WO2024041356A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2024041356A1
WO2024041356A1 PCT/CN2023/111400 CN2023111400W WO2024041356A1 WO 2024041356 A1 WO2024041356 A1 WO 2024041356A1 CN 2023111400 W CN2023111400 W CN 2023111400W WO 2024041356 A1 WO2024041356 A1 WO 2024041356A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink time
drx
pusch
uplink
harq
Prior art date
Application number
PCT/CN2023/111400
Other languages
English (en)
French (fr)
Inventor
张彦清
薛祎凡
李雪茹
陈二凯
米翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211216354.0A external-priority patent/CN117641625A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024041356A1 publication Critical patent/WO2024041356A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present application relates to the field of communications, and in particular, to an uplink transmission method, terminal equipment and network equipment.
  • C-DRX Connected mode Discontinuous Reception
  • this application provides an uplink transmission method, terminal equipment and network equipment.
  • the technical solution provided by this application can further reduce power consumption, increase battery life, and enhance user experience for some services.
  • it can also be compatible with existing control mechanisms.
  • an uplink transmission method is provided. This method is applied to terminal equipment, and the terminal equipment is configured to receive C-DRX discontinuously in the connected state.
  • the method includes: obtaining an authorization from a network device, which instructs the terminal device to respectively transmit n physical uplink shared channels PUSCH on n uplink time units. After transmitting the first PUSCH on any one or more uplink time units from the 1st uplink time unit to the n-m-1th uplink time unit, the terminal equipment does not start the first hybrid automatic repeat request round-trip time uplink timer. drx-HARQ-RTT-TimerUL.
  • the n upstream time units include the 1st upstream time unit and the n-m-1th upstream time unit, where m is a non-negative integer less than n-1.
  • the first drx-HARQ-RTT-TimerUL corresponds to the first PUSCH.
  • the upstream time unit with a higher sequence number is later.
  • the n PUSCHs include the first PUSCH.
  • the terminal equipment does not turn on the first drx-HARQ-RTT-TimerUL after transmitting the first PUSCH on any one or more uplink time units from the 1st uplink time unit to the n-m-1th uplink time unit. , so the power consumption of the terminal equipment is further reduced.
  • the method includes: the first drx-HARQ-RTT-TimerUL is the drx-HARQ-RTT-TimerUL of the hybrid automatic repeat request HARQ process corresponding to the first PUSCH.
  • the method includes: transmitting the second PUSCH on the i-th uplink time unit from the n-mth uplink time unit to the n-th uplink time unit, and the terminal equipment The next adjacent symbol of the second PUSCH turns on the second drx-HARQ-RTT-TimerUL; where the n uplink time units include the n-mth uplink time unit and the n-th uplink time unit, and the second PUSCH and the second drx- Corresponding to HARQ-RTT-TimerUL, i is any positive integer greater than or equal to n-m and less than or equal to n; n PUSCHs include the second PUSCH.
  • the first drx-HARQ-RTT-TimerUL and the second drx-HARQ-RTT-TimerUL may be the same timer or different timers.
  • the first drx-HARQ-RTT-TimerUL and the second drx-HARQ-RTT-TimerUL are the same timer When -TimerUL) configuration.
  • the subsequent third drx-HARQ-RTT-TimerUL, the first drx-HARQ-RTT-TimerUL and the second drx-HARQ-RTT-TimerUL may also be the same timer.
  • all drx-HARQ-RTT-TimerUL in this application can be the same timer.
  • the method includes: transmitting the third PUSCH on the j-th uplink time unit from the n-mth uplink time unit to the n-th uplink time unit, and the terminal equipment The next adjacent symbol of the third PUSCH turns on the third drx-HARQ-RTT-TimerUL; where the third PUSCH corresponds to the third drx-HARQ-RTT-TimerUL; j is greater than or equal to n-m, and less than or equal to n, and Any positive integer not equal to i; n PUSCHs include the third PUSCH.
  • n uplink time units are n consecutive uplink time units configured with the same uplink grant CG cycle, and the uplink time units include uplink time slots or uplink symbols; obtained from Authorization of the network device includes: receiving first configuration information from the network device.
  • the first configuration information is used to configure the configuration authorization without scheduling.
  • the configuration authorization without scheduling indicates the CG period.
  • the CG period is the two adjacent periods when the network device authorizes the terminal device.
  • the time interval between the first PUSCH of each group in the group PUSCH; the configuration grant scheduling-free also indicates the number n of consecutive uplink time units included in the CG cycle, where n is the number of uplink time units in each group; according to the first Configuration information to obtain authorization from network devices.
  • the method includes: the first configuration information further includes a first field; when the first field is a first value, in the first uplink time unit to the n-m-th After transmitting the first PUSCH on any one or more uplink time units in one uplink time unit, the terminal equipment does not turn on the first drx-HARQ-RTT-TimerUL; or, when the first field is the second value, in the After transmitting the first PUSCH on any one or more uplink time units from 1 uplink time unit to the nth uplink time unit, the terminal equipment turns on the first drx-HARQ-RTT- on the next adjacent symbol of the first PUSCH. TimerUL.
  • the terminal device when the first field is the first value, the terminal device can further reduce power consumption; when the first field is the second value, the terminal device is compatible with the existing control mechanism. Therefore, the terminal device can further reduce power consumption according to specific settings while being compatible with existing control mechanisms. For example, in XR business, cloud gaming business and other services, the first field is set to the first value to further reduce power consumption; in other services, the first field is set to the second value, which is compatible with existing control mechanisms. This provides a variety of settings or selection methods that can be flexibly adjusted to meet different business needs.
  • the method includes: when the first field is the first value, the i-th uplink time in the n-mth uplink time unit to the n-th uplink time unit
  • the second PUSCH is transmitted on the unit, and the terminal equipment turns on the second drx-HARQ-RTT-TimerUL in the next adjacent symbol of the second PUSCH.
  • the first configuration information also indicates a first duration and a first starting time
  • the first duration is the duration of the silence timer drx-silenceTimerUL
  • the first starting time indicates drx- The starting time of silenceTimerUL.
  • the first starting time is the starting time of PUSCH transmitted by the 1st uplink time unit in the n uplink time units of each CG cycle.
  • the end time of drx-silenceTimerUL is earlier than the n-m-1th uplink time unit.
  • obtaining the authorization from the network device includes: obtaining n uplink time units from the first configuration information; among the first k of the n uplink time units On any uplink time unit, send third control information to the network device.
  • the third control information instructs to update the value of n to k, where k is a positive integer less than n; obtain n uplink time units after the updated value. ;According to the first configuration information, obtain authorization from the network device.
  • the first configuration information is received through radio resource control signaling RRC; the first configuration information also includes first indication information, and the first indication information indicates n PUSCHs respectively.
  • the durations of n drx-HARQ-RTT-TimerULs are different or the same.
  • obtaining authorization from a network device includes: receiving second control information from the network device, and the second control information indicates that n PUSCHs are in n uplink time units respectively. transmit; and obtain authorization from the network device according to the second control information.
  • the method includes: before the terminal device receives the second control information from the network device, the terminal device receives fourth configuration information from the network device, and the fourth configuration information includes an uplink time domain resource allocation table, and an uplink time domain resource allocation table.
  • each row index of the at least one row index corresponds to at least one uplink time unit;
  • the second control information includes a first row index, the first row index corresponds to the second row index, and the second row index is the uplink time unit.
  • At least one row index in the time domain resource allocation list n is the number of upstream time units corresponding to the second row index, and the value of the second row index is the first row index Add 1 to the value.
  • the second control information includes a tenth field; when the tenth field is the first value, in the first uplink time unit to the n-m-1th uplink time unit After transmitting the first PUSCH on any one or more uplink time units in After transmitting the first PUSCH on any one or more uplink time units in the nth uplink time unit, the terminal equipment turns on the first drx-HARQ-RTT-TimerUL in the next adjacent symbol of the first PUSCH.
  • the fourth configuration information includes an eleventh field; when the eleventh field is the first value, in the first uplink time unit to the n-m-1th uplink After transmitting the first PUSCH on any one or more uplink time units in the time unit, the terminal equipment does not turn on the first drx-HARQ-RTT-TimerUL; or, when the eleventh field is the second value, in the first After transmitting the first PUSCH on any one or more uplink time units from the uplink time unit to the nth uplink time unit, the terminal equipment turns on the first drx-HARQ-RTT-TimerUL in the next adjacent symbol of the first PUSCH.
  • m 0.
  • n uplink time units are respectively configured by p pieces of first configuration information, and p is a positive integer less than or equal to n; the uplink time unit includes an uplink time slot. or ascending symbol.
  • Obtaining authorization from the network device includes: receiving p first configuration information from the network device, the p first configuration information being used to configure p configuration authorization exemptions, and each of the p configuration authorizations scheduling exemptions.
  • Scheduling includes configuring the uplink grant CG period, and each of the p configured grant schedule-free configurations includes q consecutive uplink time units of each CG cycle. The sum of the consecutive uplink time units of each CG cycle of each of the p configured authorizations exempt from scheduling is n, and q is a positive integer less than n.
  • the method includes: the i-th first configuration information of the p pieces of first configuration information includes a first field.
  • the first field is the first value
  • the first PUSCH is transmitted on any one of q consecutive uplink time units, and the terminal device does not turn on the first drx-HARQ-RTT-TimerUL, q consecutive
  • the uplink time unit is q consecutive uplink time units of each CG period included in the i-th first configuration information; or, when the first field is the second value, any of the q consecutive uplink time units
  • the first PUSCH is transmitted in one uplink time unit, and the terminal equipment turns on the first drx-HARQ-RTT-TimerUL in the next adjacent symbol of the first PUSCH; where i is a positive integer less than or equal to p.
  • the method includes: when the first field of the i-th first configuration information is a first value, each CG included in the i-th first configuration information The first time unit of the q consecutive uplink time units of the cycle is earlier than the n-m time unit among the n time units; or, when the first field of the i-th first configuration information is the first value, the The qth time unit of the q consecutive uplink time units of each CG period included in the i first configuration information is earlier than the n-mth time unit among the n time units.
  • the method includes: when the first field of the i-th first configuration information is the second value, each CG included in the i-th first configuration information The first time unit of the q consecutive uplink time units of the cycle is earlier than the n-m time unit among the n time units; or, when the first field of the i-th first configuration information is the second value, the The q-th time unit of the q consecutive uplink time units of each CG cycle included in the i first configuration information is earlier than or equal to the n-th time unit among the n time units.
  • the i-th first configuration information among the p pieces of first configuration information further includes a ninth field, and the ninth field is used to indicate the fourth drx-HARQ- RTT-TimerUL; when the terminal equipment transmits the fourth PUSCH in any one of the q consecutive uplink time units of each CG cycle included in the i-th first configuration information, the terminal equipment transmits the fourth PUSCH under the fourth PUSCH.
  • An adjacent symbol turns on the fourth drx-HARQ-RTT-TimerUL.
  • the i-th first configuration information includes The qth time unit of the q consecutive upstream time units of each CG cycle is earlier than the n-mth time unit among the n time units.
  • the method includes: when the duration of the fourth drx-HARQ-RTT-TimerUL is not zero, each CG period included in the i-th first configuration information The first time unit of the q consecutive uplink time units is earlier than the nmth time unit among the n time units; or, when the duration of the fourth drx-HARQ-RTT-TimerUL is not zero, the i-th The q-th time unit of the q consecutive uplink time units of each CG period included in the first configuration information is earlier than or equal to at the nth time unit among n time units.
  • an uplink transmission method is provided, which is applied to terminal equipment.
  • the terminal equipment is configured to receive C-DRX in a connected state.
  • the method includes: obtaining authorization from the network equipment, which instructs the terminal equipment to transmit n physical uplink shared channels PUSCH on n uplink time units; in the first After the first PUSCH is transmitted on any one or more uplink time units from the n-m-1th uplink time unit, and the first hybrid automatic repeat request round-trip time uplink timer drx- corresponding to the first PUSCH After the HARQ-RTT-TimerUL times out, the terminal device does not start the first uplink retransmission timer drx-RetransmissionTimerUL corresponding to the first PUSCH.
  • the n upstream time units include the 1st upstream time unit and the n-m-1th upstream time unit, m is a non-negative integer less than n-1; among the n upstream time units, the higher the sequence number, the higher the upstream time unit. Late; n PUSCHs include the first PUSCH.
  • the first drx-HARQ-RTT-TimerUL is the drx-HARQ-RTT-TimerUL of the hybrid automatic repeat request HARQ process corresponding to the first PUSCH.
  • the first drx-RetransmissionTimerUL is the drx-RetransmissionTimerUL of the HARQ process corresponding to the first PUSCH.
  • the terminal equipment transmits the second PUSCH on the i-th uplink time unit from the n-mth uplink time unit to the n-th uplink time unit, and on the second PUSCH The next adjacent symbol after the corresponding second drx-HARQ-RTT-TimerUL times out, the second drx-RetransmissionTimerUL corresponding to the second PUSCH is turned on.
  • the n uplink time units include the n-mth uplink time unit and the n-th uplink time unit
  • i is any positive integer greater than or equal to n-m and less than or equal to n
  • the n PUSCHs include the second PUSCH.
  • the first drx-RetransmissionTimerUL and the second drx-RetransmissionTimerUL may be the same timer, or they may be different timers.
  • the first drx-RetransmissionTimerUL and the second drx-RetransmissionTimerUL are determined by the third configuration information (for example, the third configuration information is DRX-Config, specifically through DRX -drx-RetransmissionTimerUL) configuration in Config.
  • the subsequent third drx-RetransmissionTimerUL, the first drx-RetransmissionTimerUL and the second drx-RetransmissionTimerUL may also be the same timer. Furthermore, all drx-RetransmissionTimerUL in this application can be the same timer.
  • the terminal equipment transmits the third PUSCH on the j-th uplink time unit from the n-mth uplink time unit to the n-th uplink time unit, and on the third PUSCH
  • the next adjacent symbol after the corresponding third drx-HARQ-RTT-TimerUL times out, the third drx-RetransmissionTimerUL corresponding to the third PUSCH is turned on.
  • j is any positive integer greater than or equal to n-m, less than or equal to n, and not equal to i.
  • the n PUSCHs include the third PUSCH.
  • n uplink time units are n consecutive uplink time units, and the uplink time units include uplink time slots or uplink symbols.
  • Obtaining authorization from the network device includes: receiving first configuration information from the network device.
  • the first configuration information is used to configure the configuration authorization without scheduling.
  • the configuration authorization without scheduling indicates a CG period.
  • the CG period is the corresponding period when the network device authorizes the terminal device.
  • the time interval between the first PUSCH of each group in two adjacent groups of PUSCHs; the configuration authorization-free scheduling also indicates the number n of consecutive uplink time units included in the CG cycle, where n is the number of uplink time units in each group; according to The first configuration information is to obtain authorization from the network device.
  • the method includes: the first configuration information further includes a first field; when the first field is a first value, the terminal device in the first uplink time unit to the first After the first PUSCH is transmitted on any one or more of the n-m-1 uplink time units, and after the first drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out, the terminal device does not turn on the first PUSCH.
  • the corresponding first uplink retransmission timer drx-RetransmissionTimerUL or, when the first field is the second value, the terminal device is in any one or more uplink times from the 1st uplink time unit to the nth uplink time unit.
  • the terminal equipment After the first PUSCH is transmitted on the unit, and in the next adjacent symbol after the first drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out, the terminal equipment starts the first uplink retransmission timer drx- corresponding to the first PUSCH. RetransmissionTimerUL.
  • the first configuration information also indicates a first duration and a first starting time.
  • the first duration is the duration of the silence timer drx-silenceTimerUL
  • the first starting time indicates drx- The starting time of silenceTimerUL.
  • the first starting time is the starting time of PUSCH transmitted by the 1st uplink time unit in the n uplink time units of each CG cycle.
  • the end time of drx-silenceTimerUL is earlier than the n-m-1th uplink time unit.
  • obtaining authorization from the network device includes: from the first Obtain n uplink time units from the configuration information; on any one of the first k uplink time units among the n uplink time units, send third control information to the network device, and the third control information instructs to update the value of n is k, where k is a positive integer less than n; obtain n uplink time units after the updated value; obtain authorization from the network device according to the first configuration information.
  • the first configuration information is received through radio resource control signaling RRC; the first configuration information also includes first indication information, and the first indication information indicates n PUSCHs respectively.
  • obtaining authorization from the network device includes: receiving second control information from the network device, the second control information indicating that n PUSCHs are in n uplink time units respectively. transmit; and obtain authorization from the network device according to the second control information.
  • the method includes: before the terminal device receives the second control information from the network device, the terminal device receives fourth configuration information from the network device, and the fourth configuration information includes an uplink time domain resource allocation table, and an uplink time domain resource allocation table. It includes at least one row index, and each row index of the at least one row index corresponds to at least one upstream time unit.
  • the second control information includes a first row index.
  • the first row index corresponds to a second row index.
  • the second row index is at least one row index in the uplink time domain resource allocation list.
  • n is the uplink time corresponding to the second row index.
  • the number of units, the value of the second row index is the value of the first row index plus 1.
  • the method includes: the second control information includes a tenth field; when the tenth field is the first value, the terminal device performs the operation from the 1st uplink time unit to the n-mth -After the first PUSCH is transmitted on any one or more uplink time units in 1 uplink time unit, and after the first drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out, the terminal device does not enable the first PUSCH corresponding The first uplink retransmission timer drx-RetransmissionTimerUL; or, when the tenth field is the second value, the terminal equipment is in any one or more uplink time units from the 1st uplink time unit to the nth uplink time unit.
  • the terminal device After the first PUSCH is transmitted uplink, and on the next adjacent symbol after the first drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out, the terminal device starts the first uplink retransmission timer drx-RetransmissionTimerUL corresponding to the first PUSCH. .
  • the method includes: the fourth configuration information includes an eleventh field; when the eleventh field is the first value, the terminal device in the first uplink time unit to After the first PUSCH is transmitted on any one or more uplink time units in the n-m-1th uplink time unit, and after the first drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out, the terminal device does not turn on the first The first uplink retransmission timer drx-RetransmissionTimerUL corresponding to PUSCH; or, when the eleventh field is the second value, the terminal equipment performs any one or more of the first uplink time unit to the n-th uplink time unit.
  • the terminal device After the first PUSCH is transmitted in the uplink time unit, and on the next adjacent symbol after the first drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out, the terminal device starts the first uplink retransmission timer corresponding to the first PUSCH. drx-RetransmissionTimerUL.
  • m 0.
  • n uplink time units are respectively configured by p pieces of first configuration information, and p is a positive integer less than or equal to n; the uplink time unit includes an uplink time slot. or ascending symbol.
  • Obtaining authorization from the network device includes: receiving p first configuration information from the network device, the p first configuration information being used to configure p configuration authorization exemptions, and each of the p configuration authorizations scheduling exemptions.
  • Scheduling includes configuring the uplink grant CG period, and each of the p configured grant schedule-free configurations includes q consecutive uplink time units of each CG cycle. The sum of the consecutive uplink time units of each CG cycle of each of the p configured authorizations exempt from scheduling is n, and q is a positive integer less than n.
  • the method includes: the i-th first configuration information of the p pieces of first configuration information includes a first field.
  • the first field is the first value
  • the first PUSCH is transmitted on any one of q consecutive uplink time units, and after the first drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out,
  • the terminal equipment does not turn on the first drx-RetransmissionTimerUL corresponding to the first PUSCH, and the q consecutive uplink time units are the q consecutive uplink time units of each CG cycle included in the i-th first configuration information; or, when the When a field is the second value, the first PUSCH is transmitted on any one of the q consecutive uplink time units, and the next PUSCH after the first drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out.
  • the terminal equipment turns on the first drx-RetransmissionTimerUL corresponding to the
  • the method includes: when the first field of the i-th first configuration information is a first value, each CG included in the i-th first configuration information The first time unit of the q consecutive uplink time units of the cycle is earlier than the nmth time unit among the n time units; or, when the first field of the i-th first configuration information is the first value, the The qth time unit of the q consecutive uplink time units of each CG period included in the i first configuration information is earlier than n time units.
  • the nmth time unit in the element when the first field of the i-th first configuration information is a first value, each CG included in the i-th first configuration information The first time unit of the q consecutive uplink time units of the cycle is earlier than the nmth time unit among the n time units; or, when the first field of the i-th first configuration information is the first value, the The qth time unit of the q consecutive uplink time units of each CG period included in the i first configuration information is earlier
  • the method includes: when the first field of the i-th first configuration information is the second value, each CG included in the i-th first configuration information The first time unit of the q consecutive uplink time units of the cycle is earlier than the n-m time unit among the n time units; or, when the first field of the i-th first configuration information is the second value, the The q-th time unit of the q consecutive uplink time units of each CG cycle included in the i first configuration information is earlier than or equal to the n-th time unit among the n time units.
  • the i-th first configuration information among the p first configuration information further includes a ninth field, and the ninth field is used to indicate the fourth drx-HARQ-RTT- TimerUL.
  • the terminal equipment transmits the fourth PUSCH in any one of the q consecutive uplink time units of each CG cycle included in the i-th first configuration information, and in the fourth drx-HARQ corresponding to the fourth PUSCH -The next adjacent symbol after RTT-TimerUL times out, the terminal device turns on the fourth drx-RetransmissionTimerUL corresponding to the fourth PUSCH.
  • the i-th first configuration information includes The qth time unit of the q consecutive upstream time units of each CG cycle is earlier than the n-mth time unit among the n time units.
  • the method includes: when the duration of the fourth drx-HARQ-RTT-TimerUL is not zero, each CG period included in the i-th first configuration information The first time unit of the q consecutive uplink time units is earlier than the n-m time unit among the n time units; or, when the duration of the fourth drx-HARQ-RTT-TimerUL is not zero, the i-th The q-th time unit of the q consecutive uplink time units of each CG period included in the first configuration information is earlier than or equal to the n-th time unit among the n time units.
  • an uplink transmission method is provided, which is applied to network equipment; the network equipment is configured to receive C-DRX in a connected state discontinuously.
  • the method includes: authorizing the terminal equipment to respectively transmit n physical uplink shared channels PUSCH on n uplink time units; the network equipment is uplink in any one or more of the 1st uplink time unit to the n-m-1th uplink time unit.
  • the network device After receiving the first PUSCH on the time unit, the network device does not turn on the first hybrid automatic repeat request round trip time uplink timer drx-HARQ-RTT-TimerUL.
  • the n uplink time units include the 1st uplink time unit and the n-m-1th uplink time unit, and m is a non-negative integer less than n-1.
  • the first drx-HARQ-RTT-TimerUL corresponds to the first PUSCH; among the n uplink time units, the uplink time unit with a higher sequence number is later.
  • the n PUSCHs include the first PUSCH.
  • the method includes: receiving the second PUSCH on the i-th uplink time unit from the n-mth uplink time unit to the n-th uplink time unit, and starting the second PUSCH on the next adjacent symbol of the second PUSCH.
  • drx-HARQ-RTT-TimerUL The n upstream time units include the n-mth upstream time unit and the nth upstream time unit.
  • the second PUSCH corresponds to the second drx-HARQ-RTT-TimerUL.
  • i is any positive integer greater than or equal to n-m and less than or equal to n.
  • the n PUSCHs include the second PUSCH.
  • the method includes: receiving the third PUSCH on the j-th uplink time unit from the n-mth uplink time unit to the n-th uplink time unit, and receiving the third PUSCH on the third uplink time unit.
  • the next adjacent symbol of PUSCH turns on the third drx-HARQ-RTT-TimerUL.
  • the third PUSCH corresponds to the third drx-HARQ-RTT-TimerUL.
  • j is any positive integer greater than or equal to n-m, less than or equal to n, and not equal to i.
  • the n PUSCHs include the third PUSCH.
  • n uplink time units are n consecutive uplink time units, and the uplink time units include uplink time slots or uplink symbols.
  • Authorizing the terminal equipment to transmit n PUSCHs respectively on n uplink time units includes: sending the first configuration information to the terminal equipment, the first configuration information is used to configure the authorization to be exempt from scheduling, and the configuration authorization to be exempt from scheduling indicates the CG period, and the CG period is The time interval between the first PUSCH of each group in two adjacent groups of PUSCH authorized by the network equipment to the terminal equipment; configuring the authorization-free scheduling also indicates the number n of consecutive uplink time units included in the CG cycle, where n is each group The number of uplink time units; the first configuration information is also used to authorize the terminal equipment to respectively transmit n PUSCHs on n uplink time units.
  • the method includes: the first configuration information further includes a first field.
  • the first field is the first value
  • the network device After receiving the first PUSCH on any one or more uplink time units from the 1st uplink time unit to the nm-1th uplink time unit, the network device does not turn on the first drx -HARQ-RTT-TimerUL; or, when the first field is the second value, receive on any one or more uplink time units from the 1st uplink time unit to the nth uplink time unit
  • the network device turns on the first drx-HARQ-RTT-TimerUL in the next adjacent symbol of the first PUSCH.
  • the method includes: when the first field is the first value, the i-th uplink time in the n-mth uplink time unit to the n-th uplink time unit After receiving the second PUSCH on the unit, the network device turns on the second drx-HARQ-RTT-TimerUL in the next adjacent symbol of the second PUSCH.
  • the first configuration information also indicates a first duration and a first starting time
  • the first duration is the duration of the silence timer drx-silenceTimerUL
  • the first starting time indicates drx- The starting time of silenceTimerUL.
  • the first starting time is the starting time of PUSCH transmitted by the 1st uplink time unit in the n uplink time units of each CG cycle.
  • the end time of drx-silenceTimerUL is earlier than the n-m-1th uplink time unit.
  • authorizing the terminal equipment to respectively transmit n PUSCHs on n uplink time units includes: sending second control information to the terminal equipment, and the second control information instructs the terminal equipment to respectively n PUSCHs are transmitted on n uplink time units; the second control information is also used to authorize the terminal equipment to respectively transmit n PUSCHs on n uplink time units.
  • the method includes: before sending the second control information to the terminal device, the network device sends fourth configuration information to the terminal device, the fourth configuration information includes an uplink time domain resource allocation table, and the uplink time domain resource allocation table includes at least one row index, Each row index of the at least one row index respectively corresponds to at least one upstream time unit.
  • the second control information includes a first row index.
  • the first row index corresponds to a second row index.
  • the second row index is at least one row index in the uplink time domain resource allocation list.
  • n is the uplink time corresponding to the second row index.
  • the number of units, the value of the second row index is the value of the first row index plus 1.
  • the method includes: the second control information includes a tenth field.
  • the tenth field is the first value, after receiving the first PUSCH on any one or more uplink time units from the 1st uplink time unit to the n-m-1th uplink time unit, the network device does not turn on the first drx -HARQ-RTT-TimerUL; or, when the tenth field is the second value, after receiving the first PUSCH on any one or more uplink time units from the 1st uplink time unit to the nth uplink time unit, The network device turns on the first drx-HARQ-RTT-TimerUL in the next adjacent symbol of the first PUSCH.
  • the method includes: the fourth configuration information includes an eleventh field.
  • the eleventh field is the first value
  • the network device does not turn on the first PUSCH.
  • drx-HARQ-RTT-TimerUL or, when the eleventh field is the second value, receive the first PUSCH on any one or more uplink time units from the 1st uplink time unit to the nth uplink time unit.
  • the network device turns on the first drx-HARQ-RTT-TimerUL in the next adjacent symbol of the first PUSCH.
  • the method may further include features corresponding to the first aspect and any one of the implementations of the first aspect. It will not be expanded here.
  • an uplink transmission method is provided, applied to network equipment, and the network equipment is configured to receive C-DRX in a connected state discontinuously.
  • the method includes: authorizing the terminal equipment to respectively transmit n physical uplink shared channels PUSCH on n uplink time units; in any one or more uplink time units from the 1st uplink time unit to the n-m-1th uplink time unit.
  • the network device After receiving the first PUSCH, and after the first hybrid automatic repeat request round trip time uplink timer drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out, the network device does not enable the first uplink retransmission corresponding to the first PUSCH. Timer drx-RetransmissionTimerUL.
  • the n upstream time units include the 1st upstream time unit and the n-m-1th upstream time unit, m is a non-negative integer less than n-1; among the n upstream time units, the higher the sequence number, the higher the upstream time unit. Late; n PUSCHs include the first PUSCH.
  • the method includes: the first drx-HARQ-RTT-TimerUL is the drx-HARQ-RTT-TimerUL of the hybrid automatic repeat request HARQ process corresponding to the first PUSCH.
  • the first drx-RetransmissionTimerUL is the drx-RetransmissionTimerUL of the HARQ process corresponding to the first PUSCH.
  • the method includes: receiving the second PUSCH on the i-th uplink time unit from the n-mth uplink time unit to the n-th uplink time unit, and receiving the second PUSCH on the i-th uplink time unit.
  • the n uplink time units include the n-mth uplink time unit and the nth uplink time unit.
  • i is any positive integer greater than or equal to n-m and less than or equal to n.
  • the n PUSCHs include the second PUSCH.
  • the method includes: transmitting the third PUSCH on the jth uplink time unit from the nmth uplink time unit to the nth uplink time unit, and transmitting the third PUSCH on the jth uplink time unit.
  • j is any positive integer greater than or equal to nm, less than or equal to n, and not equal to i.
  • the n PUSCHs include the third PUSCH.
  • n uplink time units are n consecutive uplink time units, and the uplink time units include uplink time slots or uplink symbols.
  • Authorizing the terminal equipment to transmit n PUSCHs respectively on n uplink time units includes: sending the first configuration information to the terminal equipment, the first configuration information is used to configure the authorization to be exempt from scheduling, and the configuration authorization to be exempt from scheduling indicates the CG period, and the CG period is The time interval between the first PUSCH of each group in two adjacent groups of PUSCH authorized by the network equipment to the terminal equipment; configuring the authorization-free scheduling also indicates the number n of consecutive uplink time units included in the CG cycle, where n is each group The number of upstream time units.
  • the first configuration information is also used to authorize the terminal equipment to respectively transmit n PUSCHs on n uplink time units.
  • the method includes: the first configuration information further includes a first field.
  • the first field is the first value, after receiving the first PUSCH on any one or more uplink time units from the 1st uplink time unit to the n-m-1th uplink time unit, and after receiving the first PUSCH on the corresponding After the first drx-HARQ-RTT-TimerUL times out, the network device does not start the first uplink retransmission timer drx-RetransmissionTimerUL corresponding to the first PUSCH; or, when the first field is the second value, in the first uplink time After receiving the first PUSCH on any one or more uplink time units from the unit to the nth uplink time unit, and after the first drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out, the next adjacent symbol, The network device starts the first uplink retransmission timer drx-RetransmissionTimerUL corresponding to the first
  • the first configuration information also indicates a first duration and a first starting time
  • the first duration is the duration of the silence timer drx-silenceTimerUL
  • the first starting time indicates drx- The starting time of silenceTimerUL.
  • the first starting time is the starting time of PUSCH transmitted by the 1st uplink time unit in the n uplink time units of each CG cycle.
  • the end time of drx-silenceTimerUL is earlier than the n-m-1th uplink time unit.
  • authorizing the terminal equipment to respectively transmit n PUSCHs on n uplink time units includes: sending second control information to the terminal equipment, and the second control information instructs the terminal equipment to respectively n PUSCHs are transmitted on n uplink time units; the second control information is also used to authorize the terminal equipment to respectively transmit n PUSCHs on n uplink time units.
  • the method includes: before sending the second control information to the terminal device, the network device sends fourth configuration information to the terminal device, the fourth configuration information includes an uplink time domain resource allocation table, and the uplink time domain resource allocation table includes at least one row index, Each row index of the at least one row index respectively corresponds to at least one uplink time slot.
  • the second control information includes a first row index.
  • the first row index corresponds to a second row index.
  • the second row index is at least one row index in the uplink time domain resource allocation list.
  • n is the uplink time corresponding to the second row index.
  • the number of slots, the value of the second row index is the value of the first row index plus 1.
  • the method includes: the second control information includes a tenth field.
  • the tenth field is the first value, after receiving the first PUSCH on any one or more uplink time units from the 1st uplink time unit to the n-m-1th uplink time unit, and after receiving the first PUSCH on the corresponding After the first drx-HARQ-RTT-TimerUL times out, the network device does not start the first uplink retransmission timer drx-RetransmissionTimerUL corresponding to the first PUSCH; or, when the tenth field is the second value, in the first uplink time After receiving the first PUSCH on any one or more uplink time units from the unit to the nth uplink time unit, and after the first drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out, the next adjacent symbol, The network device starts the first uplink retransmission timer drx-RetransmissionTimerUL
  • the method includes: the fourth configuration information includes an eleventh field.
  • the eleventh field is the first value, after receiving the first PUSCH on any one or more uplink time units from the 1st uplink time unit to the n-m-1th uplink time unit, and corresponding to the first PUSCH After the first drx-HARQ-RTT-TimerUL times out, the network device does not start the first uplink retransmission timer drx-RetransmissionTimerUL corresponding to the first PUSCH; or, when the eleventh field is the second value, in the first After receiving the first PUSCH on any one or more of the uplink time units to the nth uplink time unit, and after the first drx-HARQ-RTT-TimerUL corresponding to the first PUSCH times out, the next adjacent symbol, the network device starts the first uplink retransmission timer drx-RetransmissionTimerUL corresponding to the first PUSCH.
  • the method may further include features corresponding to the second aspect and any one of the implementations of the second aspect. It will not be expanded here.
  • a fifth aspect provides a terminal device.
  • the terminal device includes a processor and a memory.
  • the memory stores a computer program.
  • the terminal device performs the above-mentioned first aspect and the first aspect.
  • a sixth aspect provides a network device.
  • the network device includes a processor and a memory.
  • the memory stores a computer program.
  • the computer program is run by the processor, the network device performs the above-mentioned third aspect and the third aspect.
  • a computer-readable storage medium stores a computer program.
  • the terminal device causes the terminal device to execute the above-mentioned first aspect and any one of the embodiments to the second aspect and the second aspect. The method of any one of the embodiments.
  • a computer-readable storage medium stores a computer program.
  • the network device causes the network device to execute the above-mentioned third aspect and any one of the third aspect to the fourth aspect and the fourth aspect. The method of any one of the embodiments.
  • a ninth aspect provides a computer program product.
  • the computer program product is stored on a computer-readable storage medium.
  • the terminal device executes the above-mentioned first aspect and any one of the first aspect to the second aspect and The method described in any one of the embodiments of the second aspect.
  • a computer program product is provided.
  • the computer program product is stored on a computer-readable storage medium.
  • the network device executes the above-mentioned third aspect and any one of the third aspect to the fourth aspect and The method described in any one of the embodiments of the fourth aspect.
  • a chip in an eleventh aspect, includes a processor and a memory coupled to the processor.
  • the memory stores a computer program.
  • the chip is located in the terminal device.
  • the processor executes the computer program
  • the terminal device executes any one of the above-mentioned first aspect and the first aspect. The method described in any one of the embodiments to the second aspect and any embodiment of the second aspect.
  • a chip in a twelfth aspect, includes a processor and a memory coupled to the processor.
  • the memory stores a computer program.
  • the chip is located in the network device.
  • the processor executes the computer program, the network device performs any one of the above-mentioned third aspect and the third aspect. The method described in any one of the embodiments to the fourth aspect and any one of the embodiments of the fourth aspect.
  • a communication system in a thirteenth aspect, includes a terminal device and a network device, and the terminal device is configured to perform the above-mentioned first aspect and any one of the first implementation modes to the second aspect and any one of the second aspect implementation modes.
  • the network device is configured to perform the method described in any one of the above-mentioned third aspect and any one of the third aspect implementation modes to the fourth aspect and any one of the fourth aspect implementation modes.
  • the technical effects corresponding to the thirteenth aspect and any one of the embodiments of the thirteenth aspect can be found in the above-mentioned first aspect and any one of the implementations of the first aspect, the above-mentioned second aspect and any one of the second aspects.
  • the technical effects corresponding to the above-mentioned embodiments, the above-mentioned third aspect and any one of the third aspect implementations, and the above-mentioned fourth aspect and any one of the fourth aspect implementations will not be described again here.
  • Figure 1A is a schematic diagram of a semi-static uplink transmission method between a terminal device and a network device.
  • Figure 1B is a schematic diagram of a dynamic uplink transmission method between a terminal device and a network device.
  • Figure 2A is a schematic diagram of the first uplink transmission method between terminal equipment and network equipment.
  • Figure 2B is a schematic diagram of the operation of the terminal equipment when retransmission occurs in the first uplink transmission method.
  • Figure 2C is a schematic diagram of the operation of the terminal equipment when no retransmission occurs in the first uplink transmission method.
  • Figure 3A is a schematic diagram of the second uplink transmission method between terminal equipment and network equipment.
  • Figure 3B is a schematic diagram of the operation of the terminal equipment when retransmission occurs in the second uplink transmission method.
  • Figure 3C is a schematic diagram of the operation of the terminal equipment when no retransmission occurs in the second uplink transmission method.
  • FIG. 4A is a schematic diagram of Embodiment 1 of the uplink transmission method provided by the embodiment of the present application.
  • FIG. 4B is a schematic diagram of Embodiment 2 of the uplink transmission method provided by the embodiment of the present application.
  • FIG. 5A is a schematic diagram of Embodiment 3 of the uplink transmission method provided by the embodiment of the present application.
  • Figure 5B is a schematic diagram of Embodiment 4 of the uplink transmission method provided by the embodiment of the present application.
  • FIG. 6A is a schematic diagram of Embodiment 5 of the uplink transmission method provided by the embodiment of the present application.
  • FIG. 6B is a schematic diagram of Embodiment 6 of the uplink transmission method provided by the embodiment of the present application.
  • FIG. 7A is a schematic diagram of Embodiment 7 of the uplink transmission method provided by the embodiment of the present application.
  • FIG. 7B is a schematic diagram of Embodiment 8 of the uplink transmission method provided by the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Embodiments of the present application may be implemented according to any appropriate communication protocol, including but not limited to, third generation (3G), fourth generation (4G), fifth generation (5G), sixth generation (6G) cellular communication protocols, wireless LAN communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocols currently known or developed in the future.
  • 3G third generation
  • 4G fourth generation
  • 5G fifth generation
  • 6G sixth generation
  • IEEE Institute of Electrical and Electronics Engineers
  • GPRS General Packet Radio Service
  • GSM Global System for Mobile communications
  • EDGE Enhanced Data rate for GSM Evolution
  • Universal Mobile Telecommunications Service Universal Mobile Telecommunications Service
  • LTE Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • NR New Radio
  • Terminal device refers to any terminal device capable of wired or wireless communication with network devices or with each other.
  • Terminal equipment can sometimes be called user equipment (User Equipment, UE).
  • the terminal device may be any type of mobile terminal, fixed terminal or portable terminal.
  • terminal equipment may include mobile phones, sites, units, devices, mobile terminals (Mobile Terminal, MT), customer premises equipment (Customer Premises Equipment, CPE), subscription stations, portable subscription stations, Internet nodes, communicators, desktop computers , laptop computers, notebook computers, tablet computers, personal communication system devices, personal navigation devices, personal digital assistants (PDAs), positioning devices, radio broadcast receivers, e-book devices, gaming devices, Internet of Things ( Internet of Things (IoT) devices, vehicle-mounted devices, aircraft, virtual reality (VR) devices, augmented reality (AR) devices, wearable devices, terminal devices in 5G networks or evolved public land mobile networks (Public Land Mobile Network, PLMN) any terminal equipment, other equipment that can be used for communication, or any combination of the above.
  • PLMN Public Land Mobile Network
  • Network equipment refers to entities or nodes that can be used to communicate with terminal equipment, such as access network equipment.
  • the access network device may be a device deployed in a wireless access network to provide wireless communication functions for mobile terminals, such as a Radio Access Network (RAN) network device.
  • Access network equipment may include various types of base stations.
  • access network equipment may include various forms of macro base stations, micro base stations, pico base stations, femto base stations, relay stations, access points, remote radio units (Remote Radio Unit, RRU), radio heads (Radio Head, RH). ), Remote Radio Head (RRH), etc.
  • the names of access network equipment may be different.
  • the access network equipment may include a Central Unit (CU) and/or a Distributed Unit (DU).
  • CU and DU can be placed in different places, for example: DU is remote and placed in a high traffic area, and CU is placed in the central computer room. Alternatively, CU and DU can also be placed in the same computer room. CU and DU can also be different components under the same rack.
  • the above-mentioned devices that provide wireless communication functions for terminal devices are collectively referred to as network devices, and are no longer specifically limited in the embodiments of the present application.
  • Configured uplink grant (CG; or, Configured uplink Grant, CG): An uplink semi-static transmission method, which is different from dynamic scheduling. Each transmission requires control information to indicate the corresponding transmission resource.
  • Uplink semi-static transmission has the characteristic of being configured once and used multiple times. That is, the network device does not need to send control information for each transmission. Instead, it uses semi-static signaling to pre-configure the transmission period, and then periodically performs the transmission according to the configured period. transmission.
  • FIG. 1A shows a schematic principle diagram of a semi-static uplink transmission method between a terminal device and a network device.
  • the terminal device 100 communicates wirelessly with the network device 200.
  • the terminal device 100 includes an XR terminal device.
  • Network equipment 200 includes base stations.
  • the wireless communication method includes:
  • the network device sends first configuration information to the terminal device, where the first configuration information is used to configure configuration authorization without scheduling (ConfiguredGrantConfig).
  • the first configuration information is sent in the form of Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the first configuration information includes the first type of information
  • the first type of information includes information such as allocated time slots (Slot Allocated), CG period (periodicity) (also called parameters).
  • allocated time slots refer to the number of time slots allocated in one CG cycle.
  • the CG period refers to the time interval between the first time slot in the xth group of time slots and the first time slot in the x+1th group of time slots configured in a CG, where x is a positive integer.
  • the number of time slots in each group configured for a CG can be determined through the first type of information.
  • the cg-nrofSlots parameter in ConfiguredGrantConfig in the first configuration information is determined; or, when cg-nrofSlots is not configured, the number of time slots in each group is 1 by default.
  • the first configuration information may be ConfiguredGrantConfig.
  • the first configuration information also includes second type information.
  • the second type of information includes Modulation and Coding Scheme (MCS), Time Domain Resource Allocation (TDRA), Frequency Domain Resource Allocation (FDRA), etc.
  • MCS Modulation and Coding Scheme
  • TDRA Time Domain Resource Allocation
  • FDRA Frequency Domain Resource Allocation
  • the wireless communication method does not include S101' mentioned below.
  • the first configuration information also includes an offset, for example, the offset is i time slots.
  • the terminal device can use the time slot (j+i) as the time slot for uplink transmission according to the time when the first configuration information is received, such as time slot j; thus, when there is data that needs uplink transmission, the time slot (j+ i) proceed on Uplink transmission, skip time slot (j+i) or send padding data when no data needs uplink transmission.
  • the terminal device performs periodic transmission according to the first configuration information.
  • more steps may be included between S101 and S102 for the network device 200 to send more configuration information to the terminal device 100 to perform multiple configurations.
  • the first configuration information does not include the above-mentioned second type of information.
  • the wireless communication method includes S101'.
  • the above-mentioned second type of information is included in the first control information of S101'.
  • the first control information in S101' no longer includes the above-mentioned offset.
  • the network device sends first control information to the terminal device, where the first control information is used to activate configuration authorization without scheduling.
  • the first control information includes downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the terminal device periodically transmits according to the first configuration information and the first control information.
  • more steps may be included between S101' and S102 for the network device 200 to send more configuration information or control information to the terminal device 100.
  • the network device 200 may also send more configuration information to the terminal device 100.
  • the terminal device sends the first data that is exempt from scheduling based on configuration authorization to the network device.
  • the terminal device when the terminal device itself has uplink data to be transmitted, the terminal device performs S102 to directly transmit on the configured resources. This is the beginning of a CG cycle.
  • the terminal device sends the second data that is exempt from scheduling based on configuration authorization to the network device.
  • S103 and S102 differ by one CG period.
  • the terminal device does not send other data to the network device that is exempt from scheduling based on configuration authorization.
  • the terminal device executes S103. This is the end time of one CG cycle and the start time of another adjacent CG cycle.
  • S102 and S103 are only an example.
  • the terminal device executes S102-S103 in a loop until the terminal device receives a stop command (for example, receives deactivation signaling from a network device, etc.).
  • the terminal device can also perform dynamic uplink transmission with the network device.
  • FIG. 1B shows a schematic diagram of the principle of a dynamic uplink transmission method between a terminal device and a network device.
  • the terminal device 100 communicates wirelessly with the network device 200 .
  • the terminal device 100 includes an XR terminal device.
  • Network equipment 200 includes base stations.
  • the wireless communication method includes:
  • the network device sends second control information to the terminal device, where the second control information is used to schedule n uplink time slots.
  • n is a positive integer greater than 1.
  • the n uplink time slots are not required to be n consecutive uplink time slots.
  • the second control information may be downlink control information DCI.
  • the terminal device In response to receiving the second control information, the terminal device sends the first data to the network device in the first uplink time slot among the n uplink time slots;
  • the terminal device In response to receiving the second control information, the terminal device sends the second data to the network device in the second uplink time slot among the n uplink time slots;
  • the terminal device In response to receiving the second control information, the terminal device sends the n-th data to the network device in the n-th uplink time slot among the n uplink time slots.
  • a data frame for example, XR data frame; in uplink transmission, the data frame can be called a physical uplink shared channel (Physical Uplink Shared CHannel (PUSCH) frame)
  • PUSCH Physical Uplink Shared CHannel
  • PUSCH Physical Uplink Shared CHannel
  • network equipment and terminal equipment are implemented in the following two ways.
  • the network device configures n consecutive uplink time slots for the terminal device in each CG cycle, where n is a positive integer greater than 1.
  • the network device can configure each slot for the terminal device through cg-nrofSlots in ConfiguredGrantConfig in the first configuration information.
  • the first configuration information may be sent through RRC signaling sent by the network device to the terminal device.
  • the first configuration information may be ConfiguredGrantConfig.
  • the network device configures 4 consecutive uplink time slots in each CG cycle for the terminal device (for example, the first 4 consecutive uplink time slots in each CG cycle),
  • the terminal device is allowed to transmit periodically according to the configured CG cycle. That is to say, PUSCH frame a is uplink transmitted through time slot 201, time slot 202, time slot 203 and time slot 204 within one CG cycle.
  • PUSCH frame b is uplink transmitted through time slot 208, time slot 209, time slot 210 and time slot 211 in the next CG cycle. Subsequent PUSCH frames are also periodically transmitted according to this rule, which will not be described again here.
  • the terminal device can support d CG configurations (for example, 12 CG configurations) operating simultaneously, d is a positive integer.
  • the network device configures p CG configurations for the terminal device, a total of p times, one CG configuration each time, and p is a positive integer less than or equal to d.
  • the first CG configuration is configured for the first time,..., the p-th CG configuration is configured for the p-th time.
  • the p CG configurations are respectively configured through p first configuration information.
  • the first configuration information may be ConfiguredGrantConfig.
  • Each CG configuration contains at least one CG cycle. Any number of uplink time slots can be used for uplink transmission in each CG cycle.
  • the first CG configuration includes the first CG period 1, the first CG period 2, ....
  • the second CG configuration contains the second CG period 1,....
  • the first CG cycle is configured with 35 time slots, that is, the first 35 time slots are a first CG cycle, that is, the first CG cycle 1, and the next 35 time slots are the next first CG cycle, that is, the first CG cycle 2.
  • Other CG configurations are similar and will not be described here.
  • the network device configures four CG configurations for the terminal device through four configurations, namely the first CG configuration, the second CG configuration, the third CG configuration and the fourth CG configuration.
  • the four CG configurations respectively include at least one first CG period, at least one second CG period, at least one third CG period and at least one fourth CG period.
  • the terminal device transmits the PUSCH frame a in the uplink, it passes through the time slot 301 of the first CG cycle 1, the time slot 302 of the second CG cycle 1, the time slot 303 of the third CG cycle 1, and the time slot of the fourth CG cycle 1. 304, for uplink transmission.
  • the terminal device When the terminal device transmits the PUSCH frame b in the uplink, it passes through the time slot 308 of the first CG cycle 2, the time slot 309 of the second CG cycle 2 (not shown in the figure), and the third CG cycle 2 (not shown in the figure). ) and time slot 311 of the fourth CG cycle 2 (not shown in the figure) for uplink transmission.
  • the starting time of the second CG period 2 is the next adjacent time slot (i.e., slot 309) to the end time slot of the second CG period 1
  • the period of the second CG period 2 is the same as the period of the second CG period 1.
  • the same is true for the third CG cycle 2 and the fourth CG cycle 2.
  • Subsequent PUSCH frames (or data frames) are also periodically transmitted according to this rule, which will not be described again here.
  • terminal equipment in order to reduce the power consumption of terminal equipment, terminal equipment generally uses C-DRX technology.
  • C-DRX the terminal equipment adopts C-DRX technology
  • the power consumption has been reduced compared with before.
  • the power consumption of terminal equipment when running XR, cloud games and other services is still large, and power consumption needs to be further reduced.
  • the previous control mechanisms must also be taken into consideration. Therefore, how to further reduce the power consumption of terminal equipment while taking into account the previous control mechanism is a technical problem to be solved by this application.
  • the duration specified above is determined by the application layer. Because the encoding and decoding mechanism of services such as XR and cloud games at the application layer is encoded and decoded in units of data frames, this encoding and decoding mechanism determines the above-mentioned duration. If a data frame is not transmitted within the specified time period, there is a high probability that the entire data frame cannot be decoded.
  • the hybrid automatic repeat request corresponding to the PUSCH will be (Hybrid Automatic Repeat reQuest (HARQ) process starts drx-HARQ-RTT-TimerUL.
  • drx-HARQ-RTT-TimerUL indicates the processing time of the network device after receiving the uplink transmission PUSCH to schedule retransmission of the PUSCH.
  • the terminal device can enter the sleep state within the starting time of the timer.
  • the terminal device After drx-HARQ-RTT-TimerUL times out, the terminal device will start drx-RetransmissionTimerUL for the HARQ process. Within the starting time of drx-RetransmissionTimerUL, the terminal device will be in the awake state and continuously monitor the control channel. It should be understood that when drx-RetransmissionTimerUL and drx-HARQ-RTT-TimerUL overlap or intersect in time, the terminal device will be in a wake-up state and continue to monitor the control channel.
  • the terminal device can receive a retransmission PDCCH (for example, retransmission DCI) from the network device in time slot 201 ), the PDCCH instructs the terminal to retransmit in the subsequent time slot of time slot 201, such as time slot 202 (it can also be other time slots, such as time slot 203, time slot 204 or time slot 205.
  • time slot 202 is used as an example.
  • the specific manner of indication may be retransmission in the closest uplink time slot after the third time slot after the time slot in which the PDCCH is retransmitted.
  • the terminal device can transmit PUSCH1, PUSCH2, PUSCH3 and PUSCH4 in the uplink through time slot 202, time slot 203, time slot 204 and time slot 205 respectively, and after sending the corresponding PUSCH, start the drx-drx of the corresponding HARQ process.
  • HARQ-RTT-TimerUL 210 drx-HARQ-RTT-TimerUL 220, drx-HARQ-RTT-TimerUL 230, drx-HARQ-RTT-TimerUL 240, and in drx-HARQ-RTT-TimerUL 210, drx-HARQ-RTT After -TimerUL 220, drx-HARQ-RTT-TimerUL 230, and drx-HARQ-RTT-TimerUL 240 time out respectively, turn on the corresponding drx-RetransmissionTimerUL 211, drx-RetransmissionTimerUL 221, drx-RetransmissionTimerUL 231, drx-RetransmissionTimerUL 241.
  • the terminal device transmits PUSCH1 uplink through time slot 202, it turns on the drx-HARQ-RTT-TimerUL 210 corresponding to the HARQ process. After the drx-HARQ-RTT-TimerUL 210 times out, it turns on the corresponding drx-RetransmissionTimerUL 211.
  • the running time of drx-RetransmissionTimerUL 211 intersects with the running time of drx-HARQ-RTT-TimerUL 220
  • the running time of drx-RetransmissionTimerUL 221 intersects with the running time of drx-HARQ-RTT-TimerUL 230
  • the running time of drx-RetransmissionTimerUL 231 intersects with the running time of drx-HARQ-RTT-TimerUL 240, resulting in the terminal equipment starting from the first time slot after time slot 201 until the end of the operation of drx-RetransmissionTimerUL 241.
  • the power consumption is high.
  • the terminal device uplink transmits PUSCH frame a to the network device by uplink transmitting PUSCH1 and PUSCH2 respectively through time slot 201, time slot 202, time slot 203 and time slot 204 of the same CG cycle.
  • PUSCH3 and PUSCH4 where PUSCH frame a includes PUSCH1, PUSCH2, PUSCH3 and PUSCH4.
  • the running time of drx-RetransmissionTimerUL 211 intersects with the running time of drx-HARQ-RTT-TimerUL 220
  • the running time of drx-RetransmissionTimerUL 221 intersects with the running time of drx-HARQ-RTT-TimerUL 230
  • the running time of drx-RetransmissionTimerUL 231 overlaps with the running time of drx-HARQ-RTT-TimerUL 240.
  • the terminal starts from the first time slot after time slot 201 until the end of the operation of drx-RetransmissionTimerUL 241.
  • the device is always awake or working and consumes high power.
  • the terminal device can receive a retransmission PDCCH (for example, retransmission DCI) from the network device in time slot 301 ), the PDCCH instructs the terminal to retransmit in the subsequent time slot of time slot 301, such as time slot 302 of the second CG cycle 1 (it can also be other time slots, such as time slot 303, time slot 304 or time slot 305, here Taking time slot 302 as an example), repeat Pass PUSCH1.
  • the specific manner of indication may be retransmission in the closest uplink time slot after the third time slot after the time slot in which the PDCCH is retransmitted.
  • the terminal device transmits PUSCH1, PUSCH2, PUSCH3 and PUSCH4 in uplink through time slot 302, time slot 303, time slot 304 and time slot 305 respectively.
  • the running time of drx-RetransmissionTimerUL 311 intersects with the running time of drx-HARQ-RTT-TimerUL 320
  • the running time of drx-RetransmissionTimerUL 321 intersects with the running time of drx-HARQ-RTT-TimerUL 330.
  • the running time of drx-RetransmissionTimerUL 331 intersects with the running time of drx-HARQ-RTT-TimerUL 340, resulting in the terminal equipment continuing to In the wake-up state or working state, the power consumption is high.
  • the terminal device uplink transmits the PUSCH frame a to the network device through the time slot 301 of the first CG cycle 1, the time slot 302 of the second CG cycle 1, and the third CG cycle 1.
  • Time slot 303 and time slot 304 of the fourth CG cycle 1 respectively transmit uplink PUSCH1, PUSCH2, PUSCH3 and PUSCH4, where PUSCHa includes PUSCH1, PUSCH2, PUSCH3 and PUSCH4.
  • the running time of drx-RetransmissionTimerUL 311 intersects with the running time of drx-HARQ-RTT-TimerUL 320
  • the running time of drx-RetransmissionTimerUL 321 intersects with the running time of drx-HARQ-RTT-TimerUL 330
  • the running time of drx-RetransmissionTimerUL 331 overlaps with the running time of drx-HARQ-RTT-TimerUL 340.
  • the terminal starts from the first time slot after time slot 301 until the end of the operation of drx-RetransmissionTimerUL 341.
  • the device is always awake or working and consumes high power.
  • time slots such as time slot 201, time slot 301, etc.
  • time slots are only illustrative and not limiting.
  • Time slots everywhere in this application can be replaced by time units.
  • Time units include time slots or symbols.
  • a time slot includes 14 symbols.
  • Alternative technical solutions are also within the scope of this application.
  • the drx-HARQ-RTT-TimerUL corresponding to the time unit (for example, time slot or symbol) in this application can be understood as the HARQ process corresponding to the physical uplink shared channel PUSCH transmitted on this time unit.
  • drx-HARQ-RTT-TimerUL that is, the drx-HARQ-RTT-TimerUL that is turned on in the next adjacent symbol after the PUSCH transmission is completed, where the drx-HARQ-RTT-TimerUL is the HARQ process corresponding to the PUSCH drx-HARQ-RTT-TimerUL.
  • the drx-HARQ-RTT-TimerUL corresponding to the i-th uplink time slot can be understood as the next adjacent symbol turned on after the PUSCH transmission of the i-th uplink time slot is completed.
  • drx-HARQ-RTT-TimerUL where the drx-HARQ-RTT-TimerUL is the drx-HARQ-RTT-TimerUL of the HARQ process corresponding to the PUSCH.
  • the drx-RetransmissionTimerUL corresponding to the time unit can be understood as the drx-RetransmissionTimerUL corresponding to the HARQ process corresponding to the PUSCH transmitted on the time unit; that is, the drx-RetransmissionTimerUL corresponding to the PUSCH
  • the drx-RetransmissionTimerUL turned on, where the drx-RetransmissionTimerUL is the drx-RetransmissionTimerUL of the HARQ process corresponding to the drx-HARQ-RTT-TimerUL.
  • the drx-RetransmissionTimerUL corresponding to the i-th uplink time slot can be understood as the drx-HARQ-RTT-TimerUL of the HARQ process corresponding to the PUSCH transmitted on the i-th uplink time slot after the timeout.
  • the drx-RetransmissionTimerUL is turned on, where the drx-RetransmissionTimerUL is the drx-RetransmissionTimerUL of the HARQ process corresponding to the PUSCH.
  • the drx-HARQ-RTT-TimerUL corresponding to PUSCH in this application can be understood as the drx-HARQ-RTT-TimerUL corresponding to the HARQ process of PUSCH; that is, the next adjacent time unit after the PUSCH transmission is completed (for example, time slot or symbol), the drx-HARQ-RTT-TimerUL is turned on, where the drx-HARQ-RTT-TimerUL is the drx-HARQ-RTT-TimerUL of the HARQ process corresponding to the PUSCH.
  • the drx-RetransmissionTimerUL corresponding to the PUSCH in this application can be understood as the drx-RetransmissionTimerUL of the HARQ process corresponding to the PUSCH; that is, the drx-HARQ-RTT-TimerUL of the HARQ process corresponding to the PUSCH exceeds The next adjacent symbol after the time, the drx-RetransmissionTimerUL turned on, where the drx-RetransmissionTimerUL is the drx-RetransmissionTimerUL of the HARQ process corresponding to the drx-HARQ-RTT-TimerUL.
  • the drx-HARQ-RTT-TimerUL and drx-RetransmissionTimerUL corresponding to the uplink time slot in this application have the same meaning as the drx-HARQ-RTT-TimerUL and drx-RetransmissionTimerUL corresponding to the PUSCH respectively.
  • Embodiment 1 relates to Figure 4A.
  • FIG. 4A is a schematic diagram of Embodiment 1 of the uplink transmission method provided by the embodiment of the present application.
  • Embodiment 1 includes Embodiment 1, Embodiment 2 and Embodiment 3.
  • Embodiment 1 relates to (a) of FIG. 4A
  • Embodiment 2 relates to (b) of FIG. 4A .
  • Embodiment 3 is a further improvement based on Embodiment 1 or Embodiment 2, and the corresponding drawings are not shown.
  • the network device configures n consecutive uplink time slots in each CG cycle to the terminal device, where n is a positive integer greater than 1. For example, n can be obtained based on cg-nrofSlots in ConfiguredGrantConfig in the first configuration information.
  • the first configuration information may be sent through RRC signaling sent by the network device to the terminal device. In some cases, the first configuration information may be ConfiguredGrantConfig.
  • the The drx-RetransmissionTimerUL corresponding to the i-th uplink time slot is turned on, where i is any positive integer greater than or equal to n-m and less than or equal to n.
  • the any one or more uplink time slots is not enabled.
  • m is a non-negative integer less than n-1.
  • the drx-RetransmissionTimerUL corresponding to the j-th uplink time slot is turned on, where j is any positive integer greater than or equal to n-m, less than or equal to n, and not equal to i.
  • the drx-RetransmissionTimerUL corresponding to the k-th uplink time slot is turned on, where k is any positive integer greater than or equal to n-m, less than or equal to n, and not equal to i or j.
  • one uplink time slot can transmit one or more PUSCHs, and multiple uplink time slots can also transmit one or more PUSCHs.
  • first uplink time slot to the last uplink time slot are all in the same CG cycle.
  • the numbers from the first uplink time slot to the last uplink time slot in n consecutive uplink time slots can be 0,...,n-1; they can also be 1,...,n.
  • m 0.
  • the drx-HARQ-RTT-TimerUL corresponding to the nth uplink time slot i.e. the last uplink time slot
  • the drx-RetransmissionTimerUL corresponding to the nth uplink time slot On; in this CG cycle, the corresponding drx-HARQ- After the RTT-TimerUL times out, the drx-RetransmissionTimerUL corresponding to any one or more uplink time slots will not be turned on.
  • the drx-HARQ-RTT-TimerUL corresponding to the n-th uplink time slot ie, the last uplink time slot
  • the n-th uplink time slot The drx-RetransmissionTimerUL corresponding to the uplink time slot is turned on; after the drx-HARQ-RTT-TimerUL corresponding to the non-nth uplink time slot (that is, not the last uplink time slot) in n consecutive uplink time slots times out, after The drx-RetransmissionTimerUL corresponding to the non-nth uplink time slot is not enabled.
  • the network device configures 4 consecutive uplink time slots in each CG cycle to the terminal device. After the drx-HARQ-RTT-TimerUL 240 corresponding to the last uplink time slot (i.e.
  • the drx-RetransmissionTimerUL 241 corresponding to the time slot 204 is turned on; after the four consecutive uplink time slots
  • the corresponding drx-HARQ-RTT-TimerUL 210, drx-HARQ-RTT-TimerUL 220, drx-HARQ-RTT for the non-last uplink time slot i.e., time slot 201, time slot 202, and time slot 203 respectively -After TimerUL 230 times out, the drx-RetransmissionTimerUL corresponding to time slot 201, time slot 202, and time slot 203 will not be turned on.
  • the above-mentioned “drx-HARQ-RTT-TimerUL corresponding to the uplink timeslot” actually refers to: the drx-HARQ-RTT-TimerUL corresponding to the PUSCH transmitted on the uplink timeslot;
  • the above-mentioned “uplink timeslot” “Corresponding drx-RetransmissionTimerUL” actually refers to: after the PUSCH is transmitted on the uplink time slot, after the drx-HARQ-RTT-TimerUL corresponding to the PUSCH times out, the drx-RetransmissionTimerUL corresponding to the drx-HARQ-RTT-TimerUL.
  • a first field (also called a first switch) may be added to the first configuration information sent by the network device to the terminal device.
  • the first configuration information includes ConfiguredGrantConfig
  • the first field drx-retransmissionULenabler can be added to ConfiguredGrantConfig.
  • the first configuration information may be ConfiguredGrantConfig.
  • the first configuration information may be sent through RRC signaling.
  • drx-retransmissionULenabler is the first value (such as 1 or true)
  • the drx-RetransmissionTimerUL corresponding to the last uplink time slot is turned on; after the drx-HARQ-RTT-TimerUL corresponding to the non-last uplink time slot among n consecutive uplink time slots times out, the non-last uplink time slot
  • the corresponding drx-RetransmissionTimerUL is not enabled.
  • drx-retransmissionULenabler is the second value (such as 0 or false)
  • the drx-HARQ-RTT-TimerUL corresponding to any one of the n consecutive uplink time slots times out the drx corresponding to any one uplink time slot -RetransmissionTimerUL are both enabled.
  • the specific process can be:
  • drx-RetransmissionTimerUL is turned on for the corresponding HARQ process.
  • the MAC PDU of step 1 is carried in the PUSCH described in step 2.
  • configure uplink authorization is a noun.
  • the value of the above-mentioned first field can also be determined by whether the first field is configured. For example, when the first field (for example, drx-retransmissionULenabler) is not configured in the ConfiguredGrantConfig in the first configuration information, that is, when the first configuration information received by the terminal device does not include the first field, it can be considered that the first field The field is the second value.
  • the first field indicates the first value, that is, drx-retransmissionULenabler indicates the last available transmission configured only for the configuration uplink authorization.
  • Opportunity to enable drx-RetransmissionTimerUL At this time, the description of step 4 above "If the uplink authorization is configured with drx-retransmissionULenabler, and the drx-retransmissionULenabler indicates that drx-RetransmissionTimerUL is only enabled for the last available transmission opportunity configured for the configured uplink authorization" can be replaced with " If the configuration upstream authorization is configured with drx-retransmissionULenabler".
  • one or more uplink time slots from the nmth uplink time slot to the last uplink time slot correspond to After the drx-HARQ-RTT-TimerUL times out, the drx-RetransmissionTimerUL corresponding to the one or more uplink time slots is turned on at the same time; in this CG cycle, the first uplink time slot to the After the drx-HARQ-RTT-TimerUL corresponding to any one or more of the nm uplink time slots times out, any one or more of the 1st uplink time slot to the nm-1th uplink time slot or The drx-RetransmissionTimerUL corresponding to multiple uplink time slots is not enabled.
  • m is a non-negative integer less than n-1.
  • the next adjacent symbol after the drx-HARQ-RTT-TimerUL corresponding to the n-th uplink time slot times out, and the first uplink time slot to the drx-RetransmissionTimerUL corresponding to PUSCH transmitted on n uplink time slots.
  • the next one of the PUSCH The adjacent symbol turns on the drx-HARQ-RTT-TimerUL corresponding to the HARQ process of the PUSCH, and after the drx-HARQ-RTT-TimerUL times out, the terminal device does not turn on the drx-RetransmissionTimerUL corresponding to the HARQ process; during the n uplink After the PUSCH is transmitted in the nth uplink time slot in the slot, the drx-HARQ-RTT-TimerUL corresponding to the HARQ process of the PUSCH is turned on in the next adjacent symbol of the PUSCH, and after the drx-HARQ-RTT-TimerUL times out, Turn on the drx-RetransmissionTimerUL of the HARQ process corresponding to the PUSCH transmitted on the
  • the network device configures n consecutive uplink time slots in each CG cycle to the terminal device, where n is a positive integer greater than 1. For example, n can be obtained based on cg-nrofSlots in ConfiguredGrantConfig in the first configuration information.
  • the first configuration information may be sent through RRC signaling sent by the network device to the terminal device.
  • the The drx-HARQ-RTT-TimerUL corresponding to the i uplink time slot is turned on, where i is any positive integer greater than or equal to n-m and less than or equal to n; in this CG cycle, the first uplink time slot to the n-m- After any one or more uplink time slots in an uplink time slot transmits PUSCH, the drx-HARQ-RTT-TimerUL corresponding to any one or more uplink time slots is not turned on.
  • m is a non-negative integer less than n-1.
  • the j-th uplink time slot after the j-th uplink time slot from the n-mth uplink time slot to the n-th uplink time slot (i.e., the last uplink time slot) transmits PUSCH, the j-th uplink time slot
  • the corresponding drx-HARQ-RTT-TimerUL is turned on, where j is any positive integer greater than or equal to n-m, less than or equal to n, and not equal to i.
  • the k-th uplink time slot after the k-th uplink time slot from the n-mth uplink time slot to the n-th uplink time slot (that is, the last uplink time slot) transmits PUSCH, the k-th uplink time slot
  • the corresponding drx-HARQ-RTT-TimerUL is turned on, where k is any positive integer greater than or equal to n-m, less than or equal to n, and not equal to i or j.
  • the drx-RetransmissionTimerUL corresponding to any one or more PUSCHs transmitted from the 1st uplink time slot to the n-m-1th uplink time slot will not be turned on.
  • m 0.
  • the The drx-HARQ-RTT-TimerUL corresponding to n uplink time slots will be turned on; in this CG cycle, any one or more uplink time slots from the 1st uplink time slot to the n-1th uplink time slot are transmitted
  • the drx-HARQ-RTT-TimerUL corresponding to any one or more uplink time slots is not turned on. Further, after the drx-HARQ-RTT-TimerUL corresponding to the n-th uplink time slot times out, the drx-RetransmissionTimerUL corresponding to the n-th uplink time slot is turned on.
  • the drx-RetransmissionTimerUL corresponding to any one or more uplink time slots will not be turned on.
  • the drx-HARQ-RTT-TimerUL corresponding to the last uplink time slot is turned on.
  • the drx-HARQ-RTT-TimerUL corresponding to the non-last uplink time slot is not turned on.
  • the drx-RetransmissionTimerUL corresponding to the last uplink time slot is turned on; after the drx corresponding to the non-last uplink time slot -After HARQ-RTT-TimerUL times out, the drx-RetransmissionTimerUL corresponding to the non-last uplink time slot will not be turned on.
  • the network device configures 4 consecutive uplink time slots in each CG cycle to the terminal device.
  • the corresponding drx-HARQ-RTT-TimerUL is turned on only after 240.
  • drx-RetransmissionTimerUL 241 corresponding to time slot 204 is turned on.
  • a first field (also called a first switch) may be added to the first configuration information sent by the network device to the terminal device.
  • the first configuration information includes ConfiguredGrantConfig
  • the first field drx-retransmissionULenabler can be added to ConfiguredGrantConfig.
  • the first configuration information may be ConfiguredGrantConfig.
  • the first configuration information may be sent through RRC signaling.
  • drx-retransmissionULenabler is the first value (such as 1 or true)
  • the last uplink slot The corresponding drx-HARQ-RTT-TimerUL is only turned on; after PUSCH is transmitted on the non-last uplink time slot among n consecutive uplink time slots, the drx-HARQ-RTT-TimerUL corresponding to the non-last uplink time slot Neither is turned on.
  • drx-retransmissionULenabler is the second value (such as 0 or false)
  • the corresponding drx-HARQ-RTT-TimerUL are all enabled.
  • the drx-retransmissionTimerUL corresponding to any uplink time slot is turned on.
  • the specific process can be:
  • the configuration uplink authorization is configured with drx-retransmissionULenabler, and the drx-retransmissionULenabler indicates that drx-HARQ-RTT-TimerUL is only enabled for the last available transmission opportunity configured for the configuration uplink authorization.
  • the MAC PDU of step 1 is carried in the PUSCH of the above process.
  • the value of the above-mentioned first field can also be determined by whether the first field is configured. For example, when the first field (for example, drx-retransmissionULenabler) is not configured in the ConfiguredGrantConfig in the first configuration information, that is, when the first configuration information received by the terminal device does not include the first field, it can be considered that the first field The field is the second value.
  • the first configuration information received by the terminal device contains the first field, it can be considered that the first field indicates the first value, that is, drx-retransmissionULenabler indicates the last available transmission configured only for the configuration uplink authorization.
  • step 2 above "If the uplink authorization is configured with drx-retransmissionULenabler, and the drx-retransmissionULenabler indicates that only the last available transmission opportunity configured for the configured uplink authorization is turned on drx-HARQ-RTT-TimerUL" Can be replaced by "if the configuration upstream authorization is configured with drx-retransmissionULenabler".
  • nmth uplink time slot to the nth uplink time slot (i.e. the last uplink time slot) among n consecutive uplink time slots in the same CG cycle.
  • the drx-HARQ-RTT-TimerUL corresponding to the 1st to nmth uplink time slots is turned on at the same time; in this CG cycle, in the 1st uplink time slot to nmth -After any one or more uplink time slots in one uplink time slot transmits PUSCH, the drx-HARQ-RTT-TimerUL corresponding to any one or more uplink time slots is not turned on. Further, any one or more uplink time slots corresponding to each drx-RetransmissionTimerUL will not be turned on.
  • m is a non-negative integer less than n-1.
  • the drx-HARQ corresponding to the 1st to nth uplink time slots is turned on in the next adjacent symbol of the PUSCH. -RTT-TimerUL.
  • the any The next adjacent symbol of one or more uplink time slots does not turn on the drx-HARQ-RTT-TimerUL of the HARQ process corresponding to the PUSCH, so the drx-RetransmissionTimerUL of the HARQ process does not turn on; it is transmitted in the nth uplink time slot.
  • the drx-HARQ-RTT-TimerUL of the HARQ process corresponding to the PUSCH transmitted on the 1st to nth uplink time slot is turned on in the next adjacent symbol of the PUSCH, and the drx-HARQ-RTT-TimerUL of each HARQ process is turned on respectively.
  • the next symbol after HARQ-RTT-TimerUL times out, turn on drx-RetransmissionTimerUL for each HARQ process respectively.
  • the drx-retransmissionULenabler signaling shown in Embodiment 1 and 2 can be shown in bold font as follows:
  • the network device may predetermine the number n of uplink time slots required by the terminal device to transmit PUSCH, where n is a positive integer.
  • the number k of uplink time slots required by the terminal equipment to actually transmit PUSCH, k is a positive integer less than or equal to n.
  • the terminal device may send the third control information (for example, Uplink Control Information) in any one of the first k uplink time slots (for example, the first uplink time slot) among the n uplink time slots.
  • the terminal equipment can complete the transmission of the data in 4 uplink time slots in this period.
  • a third control information (such as UCI or MAC CE) is sent in the first uplink time slot of the time slot. In this way, the number of uplink time slots actually required and used is 3.
  • Embodiment 2 relates to Figure 4B.
  • FIG. 4B is a schematic diagram of Embodiment 2 of the uplink transmission method provided by the embodiment of the present application.
  • Embodiment 2 includes Embodiment 1 and Embodiment 2.
  • Embodiment 1 relates to (a) of FIG. 4B
  • Embodiment 2 relates to (b) of FIG. 4B .
  • the terminal device supports d CG configurations to operate simultaneously, and d is a positive integer.
  • the network device configures n CG configurations for the terminal device through the first configuration information n times, where n is a positive integer less than or equal to d; each time a CG configuration is configured, and each CG configuration includes at least one CG cycle.
  • any number of uplink time slots can be used for uplink transmission.
  • the CG configuration is configured through the first configuration information sent by the network device to the terminal device.
  • the first configuration information may be sent through RRC signaling sent by the network device to the terminal device.
  • the i-th CG configuration includes the i-th CG period, and the i-th CG period includes the i-th CG period 1, the i-th CG period 2,....
  • the period combination including the first CG period j, the second CG period j,..., the i-th CG period j,..., to the n-th CG period j is recorded as the j-th period group.
  • the i-th CG cycle j can also be called the i-th CG cycle in the j-th group.
  • the uplink time slot used for uplink transmission in the i-th CG cycle j (for example, the first CG cycle 1) is recorded as the uplink time slot ij1 (for example, i 11), and j is a positive integer.
  • the periods of different CG periods included in the same period group can be the same or different.
  • the periods of the first CG period 1 and the second CG period 1 may be the same or different.
  • the cycles of the same CG cycle are the same.
  • the periods of the first CG period 1, the first CG period 2, the first CG period 3, etc. are the same.
  • the uplink data transmitted on one or more of the uplink time slots (n-m)j1 of the n-mth CG cycle to the uplink time slot nj1 of the n-th CG cycle are respectively After the corresponding drx-HARQ-RTT-TimerUL times out, the one or more corresponding drx-RetransmissionTimerULs are turned on; in the j-th period group, the uplink time slot 1j1 for uplink transmission in the first CG period After the drx-HARQ-RTT-TimerUL corresponding to any one or more uplink time slots (n-m-1)j1 of the n-m-1th CG cycle times out, the any one or more uplink time slots The corresponding drx-RetransmissionTimerUL is not turned on.
  • m is a non-negative integer less than m-1.
  • m 0.
  • the drx corresponding to the uplink time slot nj1 of the n-th CG cycle -RetransmissionTimerUL is only turned on; in the j-th period group, any one or more uplink times from the uplink time slot 1j1 of the 1st CG period to the uplink time slot (n-1)j1 of the n-1th CG period After the drx-HARQ-RTT-TimerUL corresponding to the slot times out, the drx-RetransmissionTimerUL corresponding to any one or more uplink time slots will not be turned on.
  • the n-th CG cycle used for uplink transmission The uplink time slot corresponds to drx-RetransmissionTimerUL is only enabled; after the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in other than the nth CG cycle times out, the uplink time slot used for uplink transmission in other than the nth CG cycle corresponds to The drx-RetransmissionTimerUL is not turned on. It should be noted that this applies regardless of whether there is a retransmission.
  • the first period group includes the first CG period 1, the second CG period 1, the third CG period 1 and the fourth CG period 1.
  • the uplink time slot used for uplink transmission in the i-th CG cycle i.e., i-th CG cycle 1 is recorded as uplink time slot i11, where i is a positive integer less than or equal to 4.
  • the drx-HARQ-RTT-TimerUL 340 corresponding to the uplink time slot 304 in the fourth CG cycle of the cycle group (i.e., the fourth CG cycle 1) times out, the drx-RetransmissionTimerUL 341 corresponding to the uplink time slot 304 is turned on (i.e.
  • uplink time slot used for uplink transmission i.e., uplink time slot 301 in the non-4th CG period of the period group (i.e., the first CG period 1, the second CG period 1, or the third CG period 1) , uplink time slot 302 or uplink time slot 303) after the corresponding drx-HARQ-RTT-TimerUL 310, drx-HARQ-RTT-TimerUL 320 or drx-HARQ-RTT-TimerUL 330 times out, in uplink time slot 301, uplink The drx-RetransmissionTimerUL corresponding to time slot 302 or uplink time slot 303 is not enabled.
  • a second field (also called a second switch) may be added to the first configuration information sent by the network device to the terminal device.
  • the first configuration information includes ConfiguredGrantConfig
  • the second field drx-retransmissionULenabler can be added to ConfiguredGrantConfig.
  • the first configuration information may be ConfiguredGrantConfig.
  • the second field can be the same as the first field, or it can be different.
  • the first configuration information may be sent through RRC signaling.
  • the network device configures four CG configurations for the terminal device through ConfiguredGrantConfig in the first configuration information four times, where each ConfiguredGrantConfig includes a second field (also called a second switch); for example, drx- retransmissionULenabler.
  • a second field also called a second switch
  • the drx-retransmissionULenabler configured in a CG is the first value (such as 1 or true), when the drx-HARQ-RTT-TimerUL corresponding to the transmitted PUSCH times out, the corresponding drx-RetransmissionTimerUL will be turned on. If the drx-retransmissionULenabler configured in a CG is the second value (such as 0 or false), when the drx-HARQ-RTT-TimerUL corresponding to the transmitted PUSCH times out, the corresponding drx-RetransmissionTimerUL will not be turned on.
  • the network device sends n first configuration information to the terminal device for configuring n CG configurations; the drx-retransmissionULenabler in the first to n-1th first configuration information is the second value, the drx-retransmissionULenabler in the nth first configuration information is the first value.
  • the specific process can be:
  • the MAC PDU in step 1 is carried in the PUSCH described in the above process.
  • the value of the above-mentioned second field can also be determined by whether the second field is configured. For example, when the second field (for example, drx-retransmissionULenabler) is not configured in the ConfiguredGrantConfig in the first configuration information, that is, when the first configuration information received by the terminal device does not include the second field, it can be considered that the second field is the first value.
  • the first configuration information received by the terminal device includes the second field, it can be considered that the second field indicates the second value, that is, drx-retransmissionULenabler indicates that drx-RetransmissionTimerUL is enabled for the configuration uplink authorization.
  • the description of step 5 above can be directly deleted, and step 6 is changed to step 5.
  • the specific process at this time can be as follows:
  • Embodiment 2 in the jth cycle group, one or more uplink time slots from the uplink time slot (n-m)j1 of the n-mth CG cycle to the uplink time slot nj1 of the nth CG cycle after uplink transmission of PUSCH , the drx-HARQ-RTT-TimerUL corresponding to each of the one or more uplink time slots is turned on; from the uplink time slot 1j1 used for uplink transmission in the first CG cycle to the uplink time of the n-m-1th CG cycle After uplink transmission of PUSCH in any one or more uplink time slots in slot (n-m-1)j1, the drx-HARQ-RTT-TimerUL corresponding to any one or more uplink time slots is not turned on.
  • m is a non-negative integer less than n-1.
  • m 0.
  • the drx-RetransmissionTimerUL corresponding to the uplink time slot nj1 is turned on; in the j-th period group, in the 1st After uplink transmission of PUSCH in any one or more uplink time slots 1j1 of the CG cycle to uplink time slot (n-1)j1 of the n-1th CG cycle, the any one or more uplink time slots The drx-RetransmissionTimerUL corresponding to each slot is not turned on.
  • the one or more uplink time slots used for uplink transmission is turned on; after uplink transmission of PUSCH in any one or more uplink time slots used for uplink transmission from the 1st CG cycle to the n-m-1th CG cycle, all The drx-HARQ-RTT-TimerUL corresponding to any one or more of the above uplink time slots used for uplink transmission is not enabled. It should be noted that this applies regardless of whether there is a retransmission.
  • the drx-HARQ-RTT-TimerUL corresponding to any one or more uplink time slots used for uplink transmission in the n-mth CG cycle is turned on.
  • the uplink time slot of the n-th CG period for uplink transmission is The drx-HARQ-RTT-TimerUL corresponding to the slot is turned on; after uplink transmission of PUSCH in the uplink time slot used for uplink transmission in the non-nth CG period, the uplink time slot used for uplink transmission in the non-nth CG period.
  • the drx-HARQ-RTT-TimerUL corresponding to the gap is not enabled.
  • the uplink time slot for uplink transmission in the nth CG period corresponds to The drx-RetransmissionTimerUL is only turned on; the drx-RetransmissionTimerUL corresponding to the uplink time slot used for uplink transmission in non-nth CG cycle of the cycle group is not turned on.
  • the terminal device supports four CG configurations to operate simultaneously.
  • the network device configures 4 CG configurations for the terminal device in 4 times, one CG configuration each time, and each CG configuration includes at least one CG cycle. Only one uplink time slot is used for uplink transmission in each CG cycle.
  • the first period group includes the first CG period 1, the second CG period 1, the third CG period 1 and the fourth CG period 1.
  • the uplink time slot used for uplink transmission in the i-th CG period of the period group is recorded as uplink time slot i11, and i is a positive integer less than or equal to 4.
  • the drx-HARQ-RTT-TimerUL 340 corresponding to the PUSCH transmitted in the uplink time slot 304 is turned on;
  • the uplink time slot used for uplink transmission i.e., uplink time slot 301, uplink time slot
  • the non-4th CG period of the period group i.e., the first CG period 1, the second CG period 1, or the third CG period 1
  • the drx-HARQ-RTT-TimerUL corresponding to the PUSCH transmitted in uplink time slot 301, uplink time slot 302 or uplink time slot 303 is not turned on.
  • a second field (also called a second switch) may be added to the first configuration information sent by the network device to the terminal device.
  • the first configuration information includes ConfiguredGrantConfig
  • the second field drx-retransmissionULenabler can be added to ConfiguredGrantConfig.
  • the first configuration information may be ConfiguredGrantConfig.
  • the first configuration information may be sent through RRC signaling.
  • the network device configures four CG configurations for the terminal device through ConfiguredGrantConfig in the first configuration information four times, where each ConfiguredGrantConfig includes a second field (also called a second switch); for example, drx- retransmissionULenabler.
  • a second field also called a second switch
  • the terminal device After transmitting PUSCH through the uplink timeslot corresponding to the CG configuration, the terminal device will enable drx-retransmission for the HARQ process corresponding to the PUSCH.
  • HARQ-RTT-TimerUL and after the drx-HARQ-RTT-TimerUL times out, the corresponding drx-RetransmissionTimerUL is turned on.
  • the terminal device will not enable drx-HARQ- for the HARQ process corresponding to the PUSCH.
  • RTT-TimerUL so the corresponding drx-RetransmissionTimerUL will not be turned on.
  • the network device sends n first configuration information to the terminal device for configuring n CG configurations; the drx-retransmissionULenabler in the first to n-1th first configuration information is the second value, the drx-retransmissionULenabler in the nth first configuration information is the first value.
  • the specific process of not enabling drx-HARQ-RTT-TimerUL can be:
  • the MAC PDU of step 1 is carried in the PUSCH described in the above process.
  • the value of the above-mentioned second field can also be determined by whether the second field is configured. For example, when the second field (for example, drx-retransmissionULenabler) is not configured in the ConfiguredGrantConfig in the first configuration information, that is, when the first configuration information received by the terminal device does not include the second field, it can be considered that the second field is the first value.
  • the second field for example, drx-retransmissionULenabler
  • step 5 When the first configuration information received by the terminal device includes the second field, it can be considered that the second field indicates the second value, that is, drx-retransmissionULenabler indicates that drx-RetransmissionTimerUL is enabled for the configuration uplink authorization.
  • step 6 the description of step 5 above can be directly deleted, and step 6 is changed to step 5.
  • the specific process at this time can be as follows:
  • drx-retransmissionULenabler can be used to indicate the drx-HARQ-RTT-TimerUL or drx-retransmissionULenabler corresponding to the PUSCH transmitted in any CG cycle.
  • RetransmissionTimerUL is turned on, or it can be instructed that the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to the PUSCH transmitted in any CG cycle is not turned on (for example, turned off).
  • the network device 200 after S101 shown in FIG. 1A and before S102, the network device 200 also sends second configuration information to the terminal device 100.
  • the second configuration information is carried in RRC signaling.
  • the second configuration information includes BWP-uplinkDedicated information element, BWP-uplinkDedicated information element includes associated information (for example, cg-drxList).
  • cg-drxList is used to associate different CG configurations.
  • CG configuration includes CG period. Different CG configurations include different CG cycles. Different CG cycles can be in the same cycle group or in different cycle groups.
  • cg-drxList ⁇ CG 1, CG 2,..., CG i,..., CG nm,..., CG n ⁇ , where CG i represents the i-th CG cycle.
  • cg-drxList ⁇ CG 0, CG 1,..., CG i-1,..., CG nm-1,... CG n-1 ⁇ , where CG i-1 represents the i CG cycles.
  • m is a non-negative integer less than n-1. For the convenience of description, the following description takes the starting number as 1 as an example.
  • the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in the nth CG cycle is turned on; and uplink transmission occurs in the uplink time slot used for uplink transmission in other than the nth CG cycle.
  • the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in other than the nth CG cycle is not enabled.
  • cg-drxList i.e. CG n-1 to CG n
  • the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot of the n-1 to n-th CG cycle is turned on; and in After uplink transmission of PUSCH in the uplink time slots used for uplink transmission in the 1st to n-m-1th CG cycles, the drx- corresponding to the uplink time slots used for uplink transmission in the 1st to n-m-1th CG cycles HARQ-RTT-TimerUL are not enabled.
  • cg-drxList after configuring cg-drxList, you can obtain the last element in cg-drxList (i.e. CG n), so as to use the uplink time for uplink transmission in the nth CG cycle.
  • the drx-HARQ-RTT-TimerUL corresponding to the slot times out the drx-RetransmissionTimerUL corresponding to the uplink time slot used for uplink transmission in the nth CG cycle is turned on; and it is used for uplink transmission in non-nth CG cycles.
  • the drx-RetransmissionTimerUL corresponding to the uplink time slot used for uplink transmission in the non-nth CG cycle is not turned on.
  • cg-drxList after configuring cg-drxList, you can obtain the last two elements in cg-drxList (i.e. CG n-1 and CG n), so that between the n-1 and nth
  • the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in the CG cycle times out the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in the n-1 to n-th CG cycle RetransmissionTimerUL is only turned on; after the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in the 1st to n-m-1th CG cycle times out, in the 1st to n-m-1th CG cycle The drx-RetransmissionTimerUL corresponding to the uplink time slot used for uplink transmission is not turned on.
  • cg-drxList After configuring cg-drxList, you can query whether the current CG cycle corresponds to the last element in cg-drxList (that is, CG n). If it corresponds, the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to the nth CG cycle in cg-drxList is enabled; if it does not correspond, the drx-HARQ corresponding to the non-nth CG cycle in cg-drxList is not enabled. -RTT-TimerUL or drx-RetransmissionTimerUL.
  • the network device 200 after S101 shown in FIG. 1A and before S102, the network device 200 also sends second configuration information to the terminal device 100.
  • the second configuration information is carried in RRC signaling.
  • the second configuration information includes BWP-uplinkDedicated information element, and BWP-uplinkDedicated information element includes ConfiguredGrantConfigToAddModList.
  • ConfiguredGrantConfigToAddModList is used to associate different CG configurations.
  • CG configuration includes CG period. Different CG configurations may include different CG cycles. Different CG cycles can be in the same cycle group or in different cycle groups.
  • ConfiguredGrantConfigToAddModList ⁇ CG 1,CG 2,...,CG i,...,CG n-m,...,CG n ⁇ , where CG i represents the i-th CG cycle.
  • ConfiguredGrantConfigToAddModList ⁇ CG 0,CG 1,...,CG i-1,...,CG n-m-1,...,CG n-1 ⁇ , where CG i-1 represents the i-th CG cycle.
  • m is a non-negative integer less than n-1. For the convenience of description, the following description takes the starting number as 1 as an example.
  • ConfiguredGrantConfigToAddModList After configuring ConfiguredGrantConfigToAddModList, you can obtain the last element in ConfiguredGrantConfigToAddModList (i.e. CG n), so that after uplink transmission of PUSCH in the uplink time slot used for uplink transmission in the nth CG cycle , the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in the nth CG cycle is turned on; and after the uplink transmission of PUSCH in the uplink time slot used for uplink transmission in the non-nth CG cycle, The drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in the non-nth CG period is not turned on.
  • ConfiguredGrantConfigToAddModList i.e. CG n
  • the drx corresponding to the uplink time slot used for uplink transmission in the nth CG cycle is turned on; the drx-RetransmissionTimerUL corresponding to the uplink time slot used for uplink transmission in the non-nth CG cycle After drx-HARQ-RTT-TimerUL times out, the drx-RetransmissionTimerUL corresponding to the uplink time slot used for uplink transmission in the non-nth CG cycle is not turned on.
  • the terminal device can query whether the current CG cycle corresponds to the last element (i.e. CG n) in ConfiguredGrantConfigToAddModList. If it corresponds, the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to the nth CG cycle in ConfiguredGrantConfigToAddModList is turned on; if not, the drx-HARQ-RTT-TimerUL corresponding to the non-nth CG cycle in ConfiguredGrantConfigToAddModList is not turned on. or drx-RetransmissionTimerUL.
  • this can be indicated by adding drx-RetransmissionTimerULforLastCG-r18 in the BWP-uplinkDedicated information element.
  • drx-RetransmissionTimerULforLastCG-r18 is the first value (such as 1 or true), it indicates:
  • the drx-RetransmissionTimerUL corresponding to the uplink time slot of the last element is used. Turn on; or,
  • the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot of the last element is turned on.
  • the drx-RetransmissionTimerUL corresponding to the uplink time slot used for uplink transmission that is not the last element in the ConfiguredGrantConfigToAddModList times out. Not turned on; or,
  • the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission that is not the last element is not turned on.
  • the drx-HARQ-RTT-TimerUL corresponding to one or more uplink time slots used for uplink transmission in the n-mth CG cycle to the n-th CG cycle times out the The drx-RetransmissionTimerUL corresponding to one or more uplink time slots used for uplink transmission is turned on; in any one or more uplink time slots used for uplink transmission in the 1st CG cycle to the n-m-1th CG cycle, each After the corresponding drx-HARQ-RTT-TimerUL times out, the drx-RetransmissionTimerUL corresponding to any one or more uplink time slots used for uplink transmission is not turned on; or,
  • the one or more uplink time slots used for uplink transmission is only turned on; after any one or more uplink time slots used for uplink transmission in the 1st CG cycle to the n-m-1th CG cycle, the any one or more used The drx-HARQ-RTT-TimerUL corresponding to the uplink time slot of uplink transmission is not enabled.
  • Embodiment 3 relates to Figure 5A.
  • FIG. 5A is a schematic diagram of Embodiment 3 of the uplink transmission method provided by the embodiment of the present application.
  • Embodiment 3 includes Embodiment 1 and Embodiment 2.
  • Embodiment 1 relates to (a) of FIG. 5A
  • Embodiment 2 relates to (b) of FIG. 5A .
  • drx-silenceTimerUL (which can be called a silent timer) is introduced.
  • the starting time and duration of drx-silenceTimerUL may be configured through the first configuration information.
  • the first configuration information is carried in RRC signaling.
  • the first configuration information may also include other configuration information of drx-silenceTimerUL.
  • the network device can configure n consecutive uplink time slots in each CG cycle for the terminal device through cg-nrofSlots in ConfiguredGrantConfig in the first configuration information.
  • the first configuration information may also configure drx-silenceTimerUL parameters (for example, the start time and duration of the timer; or the start time and end time of the timer; or the duration and end time of the timer).
  • the starting time of the drx-silenceTimerUL may default to the starting time of each cycle corresponding to the first configuration information (for example, the first time of n time slots of a CG cycle configured by the first configuration information).
  • the duration and/or end time of the timer can be configured through the first configuration information.
  • the duration of this timer may be called the first duration.
  • the relationship between the end time of the timer, the start time and the first duration is: the end time is the time slot or symbol corresponding to the start time offset by the first duration.
  • drx-silenceTimerUL covers the first uplink time slot to before the n-mth uplink time slot among the n consecutive uplink time slots in each CG cycle (excluding the n-mth uplink time slot).
  • time slot m is a non-negative integer less than n-1, and n is a positive integer greater than 1.
  • the configured drx-silenceTimerUL covers the 1st uplink time slot to before the nth uplink time slot among the n consecutive uplink time slots in each CG cycle (excluding the nth uplink time slot). time slot) time slot.
  • drx-silenceTimerUL covers the 1st uplink time slot to the n-m-1th uplink time slot (including the n-m-1th uplink time slot) among the n consecutive uplink time slots in each CG cycle. gap), m is a non-negative integer less than n-1, and n is a positive integer greater than 1.
  • the configured drx-silenceTimerUL covers the 1st uplink time slot to the n-1th uplink time slot among the n consecutive uplink time slots in each CG cycle of the CG configuration.
  • drx-silenceTimerUL 250 may cover time slots 201 to 206; alternatively, drx-silenceTimerUL 250 may only cover time slots 201 to 203 (not shown in the figure). ).
  • drx-silenceTimerUL when the terminal device transmits PUSCH in the uplink time slot covered by drx-silenceTimerUL, the terminal device does not turn on the drx-HARQ-RTT-TimerUL corresponding to the PUSCH, so the PUSCH will not be turned on.
  • Corresponding drx-RetransmissionTimerUL when the terminal device transmits PUSCH in the uplink time slot covered by drx-silenceTimerUL, the terminal device does not turn on the drx-HARQ-RTT-TimerUL corresponding to the PUSCH, so the PUSCH will not be turned on.
  • any drx-HARQ-RTT-TimerUL timeout of the terminal device is within the time range covered by drx-silenceTimerUL, the terminal device will not be used for these drx-HARQ-RTT-
  • the HARQ process corresponding to TimerUL turns on drx-RetransmissionTimerUL.
  • the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to the PUSCH transmitted on the uplink time slot not covered by drx-silenceTimerUL is not affected by drx-silenceTimerUL.
  • the coverage time range of drx-silenceTimerUL 250 is from time slot 201 to time slot 206; that is, time slot 201 is the starting time, and time slot 206 is At the end time, the first duration is 15 time slots.
  • the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to any one or more uplink time slots from time slot 201 to time slot 206 is not enabled.
  • time slot 203 is within the coverage time range of drx-silenceTimerUL, the corresponding drx-HARQ-RTT-TimerUL will not be turned on for the PUSCH.
  • the terminal device transmits PUSCH on time slot 203, it turns on the corresponding drx-HARQ-RTT-TimerUL for the PUSCH, but if the time when the drx-HARQ-RTT-TimerUL times out is within the coverage time range of drx-silenceTimerUL 250 , such as on a time slot between time slot 203 and time slot 206, the corresponding drx-RetransmissionTimerUL will not be enabled for the HARQ process corresponding to the drx-HARQ-RTT-TimerUL.
  • the first duration of drx-silenceTimerUL may be configured through drx-silenceTimer in the first configuration information.
  • the pseudocode for configuring the first duration of drx-silenceTimerUL is:
  • ms1 indicates that the duration of the drx-silenceTimerUL is 1 millisecond (ms)
  • ms2 indicates that the duration of the drx-silenceTimerUL is 2ms, and so on.
  • the terminal equipment After the terminal equipment transmits PUSCH on a time slot, if the time slot is within the time range covered by drx-silenceTimerUL, the drx-HARQ-RTT-TimerUL corresponding to the PUSCH will not be turned on; if the time slot is within the time range covered by drx-silenceTimerUL, Outside the time range covered by drx-silenceTimerUL, the drx-HARQ-RTT-TimerUL corresponding to the PUSCH is turned on.
  • the terminal device transmits PUSCH on a time slot and turns on the corresponding drx-HARQ-RTT-TimerUL for the PUSCH, and the time when the drx-HARQ-RTT-TimerUL times out is within the time covered by the drx-silenceTimerUL Within the range, the drx-RetransmissionTimerUL corresponding to the drx-HARQ-RTT-TimerUL is not turned on; if the terminal device transmits PUSCH on the time slot, and the corresponding drx-HARQ-RTT-TimerUL is turned on for the PUSCH, and drx-HARQ -The time when the RTT-TimerUL times out is outside the time range covered by the drx-silenceTimerUL, then the drx-RetransmissionTimerUL corresponding to the drx-HARQ-RTT-TimerUL is turned on.
  • one of the options can be selected.
  • drx-silenceTimerUL 250 covers time slots 201 to 206.
  • the network device configures a CG configuration through the first configuration information.
  • the CG configuration includes two uplink time slots (for example, time slot 201 and time slot 202).
  • the The drx-HARQ-RTT-TimerUL corresponding to PUSCH is not turned on; or, after the drx-HARQ-RTT-TimerUL corresponding to PUSCH transmitted on time slot 201 or time slot 202 times out, if the two drx-HARQ-RTT-TimerUL If the time corresponding to the timeout is within the coverage time range of drx-silenceTimerUL250, then the drx-RetransmissionTimerUL corresponding to the HARQ process corresponding to the two drx-HARQ-RTT-TimerUL is turned on.
  • the terminal equipment transmits PUSCH on time slot 203 through other methods, such as through dynamic scheduling or through other CG cycles (unconfigured) drx-silenceTimerUL), the drx-HARQ-RTT-TimerUL and drx-RetransmissionTimerUL corresponding to time slot 203 will not be affected by the drx-silenceTimerUL.
  • the starting time of drx-silenceTimerUL is the first uplink time slot among n consecutive uplink time slots in each CG cycle, that is, the starting time of drx-silenceTimerUL is the same as the starting time of each CG cycle. The same or at the beginning of each CG cycle.
  • the end time of drx-silenceTimerUL is a downlink time slot before and adjacent to the n-mth uplink time slot among n consecutive uplink time slots in each CG cycle, and m is a non-negative integer less than n-1. , n is a positive integer greater than 1.
  • m 0.
  • the terminal device may enable drx-silenceTimerUL according to the first rule or the second rule and the received control information.
  • the first rule may be indicated by first configuration information.
  • the second rule may be indicated by second configuration information or third configuration information.
  • the first rule is: when the control information is received and the control information indicates to enable drx-silenceTimerUL, the first time slot among n consecutive uplink time slots is the starting time of drx-silenceTimerUL.
  • the second rule is: when the control information is received and the control information indicates to turn on drx-silenceTimerUL, the time slot in which the control information is received, the next time slot adjacent to the time slot in which the control information is received, or the time slot in which the control information is received is The next few time slots in which the control information time slots are not adjacent are the starting time of drx-silenceTimerUL.
  • the control information includes Physical Downlink Control CHannel (PDCCH) or media access control element MAC CE.
  • PDCCH Physical Downlink Control CHannel
  • the PDCCH includes downlink control information DCI.
  • DCI downlink control information
  • the step of the network device sending the third configuration information to the terminal device is located after S101 in Figure 1A and before S101' in Figure 1A, or , located before S101 in Figure 1A.
  • the third configuration information may be carried in RRC signaling.
  • the step of the network device sending the control information to the terminal device may be located after S01 in FIG. 1A and before S102 in FIG. 1A .
  • the control information is the first control information in S101' after S101 in Figure 1A, and the first control information may be DCI.
  • a third field (for example, a 1-bit field) can be added to the DCI.
  • the third field is a first value (such as 1)
  • the DCI indicates to turn on drx-silenceTimerUL; the terminal device combines the first rule to turn on drx-silenceTimerUL in the first time slot of n consecutive uplink time slots.
  • the third field is the second value (for example, 0)
  • the DCI indicates not to enable drx-silenceTimerUL; the terminal device does not enable drx-silenceTimerUL.
  • the first configuration information, the second configuration information and the third configuration information may also indicate the duration of drx-silenceTimerUL (ie, the first duration).
  • ConfiguredGrantConfig in the first configuration information indicates the duration of drx-silenceTimerUL, for example, ConfiguredGrantConfig includes signaling indicating drx-silenceTimerUL.
  • the BWP-uplinkDedicated information element in the second configuration information indicates the duration of drx-silenceTimerUL, for example, the BWP-uplinkDedicated information element includes signaling indicating drx-silenceTimerUL.
  • the DRX-config in the third configuration information indicates the duration of drx-silenceTimerUL, for example, the DRX-config includes signaling indicating drx-silenceTimerUL.
  • the network device may also configure a set of values for drx-silenceTimerUL through the first configuration information, the second configuration information, or the third configuration information.
  • a fourth field (for example, a field at least greater than or equal to 2 bits) can be added to the DCI.
  • the fourth field added in DCI depends on the number of t, such as ceil(log2(t)) or ceil(log2(t+1)), where ceil( ⁇ ) is an upward rounding operation, where t +1 indicates that the fourth field also indicates that drx-silenceTimerUL is not enabled.
  • the three values include V0, V1, and V2, indicating disablement, duration 1, and duration 2 respectively.
  • the fourth field in DCI indicates that V0 is selected (for example, the fourth field is 00), drx-silenceTimerUL is not enabled; when the fourth field in DCI indicates that V1 is selected (for example, the fourth field is 01), drx is enabled.
  • -silenceTimerUL and the duration of drx-silenceTimerUL is duration 1; when the fourth field in the DCI indicates that V2 is selected (for example, the fourth field is 10), drx-silenceTimerUL is turned on, and the duration of drx-silenceTimerUL is duration 2.
  • drx-silenceTimerUL can be turned on once or periodically.
  • (b) of Figure 5A shows a single activation.
  • the starting time of drx-silenceTimerUL 250 is the next adjacent time slot when the PDCCH is received. 201; That is, when the terminal device receives a PDCCH and the PDCCH is a predetermined value, it turns on drx-silenceTimerUL in a time slot.
  • Periodic turning on is not shown in the figure, that is, when the terminal device receives a PDCCH and the PDCCH is a predetermined value, drx is turned on in the corresponding time slot of each CG cycle (for example, in the first time slot of each CG cycle). -silenceTimerUL.
  • the terminal device receives a first control information DCI in time slot 200, and the starting time of the drx-silenceTimerUL is the next adjacent time slot in which the DCI is received, that is, time slot 201, and according to The first duration determines that the end time of the drx-silenceTimerUL is time slot 206, then the PUSCH is transmitted on the uplink time slot (time slot 202 and time slot 203) within the coverage time range of the drx-silenceTimerUL, and the drx- Neither HARQ-RTT-TimerUL nor drx-RetransmissionTimerUL is enabled.
  • the drx-HARQ-RTT-TimerUL corresponding to the PUSCH is not turned on; or, after the terminal device transmits a PUSCH in time slot 201, the drx-HARQ-RTT-TimerUL corresponding to it times out. And the time when drx-HARQ-RTT-TimerUL times out is within the coverage time range of drx-silenceTimerUL250, then the drx-RetransmissionTimerUL corresponding to the PUSCH is not turned on.
  • one or more of time slot 201, time slot 202, time slot 203 and time slot 204 may be scheduled by the DCI.
  • drx-silenceTimerUL is periodically turned on every time the terminal device receives a piece of first control information that conforms to the first rule or the second rule. For example, every time the terminal device receives a piece of first control information that complies with the first rule, the terminal device turns on the first uplink time slot of each CG cycle configured in the first configuration information.
  • the enabled drx-silenceTimerUL covers the first uplink time slot to the n-mth uplink time slot before and adjacent to the n consecutive uplink time slots in each CG cycle of the CG configuration, m is A non-negative integer less than n-1, n is a positive integer greater than 1.
  • the configured drx-silenceTimerUL covers the 1st uplink time slot to the nth uplink time slot before and adjacent to the n consecutive uplink time slots in each CG cycle. gap.
  • drx-silenceTimerUL is periodically turned on every time the terminal device receives a piece of first control information that conforms to the first rule or the second rule. For example, every time the terminal device receives a piece of first control information that complies with the first rule, the terminal device turns on the first uplink time slot of each CG cycle configured in the first configuration information.
  • the enabled drx-silenceTimerUL covers the 1st uplink time slot to the n-m-1th uplink time slot (including the n-m-1th uplink time slot) among n consecutive uplink time slots in each CG cycle configured in the CG. ), m is a non-negative integer less than n-1, and n is a positive integer greater than 1.
  • the configured drx-silenceTimerUL covers the 1st uplink time slot to the n-1th uplink time slot (including the n-1th uplink time slot) among the n consecutive uplink time slots in each CG cycle. uplink time slot).
  • drx-silenceTimerUL covers the 1st to n-m-1th time slots
  • drx-silenceTimerUL covers the first 1st adjacent time slot from the 1st to the n-mth time slot;
  • drx-silenceTimerUL covers the first 2 adjacent timeslots from 1st to n-m; etc.
  • the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to the uplink time slot covered by drx-silenceTimerUL is not turned on. Outside the coverage range of drx-silenceTimerUL, the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to the uplink time slot not covered by drx-silenceTimerUL is not affected by drx-silenceTimerUL.
  • drx-silenceTimerUL 250 covers time slots 201 to 206.
  • the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to any one or more uplink time slots from time slot 201 to time slot 206 is not enabled. Outside time slots 201 to 206, for example, time slot 204 is not covered by drx-silenceTimerUL 250, then the drx-HARQ-RTT-TimerUL 240 or drx-RetransmissionTimerUL 241 corresponding to time slot 204 is not affected by drx-silenceTimerUL 250.
  • the PDCCH shown in (b) of Figure 5A may not be associated with one or more of time slot 201, time slot 202, time slot 203 and time slot 204, or may be associated; or,
  • the PDCCH shown in (b) of Figure 5A may be a PDCCH used to activate uplink transmission of time slot 201, time slot 202, time slot 203 and time slot 204; or, the PDCCH shown in (b) of Figure 5A may indicate the time Slot 201, time slot 202, time slot 203 and time slot 204 are transmitted uplink.
  • Embodiment 4 relates to Figure 5B.
  • Figure 5B is a schematic diagram of Embodiment 4 of the uplink transmission method provided by the embodiment of the present application.
  • Embodiment 1 relates to (a) of FIG. 5B
  • Embodiment 2 relates to (b) of FIG. 5B .
  • the terminal device supports d CG configurations to operate simultaneously, and d is a positive integer.
  • the network device configures n CG configurations for the terminal device through the first configuration information n times, where n is a positive integer less than or equal to d; each time a CG configuration is configured, and each CG configuration includes at least one CG cycle.
  • any number of uplink time slots can be used for uplink transmission.
  • the CG configuration is configured through the first configuration information sent by the network device to the terminal device.
  • the first configuration information may be sent through RRC signaling sent by the network device to the terminal device.
  • the i-th CG configuration includes the i-th CG period, and the i-th CG period includes the i-th CG period 1, the i-th CG period 2,....
  • the period combination including the first CG period j, the second CG period j,..., the i-th CG period j,..., to the n-th CG period j is recorded as the j-th period group.
  • the i-th CG cycle j can also be called the i-th CG cycle in the j-th group.
  • the uplink time slot used for uplink transmission in the i-th CG cycle j (for example, the first CG cycle 1) is recorded as the uplink time slot ij1 (for example, i 11), and j is a positive integer.
  • the periods of different CG periods included in the same period group can be the same or different.
  • the periods of the first CG period 1 and the second CG period 1 may be the same or different.
  • the cycles of the same CG cycle are the same.
  • the periods of the first CG period 1, the first CG period 2, the first CG period 3, etc. are the same.
  • the network device 200 after S101 shown in FIG. 1A and before S102, the network device 200 also sends the second configuration information to the terminal device 100.
  • the second configuration information is carried in RRC signaling.
  • the second configuration information includes BWP-uplinkDedicated information element, and BWP-uplinkDedicated information element includes cg-drxList.
  • cg-drxList is used to represent different associated CG configurations.
  • CG configuration includes CG period. Different CG configurations include different CG cycles. Different CG cycles can be located in the same cycle group or in different cycle groups.
  • cg-drxList ⁇ CG 1, CG 2,..., CG i,..., CG n-m,..., CG n ⁇ , where CG i represents the i-th CG configuration.
  • cg-drxList ⁇ CG 0,CG 1,...,CG i-1,...,CG n-m-1,...,CG n-1 ⁇ , where CG i-1 Represents the i-th CG configuration.
  • m is a non-negative integer less than n-1. For the convenience of description, the following description takes the starting number as 1 as an example.
  • cg-drxList includes: i-th CG configuration and a-th CG configuration, i-th CG configuration includes i-th CG cycle, i-th CG cycle includes i-th CG cycle j; a-th CG configuration includes a-th CG cycle,
  • the ath CG period includes the ath CG period.
  • b, i, j, a and b are all arbitrary positive integers. This correlation is reflected in the fact that the uplink time slot used for uplink transmission in the i-th CG cycle j is within the coverage time range of drx-silenceTimerUL.
  • all CG cycles included in all CG configurations in cg-drxList are used for uplink
  • the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to the transmitted uplink time slot is not turned on, but if the uplink time slot used for uplink transmission in the ath CG cycle b is outside the coverage time range of drx-silenceTimerUL, then the a The drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to the uplink time slot used for uplink transmission in CG cycle b is turned on.
  • cg-drxList ⁇ CG 1, CG 2, CG 3, CG 4 ⁇ .
  • cg-drxList includes the 1st CG configuration, the 2nd CG configuration, the 3rd CG configuration and the 4th CG configuration.
  • the first CG configuration includes the first CG period
  • the second CG configuration includes the second CG period
  • the third CG configuration includes the third CG period
  • the fourth CG configuration includes the fourth CG period.
  • the first CG period includes the first CG period 1
  • the second CG period includes the second CG period 1
  • the third CG period includes the third CG period 1
  • the fourth The CG cycle includes the fourth CG cycle 1.
  • the time slot used to transmit PUSCH in the first CG cycle 1 is time slot 301
  • the time slot used to transmit PUSCH in the second CG cycle 1 is time slot 302
  • the time slot used to transmit PUSCH in the third CG cycle 1 is Time slot 303
  • the time slot used for transmitting PUSCH in the fourth CG cycle 1 is time slot 304.
  • Time slot 301, time slot 302 and time slot 303 are all located within the coverage time range of drx-silenceTimerUL 350, and time slot 304 is not located within the coverage time range of drx-silenceTimerUL 350, then time slot 301, time slot 302 and time slot 303 The corresponding drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL is not turned on, and the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to time slot 304 is turned on.
  • time slot 301 is within the coverage time range of drx-silenceTimerUL350, after the terminal device transmits PUSCH on time slot 301, the drx-HARQ-RTT-TimerUL corresponding to the PUSCH is not turned on; or, when the terminal device is in After PUSCH is transmitted on time slot 301, and the drx-HARQ-RTT-TimerUL corresponding to the PUSCH times out is within the coverage time range of drx-silenceTimerUL, the drx-RetransmissionTimerUL corresponding to the drx-HARQ-RTT-TimerUL is not turned on.
  • time slot 304 is outside the coverage time range of drx-silenceTimerUL350, after the terminal device transmits PUSCH on time slot 304, the drx-HARQ-RTT-TimerUL corresponding to the PUSCH is turned on; or, when the terminal device transmits PUSCH on time slot 304 After that, and when the drx-HARQ-RTT-TimerUL corresponding to the PUSCH times out is outside the coverage time range of drx-silenceTimerUL, the drx-RetransmissionTimerUL corresponding to the drx-HARQ-RTT-TimerUL is turned on.
  • the starting time of drx-silenceTimerUL can be associated with elements in cg-drxList.
  • the starting time of drx-silenceTimerUL is associated with the i-th element CG i in cg-drxList.
  • CG i is the i-th CG configuration.
  • the i-th CG configuration includes the i-th CG period.
  • the i-th CG period includes the i-th CG period 1, the i-th CG period 2,...the i-th CG period j,....
  • the first uplink time slot used for transmission in the i-th CG cycle j can be the starting time of drx-silenceTimerUL, so drx-silenceTimerUL is turned on periodically.
  • j is any positive integer.
  • a fifth field (for example, drx-silenceTimerEnabler field) may be set in the first configuration information or the second configuration information.
  • the fifth field is the first value (such as 1 or true)
  • the terminal device executes according to the association between the elements in cg-drxList and cg-drxList;
  • the fifth field is the second value (such as 0 or false)
  • the terminal device executes according to the previous rules, that is, there is no correlation between cg-drxList, or any CG configuration in cg-drxList will not start drx-silenceTimerUL.
  • the fifth field may be the same as the first field, or may be different from the first field.
  • Embodiment 2 is based on Embodiment 1 and enables drx-silenceTimerUL through PDCCH. That is, Embodiment 2 is different from Embodiment 1 regarding the opening method of drx-silenceTimerUL, and the rest are the same.
  • the activation of drx-silenceTimerUL can be configured through the physical downlink control channel PDCCH.
  • the PDCCH includes downlink control information DCI or Media Access Control (Media Access Control, MAC) control element (Control Element, CE).
  • DCI Downlink Control information
  • MAC Media Access Control
  • CE Control Element
  • the duration of drx-silenceTimerUL (ie, the first duration) may be indicated by drx-silenceTimerUL in the second configuration information.
  • the network device sends the second configuration information to the terminal device.
  • the second configuration information is carried in RRC signaling.
  • the first control information is DCI
  • the DCI can indicate whether to turn on drx-silenceTimerUL.
  • the DCI can add a sixth field (for example, a 1-bit field).
  • a sixth field for example, a 1-bit field.
  • the sixth field is a first value (for example, 1)
  • the sixth field is a second value (for example, 0)
  • the duration of drx-silenceTimerUL is configured by the second configuration information.
  • the seventh field in the DCI indicates that V0 is selected (for example, the seventh field is 00)
  • drx-silenceTimerUL is not turned on; when the seventh field in the DCI indicates that V1 is selected (for example, the seventh field is 01), drx is turned on.
  • drx-silenceTimerUL when the seventh field in the DCI indicates that V2 is selected (for example, the seventh field is 10), drx-silenceTimerUL is turned on, and the duration of drx-silenceTimerUL is duration 2.
  • the starting time of drx-silenceTimerUL may be the time unit when the terminal device receives the PDCCH, or may be the next or next few time units after the terminal device receives the PDCCH.
  • the time unit can be a time slot or a symbol.
  • the drx-silenceTimerUL indicated by the DCI may be effective for all uplink time slots of the terminal device that receives the DCI and are within the coverage time range of the drx-silenceTimerUL. For example, taking (b) in Figure 5B as an example, if the DCI or PDCCH of time slot 300 indicates that a drx-silenceTimerUL is turned on, the starting time of the drx-silenceTimerUL is time slot 301, and its end time is adjacent to time slot 305.
  • the next downlink time slot (not shown in the figure), that is, the coverage time of drx-silenceTimerUL includes time slot 301, time slot 302, time slot 303, time slot 304 and time slot 305, then the terminal equipment is on these time slots
  • the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to the PUSCH will not be turned on.
  • the terminal device After transmitting PUSCH, the terminal device turns on the drx-HARQ-RTT-TimerUL corresponding to the PUSCH. If the time when the drx-HARQ-RTT-TimerUL timer times out is within the coverage time range of drx-silenceTimerUL, it will not be The timer starts drx-RetransmissionTimerUL.
  • the drx-silenceTimerUL enabled by the DCI is only effective for the CG configuration activated by the DCI and its associated CG configuration.
  • the second configuration information includes BWP-uplinkDedicated information element, and BWP-uplinkDedicated information element includes cg-drxList.
  • cg-drxList ⁇ CG 0,CG 1,...,CG i-1,...,CG n-m-1 ⁇ , where CG i-1 represents the i-th in the period group CG configuration.
  • CG i-1 represents the i-th in the period group CG configuration.
  • m is a non-negative integer less than n-1.
  • the following description takes the starting number as 1 as an example.
  • any element in cg-drxList is associated with other elements. This correlation is reflected in that if any CG configuration activated by DCI is in cg-drxList, and the DCI indicates whether drx-silenceTimerUL is turned on or not, as long as it is a CG configuration in the cg-drxList, and the cg-drxList
  • the uplink timeslot configured for uplink transmission in the CG is within the coverage time range of the drx-silenceTimerUL, then the drx-HARQ-RTT-TimerUL or drx corresponding to the uplink timeslot configured for uplink transmission in the CG of cg-drxList Neither or both -RetransmissionTimerUL are enabled.
  • the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to the uplink time slot configured by other CGs for uplink transmission is enabled or neither is enabled.
  • the starting time of drx-silenceTimerUL is related to the CG configuration activated by DCI, that is, the corresponding uplink time slot of each cycle of the CG configuration activated by DCI will turn on drx-silenceTimerUL, that is to say, drx-silenceTimerUL It is turned on periodically, and its period is the same as the period of the CG configuration activated by the DCI.
  • the uplink time slot used for uplink transmission in the 4th CG cycle is not within the coverage time range of drx-silenceTimerUL 350, then the 2nd CG cycle and the 3rd CG cycle in the cg-drxList
  • the drx-HARQ-RTT-TimerUL or drx-RetransmissionTimerUL corresponding to the uplink time slot of the CG cycle used for uplink transmission is not turned on, and the drx-corresponding drx- HARQ-RTT-TimerUL or drx-RetransmissionTimerUL are both enabled.
  • the PDCCH shown in (b) of Figure 5B may not be associated with one or more of time slot 301, time slot 302, time slot 303 and time slot 304, or may be associated with Association; alternatively, the PDCCH shown in (b) of FIG. 5B may be the PDCCH used to activate uplink transmission in time slot 301, time slot 302, time slot 303, and time slot 304.
  • FIG. 6A is a schematic diagram of Embodiment 5 of the uplink transmission method provided by the embodiment of the present application.
  • the network device configures n consecutive uplink time slots in each CG cycle (for example, configured through the first setting information) to the terminal device, and n is a positive integer greater than 1.
  • n can be obtained based on cg-nrofSlots in ConfiguredGrantConfig in the first configuration information.
  • the first configuration information may be carried in RRC signaling.
  • n consecutive uplink time slots include the 1st uplink time slot, the 2nd uplink time slot,..., the i-th uplink time slot,..., the n-th uplink time slot.
  • i is a positive integer less than or equal to n.
  • the starting time of drx-HARQ-RTT-TimerUL corresponding to the i-th uplink time slot is the next adjacent time unit (for example, time slot or symbol) of the i-th uplink time slot in the same CG cycle.
  • the n uplink time slots of a CG cycle can be configured with different drx-HARQ-RTT-TimerUL respectively, and the values of these drx-HARQ-RTT-TimerUL can be different. After each drx-HARQ-RTT-TimerUL times out, the corresponding drx-RetransmissionTimerUL will be turned on.
  • one CG cycle contains 4 transmission time slots, which can be transmitted on time slot 201, time slot 202, time slot 203 and time slot 204 respectively.
  • the PUSCH Turn on drx-HARQ-RTT-TimerUL210, and turn on the corresponding drx at the next adjacent symbol when drx-HARQ-RTT-TimerUL210 times out (such as the first symbol of the third downlink time slot after time slot 204) -RetransmissionTimerUL.
  • the terminal device transmits PUSCH in time slot 202, it turns on drx-RetransmissionTimerUL 220 for the PUSCH, and starts the next adjacent symbol after drx-HARQ-RTT-TimerUL 220 times out (such as the third symbol after time slot 204).
  • the starting time of the drx-RetransmissionTimerUL corresponding to the n time slots is at the same Or a similar time unit to achieve the purpose of reducing the terminal device wake-up time.
  • the starting time unit of drx-HARQ-RTT-TimerUL corresponding to the i-th uplink time slot among n consecutive uplink time slots is the next adjacent symbol after the PUSCH is transmitted in the i-th uplink time slot.
  • the time unit includes time slots or symbols.
  • these contents may also be configured by the network device through the first configuration information or the second configuration information.
  • the network device may configure the terminal device through the first indication information (such as drx-HarqRttList) in the first configuration information.
  • drx-HarqRttList includes the duration T1 of drx-HARQ-RTT-TimerUL corresponding to the first uplink time slot,..., the duration Ti of drx-HARQ-RTT-TimerUL corresponding to the i-th uplink time slot,..., the nth The duration Tn of drx-HARQ-RTT-TimerUL corresponding to each uplink time slot.
  • n drx-HARQ-RTT-TimerUL configured through the first configuration information as an example.
  • the network device configures the number of time slots in a CG cycle for the terminal device through the ConfiguredGrantConfig in the first configuration information (specifically, it can use the cg-nrofSlots parameter in the ConfiguredGrantConfig), it can also use the first indication in the first configuration information.
  • Information indicates the drx-HARQ-RTT-TimerUL corresponding to these n time slots, that is, drx-HarqRttList contains n drx-HARQ-RTT-TimerUL.
  • the cg-nrofSlots parameter not only indicates the number of uplink time slots in a CG cycle, but also indicates the number of elements in drx-HarqRttList.
  • the first element i.e. the first drx-HARQ- RTT-TimerUL
  • the second element i.e. the second drx-HARQ-RTT-TimerUL
  • the drx-HARQ-RTT-TimerUL corresponding to the second time slot of the n time slots in the CG configuration, and so on.
  • drx-HarqRttList ⁇ 238, 168, 98, 28 ⁇
  • drx-HarqRttList ⁇ 238, 168, 98, 28 ⁇
  • the terminal equipment sends PUSCH through the first time slot of the CG cycle
  • the PUSCH The corresponding HARQ process turns on drx-HARQ-RTT-TimerUL for 238 symbols; when the drx-HARQ-RTT-TimerUL times out, the terminal device turns on the next adjacent symbol after the drx-HARQ-RTT-TimerUL times out.
  • drx-RetransmissionTimerUL drx-RetransmissionTimerUL.
  • the terminal device when the terminal device sends PUSCH through the second time slot of the CG cycle, the HARQ process corresponding to the PUSCH opens the corresponding drx-HARQ-RTT-TimerUL for a duration of 168 symbols; when the drx-HARQ-RTT- After TimerUL times out, the terminal device will turn on drx-RetransmissionTimerUL in the next adjacent symbol after the drx-HARQ-RTT-TimerUL times out.
  • drx-HarqRttList only affects the duration of drx-HARQ-RTT-TimerUL in different time slots within the CG cycle, and does not affect the duration of their corresponding drx-RetransmissionTimerUL.
  • the duration of drx-RetransmissionTimerUL may be obtained according to the DRX-Config in the third configuration information.
  • the number of elements in drx-HarqRttList is n-1, that is, the number of elements in drx-HarqRttList is still determined by cg-nrofSlots of the first configuration information.
  • the n-1 drx-HARQ-RTT-TimerULs contained in drx-HarqRttList respectively correspond to the 1st to n-1th time slots among the n time slots in a CG cycle.
  • the duration of drx-HARQ-RTT-TimerUL, and the duration of drx-HARQ-RTT-TimerUL corresponding to the nth time slot can be determined by DRX-Config in the third configuration information.
  • the DCI does not explicitly indicate the drx-HARQ-RTT-TimerUL corresponding to each time slot in a CG cycle, but adds an eighth field (also called the eighth switch, Such as drx-retransmissionULenabler).
  • the eighth field is the first value (such as 1 or true)
  • it indicates that the drx-HARQ-RTT-TimerUL corresponding to the 1st to n-th time slots of the n time slots in each CG cycle
  • the duration is different; or, when the eighth field is the second value, it means that the drx-HARQ-RTT-TimerUL corresponding to the n time slots in each CG cycle are all the same.
  • the duration of drx-HARQ-RTT-TimerUL can be obtained according to the DRX-Config in the third configuration information.
  • the eighth field is a first value (such as 1 or false)
  • the drx-HARQ-RTT- corresponding to the 1st to n-1th time slots of n time slots in a CG cycle TimerUL is the time slot position of this time slot in the CG cycle, the number of time slots in this CG cycle n, the number of downlink time slots in two adjacent uplink time slots (or the uplink and downlink time domains configuration), and the duration of drx-HARQ-RTT-TimerUL corresponding to the nth time slot is determined.
  • the duration of drx-HARQ-RTT-TimerUL corresponding to the i-th uplink time slot Ti (ni) ⁇ u ⁇ s+(ni-1) ⁇ s+Tn, where n is the configuration of the network device in each CG cycle.
  • the number of consecutive uplink time slots, i is the sequence number of the uplink time slot in n consecutive uplink time slots, u is the number of downlink time slots in two adjacent uplink time slots, s is the number of downlink time slots in each time slot.
  • Tn is the duration of drx-HARQ-RTT-TimerUL corresponding to the n-th uplink time slot, and Tn can be obtained from the third configuration information, such as DRX-Config.
  • Embodiment 6 relates to Figure 6B.
  • FIG. 6B is a schematic diagram of Embodiment 6 of the uplink transmission method provided by the embodiment of the present application.
  • the terminal device supports d CG configurations to operate simultaneously, and d is a positive integer.
  • the network device configures n CG configurations for the terminal device through the first configuration information n times, where n is a positive integer less than or equal to d; each time a CG configuration is configured, and each CG configuration includes at least one CG cycle.
  • any number of uplink time slots can be used for uplink transmission.
  • the CG configuration is configured through the first configuration information sent by the network device to the terminal device.
  • the first configuration information may be sent through RRC signaling sent by the network device to the terminal device.
  • the i-th CG configuration includes the i-th CG period, and the i-th CG period includes the i-th CG period 1, the i-th CG period 2,....
  • the period combination including the first CG period j, the second CG period j,..., the i-th CG period j,..., to the n-th CG period j is recorded as the j-th period group.
  • the i-th CG cycle j can also be called the i-th CG cycle in the j-th group.
  • the uplink time slot used for uplink transmission in the i-th CG cycle j (for example, the first CG cycle 1) is recorded as the uplink time slot ij1 (for example, i11), and j is a positive integer.
  • the periods of different CG periods included in the same period group can be the same or different.
  • the periods of the first CG period 1 and the second CG period 1 may be the same or different.
  • the cycles of the same CG cycle are the same.
  • the periods of the first CG period 1, the first CG period 2, the first CG period 3, etc. are the same.
  • the period group includes the first CG period j, the second CG period j,..., the i-th CG period j,..., the n-th CG period j.
  • the uplink time slot used for uplink transmission in the first CG cycle j is marked as Slot1,...
  • the uplink time slot used for uplink transmission in the i-th CG cycle j is marked as Sloti,...
  • the uplink time slot used for uplink transmission in the n-th CG cycle j is marked as Sloti,...
  • the uplink time slot for uplink transmission is recorded as Slotn.
  • the drx-HARQ-RTT-TimerUL corresponding to Slot1 is recorded as drx-HARQ-RTT-TimerUL1,...
  • the drx-HARQ-RTT-TimerUL corresponding to Sloti is recorded as drx-HARQ-RTT-TimerULi
  • the drx corresponding to Slotn -HARQ-RTT-TimerUL is recorded as drx-HARQ-RTT-TimerULn.
  • the start time of drx-HARQ-RTT-TimerUL1 is the next adjacent symbol of the PUSCH transmitted on Slot1, and the end time of drx-HARQ-RTT-TimerUL1 is the end time of drx-HARQ-RTT-TimerULn.
  • the end time of the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in the i-th CG cycle can be the same as the n-th drx-HARQ-RTT-TimerUL.
  • the end time of drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in the CG cycle is similar.
  • the termination time unit of the drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in the i-th CG cycle can be made It is the termination time unit of drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in the n-th CG cycle.
  • the time unit includes time slots or symbols.
  • the ConfiguredGrantConfig in the first configuration information may be provided with a ninth field (such as drx-HARQ-RTT-TimerUL-r18) for each CG configuration in the same period group, indicating the drx-HARQ-RTT of the CG configuration. -TimerUL long.
  • a ninth field such as drx-HARQ-RTT-TimerUL-r18
  • the terminal equipment transmits the next PUSCH in the uplink time slot of the i-th CG cycle. For adjacent symbols, turn on the drx-HARQ-RTT-TimerUL of the HARQ corresponding to the PUSCH, and its duration is 100 symbols.
  • the configuration information of the first CG may include the ninth field (for example, a drx-HARQ-RTT-TimerUL-r18), whose value is 238, indicating that when the terminal device is configured in the first CG After transmitting PUSCH on the uplink time slot, a drx-HARQ-RTT-TimerUL with a duration of 238 symbols is started.
  • the ninth field for example, a drx-HARQ-RTT-TimerUL-r18
  • the configuration information of the second CG may include the ninth field (for example, a drx-HARQ-RTT-TimerUL-r18), whose value is 168, indicating that when the terminal device transmits PUSCH on the uplink timeslot configured in the first CG Then, open a drx-HARQ-RTT-TimerUL with a duration of 168 symbols, and so on.
  • the termination time unit of drx-HARQ-RTT-TimerUL corresponding to the uplink time slot used for uplink transmission in the i-th CG cycle in n CG configurations is the time unit used for uplink transmission in the n-th CG cycle.
  • the time unit includes time slots or symbols.
  • the network device may configure at least one drx-HARQ-RTT-TimerULlist in the DRX-Config in the third configuration information and configure the index of each element in the drx-HARQ-RTT-TimerULlist, where the drx-HARQ- Each element in RTT-TimerULlist points to the duration of a drx-HARQ-RTT-TimerUL corresponding to any one of n consecutive uplink time slots or any one of n CG cycles in the same period group.
  • the network device configures a specific index in the first configuration information.
  • the network device sends third configuration information to the terminal device.
  • the third configuration information is carried in RRC signaling.
  • drx-HARQ-RTT-TimerULlist can be included in the DRX-config in RRC signaling.
  • drx-HARQ-RTT-TimerULlist ⁇ 28,98,168,238 ⁇
  • the index 0 of drx-HARQ-RTT-TimerULlist represents the first element of drx-HARQ-RTT-TimerULlist, which is 28
  • index 1 of drx-HARQ-RTT-TimerULlist represents the second element of drx-HARQ-RTT-TimerULlist, which is 98
  • index 2 of drx-HARQ-RTT-TimerULlist represents the third element of drx-HARQ-RTT-TimerULlist That is, 168.
  • Index 3 of drx-HARQ-RTT-TimerULlist indicates the fourth element of drx-HARQ-RTT-TimerULlist, which is 238.
  • drx-HarqRttList can be further associated with drx-HARQ-RTT-TimerULlist.
  • drx-HarqRttList may be included in the first configuration information.
  • Element 2 in drx-HarqRttList indicates querying the third element of drx-HARQ-RTT-TimerULlist, which is 168.
  • Element 3 indicates querying the fourth element of drx-HARQ-RTT-TimerULlist, which is 238.
  • Embodiment 7 relates to Figure 7A.
  • FIG. 7A is a schematic diagram of Embodiment 7 of the uplink transmission method provided by the embodiment of the present application.
  • the terminal equipment receives the PDCCH, and the PDCCH includes DCI.
  • the PDCCH received by the terminal equipment may indicate the transmission of one or more PUSCHs in the next uplink time slot (wherein, the transmission of multiple PUSCHs may also be called multi-PUSCH).
  • the PDCCH includes downlink control information DCI, and the DCI indicates the transmission of n PUSCHs.
  • n is a positive integer greater than 1;
  • n PUSCHs can be n consecutive PUSCHs or n discontinuous PUSCHs. Take n PUSCH as n consecutive PUSCH as an example to illustrate.
  • the terminal device receives fourth configuration information, such as PUSCH-Config information element, sent by the network device.
  • the fourth configuration information includes an uplink time domain allocation list (pusch-TimeDomainAllocationList).
  • the uplink time domain allocation list includes at least one row index, and each row index indicates the time domain resource of at least one PUSCH, for example, the time domain offset value of the PUSCH time slot relative to the DCI that schedules the time slot.
  • the network device When the network device is connected When scheduling PUSCH through DCI, the network device indicates a row index in the Time domain resource assignment (TDRA) field of DCI.
  • TDRA Time domain resource assignment
  • DCI can indicate the transmission of at least one PUSCH through the TDRA field.
  • the uplink time domain allocation list in PUSCH-Config in the fourth configuration information contains 3 rows, corresponding to row index 1 (for example, 1), row index 2 (for example, 2) and row index 3 (for example, 3), Row index 1 corresponds to 3 PUSCHs, row index 2 corresponds to 1 PUSCH, and row index 3 corresponds to 4 PUSCHs.
  • the value of the TDRA field in the DCI corresponds to row index 1 (for example, the value indicated by the TDRA field plus 1 is equal to row index 1, such as TDRA indicating '0', corresponding to row index '1'), it means This DCI schedules 3 PUSCHs, and the positions of the 3 PUSCHs relative to the DCI can also be obtained according to row index 1.
  • DCI includes the time domain resource configuration of the n consecutive PUSCHs, such as n consecutive uplink time slot positions corresponding to the n consecutive PUSCHs.
  • the uplink time slot corresponding to the first PUSCH among n consecutive PUSCHs is located after the time slot in which the PDCCH is received. It may be adjacent to the time slot in which the PDCCH is received, or may not be adjacent to the time slot in which the PDCCH is received. .
  • the DCI also indicates:
  • n consecutive PUSCHs only after any one or more transmissions from the n-mth PUSCH to the last PUSCH (i.e., the nth PUSCH) are completed, the n-mth PUSCH to the last PUSCH (i.e., the nth PUSCH) are turned on.
  • drx-HARQ-RTT-TimerUL corresponding to any one or more of n PUSCHs
  • the first The drx-HARQ-RTT-TimerUL corresponding to any one or more of PUSCH to the n-m-1th PUSCH;
  • n consecutive uplink time slots after only transmitting PUSCH in any one or more uplinks from the n-mth uplink time slot to the last uplink time slot (i.e., the nth uplink time slot), the n-mth uplink time slot is turned on.
  • Any one or more corresponding drx-HARQ-RTT-TimerUL from the time slot to the last uplink time slot i.e., the n-th uplink time slot
  • the first uplink time slot i.e., the n-m-1th uplink time slot
  • After transmitting PUSCH in any one or more uplink slots do not open any one or more corresponding drx-HARQ-RTT-TimerUL from the 1st uplink time slot to the n-m-1th uplink time slot; or,
  • n consecutive uplink time slots only any one or more corresponding drx-HARQ-RTT-TimerUL times out from the n-mth uplink time slot to the last uplink time slot (i.e., the n-th uplink time slot).
  • any one or more corresponding drx-RetransmissionTimerUL from the n-mth uplink time slot to the last uplink time slot (i.e., the nth uplink time slot); in the first uplink time slot to the n-m-1
  • any one or more corresponding drxs in the first uplink time slot to the n-m-1th uplink time slot will not be opened.
  • n is a non-negative integer less than n-1.
  • the terminal device receives a PDCCH in time slot 200, and the PDCCH includes DCI.
  • DCI instructs the terminal equipment to transmit 4 consecutive PUSCHs after time slot 200.
  • Four consecutive PUSCHs carry PUSCH1, PUSCH2, PUSCH3 and PUSCH4 respectively.
  • PUSCH1, PUSCH2, PUSCH3 and PUSCH4 constitute PUSCH frame a.
  • DCI also directs:
  • the corresponding corresponding last uplink time slot (i.e., the 4th uplink time slot 204) is opened.
  • drx-HARQ-RTT-TimerUL 240 after uplink transmission of PUSCH in the first uplink time slot 201 to the third uplink time slot 203, do not open any one of the first uplink time slot to the third uplink time slot or multiple corresponding drx-HARQ-RTT-TimerUL; or,
  • the last uplink time slot (i.e., the fourth uplink time slot 204) is opened.
  • the drx-RetransmissionTimerUL 241 corresponding to the 4 uplink time slots 204) after any one or more of the corresponding drx-HARQ-RTT-TimerUL from the first uplink time slot 201 to the third uplink time slot 203 times out, no Turn on any one or more corresponding drx-RetransmissionTimerUL from the first uplink time slot 201 to the third uplink time slot 203.
  • the terminal device performs accordingly according to the instructions of the DCI.
  • Network devices perform accordingly.
  • a tenth field (also called a tenth switch, such as 1 bit) is added to the DCI, such as drx-retransmissionULenabler.
  • the DCI indicates:
  • n consecutive uplink time slots only from the nmth uplink time slot to the last uplink time slot (i.e., the nth uplink time slot)
  • After transmitting PUSCH in any one or more of the 1st uplink time slot to nm-1th uplink time slot do not open any one or more of the 1st uplink time slot to nm-1th uplink time slot or Multiple corresponding drx-HARQ-RTT-TimerUL;
  • -RTT-TimerUL do not enable the corresponding drx-HARQ-RTT-TimerUL for any of the 1st to 3rd uplink time slots among the 4 consecutive uplink time slots;
  • n consecutive uplink time slots only any one or more corresponding drx-HARQ-RTT-TimerUL times out from the n-mth uplink time slot to the last uplink time slot (i.e., the n-th uplink time slot).
  • any one or more corresponding drx-RetransmissionTimerUL from the n-mth uplink time slot to the last uplink time slot (i.e., the nth uplink time slot); in the first uplink time slot to the n-m-1
  • any one or more corresponding drxs in the first uplink time slot to the n-m-1th uplink time slot will not be opened.
  • n is a non-negative integer less than n-1.
  • the DCI indicates:
  • the drx-RetransmissionTimerUL corresponding to the uplink time slot is turned on.
  • the DCI indicates:
  • the drx-RetransmissionTimerUL corresponding to the uplink time slot is turned on.
  • the terminal device performs accordingly according to the instructions of the DCI.
  • Network devices perform accordingly.
  • the DCI indicates that only the last PUSCH (or MAC PDU) turns on drx-HARQ-RTT-TimerUL.
  • the specific process can be:
  • the DCI indicates that only the last PUSCH (or MAC PDU) turns on drx-RetransmissionTimerUL.
  • the specific process can be:
  • the active time can be understood as the time when the terminal wakes up to monitor the control channel when configuring DRX.
  • the uplink transmission indicated by the PDCCH can be understood as the PDCCH indicating at least one PUSCH.
  • the terminal device transmits the PUSCH on the last time slot indicated by a DCI, it turns on the drx-HARQ-RTT-TimerUL of the HARQ process corresponding to the PUSCH, and then The next adjacent symbol after the drx-HARQ-RTT-TimerUL times out, the drx-RetransmissionTimerUL of the HARQ process corresponding to the PUSCH is turned on; it can also be understood that when the terminal device transmits the PUSCH in the last time slot indicated by a DCI, the drx-RetransmissionTimerUL is turned on.
  • All PUSCHs indicated by the DCI correspond to the drx-HARQ-RTT-TimerUL of the HARQ process, and the next adjacent symbol after each drx-HARQ-RTT-TimerUL of these drx-HARQ-RTT-TimerUL times out is turned on respectively.
  • drx-RetransmissionTimerUL corresponding to all PUSCH.
  • the DCI indication can be understood as a PDCCH indication, and the DCI indication can be understood as a PDCCH indication.
  • the network device sends fourth configuration information to the terminal device.
  • the network device may send the fourth configuration information to the terminal device through RRC signaling.
  • the fourth configuration information may be PUSCH-Config information in the RRC signaling. This information is used to configure uplink transmission parameters of the terminal device.
  • drx-retransmissionULenabler can also be configured in the fourth configuration information, and does not need to be configured in DCI, and therefore does not need to be configured in PDCCH.
  • the DCI indicates that only the last PUSCH (or MAC PDU) turns on drx-RetransmissionTimerUL.
  • the specific process can be:
  • the network device may also send the fourth configuration information to the terminal device before S201 in Figure 1B.
  • the network device may send the fourth configuration information to the terminal device through RRC signaling.
  • the fourth configuration information includes an eleventh field (also called an eleventh switch) located in PUSCH-config, such as drx-retransmissionULenabler.
  • the fourth configuration information indicates:
  • n consecutive uplink time slots only from the nmth uplink time slot to the last uplink time slot (i.e., the nth uplink time slot)
  • After transmitting PUSCH in any one or more of the 1st uplink time slot to nm-1th uplink time slot do not open any one or more of the 1st uplink time slot to nm-1th uplink time slot or Multiple corresponding drx-HARQ-RTT-TimerUL;
  • -RTT-TimerUL do not enable the corresponding drx-HARQ-RTT-TimerUL for any of the 1st to 3rd uplink time slots among the 4 consecutive uplink time slots;
  • n consecutive uplink time slots only any one or more corresponding drx-HARQ-RTT-TimerUL times out from the n-mth uplink time slot to the last uplink time slot (i.e., the n-th uplink time slot).
  • any one or more corresponding drx-RetransmissionTimerUL from the n-mth uplink time slot to the last uplink time slot (i.e., the nth uplink time slot); in the first uplink time slot to the n-m-1
  • any one or more corresponding drx-HARQ-RTT-TimerUL in the uplink time slot times out, any one or more corresponding drx in the first uplink time slot to the n-m-1th uplink time slot will not be opened.
  • n is a non-negative integer less than n.
  • the fourth configuration information indicates:
  • the drx-RetransmissionTimerUL of the HARQ process corresponding to the PUSCH is turned on.
  • the terminal device performs accordingly according to the instructions of the DCI.
  • Network devices perform accordingly.
  • the specific process of turning on drx-HARQ-RTT-TimerUL only in the next adjacent time slot after the end of the last PUSCH (or MAC PDU) transmission can be:
  • a PUSCH is the last PUSCH indicated by this PDCCH
  • n consecutive uplink time slots can be configured through the fourth configuration information.
  • the indication field in the DCI or the fourth configuration information is a first value (such as 1 or true)
  • the drx-HARQ-RTT-TimerUL corresponding to the one or more uplink time slots is turned on; in the After PUSCH is transmitted in any one or more uplink time slots from 1 uplink time slot to the n-m-1th uplink time slot, the drx-HARQ-RTT-TimerUL corresponding to any one or more uplink time slots is not turned on.
  • HARQ-RTT-TimerUL when transmitting the next adjacent symbol after PUSCH in any one of the first to third uplink time slots, the drx-corresponding to any one of the time slots is not turned on.
  • n consecutive uplink time slots only the drx-HARQ-RTT- corresponding to one or more uplink time slots from the n-mth uplink time slot to the last uplink time slot (i.e., the n-th uplink time slot)
  • the drx-retransmissionTimerUL corresponding to the one or more uplink time slots is turned on; the drx-retransmissionTimerUL corresponding to any one or more uplink time slots from the first uplink time slot to the n-m-1th uplink time slot is turned on;
  • the drx-retransmissionTimerUL corresponding to any one or more uplink time slots is not turned on.
  • drx-RetransmissionTimerUL is not turned on.
  • Embodiment 8 relates to Figure 7B.
  • FIG. 7B is a schematic diagram of Embodiment 8 of the uplink transmission method provided by the embodiment of the present application.
  • the terminal equipment receives the PDCCH, and the PDCCH includes DCI.
  • the PDCCH received by the terminal equipment may indicate the transmission of one or more PUSCHs in the next uplink time slot (wherein, the transmission of multiple PUSCHs may also be called multi-PUSCH).
  • the PDCCH includes downlink control information DCI, and the DCI indicates the transmission of n PUSCHs.
  • n is a positive integer greater than 1;
  • n PUSCHs can be n consecutive PUSCHs or n discontinuous PUSCHs. Take n PUSCH as n consecutive PUSCH as an example to illustrate.
  • DCI includes the time domain resource configuration of the n consecutive PUSCHs, such as n consecutive uplink time slot positions corresponding to the n consecutive PUSCHs.
  • the uplink time slot corresponding to the first PUSCH among n consecutive PUSCHs is located after the time slot in which the PDCCH is received. It may be adjacent to the time slot in which the PDCCH is received, or may not be adjacent to the time slot in which the PDCCH is received. .
  • the value of n can be obtained according to the fourth configuration information.
  • the terminal device receives the fourth configuration information sent by the network device, such as PUSCH-Config information element.
  • the fourth configuration information includes an uplink time domain allocation list (pusch-TimeDomainAllocationList).
  • the uplink time domain allocation list includes at least one row index, and each row index indicates the time domain resource of at least one PUSCH, for example, the time domain offset value of the PUSCH time slot relative to the DCI that schedules the time slot.
  • the network device schedules PUSCH through DCI, the network device indicates a row index in the Time domain resource assignment (TDRA) field of the DCI.
  • TDRA Time domain resource assignment
  • the value of the row index in the DCI is the row in the uplink time domain allocation list. 1 in the index.
  • DCI can indicate the transmission of at least one PUSCH through the TDRA field.
  • the uplink time domain allocation list in PUSCH-Config in the fourth configuration information contains 3 rows, corresponding to row index 1 (for example, 1), row index 2 (for example, 2) and row index 3 (for example, 3), Row index 1 corresponds to 3 PUSCHs, row index 2 corresponds to 1 PUSCH, and row index 3 corresponds to 4 PUSCHs.
  • the value of the TDRA field in the DCI corresponds to row index 1 (for example, the value indicated by the TDRA field plus 1 is equal to row index 1, such as TDRA indicating '0', corresponding to row index '1'), it means This DCI schedules 3 PUSCHs, and the positions of the 3 PUSCHs relative to the DCI can also be obtained according to row index 1.
  • the starting time of drx-HARQ-RTT-TimerUL corresponding to the i-th PUSCH is the next adjacent symbol after the end of the i-th PUSCH transmission, and the drx-HARQ-RTT-TimerUL corresponding to the i-th uplink time slot is
  • the end time of HARQ-RTT-TimerUL is near the end time of drx-HARQ-RTT-TimerUL corresponding to the n-th uplink time slot, so that the start time of drx-RetransmissionTimerUL corresponding to the i-th PUSCH corresponds to the n-th PUSCH
  • the starting time of drx-RetransmissionTimerUL is similar to reduce the terminal device wake-up time; where i is a positive integer less than or equal to n.
  • the starting time unit of drx-HARQ-RTT-TimerUL corresponding to the i-th PUSCH is the next adjacent time unit of the i-th PUSCH, and the i-th PUSCH corresponds to
  • the termination time unit of drx-HARQ-RTT-TimerUL is the termination time unit of drx-HARQ-RTT-TimerUL corresponding to the n-th PUSCH.
  • the time unit includes time slots or symbols.
  • n drx-RetransmissionTimerULs are respectively configured for the n PUSCHs scheduled by DCI, and the end time of the drx-HARQ-RTT-TimerUL corresponding to the i-th PUSCH among the n PUSCHs is enabled to be consistent with the end time of the drx-HARQ-RTT-TimerUL corresponding to the n-th PUSCHs.
  • the end times of drx-HARQ-RTT-TimerUL corresponding to j PUSCHs are similar or the same.
  • drx-HARQ-RTT-TimerUL210, drx-HARQ-RTT-TimerUL220, drx-HARQ-RTT-TimerUL230 and drx-HARQ-RTT-TimerUL240 are turned on respectively. when these When the duration of drx-HARQ-RTT-TimerUL is properly configured, it will eventually stop at the same time slot or near the same time slot.
  • the drx-HARQ-RTT-TimerUL corresponding to these n PUSCHs can be configured through the twelfth field in the fifth configuration information.
  • the network device may also send the fifth configuration information to the terminal device before S201 in Figure 1B.
  • the network device may send the fifth configuration information to the terminal device through RRC signaling.
  • the fifth configuration information includes PUSCH-TimeDomainResourceAllocationList, and the twelfth field may be drx-HARQ-RTT-TimerUL-r18 in PUSCH-TimeDomainResourceAllocationList.
  • PUSCH-TimeDomainResourceAllocationList can be:
  • the network device can configure drx-HARQ-RTT-TimerUL for each PUSCH of a DCI schedule (also called PDCCH schedule) through drx-HARQ-RTT-TimerUL-r18 in the PUSCH-TimeDomainResourceAllocationList.
  • a DCI schedule also called PDCCH schedule
  • the network device will not configure drx-HARQ-RTT-TimerUL-r18 in the fifth configuration information, or when the terminal device When DRX is not configured, the drx-HARQ-RTT-TimerUL-r18 configured through the fifth configuration information can be ignored.
  • the terminal device learns the duration of drx-HARQ-RTT-TimerUL corresponding to each PUSCH.
  • the network device sends third configuration information to the terminal device.
  • the network device may send the third configuration information to the terminal device through RRC signaling.
  • the third configuration information includes DRX-config, and DRX-config includes drx-HARQ-RTT-TimerULlist.
  • the DCI indicates the corresponding drx-HARQ-RTT-TimerUL duration for these four PUSCHs through the drx-HARQ-RTT-TimerULlist.
  • the distance of the PUSCH indicated from the most significant bit (MSB) to the least significant bit (LSB) of the indicated bit in the DCI is from nearest to far from the DCI.
  • the DCI indicates that the value of the twelve fields of drx-HARQ-RTT-TimerUL is '11100100'
  • the first two bits "11" are 3, indicating the 4th one from left to right in the drx-HARQ-RTT-TimerULlist.
  • Value 238 (drx-HARQ-RTT-TimerULlist starts with 0, so number 3 corresponds to the fourth value from left to right), That is, the duration of drx-HARQ-RTT-TimerUL 210 in Figure 7B is 238 symbols.
  • the next two bits '10' are 2, indicating the third value of drx-HARQ-RTT-TimerULlist from left to right, 168, that is, the duration of drx-HARQ-RTT-TimerUL 220 in Figure 7B is 168 symbols;
  • the next two bits "01" are 1, indicating that the second value of drx-HARQ-RTT-TimerULlist from left to right is 98, that is, the duration of drx-HARQ-RTT-TimerUL 230 in Figure 7B is 98 symbols.
  • the terminal device learns the duration of drx-HARQ-RTT-TimerUL corresponding to each PUSCH.
  • start time unit and end time unit can be mastered, there are many ways to combine them.
  • the DCI also indicates that the starting time of the drx-HARQ-RTT-TimerUL corresponding to the i-th uplink time slot among n consecutive uplink time slots is transmitted in the i-th uplink time slot.
  • the duration of the corresponding drx-HARQ-RTT-TimerUL is indicated for these four PUSCHs through the drx-HARQ-RTT-TimerULlist.
  • the terminal device learns the starting time unit and duration of drx-HARQ-RTT-TimerUL corresponding to each PUSCH, so the terminal device learns the starting time unit and duration of drx-HARQ-RTT-TimerUL corresponding to each PUSCH. and end time unit. Network devices are also informed of the above.
  • the DCI also indicates that the end time of drx-HARQ-RTT-TimerUL corresponding to the i-th uplink time slot among n consecutive uplink time slots is the drx corresponding to the n-th uplink time slot.
  • the corresponding drx-HARQ-RTT-TimerUL duration is indicated for these four PUSCHs in the drx-HARQ-RTT-TimerULlist.
  • the terminal device learns the termination time unit and duration of drx-HARQ-RTT-TimerUL corresponding to each PUSCH, and thus the terminal device learns the start time unit, duration and duration of drx-HARQ-RTT-TimerUL corresponding to each PUSCH. End time unit. Network devices are also informed of the above.
  • n consecutive uplink time slots are only an example, and n discontinuous uplink time slots are also applicable to this embodiment.
  • n discontinuous uplink time slots only in the above implementation of n consecutive uplink time slots, replace "n consecutive uplink time slots" with "n discontinuous uplink time slots”.
  • the power consumption of the terminal equipment will be reduced when the terminal equipment is running XR services, cloud gaming services and other services for uplink transmission. Furthermore, the terminal equipment can still be compatible with the previous control mechanism when running other services.
  • FIG. 8 shows an electronic device 800 provided by this application.
  • electronic device 800 includes at least one processor 810 and memory 820.
  • the processor 810 is coupled with the memory 820.
  • the coupling in the embodiment of the present application may be a communication connection, an electrical connection, or other forms.
  • memory 820 is used to store program instructions.
  • the processor 810 is used to call the program instructions stored in the memory 820, so that the electronic device 800 executes the steps performed by the electronic device in the method provided by the embodiment of the present application.
  • the electronic device 800 can be used to implement the method provided by the embodiment of the present application.
  • the electronic device 800 may be at least one of the above-mentioned network devices and terminal devices.
  • Embodiments of the present application also provide a chip, which may include an input interface, an output interface, and a processing circuit.
  • the input interface and the output interface can complete the interaction of signaling or data
  • the processing circuit can complete the generation and processing of signaling or data information.
  • Embodiments of the present application also provide a chip system, including a processor, for supporting a computing device to implement the functions involved in any of the above embodiments.
  • the chip system may also include a memory for storing necessary program instructions and data.
  • the processor runs the program instructions
  • the device installed with the chip system can implement any of the above-mentioned embodiments.
  • the chip system may be composed of one or more chips, or may include chips and other discrete devices.
  • Embodiments of the present application also provide a processor for coupling with a memory, and the memory stores instructions. When the processor executes the instructions, the processor performs the methods and functions involved in any of the above embodiments.
  • Embodiments of the present application also provide a computer program product containing instructions, which, when run on a computer, causes the computer to perform the methods and functions involved in any of the above embodiments.
  • Embodiments of the present application also provide a computer-readable storage medium on which computer instructions are stored.
  • the processor executes the instructions, the processor is caused to perform the methods and functions involved in any of the above embodiments.
  • various embodiments of the present application may be implemented in hardware or special purpose circuitry, software, logic, or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device. Although various aspects of the embodiments of the present application are shown and described as block diagrams, flow diagrams or using some other graphical representation, it should be understood that the blocks, devices, systems, techniques or methods described herein may be implemented as, for example, without limitation Examples include hardware, software, firmware, special purpose circuitry or logic, general purpose hardware or controllers or other computing devices, or some combination thereof.
  • the application also provides at least one computer program product tangibly stored on a non-transitory computer-readable storage medium.
  • the computer program product includes computer-executable instructions, for example instructions included in program modules, which are executed in a device on a real or virtual processor of the target to perform the process/method as described above with reference to the accompanying drawings.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • the functionality of program modules may be combined or split between program modules as desired.
  • Machine-executable instructions for program modules can execute locally or in a distributed device. In a distributed device, program modules can be located in local and remote storage media.
  • Computer program code for implementing the methods of the present application may be written in one or more programming languages. These computer program codes may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, so that when executed by the computer or other programmable data processing device, the program code causes the flowcharts and/or block diagrams to be displayed. The functions/operations specified in are implemented.
  • the program code may execute entirely on the computer, partly on the computer, as a stand-alone software package, partly on the computer and partly on a remote computer or entirely on the remote computer or server.
  • computer program code or related data may be included by any suitable carrier to enable a device, apparatus or processor to perform the various processes and operations described above.
  • carriers include signals, computer-readable media, and the like.
  • signals may include electrical, optical, radio, acoustic, or other forms of propagated signals, such as carrier waves, infrared signals, and the like.
  • a computer-readable medium may be any tangible medium that contains or stores a program for or in connection with an instruction execution system, apparatus, or device.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • Computer-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared or semiconductor systems, devices or devices, or any suitable combination thereof. More detailed examples of computer readable storage media include an electrical connection with one or more wires, portable computer disks, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory Memory (EPROM or flash memory), optical storage device, magnetic storage device, or any suitable combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种上行传输方法,应用于被配置C-DRX的终端设备。该方法包括:获取来自网络设备的授权,该授权指示终端设备在n个上行时间单元分别传输n个PUSCH。在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,终端设备不开启第一PUSCH对应的第一drx-HARQ-RTT-TimerUL。n个上行时间单元包括第1个上行时间单元和第n-m-1个上行时间单元,m为小于n-1的非负整数。n个PUSCH包括第一PUSCH。在n个上行时间单元中序号越高的上行时间单元越晚。本申请能够进一步降低终端设备的功耗。

Description

一种通信方法和装置
本申请要求于2022年08月24日向中国国家知识产权局提交的申请号为202211020641.4、申请名称为“一种上行传输方法、终端设备、网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2022年09月30日向中国国家知识产权局局提交的申请号为202211216354.0、申请名称为“一种上行传输方法、终端设备及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种上行传输方法、终端设备及网络设备。
背景技术
在通过诸如第五代移动通信(5th generation,5G)等移动通信对周期信号的传输中,为了降低自身功耗,终端设备通常会采用连接态非连续接收(Connected mode Discontinuous Reception,C-DRX)技术。虽然这在一定程度上降低了终端设备的功耗,但终端设备在运行扩展现实(Extended Reality,XR)业务、云游戏业务等时,功耗仍然较高,还需进一步降低功耗。XR业务主要包含虚拟现实(Virtual Reality,VR)、增强现实(Augmented reality,AR)和混合现实(Mix Reality,MR)等业务。另外,在对于XR业务、云游戏业务等进一步降低终端设备自身功耗的同时,对于其他业务还需要兼容已有的控制机制。
发明内容
因此,如何进一步降低终端设备的功耗,以及如何在进一步降低终端设备的功耗的同时兼容已有的控制机制,成为本申请要解决的技术问题。为了解决上述的技术问题,本申请提供了一种上行传输方法、终端设备及网络设备。本申请提供的技术方案,能够对于一些业务进一步降低功耗,增加续航时长,增强用户体验。另外,对于其他业务,还能同时兼容已有的控制机制。
第一方面,提供了一种上行传输方法。该方法应用于终端设备,终端设备被配置连接态非连续接收C-DRX。该方法包括:获取来自网络设备的授权,该授权指示所述终端设备在n个上行时间单元上分别传输n个物理上行共享信道PUSCH。在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,该终端设备不开启第一混合自动重传请求往返时间上行定时器drx-HARQ-RTT-TimerUL。n个上行时间单元包括第1个上行时间单元和第n-m-1个上行时间单元,m为小于n-1的非负整数。第一drx-HARQ-RTT-TimerUL与第一PUSCH对应。在n个上行时间单元中序号越高的上行时间单元越晚。n个PUSCH包括第一PUSCH。
由于终端设备在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,该终端设备不开启第一drx-HARQ-RTT-TimerUL,所以终端设备的功耗得到进一步降低。
根据第一方面,该方法包括:第一drx-HARQ-RTT-TimerUL为第一PUSCH对应的混合自动重传请求HARQ进程的drx-HARQ-RTT-TimerUL。
根据第一方面以及第一方面中任意一种实施方式,该方法包括:在第n-m个上行时间单元至第n个上行时间单元中的第i个上行时间单元上传输第二PUSCH,终端设备在第二PUSCH的下一相邻符号开启第二drx-HARQ-RTT-TimerUL;其中该n个上行时间单元包括第n-m个上行时间单元和第n个上行时间单元,第二PUSCH与第二drx-HARQ-RTT-TimerUL对应,i为大于或等于n-m,且小于或等于n的任意正整数;n个PUSCH包括第二PUSCH。
可选地,第一drx-HARQ-RTT-TimerUL与第二drx-HARQ-RTT-TimerUL可以为同一个定时器,也可以不同的定时器。当第一drx-HARQ-RTT-TimerUL与第二drx-HARQ-RTT-TimerUL为同一个定时器 时,第一drx-HARQ-RTT-TimerUL与第二drx-HARQ-RTT-TimerUL由第三配置信息(例如,第三配置信息为DRX-Config,具体通过DRX-Config中的drx-HARQ-RTT-TimerUL)配置。进一步地,后续的第三drx-HARQ-RTT-TimerUL与第一drx-HARQ-RTT-TimerUL和第二drx-HARQ-RTT-TimerUL也可以为同一个定时器。进一步地,本申请中的所有drx-HARQ-RTT-TimerUL都可以为同一个定时器。
根据第一方面以及第一方面中任意一种实施方式,该方法包括:在第n-m个上行时间单元至第n个上行时间单元中的第j个上行时间单元上传输第三PUSCH,终端设备在第三PUSCH的下一相邻符号开启第三drx-HARQ-RTT-TimerUL;其中第三PUSCH与第三drx-HARQ-RTT-TimerUL对应;j为大于或等于n-m,且小于或等于n,并且不等于i的任意正整数;n个PUSCH包括第三PUSCH。
根据第一方面以及第一方面中任意一种实施方式,n个上行时间单元为同一个配置上行授权CG周期的n个连续的上行时间单元,上行时间单元包括上行时隙或上行符号;获取来自网络设备的授权,包括:接收来自网络设备的第一配置信息,第一配置信息用于配置配置授权免调度,配置授权免调度指示CG周期,CG周期为网络设备向终端设备授权的相邻两组PUSCH中各组第一个PUSCH之间的时间间隔;配置授权免调度还指示CG周期所包含的连续的上行时间单元的个数n,n为各组上行时间单元的个数;根据第一配置信息,获取来自网络设备的授权。
根据第一方面以及第一方面中任意一种实施方式,该方法包括:第一配置信息还包括第一字段;当第一字段为第一值时,在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,终端设备不开启第一drx-HARQ-RTT-TimerUL;或者,在第一字段为第二值时,在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,终端设备在第一PUSCH的下一相邻符号开启第一drx-HARQ-RTT-TimerUL。
这样,在第一字段为第一值时,终端设备就能进一步降低功耗;在第一字段为第二值时,终端设备就兼容已有的控制机制。因此,终端设备可根据具体的设置,既进一步降低功耗,又兼容已有的控制机制。比如,在XR业务、云游戏业务等业务时,设置第一字段为第一值,进一步降低功耗;在其他业务时,设置第一字段为第二值,兼容已有的控制机制。从而提供了多种设置或选择方式,能够灵活地设置调整,从而满足不同的业务需求。
根据第一方面以及第一方面中任意一种实施方式,该方法包括:当第一字段为第一值时,在第n-m个上行时间单元至第n个上行时间单元中的第i个上行时间单元上传输第二PUSCH,终端设备在第二PUSCH的下一相邻符号开启第二drx-HARQ-RTT-TimerUL。
根据第一方面以及第一方面中任意一种实施方式,第一配置信息还指示第一时长和第一起始时刻,第一时长为静默定时器drx-silenceTimerUL的时长,第一起始时刻指示drx-silenceTimerUL的起始时刻,第一起始时刻为每个CG周期的n个上行时间单元中第1个上行时间单元所传输PUSCH的起始时刻,drx-silenceTimerUL的结束时刻早于第n-m-1个上行时间单元所传输PUSCH的起始时刻。
根据第一方面以及第一方面中任意一种实施方式,获取来自网络设备的授权,包括:从第一配置信息中获取n个上行时间单元;在n个上行时间单元中的前k个中的任意一个上行时间单元上,向网络设备发送第三控制信息,第三控制信息指示将n的取值更新为k,其中k为小于n的正整数;获取取值更新后的n个上行时间单元;根据第一配置信息,获取来自网络设备的授权。
根据第一方面以及第一方面中任意一种实施方式,第一配置信息是通过无线资源控制信令RRC接收的;第一配置信息还包括第一指示信息,第一指示信息指示n个PUSCH分别对应的n个drx-HARQ-RTT-TimerUL的时长。
根据第一方面以及第一方面中任意一种实施方式,n个drx-HARQ-RTT-TimerUL的时长不同或相同。
根据第一方面以及第一方面中任意一种实施方式,获取来自网络设备的授权,包括:接收到来自网络设备的第二控制信息,第二控制信息指示n个PUSCH分别在n个上行时间单元上传输;根据第二控制信息,获取来自网络设备的授权。该方法包括:在终端设备接收到来自网络设备的第二控制信息之前,终端设备接收到来自网络设备的第四配置信息,第四配置信息包括上行时域资源分配表,上行时域资源分配表包括至少一个行索引,至少一个行索引的每个行索引分别对应至少一个上行时间单元;第二控制信息包括第一行索引,第一行索引与第二行索引对应,第二行索引为上行时域资源分配列表中的至少一个行索引,n为第二行索引所对应的上行时间单元的数量,第二行索引的数值为第一行索引 的数值加1。
根据第一方面以及第一方面中任意一种实施方式,第二控制信息包括第十字段;当第十字段为第一值时,在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,终端设备不开启第一drx-HARQ-RTT-TimerUL;或者,当第十字段为第二值时,在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,终端设备在第一PUSCH的下一相邻符号开启第一drx-HARQ-RTT-TimerUL。
根据第一方面以及第一方面中任意一种实施方式,第四配置信息包括第十一字段;当第十一字段为第一值时,在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,终端设备不开启第一drx-HARQ-RTT-TimerUL;或者,当第十一字段为第二值时,在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,终端设备在第一PUSCH的下一相邻符号开启第一drx-HARQ-RTT-TimerUL。
根据第一方面以及第一方面中任意一种实施方式,m=0。
根据第一方面以及第一方面中任意一种实施方式,n个上行时间单元为p个第一配置信息分别配置的,p为小于或等于n的正整数;所述上行时间单元包括上行时隙或上行符号。获取来自网络设备的授权,包括:接收来自网络设备的p个第一配置信息,p个第一配置信息分别用于配置p个配置授权免调度,p个配置授权免调度的每个配置授权免调度包括配置上行授权CG周期,p个配置授权免调度的每个配置授权免调度包括每个CG周期的q个连续的上行时间单元。其中p个配置授权免调度的每个配置授权免调度的每个CG周期的连续的上行时间单元的总和为n,q为小于n的正整数。
根据第一方面以及第一方面中任意一种实施方式,该方法包括:p个第一配置信息的第i个第一配置信息包括第一字段。当第一字段为第一值时,在q个连续的上行时间单元中的任意一个上行时间单元上传输第一PUSCH,且终端设备不开启第一drx-HARQ-RTT-TimerUL,q个连续的上行时间单元为第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元;或者,当第一字段为第二值时,在q个连续的上行时间单元中的任意一个上行时间单元上传输第一PUSCH,且终端设备在第一PUSCH的下一相邻符号开启第一drx-HARQ-RTT-TimerUL;其中i为小于或等于p的正整数。
根据第一方面以及第一方面中任意一种实施方式,该方法包括:当第i个第一配置信息的第一字段为第一值时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第1个时间单元早于n个时间单元中的第n-m个时间单元;或者,当第i个第一配置信息的第一字段为第一值时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第q个时间单元早于n个时间单元中的第n-m个时间单元。
根据第一方面以及第一方面中任意一种实施方式,该方法包括:当第i个第一配置信息的第一字段为第二值时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第1个时间单元早于n个时间单元中的第n-m个时间单元;或者,当第i个第一配置信息的第一字段为第二值时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第q个时间单元早于或等于n个时间单元中的第n个时间单元。
根据第一方面以及第一方面中任意一种实施方式,所述p个第一配置信息中的第i个第一配置信息还包括第九字段,第九字段用于指示第四drx-HARQ-RTT-TimerUL;当终端设备在第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的任意一个上行时间单元传输第四PUSCH后,终端设备在第四PUSCH的下一相邻符号开启第四drx-HARQ-RTT-TimerUL。
根据第一方面以及第一方面中任意一种实施方式,当第四drx-HARQ-RTT-TimerUL的时长为零时,所i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第1个时间单元早于n个时间单元中的第n-m个时间单元;或者,当第四drx-HARQ-RTT-TimerUL的时长为零时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第q个时间单元早于n个时间单元中的第n-m个时间单元。
根据第一方面以及第一方面中任意一种实施方式,该方法包括:当第四drx-HARQ-RTT-TimerUL的时长不为零时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第1个时间单元早于n个时间单元中的第n-m个时间单元;或者,当第四drx-HARQ-RTT-TimerUL的时长不为零时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第q个时间单元早于或等 于n个时间单元中的第n个时间单元。
第二方面,提供了一种上行传输方法,应用于终端设备。终端设备被配置连接态非连续接收C-DRX,该方法包括:获取来自网络设备的授权,该授权指示终端设备在n个上行时间单元上分别传输n个物理上行共享信道PUSCH;在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在第一PUSCH对应的第一混合自动重传请求往返时间上行定时器drx-HARQ-RTT-TimerUL超时后,终端设备不开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。其中,n个上行时间单元包括第1个上行时间单元和第n-m-1个上行时间单元,m为小于n-1的非负整数;在n个上行时间单元中序号越高的上行时间单元越晚;n个PUSCH包括第一PUSCH。
根据第二方面,第一drx-HARQ-RTT-TimerUL为第一PUSCH对应的混合自动重传请求HARQ进程的drx-HARQ-RTT-TimerUL。第一drx-RetransmissionTimerUL为第一PUSCH对应的HARQ进程的drx-RetransmissionTimerUL。
根据第二方面以及第二方面中任意一种实施方式,终端设备在第n-m个上行时间单元至第n个上行时间单元中的第i个上行时间单元上传输第二PUSCH,且在第二PUSCH对应的第二drx-HARQ-RTT-TimerUL超时后的下一相邻符号,开启第二PUSCH对应的第二drx-RetransmissionTimerUL。其中,n个上行时间单元包括第n-m个上行时间单元和第n个上行时间单元,i为大于或等于n-m,且小于或等于n的任意正整数,n个PUSCH包括第二PUSCH。
可选地,第一drx-RetransmissionTimerUL与第二drx-RetransmissionTimerUL可以为同一个定时器,也可以不同的定时器。当第一drx-RetransmissionTimerUL与第二drx-RetransmissionTimerUL为同一个定时器时,第一drx-RetransmissionTimerUL与第二drx-RetransmissionTimerUL由第三配置信息(例如,第三配置信息为DRX-Config,具体通过DRX-Config中的drx-RetransmissionTimerUL)配置。进一步地,后续的第三drx-RetransmissionTimerUL与第一drx-RetransmissionTimerUL和第二drx-RetransmissionTimerUL也可以为同一个定时器。进一步地,本申请中的所有drx-RetransmissionTimerUL都可以为同一个定时器。
根据第二方面以及第二方面中任意一种实施方式,终端设备在第n-m个上行时间单元至第n个上行时间单元中的第j个上行时间单元上传输第三PUSCH,且在第三PUSCH对应的第三drx-HARQ-RTT-TimerUL超时后的下一相邻符号,开启第三PUSCH对应的第三drx-RetransmissionTimerUL。其中,j为大于或等于n-m,且小于或等于n,并且不等于i的任意正整数。n个PUSCH包括第三PUSCH。
根据第二方面以及第二方面中任意一种实施方式,n个上行时间单元为n个连续的上行时间单元,上行时间单元包括上行时隙或上行符号。获取来自网络设备的授权,包括:接收来自网络设备的第一配置信息,第一配置信息用于配置配置授权免调度,配置授权免调度指示CG周期,CG周期为网络设备向终端设备授权的相邻两组PUSCH中各组第一个PUSCH之间的时间间隔;配置授权免调度还指示CG周期所包含的连续的上行时间单元的个数n,n为各组上行时间单元的个数;根据第一配置信息,获取来自网络设备的授权。
根据第二方面以及第二方面中任意一种实施方式,该方法包括:第一配置信息还包括第一字段;当第一字段为第一值时,终端设备在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后,终端设备不开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,当第一字段为第二值时,终端设备在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,终端设备开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
根据第二方面以及第二方面中任意一种实施方式,第一配置信息还指示第一时长和第一起始时刻,第一时长为静默定时器drx-silenceTimerUL的时长,第一起始时刻指示drx-silenceTimerUL的起始时刻,第一起始时刻为每个CG周期的n个上行时间单元中第1个上行时间单元所传输PUSCH的起始时刻,drx-silenceTimerUL的结束时刻早于第n-m-1个上行时间单元所传输PUSCH的起始时刻。
根据第二方面以及第二方面中任意一种实施方式,获取来自网络设备的授权,包括:从第一 配置信息中获取n个上行时间单元;在n个上行时间单元中的前k个中的任意一个上行时间单元上,向网络设备发送第三控制信息,第三控制信息指示将n的取值更新为k,其中k为小于n的正整数;获取取值更新后的n个上行时间单元;根据第一配置信息,获取来自网络设备的授权。
根据第二方面以及第二方面中任意一种实施方式,第一配置信息是通过无线资源控制信令RRC接收的;第一配置信息还包括第一指示信息,第一指示信息指示n个PUSCH分别对应的n个drx-RetransmissionTimerUL的时长。
根据第二方面以及第二方面中任意一种实施方式,获取来自网络设备的授权,包括:接收到来自网络设备的第二控制信息,第二控制信息指示n个PUSCH分别在n个上行时间单元上传输;根据第二控制信息,获取来自网络设备的授权。该方法包括:在终端设备接收到来自网络设备的第二控制信息之前,终端设备接收到来自网络设备的第四配置信息,第四配置信息包括上行时域资源分配表,上行时域资源分配表包括至少一个行索引,至少一个行索引的每个行索引分别对应至少一个上行时间单元。第二控制信息包括第一行索引,第一行索引与第二行索引对应,第二行索引为上行时域资源分配列表中的至少一个行索引,n为第二行索引所对应的上行时间单元的数量,第二行索引的数值为第一行索引的数值加1。
根据第二方面以及第二方面中任意一种实施方式,该方法包括:第二控制信息包括第十字段;当第十字段为第一值时,终端设备在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后,终端设备不开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,当第十字段为第二值时,终端设备在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,终端设备开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
根据第二方面以及第二方面中任意一种实施方式,该方法包括:第四配置信息包括第十一字段;当第十一字段为第一值时,终端设备在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后,终端设备不开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,当第十一字段为第二值时,终端设备在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,终端设备开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
根据第二方面以及第二方面中任意一种实施方式,m=0。
根据第二方面以及第二方面中任意一种实施方式,n个上行时间单元为p个第一配置信息分别配置的,p为小于或等于n的正整数;所述上行时间单元包括上行时隙或上行符号。获取来自网络设备的授权,包括:接收来自网络设备的p个第一配置信息,p个第一配置信息分别用于配置p个配置授权免调度,p个配置授权免调度的每个配置授权免调度包括配置上行授权CG周期,p个配置授权免调度的每个配置授权免调度包括每个CG周期的q个连续的上行时间单元。其中p个配置授权免调度的每个配置授权免调度的每个CG周期的连续的上行时间单元的总和为n,q为小于n的正整数。
根据第二方面以及第二方面中任意一种实施方式,该方法包括:p个第一配置信息的第i个第一配置信息包括第一字段。当第一字段为第一值时,在q个连续的上行时间单元中的任意一个上行时间单元上传输第一PUSCH,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后,终端设备不开启第一PUSCH对应的第一drx-RetransmissionTimerUL,q个连续的上行时间单元为第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元;或者,当第一字段为第二值时,在q个连续的上行时间单元中的任意一个上行时间单元上传输第一PUSCH,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,终端设备开启第一PUSCH对应的第一drx-RetransmissionTimerUL;其中i为小于或等于p的正整数。
根据第二方面以及第二方面中任意一种实施方式,该方法包括:当第i个第一配置信息的第一字段为第一值时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第1个时间单元早于n个时间单元中的第n-m个时间单元;或者,当第i个第一配置信息的第一字段为第一值时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第q个时间单元早于n个时间单 元中的第n-m个时间单元。
根据第二方面以及第二方面中任意一种实施方式,该方法包括:当第i个第一配置信息的第一字段为第二值时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第1个时间单元早于n个时间单元中的第n-m个时间单元;或者,当第i个第一配置信息的第一字段为第二值时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第q个时间单元早于或等于n个时间单元中的第n个时间单元。
根据第二方面以及第二方面中任意一种实施方式,p个第一配置信息中的第i个第一配置信息还包括第九字段,第九字段用于指示第四drx-HARQ-RTT-TimerUL。当终端设备在第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的任意一个上行时间单元传输第四PUSCH后,且在第四PUSCH对应的第四drx-HARQ-RTT-TimerUL超时后的下一相邻符号,终端设备开启第四PUSCH对应的第四drx-RetransmissionTimerUL。
根据第二方面以及第二方面中任意一种实施方式,当第四drx-HARQ-RTT-TimerUL的时长为零时,所i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第1个时间单元早于n个时间单元中的第n-m个时间单元;或者,当第四drx-HARQ-RTT-TimerUL的时长为零时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第q个时间单元早于n个时间单元中的第n-m个时间单元。
根据第二方面以及第二方面中任意一种实施方式,该方法包括:当第四drx-HARQ-RTT-TimerUL的时长不为零时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第1个时间单元早于n个时间单元中的第n-m个时间单元;或者,当第四drx-HARQ-RTT-TimerUL的时长不为零时,第i个第一配置信息所包括的每个CG周期的q个连续的上行时间单元的第q个时间单元早于或等于n个时间单元中的第n个时间单元。
第三方面,提供一种上行传输方法,应用于网络设备;网络设备被配置连接态非连续接收C-DRX。该方法包括:授权终端设备在n个上行时间单元上分别传输n个物理上行共享信道PUSCH;网络设备在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,网络设备不开启第一混合自动重传请求往返时间上行定时器drx-HARQ-RTT-TimerUL。其中,n个上行时间单元包括第1个上行时间单元和第n-m-1个上行时间单元,m为小于n-1的非负整数。第一drx-HARQ-RTT-TimerUL与第一PUSCH对应;在n个上行时间单元中序号越高的上行时间单元越晚。n个PUSCH包括所述第一PUSCH。
根据第三方面,该方法包括:在第n-m个上行时间单元至第n个上行时间单元中的第i个上行时间单元上接收第二PUSCH,在第二PUSCH的下一相邻符号开启第二drx-HARQ-RTT-TimerUL。其中n个上行时间单元包括第n-m个上行时间单元和第n个上行时间单元。第二PUSCH与第二drx-HARQ-RTT-TimerUL对应。i为大于或等于n-m,且小于或等于n的任意正整数。n个PUSCH包括第二PUSCH。
根据第三方面以及第三方面中任意一种实施方式,该方法包括:在第n-m个上行时间单元至第n个上行时间单元中的第j个上行时间单元上接收第三PUSCH,在第三PUSCH的下一相邻符号开启第三drx-HARQ-RTT-TimerUL。其中,第三PUSCH与第三drx-HARQ-RTT-TimerUL对应。j为大于或等于n-m,且小于或等于n,并且不等于i的任意正整数。n个PUSCH包括第三PUSCH。
根据第三方面以及第三方面中任意一种实施方式,n个上行时间单元为n个连续的上行时间单元,上行时间单元包括上行时隙或上行符号。授权终端设备在n个上行时间单元上分别传输n个PUSCH,包括:向终端设备发送第一配置信息,第一配置信息用于配置配置授权免调度,配置授权免调度指示CG周期,CG周期为网络设备向终端设备授权的相邻两组PUSCH中各组第一个PUSCH之间的时间间隔;配置授权免调度还指示CG周期所包含的连续的上行时间单元的个数n,n为各组上行时间单元的个数;第一配置信息还用于授权终端设备在n个上行时间单元上分别传输n个PUSCH。
根据第三方面以及第三方面中任意一种实施方式,该方法包括:第一配置信息还包括第一字段。当第一字段为第一值时,在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,网络设备不开启第一drx-HARQ-RTT-TimerUL;或者,在第一字段为第二值时,在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上接收 第一PUSCH后,网络设备在第一PUSCH的下一相邻符号开启第一drx-HARQ-RTT-TimerUL。
根据第三方面以及第三方面中任意一种实施方式,该方法包括:当第一字段为第一值时,在第n-m个上行时间单元至第n个上行时间单元中的第i个上行时间单元上接收第二PUSCH,网络设备在第二PUSCH的下一相邻符号开启第二drx-HARQ-RTT-TimerUL。
根据第三方面以及第三方面中任意一种实施方式,第一配置信息还指示第一时长和第一起始时刻,第一时长为静默定时器drx-silenceTimerUL的时长,第一起始时刻指示drx-silenceTimerUL的起始时刻,第一起始时刻为每个CG周期的n个上行时间单元中第1个上行时间单元所传输PUSCH的起始时刻,drx-silenceTimerUL的结束时刻早于第n-m-1个上行时间单元所传输PUSCH的起始时刻。
根据第三方面以及第三方面中任意一种实施方式,授权终端设备在n个上行时间单元上分别传输n个PUSCH,包括:向终端设备发送第二控制信息,第二控制信息指示终端设备分别在n个上行时间单元上传输n个PUSCH;第二控制信息还用于授权终端设备在n个上行时间单元上分别传输n个PUSCH。该方法包括:在向终端设备发送第二控制信息之前,网络设备向终端设备发送第四配置信息,第四配置信息包括上行时域资源分配表,上行时域资源分配表包括至少一个行索引,至少一个行索引的每个行索引分别对应至少一个上行时间单元。第二控制信息包括第一行索引,第一行索引与第二行索引对应,第二行索引为上行时域资源分配列表中的至少一个行索引,n为第二行索引所对应的上行时间单元的数量,第二行索引的数值为第一行索引的数值加1。
根据第三方面以及第三方面中任意一种实施方式,该方法包括:第二控制信息包括第十字段。当第十字段为第一值时,在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,网络设备不开启第一drx-HARQ-RTT-TimerUL;或者,当第十字段为第二值时,在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,网络设备在第一PUSCH的下一相邻符号开启第一drx-HARQ-RTT-TimerUL。
根据第三方面以及第三方面中任意一种实施方式,该方法包括:第四配置信息包括第十一字段。当第十一字段为第一值时,在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,网络设备不开启第一drx-HARQ-RTT-TimerUL;或者,当第十一字段为第二值时,在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,网络设备在第一PUSCH的下一相邻符号开启第一drx-HARQ-RTT-TimerUL。
相应地,根据第三方面以及第三方面中任意一种实施方式,该方法还可包括与第一方面以及第一方面中任意一种实施方式相对应的特征。此处不再展开。
第四方面,提供一种上行传输方法,应用于网络设备,网络设备被配置连接态非连续接收C-DRX。该方法包括:授权终端设备在n个上行时间单元上分别传输n个物理上行共享信道PUSCH;在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在第一PUSCH对应的第一混合自动重传请求往返时间上行定时器drx-HARQ-RTT-TimerUL超时后,网络设备不开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。其中,n个上行时间单元包括第1个上行时间单元和第n-m-1个上行时间单元,m为小于n-1的非负整数;在n个上行时间单元中序号越高的上行时间单元越晚;n个PUSCH包括第一PUSCH。
根据第四方面,该方法包括:第一drx-HARQ-RTT-TimerUL为第一PUSCH对应的混合自动重传请求HARQ进程的drx-HARQ-RTT-TimerUL。第一drx-RetransmissionTimerUL为第一PUSCH对应的HARQ进程的drx-RetransmissionTimerUL。
根据第四方面以及第四方面中任意一种实施方式,该方法包括:在第n-m个上行时间单元至第n个上行时间单元中的第i个上行时间单元上接收第二PUSCH,且在第二PUSCH对应的第二drx-HARQ-RTT-TimerUL超时后的下一相邻符号,网络设备开启第二PUSCH对应的第二drx-RetransmissionTimerUL。其中,n个上行时间单元包括第n-m个上行时间单元和第n个上行时间单元。i为大于或等于n-m,且小于或等于n的任意正整数。n个PUSCH包括第二PUSCH。
根据第四方面以及第四方面中任意一种实施方式,该方法包括:在第n-m个上行时间单元至第n个上行时间单元中的第j个上行时间单元上传输第三PUSCH,且在第三PUSCH对应的第三drx-HARQ-RTT-TimerUL超时后的下一相邻符号,网络设备开启第三PUSCH对应的第三drx-RetransmissionTimerUL。其中,j为大于或等于n-m,且小于或等于n,并且不等于i的任意正整数。 n个PUSCH包括第三PUSCH。
根据第四方面以及第四方面中任意一种实施方式,n个上行时间单元为n个连续的上行时间单元,上行时间单元包括上行时隙或上行符号。授权终端设备在n个上行时间单元上分别传输n个PUSCH,包括:向终端设备发送第一配置信息,第一配置信息用于配置配置授权免调度,配置授权免调度指示CG周期,CG周期为网络设备向终端设备授权的相邻两组PUSCH中各组第一个PUSCH之间的时间间隔;配置授权免调度还指示CG周期所包含的连续的上行时间单元的个数n,n为各组上行时间单元的个数。第一配置信息还用于授权终端设备在n个上行时间单元上分别传输n个PUSCH。
根据第四方面以及第四方面中任意一种实施方式,该方法包括:第一配置信息还包括第一字段。当第一字段为第一值时,在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后,网络设备不开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,当第一字段为第二值时,在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,网络设备开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
根据第四方面以及第四方面中任意一种实施方式,第一配置信息还指示第一时长和第一起始时刻,第一时长为静默定时器drx-silenceTimerUL的时长,第一起始时刻指示drx-silenceTimerUL的起始时刻,第一起始时刻为每个CG周期的n个上行时间单元中第1个上行时间单元所传输PUSCH的起始时刻,drx-silenceTimerUL的结束时刻早于第n-m-1个上行时间单元所传输PUSCH的起始时刻。
根据第四方面以及第四方面中任意一种实施方式,授权终端设备在n个上行时间单元上分别传输n个PUSCH,包括:向终端设备发送第二控制信息,第二控制信息指示终端设备分别在n个上行时间单元上传输n个PUSCH;第二控制信息还用于授权终端设备在n个上行时间单元上分别传输n个PUSCH。该方法包括:在向终端设备发送第二控制信息之前,网络设备向终端设备发送第四配置信息,第四配置信息包括上行时域资源分配表,上行时域资源分配表包括至少一个行索引,至少一个行索引的每个行索引分别对应至少一个上行时隙。第二控制信息包括第一行索引,第一行索引与第二行索引对应,第二行索引为上行时域资源分配列表中的至少一个行索引,n为第二行索引所对应的上行时隙的数量,第二行索引的数值为第一行索引的数值加1。
根据第四方面以及第四方面中任意一种实施方式,该方法包括:第二控制信息包括第十字段。当第十字段为第一值时,在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后,网络设备不开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,当第十字段为第二值时,在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,网络设备开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
根据第四方面以及第四方面中任意一种实施方式,该方法包括:第四配置信息包括第十一字段。当第十一字段为第一值时,在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后,网络设备不开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,当第十一字段为第二值时,在第1个上行时间单元至第n个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在第一PUSCH对应的第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,网络设备开启第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
相应地,根据第四方面以及第四方面中任意一种实施方式,该方法还可包括与第二方面以及第二方面中任意一种实施方式相对应的特征。此处不再展开。
第五方面,提供一种终端设备,该终端设备包括处理器和存储器,该存储器存储有计算机程序,当该计算机程序被该处理器运行时,使得终端设备执行如上述的第一方面及第一方面任意一种实施方式至第二方面及第二方面任意一种实施方式中任意一项所述的方法。
第五方面及第五方面中任意一种实施方式所对应的技术效果可参见上述的第一方面及第一方面中任意一种实施方式、上述的第二方面及第二方面中任意一种实施方式所对应的技术效果,此处不再赘 述。
第六方面,提供一种网络设备,该网络设备包括处理器和存储器,该存储器存储有计算机程序,当该计算机程序被该处理器运行时,使得网络设备执行如上述的第三方面及第三方面任意一种实施方式至第四方面及第四方面任意一种实施方式中任意一项所述的方法。
第六方面及第六方面中任意一种实施方式所对应的技术效果可参见上述的第三方面及第三方面中任意一种实施方式、上述的第四方面及第四方面中任意一种实施方式所对应的技术效果,此处不再赘述。
第七方面,提供一种计算机可读存储介质。该计算机可读存储介质存储有计算机程序,当该计算机程序在终端设备上运行时,使得该终端设备执行如上述的第一方面及第一方面任意一种实施方式至第二方面及第二方面任意一种实施方式中任意一项所述的方法。
第七方面及第七方面中任意一种实施方式所对应的技术效果可参见上述的第一方面及第一方面中任意一种实施方式、上述的第二方面及第二方面中任意一种实施方式所对应的技术效果,此处不再赘述。
第八方面,提供一种计算机可读存储介质。该计算机可读存储介质存储有计算机程序,当该计算机程序在网络设备上运行时,使得该网络设备执行如上述的第三方面及第三方面任意一种实施方式至第四方面及第四方面任意一种实施方式中任意一项所述的方法。
第八方面及第八方面中任意一种实施方式所对应的技术效果可参见上述的第三方面及第三方面中任意一种实施方式、上述的第四方面及第四方面中任意一种实施方式所对应的技术效果,此处不再赘述。
第九方面,提供一种计算机程序产品。该计算机程序产品存储在计算机可读存储介质上,在该计算机程序产品在终端设备上运行时,使得该终端设备执行如上述的第一方面及第一方面任意一种实施方式至第二方面及第二方面任意一种实施方式中任意一项所述的方法。
第九方面及第九方面中任意一种实施方式所对应的技术效果可参见上述的第一方面及第一方面中任意一种实施方式、上述的第二方面及第二方面中任意一种实施方式所对应的技术效果,此处不再赘述。
第十方面,提供一种计算机程序产品。该计算机程序产品存储在计算机可读存储介质上,在该计算机程序产品在网络设备上运行时,使得该网络设备执行如上述的第三方面及第三方面任意一种实施方式至第四方面及第四方面任意一种实施方式中任意一项所述的方法。
第十方面及第十方面中任意一种实施方式所对应的技术效果可参见上述的第三方面及第三方面中任意一种实施方式、上述的第四方面及第四方面中任意一种实施方式所对应的技术效果,此处不再赘述。
第十一方面,提供一种芯片。该芯片包括处理器和耦合至处理器的存储器,存储器存储有计算机程序,芯片位于终端设备内,当处理器执行计算机程序时,使得终端设备执行如上述的第一方面及第一方面任意一种实施方式至第二方面及第二方面任意一种实施方式中任意一项所述的方法。
第十一方面及第十一方面中任意一种实施方式所对应的技术效果可参见上述的第一方面及第一方面中任意一种实施方式、上述的第二方面及第二方面中任意一种实施方式所对应的技术效果,此处不再赘述。
第十二方面,提供一种芯片。该芯片包括处理器和耦合至处理器的存储器,存储器存储有计算机程序,芯片位于网络设备内,当处理器执行计算机程序时,使得网络设备执行如上述的第三方面及第三方面任意一种实施方式至第四方面及第四方面任意一种实施方式中任意一项所述的方法。
第十二方面及第十二方面中任意一种实施方式所对应的技术效果可参见上述的第三方面及第三方面中任意一种实施方式、上述的第四方面及第四方面中任意一种实施方式所对应的技术效果,此处不再赘述。
第十三方面,提供一种通信系统。该通信系统包括终端设备和网络设备,终端设备用于执行如上述的第一方面及第一方面任意一种实施方式至第二方面及第二方面任意一种实施方式中任意一项所述的方法,网络设备用于执行如上述的第三方面及第三方面任意一种实施方式至第四方面及第四方面任意一种实施方式中任意一项所述的方法。
第十三方面及第十三方面中任意一种实施方式所对应的技术效果可参见上述的第一方面及第一方面中任意一种实施方式、上述的第二方面及第二方面中任意一种实施方式、上述的第三方面及第三方面中任意一种实施方式、上述的第四方面及第四方面中任意一种实施方式所对应的技术效果,此处不再赘述。
附图说明
结合附图并参考以下详细说明,本申请各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标注表示相同或相似的元素,其中:
图1A为终端设备与网络设备之间半静态上行传输方法的示意图。
图1B为终端设备与网络设备之间动态上行传输方法的示意图。
图2A为终端设备与网络设备的第一种上行传输方式的示意图。
图2B为第一种上行传输方式中出现重传时,终端设备的工作示意图。
图2C为第一种上行传输方式中未出现重传时,终端设备的工作示意图。
图3A为终端设备与网络设备的第二种上行传输方式的示意图。
图3B为第二种上行传输方式中出现重传时,终端设备的工作示意图。
图3C为第二种上行传输方式中未出现重传时,终端设备的工作示意图。
图4A为本申请实施例提供的上行传输方法实施例一的示意图。
图4B为本申请实施例提供的上行传输方法实施例二的示意图。
图5A为本申请实施例提供的上行传输方法实施例三的示意图。
图5B为本申请实施例提供的上行传输方法实施例四的示意图。
图6A为本申请实施例提供的上行传输方法实施例五的示意图。
图6B为本申请实施例提供的上行传输方法实施例六的示意图。
图7A为本申请实施例提供的上行传输方法实施例七的示意图。
图7B为本申请实施例提供的上行传输方法实施例八的示意图。
图8为本申请实施例提供的终端设备的结构组成示意图。
具体实施方式
下面将参照附图更详细地描述本申请的实施例。虽然附图显示了本申请的某些实施例,然而应当理解的是,本申请可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本申请。应当理解的是,本申请的附图及实施例仅用于示例性作用,并非用于限制本申请的保护范围。
在本申请的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
本申请的实施例可以根据任何适当的通信协议来实施,包括但不限于,第三代(3rd Generation,3G)、第四代(4G)、第五代(5G)、第六代(6G)等蜂窝通信协议、诸如电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11等的无线局域网通信协议、和/或目前已知或者将来开发的任何其他协议。
本申请实施例的技术方案应用于遵循任何适当通信协议的通信系统。例如:通用分组无线业务(General Packet Radio Service,GPRS)、全球移动通信系统(Global System for Mobile communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、通用移动通信系统(Universal Mobile Telecommunications Service,UMTS)、长期演进(Long Term Evolution,LTE)系统、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA)、频分双工(Frequency Division Duplex,FDD)系统、时分双工(Time Division Duplex,TDD)系统、第五代系统或新无线电(New Radio, NR)系统、未来演进的第六代通信系统等。
在具体阐述本申请实施例之前,首先对本申请涉及到的一些术语阐明解释。
终端设备:指能够与网络设备之间或者彼此之间进行有线或无线通信的任何终端设备。终端设备有时可以称为用户设备(User Equipment,UE)。终端设备可以是任意类型的移动终端、固定终端或便携式终端。作为示例,终端设备可以包括手机、站点、单元、设备、移动终端(Mobile Terminal,MT)、用户驻地设备(Customer Premises Equipment,CPE)、订阅台、便携式订阅台、互联网节点、通信器、台式计算机、膝上型计算机、笔记本计算机、平板计算机、个人通信系统设备、个人导航设备、个人数字助理(Personal Digital Assistant,PDA)、定位设备、无线电广播接收器、电子书设备、游戏设备、物联网(Internet of Things,IoT)设备、车载设备、飞行器、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、可穿戴设备、5G网络中的终端设备或者演进的公用陆地移动网络(Public Land Mobile Network,PLMN)中的任何终端设备、可用于通信的其他设备、或者上述的任意组合。本申请的实施例对此并不做限定。
网络设备:指可以用于与终端设备通信的实体或节点,例如可以是接入网设备。接入网设备可以是部署在无线接入网中为移动终端提供无线通信功能的装置,例如可以是无线接入网(Radio Access Network,RAN)网络设备。接入网设备可以包括各种类型的基站。作为示例,接入网设备可以包括各种形式的宏基站、微基站、微微基站、毫微微基站、中继站、接入点、远程无线电单元(Remote Radio Unit,RRU)、射频头(Radio Head,RH)、远程无线电头端(Remote Radio Head,RRH)等等。在采用不同的无线接入技术的系统中,接入网设备的名称可能会有所不同,例如在长期演进系统(Long Term Evolution,LTE)网络中称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G网络中称为节点B(NodeB,NB),在5G网络中可以称为g节点B(gNB)或NR节点B(NR NB)等等。在某些场景下,接入网设备可以包含集中单元(Central Unit,CU)和/或分布单元(Distributed Unit,DU)。CU和DU可以放置在不同的地方,例如:DU拉远,放置于高话务量的区域,CU放置于中心机房。或者,CU和DU也可以放置在同一机房。CU和DU也可以为一个机架下的不同部件。为方便描述,本申请后续的实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备,本申请的实施例不再具体限定。
配置上行授权(Configured Grant,CG;or,Configured uplink Grant,CG):一种上行半静态传输方法,其区别于动态调度每次传输都需要控制信息指示对应的传输资源。上行半静态传输具有一次配置多次使用的特点,即网络设备不需要为每次传输都发送控制信息,而是通过采用半静态信令预先配置传输周期,然后再根据所配置的周期进行周期性传输。
示例性地,图1A示出了终端设备与网络设备之间半静态上行传输方法的原理示意图。如图1A所示,终端设备100与网络设备200无线通信。示例性地,终端设备100包括XR终端设备。网络设备200包括基站。
如图1A所示,该无线通信方法,包括:
S101,网络设备向终端设备发送第一配置信息,所述第一配置信息用于配置配置授权免调度(ConfiguredGrantConfig)。
示例性地,第一配置信息是以无线资源控制(Radio Resource Control,RRC)信令的方式发送的。
其中,第一配置信息包括第一类信息,第一类信息包括分配时隙(Slot Allocated)、CG周期(periodicity)等信息(也可称为参数)。其中,分配时隙是指在一个CG周期内分配的时隙个数。CG周期是指一个CG配置的第x组时隙中的第一个时隙和第x+1组时隙中的第一个时隙的时间间隔,其中x为正整数。一个CG配置的每组时隙的个数时可以通过第一类信息确定。比如,第一配置信息中的ConfiguredGrantConfig中的cg-nrofSlots参数确定的;或者,当cg-nrofSlots未被配置时,每组时隙的个数为默认1。在一些情形中,第一配置信息可以为ConfiguredGrantConfig。
可选地,第一配置信息还包括第二类信息。第二类信息包括调制与编码策略(Modulation and Coding Scheme,MCS)、时域资源分配(Time Domain Resource Allocation,TDRA)和频域资源分配(Frequency Domain Resource Allocation,FDRA)等。此时,该无线通信方法就不包括下文提到的S101’。进一步地,第一配置信息还包括偏移,比如偏移为i个时隙。这样,终端设备可以根据接收到第一配置信息的时刻,比如时隙j,以时隙(j+i)来作为上行传输的时隙;从而在有数据需要上行传输时在时隙(j+i)上进行 上行传输,在无数据需要上行传输时跳过时隙(j+i)或发送填充数据。终端设备根据第一配置信息进行周期性地传输。
可选地,S101与S102间还可包括更多的步骤,用于网络设备200向终端设备100发送更多的配置信息,进行多次配置。
可选地,第一配置信息不包括上述的第二类信息。此时,该无线通信方法包括S101’。而上述的第二类信息包含在S101’的第一控制信息中。此时,在S101’中的第一控制信息不再包括上述的偏移。
S101’,网络设备向终端设备发送第一控制信息,所述第一控制信息用于激活配置授权免调度。
示例性地,第一控制信息包括下行控制信息(Downlink Control Information,DCI)。可选地,DCI包括上述的第二类信息。终端设备根据第一配置信息和第一控制信息进行周期性地传输。
可选地,S101’与S102间还可包括更多的步骤,用于网络设备200向终端设备100发送更多的配置信息或控制信息。
可选地,在S101之前,网络设备200还可向终端设备100发送更多的配置信息。
S102,终端设备向网络设备发送基于配置授权免调度的第一数据。
可选地,在终端设备自身有待传输的上行数据时,终端设备执行S102,直接在配置的资源上传输。此时为一个CG周期的开始时刻。
S103,终端设备向网络设备发送基于配置授权免调度的第二数据。
其中,S103与S102相差一个CG周期。在S103与S102中,终端设备没有向网络设备发送基于配置授权免调度的其他数据。
可选地,在终端设备自身有另一待传输的上行数据时,终端设备执行S103。此时为一个CG周期的结束时刻,也为另一个相邻CG周期的开始时刻。
需要说明的是,S102与S103仅为一个示例。在接下来的CG周期中,终端设备循环执行S102-S103,直至终端设备接收到停止命令(比如,接收到来自网络设备的去激活信令等)。
除了上述的终端设备与网络设备之间半静态上行传输方法外,终端设备还可与网络设备进行动态上行传输。
示例性地,图1B示出了终端设备与网络设备之间动态上行传输方法的原理示意图。如图1B所示,终端设备100与网络设备200无线通信。示例性地,终端设备100包括XR终端设备。网络设备200包括基站。
如图1B所示,该无线通信方法,包括:
S201,网络设备向终端设备发送第二控制信息,所述第二控制信息用于调度n个上行时隙。
其中,n为大于1的正整数。在步骤S201中,并不要求n个上行时隙为n个连续的上行时隙。
示例性地,第二控制信息可以为下行控制信息DCI。
S202,终端设备响应于接收到第二控制信息,在n个上行时隙中的第1个上行时隙,向网络设备发送第一数据;
S203,终端设备响应于接收到第二控制信息,在n个上行时隙中的第2个上行时隙,向网络设备发送第二数据;
……
S20n,终端设备响应于接收到第二控制信息,在n个上行时隙中的第n个上行时隙,向网络设备发送第n数据。
在n=2时,S202和S20n为同一步骤。
无论半静态上行传输方法或动态上行传输方法,在XR业务、云游戏业务等业务中,一个数据帧(比如,XR数据帧;在上行传输中,数据帧可称为物理上行共享信道(Physical Uplink Shared CHannel,PUSCH)帧)的数据量比较大,通常需要多个时隙才能传输完成。在上行传输中,需要多个上行时隙来传输。一般来说,网络设备与终端设备通过以下两种方式来实现。
方式1
网络设备为终端设备配置在每个CG周期内的n个连续的上行时隙,n为大于1的正整数。示例性地,网络设备可以通过第一配置信息中的ConfiguredGrantConfig中的cg-nrofSlots,为终端设备配置每 个CG周期内的n个连续的上行时隙。第一配置信息可以通过由网络设备向终端设备发送的RRC信令发送。为了方便表述,以下以n=4,结合图2A,进行示例性说明。可替换地,n还可以选自其他的大于1的任意正整数,比如n=2。在一些情形中,第一配置信息可以为ConfiguredGrantConfig。
具体来说,如图2A所示,网络设备为终端设备配置了在每个CG周期内的4个连续的上行时隙(比如,每个CG周期内的前4个连续的上行时隙),使得终端设备根据配置的CG周期,进行周期性地传输。也就是说,PUSCH帧a通过一个CG周期内的时隙201、时隙202、时隙203和时隙204进行上行传输。PUSCH帧b通过下一个CG周期内的时隙208、时隙209、时隙210和时隙211进行上行传输。后续的PUSCH帧也按如此的规律周期性传输,此处不再赘述。
需要说明的是,在没有特别说明的情况下,后续实施例或实施方式中有关方式1的内容,都以n=4为例介绍。然而,这并不排除n取其他正整数值。虽然本申请不再对n取其他正整数值的示例进行详细介绍,但其也在本申请的范围内。
方式2
终端设备可以支持d个CG配置(比如,12个CG配置)同时运作,d为正整数。网络设备为终端设备分别配置了p个CG配置,共配置p次,每次配置一个CG配置,p为小于或等于d的正整数。比如,第一次配置第一CG配置,……,第p次配置第p CG配置。p个CG配置是通过p个第一配置信息分别配置的。在一些情形中,第一配置信息可以为ConfiguredGrantConfig。每个CG配置包含至少一个CG周期。每个CG周期内可以有任意数量的上行时隙用于上行传输。为了便于说明,后续以每个CG周期内只有一个上行时隙用于传输为例进行说明。比如,第一CG配置包含第一CG周期1,第一CG周期2,……。第二CG配置包含第二CG周期1,……。第一CG周期被配置35个时隙,即前35个时隙为一个第一CG周期即第一CG周期1,紧邻着的35个时隙为下一个第一CG周期即第一CG周期2,后续也按照如此规律。其他的CG配置也是类似的,此处不再赘述。为了方便表述,以下以p=4,结合图3A,进行示例性说明。
具体来说,如图3A所示,网络设备通过4次配置,为终端设备配置了4个CG配置,即第一CG配置、第二CG配置、第三CG配置和第四CG配置。4个CG配置分别包括至少一个第一CG周期、至少一个第二CG周期、至少一个第三CG周期和至少一个第四CG周期。终端设备在上行传输PUSCH帧a时,是通过第一CG周期1的时隙301、第二CG周期1的时隙302、第三CG周期1的时隙303和第四CG周期1的时隙304,进行上行传输的。终端设备在上行传输PUSCH帧b时,是通过第一CG周期2的时隙308、第二CG周期2(图中未示出)的时隙309、第三CG周期2(图中未示出)的时隙310和第四CG周期2(图中未示出)的时隙311,进行上行传输。其中,第二CG周期2的起始时刻为第二CG周期1的结束时隙的下一个相邻时隙(即时隙309),第二CG周期2的周期与第二CG周期1的周期相同。第三CG周期2、第四CG周期2也是如此。后续的PUSCH帧(或数据帧)也按此规律周期性传输,此处不再赘述。
需要说明的是,在没有特别说明的情况下,后续实施例或实施方式中有关方式2的内容,都以p=4为例介绍。然而,这并不排除p取其他正整数值。虽然本申请不再对p取其他正整数值的示例进行详细介绍,但其也在本申请的范围内。
前文已阐述,为了降低终端设备的功耗,终端设备一般会采用C-DRX技术。虽然终端设备采用C-DRX技术,已经相较之前降低了功耗。但终端设备在运行XR、云游戏等业务时的功耗仍然较大,还需进一步降低功耗。另外,对于其他业务,还要兼顾以往的控制机制。因此如何在进一步降低终端设备功耗的同时,兼顾以往的控制机制,是本申请要解决的技术问题。
申请人经过长期深入地研究,发现XR业务、云游戏业务等业务更关注整个数据帧的传输可靠性。示例性地,XR业务更关注数据帧的整体传输是否在规定的时长内完成。上述规定的时长是由应用层决定的。因为XR、云游戏等业务在应用层的编码译码机制上是以数据帧为单位编码译码的,这种编码译码机制决定了上述规定的时长。如果一个数据帧在规定的时长内没有传输完,整个数据帧大概率无法译码。
此外,申请人发现,在终端设备采用C-DRX技术后,无论运用上述的方式1或方式2,在终端设备通过一个上行时隙上行传输PUSCH后,都会为该PUSCH对应的混合自动重传请求(Hybrid Automatic  Repeat reQuest,HARQ)进程启动drx-HARQ-RTT-TimerUL,drx-HARQ-RTT-TimerUL表示网络设备在接收到上行传输PUSCH后,至对该PUSCH进行重传调度的处理时间,当没有其他定时器开启时,终端设备在该定时器起始时刻内可以进入睡眠状态。在drx-HARQ-RTT-TimerUL超时后,终端设备都会为该HARQ进程启动drx-RetransmissionTimerUL,在该drx-RetransmissionTimerUL起始时刻内,终端设备将处于唤醒状态,并持续的监测控制信道。应当理解,当drx-RetransmissionTimerUL和drx-HARQ-RTT-TimerUL发生时间上的重叠或交叉时,终端设备将处于唤醒状态,并持续得监测控制信道。
下面以方式1为例,结合图2B和图2C,分别就上行传输中有重传的情形和无重传的情形进行阐述。
在图2B示出的重传情形中,在终端设备向网络设备上行传输PUSCH帧a时,本来是通过同一CG周期内的时隙201、时隙202、时隙203和时隙204分别上行传输PUSCH1、PUSCH2、PUSCH3和PUSCH4的,其中PUSCH帧a包括PUSCH1、PUSCH2、PUSCH3和PUSCH4。如果在网络设备接收到PUSCH1后,网络设备译码失败,表明通过时隙201传输PUSCH1的上行传输错误,则终端设备可以在时隙201接收到来自网络设备的重传PDCCH(比如,重传DCI),重传PDCCH指示终端在时隙201的后续时隙,比如时隙202(也可为其他的时隙,比如时隙203、时隙204或时隙205,此处以时隙202为例说明),重传PUSCH1。示例性地,指示的具体方式可以为在接收到重传PDCCH的时隙后的第3个时隙以后且最接近的一个上行时隙重传。相应地,终端设备就可通过时隙202、时隙203、时隙204和时隙205分别上行传输PUSCH1、PUSCH2、PUSCH3和PUSCH4,并分别在发送完相应的PUSCH后开启对应HARQ进程的drx-HARQ-RTT-TimerUL 210、drx-HARQ-RTT-TimerUL 220、drx-HARQ-RTT-TimerUL 230、drx-HARQ-RTT-TimerUL 240,以及在drx-HARQ-RTT-TimerUL 210、drx-HARQ-RTT-TimerUL 220、drx-HARQ-RTT-TimerUL 230、drx-HARQ-RTT-TimerUL 240分别超时后,开启各自对应的drx-RetransmissionTimerUL 211、drx-RetransmissionTimerUL 221、drx-RetransmissionTimerUL 231、drx-RetransmissionTimerUL 241。比如,终端设备通过时隙202上行传输PUSCH1后,开启对应HARQ进程的drx-HARQ-RTT-TimerUL 210,在drx-HARQ-RTT-TimerUL 210超时后,开启对应的drx-RetransmissionTimerUL 211。
而在上述的过程中,drx-RetransmissionTimerUL 211的运行时间与drx-HARQ-RTT-TimerUL 220的运行时间存在交叉,drx-RetransmissionTimerUL 221的运行时间与drx-HARQ-RTT-TimerUL 230的运行时间存在交叉,drx-RetransmissionTimerUL 231的运行时间与drx-HARQ-RTT-TimerUL 240的运行时间存在交叉,从而导致自时隙201后的第1个时隙开始直至drx-RetransmissionTimerUL 241的运行结束前,终端设备一直处于唤醒状态或工作状态,功耗较高。
在图2C示出的无重传情形中,终端设备向网络设备上行传输PUSCH帧a,是通过同一CG周期的时隙201、时隙202、时隙203和时隙204分别上行传输PUSCH1、PUSCH2、PUSCH3和PUSCH4的,其中PUSCH帧a包括了PUSCH1、PUSCH2、PUSCH3和PUSCH4。同样地,在这一过程中,drx-RetransmissionTimerUL 211的运行时间与drx-HARQ-RTT-TimerUL 220的运行时间存在交叉,drx-RetransmissionTimerUL 221的运行时间与drx-HARQ-RTT-TimerUL 230的运行时间存在交叉,drx-RetransmissionTimerUL 231的运行时间与drx-HARQ-RTT-TimerUL 240的运行时间存在交叉,从而导致自时隙201后的第1个时隙开始直至drx-RetransmissionTimerUL 241的运行结束前,终端设备一直处于唤醒状态或工作状态,功耗较高。
下面以方式2为例,结合图3B和图3C,分别就上行传输中有重传的情形和无重传的情形进行阐述。
在图3B示出的重传情形中,在终端设备向网络设备上行传输PUSCH帧a时,本来是通过第一CG周期1的时隙301、第二CG周期1的时隙302、第三CG周期1的时隙303和第四CG周期1的时隙304分别上行传输PUSCH1、PUSCH2、PUSCH3和PUSCH4的,其中PUSCH帧a包括了PUSCH1、PUSCH2、PUSCH3和PUSCH4。如果在网络设备接收到PUSCH1后,网络设备译码失败,表明通过时隙301传输PUSCH1的上行传输错误,则终端设备可以在时隙301接收到来自网络设备的重传PDCCH(比如,重传DCI),重传PDCCH指示终端在时隙301的后续时隙,比如第二CG周期1的时隙302(也可为其他的时隙,比如时隙303、时隙304或时隙305,此处以时隙302为例说明),重 传PUSCH1。示例性地,指示的具体方式可以为在接收到重传PDCCH的时隙后的第3个时隙以后且最接近的一个上行时隙重传。
示例性地,终端设备就通过时隙302、时隙303、时隙304和时隙305分别上行传输PUSCH1、PUSCH2、PUSCH3和PUSCH4。而在这一过程中,drx-RetransmissionTimerUL 311的运行时间与drx-HARQ-RTT-TimerUL 320的运行时间存在交叉,drx-RetransmissionTimerUL 321的运行时间与drx-HARQ-RTT-TimerUL 330的运行时间存在交叉,drx-RetransmissionTimerUL 331的运行时间与drx-HARQ-RTT-TimerUL 340的运行时间存在交叉,从而导致自时隙301后的第1个时隙开始直至drx-RetransmissionTimerUL 341的运行结束前,终端设备一直处于唤醒状态或工作状态,功耗较高。
在图3C示出的无重传情形中,终端设备向网络设备上行传输PUSCH帧a,是通过第一CG周期1的时隙301、第二CG周期1的时隙302、第三CG周期1的时隙303和第四CG周期1的时隙304分别上行传输PUSCH1、PUSCH2、PUSCH3和PUSCH4的,其中PUSCHa包括PUSCH1、PUSCH2、PUSCH3和PUSCH4。同样地,在这一过程中,drx-RetransmissionTimerUL 311的运行时间与drx-HARQ-RTT-TimerUL 320的运行时间存在交叉,drx-RetransmissionTimerUL 321的运行时间与drx-HARQ-RTT-TimerUL 330的运行时间存在交叉,drx-RetransmissionTimerUL 331的运行时间与drx-HARQ-RTT-TimerUL 340的运行时间存在交叉,从而导致自时隙301后的第1个时隙开始直至drx-RetransmissionTimerUL 341的运行结束前,终端设备一直处于唤醒状态或工作状态,功耗较高。
综上,申请人经过长期深入的研究,总结得出如下结论:终端设备在运行XR业务、云游戏业务等业务进行上行传输时,无论是采用方式1还是采用方式2,或者无论存在重传的情形或不存在重传的情形,都会导致终端设备自PUSCH帧(或数据帧)的上行传输开始至传输完毕,一直处于唤醒状态或工作状态,从而导致终端设备的功耗较高。
应当理解,虽然本申请主要是以时隙(比如,时隙201、时隙301等)为例进行说明,但时隙仅为示例性说明,并非限定。本申请中各处的时隙均可以被替换为时间单元。时间单元包括时隙或符号。比如,在5G NR中,一个时隙包括14个符号。替换后的技术方案也在本申请的范围内。
基于上述的发现和总结的结论,为了解决上述的技术问题,申请人提出了一种上行传输方法、终端设备和网络设备。下面结合附图,具体说明本申请的技术方案。
首先说明的是,本申请中时间单元(比如,时隙或符号)对应的drx-HARQ-RTT-TimerUL,可以理解为,在该时间单元上传输的物理上行共享信道PUSCH所对应的HARQ进程的drx-HARQ-RTT-TimerUL;即在该PUSCH传输完成后的下一个相邻符号,所开启的drx-HARQ-RTT-TimerUL,其中该drx-HARQ-RTT-TimerUL为该PUSCH对应的HARQ进程的drx-HARQ-RTT-TimerUL。例如,在一个CG周期中,第i个上行时隙对应的drx-HARQ-RTT-TimerUL,可以理解为,在第i个上行时隙的PUSCH传输完成后的下一个相邻符号,所开启的drx-HARQ-RTT-TimerUL,其中该drx-HARQ-RTT-TimerUL为该PUSCH对应HARQ进程的drx-HARQ-RTT-TimerUL。
类似地,本申请中时间单元(比如,时隙或符号)对应的drx-RetransmissionTimerUL,可以理解为,在该时间单元上传输的PUSCH所对应的HARQ进程的drx-RetransmissionTimerUL;即在该PUSCH对应的HARQ进程的drx-HARQ-RTT-TimerUL超时后的下一相邻符号,所开启的drx-RetransmissionTimerUL,其中该drx-RetransmissionTimerUL为该drx-HARQ-RTT-TimerUL对应的HARQ进程的drx-RetransmissionTimerUL。例如,在一个CG周期中,第i个上行时隙对应的drx-RetransmissionTimerUL,可以理解为,在第i个上行时隙上传输的PUSCH对应的HARQ进程的drx-HARQ-RTT-TimerUL超时后的下一个相邻时隙,所开启的drx-RetransmissionTimerUL,其中,该drx-RetransmissionTimerUL为该PUSCH对应HARQ进程的drx-RetransmissionTimerUL。
另外,本申请中PUSCH对应的drx-HARQ-RTT-TimerUL,可以理解为PUSCH对应的HARQ进程的drx-HARQ-RTT-TimerUL;即在该PUSCH传输完成后的下一个相邻时间单元(比如,时隙或符号),所开启的drx-HARQ-RTT-TimerUL,其中该drx-HARQ-RTT-TimerUL为该PUSCH对应的HARQ进程的drx-HARQ-RTT-TimerUL。
类似地,本申请中PUSCH对应的drx-RetransmissionTimerUL,可以理解为PUSCH对应的HARQ进程的drx-RetransmissionTimerUL;即在该PUSCH对应的HARQ进程的drx-HARQ-RTT-TimerUL超 时后的下一相邻符号,所开启的drx-RetransmissionTimerUL,其中该drx-RetransmissionTimerUL为该drx-HARQ-RTT-TimerUL对应的HARQ进程的drx-RetransmissionTimerUL。
换句话说,本申请中上行时隙对应的drx-HARQ-RTT-TimerUL、drx-RetransmissionTimerUL分别与PUSCH对应的drx-HARQ-RTT-TimerUL、drx-RetransmissionTimerUL的含义相同。
实施例一
实施例一涉及图4A。图4A为本申请实施例提供的上行传输方法实施例一的示意图。实施例一包括实施方式1、实施方式2和实施方式3。实施方式1涉及图4A的(a),实施方式2涉及图4A的(b)。实施方式3是在实施方式1或实施方式2的基础上的进一步改进,未示出相应的附图。
实施方式1
在实施方式1中,网络设备向终端设备配置了在每个CG周期内的n个连续的上行时隙,n为大于1的正整数。示例性地,n可以基于第一配置信息中的ConfiguredGrantConfig中的cg-nrofSlots获得。其中,第一配置信息可以通过由网络设备向终端设备发送的RRC信令发送。在一些情形中,第一配置信息可以为ConfiguredGrantConfig。
在同一CG周期中,第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的第i个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,所述第i个上行时隙对应的drx-RetransmissionTimerUL开启,其中i为大于或等于n-m,且小于或等于n的任意正整数。在该CG周期中,第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个上行时隙各自对应的drx-HARQ-RTT-TimerUL超时后,所述任意一个或多个上行时隙各自对应的drx-RetransmissionTimerUL都不开启。其中,m为小于n-1的非负整数。
进一步地,在该CG周期中,第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的第j个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,所述第j个上行时隙对应的drx-RetransmissionTimerUL开启,其中j为大于或等于n-m,且小于或等于n,并且不等于i的任意正整数。
进一步地,在该CG周期中,第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的第k个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,所述第k个上行时隙对应的drx-RetransmissionTimerUL开启,其中k为大于或等于n-m,且小于或等于n,并且不等于i,也不等于j的任意正整数。
可选地,一个上行时隙可以传输一个或多个PUSCH,多个上行时隙也可以传输一个或多个PUSCH。
需要说明的是,上述的第1个上行时隙直至最后1个上行时隙均在同一CG周期中。n个连续的上行时隙中从第1个上行时隙至最后1个上行时隙的编号可以为0,……,n-1;也可以为1,……,n。
优选地,m=0。在m=0时,在同一CG周期的第n个上行时隙(即最后1个上行时隙)对应的drx-HARQ-RTT-TimerUL超时后,该第n个上行时隙对应的drx-RetransmissionTimerUL开启;在该CG周期中,第1个上行时隙至第n-1个上行时隙(即非最后1个上行时隙)中的任意一个或多个上行时隙各自对应的drx-HARQ-RTT-TimerUL超时后,所述任意一个或多个上行时隙各自对应的drx-RetransmissionTimerUL都不开启。
优选地,在m=0时,在n个连续的上行时隙中第n个上行时隙(即最后1个上行时隙)对应的drx-HARQ-RTT-TimerUL超时后,在该第n个上行时隙对应的drx-RetransmissionTimerUL才开启;在n个连续的上行时隙中非第n个上行时隙(即非最后1个上行时隙)对应的drx-HARQ-RTT-TimerUL超时后,在该非第n个上行时隙对应的drx-RetransmissionTimerUL都不开启。
示例性地,如图4A的(a)所示,网络设备向终端设备配置了在每个CG周期内的4个连续的上行时隙。在4个连续的上行时隙中最后1个上行时隙(即时隙204)对应的drx-HARQ-RTT-TimerUL 240超时后,时隙204对应的drx-RetransmissionTimerUL 241才开启;在4个连续的上行时隙中非最后1个上行时隙(即时隙201、时隙202、时隙203)各自对应的drx-HARQ-RTT-TimerUL 210、drx-HARQ-RTT-TimerUL 220、drx-HARQ-RTT-TimerUL 230超时后,时隙201、时隙202、时隙203各自对应的drx-RetransmissionTimerUL都不开启。
需要说明的是,上述的“上行时隙对应的drx-HARQ-RTT-TimerUL”实际上是指:在上行时隙上传输的PUSCH对应的drx-HARQ-RTT-TimerUL;上述的“上行时隙对应的drx-RetransmissionTimerUL”实际上是指:在上行时隙上传输PUSCH后,该PUSCH对应的drx-HARQ-RTT-TimerUL超时后,该drx-HARQ-RTT-TimerUL对应的drx-RetransmissionTimerUL。
需要说明的是,即使在图4A的(a)中,如果存在重传的情形,比如终端设备通过时隙201上行传输的数据被网络设备译码失败,后续通过时隙202重传,从而导致PUSCH帧a实际通过了时隙201、时隙202、时隙203、时隙204和时隙205(如虚线箭头所示)来传输,4个连续的上行时隙中最后1个上行时隙仍为时隙204,而不是时隙205。在图4A的(a)中,如果不存在重传的情形,则4个连续的上行时隙中最后1个上行时隙为时隙204。
可选地,在网络设备向终端设备发送的第一配置信息中,可以添加第一字段(也可称为第一开关)。比如,第一配置信息包括ConfiguredGrantConfig,可以在ConfiguredGrantConfig中添加第一字段drx-retransmissionULenabler。进一步地,第一配置信息可以为ConfiguredGrantConfig。
可选地,第一配置信息可以通过RRC信令发送。
仍以m=0为例,当drx-retransmissionULenabler为第一值(比如1或true)时,n个连续的上行时隙中最后1个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,该最后1个上行时隙对应的drx-RetransmissionTimerUL才开启;n个连续的上行时隙中非最后1个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,该非最后1个上行时隙对应的drx-RetransmissionTimerUL都不开启。当drx-retransmissionULenabler为第二值(比如0或false)时,n个连续的上行时隙中任意一个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,该任意一个上行时隙对应的drx-RetransmissionTimerUL都开启。
示例性地,仍以m=0为例,具体流程可以为:
1>如果一个MAC PDU通过配置上行授权发送
2>在对应的物理上行共享信道PUSCH结束后的下一相邻符号开启对应HARQ进程的drx-HARQ-RTT-TimerUL
3>如果drx-HARQ-RTT-TimerUL超时
4>如果该配置上行授权配置了drx-retransmissionULenabler,且该drx-retransmissionULenabler指示了仅为该配置上行授权所配置的最后1个可用传输机会开启drx-RetransmissionTimerUL
5>如果该MAC PDU在该配置上行授权周期内的最后1个可用传输机会上传输
6>在该drx-HARQ-RTT-TimerUL超时的下一相邻符号为对应的HARQ进程开启drx-RetransmissionTimerUL
4>否则
5>在该drx-HARQ-RTT-TimerUL超时的下一相邻符号为对应的HARQ进程开启drx-RetransmissionTimerUL。
其中,步骤1的MAC PDU承载于步骤2所述的PUSCH中。其中,配置上行授权为名词。应理解,上述第一字段的取值也可以通过第一字段是否被配置来确定。例如,当第一配置信息中的ConfiguredGrantConfig中没有被配置该第一字段(例如drx-retransmissionULenabler),即终端设备所接收到的第一配置信息中不包含该第一字段时,可以认为该第一字段为第二值。当终端设备接收到的第一配置信息中包含该第一字段时,可以认为该第一字段指示了第一值,即drx-retransmissionULenabler指示了仅为该配置上行授权所配置的最后1个可用传输机会开启drx-RetransmissionTimerUL。此时,上述步骤4的描述“如果该上行授权配置了drx-retransmissionULenabler,且该drx-retransmissionULenabler指示了仅为该配置上行授权所配置的最后1个可用传输机会开启drx-RetransmissionTimerUL”可以替换为“如果该配置上行授权配置了drx-retransmissionULenabler”。
或者,又一种可能的方式为,在同一CG周期中,在第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的一个或多个上行时隙各自对应的drx-HARQ-RTT-TimerUL超时后,同时开启所述一个或多个上行时隙各自对应的drx-RetransmissionTimerUL;在该CG周期中,第1个上行时隙至第 n-m个上行时隙中的任意一个或多个上行时隙各自对应的drx-HARQ-RTT-TimerUL超时后,该第1个上行时隙至该第n-m-1个上行时隙中的任意一个或多个上行时隙各自对应的drx-RetransmissionTimerUL都不开启。其中,m为小于n-1的非负整数。
以m=0为例,在同一个CG周期中,在第n个上行时隙对应的drx-HARQ-RTT-TimerUL超时后的下一个相邻符号,同时开启在第1个上行时隙至第n个上行时隙上传输的PUSCH对应的drx-RetransmissionTimerUL。具体地,当m=0时,在该n个上行时隙中的第1个上行时隙至第n-1个上行时隙中的任意一个上行时隙传输PUSCH后,在该PUSCH的下一相邻符号开启该PUSCH对应HARQ进程的drx-HARQ-RTT-TimerUL,并在该drx-HARQ-RTT-TimerUL超时后,终端设备不开启该HARQ进程对应的drx-RetransmissionTimerUL;在该n个上行时隙中的第n个上行时隙传输PUSCH后,在该PUSCH的下一相邻符号开启该PUSCH对应HARQ进程的drx-HARQ-RTT-TimerUL,并在该drx-HARQ-RTT-TimerUL超时后,开启该n个上行时隙中的第1个至第n个上行时隙上传输的PUSCH对应的HARQ进程的drx-RetransmissionTimerUL。
实施方式2
在实施方式2中,网络设备向终端设备配置了在每个CG周期内的n个连续的上行时隙,n为大于1的正整数。示例性地,n可以基于第一配置信息中的ConfiguredGrantConfig中的cg-nrofSlots获得。其中第一配置信息可以通过由网络设备向终端设备发送的RRC信令发送。
在同一CG周期中,n个连续的上行时隙中第n-m个上行时隙至第n个上行时隙(即最后1个上行时隙)中的第i个上行时隙传输PUSCH后,该第i个上行时隙对应的drx-HARQ-RTT-TimerUL开启,其中i为大于或等于n-m,且小于或等于n的任意正整数;在该CG周期中,第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个上行时隙传输PUSCH后,所述任意一个或多个上行时隙各自对应的drx-HARQ-RTT-TimerUL都不开启。其中,m为小于n-1的非负整数。
进一步地,在该CG周期中,第n-m个上行时隙至第n个上行时隙(即最后1个上行时隙)中的第j个上行时隙传输PUSCH后,该第j个上行时隙对应的drx-HARQ-RTT-TimerUL开启,其中j为大于或等于n-m,且小于或等于n,并且不等于i的任意正整数。
进一步地,在该CG周期中,第n-m个上行时隙至第n个上行时隙(即最后1个上行时隙)中的第k个上行时隙传输PUSCH后,该第k个上行时隙对应的drx-HARQ-RTT-TimerUL开启,其中k为大于或等于n-m,且小于或等于n,并且不等于i,也不等于j的任意正整数。
进一步地,该第1个上行时隙至该第n-m-1个上行时隙中的任意一个或多个上传输的PUSCH各自对应的drx-RetransmissionTimerUL更不会开启。
优选地,m=0。在m=0时,在同一CG周期中,在n个连续的上行时隙中第n个上行时隙(即第n个上行时隙后的下一相邻时隙)传输PUSCH后,该第n个上行时隙对应的drx-HARQ-RTT-TimerUL才会开启;在该CG周期中,第1个上行时隙至第n-1个上行时隙中的任意一个或多个上行时隙传输PUSCH后,所述任意一个或多个上行时隙各自对应的drx-HARQ-RTT-TimerUL都不开启。进一步地,该第n个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,该第n个上行时隙对应的drx-RetransmissionTimerUL才开启。
进一步地,所述任意一个或多个上行时隙各自对应的drx-HARQ-RTT-TimerUL都不开启后,所述任意一个或多个上行时隙各自对应的drx-RetransmissionTimerUL更不会开启。
在m=0时,在同一CG周期中,在n个连续的上行时隙中最后1个上行时隙上行传输PUSCH后,该最后1个上行时隙对应的drx-HARQ-RTT-TimerUL才开启;在该CG周期中,在n个连续的上行时隙中非最后1个上行时隙上行传输PUSCH后,该非最后1个上行时隙对应的drx-HARQ-RTT-TimerUL都不开启。
相应地,在该最后1个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,该最后1个上行时隙对应的drx-RetransmissionTimerUL才开启;在该非最后1个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,该非最后1个上行时隙对应的drx-RetransmissionTimerUL都不开启。
示例性地,如图4A的(b)所示,网络设备向终端设备配置了在每个CG周期内的4个连续的上行时隙。在4个连续的上行时隙中最后1个上行时隙即时隙204上行传输PUSCH后,时隙204对应的 drx-HARQ-RTT-TimerUL 240才开启。相应地,在drx-HARQ-RTT-TimerUL 240超时后,时隙204对应的drx-RetransmissionTimerUL 241才开启。在4个连续的上行时隙中非最后1个上行时隙即时隙201、时隙202、时隙203上行传输PUSCH后,时隙201、时隙202、时隙203各自对应的drx-HARQ-RTT-TimerUL都不开启。
需要说明的是,即使在图4A的(b)中,如果存在重传的情形,比如终端设备通过时隙201传输的数据被网络设备译码失败,后续通过时隙202重传,从而导致PUSCH帧a实际通过了时隙201、时隙202、时隙203、时隙204和时隙205(如图中的虚线箭头所示)传输,4个连续的上行时隙中最后1个上行时隙仍为时隙204,而不是时隙205。在图4A的(b)中,如果不存在重传的情形,则4个连续的上行时隙中最后1个上行时隙为时隙204。
可选地,在网络设备向终端设备发送的第一配置信息中,可以添加第一字段(也可称为第一开关)。比如,第一配置信息包括ConfiguredGrantConfig,可以在ConfiguredGrantConfig中添加第一字段drx-retransmissionULenabler。进一步地,第一配置信息可以为ConfiguredGrantConfig。
可选地,第一配置信息可以通过RRC信令发送。
以m=0为例,当drx-retransmissionULenabler为第一值(比如1或true)时,在n个连续的上行时隙中最后1个上行时隙上传输PUSCH后,该最后1个上行时隙对应的drx-HARQ-RTT-TimerUL才开启;在n个连续的上行时隙中非最后1个上行时隙上传输PUSCH后,该非最后1个上行时隙对应的drx-HARQ-RTT-TimerUL都不开启。
以m=0为例,当drx-retransmissionULenabler为第二值(比如0或false)时,在n个连续的上行时隙中任意一个上行时隙上行传输PUSCH后,该任意一个上行时隙对应的drx-HARQ-RTT-TimerUL都开启。相应地,在任意一个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,该任意一个上行时隙对应的drx-retransmissionTimerUL都开启。
示例性地,以m=0为例,具体流程可以为:
1>如果一个MAC PDU通过配置上行授权发送
2>如果该配置上行授权配置了drx-retransmissionULenabler,且该drx-retransmissionULenabler指示了仅为该配置上行授权所配置的最后1个可用传输机会开启drx-HARQ-RTT-TimerUL
3>如果该MAC PDU在一个配置上行授权周期内的最后1个可用传输机会上传输
4>在对应的物理上行共享信道PUSCH结束后的下一相邻符号开启对应HARQ进程的drx-HARQ-RTT-TimerUL。
2>否则
3>在对应的物理上行共享信道PUSCH结束后的下一相邻符号开启对应HARQ进程的drx-HARQ-RTT-TimerUL。
其中,步骤1的MAC PDU承载于上述流程的PUSCH中。应理解,上述第一字段的取值也可以通过第一字段是否被配置来确定。例如,当第一配置信息中的ConfiguredGrantConfig中没有被配置该第一字段(例如drx-retransmissionULenabler),即终端设备所接收到的第一配置信息中不包含该第一字段时,可以认为该第一字段为第二值。当终端设备接收到的第一配置信息中包含该第一字段时,可以认为该第一字段指示了第一值,即drx-retransmissionULenabler指示了仅为该配置上行授权所配置的最后1个可用传输机会开启drx-HARQ-RTT-TimerUL。此时,上述步骤2的描述“如果该上行授权配置了drx-retransmissionULenabler,且该drx-retransmissionULenabler指示了仅为该配置上行授权所配置的最后1个可用传输机会开启drx-HARQ-RTT-TimerUL”可以替换为“如果该配置上行授权配置了drx-retransmissionULenabler”。
或者,又一种可能的方式为,在同一CG周期中,在n个连续的上行时隙中第n-m个上行时隙至第n个上行时隙(即最后1个上行时隙)中的一个或多个上行时隙各自传输PUSCH后,同时开启第1个至第n-m个上行时隙各自对应的drx-HARQ-RTT-TimerUL;在该CG周期中,在第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个上行时隙传输PUSCH后,所述任意一个或多个上行时隙各自对应的drx-HARQ-RTT-TimerUL都不开启。进一步地,所述任意一个或多个上行时隙各自对应的 drx-RetransmissionTimerUL更不会开启。其中,m为小于n-1的非负整数。
以m=0为例,在同一个CG周期中,在第n个上行时隙传输PUSCH后,在该PUSCH的下一个相邻符号开启第1个至第n个上行时隙对应的drx-HARQ-RTT-TimerUL。具体地,当m=0时,在该n个上行时隙中的第1个上行时隙至第n-1个上行时隙中的任意一个或多个上行时隙传输PUSCH后,所述任意一个或多个上行时隙的下一相邻符号不开启该PUSCH对应HARQ进程的drx-HARQ-RTT-TimerUL,因此也不会开启该HARQ进程的drx-RetransmissionTimerUL;在第n个上行时隙传输PUSCH后,在该PUSCH的下一相邻符号开启第1个至第n个上行时隙上传输的PUSCH对应的HARQ进程的drx-HARQ-RTT-TimerUL,并分别在每个HARQ进程的drx-HARQ-RTT-TimerUL超时后的下一符号,分别开启每个HARQ进程的drx-RetransmissionTimerUL。
示例性地,实施方式1和实施方式2所示的drx-retransmissionULenabler信令可以如下加粗字体所示:
ConfiguredGrantConfig information element
实施方式3
在实施方式1或实施方式2的基础上,进一步优化得到实施方式3。在实施方式3中,网络设备可以预先确定终端设备传输PUSCH所需的上行时隙的数量n,n为正整数。而终端设备实际传输PUSCH所需要的上行时隙的数量k,k为小于或等于n的正整数。终端设备可以在n个上行时隙中的前k个中的任意一个上行时隙(比如,第1个上行时隙)中,通过发送第三控制信息的方式(比如,上行控制信息(Uplink Control Information,UCI)或者媒体介入控制(Media Access Control,MAC)控制单元(Control Element,CE)的方式)通知网络设备终端设备实际所需要的上行时隙的数量k。之后,网络 设备将上述的n调整为k。后续,按照上述的实施方式1或实施方式2的流程执行后续的步骤。例如,网络设备通过第一配置信息(e.g.ConfiguredGrantConfig)配置一个CG,并通过第一配置信息中的periodcity参数为该CG配置周期,通过第一配置信息中的cg-nrofSlots信令为该CG配置一个周期内包含n=4个连续上行时隙。当终端设备在该CG配置的任意一个周期发送的数据仅需要该4个上行时隙中的k=3个上行时隙即可完成待传数据的传输,终端设备可以在该周期内4个上行时隙的第一个上行时隙中发送一个第三控制信息(比如,UCI或者MAC CE),通过该方式指示实际需要和使用的上行时隙数量为3,终端设备在接收到该第三控制信息后,将会认为上行时隙数量实际为n=k=3,并根据新的n启动上述实施方式1或实施方式2的流程。
实施例二
实施例二涉及图4B。图4B为本申请实施例提供的上行传输方法实施例二的示意图。实施例二包括实施方式1和实施方式2。实施方式1涉及图4B的(a),实施方式2涉及图4B的(b)。
在实施例二中,终端设备支持d个CG配置同时运作,d为正整数。网络设备分n次通过第一配置信息为终端设备配置了n个CG配置,其中n为小于等于d的正整数;每次配置一个CG配置,每个CG配置包括至少一个CG周期。在任意一个CG周期内可以有任意数量的上行时隙用于上行传输。优选地,在任意一个CG周期内只有一个上行时隙用于上行传输。
示例性地,CG配置是通过网络设备向终端设备发送的第一配置信息进行配置的。第一配置信息可以通过由网络设备向终端设备发送的RRC信令发送。第i个CG配置包括第i CG周期,第i CG周期包括第i CG周期1,第i CG周期2,……。第i个CG配置用于表示n个CG配置中的任意一个CG配置,i为小于等于n的正整数。比如,在i=1时,第i CG周期为第一CG周期,第一CG周期包括第一CG周期1、第一CG周期2、……。将包含第一CG周期j,第二CG周期j,……,第i CG周期j,……,至第n CG周期j的周期组合记为第j周期组。此时,第i CG周期j又可称为第j组中的第i个CG周期。将第i CG周期j(比如,第一CG周期1)内用于上行传输的上行时隙记为上行时隙ij1(比如,i 11),j为正整数。同一周期组包含的不同CG周期的周期可以相同,也可以不同。比如,第一CG周期1和第二CG周期1两者的周期可以相同,也可以不同。同一CG周期的周期相同。比如,第一CG周期1、第一CG周期2、第一CG周期3等的周期相同。
实施方式1
在实施方式1中,在第j周期组中,在第n-m个CG周期的上行时隙(n-m)j1至第n个CG周期的上行时隙nj1中的一个或多个上传输的上行数据各自对应的drx-HARQ-RTT-TimerUL超时后,所述一个或多个各自对应的drx-RetransmissionTimerUL才开启;在第j周期组中,在第1个CG周期的用于上行传输的上行时隙1j1至第n-m-1个CG周期的上行时隙(n-m-1)j1中的任意一个或多个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,所述任意一个或多个上行时隙各自对应的drx-RetransmissionTimerUL都不开启。其中,m为小于m-1的非负整数。
优选地,m=0。在m=0时,在第j周期组中,在第n个CG周期的上行时隙nj1对应的drx-HARQ-RTT-TimerUL超时后,在第n个CG周期的上行时隙nj1对应的drx-RetransmissionTimerUL才开启;在第j周期组中,在第1个CG周期的上行时隙1j1至第n-1个CG周期的上行时隙(n-1)j1中的任意一个或多个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,所述任意一个或多个上行时隙各自对应的drx-RetransmissionTimerUL都不开启。
也就是说,在同一周期组中,在第n-m个CG周期至第n个CG周期中的一个或多个用于上行传输的上行时隙各自对应的drx-HARQ-RTT-TimerUL超时后,所述一个或多个用于上行传输的上行时隙各自对应的drx-RetransmissionTimerUL才开启;在第1个CG周期至第n-m-1个CG周期中任意一个或多个用于上行传输的上行时隙各自对应的drx-HARQ-RTT-TimerUL超时后,在第1个CG周期至第n-m-1个CG周期中任意一个或多个用于上行传输的上行时隙各自对应的drx-RetransmissionTimerUL都不开启。需要说明的是,无论是否存在重传的情形,都适用。
在m=0时,在同一周期组中,在第n个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,该第n个CG周期中用于上行传输的上行时隙对应的 drx-RetransmissionTimerUL才开启;在非第n个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,非第n个CG周期中用于上行传输的上行时隙对应的drx-RetransmissionTimerUL都不开启。需要说明的是,无论是否存在重传的情形,都适用。
示例性地,如图4B的(a)所示,网络设备分4次为终端设备配置了4个CG配置(即n=4),每次配置一个CG配置,每个CG配置包括至少一个CG周期。以每个CG周期内只有一个上行时隙用于上行传输为例。假设j=1,第1周期组包括第一CG周期1、第二CG周期1、第三CG周期1和第四CG周期1。在第1周期组中,将第i个CG周期(即第i CG周期1)内用于上行传输的上行时隙记为上行时隙i11,i为小于等于4的正整数。在该周期组的第4个CG周期(即第四CG周期1)的上行时隙304对应的drx-HARQ-RTT-TimerUL 340超时后,上行时隙304对应的drx-RetransmissionTimerUL341才开启(即m=0);在该周期组的非第4个CG周期(即第一CG周期1、第二CG周期1或第三CG周期1)的用于上行传输的上行时隙(即上行时隙301、上行时隙302或上行时隙303)各自对应的drx-HARQ-RTT-TimerUL 310、drx-HARQ-RTT-TimerUL 320或drx-HARQ-RTT-TimerUL 330超时后,在上行时隙301、上行时隙302或上行时隙303各自对应的drx-RetransmissionTimerUL都不开启。
可选地,在网络设备向终端设备发送的第一配置信息中,可以添加第二字段(也可称为第二开关)。比如,第一配置信息包括ConfiguredGrantConfig,可以在ConfiguredGrantConfig中添加第二字段drx-retransmissionULenabler。进一步地,第一配置信息可以为ConfiguredGrantConfig。第二字段可以与第一字段相同,也可以不同。
可选地,第一配置信息可以通过RRC信令发送。
示例性地,网络设备分4次通过第一配置信息中的ConfiguredGrantConfig为终端设备配置了4个CG配置,其中每个ConfiguredGrantConfig都包含一个第二字段(也可称为第二开关);比如drx-retransmissionULenabler。
若一个CG配置的drx-retransmissionULenabler为第一值(比如1或true)时,当传输的PUSCH对应的drx-HARQ-RTT-TimerUL超时后,将会开启对应drx-RetransmissionTimerUL。若一个CG配置的drx-retransmissionULenabler为第二值(比如0或false)时,当传输的PUSCH对应的drx-HARQ-RTT-TimerUL超时后,将不会开启对应的drx-RetransmissionTimerUL。
以m=0为例,网络设备为终端设备发送n个第一配置信息,用于配置n个CG配置;其中第1个至第n-1个第一配置信息中的drx-retransmissionULenabler为第二值,第n个第一配置信息中的drx-retransmissionULenabler为第一值。
示例性地,以m=0为例,具体流程可以为:
1>如果一个MAC PDU通过配置上行授权发送
2>在对应的物理上行共享信道(physical uplink shared channel)结束后的下一相邻符号开启对应HARQ进程的drx-HARQ-RTT-TimerUL
3>如果该drx-HARQ-RTT-TimerUL超时
4>如果该配置上行授权配置了drx-retransmissionULenabler
5>如果该drx-retransmissionULenabler指示了为该配置上行授权开启drx-RetransmissionTimerUL
6>在该drx-HARQ-RTT-TimerUL超时的下一相邻符号为对应的HARQ进程开启drx-RetransmissionTimerUL
4>否则
5>在该drx-HARQ-RTT-TimerUL超时的下一相邻符号为对应的HARQ进程开启drx-RetransmissionTimerUL
其中,步骤1的MAC PDU承载于上述流程所述的PUSCH中。应理解,上述第二字段的取值也可以通过第二字段是否被配置来确定。例如,当第一配置信息中的ConfiguredGrantConfig中没有被配置该第二字段(例如drx-retransmissionULenabler),即终端设备所接收到的第一配置信息不包含该第二字段时,可以认为该第二字段为第一值。当终端设备接收到的第一配置信息包含该第二字段时,可以认为该第二字段指示了第二值,即drx-retransmissionULenabler指示了为该配置上行授权开启drx-RetransmissionTimerUL。此时,上述步骤5的描述可以直接被删除,且将步骤6变为步骤5。示例 性地,此时具体流程可以如下所示:
1>如果一个MAC PDU通过配置上行授权发送
2>在对应的物理上行共享信道(physical uplink shared channel)结束后的下一相邻符号开启对应HARQ进程的drx-HARQ-RTT-TimerUL
3>如果该drx-HARQ-RTT-TimerUL超时
4>如果该配置上行授权没有配置drx-retransmissionULenabler
5>在该drx-HARQ-RTT-TimerUL超时的下一相邻符号为对应的HARQ进程开启drx-RetransmissionTimerUL.
实施方式2
在实施方式2中,在第j周期组中,第n-m个CG周期的上行时隙(n-m)j1至第n个CG周期的上行时隙nj1中的一个或多个上行时隙上行传输PUSCH后,所述一个或多个上行时隙各自对应的drx-HARQ-RTT-TimerUL才开启;在第1个CG周期的用于上行传输的上行时隙1j1至第n-m-1个CG周期的上行时隙(n-m-1)j1中的任意一个或多个上行时隙上行传输PUSCH后,所述任意一个或多个上行时隙各自对应的drx-HARQ-RTT-TimerUL都不开启。其中,m为小于n-1的非负整数。
优选地,m=0。在m=0时,在第j周期组中,第n个CG周期的上行时隙nj1上行传输PUSCH后,上行时隙nj1对应的drx-RetransmissionTimerUL才开启;在第j周期组中,在第1个CG周期的上行时隙1j1至第n-1个CG周期的上行时隙(n-1)j1中的任意一个或多个上行时隙上行传输PUSCH后,所述任意一个或多个上行时隙各自对应的drx-RetransmissionTimerUL都不开启。
也就是说,在同一周期组中,在第n-m个CG周期至第n个CG周期中一个或多个用于上行传输的上行时隙上行传输PUSCH后,所述一个或多个用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL才开启;在第1个CG周期至第n-m-1个CG周期中任意一个或多个用于上行传输的上行时隙上行传输PUSCH后,所述任意一个或多个用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL都不开启。需要说明的是,无论是否存在重传的情形,都适用。
相应地,在该周期组的第n-m个CG周期至第n个CG周期中任意一个或多个用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,在第n-m个CG周期至第n个CG周期中任意一个或多个用于上行传输的上行时隙对应的drx-RetransmissionTimerUL才开启。
优选地,在m=0时,在同一周期组中,在第n个CG周期的用于上行传输的上行时隙上行传输PUSCH后,所述第n个CG周期的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL才开启;在非第n个CG周期的用于上行传输的上行时隙上行传输PUSCH后,所述非第n个CG周期的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL都不开启。
相应地,在该周期组的第n个CG周期的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,该第n个CG周期的用于上行传输的上行时隙对应的drx-RetransmissionTimerUL才开启;在该周期组的非第n个CG周期的用于上行传输的上行时隙对应的drx-RetransmissionTimerUL都不开启。
示例性地,如图4B的(b)所示,终端设备支持4个CG配置同时运作。网络设备分4次为终端设备配置了4个CG配置,每次配置一个CG配置,每个CG配置包括至少一个CG周期。每个CG周期内只有一个上行时隙用于上行传输。假设j=1,第1周期组包括第一CG周期1、第二CG周期1、第三CG周期1和第四CG周期1。在第1周期组中,将该周期组的第i个CG周期内用于上行传输的上行时隙记为上行时隙i11,i为小于等于4的正整数。在该周期组的第4个CG周期(即第四CG周期1)的上行时隙304上行传输PUSCH后,在上行时隙304上传输的PUSCH对应的drx-HARQ-RTT-TimerUL 340才开启;在该周期组的非第4个CG周期(即第一CG周期1、第二CG周期1或第三CG周期1)的用于上行传输的上行时隙(即上行时隙301、上行时隙302或上行时隙303)上行传输PUSCH后,在上行时隙301、上行时隙302或上行时隙303上传输的PUSCH各自对应的drx-HARQ-RTT-TimerUL都不开启。
可选地,在网络设备向终端设备发送的第一配置信息中,可以添加第二字段(也可称为第二开关)。 比如,第一配置信息包括ConfiguredGrantConfig,可以在ConfiguredGrantConfig中添加第二字段drx-retransmissionULenabler。进一步地,第一配置信息可以为ConfiguredGrantConfig。
可选地,第一配置信息可以通过RRC信令发送。
示例性地,网络设备分4次通过第一配置信息中的ConfiguredGrantConfig为终端设备配置了4个CG配置,其中每个ConfiguredGrantConfig都包含一个第二字段(也可称为第二开关);比如drx-retransmissionULenabler。
若一个CG配置所包括的drx-retransmissionULenabler为第一值(比如1或true)时,当通过该CG配置对应的上行时隙传输PUSCH后,终端设备将会为该PUSCH对应的HARQ进程开启drx-HARQ-RTT-TimerUL,并在该drx-HARQ-RTT-TimerUL超时后,开启对应的drx-RetransmissionTimerUL。若一个CG配置的drx-retransmissionULenabler为第二值(比如0或false)时,当通过该CG配置对应的上行时隙传输PUSCH后,终端设备不会为该PUSCH对应的HARQ进程开启drx-HARQ-RTT-TimerUL,因此也不会开启对应的drx-RetransmissionTimerUL。
以m=0为例,网络设备为终端设备发送n个第一配置信息,用于配置n个CG配置;其中第1个至第n-1个第一配置信息中的drx-retransmissionULenabler为第二值,第n个第一配置信息中的drx-retransmissionULenabler为第一值。
示例性地,以m=0为例,不开启drx-HARQ-RTT-TimerUL的具体流程可以为:
1>如果一个MAC PDU通过配置上行授权发送
2>如果该配置上行授权配置了drx-retransmissionULenabler
3>如果该drx-retransmissionULenabler指示了为该配置上行授权开启drx-HARQ-RTT-TimerUL
4>在对应的物理上行共享信道PUSCH结束后的下一相邻符号开启对应HARQ进程的drx-HARQ-RTT-TimerUL。
2>否则
3>在对应的物理上行共享信道PUSCH结束后的下一相邻符号开启对应HARQ进程的drx-HARQ-RTT-TimerUL。
其中,步骤1的MAC PDU承载于上述流程所述的PUSCH中。应理解,上述第二字段的取值也可以通过第二字段是否被配置来确定。例如,当第一配置信息中的ConfiguredGrantConfig中没有被配置该第二字段(例如drx-retransmissionULenabler),即终端设备所接收到的第一配置信息不包含该第二字段时,可以认为该第二字段为第一值。当终端设备接收到的第一配置信息包含该第二字段时,可以认为该第二字段指示了第二值,即drx-retransmissionULenabler指示了为该配置上行授权开启drx-RetransmissionTimerUL。此时,上述步骤5的描述可以直接被删除,且将步骤6变为步骤5。示例性地,此时具体流程可以如下所示:
1>如果一个MAC PDU通过配置上行授权发送
2>如果该配置上行授权没有配置drx-retransmissionULenabler
3>在对应的物理上行共享信道PUSCH结束后的下一相邻符号开启对应HARQ进程的drx-HARQ-RTT-TimerUL。
需要说明的是,无论在本实施例的实施方式1或实施方式2中,都可以通过drx-retransmissionULenabler,指示对在任意一个CG周期上传输的PUSCH对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL开启,也可以指示对在任意一个CG周期上传输的PUSCH对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL不开启(比如,关闭)。
可选地,在本实施例的实施方式1或实施方式2的基础上,还可进行变形。
示例性地,在图1A示出的S101之后,在S102之前,网络设备200还向终端设备100发送第二配置信息。示例性地,第二配置信息承载在RRC信令中。第二配置信息包括BWP-uplinkDedicated  information element,BWP-uplinkDedicated information element包括关联信息(比如,cg-drxList)。cg-drxList用于关联不同的CG配置。CG配置包括CG周期。不同的CG配置包括不同的CG周期。不同的CG周期可以位于同一周期组中,也可位于不同周期组中。在起始编号以1编号时,cg-drxList={CG 1,CG 2,……,CG i,……,CG n-m,…,CG n},其中CG i表示第i个CG周期。在起始编号以0编号时,cg-drxList={CG 0,CG 1,……,CG i-1,……,CG n-m-1,…CG n-1},其中CG i-1表示第i个CG周期。其中,m为小于n-1的非负整数。为了便于描述,以下以起始编号为1为例描述。
可选地,以m=0为例,在配置cg-drxList之后,可以获取cg-drxList中的最后1个元素(即CG n),从而在第n个CG周期用于上行传输的上行时隙上行传输PUSCH后,第n个CG周期的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL才开启;而在非第n个CG周期的用于上行传输的上行时隙上行传输PUSCH后,非第n个CG周期的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL都不开启。
可选地,以m=1为例,在配置cg-drxList之后,可以获取cg-drxList中的最后2个元素(即CG n-1到CG n),从而在第n-1到第n个CG周期用于上行传输的上行时隙上行传输PUSCH后,在第n-1个至第n个CG周期的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL才开启;而在第1个至第n-m-1个CG周期的用于上行传输的上行时隙上行传输PUSCH后,该第1个至第n-m-1个CG周期的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL都不开启。
可选地,以m=0为例,在配置cg-drxList之后,可以获取cg-drxList中的最后1个元素(即CG n),从而在第n个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,在该第n个CG周期中用于上行传输的上行时隙对应的drx-RetransmissionTimerUL才开启;而在非第n个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,在该非第n个CG周期中用于上行传输的上行时隙对应的drx-RetransmissionTimerUL都不开启。
可选地,以m=1为例,在配置cg-drxList之后,可以获取cg-drxList中的最后2个元素(即CG n-1和CG n),从而在第n-1个至第n个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,在该第n-1个至第n个CG周期中用于上行传输的上行时隙对应的drx-RetransmissionTimerUL才开启;在第1个至第n-m-1个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,在该第1个至第n-m-1个CG周期中用于上行传输的上行时隙对应的drx-RetransmissionTimerUL都不开启。
可选地,以m=0为例,在配置cg-drxList之后,可以查询当前的CG周期是否对应cg-drxList中的最后1个元素(即CG n)。若对应,则开启cg-drxList中第n个CG周期对应的drx-HARQ-RTT-TimerUL或drx-RetransmissionTimerUL;若不对应,则不开启cg-drxList中非第n个CG周期对应的drx-HARQ-RTT-TimerUL或drx-RetransmissionTimerUL。示例性地,以m=0为例,在配置cg-drx-List之后,仅开启cg-drxList中第n个CG周期对应的drx-HARQ-RTT-TimerUL,具体流程可以为:
1>如果一个MAC PDU通过配置上行授权发送
2>如果配置了cg-drxList
3>如果该配置上行授权为cg-drxList中的最后1个配置上行授权
4>在对应的物理上行共享信道(physical uplink shared channel)结束后的下一相邻符号开启对应HARQ进程的drx-HARQ-RTT-TimerUL
2>否则
3>在对应的物理上行共享信道(physical uplink shared channel)结束后的下一相邻符号开启对应HARQ进程的drx-HARQ-RTT-TimerUL
示例性地,以m=0为例,在配置cg-drx-List之后,仅开启cg-drxList中第n个CG周期对应的drx-HARQ-RTT-TimerUL,具体流程可以为:
1>如果一个MAC PDU通过配置上行授权发送
2>在对应的物理上行共享信道(physical uplink shared channel)结束后的下一相邻符号开启 对应HARQ进程的drx-HARQ-RTT-TimerUL
3>如果该drx-HARQ-RTT-TimerUL超时
4>如果配置了cg-drxList
5>如果该配置上行授权为cg-drxList中的最后1个配置上行授权
6>在该drx-HARQ-RTT-TimerUL超时的下一相邻符号为对应的HARQ进程开启drx-RetransmissionTimerUL
4>否则
5>在该drx-HARQ-RTT-TimerUL超时的下一相邻符号为对应的HARQ进程开启drx-RetransmissionTimerUL
示例性地,在图1A示出的S101之后,在S102之前,网络设备200还向终端设备100发送第二配置信息。示例性地,第二配置信息承载在RRC信令中。第二配置信息包括BWP-uplinkDedicated information element,BWP-uplinkDedicated information element包括ConfiguredGrantConfigToAddModList。ConfiguredGrantConfigToAddModList用于关联不同的CG配置。CG配置包括CG周期。不同的CG配置可以包括不同的CG周期。不同的CG周期可以位于同一周期组中,也可位于不同的周期组中。在起始编号以1编号时,ConfiguredGrantConfigToAddModList={CG 1,CG 2,……,CG i,……,CG n-m,…,CG n},其中CG i表示第i个CG周期。在起始编号以0编号时,ConfiguredGrantConfigToAddModList={CG 0,CG 1,……,CG i-1,……,CG n-m-1,…,CG n-1},其中CG i-1表示第i个CG周期。其中,m为小于n-1的非负整数。为了便于描述,以下以起始编号为1为例描述。
可选地,以m=0为例,在配置ConfiguredGrantConfigToAddModList之后,可以获取ConfiguredGrantConfigToAddModList中的最后1个元素(即CG n),从而在第n个CG周期用于上行传输的上行时隙上行传输PUSCH后,该第n个CG周期的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL才开启;而在非第n个CG周期的用于上行传输的上行时隙上行传输PUSCH后,该非第n个CG周期的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL都不开启。
可选地,以m=0为例,在配置ConfiguredGrantConfigToAddModList之后,可以获取ConfiguredGrantConfigToAddModList中的最后1个元素(即CG n),从而在第n个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,第n个CG周期中用于上行传输的上行时隙对应的drx-RetransmissionTimerUL才开启;在该非第n个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,该非第n个CG周期中用于上行传输的上行时隙对应的drx-RetransmissionTimerUL都不开启。
可选地,以m=0为例,在配置ConfiguredGrantConfigToAddModList之后,终端设备可以查询当前的CG周期是否对应ConfiguredGrantConfigToAddModList中的最后1个元素(即CG n)。若对应,则开启ConfiguredGrantConfigToAddModList中第n个CG周期对应的drx-HARQ-RTT-TimerUL或drx-RetransmissionTimerUL;若不对应,则不开启ConfiguredGrantConfigToAddModList中非第n个CG周期对应的drx-HARQ-RTT-TimerUL或drx-RetransmissionTimerUL。
具体来说,可以通过在BWP-uplinkDedicated information element中添加drx-RetransmissionTimerULforLastCG-r18来指示。
示例性地,以m=0为例,当drx-RetransmissionTimerULforLastCG-r18为第一值(比如1或true)时,指示:
在ConfiguredGrantConfigToAddModList中仅最后1个元素的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,在该最后1个元素的用于上行传输的上行时隙对应的drx-RetransmissionTimerUL才开启;或者,
在ConfiguredGrantConfigToAddModList中仅最后1个元素的用于上行传输的上行时隙上行传输PUSCH后,该最后1个元素的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL才开启。
示例性地,以m=0为例,当drx-RetransmissionTimerULforLastCG-r18为第二值(比如,0)时, 指示:
在ConfiguredGrantConfigToAddModList中非最后1个元素的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL超时后,在该非最后1个元素的用于上行传输的上行时隙对应的drx-RetransmissionTimerUL不开启;或者,
在ConfiguredGrantConfigToAddModList中非最后1个元素的用于上行传输的上行时隙后,在该非最后1个元素的用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL不开启。
综上可知,在同一周期组中,在第n-m个CG周期至第n个CG周期中一个或多个用于上行传输的上行时隙各自对应的drx-HARQ-RTT-TimerUL超时后,所述一个或多个用于上行传输的上行时隙各自对应的drx-RetransmissionTimerUL才开启;在第1个CG周期至第n-m-1个CG周期中任意一个或多个用于上行传输的上行时隙各自对应的drx-HARQ-RTT-TimerUL超时后,所述任意一个或多个用于上行传输的上行时隙各自对应的drx-RetransmissionTimerUL都不开启;或者,
在同一周期组中,在第n-m个CG周期至第n个CG周期中一个或多个用于上行传输的上行时隙上行传输PUSCH后,所述一个或多个用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL才开启;在第1个CG周期至第n-m-1个CG周期中任意一个或多个用于上行传输的上行时隙后,所述任意一个或多个用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL都不开启。
需要说明的是,无论是否存在重传的情形,都适用。
另外,上述结论也适用于非同一周期组的情形,此处不再展开描述。
实施例三
实施例三涉及图5A。图5A为本申请实施例提供的上行传输方法实施例三的示意图。实施例三包括实施方式1和实施方式2。实施方式1涉及图5A的(a),实施方式2涉及图5A的(b)。在实施例三中,引入drx-silenceTimerUL(可称为静默定时器)。
实施方式1
在实施方式1中,示例性地,drx-silenceTimerUL的起始时刻和时长可以通过第一配置信息配置。可选地,第一配置信息承载在RRC信令中。第一配置信息还可以包括drx-silenceTimerUL的其他配置信息。网络设备可以通过第一配置信息中的ConfiguredGrantConfig中的cg-nrofSlots,为终端设备配置每个CG周期内的n个连续的上行时隙。该第一配置信息还可以配置drx-silenceTimerUL参数(比如,该定时器的起始时刻和时长;或者,该定时器的起始时刻和结束时刻;或者,该定时器的时长和结束时刻)。示例性地,该drx-silenceTimerUL的起始时刻可以默认为该第一配置信息对应的每个周期的起始时刻(比如,第一配置信息所配置的一个CG周期的n个时隙的第一个时隙或第一个时隙中的第一个符号所在的时刻,或者终端设备接收到第一配置信息的下一相邻时隙或下一相邻符号)。示例性地,该定时器的时长和/或结束时刻可以通过第一配置信息配置配置。该定时器的时长可称为第一时长。该定时器的结束时刻与起始时刻和第一时长的关系为:该结束时刻为该起始时刻经过该第一时长偏移后所对应的时隙或符号。
示例性地,开启后drx-silenceTimerUL在时间覆盖每个CG周期中n个连续的上行时隙中的第1个上行时隙至第n-m个上行时隙之前(不包括第n-m个上行时隙)的时隙,m为小于n-1的非负整数,n为大于1的正整数。
优选地,m=0,则配置后的drx-silenceTimerUL覆盖每个CG周期中n个连续的上行时隙中的第1个上行时隙至第n个上行时隙之前(不包括第n个上行时隙)的时隙。
示例性地,开启后drx-silenceTimerUL在时间覆盖每个CG周期中n个连续的上行时隙中的第1个上行时隙至第n-m-1个上行时隙(包括第n-m-1个上行时隙),m为小于n-1的非负整数,n为大于1的正整数。
优选地,m=0,则配置后的drx-silenceTimerUL覆盖该CG配置的每个CG周期中n个连续的上行时隙中的第1个上行时隙至第n-1个上行时隙。
结合图5A的(a)示例性说明,drx-silenceTimerUL 250可以覆盖时隙201至时隙206;可替换地,drx-silenceTimerUL 250也可以只覆盖时隙201至时隙203(图中未示出)。
在drx-silenceTimerUL覆盖的时间范围内,当终端设备在被drx-silenceTimerUL覆盖的上行时隙传输PUSCH后,终端设备不开启该PUSCH对应的drx-HARQ-RTT-TimerUL,因此也不会开启该PUSCH对应的drx-RetransmissionTimerUL。或者,当终端设备的任意drx-HARQ-RTT-TimerUL超时所对应的时间单元(比如时隙或符号)位于drx-silenceTimerUL覆盖的时间范围内时,终端设备不会为这些drx-HARQ-RTT-TimerUL所对应的HARQ进程开启drx-RetransmissionTimerUL。在drx-silenceTimerUL覆盖的时间范围外,在没有被drx-silenceTimerUL覆盖的上行时隙上传输的PUSCH对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL不受drx-silenceTimerUL影响。
示例性地,以m=0为例,如图5A的(a)所示,drx-silenceTimerUL 250的覆盖时间范围为时隙201至时隙206;即时隙201为起始时刻,时隙206为结束时刻,第一时长为15个时隙。在时隙201至时隙206中的任意一个或多个上行时隙对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL都不开启。例如,终端设备在时隙203上传输PUSCH后,因为时隙203在drx-silenceTimerUL的覆盖时间范围内,因此不会为该PUSCH开启对应的drx-HARQ-RTT-TimerUL。或者,终端设备在时隙203上传输PUSCH后,为该PUSCH开启对应的drx-HARQ-RTT-TimerUL,但若该drx-HARQ-RTT-TimerUL超时的时刻位于drx-silenceTimerUL 250的覆盖时间范围内,如在时隙203和时隙206之间的某个时隙上,则不会为该drx-HARQ-RTT-TimerUL所对应的HARQ进程开启对应的drx-RetransmissionTimerUL。在时隙201至时隙206之外,比如没有被drx-silenceTimerUL 250覆盖的时隙204,那么时隙204对应的drx-HARQ-RTT-TimerUL 240或者drx-RetransmissionTimerUL 241不受drx-silenceTimerUL 250的影响。
可选地,drx-silenceTimerUL的第一时长可以通过第一配置信息中的drx-silenceTimer来配置。
示例性地,配置drx-silenceTimerUL的第一时长的伪代码为:
其中,ms1表示该drx-silenceTimerUL的时长为1毫秒(ms),ms2表示该drx-silenceTimerUL的时长为2ms,以此类推。
综上可知,实施例三的实施方式1提供了两种方案:
(一)在终端设备在一个时隙上传输PUSCH后,若该时隙位于drx-silenceTimerUL所覆盖的时间范围内,则该PUSCH对应的drx-HARQ-RTT-TimerUL不开启;若该时隙位于drx-silenceTimerUL所覆盖的时间范围外,则该PUSCH对应的drx-HARQ-RTT-TimerUL开启。
(二)若终端设备在一个时隙上传输PUSCH后,且为该PUSCH开启对应的drx-HARQ-RTT-TimerUL,且drx-HARQ-RTT-TimerUL超时的时刻位于该drx-silenceTimerUL所覆盖的时间范围内,则该drx-HARQ-RTT-TimerUL对应的drx-RetransmissionTimerUL不开启;若终端设备在时隙上传输PUSCH后,且为该PUSCH开启对应的drx-HARQ-RTT-TimerUL,且drx-HARQ-RTT-TimerUL超时的时刻位于该drx-silenceTimerUL所覆盖的时间范围外,则该drx-HARQ-RTT-TimerUL对应的drx-RetransmissionTimerUL开启。
具体实施时,可选择其中一种方案。
示例性地,以图5A中的(a)为例,drx-silenceTimerUL 250覆盖时隙201至时隙206。网络设备通过第一配置信息配置一个CG配置,该CG配置包含2个上行时隙(比如,时隙201和时隙202),则终端设备在时隙201和时隙202上传输PUSCH后,该PUSCH对应的drx-HARQ-RTT-TimerUL不开启;或者,在时隙201或时隙202上传输的PUSCH对应的drx-HARQ-RTT-TimerUL超时后,若这两个drx-HARQ-RTT-TimerUL超时对应的时刻位于drx-silenceTimerUL250的覆盖时间范围内,则这两个drx-HARQ-RTT-TimerUL对应的HARQ进程对应的drx-RetransmissionTimerUL开启。若终端设备通过其他方式在时隙203上传输PUSCH,如通过动态调度或者通过其他CG周期(非配置该 drx-silenceTimerUL的CG周期),则时隙203对应的drx-HARQ-RTT-TimerUL和drx-RetransmissionTimerUL则不会受到该drx-silenceTimerUL的影响。
示例性地,drx-silenceTimerUL的起始时刻为每个CG周期中n个连续的上行时隙中的第1个上行时隙,即drx-silenceTimerUL的起始时刻与每个CG周期的起始时刻相同或者在该每个CG周期的起始时刻。可选地,drx-silenceTimerUL的结束时刻为每个CG周期中n个连续的上行时隙中第n-m个上行时隙之前且相邻的一个下行时隙,m为小于n-1的非负整数,n为大于1的正整数。优选地,m=0。可选地,drx-silenceTimerUL的结束时刻为每个CG周期中n个连续的上行时隙中第n-m-1个上行时隙,m为小于n-1的非负整数,n为大于1的正整数。优选地,m=0。
实施方式2
在实施方式2中,终端设备可根据第一规则或第二规则与接收到的控制信息来开启drx-silenceTimerUL。第一规则可由第一配置信息指示。第二规则可由第二配置信息或第三配置信息指示。
其中,第一规则为:在接收到控制信息,且控制信息指示开启drx-silenceTimerUL时,n个连续的上行时隙中的首个时隙为drx-silenceTimerUL的起始时刻。
其中,第二规则为:在接收到控制信息,且控制信息指示开启drx-silenceTimerUL时,接收到控制信息的时隙、与接收到控制信息的时隙相邻的下一时隙、或与接收到控制信息的时隙不相邻的下几个时隙,为drx-silenceTimerUL的起始时刻。
该控制信息包括物理下行控制信道(Physical Downlink Control CHannel,PDCCH)或媒体接入控制控制元素MAC CE。PDCCH包括下行控制信息DCI。以下以DCI为例进行说明。
示例性地,当终端设备根据第二规则与控制信息开启drx-silenceTimerUL时,网络设备向终端设备发送第三配置信息的步骤位于在图1A中的S101之后且位于图1A的S101’之前,或者,位于图1A中的S101之前。第三配置信息可承载在RRC信令中。网络设备向终端设备发送控制信息的步骤可位于图1A中S01之后且位于图1A中的S102之前。
示例性地,当终端设备根据第一规则与控制信息开启drx-silenceTimerUL时,该控制信息为图1A中S101之后的S101’中的第一控制信息,第一控制信息可以为DCI。在DCI中可以增加1个第三字段(比如,1比特的字段)。比如,在该第三字段为第一值(比如1)时,DCI指示开启drx-silenceTimerUL;终端设备结合第一规则,在n个连续的上行时隙中的首个时隙开启drx-silenceTimerUL。在该第三字段为第二值(比如,0)时,DCI指示不开启drx-silenceTimerUL;终端设备不开启drx-silenceTimerUL。
第一配置信息、第二配置信息和第三配置信息还可指示drx-silenceTimerUL的时长(即第一时长)。
示例性地,第一配置信息中的ConfiguredGrantConfig指示drx-silenceTimerUL的时长,如ConfiguredGrantConfig包含指示drx-silenceTimerUL的信令。
示例性地,第二配置信息中的BWP-uplinkDedicated information element指示drx-silenceTimerUL的时长,如BWP-uplinkDedicated information element中包含指示drx-silenceTimerUL的信令。
示例性地,第三配置信息中的DRX-config指示drx-silenceTimerUL的时长,如DRX-config中包含指示drx-silenceTimerUL的信令。
示例性地,网络设备还可通过第一配置信息、第二配置信息或第三配置信息,为drx-silenceTimerUL配置一组数值。该组数值可以包括t个数值;比如,t=3。此时DCI中可以增加1个第四字段(比如,至少大于或等于2比特的字段)。示例性地,DCI中增加的第四字段取决于t的个数,如ceil(log2(t))或ceil(log2(t+1)),其中ceil(·)为向上取整运算,其中t+1表示该第四字段还指示不开启drx-silenceTimerUL的情况。以t=3为例,3个数值包括V0,V1,V2,分别指示不开启,时长1,时长2。在DCI中的第四字段指示选择V0(比如,第四字段为00)时,不开启drx-silenceTimerUL;在DCI中的第四字段指示选择V1(比如,第四字段为01)时,开启drx-silenceTimerUL,且drx-silenceTimerUL的时长为时长1;在DCI中的第四字段指示选择V2(比如,第四字段为10)时,开启drx-silenceTimerUL,且drx-silenceTimerUL的时长为时长2。
可替换地,drx-silenceTimerUL可以单次开启或者周期性开启。图5A的(b)示出了单次开启。如图5A的(b)所示,drx-silenceTimerUL 250的起始时刻为在接收到PDCCH的下一个相邻时隙即时隙 201;即终端设备接收到一个PDCCH,且PDCCH为预定值时,在一个时隙开启drx-silenceTimerUL。周期性开启在图中未示出,即终端设备接收到一个PDCCH,且PDCCH为预定值时,在每个CG周期的对应时隙(比如,在每个CG周期的首个时隙)开启drx-silenceTimerUL。
示例性地,开启的drx-silenceTimerUL覆盖的时间范围内所有上行时隙都会受到影响。例如,在图5A(b)中,终端设备在时隙200接收到一个第一控制信息DCI,该drx-silenceTimerUL的起始时刻为接收到DCI的下一相邻时隙即时隙201,且根据第一时长确定该drx-silenceTimerUL的结束时刻为时隙206,那么在该drx-silenceTimerUL的覆盖时间范围内的上行时隙(时隙202和时隙203)上传输PUSCH,该PUSCH对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL都不开启。例如,终端设备在时隙202上传输PUSCH后,该PUSCH对应的drx-HARQ-RTT-TimerUL不开启;或者,终端设备在时隙201传输的PUSCH对应的drx-HARQ-RTT-TimerUL超时后,且drx-HARQ-RTT-TimerUL超时的时刻位于drx-silenceTimerUL250覆盖时间范围内,则该PUSCH对应的drx-RetransmissionTimerUL不开启。其中,时隙201、时隙202、时隙203和时隙204中的一个或多个可以是由该DCI所调度的。
示例性地,drx-silenceTimerUL随着终端设备每接收到符合第一规则或第二规则的一个第一控制信息而周期性开启。例如,终端设备每接收到符合第一规则的一个第一控制信息,那么终端设备在该第一配置信息所配置的每个CG周期的第一个上行时隙开启。开启后的drx-silenceTimerUL覆盖该CG配置的每个CG周期中n个连续的上行时隙中的第1个上行时隙至第n-m个上行时隙之前且相邻的一个下行时隙,m为小于n-1的非负整数,n为大于1的正整数。
优选地,m=0,则配置后的drx-silenceTimerUL覆盖每个CG周期中n个连续的上行时隙中的第1个上行时隙至第n个上行时隙之前且相邻的一个下行时隙。
示例性地,drx-silenceTimerUL随着终端设备每接收到符合第一规则或第二规则的一个第一控制信息而周期性开启。例如,终端设备每接收到符合第一规则的一个第一控制信息,那么终端设备在该第一配置信息所配置的每个CG周期的第一个上行时隙开启。开启后的drx-silenceTimerUL覆盖该CG配置的每个CG周期中n个连续的上行时隙中的第1个上行时隙至第n-m-1个上行时隙(包含第n-m-1个上行时隙),m为小于n-1的非负整数,n为大于1的正整数。
优选地,m=0,则配置后的drx-silenceTimerUL覆盖每个CG周期中n个连续的上行时隙中的第1个上行时隙至第n-1个上行时隙(包含第n-1个上行时隙)。
如果想实现drx-silenceTimerUL覆盖第1至第n-m-1个时隙,可以的方法是:
drx-silenceTimerUL覆盖第1至第n-m-1个时隙;或
drx-silenceTimerUL覆盖第1至第n-m个时隙的前第1个相邻时隙;或
drx-silenceTimerUL覆盖第1至第n-m个时隙的前第2个相邻;等。
在drx-silenceTimerUL覆盖的时间范围内,被drx-silenceTimerUL覆盖的上行时隙对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL都不开启。在drx-silenceTimerUL覆盖的范围外,没有被drx-silenceTimerUL覆盖的上行时隙对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL不受drx-silenceTimerUL影响。
以m=0为例,如图5A的(b)所示,drx-silenceTimerUL 250覆盖时隙201至时隙206。时隙201至时隙206中的任意一个或多个上行时隙对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL都不开启。在时隙201至时隙206之外,比如时隙204没有被drx-silenceTimerUL 250覆盖,那么时隙204对应的drx-HARQ-RTT-TimerUL 240或者drx-RetransmissionTimerUL 241不受drx-silenceTimerUL 250影响。
以m=0为例,图5A的(b)所示的PDCCH可以与时隙201、时隙202、时隙203和时隙204中的一个或多个没有关联,也可以有关联;或者,图5A的(b)所示的PDCCH可以为用于激活时隙201、时隙202、时隙203和时隙204上行传输的PDCCH;或者,图5A的(b)所示的PDCCH可以指示时隙201、时隙202、时隙203和时隙204上行传输。
实施例四
实施例四涉及图5B。图5B为本申请实施例提供的上行传输方法实施例四的示意图。实施例四包 括实施方式1和实施方式2。实施方式1涉及图5B的(a),实施方式2涉及图5B的(b)。
在实施例四中,终端设备支持d个CG配置同时运作,d为正整数。网络设备分n次通过第一配置信息为终端设备配置了n个CG配置,其中n为小于等于d的正整数;每次配置一个CG配置,每个CG配置包括至少一个CG周期。在任意一个CG周期内可以有任意数量的上行时隙用于上行传输。优选地,在任意一个CG周期内只有一个上行时隙用于上行传输。
示例性地,CG配置是通过网络设备向终端设备发送的第一配置信息进行配置的。第一配置信息可以通过由网络设备向终端设备发送的RRC信令发送。第i个CG配置包括第i CG周期,第i CG周期包括第i CG周期1,第i CG周期2,……。第i个CG配置用于表示n个CG配置中的任意一个CG配置,i为小于等于n的正整数。比如,在i=1时,第i CG周期为第一CG周期,第一CG周期包括第一CG周期1、第一CG周期2、……。将包含第一CG周期j,第二CG周期j,……,第i CG周期j,……,至第n CG周期j的周期组合记为第j周期组。此时,第i CG周期j又可称为第j组中的第i个CG周期。将第i CG周期j(比如,第一CG周期1)内用于上行传输的上行时隙记为上行时隙ij1(比如,i 11),j为正整数。同一周期组包含的不同CG周期的周期可以相同,也可以不同。比如,第一CG周期1和第二CG周期1两者的周期可以相同,也可以不同。同一CG周期的周期相同。比如,第一CG周期1、第一CG周期2、第一CG周期3等的周期相同。
实施方式1
在实施方式1中,示例性地,在图1A示出的S101之后,在S102之前,网络设备200还向终端设备100发送第二配置信息。示例性地,第二配置信息承载在RRC信令中。第二配置信息包括BWP-uplinkDedicated information element,BWP-uplinkDedicated information element包括cg-drxList。cg-drxList用于表示关联的不同CG配置。CG配置包括CG周期。不同的CG配置包括不同的CG周期。不同的CG周期可以位于同一周期组内,也可以位于不同的周期组。在起始编号以1编号时,cg-drxList={CG 1,CG 2,……,CG i,……,CG n-m,……,CG n},其中CG i表示第i个CG配置。在起始编号以0编号时,cg-drxList={CG 0,CG 1,……,CG i-1,……,CG n-m-1,……,CG n-1},其中CG i-1表示在第i个CG配置。其中,m为小于n-1的非负整数。为了便于描述,以下以起始编号为1为例描述。
其中,cg-drxList中的任意一个元素都与其他的元素关联。cg-drxList包括:第i个CG配置和第a个CG配置,第i个CG配置包括第i CG周期,第i CG周期包括第i CG周期j;第a个CG配置包括第a CG周期,第a CG周期包括第a CG周期b,i,j,a和b均为任意正整数。这种关联体现在第i CG周期j中用于上行传输的上行时隙位于drx-silenceTimerUL的覆盖时间范围内,则原则上cg-drxList中的所有CG配置所包括的所有CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL都不开启,但若第a CG周期b中用于上行传输的上行时隙位于drx-silenceTimerUL的覆盖时间范围外,则第a CG周期b中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL开启。
示例性地,以m=0,n=4为例,此时cg-drxList={CG 1,CG 2,CG 3,CG 4}。cg-drxList包括第1个CG配置、第2个CG配置、第3个CG配置和第4个CG配置。第1个CG配置包括第一CG周期,第2个CG配置包括第二CG周期,第3个CG配置包括第三CG周期,第4个CG配置包括第四CG周期。在图5B的(a)示出的同一周期组中,第一CG周期包括第一CG周期1,第二CG周期包括第二CG周期1,第三CG周期包括第三CG周期1,第四CG周期包括第四CG周期1。第一CG周期1中用于传输PUSCH的时隙为时隙301,第二CG周期1中用于传输PUSCH的时隙为时隙302,第三CG周期1中用于传输PUSCH的时隙为时隙303,第四CG周期1中用于传输PUSCH的时隙为时隙304。
在图5B的(a)中,同一周期组的第1个CG周期中用于上行传输的时隙301对应的drx-silenceTimerUL 350开启后,drx-silenceTimerUL 350覆盖时隙301至时隙306,由于时隙301、时隙302和时隙303都位于drx-silenceTimerUL 350的覆盖时间范围内,时隙304不位于drx-silenceTimerUL 350的覆盖时间范围内,则时隙301、时隙302和时隙303各自对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL都不开启,而时隙304对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL开启。
具体来说,由于时隙301位于drx-silenceTimerUL350的覆盖时间范围内,因此终端设备在时隙301上传输PUSCH后,该PUSCH对应的drx-HARQ-RTT-TimerUL不开启;或者,当终端设备在时隙301上传输PUSCH后,且该PUSCH对应的drx-HARQ-RTT-TimerUL超时的时刻位于drx-silenceTimerUL的覆盖时间范围内时,该drx-HARQ-RTT-TimerUL对应的drx-RetransmissionTimerUL不开启。由于时隙304位于drx-silenceTimerUL350的覆盖时间范围外,终端设备在时隙304上传输PUSCH后,该PUSCH对应的drx-HARQ-RTT-TimerUL开启;或者,当终端设备在时隙304上传输PUSCH后,且该PUSCH对应的drx-HARQ-RTT-TimerUL超时的时刻位于drx-silenceTimerUL的覆盖时间范围外时,该drx-HARQ-RTT-TimerUL对应的drx-RetransmissionTimerUL开启。
可选地,drx-silenceTimerUL的起始时刻可关联于cg-drxList中的元素。例如,drx-silenceTimerUL的起始时刻与cg-drxList中的第i个元素CG i关联。CG i为第i个CG配置。第i个CG配置包括第i个CG周期。第i CG周期包括第i CG周期1,第i CG周期2,……第i CG周期j,……。在第i CG周期j中用于传输的首个上行时隙可为drx-silenceTimerUL的起始时刻,因此drx-silenceTimerUL为周期性开启。其中,j为任意正整数。
进一步地,可以在第一配置信息或第二配置信息中设置第五字段(比如,drx-silenceTimerEnabler字段)。在第五字段为第一值时(比如1或true),终端设备按照cg-drxList及cg-drxList中各元素之间的关联执行;在第五字段为第二值时(比如0或false),终端设备按照之前的规则执行,即cg-drxList之间不存在关联性,或者cg-drxList中的任意CG配置都不会启动drx-silenceTimerUL。
第五字段可以与第一字段相同,也可以与第一字段不同。
实施方式2
实施方式2是在实施方式1的基础上,通过PDCCH来开启drx-silenceTimerUL的。即实施方式2与实施方式1两者有关drx-silenceTimerUL的开启方式不同,其余均相同。在实施方式2中,drx-silenceTimerUL的开启可以通过物理下行控制信道PDCCH配置。可选地,PDCCH包括下行控制信息DCI或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)。以下以DCI为例进行说明。
可选地,drx-silenceTimerUL的时长(即第一时长)可以通过第二配置信息中的drx-silenceTimerUL指示。示例性地,在图1A中的S101之后,且在图1A的S102之前,网络设备向终端设备发送第二配置信息。第二配置信息承载在RRC信令中。
示例性地,在图1A中S101之后的S101’中,此时第一控制信息为DCI,DCI可以指示是否开启drx-silenceTimerUL。此时,DCI可以增加1个第六字段(比如,1比特的字段)。比如,在该第六字段为第一值(比如,1)时,指示开启drx-silenceTimerUL;在该第六字段为第二值(比如,0)时,指示不开启drx-silenceTimerUL。此时drx-silenceTimerUL的时长时由第二配置信息配置的。
可替换地,第二配置信息还可为drx-silenceTimerUL配置一组数值,该组数值可以包括t个数值。比如,t=3。此时DCI中可以增加1个第七字段(比如,至少大于或等于2比特的字段)。以t=3为例,3个数值包括V0,V1,V2,分别指示不开启,时长1,时长2。在DCI中的第七字段指示选择V0(比如,第七字段为00)时,不开启drx-silenceTimerUL;在DCI中的第七字段指示选择V1(比如,第七字段为01)时,开启drx-silenceTimerUL,且drx-silenceTimerUL的时长为时长1;在DCI中的第七字段指示选择V2(比如,第七字段为10)时,开启drx-silenceTimerUL,且drx-silenceTimerUL的时长为时长2。
示例性地,drx-silenceTimerUL的起始时刻可以为终端设备接收到PDCCH的时间单元,也可以为终端设备接收到PDCCH后的下一个或下几个时间单元。其中,时间单元可以为时隙,也可以为符号。
示例性地,该DCI所指示的drx-silenceTimerUL可以对接收到该DCI的终端设备的所有位于该drx-silenceTimerUL覆盖时间范围内的上行时隙生效。例如,以图5B中(b)为例,若时隙300的DCI或PDCCH指示开启了一个drx-silenceTimerUL,该drx-silenceTimerUL的起始时刻为时隙301,其结束时刻为时隙305相邻的下一个下行时隙(图中未画出),即drx-silenceTimerUL的覆盖时间包括时隙301、时隙302、时隙303、时隙304和时隙305,则终端设备在这些时隙上传输PUSCH后,都不会开启该PUSCH对应的drx-HARQ-RTT-TimerUL或drx-RetransmissionTimerUL。例如,终端设备在时隙 304上传输PUSCH后,且时隙304位于drx-silenceTimerUL的覆盖时间范围内,则终端设备不会为该PUSCH对应的HARQ进程触发一个drx-HARQ-RTT-TimerUL;或者,终端设备在时隙304上传输PUSCH后,终端设备开启为该PUSCH对应的drx-HARQ-RTT-TimerUL,若该drx-HARQ-RTT-TimerUL定时器超时的时刻位于drx-silenceTimerUL的覆盖时间范围内,则不会为该定时器开启drx-RetransmissionTimerUL。
在一种实施例中,DCI所指示开启的drx-silenceTimerUL仅对该DCI所激活的CG配置及其关联的CG配置生效。例如,第二配置信息包括BWP-uplinkDedicated information element,BWP-uplinkDedicated information element包括cg-drxList。cg-drxList用于表示受drx-silenceTimerUL影响的不同CG配置。在起始编号以1编号时,cg-drxList={CG 1,CG 2,……,CG i,……,CG n-m},其中CG i表示在该周期组中的第i个CG周期。在起始编号以0编号时,cg-drxList={CG 0,CG 1,……,CG i-1,……,CG n-m-1},其中CG i-1表示在该周期组中第i个CG配置。其中,m为小于n-1的非负整数。为了便于描述,以下以起始编号为1为例描述。
其中,cg-drxList中的任意一个元素都与其他的元素关联。这种关联体现在,若DCI激活的任意一个CG配置位于cg-drxList中,且该DCI指示了drx-silenceTimerUL开启或不开启后,只要是该cg-drxList内的CG配置,且该cg-drxList内的CG配置用于上行传输的上行时隙位于该drx-silenceTimerUL的覆盖时间范围内,则该cg-drxList的CG配置用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL都不开启或都开启。否则,其他CG配置用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL都开启或都不开启。该drx-silenceTimerUL的起始时刻是根据DCI所激活的CG配置相关的,即该DCI所激活的CG配置的每个周期的对应上行时隙,都会开启drx-silenceTimerUL,也就是说drx-silenceTimerUL的开启时周期性的,且其周期与该DCI所激活的CG配置的周期相同。
比如,以m=0,n=4为例,此时cg-drxList={CG 1,CG 2,CG 3,CG 4}。在图5B的(b)中,同一周期组的第1个CG周期中用于上行传输的时隙301对应的drx-silenceTimerUL 350开启后,第1个CG周期与第2个CG周期、第3个CG周期和第4个CG周期都位于cg-drxList中,drx-silenceTimerUL 350覆盖时隙301至时隙306,由于第2个CG周期、第3个CG周期用于上行传输的上行时隙位于drx-silenceTimerUL 350的覆盖时间范围内,第4个CG周期用于上行传输的上行时隙不位于drx-silenceTimerUL 350的覆盖时间范围内,则该cg-drxList中第2个CG周期和第3个CG周期用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL都不开启,而该cg-drxList中第4个CG周期用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL或者drx-RetransmissionTimerUL都开启。
以m=0,n=4为例,图5B的(b)所示的PDCCH可以与时隙301、时隙302、时隙303和时隙304中的一个或多个没有关联,也可以有关联;或者,图5B的(b)所示的PDCCH可以为用于激活时隙301、时隙302、时隙303和时隙304上行传输的PDCCH。
实施例五
实施例五涉及图6A。图6A为本申请实施例提供的上行传输方法实施例五的示意图。
在实施例五中,网络设备向终端设备配置了在每个CG周期内的n个连续的上行时隙(比如,通过第一设置信息配置),n为大于1的正整数。示例性地,n可以基于第一配置信息中的ConfiguredGrantConfig中的cg-nrofSlots获得。第一配置信息可以承载在RRC信令中。
在同一CG周期中,n个连续的上行时隙包括第1个上行时隙,第2个上行时隙,……,第i个上行时隙,……,第n个上行时隙。其中,i为小于或等于n的正整数。第i个上行时隙对应的drx-HARQ-RTT-TimerUL的起始时刻为该同一CG周期的第i个上行时隙的的下一个相邻时间单元(比如,时隙或符号)。一个CG周期的n个上行时隙可以被分别配置不同的drx-HARQ-RTT-TimerUL,且这些drx-HARQ-RTT-TimerUL的取值可以不同。每个drx-HARQ-RTT-TimerUL超时后,在会开启对应的drx-RetransmissionTimerUL。以图6A为例,一个CG周期包含4个传输时隙,分别可以在时隙201、时隙202、时隙203和时隙204上进行传输,其中终端设备在时隙201传输PUSCH后,为该PUSCH 开启drx-HARQ-RTT-TimerUL210,并在drx-HARQ-RTT-TimerUL210超时的下一个相邻符号(如在时隙204后的第3个下行时隙的第一个符号),开启对应的drx-RetransmissionTimerUL。同理,终端设备在时隙202传输PUSCH后,为该PUSCH开启drx-RetransmissionTimerUL 220,并在drx-HARQ-RTT-TimerUL 220超时后的下一个相邻符号(如在时隙204后的第3个下行时隙的第一个符号),开启对应的drx-RetransmissionTimerUL等。因此,通过为一个CG周期的n个传输时隙分别配置不同的drx-HARQ-RTT-TimerUL,可以使能一个CG周期内CG传输时隙对应的drx-RetransmissionTimerUL的起始时刻位于相同或相近的位置上,以达到减少终端设备唤醒时间的目的。
示例性地,通过合理的配置一个CG周内的n个连续的上行时隙的每个时隙的drx-HARQ-RTT-TimerUL,使得n个时隙对应的drx-RetransmissionTimerUL的起始时刻位于相同或相近的时间单元上,以达到减少终端设备唤醒时间的目的。
优选地,n个连续的上行时隙中第i个上行时隙对应的drx-HARQ-RTT-TimerUL的起始时间单元为第i个上行时隙传输PUSCH后的下一个相邻符号。其中,时间单元包括时隙或符号。
可选地,这些内容也可由网络设备通过第一配置信息或第二配置信息配置。例如,可以由网络设备向终端设备通过第一配置信息中的第一指示信息(比如drx-HarqRttList)配置。drx-HarqRttList包括第1个上行时隙对应的drx-HARQ-RTT-TimerUL的时长T1,……,第i个上行时隙对应的drx-HARQ-RTT-TimerUL的时长Ti,……,第n个上行时隙对应的drx-HARQ-RTT-TimerUL的时长Tn。
以n个drx-HARQ-RTT-TimerUL通过第一配置信息进行配置为例。网络设备通过第一配置信息中的ConfiguredGrantConfig为终端设备配置一个CG周期内的时隙个数的同时(具体可以通过ConfiguredGrantConfig中的cg-nrofSlots参数),还可以通过第一配置信息中的第一指示信息(比如,drx-HarqRttList),指示这n个时隙对应的drx-HARQ-RTT-TimerUL,即drx-HarqRttList包含n个drx-HARQ-RTT-TimerUL。也就是说,cg-nrofSlots参数不仅指示了一个CG的周期内的上行时隙数量,同时也指示了drx-HarqRttList中的元素个数,其中的第一个元素(即第一个drx-HARQ-RTT-TimerUL)对应该CG配置中的n个时隙的第一个时隙所对应的drx-HARQ-RTT-TimerUL,其中的第二个元素(即第二个drx-HARQ-RTT-TimerUL)对应该CG配置中的n个时隙的第二个时隙所对应的drx-HARQ-RTT-TimerUL,以此类推。例如,仍旧以一个CG周期包括4个时隙为例,drx-HarqRttList={238,168,98,28}时,表示终端设备通过该CG周期的第一个时隙发送PUSCH后,为该PUSCH对应的HARQ进程开启drx-HARQ-RTT-TimerUL的时长为238符号;当该drx-HARQ-RTT-TimerUL超时后,终端设备在该drx-HARQ-RTT-TimerUL超时后的下一个相邻符号开启drx-RetransmissionTimerUL。同理,当终端设备通过该CG周期的第二个时隙发送PUSCH,为该PUSCH对应的HARQ进程开启对应的drx-HARQ-RTT-TimerUL的时长为168符号;当该drx-HARQ-RTT-TimerUL超时后,终端设备将在该drx-HARQ-RTT-TimerUL超时后的下一个相邻符号开启drx-RetransmissionTimerUL。应理解,drx-HarqRttList仅影响该CG周期内不同时隙的drx-HARQ-RTT-TimerUL的时长,并不会影响它们对应的drx-RetransmissionTimerUL的时长。此时,drx-RetransmissionTimerUL的时长可以是根据第三配置信息中的DRX-Config获得的。或者,drx-HarqRttList中的元素个数为n-1,即drx-HarqRttList的元素个数仍由第一配置信息的cg-nrofSlots确定。与上述实施方式不同的,drx-HarqRttList包含的n-1个drx-HARQ-RTT-TimerUL分别对应一个CG周期内的n个时隙中的第1个至第n-1个时隙分别对应的drx-HARQ-RTT-TimerUL的时长,而第n个时隙对应的drx-HARQ-RTT-TimerUL的时长可以通过第三配置信息中的DRX-Config确定。
实施方式2
在又一种实施方式中,DCI并不显式指示一个CG周期内的每个时隙对应的drx-HARQ-RTT-TimerUL,而是添加了一个第八字段(也可称为第八开关,比如drx-retransmissionULenabler)。当该第八字段为第一值时(比如1或true),则表示该每个CG周期中n个时隙的第1个至第n-个时隙对应的drx-HARQ-RTT-TimerUL的时长不相同;或者,当该第八字段为第二值时,则表示该每个CG周期中的n个时隙对应的drx-HARQ-RTT-TimerUL都相同,此时这些 drx-HARQ-RTT-TimerUL的时长可以根据第三配置信息中的DRX-Config获得。示例性地,当该第八字段为第一值时(比如1或false),一个CG周期内的n个时隙的第1个至第n-1个时隙对应的drx-HARQ-RTT-TimerUL是通过该时隙在CG周期中所处的时隙位置,该CG周期的时隙个数n,两个相邻的上行时隙中的下行时隙的个数(或上、下行时域配置),以及第n个时隙对应的drx-HARQ-RTT-TimerUL的时长确定的。例如,第i个上行时隙对应的drx-HARQ-RTT-TimerUL的时长Ti=(n-i)×u×s+(n-i-1)×s+Tn,其中n为网络设备配置的每个CG周期中连续的上行时隙的个数,i为n个连续的上行时隙中上行时隙的序号,u为两个相邻的上行时隙中下行时隙的个数,s为每个时隙中符号的个数,Tn为第n个上行时隙对应的drx-HARQ-RTT-TimerUL的时长,Tn可以是由第三配置信息,如DRX-Config,获得的。
结合图6A,以n=4,u=4,s=14,T4=28为例,计算得到第1个上行时隙201对应的drx-HARQ-RTT-TimerUL 210的时长T1=17*14=238个符号,第2个上行时隙202对应的drx-HARQ-RTT-TimerUL 220的时长T2=12*14=168个符号,第3个上行时隙203对应的drx-HARQ-RTT-TimerUL 230的时长T3=7*14=98个符号,其中每个时隙包括14个符号。其中,第4个上行时隙203对应的drx-HARQ-RTT-TimerUL 240的时长T4=2*14=28个符号。
实施例六
实施例六涉及图6B。图6B为本申请实施例提供的上行传输方法实施例六的示意图。
在实施例六中,终端设备支持d个CG配置同时运作,d为正整数。网络设备分n次通过第一配置信息为终端设备配置了n个CG配置,其中n为小于等于d的正整数;每次配置一个CG配置,每个CG配置包括至少一个CG周期。在任意一个CG周期内可以有任意数量的上行时隙用于上行传输。优选地,在任意一个CG周期内只有一个上行时隙用于上行传输。
示例性地,CG配置是通过网络设备向终端设备发送的第一配置信息进行配置的。第一配置信息可以通过由网络设备向终端设备发送的RRC信令发送。第i个CG配置包括第i CG周期,第i CG周期包括第i CG周期1,第i CG周期2,……。第i个CG配置用于表示n个CG配置中的任意一个CG配置,i为小于等于n的正整数。比如,在i=1时,第i CG周期为第一CG周期,第一CG周期包括第一CG周期1、第一CG周期2、……。将包含第一CG周期j,第二CG周期j,……,第i CG周期j,……,至第n CG周期j的周期组合记为第j周期组。此时,第i CG周期j又可称为第j组中的第i个CG周期。将第i CG周期j(比如,第一CG周期1)内用于上行传输的上行时隙记为上行时隙ij1(比如,i11),j为正整数。同一周期组包含的不同CG周期的周期可以相同,也可以不同。比如,第一CG周期1和第二CG周期1两者的周期可以相同,也可以不同。同一CG周期的周期相同。比如,第一CG周期1、第一CG周期2、第一CG周期3等的周期相同。
在同一周期组中,比如在第j周期组中,该周期组包括第一CG周期j,第二CG周期j,……,第i CG周期j,……,第n CG周期j。第一CG周期j中用于上行传输的上行时隙记为Slot1,……,第i CG周期j中用于上行传输的上行时隙记为Sloti,……,第n CG周期j中用于上行传输的上行时隙记为Slotn。Slot1对应的drx-HARQ-RTT-TimerUL记为drx-HARQ-RTT-TimerUL1,……,Sloti对应的drx-HARQ-RTT-TimerUL记为drx-HARQ-RTT-TimerULi,……,Slotn对应的drx-HARQ-RTT-TimerUL记为drx-HARQ-RTT-TimerULn。drx-HARQ-RTT-TimerUL1的起始时刻为Slot1上所传输的PUSCH的下一相邻符号,drx-HARQ-RTT-TimerUL1的结束时刻为drx-HARQ-RTT-TimerULn的结束时刻。
通过为n个CG配置分别配置n个drx-HARQ-RTT-TimerUL,可以使得第i个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL的结束时刻与第n个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL的结束时刻相近。
优选地,通过为n个CG配置分别配置n个drx-HARQ-RTT-TimerUL,可以使得第i个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL的终止时间单元为第n个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL的终止时间单元。其中,时间单元包括时隙或符号。
进一步地,第一配置信息中的ConfiguredGrantConfig可以为同一周期组中的每个CG配置设有一个第九字段(比如drx-HARQ-RTT-TimerUL-r18),指示该CG配置的drx-HARQ-RTT-TimerUL的时 长。
例如,在对应第i个CG配置的一个第九字段drx-HARQ-RTT-TimerUL-r18为一个值(e.g.100)时,终端设备在第i个CG周期的上行时隙传输PUSCH后的下一个相邻符号,开启该PUSCH对应的HARQ的drx-HARQ-RTT-TimerUL,其时长为100符号。以图6B为例,第一个CG的配置信息可以包含第九字段(比如,一个drx-HARQ-RTT-TimerUL-r18),其取值为238,指示当终端设备在第一个CG配置的上行时隙上传输PUSCH后,开启一个时长为238符号的drx-HARQ-RTT-TimerUL。第二个CG的配置信息可以包含第九字段(比如,一个drx-HARQ-RTT-TimerUL-r18),其取值为168,指示当终端设备在第一个CG配置的上行时隙上传输PUSCH后,开启一个时长为168符号的drx-HARQ-RTT-TimerUL,依此类推。通过这种方式,n个CG配置中的第i个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL的终止时间单元为第n个CG周期中用于上行传输的上行时隙对应的drx-HARQ-RTT-TimerUL的终止时间单元。其中,时间单元包括时隙或符号。
在具体配置中,可以不用配置结束时刻,只需配置起始时刻和时长。
可替换地,网络设备可在第三配置信息中的DRX-Config中配置至少一个drx-HARQ-RTT-TimerULlist以及配置该drx-HARQ-RTT-TimerULlist中各个元素的索引,其中该drx-HARQ-RTT-TimerULlist中每个元素分别指向n个连续的上行时隙中任意一个上行时隙或者同一周期组中n个CG周期中任意一个CG周期对应的一个drx-HARQ-RTT-TimerUL的时长。相应地,网络设备在第一配置信息中,配置一个具体的索引。这样,可以通过该具体的索引以及drx-HARQ-RTT-TimerULlist以及配置该drx-HARQ-RTT-TimerULlist中各个元素的索引,为n个连续的上行时隙中任意一个上行时隙或者同一周期组中n个CG周期中任意一个CG周期提供所对应的drx-HARQ-RTT-TimerUL的时长。
示例性地,在图1A中的S101之前,网络设备向终端设备发送第三配置信息。第三配置信息承载在RRC信令中。比如,drx-HARQ-RTT-TimerULlist可包含在RRC信令中的DRX-config中。
示例性地,以n=4为例,drx-HARQ-RTT-TimerULlist={28,98,168,238},drx-HARQ-RTT-TimerULlist的索引0表示drx-HARQ-RTT-TimerULlist的第1个元素即28,drx-HARQ-RTT-TimerULlist的索引1表示drx-HARQ-RTT-TimerULlist的第2个元素即98,drx-HARQ-RTT-TimerULlist的索引2表示drx-HARQ-RTT-TimerULlist的第3个元素即168,drx-HARQ-RTT-TimerULlist的索引3表示drx-HARQ-RTT-TimerULlist的第4个元素即238。
进一步地,还可在drx-HARQ-RTT-TimerULlist进一步关联drx-HarqRttList。drx-HarqRttList可包含在第一配置信息中。第一配置信息承载在RRC信令中。比如,以n=4为例,drx-HarqRttList={3,2,1,0},drx-HarqRttList中的元素0指示查询drx-HARQ-RTT-TimerULlist的第1个元素即28,drx-HarqRttList中的元素1指示查询drx-HARQ-RTT-TimerULlist的第2个元素即98,drx-HarqRttList中的元素2指示查询drx-HARQ-RTT-TimerULlist的第3个元素即168,drx-HarqRttList中的元素3指示查询drx-HARQ-RTT-TimerULlist的第4个元素即238。
实施例七
实施例七涉及图7A。图7A为本申请实施例提供的上行传输方法实施例七的示意图。在实施例七中,终端设备接收到PDCCH,PDCCH包括DCI。终端设备接收到的PDCCH,可以指示在接下来的上行时隙中进行一个或多个PUSCH的传输(其中,多个PUSCH的传输也可称为multi-PUSCH)。
该PDCCH包括下行控制信息DCI,DCI指示n个PUSCH的传输。其中,n为大于1的正整数;n个PUSCH可以是n个连续的PUSCH,也可以是n个不连续的PUSCH。以n个PUSCH为n个连续的PUSCH为例阐述。
具体地,n的取值可以根据第四配置信息获得。终端设备接收网络设备发送的第四配置信息,如PUSCH-Config information element,该第四配置信息包含一个上行时域分配列表(pusch-TimeDomainAllocationList)。该上行时域分配列表包括至少一个行索引,每个行索引指示至少1个PUSCH的时域资源,例如,PUSCH时隙相对于调度该时隙的DCI的时域偏移值。当网络设备通 过DCI调度PUSCH时,网络设备在DCI的时域资源分配(Time domain resource assignment,TDRA)字段指示一个行索引,该DCI中的行索引的取值为上行时域分配列表中的行索引中的1个。通过该方式,DCI可以通过TDRA字段,指示至少一个PUSCH的传输。例如,第四配置信息中的PUSCH-Config中的上行时域分配列表包含3行,对应行索引1(比如,1),行索引2(比如,2)和行索引3(比如,3),其中行索引1对应3个PUSCH,行索引2对应1个PUSCH,行索引3对应4个PUSCH。此时,DCI中的TDRA字段的数值与行索引1对应时(比如,TDRA字段所指示的数值加1,等于行索引1,如TDRA指示‘0’,对应行索引‘1’),则表示该DCI调度了3个PUSCH,且该3个PUSCH的相对于该DCI的位置也可根据行索引1获得。
DCI包括该n个连续的PUSCH的时域资源配置,比如n个连续的PUSCH对应的n个连续上行时隙位置。其中,n个连续的PUSCH中第1个PUSCH对应的上行时隙位于接收到PDCCH的时隙之后,其可以与接收到PDCCH的时隙相邻,也可以与接收到PDCCH的时隙不相邻。
在本实施例中,DCI还指示:
在n个连续的PUSCH中,仅在第n-m个PUSCH至最后1个PUSCH(即第n个PUSCH)中的任意一个或多个传输完成后,开启第n-m个PUSCH至最后1个PUSCH(即第n个PUSCH)中的任意一个或多个对应的drx-HARQ-RTT-TimerUL;在第1个PUSCH至第n-m-1个PUSCH中的任意一个或多个上行传输完成后,不开启第1个PUSCH至第n-m-1个PUSCH中的任意一个或多个对应的drx-HARQ-RTT-TimerUL;
在n个连续的上行时隙中仅在第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的任意一个或多个上行传输PUSCH后,开启第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的任意一个或多个对应的drx-HARQ-RTT-TimerUL;在第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个上行传输PUSCH后,不开启第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个对应的drx-HARQ-RTT-TimerUL;或者,
在n个连续的上行时隙中仅在第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的任意一个或多个对应的drx-HARQ-RTT-TimerUL超时后,开启第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的任意一个或多个对应的drx-RetransmissionTimerUL;在第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个对应的drx-HARQ-RTT-TimerUL超时后,不开启第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个对应的drx-RetransmissionTimerUL;
其中,m为小于n-1的非负整数。
示例性地,以n=4,m=0为例进行阐述。如图7A所示,终端设备在时隙200接收到PDCCH,该PDCCH包括DCI。DCI指示终端设备在时隙200之后,传输4个连续的PUSCH。4个连续的PUSCH分别承载PUSCH1、PUSCH2、PUSCH3和PUSCH4,PUSCH1、PUSCH2、PUSCH3和PUSCH4组成了PUSCH帧a。
DCI还指示:
在4个连续的上行时隙中仅在最后1个上行时隙(即第4个上行时隙204)上行传输PUSCH后,开启最后1个上行时隙(即第4个上行时隙204)对应的drx-HARQ-RTT-TimerUL 240;在第1个上行时隙201至第3个上行时隙203上行传输PUSCH后,不开启第1个上行时隙至第3个上行时隙中的任意一个或多个对应的drx-HARQ-RTT-TimerUL;或者,
在n个连续的上行时隙中仅在最后1个上行时隙(即第4个上行时隙204)对应的drx-HARQ-RTT-TimerUL 240超时后,开启最后1个上行时隙(即第4个上行时隙204)对应的drx-RetransmissionTimerUL 241;在第1个上行时隙201至第3个上行时隙203中的任意一个或多个对应的drx-HARQ-RTT-TimerUL超时后,不开启第1个上行时隙201至第3个上行时隙203中的任意一个或多个对应的drx-RetransmissionTimerUL。
这样,终端设备根据该DCI的指示,相应地执行。网络设备也相应地执行。
进一步地,在DCI中添加1个第十字段(也可称为第十开关,比如1比特),比如drx-retransmissionULenabler。
在该第十字段为第一值(比如,1)时,DCI指示:
在n个连续的上行时隙中仅在第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的 任意一个或多个上行传输PUSCH后,开启第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的任意一个或多个对应的drx-HARQ-RTT-TimerUL;在第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个上行传输PUSCH后,不开启第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个对应的drx-HARQ-RTT-TimerUL;
例如,以m=0为例,在n=4个连续的上行时隙中仅在第4个上行时隙传输PUSCH后的下一相邻符号,开启第4个上行时隙对应的drx-HARQ-RTT-TimerUL;对于4个连续上行时隙中的第1个至第3个上行时隙中的任意一个时隙都不开启对应的drx-HARQ-RTT-TimerUL;
或者,
在n个连续的上行时隙中仅在第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的任意一个或多个对应的drx-HARQ-RTT-TimerUL超时后,开启第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的任意一个或多个对应的drx-RetransmissionTimerUL;在第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个对应的drx-HARQ-RTT-TimerUL超时后,不开启第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个对应的drx-RetransmissionTimerUL;
例如,以m=0为例,在n=4个连续的上行时隙中仅在第4个上行时隙传输PUSCH对应的drx-HARQ-RTT-TimerUL超时后的下一相邻个符号,开启该PUSCH对应的drx-RetransmissionTimerUL;在4个连续上行时隙中的第1个至第3个上行时隙中的任意一个时隙对应的drx-HARQ-RTT-TimerUL超时后,都不开启drx-RetransmissionTimerUL;
其中,m为小于n-1的非负整数。
在该第十字段为第二值(比如0或false)时,DCI指示:
在n个连续的上行时隙中任意一个或多个上行传输PUSCH后,开启该n个连续的上行时隙中每个时隙对应的drx-HARQ-RTT-TimerUL;或者,
在n个连续的上行时隙中任意一个对应的drx-HARQ-RTT-TimerUL超时后,开启该上行时隙对应的drx-RetransmissionTimerUL。
或者,在该第十字段为第二值(比如0或false)时,DCI指示:
在n个连续的上行时隙中任意一个上行传输PUSCH后,开启该上行时隙对应的drx-HARQ-RTT-TimerUL;或者,
在n个连续的上行时隙中任意一个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,开启该上行时隙对应的drx-RetransmissionTimerUL。
这样,终端设备根据该DCI的指示,相应地执行。网络设备也相应地执行。
示例性地,当该第十字段为‘1’时,该DCI指示仅最后一个PUSCH(或MAC PDU)开启drx-HARQ-RTT-TimerUL,具体的流程可以为:
1>在活动时间(active time)内
2>如果PDCCH指示了上行传输
3>如果该PDCCH的drx-retransmissionULenabler指示了仅为该PDCCH的最后一个PUSCH开启drx-HARQ-RTT-TimerUL
4>如果该PUSCH是这个PDCCH所指示的最后一个PUSCH
5>在这个PUSCH传输结束后的下一相邻符号为对应的HARQ进程开启drx-HARQ-RTT-TimerUL
3>否则
4>在这个PUSCH传输结束后的下一相邻符号为对应的HARQ进程开启drx-HARQ-RTT-TimerUL
或者,示例性地,当该第十字段为‘1’时,该DCI指示仅最后一个PUSCH(或MAC PDU)开启drx-RetransmissionTimerUL,具体的流程可以为:
1>在活动时间(active time)内
2>如果PDCCH指示了上行传输
3>在这个PUSCH传输结束后的下一相邻符号为对应的HARQ进程开启drx-HARQ-RTT-TimerUL
4>如果该drx-HARQ-RTT-TimerUL超时
5>如果该PDCCH的drx-retransmissionULenabler指示了仅为该PDCCH的最后一个PUSCH开启drx-RetransmissionTimerUL
6>如果该drx-HARQ-RTT-TimerUL所对应的HARQ进程对应该PDCCH所指示的最后一个PUSCH
7>在该drx-HARQ-RTT-TimerUL超时后的下一相邻符号为这个HARQ进程开启drx-RetransmissionTimerUL
5>否则
6>在该drx-HARQ-RTT-TimerUL超时后的下一相邻符号为这个HARQ进程开启drx-RetransmissionTimerUL
其中,活动时间(active time)可以理解终端在配置DRX时,醒来的监测控制信道的时间,PDCCH指示的上行传输可以理解为PDCCH指示了至少一个PUSCH。
或者,仅最后一个PUSCH开启drx-RetransmissionTimerUL,可以理解为,当终端设备在一个DCI所指示的最后一个时隙上传输PUSCH后,开启该PUSCH对应HARQ进程的drx-HARQ-RTT-TimerUL,并在该drx-HARQ-RTT-TimerUL超时后的下一相邻符号,开启该PUSCH对应HARQ进程的drx-RetransmissionTimerUL;也可以理解为当终端设备在一个DCI所指示的最后一个时隙传输PUSCH后,开启该DCI所指示的所有PUSCH对应HARQ进程的drx-HARQ-RTT-TimerUL,并在这些drx-HARQ-RTT-TimerUL的每一个drx-HARQ-RTT-TimerUL超时后的下一相邻符号,分别开启所有PUSCH对应的drx-RetransmissionTimerUL。
需要说明的是,在实施例七中,由于PDCCH包括DCI,所以DCI指示可以理解为PDCCH指示,DCI还指示可以理解为PDCCH还指示。
可选地,网络设备向终端设备发送第四配置信息。网络设备可通过RRC信令的方式向终端设备发送第四配置信息,第四配置信息可以为RRC信令中PUSCH-Config信息,该信息用于配置终端设备的上行传输参数。drx-retransmissionULenabler也可在第四配置信息中配置,不需要在DCI中配置,也就不需要在PDCCH中配置。
示例性地,当该第十字段为‘1’时,该DCI指示仅最后一个PUSCH(或MAC PDU)开启drx-RetransmissionTimerUL,具体的流程可以为:
1>在活动时间(active time)内
2>如果PDCCH指示了上行传输
3>在这个PUSCH传输结束后的下一相邻符号为对应的HARQ进程开启drx-HARQ-RTT-TimerUL
4>如果该drx-HARQ-RTT-TimerUL超时
5>如果配置了drx-retransmissionULenabler
6>如果该drx-retransmissionULenabler指示了仅为PDCCH的最后一个PUSCH开启drx-RetransmissionTimerUL
7>如果该drx-HARQ-RTT-TimerUL所对应的HARQ进程对应一个PDCCH所指示的最后一个PUSCH
8>在该drx-HARQ-RTT-TimerUL超时后的下一相邻符号为这个HARQ进程开启drx-RetransmissionTimerUL
5>否则
6>在该drx-HARQ-RTT-TimerUL超时后的下一相邻符号为这个HARQ进程开启drx-RetransmissionTimerUL
可替换地,网络设备还可在图1B的S201之前,向终端设备发送第四配置信息。网络设备可通过RRC信令的方式向终端设备发送第四配置信息。第四配置信息包括一个位于PUSCH-config中的第十一字段(也可称为第十一开关),比如drx-retransmissionULenabler。
在该第十一字段为第一值(比如,1)时,第四配置信息指示:
在n个连续的上行时隙中仅在第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的 任意一个或多个上行传输PUSCH后,开启第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的任意一个或多个对应的drx-HARQ-RTT-TimerUL;在第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个上行传输PUSCH后,不开启第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个对应的drx-HARQ-RTT-TimerUL;
例如,以m=0为例,在n=4个连续的上行时隙中仅在第4个上行时隙传输PUSCH后的下一相邻符号,开启第4个上行时隙对应的drx-HARQ-RTT-TimerUL;对于4个连续上行时隙中的第1个至第3个上行时隙中的任意一个时隙都不开启对应的drx-HARQ-RTT-TimerUL;
或者,
在n个连续的上行时隙中仅在第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的任意一个或多个对应的drx-HARQ-RTT-TimerUL超时后,开启第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的任意一个或多个对应的drx-RetransmissionTimerUL;在第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个对应的drx-HARQ-RTT-TimerUL超时后,不开启第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个对应的drx-RetransmissionTimerUL;
例如,以m=0为例,在n=4个连续的上行时隙中仅在第4个上行时隙传输PUSCH对应的drx-HARQ-RTT-TimerUL超时后的下一相邻个符号,开启该PUSCH对应的drx-RetransmissionTimerUL;在4个连续上行时隙中的第1个至第3个上行时隙中的任意一个时隙对应的drx-HARQ-RTT-TimerUL超时后,都不开启drx-RetransmissionTimerUL;
其中,m为小于n的非负整数。
在该第十一字段为第二值(比如,0)时,第四配置信息指示:
在n个连续的上行时隙中任意一个上行传输PUSCH后,开启该PUSCH对应的HARQ进程的drx-HARQ-RTT-TimerUL;并且
在n个连续的上行时隙中任意一个对应的drx-HARQ-RTT-TimerUL超时后,开启该PUSCH对应的HARQ进程的drx-RetransmissionTimerUL。
这样,终端设备根据该DCI的指示,相应地执行。网络设备也相应地执行。
示例性地,当该第十一字段为‘1’时,仅在最后一个PUSCH(或MAC PDU)传输结束后的下一个相邻时隙开启drx-HARQ-RTT-TimerUL的具体流程可以为:
1>在活动时间(active time)内
2>如果PDCCH指示了一个上行传输
3>如果配置了drx-retransmissionULenabler
4>如果该drx-retransmissionULenabler指示了仅为该PDCCH的最后一个PUSCH开启drx-HARQ-RTT-TimerUL
5>一个PUSCH是这个PDCCH所指示的最后一个PUSCH
6>在这个PUSCH传输结束后的下一相邻符号为对应的HARQ进程开启drx-HARQ-RTT-TimerUL
3>否则
4>在这个PUSCH传输结束后的下一相邻符号为对应的HARQ进程开启drx-HARQ-RTT-TimerUL
可选地,n个连续的上行时隙可以通过第四配置信息配置。
在另一种可能的方式中,当DCI或者第四配置信息中的指示字段为第一值(比如1或true)时,在n个连续的上行时隙中仅在第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的一个或多个上行时隙传输PUSCH后,所述一个或多个上行时隙对应的drx-HARQ-RTT-TimerUL开启;在第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个上行时隙传输PUSCH后,所述任意一个或多个上行时隙对应的drx-HARQ-RTT-TimerUL不开启。例如,以m=0为例,在n=4个连续的上行时隙中,仅在第4个上行时隙传输PUSCH后的下一相邻符号,开启第1个至第4个上行时隙对应的drx-HARQ-RTT-TimerUL;在第1个至第3个上行时隙中的任意一个时隙传输PUSCH后的下一相邻符号,都不开启所述任意一个时隙对应的drx-HARQ-RTT-TimerUL。
或者,
在n个连续的上行时隙中仅在第n-m个上行时隙至最后1个上行时隙(即第n个上行时隙)中的一个或多个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,所述一个或多个上行时隙对应的drx-retransmissionTimerUL开启;在第1个上行时隙至第n-m-1个上行时隙中的任意一个或多个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,所述任意一个或多个上行时隙对应的drx-retransmissionTimerUL不开启。例如,以m=0为例,在n=4个连续的上行时隙中,在第4个上行时隙传输PUSCH后,且在该PUSCH对应的drx-HARQ-RTT-TimerUL超时后的下一个相邻符号,开启第1个至第4个上行时隙对应的drx-RetransmissionTimerUL;在第1个至第3个上行时隙中的任意一个或多个上行时隙传输PUSCH后,且所述任意一个或多个上行时隙对应的drx-HARQ-RTT-TimerUL超时后,都不开启drx-RetransmissionTimerUL。
实施例八
实施例八涉及图7B。图7B为本申请实施例提供的上行传输方法实施例八的示意图。
在实施例八中,终端设备接收到PDCCH,PDCCH包括DCI。终端设备接收到的PDCCH,可以指示在接下来的上行时隙中进行一个或多个PUSCH的传输(其中,多个PUSCH的传输也可称为multi-PUSCH)。
该PDCCH包括下行控制信息DCI,DCI指示n个PUSCH的传输。其中,n为大于1的正整数;n个PUSCH可以是n个连续的PUSCH,也可以是n个不连续的PUSCH。以n个PUSCH为n个连续的PUSCH为例阐述。
DCI包括该n个连续的PUSCH的时域资源配置,比如n个连续的PUSCH对应的n个连续上行时隙位置。其中,n个连续的PUSCH中第1个PUSCH对应的上行时隙位于接收到PDCCH的时隙之后,其可以与接收到PDCCH的时隙相邻,也可以与接收到PDCCH的时隙不相邻。
具体地,n的取值可以根据第四配置信息获得。终端设备接收网络设备发送的第四配置信息,如PUSCH-Config information element,该第四配置信息包含一个上行时域分配列表(pusch-TimeDomainAllocationList)。该上行时域分配列表包括至少一个行索引,每个行索引指示至少1个PUSCH的时域资源,例如,PUSCH时隙相对于调度该时隙的DCI的时域偏移值。当网络设备通过DCI调度PUSCH时,网络设备在DCI的时域资源分配(Time domain resource assignment,TDRA)字段指示一个行索引,该DCI中的行索引的取值为上行时域分配列表中的行索引中的1个。通过该方式,DCI可以通过TDRA字段,指示至少一个PUSCH的传输。例如,第四配置信息中的PUSCH-Config中的上行时域分配列表包含3行,对应行索引1(比如,1),行索引2(比如,2)和行索引3(比如,3),其中行索引1对应3个PUSCH,行索引2对应1个PUSCH,行索引3对应4个PUSCH。此时,DCI中的TDRA字段的数值与行索引1对应时(比如,TDRA字段所指示的数值加1,等于行索引1,如TDRA指示‘0’,对应行索引‘1’),则表示该DCI调度了3个PUSCH,且该3个PUSCH的相对于该DCI的位置也可根据行索引1获得。
在n个连续的上行时隙中第i个PUSCH对应的drx-HARQ-RTT-TimerUL的起始时刻为第i个PUSCH传输结束的下一个相邻符号,第i个上行时隙对应的drx-HARQ-RTT-TimerUL的结束时刻在第n个上行时隙对应的drx-HARQ-RTT-TimerUL的结束时刻的附近,使得第i个PUSCH对应的drx-RetransmissionTimerUL的起始时间和第n个PUSCH对应的drx-RetransmissionTimerUL的起始时间相近,以降低终端设备唤醒时间;其中,i为小于或等于n的正整数。可替换地,在n个连续的上行时隙中第i个PUSCH对应的drx-HARQ-RTT-TimerUL的起始时间单元为第i个PUSCH的下一个相邻的时间单元,第i个PUSCH对应的drx-HARQ-RTT-TimerUL的终止时间单元为第n个PUSCH对应的drx-HARQ-RTT-TimerUL的终止时间单元。其中,时间单元包括时隙或符号。
本实施例通过为DCI调度的n个PUSCH分别配置n个drx-RetransmissionTimerUL,使能n个PUSCH中的第i个PUSCH所对应的drx-HARQ-RTT-TimerUL的结束时间与n个PUSCH中的第j个PUSCH所对应的drx-HARQ-RTT-TimerUL的结束时间相近或相同。如图7B所示,时隙200的PDCCH分别在时隙201、时隙202、时隙203和时隙204调度了n=4个PUSCH,终端设备在时隙201、时隙202、时隙203和时隙204传输PUSCH后,分别开启drx-HARQ-RTT-TimerUL210、drx-HARQ-RTT-TimerUL220、drx-HARQ-RTT-TimerUL230和drx-HARQ-RTT-TimerUL240。当这些 drx-HARQ-RTT-TimerUL的时长被合理配置时,最终在同一个时隙或同一个时隙的附近停止。这n个PUSCH对应的drx-HARQ-RTT-TimerUL可以通过第五配置信息中的第十二字段进行配置。可选地,网络设备还可在图1B的S201之前,向终端设备发送第五配置信息。网络设备可通过RRC信令的方式向终端设备发送第五配置信息。第五配置信息包括PUSCH-TimeDomainResourceAllocationList,第十二字段可以为PUSCH-TimeDomainResourceAllocationList中的drx-HARQ-RTT-TimerUL-r18。
PUSCH-TimeDomainResourceAllocationList的示意性举例可以为:
PUSCH-TimeDomainResourceAllocation information element
网络设备可以通过PUSCH-TimeDomainResourceAllocationList中的drx-HARQ-RTT-TimerUL-r18为一个DCI调度(也可称为PDCCH调度)的每个PUSCH分别配置了drx-HARQ-RTT-TimerUL。应理解,当终端设备未被配置DRX时(未接收到置第三配置信息时),网络设备也不会在第五配置信息中配置drx-HARQ-RTT-TimerUL-r18,或者,当终端设备未被配置DRX时,通过第五配置信息配置的该drx-HARQ-RTT-TimerUL-r18可以被忽略。
这样,终端设备就获悉了各个PUSCH对应的drx-HARQ-RTT-TimerUL的时长。
进一步地,在图1B中的S201之前,网络设备向终端设备发送第三配置信息。网络设备可通过RRC信令的方式向终端设备发送第三配置信息。第三配置信息包括DRX-config,DRX-config包括drx-HARQ-RTT-TimerULlist。drx-HARQ-RTT-TimerULlist可配置多个数值,每个数值的单位为符号。比如,drx-HARQ-RTT-TimerULlist={28,98,168,238}。
以一个DCI调度4个PUSCH为例,DCI通过drx-HARQ-RTT-TimerULlist中分别为这4个PUSCH指示对应的drx-HARQ-RTT-TimerUL的时长。示例性地,因为drx-HARQ-RTT-TimerULlist一共有4个数值,指示每个PUSCH的比特数量为log24=2,也就是说一个DCI指示4个PUSCH需要2*4=8个比特。其中,从DCI中指示比特的最高有效位(most significant bit,MSB)到最低有效位(least significant bit,LSB)指示的PUSCH距离DCI由近到远。例如,当DCI指示drx-HARQ-RTT-TimerUL的十二字段取值为‘11100100’时,前2个比特“11”为3,指示drx-HARQ-RTT-TimerULlist从左至右的第4个数值238(drx-HARQ-RTT-TimerULlist中以0为起始编号,因此编号3对应从左至右第4个数值), 也即图7B中drx-HARQ-RTT-TimerUL 210的时长为238个符号。之后的2个比特‘10’为2,指示drx-HARQ-RTT-TimerULlist从左至右的第3个数值168,也即图7B中drx-HARQ-RTT-TimerUL 220的时长为168个符号;再之后的2个比特“01”为1,指示drx-HARQ-RTT-TimerULlist从左至右的第2个数值98,也即图7B中drx-HARQ-RTT-TimerUL 230的时长为98个符号;最后的2个比特“00”为0,指示drx-HARQ-RTT-TimerULlist从左至右的第1个数值28,也即图7B中drx-HARQ-RTT-TimerUL240的时长为28个符号。
这样,终端设备就获悉了各个PUSCH对应的drx-HARQ-RTT-TimerUL的时长。
由于时长、起始时间单元和终止时间单元三者中获悉两者即可掌握,因此可以有多种组合方式。
比如,在本实施例中,DCI还指示:在n个连续的上行时隙中第i个上行时隙对应的drx-HARQ-RTT-TimerUL的起始时刻为第i个上行时隙所传输的PUSCH的下一个相邻符号;其中,i为小于或等于n的正整数。结合DCI通过drx-HARQ-RTT-TimerULlist中分别为这4个PUSCH指示对应的drx-HARQ-RTT-TimerUL的时长。这样,终端设备就获悉了各个PUSCH对应的drx-HARQ-RTT-TimerUL的起始时间单元和时长,从而终端设备就获悉了各个PUSCH对应的drx-HARQ-RTT-TimerUL的起始时间单元、时长和终止时间单元。网络设备也获悉了上述内容。
再比如,在本实施例中,DCI还指示:在n个连续的上行时隙中第i个上行时隙对应的drx-HARQ-RTT-TimerUL的结束时刻为第n个上行时隙对应的drx-HARQ-RTT-TimerUL的结束时刻;其中,i为小于或等于n的正整数。结合DCI通过drx-HARQ-RTT-TimerULlist中分别为这4个PUSCH指示对应的drx-HARQ-RTT-TimerUL的时长。这样,终端设备就获悉了各个PUSCH对应的drx-HARQ-RTT-TimerUL的终止时间单元和时长,从而终端设备就获悉了各个PUSCH对应的drx-HARQ-RTT-TimerUL的起始时间单元、时长和终止时间单元。网络设备也获悉了上述内容。
需要说明的是,在本申请的各个实施例中,n个连续的上行时隙仅为一种示例,n个不连续的上行时隙也适用本实施例。对于n个不连续的上行时隙,仅在上述n个连续的上行时隙的实施方式中,将“n个连续的上行时隙”替换为“n个不连续的上行时隙”即可。
采用本申请提供的技术方案,终端设备在运行XR业务、云游戏业务等业务进行上行传输时,终端设备的功耗会降低。进一步地,终端设备在运行其他业务时,仍可兼容以往的控制机制。
在没有特别说明的情况下,本申请提供的上述各个实施例的全部或任意部分,均可以自由地组合,组合后的技术方案也在本申请的范围内。
本申请实施例提供的方法适用于以下的电子设备。示例性地,图8为本申请提供的一种电子设备800。示例性地,电子设备800包括至少一个处理器810和存储器820。其中,处理器810与存储器820耦合,本申请实施例中的耦合可以是通信连接,可以是电连接,或其它的形式。具体的,存储器820用于存储程序指令。处理器810用于调用存储器820中存储的程序指令,使得电子设备800执行本申请实施例提供的方法中由电子设备所执行的步骤。应理解,该电子设备800可以用于实现本申请实施例提供的方法,相关特征可以参照上文,此处不再赘述。电子设备800可以为上述的网络设备和终端设备中的至少一个。
本申请的实施例还提供了一种芯片,该芯片可以包括输入接口、输出接口和处理电路。在本申请的实施例中,可以由输入接口和输出接口完成信令或数据的交互,由处理电路完成信令或数据信息的生成以及处理。
本申请的实施例还提供了一种芯片系统,包括处理器,用于支持计算设备以实现上述任一实施例中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,用于存储必要的程序指令和数据,当处理器运行该程序指令时,使得安装该芯片系统的设备实现上述任一实施例中所涉及的方法。示例性地,该芯片系统可以由一个或多个芯片构成,也可以包含芯片和其他分立器件。
本申请的实施例还提供了一种处理器,用于与存储器耦合,存储器存储有指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
本申请的实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及的方法和功能。
本申请的实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
通常,本申请的各种实施例可以以硬件或专用电路、软件、逻辑或其任何组合来实现。一些方面可以用硬件实现,而其他方面可以用固件或软件实现,其可以由控制器,微处理器或其他计算设备执行。虽然本申请的实施例的各个方面被示出并描述为框图,流程图或使用一些其他图示表示,但是应当理解,本文描述的框,装置、系统、技术或方法可以实现为,如非限制性示例,硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某种组合。
本申请还提供有形地存储在非暂时性计算机可读存储介质上的至少一个计算机程序产品。该计算机程序产品包括计算机可执行指令,例如包括在程序模块中的指令,其在目标的真实或虚拟处理器上的设备中执行,以执行如上参考附图的过程/方法。通常,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、库、对象、类、组件、数据结构等。在各种实施例中,可以根据需要在程序模块之间组合或分割程序模块的功能。用于程序模块的机器可执行指令可以在本地或分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质中。
用于实现本申请的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本申请的上下文中,计算机程序代码或者相关数据可以由任意适当载体包括,以使得设备、装置或者处理器能够执行上文描述的各种处理和操作。载体的示例包括信号、计算机可读介质、等等。信号的示例可以包括电、光、无线电、声音或其它形式的传播信号,诸如载波、红外信号等。
计算机可读介质可以是包含或存储用于或有关于指令执行系统、装置或设备的程序的任何有形介质。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体系统、装置或设备,或其任意合适的组合。计算机可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
此外,尽管在附图中以特定顺序描述了本申请的方法的操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤组合为一个步骤执行,和/或将一个步骤分解为多个步骤执行。还应当注意,根据本申请的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
本申请实施例中,如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个或两个以上(包含两个)。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。术语“连接”包括直接连接和间接连接,除非另外说明。“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
在本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计 方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。
以上已经描述了本申请的各实现,上述说明是示例性的,并非穷尽的,并且也不限于所公开的各实现。在不偏离所说明的各实现的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在很好地解释各实现的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文公开的各个实施方式。

Claims (60)

  1. 一种上行传输方法,应用于终端设备,所述终端设备被配置连接态非连续接收C-DRX,其特征在于,所述方法包括:
    获取来自网络设备的授权,所述授权指示所述终端设备在n个上行时间单元上分别传输n个物理上行共享信道PUSCH;
    在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,所述终端设备不开启第一混合自动重传请求往返时间上行定时器drx-HARQ-RTT-TimerUL;
    其中,所述n个上行时间单元包括所述第1个上行时间单元和所述第n-m-1个上行时间单元,m为小于n-1的非负整数;所述第一drx-HARQ-RTT-TimerUL与所述第一PUSCH对应;在所述n个上行时间单元中序号越高的上行时间单元越晚;所述n个PUSCH包括所述第一PUSCH。
  2. 根据权利要求1所述的方法,其特征在于,所述方法包括:
    所述第一drx-HARQ-RTT-TimerUL为所述第一PUSCH对应的混合自动重传请求HARQ进程的drx-HARQ-RTT-TimerUL。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法包括:
    在第n-m个上行时间单元至第n个上行时间单元中的第i个上行时间单元上传输第二PUSCH,所述终端设备在所述第二PUSCH的下一相邻符号开启第二drx-HARQ-RTT-TimerUL;
    其中,所述n个上行时间单元包括所述第n-m个上行时间单元和所述第n个上行时间单元,所述第二PUSCH与所述第二drx-HARQ-RTT-TimerUL对应,i为大于或等于n-m,且小于或等于n的任意正整数;所述n个PUSCH包括所述第二PUSCH。
  4. 根据权利要求3所述的方法,其特征在于,所述方法包括:
    在所述第n-m个上行时间单元至所述第n个上行时间单元中的第j个上行时间单元上传输第三PUSCH,所述终端设备在所述第三PUSCH的下一相邻符号开启第三drx-HARQ-RTT-TimerUL;
    其中,所述第三PUSCH与所述第三drx-HARQ-RTT-TimerUL对应;j为大于或等于n-m,且小于或等于n,并且不等于i的任意正整数;所述n个PUSCH包括所述第三PUSCH。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法包括:
    在所述第i个上行时间单元上传输所述第二PUSCH后,且所述第二drx-HARQ-RTT-TimerUL超时后,所述终端设备开启所述第二PUSCH对应的第二上行重传定时器drx-RetransmissionTimerUL。
  6. 根据权利要求1-5中任意一项所述的方法,其特征在于,所述n个上行时间单元为同一个配置上行授权CG周期的n个连续的上行时间单元,所述上行时间单元包括上行时隙或上行符号;
    获取来自网络设备的授权,包括:
    接收来自所述网络设备的第一配置信息,所述第一配置信息用于配置配置授权免调度,所述配置授权免调度指示CG周期,所述CG周期为所述网络设备向所述终端设备授权的相邻两组PUSCH中各组第一个PUSCH之间的时间间隔;
    所述配置授权免调度还指示所述CG周期所包含的连续的上行时间单元的个数n,n为所述各组上行时间单元的个数;
    根据所述第一配置信息,获取来自所述网络设备的所述授权。
  7. 根据权利要求6所述的方法,其特征在于,所述方法包括:
    所述第一配置信息还包括第一字段;
    当所述第一字段为第一值时,在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输所述第一PUSCH后,所述终端设备不开启所述第一drx-HARQ-RTT-TimerUL;或者,
    在所述第一字段为第二值时,在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上传输所述第一PUSCH后,所述终端设备在所述第一PUSCH的下一相邻符号开启所述第一drx-HARQ-RTT-TimerUL。
  8. 根据权利要求7所述的方法,其特征在于,所述方法包括:
    当所述第一字段为第一值时,在所述第n-m个上行时间单元至所述第n个上行时间单元中的所述第i个上行时间单元上传输所述第二PUSCH,所述终端设备在所述第二PUSCH的下一相邻符号开启所述第二drx-HARQ-RTT-TimerUL。
  9. 根据权利要求6-8中任意一项所述的方法,其特征在于,所述第一配置信息还指示第一时长和所述第一起始时刻,所述第一时长为静默定时器drx-silenceTimerUL的时长,所述第一起始时刻指示所述drx-silenceTimerUL的起始时刻,所述第一起始时刻为每个CG周期的所述n个上行时间单元中第1个上行时间单元所传输PUSCH的起始时刻,所述drx-silenceTimerUL的结束时刻早于所述第n-m-1个上行时间单元所传输PUSCH的起始时刻。
  10. 根据权利要求6-9中任意一项所述的方法,其特征在于,
    获取来自网络设备的授权,包括:
    从所述第一配置信息中获取所述n个上行时间单元;
    在所述n个上行时间单元中的前k个中的任意一个上行时间单元上,向网络设备发送第三控制信息,所述第三控制信息指示将n的取值更新为k,其中k为小于n的正整数;
    获取取值更新后的n个上行时间单元;
    根据所述第一配置信息,获取来自所述网络设备的所述授权。
  11. 根据权利要求1-5中任意一项所述的方法,其特征在于,
    获取来自网络设备的授权,包括:
    接收到来自所述网络设备的第二控制信息,所述第二控制信息指示所述n个PUSCH分别在所述n个上行时间单元上传输;
    根据所述第二控制信息,获取来自所述网络设备的所述授权;
    所述方法包括:
    在所述终端设备接收到来自网络设备的第二控制信息之前,所述终端设备接收到来自网络设备的第四配置信息,所述第四配置信息包括上行时域资源分配表,所述上行时域资源分配表包括至少一个行索引,所述至少一个行索引的每个行索引分别对应至少一个上行时间单元;
    所述第二控制信息包括第一行索引,所述第一行索引与所述第二行索引对应,所述第二行索引为所述上行时域资源分配列表中的至少一个行索引,n为所述第二行索引所对应的上行时间单元的数量,所述第二行索引的数值为所述第一行索引的数值加1。
  12. 根据权利要求11所述的方法,其特征在于,所述方法包括:
    所述第二控制信息包括第十字段;
    当所述第十字段为第一值时,在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,所述终端设备不开启所述第一drx-HARQ-RTT-TimerUL;或者,
    当所述第十字段为第二值时,在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上传输所述第一PUSCH后,所述终端设备在所述第一PUSCH的下一相邻符号开启所述第一drx-HARQ-RTT-TimerUL。
  13. 根据权利要求12所述的方法,其特征在于,所述方法包括:
    当所述第十字段为第一值时,在所述第n-m个上行时间单元至所述第n个上行时间单元中的第i个上行时间单元上传输第二PUSCH后,所述终端设备在所述第二PUSCH的下一相邻符号开启所述第二drx-HARQ-RTT-TimerUL;其中i为大于或等于n-m,且小于或等于n的任意正整数。
  14. 根据权利要求11所述的方法,其特征在于,所述方法包括:
    所述第四配置信息包括第十一字段;
    当所述第十一字段为第一值时,在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,所述终端设备不开启所述第一drx-HARQ-RTT-TimerUL;或者,
    当所述第十一字段为第二值时,在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,所述终端设备在所述第一PUSCH的下一相邻符号开启所述第一drx-HARQ-RTT-TimerUL。
  15. 根据权利要求14所述的方法,其特征在于,所述方法包括:
    当所述第十一字段为第一值时,在所述第n-m个上行时间单元至所述第n个上行时间单元中的第i个上行时间单元上传输所述第二PUSCH,且在所述第二PUSCH的下一相邻符号开启所述第二drx-HARQ-RTT-TimerUL;其中i为大于或等于n-m,且小于或等于n的任意正整数。
  16. 根据权利要求1-13中任意一项所述的方法,其特征在于,m=0。
  17. 一种上行传输方法,应用于终端设备,所述终端设备被配置连接态非连续接收C-DRX,其特征在于,所述方法包括:
    获取来自网络设备的授权,所述授权指示所述终端设备在n个上行时间单元上分别传输n个物理上行共享信道PUSCH;
    在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在所述第一PUSCH对应的第一混合自动重传请求往返时间上行定时器drx-HARQ-RTT-TimerUL超时后,所述终端设备不开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;
    其中,所述n个上行时间单元包括所述第1个上行时间单元和所述第n-m-1个上行时间单元,m为小于n-1的非负整数;在所述n个上行时间单元中序号越高的上行时间单元越晚;所述n个PUSCH包括所述第一PUSCH。
  18. 根据权利要求17所述的方法,其特征在于,在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在所述第一PUSCH对应的第一混合自动重传请求往返时间上行定时器drx-HARQ-RTT-TimerUL超时,包括:
    在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后的下一相邻符号,开启所述第一PUSCH对应的第一drx-HARQ-RTT-TimerUL,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时。
  19. 根据权利要求17或18所述的方法,其特征在于,所述方法包括:
    所述第一drx-HARQ-RTT-TimerUL为所述第一PUSCH对应的混合自动重传请求HARQ进程的drx-HARQ-RTT-TimerUL;
    所述第一drx-RetransmissionTimerUL为所述第一PUSCH对应的HARQ进程的drx-RetransmissionTimerUL。
  20. 根据权利要求17-19中任意一项所述的方法,其特征在于,所述方法包括:
    所述终端设备在第n-m个上行时间单元至第n个上行时间单元中的第i个上行时间单元上传输第二PUSCH,且在所述第二PUSCH对应的第二drx-HARQ-RTT-TimerUL超时后的下一相邻符号,开启所述第二PUSCH对应的第二drx-RetransmissionTimerUL;
    其中,所述n个上行时间单元包括所述第n-m个上行时间单元和所述第n个上行时间单元,i为大于或等于n-m,且小于或等于n的任意正整数,所述n个PUSCH包括所述第二PUSCH。
  21. 根据权利要求20所述的方法,其特征在于,所述方法包括:
    所述终端设备在第n-m个上行时间单元至第n个上行时间单元中的第j个上行时间单元上传输第三PUSCH,且在所述第三PUSCH对应的第三drx-HARQ-RTT-TimerUL超时后的下一相邻符号,开启所述第三PUSCH对应的第三drx-RetransmissionTimerUL;
    其中,j为大于或等于n-m,且小于或等于n,并且不等于i的任意正整数,所述n个PUSCH包括所述第三PUSCH。
  22. 根据权利要求17-21中任意一项所述的方法,其特征在于,所述n个上行时间单元为n个连续的上行时间单元,所述上行时间单元包括上行时隙或上行符号;
    获取来自网络设备的授权,包括:
    接收来自所述网络设备的第一配置信息,所述第一配置信息用于配置配置授权免调度,所述配置授权免调度指示CG周期,所述CG周期为所述网络设备向所述终端设备授权的相邻两组PUSCH中各组第一个PUSCH之间的时间间隔;
    所述配置授权免调度还指示所述CG周期所包含的连续的上行时间单元的个数n,n为所述各组上行时间单元的个数;
    根据所述第一配置信息,获取来自所述网络设备的所述授权。
  23. 根据权利要求22所述的方法,其特征在于,所述方法包括:
    所述第一配置信息还包括第一字段;
    当所述第一字段为第一值时,所述终端设备在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输所述第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后,所述终端设备不开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,
    当所述第一字段为第二值时,所述终端设备在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上传输所述第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,所述终端设备开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第一配置信息还指示第一时长和所述第一起始时刻,所述第一时长为静默定时器drx-silenceTimerUL的时长,所述第一起始时刻指示所述drx-silenceTimerUL的起始时刻,所述第一起始时刻为每个CG周期的所述n个上行时间单元中第1个上行时间单元所传输PUSCH的起始时刻,所述drx-silenceTimerUL的结束时刻早于所述第n-m-1个上行时间单元所传输PUSCH的起始时刻。
  25. 根据权利要求22-24中任意一项所述的方法,其特征在于,
    获取来自网络设备的授权,包括:
    从所述第一配置信息中获取所述n个上行时间单元;
    在所述n个上行时间单元中的前k个中的任意一个上行时间单元上,向网络设备发送第三控制信息,所述第三控制信息指示将n的取值更新为k,其中k为小于n的正整数;
    获取取值更新后的n个上行时间单元;
    根据所述第一配置信息,获取来自所述网络设备的所述授权。
  26. 根据权利要求17-21中任意一项所述的方法,其特征在于,
    获取来自网络设备的授权,包括:
    接收到来自所述网络设备的第二控制信息,所述第二控制信息指示所述n个PUSCH分别在所述n个上行时间单元上传输;
    根据所述第二控制信息,获取来自所述网络设备的所述授权;
    所述方法包括:
    在所述终端设备接收到来自网络设备的第二控制信息之前,所述终端设备接收到来自网络设备的第四配置信息,所述第四配置信息包括上行时域资源分配表,所述上行时域资源分配表包括至少一个行索引,所述至少一个行索引的每个行索引分别对应至少一个上行时间单元;
    所述第二控制信息包括第一行索引,所述第一行索引与所述第二行索引对应,所述第二行索引为所述上行时域资源分配列表中的至少一个行索引,n为所述第二行索引所对应的上行时间单元的数量,所述第二行索引的数值为所述第一行索引的数值加1。
  27. 根据权利要求26所述的方法,其特征在于,所述方法包括:
    所述第二控制信息包括第十字段;
    当所述第十字段为第一值时,所述终端设备在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后,所述终端设备不开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,
    当所述第十字段为第二值时,所述终端设备在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,所述终端设备开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
  28. 根据权利要求26所述的方法,其特征在于,所述方法包括:
    所述第四配置信息包括第十一字段;
    当所述第十一字段为第一值时,所述终端设备在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后,所述终端设备不开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,
    当所述第十一字段为第二值时,所述终端设备在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上传输第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,所述终端设备开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
  29. 根据权利要求17-28中任意一项所述的方法,其特征在于,m=0。
  30. 一种上行传输方法,应用于网络设备,所述网络设备被配置连接态非连续接收C-DRX,其特征在于,所述方法包括:
    授权终端设备在n个上行时间单元上分别传输n个物理上行共享信道PUSCH;
    所述网络设备在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,所述网络设备不开启第一混合自动重传请求往返时间上行定时器drx-HARQ-RTT-TimerUL;
    其中,所述n个上行时间单元包括所述第1个上行时间单元和所述第n-m-1个上行时间单元,m为小于n-1的非负整数;所述第一drx-HARQ-RTT-TimerUL与所述第一PUSCH对应;在所述n个上行时间单元中序号越高的上行时间单元越晚;所述n个PUSCH包括所述第一PUSCH。
  31. 根据权利要求30所述的方法,其特征在于,所述方法包括:
    在第n-m个上行时间单元至第n个上行时间单元中的第i个上行时间单元上接收第二PUSCH,在所述第二PUSCH的下一相邻符号开启第二drx-HARQ-RTT-TimerUL;
    其中,所述n个上行时间单元包括所述第n-m个上行时间单元和所述第n个上行时间单元;所述第二PUSCH与所述第二drx-HARQ-RTT-TimerUL对应;i为大于或等于n-m,且小于或等于n的任意正整数;所述n个PUSCH包括所述第二PUSCH。
  32. 根据权利要求31所述的方法,其特征在于,所述方法包括:
    在所述第n-m个上行时间单元至所述第n个上行时间单元中的第j个上行时间单元上接收第三PUSCH,在所述第三PUSCH的下一相邻符号开启第三drx-HARQ-RTT-TimerUL;
    其中,所述第三PUSCH与所述第三drx-HARQ-RTT-TimerUL对应;j为大于或等于n-m,且小于或等于n,并且不等于i的任意正整数;所述n个PUSCH包括所述第三PUSCH。
  33. 根据权利要求30-32中任意一项所述的方法,其特征在于,所述n个上行时间单元为n个连续的上行时间单元,所述上行时间单元包括上行时隙或上行符号;
    授权终端设备在n个上行时间单元上分别传输n个PUSCH,包括:
    向终端设备发送第一配置信息,所述第一配置信息用于配置配置授权免调度,所述配置授权免调度指示CG周期,所述CG周期为所述网络设备向所述终端设备授权的相邻两组PUSCH中各组第一个PUSCH之间的时间间隔;
    所述配置授权免调度还指示所述CG周期所包含的连续的上行时间单元的个数n,n为所述各组上行时间单元的个数;
    所述第一配置信息还用于授权终端设备在n个上行时间单元上分别传输n个PUSCH。
  34. 根据权利要求33所述的方法,其特征在于,所述方法包括:
    所述第一配置信息还包括第一字段;
    当所述第一字段为第一值时,在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收所述第一PUSCH后,所述网络设备不开启所述第一drx-HARQ-RTT-TimerUL;或者,
    在所述第一字段为第二值时,在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上接收所述第一PUSCH后,所述网络设备在所述第一PUSCH的下一相邻符号开启所述第一drx-HARQ-RTT-TimerUL。
  35. 根据权利要求34所述的方法,其特征在于,所述方法包括:
    当所述第一字段为第一值时,在所述第n-m个上行时间单元至所述第n个上行时间单元中的所述第i个上行时间单元上接收第二PUSCH,所述网络设备在所述第二PUSCH的下一相邻符号开启所述第二drx-HARQ-RTT-TimerUL。
  36. 根据权利要求33-35中任意一项所述的方法,其特征在于,所述第一配置信息还指示第一时长和所述第一起始时刻,所述第一时长为静默定时器drx-silenceTimerUL的时长,所述第一起始时刻指示所述drx-silenceTimerUL的起始时刻,所述第一起始时刻为每个CG周期的所述n个上行时间单元中第1个上行时间单元所传输PUSCH的起始时刻,所述drx-silenceTimerUL的结束时刻早于所述第n-m-1个上行时间单元所传输PUSCH的起始时刻。
  37. 根据权利要求30-32中任意一项所述的方法,其特征在于,
    授权终端设备在n个上行时间单元上分别传输n个物理上行共享信道PUSCH,包括:
    向所述终端设备发送第一配置信息,所述第一配置信息包括所述n个上行时间单元;
    接收到来自所述终端设备的第三控制信息,所述第三控制信息指示将n的取值更新为k,其中k为小于n的正整数;
    将n的取值更新为k。
  38. 根据权利要求30-32中任意一项所述的方法,其特征在于,
    授权终端设备在n个上行时间单元上分别传输n个PUSCH,包括:
    向所述终端设备发送第二控制信息,所述第二控制信息指示所述终端设备分别在所述n个上行时间单元上传输n个PUSCH;
    所述第二控制信息还用于授权终端设备在n个上行时间单元上分别传输n个PUSCH;
    所述方法包括:
    在向所述终端设备发送所述第二控制信息之前,所述网络设备向所述终端设备发送第四配置信息,所述第四配置信息包括上行时域资源分配表,所述上行时域资源分配表包括至少一个行索引,所述至少一个行索引的每个行索引分别对应至少一个上行时间单元;
    所述第二控制信息包括第一行索引,所述第一行索引与所述第二行索引对应,所述第二行索引为所述上行时域资源分配列表中的至少一个行索引,n为所述第二行索引所对应的上行时间单元的数量,所述第二行索引的数值为所述第一行索引的数值加1。
  39. 根据权利要求38所述的方法,其特征在于,所述方法包括:
    所述第二控制信息包括第十字段;
    当所述第十字段为第一值时,在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,所述网络设备不开启所述第一drx-HARQ-RTT-TimerUL;或者,
    当所述第十字段为第二值时,在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,所述网络设备在所述第一PUSCH的下一相邻符号开启所述第一drx-HARQ-RTT-TimerUL。
  40. 根据权利要求32所述的方法,其特征在于,所述方法包括:
    所述第四配置信息包括第十一字段;
    当所述第十一字段为第一值时,在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,所述网络设备不开启所述第一drx-HARQ-RTT-TimerUL;或者,
    当所述第十一字段为第二值时,在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,所述网络设备在所述第一PUSCH的下一相邻符号开启所述第一drx-HARQ-RTT-TimerUL。
  41. 一种上行传输方法,应用于网络设备,所述网络设备被配置连接态非连续接收C-DRX,其特征在于,所述方法包括:
    授权终端设备在n个上行时间单元上分别传输n个物理上行共享信道PUSCH;
    在第1个上行时间单元至第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在所述第一PUSCH对应的第一混合自动重传请求往返时间上行定时器 drx-HARQ-RTT-TimerUL超时后,所述网络设备不开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;
    其中,所述n个上行时间单元包括所述第1个上行时间单元和所述第n-m-1个上行时间单元,m为小于n-1的非负整数;在所述n个上行时间单元中序号越高的上行时间单元越晚;所述n个PUSCH包括所述第一PUSCH。
  42. 根据权利要求41所述的方法,其特征在于,所述方法包括:
    所述第一drx-HARQ-RTT-TimerUL为所述第一PUSCH对应的混合自动重传请求HARQ进程的drx-HARQ-RTT-TimerUL;
    所述第一drx-RetransmissionTimerUL为所述第一PUSCH对应的HARQ进程的drx-RetransmissionTimerUL。
  43. 根据权利要求41或42所述的方法,其特征在于,所述方法包括:
    在第n-m个上行时间单元至第n个上行时间单元中的第i个上行时间单元上接收第二PUSCH,且在所述第二PUSCH对应的第二drx-HARQ-RTT-TimerUL超时后的下一相邻符号,所述网络设备开启所述第二PUSCH对应的第二drx-RetransmissionTimerUL;
    其中,所述n个上行时间单元包括所述第n-m个上行时间单元和所述第n个上行时间单元;i为大于或等于n-m,且小于或等于n的任意正整数;所述n个PUSCH包括所述第二PUSCH。
  44. 根据权利要求43所述的方法,其特征在于,所述方法包括:
    在第n-m个上行时间单元至第n个上行时间单元中的第j个上行时间单元上传输第三PUSCH,且在所述第三PUSCH对应的第三drx-HARQ-RTT-TimerUL超时后的下一相邻符号,所述网络设备开启所述第三PUSCH对应的第三drx-RetransmissionTimerUL;
    其中,j为大于或等于n-m,且小于或等于n,并且不等于i的任意正整数;所述n个PUSCH包括所述第三PUSCH。
  45. 根据权利要求41-44中任意一项所述的方法,其特征在于,所述n个上行时间单元为n个连续的上行时间单元,所述上行时间单元包括上行时隙或上行符号;
    授权终端设备在n个上行时间单元上分别传输n个PUSCH,包括:
    向终端设备发送第一配置信息,所述第一配置信息用于配置配置授权免调度,所述配置授权免调度指示CG周期,所述CG周期为所述网络设备向所述终端设备授权的相邻两组PUSCH中各组第一个PUSCH之间的时间间隔;
    所述配置授权免调度还指示所述CG周期所包含的连续的上行时间单元的个数n,n为所述各组上行时间单元的个数;
    所述第一配置信息还用于授权终端设备在n个上行时间单元上分别传输n个PUSCH。
  46. 根据权利要求45所述的方法,其特征在于,所述方法包括:
    所述第一配置信息还包括第一字段;
    当所述第一字段为第一值时,在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后,所述网络设备不开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,
    当所述第一字段为第二值时,在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,所述网络设备开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
  47. 根据权利要求45或46所述的方法,其特征在于,所述第一配置信息还指示第一时长和所述第一起始时刻,所述第一时长为静默定时器drx-silenceTimerUL的时长,所述第一起始时刻指示所述drx-silenceTimerUL的起始时刻,所述第一起始时刻为每个CG周期的所述n个上行时间单元中第1个上行时间单元所传输PUSCH的起始时刻,所述drx-silenceTimerUL的结束时刻早于所述第n-m-1个上行时间单元所传输PUSCH的起始时刻。
  48. 根据权利要求41-47中任意一项所述的方法,其特征在于,
    授权终端设备在n个上行时间单元上分别传输n个物理上行共享信道PUSCH,包括:
    向所述终端设备发送第一配置信息,所述第一配置信息包括所述n个上行时间单元;
    接收到来自所述终端设备的第三控制信息,所述第三控制信息指示将n的取值更新为k,其中k为小于n的正整数;
    将n的取值更新为k。
  49. 根据权利要求41-47中任意一项所述的方法,其特征在于,
    授权终端设备在n个上行时间单元上分别传输n个PUSCH,包括:
    向所述终端设备发送第二控制信息,所述第二控制信息指示所述终端设备分别在所述n个上行时间单元上传输n个PUSCH;
    所述第二控制信息还用于授权终端设备在n个上行时间单元上分别传输n个PUSCH;
    所述方法包括:
    在向所述终端设备发送所述第二控制信息之前,所述网络设备向所述终端设备发送第四配置信息,所述第四配置信息包括上行时域资源分配表,所述上行时域资源分配表包括至少一个行索引,所述至少一个行索引的每个行索引分别对应至少一个上行时间单元;
    所述第二控制信息包括第一行索引,所述第一行索引与所述第二行索引对应,所述第二行索引为所述上行时域资源分配列表中的至少一个行索引,n为所述第二行索引所对应的上行时间单元的数量,所述第二行索引的数值为所述第一行索引的数值加1。
  50. 根据权利要求49所述的方法,其特征在于,所述方法包括:
    所述第二控制信息包括第十字段;
    当所述第十字段为第一值时,在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后,所述网络设备不开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,
    当所述第十字段为第二值时,在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,所述网络设备开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
  51. 根据权利要求49所述的方法,其特征在于,所述方法包括:
    所述第四配置信息包括第十一字段;
    当所述第十一字段为第一值时,在所述第1个上行时间单元至所述第n-m-1个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后,所述网络设备不开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL;或者,
    当所述第十一字段为第二值时,在所述第1个上行时间单元至所述第n个上行时间单元中的任意一个或多个上行时间单元上接收第一PUSCH后,且在所述第一PUSCH对应的所述第一drx-HARQ-RTT-TimerUL超时后的下一相邻符号,所述网络设备开启所述第一PUSCH对应的第一上行重传定时器drx-RetransmissionTimerUL。
  52. 一种终端设备,所述终端设备包括处理器和存储器,所述存储器存储有计算机程序,当所述计算机程序被所述处理器运行时,使得所述终端设备执行如权利要求1-29中任意一项所述的方法。
  53. 一种网络设备,所述网络设备包括处理器和存储器,所述存储器存储有计算机程序,当所述计算机程序被所述处理器运行时,使得所述网络设备执行如权利要求30-51中任意一项所述的方法。
  54. 一种计算机可读存储介质,存储有计算机程序,其特征在于,当所述计算机程序在终端设备上运行时,使得所述终端设备执行如权利要求1-29中任意一项所述的方法。
  55. 一种计算机可读存储介质,存储有计算机程序,其特征在于,当所述计算机程序在网络设备上运行时,使得所述网络设备执行如权利要求30-51中任意一项所述的方法。
  56. 一种计算机程序产品,存储在计算机可读存储介质上,其特征在于,在所述计算机程序产品在终端设备上运行时,使得所述终端设备执行如权利要求1-29中任意一项所述的方法。
  57. 一种计算机程序产品,存储在计算机可读存储介质上,其特征在于,在所述计算机程序产品在网络设备上运行时,使得所述网络设备执行如权利要求30-51中任意一项所述的方法。
  58. 一种芯片,包括处理器和耦合至所述处理器的存储器,其特征在于,所述存储器存储有计算机程序,所述芯片位于终端设备内,当所述处理器执行所述计算机程序时,使得所述终端设备执行如权利要求1-29中任意一项所述的方法。
  59. 一种芯片,包括处理器和耦合至所述处理器的存储器,其特征在于,所述存储器存储有计算机程序,所述芯片位于网络设备内,当所述处理器执行所述计算机程序时,使得所述网络设备执行如权利要求30-51中任意一项所述的方法。
  60. 一种通信系统,其特征在于,所述通信系统包括终端设备和网络设备,所述终端设备用于执行如权利要求1-29中任意一项所述的方法,所述网络设备用于执行如权利要求30-51中任意一项所述的方法。
PCT/CN2023/111400 2022-08-24 2023-08-07 一种通信方法和装置 WO2024041356A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211020641 2022-08-24
CN202211020641.4 2022-08-24
CN202211216354.0 2022-09-30
CN202211216354.0A CN117641625A (zh) 2022-08-24 2022-09-30 一种上行传输方法、终端设备及网络设备

Publications (1)

Publication Number Publication Date
WO2024041356A1 true WO2024041356A1 (zh) 2024-02-29

Family

ID=90012493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111400 WO2024041356A1 (zh) 2022-08-24 2023-08-07 一种通信方法和装置

Country Status (1)

Country Link
WO (1) WO2024041356A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757436A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种非连续接收的方法及设备
WO2021087886A1 (zh) * 2019-11-07 2021-05-14 Oppo广东移动通信有限公司 定时器设置方法及相关设备
CN113597814A (zh) * 2021-06-16 2021-11-02 北京小米移动软件有限公司 Drx定时器的启动方法、装置、通信设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757436A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种非连续接收的方法及设备
WO2021087886A1 (zh) * 2019-11-07 2021-05-14 Oppo广东移动通信有限公司 定时器设置方法及相关设备
CN113597814A (zh) * 2021-06-16 2021-11-02 北京小米移动软件有限公司 Drx定时器的启动方法、装置、通信设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Remaining issues on disabling uplink HARQ retransmission", 3GPP DRAFT; R2-2109631, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052066109 *

Similar Documents

Publication Publication Date Title
US11968623B2 (en) Method and apparatus having a discontinuous reception configuration
WO2019192342A1 (zh) 非连续接收的通信方法、装置、通信设备和通信系统
US11197320B2 (en) Uplink transmission resource scheduling method and device, and uplink transmission method and device
KR101746525B1 (ko) 멀티 캐리어 구조를 사용하는 이동통신 시스템에서의 단말기 전력소모 감소 방법
WO2015010595A1 (zh) 在无线通信系统中进行动态上行配置的方法、基站和终端
WO2020107235A1 (zh) 终端唤醒控制方法、装置及存储介质
CN113170498A (zh) 用于针对被配置sps和drx的ue启用下行链路调度的方法和网络节点
WO2021031301A1 (zh) 信号发送和接收方法以及装置
CN113906791A (zh) 收发器设备和调度设备
US10764958B2 (en) Transmission apparatus and method of status indication and communication system
US20230300746A1 (en) Adaptive tracking loop updates in user equipment
CN112534916A (zh) 用于进入睡眠模式的交互机制
WO2018196632A1 (zh) 一种上行传输的调度方法、终端和基站
WO2024041356A1 (zh) 一种通信方法和装置
WO2021097648A1 (zh) 检测物理下行控制信道pdcch的方法以及装置
US20240080771A1 (en) Enhanced discontinuous reception and power saving for user equipment
WO2021208794A1 (zh) 一种物理下行控制信道监测的方法及装置
EP4236441A1 (en) Data transmission method and apparatus, and device
CN111867013B (zh) 一种节能及其控制方法及装置
CN117641625A (zh) 一种上行传输方法、终端设备及网络设备
WO2020088455A1 (zh) 通信方法和通信装置
WO2020047759A1 (zh) 一种通信方法及设备
CN111867011B (zh) 一种节能信号的传输方法、网络侧设备及用户设备
WO2022147770A1 (en) Method and apparatus for monitoring physical downlink control channels
CN114640413B (zh) 一种信道监听方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856446

Country of ref document: EP

Kind code of ref document: A1