是根据本说明书一些实施例所示的振动组件的C-C截面在第三谐振峰频率附近的变形图。由图5A可知,第三谐振峰240与第二谐振峰230的频率差值对于振动组件100高频段频响曲线的平坦度具有较大的影响。在一些实施例中,参见图18,由振动组件100在C-C截面位置的振动情况可知,在第三谐振峰的频率附近,振动组件100的主要变形位置为中心区域112的镂空区域产生的变形。在一些实施例中,可以通过控制加强件120对应中心区域112的各个镂空区域均为质量-弹簧-阻尼系统,对应等效质量Mmi、等效刚度Kai来实现振动组件100第三谐振峰240的控制。例如,可以设计条形结构124数量及尺寸、环形结构122来设计中心区域112各个镂空区域的面积,定义各个镂空区域面积为Si。需要说明的是,虽然图18示出的是具有单环形结构的加强件120的振动组件100第三谐振峰变形图,但是对于多环形结构的加强件120的振动组件,该结论仍然适用。
为了使第三谐振峰在合适频率范围(12000Hz-18000Hz),本说明书定义一个物理量:任意一个镂空区域面积Si与各个镂空区域部分振膜厚度Hi比值为面积厚度比μ(单位为mm):
μ=Si/Hi                   (公式6)
通过设计μ值的大小,即可调整振动组件的第三谐振峰的频率位置。
在一些实施例中,面积厚度比μ范围为100-1000。在一些实施例中,为了使各镂空区域具有对应的适宜的等效质量Mmi与等效刚度Kai,面积厚度比μ范围为150-700。在一些实施例中,为了使各镂空区域具有对应的适宜的等效质量Mmi与等效刚度Kai,面积厚度比μ范围为150-950。在一些实施例中,为了使各镂空区域具有对应的适宜的等效质量Mmi与等效刚度Kai,面积厚度比μ范围为150-900。在一些实施例中,面积厚度比μ范围为150-800。在一些实施例中,为了使各镂空区域具有对应的适宜的等效质量Mmi与等效刚度Kai,面积厚度比μ范围为100-700。优选的,面积厚度比μ范围为300-500。更为优选的,面积厚度比μ范围为400-600。
需要说明的是图18示出的结构为单环形结构,但对于多环形结构,以上的面积厚度比μ的取值范围仍然适用。
如图19所示,在一些实施例中,加强件120具有双环形结构,本说明书定义第一环形结构内部弹性元件110的各个镂空区域面积为S1i,第一环形结构与第二环形结构之间弹性元件110的各个镂空区域面积为S2i。在另一些实施例中,加强件120还可以有更多的环形结构122,往外依次定义第n-1环与第n环之间弹性元件110的各个镂空区域面积为Sni。本说明书定义物理量弹性元件110的镂空区域面积比γ(单位为1)为任意两个镂空区域面积Ski与Sji之比:
γ=Ski/Sji            (公式7)
其中,k>j。通过设计γ值的大小,即可调整振动组件的第三谐振峰的频率位置。
如图19与图20所示,图20是图19所对应的振动组件的频响曲线。结构一至结构四中,第一环形区域与第二环形区域之间的各个镂空区域面积为S2i与第一环形区域内部各个镂空区域面积为S1i面积比γ依次为5.9、4.7、3.9、3.2。由图19可知,在振动组件100第三谐振峰位置,结构一至结构四中,随着γ的减小,位于内侧的环形结构122以内的第一镂空区域的半径△R1逐渐增大,位于内侧的环形结构122和外侧的环形结构122之间的第二镂空区域的半径△R2逐渐减小。在一些实施例中,进一步参见图20,结构一至结构四的振动组件的频响曲线在第三谐振峰位置的声压幅值输出逐渐增加。因此,中心区域112各个镂空区域面积比值会影响各个镂空区域谐振频率,最后获得在高频段声压叠加的效果,即通过设置γ的大小,即可调整振动组件100的高频灵敏度。
在一些实施例中,由图20可知,随γ逐渐减小,第三谐振峰体现越明显,对应频段输出声压级越高,当γ为5.9(对应结构一)时,第三谐振峰已经无法形成,导致该频段输出声压级明显降低,相比较而言γ小于等于4.7(例如结构二对应的γ=4.7、结构三对应的γ=3.9、结构四对应的γ=3.2)时,第三谐振峰存在明显提升该频段输出。在一些实施例中,任意两个镂空区域面积Ski与Sji之比γ范围为小于等于4.7。在一些实施例中,为了进一步增强振动组件100的高频灵敏度,任意两个镂空区域面积Ski与Sji之比γ范围为小于等于3.9。在一些实施例中,为了进一步增强振动组件100的高频灵敏度,任意两个镂空区域面积Ski与Sji之比γ范围为小于等于3.5。在一些实施例中,任意两个镂空区域面积Ski与Sji之比γ范围为小于等于3.2。在一些实施例中,为了进一步增强振动组件100的高频灵敏度,任意两个镂空区域面积Ski与Sji之比γ范围小于等于3。
在一些实施例中,通过设计加强件120沿振动方向的投影面积与加强件120最大轮廓沿振动方向在中心区域112的投影面积,可实现加强件120的质量、质心、刚度,以及中心区域112悬空区域的质量与刚度的调节,从而实现对振动组件100的第一谐振峰、第二谐振峰和第三谐振峰进行调节。
为了便于加强件120的设计,本说明书中,参见图19,定义加强件120的凹槽结构与加强件120横向面积比β(单位为1)为加强件120沿振动方向的投影形状中,凹槽结构投影面积Sr与加强件120最大 轮廓在中心区域112投影面积St之比:
β=Sr/St                   (公式8)
在一些实施例中,加强件120沿振动方向的投影,即为加强件120的凹槽结构的投影。加强件120的最大轮廓的投影,与中心区域112的投影一致。
请参照图21,图21是根据本说明书一些实施例所示的振动组件的另一频响曲线图。由图21可知,随加强件120的投影面积Sr与加强件120最大轮廓投影面积St的比值β的取值变化,扬声器第三谐振峰的输出也发生明显的变化,比值β较大时,使得等效刚度Kai’降低、等效质量Mmi增加,从而使得第三谐振峰前移;比值β较大时,使得等效刚度Kai’增加、等效质量Mmi减小,从而使得第三谐振峰后移。
通过设计β的取值,可以调节等效刚度Kai’与等效质量Mmi,以使得振动组件的高频的第三谐振峰处于适宜的频率范围,且各个镂空结构的谐振频率差值在适宜范围(例如小于等于4000Hz)内。在一些实施例中,加强件120的凹槽结构与加强件120横向面积比β为0.15-0.8。优选的,加强件120的凹槽结构与加强件120横向面积比β为0.35-0.65。
请参照图22A与图22B,图22A与图22B是根据本说明书一些实施例所示的具有不同数量的条形结构的振动组件结构示意图。在一些实施例中,通过调节条形结构124的数量,可以调节振动组件100的整体质量,使得加强件120质量、弹性元件110质量、等效空气质量、驱动端等效质量组合形成总等效质量Mt发生改变,故形成质量Mt-弹簧Kt-阻尼Rt系统的谐振频率发生改变,进而使得振动组件100的一阶谐振频率发生变化,使得振动组件100第一谐振频率之前的低频段以及第一谐振频率之后的中频段灵敏度发生改变。在一些实施例中,可以设计较多的条形结构124的数量,使得总等效质量Mt增加,振动组件100第一谐振频率提前,使得振动组件100第一谐振频率之前的低频段灵敏度提升,例如3000Hz之前频率段、2000Hz之前频率段、1000Hz之前频率段、500Hz之前频率段、300Hz之前频率段。在一些实施例中,设计较少的条形结构124数量,使得总等效质量Mt降低,振动组件100第一谐振频率后移,使得振动组件100第一谐振频率之后的中频段灵敏度提升,例如,可以使3000Hz之后频率段灵敏度提升。又例如,可以使2000Hz之后频率段灵敏度提升。又例如,可以使1000Hz之后频率段灵敏度提升。又例如,可以使500Hz之后频率段灵敏度提升。又例如,可以使300Hz之后频率段灵敏度提升。
在一些实施例中,通过调节条形结构124的数量,还可以调节加强件120的刚度,使得加强件120、弹性元件110为系统提供刚度Kt1发生改变,则加强件120、连接区域115、折环区域114、中心区域112被加强件120覆盖的区域与折环区域114之间悬空区域、等效空气质量、驱动端等效质量组合形成总等效质量Mt1,各部分等效阻尼形成总的等效阻尼Rt1,形成的质量Mt1-弹簧Kt1-阻尼Rt1系统,则以加强件120直径方向某一环形区域为等效固定支点,环形成翻转运动的谐振频率发生改变,从而使得振动组件100第二个谐振位置发生改变。
在一些实施例中,通过调节条形结构124的数量,还可以调节加强件120对应中心区域112具有不少于一个的悬空区域的面积大小,使得各个镂空区域的等效质量Mmi、等效刚度Kai与Kai’、等效阻尼Rai与Rai’发生改变,从而使得振动组件的第三谐振峰位置发生改变。在一些实施例中,通过调节条形结构124的数量,还可以调节振动组件的面积厚度比μ和加强件120的凹槽结构与加强件120横向面积比β,从而调节振动组件的第三谐振峰的位置。
在一些实施例中,加强件120的条形结构124的数量可调,可以根据实际应用需求,调整振动组件100第一谐振峰、第二谐振峰、第三谐振峰的位置,从而使得对振动组件100的频响实现可控的调节。
在一些实施例中,由于条形结构124在沿弹性元件110的振动方向的投影形状包括矩形、梯形、曲线型、沙漏形、花瓣形中的至少一种,因此可以通过调节条形结构124的形状,改变加强件120的镂空区域(对应加强件120投影范围内中心区域112的悬空区域)的面积,以调节镂空区域面积与弹性元件110厚度的关系(面积厚度比μ),从而达到调整第三谐振峰的目的;也可以改变加强件120不同环形结构122之间的镂空区域面积的关系(镂空区域面积比γ),从而达到调整第三谐振峰的目的;还可以改变加强件120的凹槽结构与加强件120横向面积的关系(加强件120的凹槽结构与加强件120横向面积比β),达到调整第一谐振峰、第二谐振峰、第三谐振峰的目的。
请参照图23A-图23D,图23A-图23D是根据本说明书一些实施例所示的具有不同宽度的条形结构的振动组件结构示意图,其中图23A中的条形结构124为倒梯形(即梯形的短边靠近加强件120的中心),图23B中的条形结构124为梯形(即梯形的短边远离加强件120的中心),图23C中的条形结构124为外弧形,图23D中的条形结构124为内弧形。在一些实施例中,通过设计具有不同横向宽度的条形结构124,可有效调节加强件120的质心位置。在一些实施例中,还可以在不变化加强件120质量的同时改变加强件120的自身刚度,使得加强件120、弹性元件110(尤其是中心区域112被加强件120覆盖的区域)为系统提供刚度Kt1发生改变,进一步使得质量Mt1-弹簧Kt1-阻尼Rt1系统翻转运动的谐振频率发生 改变,从而使得振动组件100第二个谐振频率发生改变。
在一些实施例中,通过改变条形结构124的宽度设计,可以使得条形结构124从中心向四周延伸不同位置局部刚度不同。当驱动端频率接近Mt1-弹簧Kt1-阻尼Rt1系统谐振频率时,固定区域116与折环区域114之间的连接区域115、折环区域114、中心区域112被加强件120覆盖区域与折环区域114之间的悬空区域在加强件120带动下振动,并实现一个3dB带宽可调的谐振峰。
如图23A-图23D所示。在一些实施例中,通过设计倒梯形条形结构124、外弧形(定义向外凸出为外弧形、向内凹陷为内弧形,外弧形可以是圆弧、椭圆、高次函数弧线、以及其它任意外弧线)条形结构124,可获得较大的3dB带宽的振动组件100第二谐振峰,可应用于要求低Q值,宽带宽的场景。在一些实施例中,通过设计梯形、矩形、内弧形(定义向外凸出为外弧形、向内凹陷为内弧形,内弧形可以是圆弧、椭圆、高次函数弧线、以及其它任意内弧线)的条形结构124,可获得灵敏度高、3dB带宽小的振动组件100第二谐振峰,可应用于要求高Q值,局部高灵敏度的场景。
通过设计具有不同横向宽度条形结构124,亦可以调节加强件120对应中心区域112具有不少于一个的悬空区域的面积大小,使得各个具有等效质量Mmi、等效刚度Kai与Kai’、等效阻尼Rai与Rai’发生改变。进一步的使得振动组件100的第三谐振峰位置发生改变。
因此,通过设计具有不同横向宽度条形结构124,可实现振动组件100第二谐振峰频率位置、谐振峰处3dB带宽、谐振峰处振动组件100灵敏度、振动组件100第三谐振峰位置。
请参照图24A与图24B,图24A与图24B是根据本说明书一些实施例所示的具有不同形状的条形结构的振动组件结构示意图,其中图24A中的条形结构124为旋转形,图24B中的条形结构124为S形。在一些实施例中,通过设计具有不同横向形状的条形结构124,可以调节加强件120的刚度,从而使得加强件120、弹性元件110(尤其是中心区域112被加强件120覆盖的区域)为系统提供刚度Kt1发生改变,进一步使得质量Mt1-弹簧Kt1-阻尼Rt1系统,翻转运动的谐振频率发生改变,从而使得振动组件100第二个谐振位置发生改变。在一些实施例中,还可以调节加强件对应中心区域112具有不少于一个的悬空区域的面积大小,使得各个具有等效质量Mmi、等效刚度Kai与Kai’、等效阻尼Rai与Rai’发生改变,从而使得振动组件100的第三谐振峰位置发生改变。在一些实施例中,通过设计具有不同横向形状的条形结构124,还可以调节加强件120内部的应力分布、控制加强件120的加工变形。
请参照图25A-图25E,图25A-图25E是根据本说明书一些实施例所示的具有不同形状的条形结构的加强件的结构示意图。在一些实施例中,为了准确调节不同形状的条形结构对振动组件的谐振峰(如第一谐振峰、第二谐振峰和第三谐振峰)的影响,对于由中心向边缘宽度逐渐减小的条形结构124,定义辐条夹角为θ,通过设置θ的大小即可调整振动组件的谐振峰。在一些实施例中,对于侧边为直边的条形结构124(如图25A-图25C所示),夹角θ即为辐条两个侧边的夹角。在一些实施例中,对于侧边为弧边的条形结构124(如图25E所示),夹角θ即为条形结构124的两个侧边切线的夹角。在一些实施例中,为了准确调节不同形状的条形结构对振动组件的谐振峰(如第一谐振峰、第二谐振峰和第三谐振峰)的影响,如图25D所示,对于由中心向边缘宽度逐渐增加的辐条结构,定义辐条夹角为θi,通过设置θi的大小即可调整振动组件的谐振峰。在一些实施例中,对于侧边为直边的条形结构124,夹角θi即为辐条两个侧边的夹角。在一些实施例中,对于侧边为直边的条形结构124,夹角θi即为辐条两个侧边切线的夹角。
在一些实施例中,可以通过设计条形结构124的夹角θ(或θi)可以在不改变或者改变加强件120的质量的同时改变加强件120自身的刚度,使得加强件120、弹性元件110为系统提供刚度Kt1发生改变,进一步使得质量Mt1-弹簧Kt1-阻尼Rt1系统,翻转运动的谐振频率发生改变,从而使得振动组件100第二个谐振位置发生改变,同时还可以控制振动组件100第二谐振峰的3dB带宽。在一些实施例中,可以通过增大条形结构124的夹角θ(或θi),有效增加振动组件100第三谐振峰的3dB带宽。
对应于某些需要低Q值宽带宽的振动组件100频响,可设计较大的条形结构124的夹角θ(或θi)。在一些实施例中,条形结构124的夹角为θ的范围可以为0至150°。在一些实施例中,条形结构124的夹角为θ的范围可以为0至120°。在一些实施例中,条形结构124的夹角为θ的范围可以为0至90°。在一些实施例中,条形结构124的夹角为θ的范围可以为0至80°。在一些实施例中,条形结构124的夹角为θ的范围可以为0°至60°。在一些实施例中,条形结构124的夹角为θi的范围可以为0至90°。在一些实施例中,条形结构124的夹角为θi的范围可以为0至80°。在一些实施例中,条形结构124的夹角为θi的范围可以为0至70°。在一些实施例中,条形结构124的夹角为θi的范围可以为0至60°。在一些实施例中,条形结构124的夹角为θi的范围可以为0至45°。
对应于某些需要高Q值窄带宽的振动组件100频响,可设计较小的条形结构124的夹角θ(或θi)。在一些实施例中,条形结构124的夹角为θ的范围可以为0至90°。在一些实施例中,条形结构124的夹角为θ的范围可以为0至80°。在一些实施例中,条形结构124的夹角为θ的范围可以为0至70°。在一些实施例中,条形结构124的夹角为θ的范围可以为0至60°。在一些实施例中,条形结构124的夹 角为θ的范围可以为0至45°。在一些实施例中,条形结构124的夹角为θi的范围可以为0至60°。在一些实施例中,条形结构124的夹角为θi的范围可以为0至80°。在一些实施例中,条形结构124的夹角为θi的范围可以为0至90°。在一些实施例中,条形结构124的夹角为θi的范围可以为0至120°。在一些实施例中,条形结构124的夹角为θi的范围可以为0至150°。
在一些实施例中,定义θ与θi关系为:
θ=-θi             (公式9)
对应于某些需要低Q值宽带宽的扬声器频响,可设计较大的条形结构124的夹角θ。在一些实施例中,条形结构124的夹角为θ的范围可以为-90°至150°。在一些实施例中,条形结构124的夹角为θ的范围可以为-45°至90°。在一些实施例中,条形结构124的夹角为θ的范围可以为0°至60°。
对应于某些需要高Q值窄带宽的扬声器频响,可设计较小的条形结构124的夹角θ在一些实施例中,条形结构124的夹角为θ的范围可以为-150°至90°。在一些实施例中,条形结构124的夹角为θ的范围可以为-90°至45°。在一些实施例中,条形结构124的夹角为θ的范围可以为-60°至0°。
在一些实施例中,对于一些不规则形状的条形结构124,无法对条形结构124夹角的方法进行设计,此时可采用面积的方法进行设计,可以不变化或者变化加强件120质量同时改变加强件120的自身刚度,使得加强件120、弹性元件110为系统提供刚度Kt1发生改变,进一步使得质量Mt1-弹簧Kt1-阻尼Rt1系统,翻转运动的谐振频率发生改变,从而使得振动组件100第二个谐振位置发生改变;进一步的,还可以控制振动组件100第二谐振峰的3dB带宽。
请参照图26A-图26B,图26A-图26B是根据本说明书一些实施例所示的具有不规则条形结构的加强件的结构示意图。在一些实施例中,为了准确设计不规则条形结构以便达到调节振动组件谐振峰的目的,参见图26A,以加强件120最大轮廓定义半径为R的圆,同时最大轮廓定义的圆的半径R的1/2定义半径为R/2,定义半径为R/2范围内加强件120水平投影面积为Sin,半径为R/2与半径为R圆之间范围内加强件120水平投影(即沿振动组件的振动方向的投影)面积为Sout,定义物理量τ为加强件120水平投影面积为Sout与加强件120水平投影面积为Sin的比值:
τ=Sout/Sin(公式10)
在一些实施例中,可以通过调节加强件120水平投影面积为Sout与加强件120水平投影面积为Sin的比值τ来控制加强件120的质量分布,从而实现对振动组件100第三谐振峰的带宽控制。对于其他类型规则的加强件120结构,参见图26B,例如椭圆形、长方形、正方形、其他多边形结构,以加强件120最大轮廓定义与加强件120类似的图形进行包络,并定义图形中心区域为参考点,参考点至轮廓包络线各个点距离为R(例如图26B所示,参考点至矩形轮廓包络线的四边的距离分别为Ri、Ri+1、Ri+2、Ri+3),所有对应R/2点(例如图26B所示,距离为Ri/2、Ri+1/2、Ri+2/2、Ri+3/2的点)形成区域加强件120水平投影面积为Sin,距离R/2与距离为R之间范围内加强件120水平投影面积为Sout;对于其他不规则的加强件120结构,以其最大轮廓以相近结构的规则图形进行包络,并以如上相同的方式定义Sin、Sout、比值τ。
对应于某些需要低Q值宽带宽的振动组件100频响,可设计较大质量集中于加强件120中心区域。在一些实施例中,为了使加强件120的中心区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为0.3-2。在一些实施例中,为了使加强件120的中心区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为0.5-1.5。在一些实施例中,为了使加强件120的中心区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为0.5-1.2;在一些实施例中,为了使加强件120的中心区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为0.5-1.3;在一些实施例中,为了使加强件120的中心区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为0.5-1.4;在一些实施例中,为了使加强件120的中心区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为0.3-1.2;在一些实施例中,为了使加强件120的中心区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为0.3-1.6;在一些实施例中,为了使加强件120的中心区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为0.5-2;在一些实施例中,为了使加强件120的中心区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为0.5-2.2;在一些实施例中,为了使加强件120的中心区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为0.3-2.2;在一些实施例中,为了使加强件120的中心区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为0.3-2。
对应于某些需要高Q值窄带宽的振动组件100频响,可设计较大质量集中于加强件120边缘区域。在一些实施例中,为了使加强件120的边缘区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为1-3。在一些实施例中,为了使加强件120的边缘区域具有较大质量,水平投 影面积为Sout与水平投影面积为Sin比值τ取值范围可以为1.2-2.8。在一些实施例中,为了使加强件120的边缘区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为1.4-2.6。在一些实施例中,为了使加强件120的边缘区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为1.6-2.4。在一些实施例中,为了使加强件120的边缘区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为1.8-2.2。在一些实施例中,为了使加强件120的边缘区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为1.2-2。在一些实施例中,为了使加强件120的边缘区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为1-2。在一些实施例中,为了使加强件120的边缘区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为2-2.8。在一些实施例中,为了使加强件120的边缘区域具有较大质量,水平投影面积为Sout与水平投影面积为Sin比值τ取值范围可以为2-2.5。
在一些实施例中,可以通过调节环形结构122的数量(需要在1-10的范围内),改变加强件120的镂空区域(对应加强件120投影范围内中心区域112的悬空区域)的面积,以调节镂空区域面积与弹性元件110厚度的关系(面积厚度比μ),从而达到调整第三谐振峰的目的;也可以改变加强件120不同环形结构122之间的镂空区域面积的关系(镂空区域面积比γ),从而达到调整第三谐振峰的目的;还可以改变加强件120的凹槽结构与加强件120横向面积的关系(加强件120的凹槽结构与加强件120横向面积比β),调整第一谐振峰、第二谐振峰、第三谐振峰的目的。
在一些实施例中,环形结构122可以包括形心重合的第一环形结构和第二环形结构,此时第一环形结构的径向尺寸小于第二环形结构的径向尺寸。在一些实施例中,条形结构124还可以包括至少一个第一条形结构和至少一个第二条形结构,至少一个第一条形结构设置于第一环形结构内侧,并与第一环形结构连接,至少一个第二条形结构设置于第一环形结构和第二环形结构之间,并分别与第一环形结构和第二环形结构连接,以使加强件120形成多个不同的镂空区域。
请参照图27A-图27C,图27A-图27C是根据本说明书一些实施例所示的具有不同数量的环形结构的振动组件结构示意图,其中图27A的环形结构122是单环结构,图27B的环形结构122是双环结构,图27C的环形结构122是三环结构。通过设计环形结构122的数量可实现对加强件120质量、刚度的调节,同时可实现对中心区域112镂空区域面积大小的调节。在一些实施例中,环形结构122的数量范围可以为1到10。在一些实施例中,环形结构122的数量范围可以为1到5。在一些实施例中,环形结构122的数量范围可以为1到3。
在一些实施例中,通过环形结构122的数量调节,可以调节加强件120质量,使得加强件120质量、弹性元件110质量、等效空气质量、驱动端等效质量组合形成总等效质量Mt发生改变,故形成质量Mt-弹簧Kt-阻尼Rt系统的谐振频率发生改变,进而使得振动组件100的一阶谐振频率发生变化。
在一些实施例中,通过环形结构122的数量调节,还可以调节加强件120刚度,使得加强件120、弹性元件110(尤其是中心区域112被加强件120覆盖的区域)为系统提供刚度Kt1发生改变,进一步使得质量Mt1-弹簧Kt1-阻尼Rt1系统,翻转运动的谐振频率发生改变,从而使得振动组件100第二个谐振位置发生改变。在一些实施例中,通过环形结构122的数量调节,还可以使得条形结构124从中心向四周延伸不同位置刚度分布不同,当驱动端频率接近Mt1-弹簧Kt1-阻尼Rt1系统谐振频率时,连接区域115、折环区域114、中心区域112被加强件120覆盖的区域与折环区域114之间的局部悬空区域的面积在加强件120带动下振动,并实现一个3dB带宽可调的谐振峰。
在一些实施例中,通过环形结构122的数量调节,还可以调节中心区域112镂空区域面积的大小,使得各个镂空区域具有的等效质量Mmi、等效刚度Kai与Kai’、等效阻尼Rai与Rai’发生改变,从而使得振动组件100的第三谐振峰位置发生改变。
在一些实施例中,通过调节环形结构122数量,可以使得振动组件100第三谐振峰位于10kHz-18kHz范围,各个镂空区域面积Si与各个镂空区域部分振膜厚度Hi比值为面积厚度比μ范围为150-700;任意两个弹性元件110的镂空区域面积Ski与Sji之比γ范围为0.25-4;加强件120的凹槽结构与加强件120横向面积比β为0.2-0.7。在一些实施例中,通过调节环形结构122数量,可以使得振动组件100第三谐振峰位于10kHz-18kHz范围,各个镂空区域面积Si与各个镂空区域部分振膜厚度Hi比值为面积厚度比μ范围为100-1000;任意两个弹性元件110的镂空区域面积Ski与Sji之比γ范围为0.1-10;加强件120的凹槽结构与加强件120横向面积比β为0.1-0.8。
请参照图28,图28是根据本说明书一些实施例所示的内外环条形结构不连续的振动组件的结构示意图。在一些实施例中,当振动组件100包括至少2个环形结构时,环形结构122将条形结构沿124中心向四周延伸方向分为多个区域,各个区域中的条形结构124可以连续设置、也可以不连续设置。例如,环形结构122可以包括形心重合的第一环形结构1221和第二环形结构1222,第一环形结构1221的径向尺寸小于第二环形结构1222的径向尺寸。条形结构124可以包括至少一个第一条形结构1241和至少一个第 二条形结构1242,至少一个第一条形结构1241设置于第一环形结构1221内侧,并与第一环形结构1221连接,至少一个第二条形结构1242设置于第一环形结构1221和第二环形结构1222之间,并分别与第一环形结构1221和第二环形结构1222连接。在一些实施例中,至少一个第一条形结构1241和至少一个第二条形结构1242在第一环形结构1221上的连接位置可以不同。在一些实施例中,第一条形结构1241和第二条形结构1242的数量可以相同,也可以不同。
通过环形结构122内外区域的条形结构124不连续的设置,可实现环形结构122内外区域的条形结构124数量不等,内外区域的条形结构124横向宽度不同,内外区域的条形结构124横向形状不同,从而可以在较大范围内调节加强件120的质量、刚度和质心分布,以及中心区域112的镂空区域数量以及面积大小。
在一些实施例中,通过调节加强件120的质量,可以调控总等效质量Mt发生改变,故形成质量Mt-弹簧Kt-阻尼Rt系统的谐振频率发生改变,进而使得振动组件100的一阶谐振频率发生变化。通过调节加强件120刚度,可调节Mt1-弹簧Kt1-阻尼Rt1系统,翻转运动的谐振频率,从而使得振动组件100第二个谐振位置发生改变;使得条形结构124从中心向四周延伸不同位置刚度分布不同,实现一个3dB带宽可调的振动组件100第二谐振峰。通过调节中心区域112的镂空区域数量以及面积大小,可以使得振动组件100的第三谐振峰位置与灵敏度发生改变。
在一些实施例中,通过环形结构122内外区域的条形结构124不连续设置,使得振动组件100第三谐振峰位于10kHz-18kHz范围,各个镂空区域面积Si与各个镂空区域部分弹性元件110厚度Hi比值为面积厚度比μ范围为150-700,任意两个弹性元件110镂空区域面积Ski与Sji之比γ范围为0.25-4,加强件120的凹槽结构与加强件120横向面积比β为0.2-0.7。在一些实施例中,通过环形结构122内外区域的条形结构124不连续设置,可以使得振动组件100第三谐振峰位于10kHz-18kHz范围,各个镂空区域面积Si与各个镂空区域部分振膜厚度Hi比值为面积厚度比μ范围为100-1000;任意两个弹性元件110的镂空区域面积Ski与Sji之比γ范围为0.1-10;加强件120的凹槽结构与加强件120横向面积比β为0.1-0.8。
请参照图29,图29是根据本说明书一些实施例所示的具有多个环形结构的振动组件的结构示意图。在一些实施例中,可以通过设计多个环形结构122从而设计多个环形结构122的间隔区域,通过设计不同间隔区域的条形结构124的数量,从而实现加强件120的质量分布设计。需要说明的是,各个环形结构122的间隔区域设计的条形结构124的数量可以不等、形状可以不同、位置也可不用对应。
在一些实施例中,可以定义由中心往外的各个环形结构122依次为第一环形结构1221、第二环形结构1222、第三环形结构1223、……第n环形结构,第n环形结构与第n-1环形结构间隔区域条形结构122为第n条形结构(如第一条形结构1241、第二条形结构1242、第三条形结构1243),定义第n条形结构的数量为Qn,其中,n为自然数。定义物理量q为任意第i条形结构的数量Qi与第j条形结构的数量为Qj的比值:
q=Qi/Qj               (公式11)
在一些实施例中,任意第i条形结构的数量Qi与第j条形结构的数量Qj比值q取值范围可以为0.05-20。在一些实施例中,任意第i条形结构的数量Qi与第j条形结构的数量Qj比值q取值范围可以为0.1-10。在一些实施例中,任意第i条形结构的数量Qi与第j条形结构的数量Qj比值q取值范围可以为0.1-8。在一些实施例中,任意第i条形结构的数量Qi与第j条形结构的数量Qj比值q取值范围可以为0.1-6。在一些实施例中,任意第i条形结构的数量Qi与第j条形结构的数量Qj比值q取值范围可以为0.5-6。在一些实施例中,任意第i条形结构的数量Qi与第j条形结构的数量Qj比值q取值范围可以为1-4。在一些实施例中,任意第i条形结构的数量Qi与第j条形结构的数量Qj比值q取值范围可以为1-2。在一些实施例中,任意第i条形结构的数量Qi与第j条形结构的数量Qj比值q取值范围可以为0.5-2。
在一些实施例中,环形结构122的形状可以包括圆环形、椭圆环形、多边环形和曲线环形中的至少一种。通过设计不同形状和/或不同尺寸大小的环形结构122,可以实现对加强件120质量、刚度的调节,同时可实现对中心区域112镂空区域面积大小的调节。
在一些实施例中,通过悬空区域1121的尺寸与中心区域112的面积关系,使得加强件120在该频率段实现一定的弯曲变形,实现弹性元件110不同区域的声压叠加相增与相减,从而实现最大的声压级输出。在一些实施例中,悬空区域1121水平面投影面积为Sv与振动组件100振膜中心部水平投影面积为Sc的比值取值范围可以为0.05-0.7。在一些实施例中,悬空区域1121水平面投影面积为Sv与振动组件100振膜中心部水平投影面积为Sc的比值取值范围可以为0.1-0.5。在一些实施例中,悬空区域1121水平面投影面积为Sv与振动组件100振膜中心部水平投影面积为Sc的比值取值范围可以为0.15-0.35。
请参照图30A-图30E,图30A-图30E是根据本说明书一些实施例所示的具有不同结构的振动组件的结构示意图。在一些实施例中,加强件120的外轮廓可以是具有向外延伸辐条的结构(如图30A所示),也可以是圆形环形结构、椭圆形环形结构或曲线环形结构(如图30B所示)、多边形、其他不规则 的环形结构等,其中多边形可以包括三角形、四边形、五边形、六边形(如图30C-图30D所示)、七边形、八边形九边形、十边形等。在一些实施例中,弹性元件110也可以是多边形,例如:三角形、四边形(如图30D与图30E所示)、五边形、六边形、七边形、八边形、九边形、十边形等以及其他不规则的图形,加强件120可对应设计为相似或不相似的结构,从而通过加强件120、中心区域112、折环区域114的折环的形状控制悬空区域1121的形状,从而实现对振动组件100性能的调节。
请参照图31,图31是根据本说明书一些实施例所示的变宽度的环形结构的振动组件的结构示意图。在一些实施例中,通过在任意一个环形结构122不同位置设计不等宽的局部结构,可以有效的调整调节加强件120的质量,可以调控总等效质量Mt发生改变,故形成质量Mt-弹簧Kt-阻尼Rt系统的谐振频率发生改变,进而使得振动组件100的一阶谐振频率发生变化。同时,通过在任意一个环形结构122不同位置(例如,相邻位置)设计不等宽的局部结构,可以调节加强件120的刚度以及质心分布,从而调节Mt1-弹簧Kt1-阻尼Rt1系统翻转运动的谐振频率,使得振动组件100第二个谐振位置发生改变。不等宽的环形结构122设计还可以使得条形结构124从中心向四周延伸不同位置刚度分布不同,实现一个3dB带宽可调的振动组件100第二谐振峰。而且不等宽的环形结构122设计还可以调节中心区域112的悬空区域数量以及面积大小,使得振动组件100的第三谐振峰位置与灵敏度发生改变。
在一些实施例中,通过任意一个环形结构122任意位置(例如,相邻位置)设计不等宽的局部结构,使得振动组件100第三谐振峰位于15kHz-18kHz范围,各个镂空区域面积Si与各个镂空区域部分弹性元件110厚度Hi比值为面积厚度比μ范围为150-700,任意两个弹性元件110镂空区域面积Ski与Sji之比γ范围为0.25-4,加强件120的凹槽结构与加强件120横向面积比β为0.2-0.7。在一些实施例中,通过任意一个环形结构122任意位置设计不等宽的局部结构,使得振动组件100第三谐振峰位于15kHz-18kHz范围,各个镂空区域面积Si与各个镂空区域部分振膜厚度Hi比值为面积厚度比μ范围为100-1000;任意两个弹性元件110的镂空区域面积Ski与Sji之比γ范围为0.1-10;加强件120的凹槽结构与加强件120横向面积比β为0.1-0.8。
请参照图32,图32是根据本说明书一些实施例所示的具有不规则环形结构的振动组件的结构示意图。在一些实施例中,通过设计不同环形结构122的不同位置的局部结构,例如圆形、长方形、正方形、三角形、六边形、八边形、其他多边形、椭圆形以及其他不规则环形结构122,可以更灵活的控制环形结构122局部区域的尺寸、位置、形状,可以有效的调整调节加强件120的质量,可以调控总等效质量Mt发生改变,故形成质量Mt-弹簧Kt-阻尼Rt系统的谐振频率发生改变,进而使得振动组件100的第一谐振频率发生变化。通过调节加强件120刚度、加强件120质心分布,可调节Mt1-弹簧Kt1-阻尼Rt1系统,翻转运动的谐振频率,从而使得振动组件100第二谐振峰位置发生改变;使得条形结构124从中心向四周延伸不同位置刚度分布不同,实现一个3dB带宽可调的振动组件100第二谐振峰。同时可以有效的调节中心区域112的悬空区域数量以及面积大小,使得振动组件100的第三谐振峰位置与灵敏度发生改变。此外,通过设计不规则的结构,可以有效的避免应力集中,使得加强件120的变形更小。
在一些实施例中,参见图32,加强件120包括双环形结构,双环形结构包括位于内侧的第一环形结构1221和位于外侧的第二环形结构1222。在一些实施例中,第一环形结构1221和第二环形结构1222的形状可以不同。在一些实施例中,第一环形结构1221可以是曲线环形,第二环形结构1222可以是圆环形。在一些实施例中,通过设计不规则环形结构122,可以使得振动组件100第三谐振峰位于10kHz-18kHz范围,各个镂空区域面积Si与各个镂空区域部分振膜厚度Hi比值为面积厚度比μ范围为150-700,任意两个振膜镂空区域面积Ski与Sji之比γ范围为0.25-4,加强件120的凹槽结构与加强件120横向面积比β为0.2-0.7。在一些实施例中,通过设计不规则环形结构122,使得振动组件100第三谐振峰位于15kHz-18kHz范围,各个镂空区域面积Si与各个镂空区域部分振膜厚度Hi比值为面积厚度比μ范围为100-1000;任意两个弹性元件110的镂空区域面积Ski与Sji之比γ范围为0.1-10;加强件120的凹槽结构与加强件120横向面积比β为0.1-0.8。
请参照图33A-图33B,图33A是根据本说明书一些实施例中所示的具有台阶结构的条形结构的振动组件的结构示意图。图33B是根据本说明书另一些实施例中所示的具有台阶结构的条形结构的振动组件的结构示意图。在一些实施例中,参见图33A,通过设计具有台阶结构的条形结构124的加强件120,可保证控制中心区域112的镂空区域(影响振动组件100的第三谐振峰)、悬空区域1121不变的情况下,改变加强件120的刚度、质量、质心分布,从而实现不改变振动组件100的第三谐振峰情况下,对振动组件100的第一谐振峰位置、第二谐振峰位置与带宽进行有效调节,可根据实际应用需求调节不同的频响曲线。
在一些实施例中,通过从厚度方向(即沿振动组件100的振动方向),设计加强件120不同区域的厚度,实现根据实际所需的质量分布,可以不变化或者变化加强件120质量同时改变加强件120自身刚度,使得加强件120、弹性元件110为系统提供的刚度Kt1发生改变,进一步使得质量Mt1-弹簧Kt1-阻尼Rt1系统,翻转运动的谐振频率发生改变,从而使得振动组件100的第二谐振峰位置发生改变;进一步的, 可以控制振动组件100的第二谐振峰的3dB带宽。
如图33B所示为具有阶梯条形结构124的加强件120的结构,及其D-D剖面的剖面结构。定义加强件120结构最边缘台阶厚度为h1、次边缘台阶厚度为h2……,中心台阶厚度为hn,定义物理量∈为任意两个台阶厚度hj与hk(k>j)的比值:
∈=hj/hk                (公式12)
定义物理量φ为加强件120结构最边缘台阶厚度为h1与中心台阶厚度为hn的比值:
φ=h1/hn             (公式13)
在一些实施例中,为了保证加强件120的强度,任意两个台阶厚度hj与hk的比值∈取值范围为0.1-10。在一些实施例中,为了保证加强件120的强度,任意两个台阶厚度hj与hk的比值∈取值范围为0.1-8。在一些实施例中,为了保证加强件120的强度,任意两个台阶厚度hj与hk的比值∈取值范围为0.2-8。在一些实施例中,为了保证加强件120的强度,任意两个台阶厚度hj与hk的比值∈取值范围为0.1-7。在一些实施例中,为了保证加强件120的强度,任意两个台阶厚度hj与hk的比值∈取值范围为0.1-6。在一些实施例中,为了保证加强件120的强度,任意两个台阶厚度hj与hk的比值∈取值范围为0.2-6。在一些实施例中,为了保证加强件120的强度,任意两个台阶厚度hj与hk的比值∈取值范围为0.2-5。
对应于某些需要低Q值宽带宽的振动组件100频响,可设计较大质量集中于加强件120的靠近中心的位置。在一些实施例中,为了使加强件120的中心区域具有较大质量,加强件120结构最边缘台阶厚度为h1与中心台阶厚度为hn的比值φ取值范围为0.1-1。在一些实施例中,为了使加强件120的中心区域具有较大质量,加强件120结构最边缘台阶厚度为h1与中心台阶厚度为hn的比值φ取值范围为0.2-0.8。在一些实施例中,为了使加强件120的中心区域具有较大质量,加强件120结构最边缘台阶厚度为h1与中心台阶厚度为hn的比值φ取值范围为0.2-0.6。在一些实施例中,为了使加强件120的中心区域具有较大质量,加强件120结构最边缘台阶厚度为h1与中心台阶厚度为hn的比值φ取值范围为0.2-0.4。
对应于某些需要高Q值窄带宽的振动组件100频响,可设计较大质量集中于加强件120的边缘区域。在一些实施例中,为了使加强件120的边缘区域具有较大质量,加强件120结构最边缘台阶厚度为h1与中心台阶厚度为hn的比值φ取值范围为1-10。在一些实施例中,为了使加强件120的边缘区域具有较大质量,加强件120结构最边缘台阶厚度为h1与中心台阶厚度为hn的比值φ取值范围为1.2-6。在一些实施例中,为了使加强件120的边缘区域具有较大质量,加强件120结构最边缘台阶厚度为h1与中心台阶厚度为hn的比值φ取值范围为2-6。在一些实施例中,为了使加强件120的边缘区域具有较大质量,加强件120结构最边缘台阶厚度为h1与中心台阶厚度为hn的比值φ取值范围为3-6。在一些实施例中,为了使加强件120的边缘区域具有较大质量,加强件120结构最边缘台阶厚度为h1与中心台阶厚度为hn的比值φ取值范围为4-6。在一些实施例中,为了使加强件120的边缘区域具有较大质量,加强件120结构最边缘台阶厚度为h1与中心台阶厚度为hn的比值φ取值范围为5-6。
请参照图34A-图34C,图34A-图34C是根据本说明书一些实施例所示的不同形状加强件的振动组件的结构示意图。其中图34A中的加强件120的形状为矩形,环形结构122为单环矩形结构,条形结构124为梯形结构;图34B中的加强件120的形状为矩形,环形结构122为双环矩形结构,条形结构124为梯形结构;图34C中的加强件120的形状为六边形形,环形结构122为单环六边形结构,条形结构124为梯形结构。在一些实施例中,振动组件100的加强件120的形状可以与弹性元件110的形状相匹配。弹性元件110的结构也可以有多种,例如圆形、方形、多边形等。对应的加强件120的形状也可以设计成不同的形状,包括但不限于圆形、方形(例如,长方形、正方形)、三角形、六边形、八边形、其他多边形、椭圆形以及其他不规则的结构。
不同形状的加强件120与不同形状的弹性元件110可以灵活设计,以改变加强件120的质量及刚度、振动组件100的质量与刚度等,从而改变振动组件100的谐振频率。
在一些实施例中,加强件120的形状与弹性元件110的形状均可以包括多种不同的形状,此时对于中心区域112向四周延伸的条形结构124,可以针对其横向设计不同的宽度、不同的形状;也可以对环形结构122进行设计,设计不同形状、数量、尺寸的环形结构122,环形结构122可以设计为整个环形、也可设计为局部环形结构122;不同环形结构122将条形结构124划分成不同区域,在不同区域中,由中心向四周不同区域条形结构124可以是连续的、交错的,数量可以相等,也可以不相等。在一些实施例中,环形结构122也可以设计为圆形、方形(例如,长方形、正方形)、三角形、六边形、八边形、其他多边形、椭圆形以及其他不规则的结构。
在一些实施例中,可以通过设计包括不同形状的加强件120的振动组件100,使得振动组件100第三谐振峰位于10kHz-18kHz范围;各个镂空区域面积Si与各个镂空区域部分弹性元件110的厚度Hi比值为面积厚度比μ范围为150-700;任意两个弹性元件110的悬空区域面积Ski与Sji之比γ范围为0.25-4;镂空区域面积与加强件120的横向面积比β为0.2-0.7。在一些实施例中,可以通过设计包括不同形状 的加强件120的振动组件100,使得振动组件100第三谐振峰位于10kHz-18kHz范围;各个镂空区域面积Si与各个镂空区域部分弹性元件110的厚度Hi比值为面积厚度比μ范围为100-1000;任意两个弹性元件110的悬空区域面积Ski与Sji之比γ范围为0.1-10;镂空区域面积与加强件120的横向面积比β为0.1-0.8。
请参照图35A-图35D,图35A-图35D是根据本说明书一些实施例所示的包括局部质量结构的振动组件的结构示意图。其中图35A所示为双弹性连接的局部质量结构126,图35B所示为四弹性连接的局部质量结构126,图35C所示为S形四弹性连接的局部质量结构126,图35D所示为S形四弹性连接的不规则的局部质量结构126。在一些实施例中,可以通过在中心区域112的悬空区域设计局部质量结构126,从而灵活的调节各个镂空区域的等效质量Mmi、等效刚度Kai与Kai’、等效阻尼Rai与Rai’,从而使得振动组件100第三谐振峰得到有效的调节。同时通过设计局部质量结构126,还可以较大范围调节加强件120的质量、刚度,从而调节振动组件100的第一谐振峰和第二谐振峰。
在一些实施例中,局部质量结构126可以通过双弹性结构环向连接至相邻条形结构124上(如图31所示),也可通过双弹性结构环向连接至相邻环形结构122上。在另一些实施例中,各个局部质量结构126还可以与条形结构124或环形结构122均不连接,仅与弹性元件110连接。
在一些实施例中,局部质量结构126还可以通过四弹性结构同时连接于相邻条形结构124和环形结构122上(如图35B所示)。在一些实施例中,弹性结构平面形状可以是规则的形状(如图35A与图35B所示),也可以是不规则形状(如图35C所示)。在一些实施例中,局部质量结构126可以是规则形状(如图35A-图35C所示),也可以是任意不规则形状(如图35D所示)。
在一些实施例中,通过设计局部质量结构126的尺寸、位置、数量、形状,弹性连接结构尺寸、位置、数量、形状,可以使得振动组件100的第三谐振峰位于10kHz-18kHz范围;各个镂空区域面积Si与各个镂空区域部分弹性元件110的厚度Hi比值为面积厚度比μ范围为150-700;任意两个弹性元件110的悬空区域面积Ski与Sji之比γ范围为0.25-4;镂空区域面积与加强件120的横向面积比β为0.2-0.7。在一些实施例中,通过设计局部质量结构126的尺寸、位置、数量、形状,弹性连接结构尺寸、位置、数量、形状,可以使得振动组件100的第三谐振峰位于10kHz-18kHz范围;各个镂空区域面积Si与各个镂空区域部分弹性元件110的厚度Hi比值为面积厚度比μ范围为100-1000;任意两个弹性元件110的悬空区域面积Ski与Sji之比γ范围为0.1-10;镂空区域面积与加强件120的横向面积比β为0.1-0.8。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (35)

  1. 一种振动组件,包括:
    弹性元件,所述弹性元件包括中心区域、设置于所述中心区域外围的折环区域,以及设置于所述折环区域外围的固定区域,所述弹性元件被配置为沿垂直于所述中心区域的方向振动,其中,所述中心区域包括沿所述振动方向堆叠的弹性件和加强件,所述加强件上设有多个开口朝向所述弹性件的凹槽结构。
  2. 如权利要求1所述的振动组件,其中,在所述加强件上,所述凹槽结构以外的区域设有镂空结构。
  3. 如权利要求2所述的振动组件,其中,在所述振动方向上,所述加强件的投影面积与所述中心区域的投影面积的比值范围为0.15-0.8。
  4. 如权利要求3所述的振动组件,其中,在所述振动方向上,所述加强件的投影面积与所述中心区域的投影面积的比值范围为0.35-0.65。
  5. 如权利要求2-4任一项所述的振动组件,其中,所述振动组件在振动时,至少在10000Hz-20000Hz的范围具有谐振峰。
  6. 如权利要求1-5任一项所述的振动组件,其中,所述凹槽结构具有沿所述振动方向的高度尺寸,所述凹槽结构的侧壁具有厚度尺寸,所述高度尺寸与所述厚度尺寸的比值范围不小于7.14。
  7. 如权利要求6所述的振动组件,其中,所述高度尺寸与所述厚度尺寸的比值范围不小于9。
  8. 如权利要求6或7所述的振动组件,其中,所述振动组件在振动时至少在5000Hz-10000Hz的范围内具有谐振峰。
  9. 如权利要求1-8任一项所述的振动组件,其中,所述凹槽结构具有沿所述振动方向的高度尺寸,所述高度尺寸的取值范围为50um-500um。
  10. 如权利要求9所述的振动组件,其中,所述高度尺寸的取值范围为200um-350um。
  11. 如权利要求1-10任一项所述的振动组件,其中,所述凹槽结构的侧壁具有厚度尺寸,所述厚度尺寸的取值范围不大于50um。
  12. 如权利要求11所述的振动组件,其中,所述厚度尺寸的取值范围不大于40um。
  13. 如权利要求1-12任一项所述的振动组件,其中,所述凹槽结构的开口处设有沿所述弹性件表面延伸的裙边结构,所述裙边结构宽度范围为100um-300um。
  14. 如权利要求13所述的振动组件,其中,所述裙边结构宽度范围为100um-200um。
  15. 如权利要求1-14任一项所述的振动组件,其中,所述凹槽结构的形状包括U形、T形、工字形、锥形中的至少一种。
  16. 如权利要求1-15任一项所述的振动组件,其中,所述加强件的材料的杨氏模量高于所述弹性件的材料的杨氏模量。
  17. 如权利要求1-15任一项所述的振动组件,其中,所述加强件的材料与所述弹性件的材料相同。
  18. 如权利要求1-17任一项所述的振动组件,其中,所述凹槽结构内设填充材料,所述填充材料的杨氏模量小于所述加强件的材料的杨氏模量。
  19. 一种振动组件,包括:
    弹性元件,所述弹性元件包括中心区域、设置于所述中心区域外围的折环区域,以及设置于所述折环区域外围的固定区域,所述弹性元件被配置为沿垂直于所述中心区域的方向振动,其中,所述中心区域包括并肩排列的加强区域和弹性区域,所述加强区域上设有多个开口朝向所述振动方向的凹槽结构。
  20. 如权利要求19所述的振动组件,其中,在所述振动方向上,所述加强区域的投影面积与所述中心区域的总投影面积的比值范围为0.15-0.8。
  21. 如权利要求20所述的振动组件,其中,在所述振动方向上,所述加强区域的投影面积与所述中心区域的投影面积的比值范围为0.35-0.65。
  22. 如权利要求20或21任一项所述的振动组件,其中,所述振动组件在振动时,至少在10000Hz-20000Hz的范围具有谐振峰。
  23. 如权利要求19-22任一项所述的振动组件,其中,所述凹槽结构具有沿所述振动方向的高度尺寸,所述凹槽结构的侧壁具有厚度尺寸,所述高度尺寸与所述厚度尺寸的比值范围不小于7.14。
  24. 如权利要求23所述的振动组件,其中,所述高度尺寸与所述厚度尺寸的比值范围不小于9。
  25. 如权利要求23或24所述的振动组件,其中,所述振动组件在振动时至少在5000Hz-10000Hz的范围内具有谐振峰。
  26. 如权利要求19-25任一项所述的振动组件,其中,所述凹槽结构具有沿所述振动方向的高度尺寸,所述高度尺寸的取值范围为50um-500um。
  27. 如权利要求26所述的振动组件,其中,所述高度尺寸的取值范围为200um-350um。
  28. 如权利要求19-26任一项所述的振动组件,其中,所述凹槽结构的侧壁具有厚度尺寸,所述厚度尺寸的取值范围不大于50um。
  29. 如权利要求28所述的振动组件,其中,所述厚度尺寸的取值范围不大于40um。
  30. 如权利要求19-29任一项所述的振动组件,其中,所述凹槽结构的开口处设有与所述弹性区域相连的裙边结构,所述裙边结构宽度范围为100um-300um。
  31. 如权利要求30所述的振动组件,其中,所述裙边结构宽度范围为100um-200um。
  32. 如权利要求19-31任一项所述的振动组件,其中,所述凹槽结构的形状包括U形、T形、工字形、锥形中的至少一种。
  33. 如权利要求19-32任一项所述的振动组件,其中,所述加强区域的材料的杨氏模量高于所述弹性区域的材料的杨氏模量。
  34. 如权利要求19-32任一项所述的振动组件,其中,所述加强区域的材料与所述弹性区域的材料相同。
  35. 如权利要求19-34任一项所述的振动组件,其中,所述凹槽结构内设填充材料,所述填充材料的杨氏模量小于所述弹性元件的材料的杨氏模量。
PCT/CN2023/113720 2022-08-20 2023-08-18 一种振动组件 WO2024041454A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211003675.2 2022-08-20
CN202211003675 2022-08-20

Publications (1)

Publication Number Publication Date
WO2024041454A1 true WO2024041454A1 (zh) 2024-02-29

Family

ID=88389807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113720 WO2024041454A1 (zh) 2022-08-20 2023-08-18 一种振动组件

Country Status (2)

Country Link
CN (1) CN116939439A (zh)
WO (1) WO2024041454A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1471336A (zh) * 2002-06-24 2004-01-28 ���µ�����ҵ��ʽ���� 扬声器振动膜
US20120093353A1 (en) * 2009-06-26 2012-04-19 Knowles Electronics Asia Pte. Ltd. Micro Speaker
CN108900955A (zh) * 2018-06-27 2018-11-27 歌尔股份有限公司 振膜和扬声器
CN209134641U (zh) * 2019-01-08 2019-07-19 京东方科技集团股份有限公司 发声装置及音箱
CN210579202U (zh) * 2019-10-15 2020-05-19 深圳市豪恩声学股份有限公司 一种振膜结构以及头戴式耳机
CN216752032U (zh) * 2022-01-26 2022-06-14 苏州敏芯微电子技术股份有限公司 一种振膜、微机电结构、麦克风以及终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1471336A (zh) * 2002-06-24 2004-01-28 ���µ�����ҵ��ʽ���� 扬声器振动膜
US20120093353A1 (en) * 2009-06-26 2012-04-19 Knowles Electronics Asia Pte. Ltd. Micro Speaker
CN108900955A (zh) * 2018-06-27 2018-11-27 歌尔股份有限公司 振膜和扬声器
CN209134641U (zh) * 2019-01-08 2019-07-19 京东方科技集团股份有限公司 发声装置及音箱
CN210579202U (zh) * 2019-10-15 2020-05-19 深圳市豪恩声学股份有限公司 一种振膜结构以及头戴式耳机
CN216752032U (zh) * 2022-01-26 2022-06-14 苏州敏芯微电子技术股份有限公司 一种振膜、微机电结构、麦克风以及终端

Also Published As

Publication number Publication date
CN116939439A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US6757404B2 (en) Loud speaker, diaphragm and process for making the diaphragm
JP5085318B2 (ja) 音響装置及び音響装置製造方法
EP2564602B1 (en) Loudspeaker and diaphragm therefor
US9399372B2 (en) Vehicle wheel
CN102067627B (zh) 改进的声学装置
EP2540095B1 (en) Mass loading for piston loudspeakers
EP2952014B1 (en) Electro acoustic diaphragm
KR101630353B1 (ko) 질량체를 가진 압전 스피커 및 그 제조 방법
CN110225437B (zh) 电声换能器
EP1839462B1 (en) Coated speaker dome
WO2024041454A1 (zh) 一种振动组件
JP2004515178A (ja) ラウドスピーカ
WO2023245807A1 (zh) 一种扬声器
US7418109B2 (en) Diaphragm structure of light sound converter
WO2023173442A1 (zh) 一种振动组件
JP6397489B2 (ja) マイクロホンダイヤフラム用スタビライザ
TWI835518B (zh) 一種揚聲器
JPWO2017149984A1 (ja) スピーカ
WO2021114152A1 (zh) 一种扬声器振动件
EP3469813B1 (en) Electro-acoustic driver
JP4749402B2 (ja) 電気音響変換器用振動板
JP3977829B2 (ja) スピーカ用振動板及びこれを用いたスピーカ
EP1694092A1 (en) Tweeter
CN116801171A (zh) 一种振动组件及扬声器
JP2009218688A (ja) 静電型電気音響変換器、その製造方法およびコンデンサーマイクロホン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856544

Country of ref document: EP

Kind code of ref document: A1