WO2024041213A1 - 通信方法、装置、系统及存储介质 - Google Patents

通信方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2024041213A1
WO2024041213A1 PCT/CN2023/104920 CN2023104920W WO2024041213A1 WO 2024041213 A1 WO2024041213 A1 WO 2024041213A1 CN 2023104920 W CN2023104920 W CN 2023104920W WO 2024041213 A1 WO2024041213 A1 WO 2024041213A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
network
data
communication
fault
Prior art date
Application number
PCT/CN2023/104920
Other languages
English (en)
French (fr)
Inventor
陈芬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024041213A1 publication Critical patent/WO2024041213A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0659Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities

Definitions

  • the present application relates to the field of communication, and in particular to a communication method, device, system and storage medium.
  • Chain networks are used in monitoring scenarios along power transmission lines, oil and gas pipelines or rivers. For example, take power transmission lines as an example. Power transmission lines are installed on multiple power towers, and nodes are deployed on multiple power towers. For a node deployed on any power tower, the node includes routing equipment and sensor equipment. Wireless connections are established through the routing device with two adjacent nodes before and after the node, so that the nodes deployed on each power tower form a chain network, and the head node of the chain network communicates with the network management device.
  • the sensor device of the node is used to collect data of the surrounding environment of the node.
  • the node sends the data to the head node, the head node forwards the data to the network management device, and the network management device receives the data.
  • the network management equipment can receive data on the surrounding environment of each node in the chain network to monitor the surrounding environment of the power transmission line.
  • the nodes between the location of the fault and the head node can still send data to the head node, and the nodes between the location of the fault and the tail node of the chain network and the head node can still send data to the head node.
  • the communication between the two nodes is interrupted, resulting in the failure of data transmission by the node. Therefore, how to restore the communication of the node when the first network fails is an urgent problem that needs to be solved.
  • This application provides a communication method, device, system and storage medium to restore communication between the node between the fault location and the tail node of the first network when the first network fails.
  • the technical solutions are as follows:
  • this application provides a communication method.
  • the first node communicates with the second node in the second network when the first network fails, and the first network is a chain network, Due to the fault, the first network is divided into a first part including the head node of the first network and communication between the first part and the second part including the first node.
  • the first node sends first data to the second node, and the first data is data belonging to the second part.
  • the first network is divided into a first part and a second part, the communication between the first part and the second part is disconnected, and the first node in the second part communicates with the second node in the second network, In this way, the first node can continue to send data belonging to the second part through the second network, and the communication of the nodes in the second part is restored.
  • the positional relationship between the first node and the second node satisfies a specified condition. This ensures that the first node can successfully communicate with the second node.
  • the specified condition includes one or more of the following: the distance between the first node and the second node is less than a distance threshold, or the altitude difference between the first node and the second node less than the difference threshold. This ensures that the first node can successfully communicate with the second node.
  • the first node obtains the network information of the wireless local area network of the second node.
  • the first node communicates with the second node based on the network information.
  • the first node can establish a wireless connection with the second node through the network information of the wireless local area network, so as to realize the communication connection between the first node and the second node.
  • the first data is data collected by the first node from the environment where the first node is located.
  • the first node receives the first data, and the first data is data collected by nodes other than the first node in the second part from the environment where the node is located.
  • the second part also includes a third node, and the failure is a communication failure between the third node and an upstream neighbor node of the third node.
  • the first node receives the fault identification, which is sent by the third node when detecting that the fault occurs in the first network. In this way, the first node can successfully determine that a fault has occurred in the first network based on the fault identification, so that when the first network fails, it can quickly establish a communication connection with the second node and quickly restore communication.
  • the failure is a communication failure between the first node and an upstream neighbor node of the first node.
  • the first node receives recovery information sent by the second node, where the recovery information is used to indicate that the communication between the first part and the second part returns to normal.
  • the first node sends second data to the head node based on the recovery information.
  • the second data is data belonging to the second part.
  • the first data and the second data are data obtained by the first node at different times. In this way, when the first network returns to normal, the nodes in the second part resume sending data to the network management device through the head node of the first network.
  • the first node is the tail node of the first network, so that when the first network fails, the intermediate nodes located between the fault location and the tail node change the direction of sending data to the tail node.
  • the tail node sends data to simplify the complexity of solution implementation.
  • the second network is a chain network, which is convenient for deployment along power transmission lines, oil and gas pipelines, or rivers.
  • the second node is the tail node of the second network
  • the second network is a chain network
  • the tail node of the second network may be closest to the first node of the first network, thus ensuring that the One node and the second node can successfully communicate.
  • this application provides a communication method.
  • a second node communicates with a first node in a first network, the second node is a node in the second network, and the first network occurs A fault occurs. Due to the fault, the first network is divided into a first part and a second part. The first part includes the head node of the first network. Communication between the first part and the second part is disconnected. The second part includes the first node. The second node receives the first data sent by the first node, and the first data is data belonging to the second part. The second node sends the first data.
  • the first network is divided into a first part and a second part, the communication between the first part and the second part is disconnected, and the second node in the second network is connected to the first node in the second part.
  • Nodes are connected for communication.
  • the second node can receive the first data sent by the first node, and the first data is data belonging to the second part. In this way, the first node can continue to send data belonging to the second part through the second network, and the communication of the nodes in the second part is restored.
  • the positional relationship between the first node and the second node satisfies a specified condition. This ensures that the first node can successfully communicate with the second node.
  • the specified condition includes one or more of the following: the distance between the first node and the second node is less than a distance threshold, or the altitude difference between the first node and the second node less than the difference threshold. This ensures that the first node can successfully communicate with the second node.
  • the second node receives recovery information, and the recovery information is used to indicate that communication between the first part and the second part returns to normal.
  • the second node sends recovery information to the first node.
  • the recovery information is also used to instruct the first node to send second data to the head node.
  • the second data is the data belonging to the second part.
  • the first data and the second data are the first data. Data obtained by nodes at different times. In this way, when the first network returns to normal, the nodes in the second part resume sending data to the network management device through the head node of the first network.
  • the first node is the tail node of the first network, so that when the first network fails, the intermediate nodes located between the fault location and the tail node change the direction of sending data to the tail node.
  • the tail node sends data to simplify the complexity of solution implementation.
  • the second network is a chain network, which is convenient for deployment along power transmission lines, oil and gas pipelines, or rivers.
  • the second node is the tail node of the second network
  • the second network is a chain network
  • the tail node of the second network may be closest to the first node of the first network, thus ensuring that the One node and the second node can successfully communicate.
  • this application provides a communication device for performing the method in the first aspect or any possible implementation of the first aspect.
  • the apparatus includes a unit for performing the method in the first aspect or any possible implementation of the first aspect.
  • this application provides a communication device for performing the method in the second aspect or any possible implementation of the second aspect.
  • the device includes a unit for performing the method in the second aspect or any possible implementation of the second aspect.
  • the present application provides a first node.
  • the first node includes a memory, a processor, and a computer program stored on the memory.
  • the processor executes the computer program
  • the first node A node implements a method in the first aspect or any possible implementation of the first aspect.
  • the present application provides a second node.
  • the second node includes a memory, a processor, and a computer program stored on the memory.
  • the processor executes the computer program
  • the third node The two nodes implement the method of the second aspect or any possible implementation of the second aspect.
  • the present application provides a computer program product.
  • the computer program product includes a computer program stored in a computer-readable storage medium, and the computing program is loaded by a processor to implement the first aspect and the third aspect.
  • the present application provides a computer-readable storage medium for storing computer programs or instructions.
  • the computer programs or instructions are loaded by a processor to implement any of the above-mentioned first aspect, second aspect, and first aspect.
  • the present application provides a chip, including a memory and a processor.
  • the memory is used to store computer instructions
  • the processor is used to call and run the computer instructions from the memory to implement the above-mentioned first aspect, second aspect, and third aspect. Methods of any possible implementation on the one hand or any possible implementation on the second hand.
  • this application provides a communication system, including the communication device described in the third aspect and the communication device described in the fourth aspect, or including the first node described in the fifth aspect and the communication device described in the sixth aspect. the second node.
  • Figure 1 is a schematic structural diagram of a chain network provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a node provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of another node provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of another chain network provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a network architecture provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of another network architecture provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of another network architecture provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another network architecture provided by an embodiment of the present application.
  • Figure 9 is a flow chart of a communication method provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the multiple nodes adopt a multi-level cascade networking method to form a chain network.
  • the nodes in the chain network include a head node, a tail node, and at least one intermediate node between the head node and the tail node.
  • a connection is established between the node and the upstream neighbor node of the node, and the head node of the chain network communicates with the network management device.
  • connection There are two types of connections established between the node and the node's upstream neighbor nodes, and the two types are respectively the following first type and second type.
  • the connection is a wireless connection.
  • the node's upstream neighbor node generates a wireless local area network, the node accesses the wireless local area network, and establishes a wireless connection with the node's upstream neighbor node through the wireless local area network.
  • the node's upstream neighbor node generates a wifi (which can be called a mobile hotspot) network, the node accesses the wifi network, and establishes a wifi connection with the node's upstream neighbor node through the wifi network.
  • a wifi which can be called a mobile hotspot
  • the connection is a wireless connection
  • the position relationship between the node and the node's upstream neighbor node satisfies the specified condition.
  • the specified condition includes one or more of the following: the distance between the node and the node's upstream neighbor node is less than the distance threshold, or the altitude difference between the node and the node's upstream neighbor node is less than the difference value threshold.
  • a wireless connection be successfully established between the node and the node's upstream neighbor node.
  • the wireless connection is a wifi connection and the distance threshold is 2km
  • a wifi connection between the node and the node's upstream neighbor node can only be successfully established when the distance between the node and the node's upstream neighbor node is less than 2km. .
  • the node For any node in the chain network except the head node, after collecting the data, the node sends the data to the network management device. When implemented, the node sends this data to the node's upstream neighbor nodes. If the upstream neighbor node is the head node, the head node forwards the data to the network management device; if the upstream neighbor node is not the head node, the upstream neighbor node sends the data to its own upstream neighbor node. For the head node in the chain network, after collecting the data, the head node directly sends the data to the network management device. Therefore, the data of each node in the chain network except the head node is aggregated to the head node, and is forwarded by the head node to the network management device.
  • the chain network includes node 1, node 2, node 3, node 4 and node 5.
  • Node 1 is the head node and communicates with the network management device
  • node 5 is the tail node
  • the upstream neighbor node of node 5 is node 4.
  • a connection is established between node 5 and node 4.
  • the upstream neighbor node of node 4 is node 3, and a connection is established between node 4 and node 3.
  • the upstream neighbor node of node 3 is node 2, and a connection is established between node 3 and node 2.
  • the upstream neighbor node of node 2 is node 1, and a connection is established between node 2 and node 1.
  • Node 5 collects the environment where node 5 is located and sends the collected data to node 4. The data is received by node 1 after passing through node 4, node 3 and node 2. Node 1 sends the data to the network management device, which receives the data and monitors the environment where node 5 is located based on the data. Node 4, node 3 and node 2 send data to the network management device just like node 5. Node 1 can directly send data to the network device.
  • a node includes a routing device and a sensor device.
  • the sensor device is used to collect the surrounding environment of the node.
  • the routing device is used to send the data collected by the sensor device to the network management device.
  • a connection is established between the routing device included in the node and the routing device included in the upstream neighbor node of the node.
  • the routing device of the node sends the data to the upstream neighbor node of the node through the connection.
  • the routing device of the upstream neighbor node receives the data and then forwards the data toward the network management device.
  • the routing device of the node may include a built-in repeater (RT) and an external RT.
  • the built-in RT is integrated with the sensor device, and the external RT is connected to the built-in RT.
  • the external RT and the built-in RT are connected through a cable.
  • the external RT and the built-in RT are connected through a network cable.
  • the node's built-in RT establishes a connection with an external RT in the node's upstream neighbor node.
  • the external RT included in the upstream neighbor node of the node generates a wireless LAN.
  • the node includes the network information of the wireless LAN.
  • the built-in RT of the node accesses the wireless LAN based on the network information of the wireless LAN and communicates with the wireless LAN through the wireless LAN.
  • the node's upstream neighbor nodes establish a connection.
  • the wireless LAN generated by the external RT of the node's upstream neighbor node is a wifi network
  • the network information of the wifi network includes the name and/or password of the wifi network.
  • the node includes the network information of the wifi network.
  • the node's built-in RT accesses the wifi network based on the network information of the wifi network and establishes a connection with the node's upstream neighbor node through the wifi network.
  • node 1 the structures of node 1, node 2, node 3, node 4 and node 5 of the chain network shown in Figure 1 are the node structures shown in Figures 3 and 4.
  • Node 5 includes network information 4 of wifi network 4 generated by the external RT of node 4.
  • the built-in RT of node 5 accesses wifi network 4 based on network information 4 and passes the wifi network Network 4 establishes wifi connection 4 with node 4.
  • Node 4 includes network information 3 of wifi network 3 generated by the external RT of node 3.
  • the built-in RT of node 4 accesses wifi network 3 based on network information 3, and establishes wifi connection 3 with node 3 through wifi network 3.
  • Node 3 includes network information 2 of wifi network 2 generated by the external RT of node 2.
  • the built-in RT of node 3 accesses wifi network 2 based on network information 2, and establishes wifi connection 2 with node 2 through wifi network 2.
  • Node 2 includes network information 1 of wifi network 1 generated by the external RT of node 1.
  • the built-in RT of node 2 accesses wifi network 1 based on network information 1, and establishes wifi connection 1 with node 1 through wifi network 1.
  • the sensor device of the node is a camera, a temperature sensor or a humidity sensor, etc.
  • the data collected by the camera is an image or video of the surrounding environment of the node
  • the data collected by the temperature sensor is the temperature of the surrounding environment of the node
  • the data collected by the humidity sensor is the humidity of the surrounding environment of the node.
  • Network management equipment is equipment such as servers or terminals.
  • the upstream neighbor node of the node is an intermediate node.
  • the connection established between two adjacent nodes in a chain network is a first type of connection (wireless connection)
  • the upstream neighbor node of the node is an intermediate node.
  • the failure that occurs in the first network is a communication failure between the node and an upstream neighbor node of the node.
  • a wireless connection can be established between the node and the upstream neighbor node of the intermediate node, so that the node, the tail node, and the nodes located between the node and the tail node The nodes in between can continue to send data to the network management equipment.
  • a communication failure between the node and the node's upstream neighbor node may be a failure of the node's upstream neighbor node or a failure of the interface through which the node communicates with the node's upstream neighbor node.
  • node 3 if the position relationship between node 1 and node 3 satisfies the specified condition, node 3 establishes a wireless connection with node 1. Node 3, node 4 and node 5 can also continue to send data to the network management device. If the location relationship between node 1 and node 3 does not meet the specified conditions, node 3 and node 1 cannot establish a wireless connection. Node 3, node 4, and node 5 cannot continue to send data to the network management device, resulting in data sending failure, communication interruption, and low reliability of data transmission.
  • connection established between two adjacent nodes in a chain network is a second type of connection (a connection established on a physical link between the two nodes)
  • the connection between the node and the upstream neighbor node of the node In the event of communication failure, the node, the tail node, and the nodes between the node and the tail node cannot continue to send data to the network management device.
  • the communication failure between the node and the node's upstream neighbor node may be the failure of the node's upstream neighbor node, the failure of the physical link between the node and the node's upstream neighbor node, or the failure of the node with the physical link.
  • a fault occurs on the interface connected to the router.
  • the network architecture 500 includes a first network 501 and a second network 502.
  • the first network 501 is a chain link type network.
  • the first network 501 includes a first node
  • the second network 502 includes a second node
  • the first node and the second node can communicate
  • the first node is a node in the first network 501 except the head node.
  • the communication between the first node and the second node is disconnected; when the first network 501 fails, and the failure results in communication between the first node and the head node of the first network 501 The communication is disconnected, and the first node communicates with the second node.
  • the head node of the first network 501 communicates with the network management device 503 .
  • the second network 502 includes a sink node. Nodes in the second network 502 other than the sink node communicate with the sink node. The sink node also communicates with the network management device 503 .
  • Monitoring scenarios such as along power transmission lines, along oil and gas pipelines, or along rivers are divided into a first area and a second area.
  • the nodes in the first network 501 are arranged in the first area in the monitoring scene.
  • the first network 501 The nodes in the first network collect data from the environment in the first area, and the data collected by the nodes in the first network 501 are aggregated to the head node, and the head node forwards the data to the network management device 503.
  • the nodes in the second network 502 are deployed in the second area in the monitoring scene.
  • the nodes in the second network 502 collect the environment in the second area to obtain data, and the nodes in the second network 502 collect The data is aggregated to the convergence node, and the convergence node forwards the data to the network management device 503.
  • the first node is the tail node of the first network 501 , or, referring to FIG. 6 , the first node is the intermediate node between the head node and the tail node of the first network 501 .
  • the second network 502 is a chain network, and the second node is the tail node of the second network 502. Or, referring to FIG. 7 , the second node is an intermediate node between the head node and the tail node of the second network 502 .
  • the sink node of the second network 502 is the head node of the second network 502 .
  • Figure 5 shows an example of a power transmission line.
  • a power transmission line is divided into two sections.
  • Each node in the first network 501 is placed along one section, and the nodes in the first network 501 are placed along the other section.
  • the first node may be the tail node (node 5) of the first network 501
  • the second node may be the tail node (node 6) of the second network 502.
  • Figure 6 shows another example of a power transmission line, where two power transmission lines will meet together.
  • the power transmission line 1 and the power transmission line 2 intersect at point A.
  • the nodes in the first network 501 are arranged along the power transmission line 1
  • the nodes in the second network 502 are arranged along the power transmission line 2. of each node.
  • the first node may be an intermediate node (node 4) close to point A in the first network 501
  • the second node may be a tail node (node 6) close to point A in the second network 502.
  • Figure 7 shows another example of a power transmission line where two power transmission lines will cross.
  • the power transmission line 1 and the power transmission line 2 intersect at point A.
  • the nodes in the first network 501 are arranged along the power transmission line 1
  • the nodes in the second network 502 are arranged along the power transmission line 2. of each node.
  • the first node may be an intermediate node (node 4) close to point A in the first network 501
  • the second node may be an intermediate node (node 7) close to point A in the second network 502.
  • the second network 502 is a star network.
  • the nodes in the second network 502 other than the sink node communicate with the sink node.
  • the second node is the sink node or is one of the nodes in the second network 502 except the sink node. external nodes.
  • the first node is an intermediate node between the designated node and the tail node of the first network 501, or, The first node is the tail node of the first network 501.
  • the positional relationship between the downstream neighbor node of the specified node and the upstream neighbor node of the specified node does not meet the specified condition. That is, the distance between the downstream neighbor node of the specified node and the upstream neighbor node of the specified node is greater than or equal to the distance threshold, and/or, the altitude difference between the downstream neighbor node of the specified node and the upstream neighbor node of the specified node is greater than or equal to Difference threshold.
  • the designated node's downstream neighbor node cannot establish a wireless connection with the designated node's upstream neighbor node through the wireless LAN generated by the designated node's upstream neighbor node. This makes the intermediate node between the specified node and the tail node unable to send data to the head node, and makes the tail node unable to send data to the head node.
  • the first node detects the fault, it establishes a communication connection with the second node, so that the intermediate node between the designated node and the tail node sends data to the second network, and the tail node sends data to the second network.
  • the first network 501 includes node 1, node 2, node 3, node 4 and node 5.
  • the designated node is node 2
  • the upstream neighbor node of node 2 is node 1
  • the downstream neighbor node of node 2 is Node 3.
  • the distance between node 1 and node 3 is greater than or equal to the distance threshold, and/or the altitude difference between node 1 and node 3 is greater than or equal to the difference threshold.
  • node 3 cannot establish a wireless connection with node 1.
  • the communication between node 2 and node 3 can be successfully sent to the network management device 503
  • the first node is node 3, node 4 or node 5.
  • the second node is used to generate a wireless local area network
  • the first node includes network information of the wireless local area network.
  • the first node accesses the wireless local area network based on the network information, and establishes a wireless connection with the second node in the wireless local area network, thereby realizing communication connection between the first node and the second node.
  • the first node in the first network 501 includes a built-in RT
  • the second node in the second network 502 includes an external RT
  • the external RT of the second node is used to generate the wireless local area network, which can be Network information of the wireless local area network is configured in the first node.
  • the built-in RT of the first node is connected to the second node based on the network information, that is, when the first node and the second node are deployed.
  • the second node is an intermediate node between the designated node and the tail node of the second network 502, or , the second node is the tail node of the second network 502 .
  • the meaning of the designated node of the second network 502 is the same as the meaning of the designated node of the first network 501, and will not be described in detail here.
  • connection between two adjacent nodes in the second network 502 is a first type of connection (wireless connection)
  • the second node can perform the same operation as the first node.
  • the second node communicates with the first node and sends data to the network management device 503 through the first network 501 to restore communication and improve the reliability of data transmission.
  • the first node includes an external RT
  • the second node includes an internal RT
  • the external RT of the first node is Generating a wireless local area network, and configuring network information of the wireless local area network in the second node.
  • the built-in RT of the second node is connected to the first node based on the network information, that is, when the first node and the second node are deployed,
  • a physical link is used to connect the first node and the second node.
  • the interface status of the interface connected to the physical link on the first node is closed.
  • the first node sets the interface status of the interface from the closed state to the open state to establish a connection with the second node on the physical link, that is, the first node and the second node are connected. Nodes are connected for communication.
  • this application provides a communication method 900.
  • the method 900 applies the network architecture 500 shown in Figure 5, Figure 6 or Figure 7.
  • the method 900 includes the following process of steps 901 to 903.
  • Step 901 When detecting a first network failure, the first node establishes a communication connection with the second node.
  • the first network is a chain network. Due to this fault, the first network is divided into a first part and a second part.
  • the first part includes the head node of the first network.
  • the communication between the first part and the second part is disconnected.
  • the second part Part includes the first node.
  • the nodes other than the head node also communicate with the head node.
  • the nodes except the head node can continue to collect the environment where the node is located and send the collected data to the head node, and the head node receives the data. , and forward the data to the network management device.
  • the head node can also continue to collect the environment where the head node is located and send the data to the network management device.
  • each node in the second part cannot send data to the head node.
  • Nodes in the second part other than the first node also communicate with the first node.
  • first node and the second node are enumerated for communication connection using the following methods one and two.
  • first node and the second node may also use other methods for communication connection, which will not be listed one by one here.
  • Method 1 The second node generates a wireless LAN, and the first node includes network information of the wireless LAN.
  • the first node when detecting a first network failure, obtains network information of the wireless local area network of the second node, and communicates with the second node based on the network information.
  • the first node accesses the wireless local area network based on the network information, and establishes a wireless connection with the second node through the wireless local area network to implement communication connection with the second node.
  • the network information may be configured on the first node in advance by the administrator.
  • the network information may include information such as the name and/or password of the wireless LAN.
  • the positional relationship between the first node and the second node satisfies the specified condition.
  • the specified condition includes one or more of the following: the distance between the first node and the second node is less than the distance threshold, or the altitude difference between the first node and the second node is less than the difference threshold.
  • the first node may include network information of the wireless local area network of at least one node, the at least one node is a node in the second network, and the communication between the first node and each node in the at least one node The position relationships all meet the specified conditions.
  • the first node may select a node with the best communication quality with the first node from the at least one node as the second node, or the first node may select a node with the first node from the at least one node.
  • a node whose communication quality between nodes exceeds the quality threshold is used as the second node.
  • the first node may select a node with the shortest distance from the first node from the at least one node as the second node. The first node communicates with the second node.
  • the first network includes node 1, node 2, node 3, node 4 and node 5.
  • Node 1 is the head node of the first network
  • node 5 is the tail node of the first network
  • node 2 and node 3 and node 4 is the intermediate node of the first network.
  • the second network includes node 6, node 7 and node 8.
  • Node 8 is a convergence node and communicates with the network management device. Node 6 and node 7 communicate with node 8 respectively.
  • the first node is node 5 of the first network
  • the second node is node 6 of the second network.
  • a failure occurs in the first network, and the failure is a communication failure between node 2 and node 3. Due to this failure, the first network is divided into a first part and a second part.
  • the first part includes node 1 and node 2.
  • the second part includes node 3, node 4 and node 5.
  • the communication between the first part and the second part is interrupted. open. Node 2 and node 1 in the first part can also send data to the network management device.
  • the first node includes the network information of the wireless LAN generated by the second node.
  • the first node accesses the wireless LAN based on the network information and communicates with the second node through the wireless LAN.
  • nodes 3 and 3 in the second part Node 4 and node 5 send data to the network management device through the second network.
  • Method 2 The first node and the second node are connected using a physical link, and the interface status of the interface connected to the physical link of the first node is closed.
  • the first node when detecting a first network fault, sets the interface status of the interface from a closed state to an open state, and communicates with the second node based on the physical link.
  • the first node establishes a connection with the second node on the physical link to implement communication connection with the second node.
  • node 5 of the first network is connected to node 6 of the second network using a physical link, and the status of the interface connected to the physical link on node 5 is a closed state.
  • a failure occurs in the first network, and the failure is a communication failure between node 2 and node 3. Due to this failure, the first network is split into a first part including node 1 and node 2, and a second part including node 3, node 4 and node 5.
  • Node 5 sets the status of the interface connected to the physical link to the open state, and communicates with node 6 on the physical link, so that node 3, node 4 and node 5 in the second part communicate with each other through the second network.
  • the network management device sends data.
  • the second part further includes a third node
  • the failure in the first network is a communication failure between the third node and an upstream neighbor node of the third node.
  • the first node receives a first fault identification, which is sent by the third node when detecting a failure in the first network; it is determined that a failure occurs in the first network based on the first fault identification.
  • the third node and the upstream neighbor node of the third node periodically send heartbeat messages to each other. That is, the third node periodically receives heartbeat messages sent by the upstream neighbor node of the third node, and the third node periodically sends heartbeat messages to the upstream neighbor node of the third node.
  • the third node detects that the time period for which the heartbeat message sent by the upstream neighbor node of the third node is not received reaches the time length threshold, the third node detects the communication between the third node and the upstream neighbor node of the third node. If a fault occurs, the first fault identification is sent to the nodes in the second part except the third node.
  • Nodes in the second part except the third node receive the first fault identification and determine that a fault occurs in the first network based on the first fault identification.
  • the first fault identification is used to indicate a fault location of the fault occurring in the first network.
  • the first fault identification includes identification information of the third node, and the first fault identification is used to indicate that the fault location of the fault is located between the third node and an upstream neighbor node of the third node.
  • the nodes in the second part except the third node determine the fault location based on the first fault identification.
  • the heartbeat message may be a neighbor multicast message, etc.
  • the third node sends a first heartbeat message to a downstream neighbor node of the third node, where the first heartbeat message includes a first fault identification.
  • the downstream neighbor node receives the first heartbeat message and sends a second heartbeat message to its downstream neighbor node.
  • the second heartbeat message includes the first fault identification.
  • node 3 when node 3 detects that the time period of not receiving the third heartbeat message sent by node 2 reaches the time length threshold, node 3 detects that there is a gap between node 3 and the upstream neighbor node (node 2) of node 3. There was a communication failure.
  • the second part includes node 3, node 4 and node 5.
  • Node 3 sends a first heartbeat message to node 4, and the first heartbeat message includes a first fault identification.
  • Node 4 receives the first heartbeat message, determines that a fault has occurred on the first network based on the first fault identification in the first heartbeat message, and sends a second heartbeat message to its downstream neighbor node (node 5).
  • the second heartbeat message Includes first fault identification.
  • Node 5 receives the second heartbeat message and determines that a fault has occurred in the first network based on the first fault identification in the second heartbeat message.
  • the failure in the first network is a communication failure between the first node and an upstream neighbor node of the first node.
  • the first node and the upstream neighbor node of the first node periodically send heartbeat messages to each other. That is, the first node periodically receives heartbeat messages sent by the upstream neighbor node of the first node, and the first node periodically sends heartbeat messages to the upstream neighbor node of the first node.
  • the first node detects that the time period for which the heartbeat message sent by the upstream neighbor node of the first node is not received reaches the time length threshold, the first node detects communication between the first node and the upstream neighbor node of the first node. malfunction.
  • the second part also includes nodes other than the first node.
  • the nodes other than the first node communicate with the first node.
  • the first node also sends a second fault identification to the nodes other than the first node in the second part.
  • the two nodes other than the first node receive the second fault identification, and detect that a fault has occurred in the first network based on the second fault identification.
  • the process of the first node sending the second fault identifier to the nodes in the second part except the first node please refer to the above-mentioned process of the third node sending the first fault identifier to the nodes in the second part except the third node. , will not be explained in detail here.
  • the second fault identification is used to indicate a fault location of the fault occurring in the first network.
  • the second fault identification includes identification information of the first node, and the second fault identification is used to indicate that the fault location of the fault is located between the first node and an upstream neighbor node of the first node.
  • the node in the second part after the first node establishes a communication connection with the second node, the node in the second part also requests the sink node of the second network to allocate an address, and the node communicates with the sink node in the second network based on the address. Communication, for example, when the node sends data to the sink node in the second network, the address of the node is the source address of the data.
  • Step 902 The first node sends first data to the second node, where the first data is data belonging to the second part.
  • the first data may be data of the first node, and the first data may include data collected by the first node on the environment where the first node is located, and/or data of the first node itself.
  • the first node's own The data may include one or more of the following: the location of the first node, device attribute data of the first node, or data generated by the first node, etc. or,
  • the first data is data sent by the first node received from nodes in the second part except the first node.
  • the node is called the fourth node.
  • the first data may be the data of the fourth node, and the first data may include the pair of the fourth node and the fourth node.
  • the fourth node's own data may include one or more of the following: the location of the fourth node, device attribute data of the fourth node, or data generated by the fourth node, etc.
  • the fourth node when receiving the fault identifier (the first fault identifier or the second fault identifier), the fourth node detects a fault in the first network and the fault location of the fault based on the fault identifier, and then sends a message to the first node. First data.
  • the fourth node needs to change the direction of the data sent, and then send the first data to the first node.
  • the direction in which the fourth node sends data is the direction in which the data is sent to the head node of the first network.
  • the fourth node changes the direction of data sent to the direction of sending data to the first node.
  • the fault that occurs in the first network is a communication fault between node 2 and node 3.
  • the first node is the tail node (node 5), and nodes 3 and 4 are between the location of the fault and node 5.
  • Node 5 The direction in which data is sent.
  • node 3 sends data 1 to node 4.
  • Data 1 is the data collected by node 3.
  • Node 4 forwards data 1 to node 5, and node 5 forwards data 1 to the second node (node 6) of the second network.
  • node 4 sends data 2 to node 5.
  • Data 2 is the data collected by node 4.
  • Node 5 forwards data 2 to the second node (node 6) of the second network, and node 5 forwards data 2 to the second node of the second network.
  • (Node 6) Send data 3, which is the data collected by node 6.
  • Step 903 The second node receives the first data sent by the first node and sends the first data to the network management device.
  • the second network convergence node communicates with the network management device.
  • the second node sends the first data to the convergence node of the second network, and the convergence node of the second network sends the first data to the network management device.
  • the first node sends data 1, data 2 and data 3 to the second node (node 6).
  • Node 6 receives data 1, data 2 and data 3, and sends data 1, data 2 and data 3 to node 7.
  • Node 7 sends data 1, data 2 and data 3 to node 8.
  • Node 8 then sends data 1, data 2 and data 3 to the network management device. Data 2 and Data 3.
  • the fault in the first network can be repaired.
  • the network management device sends recovery information to the first node.
  • the recovery information is used to indicate the first part of the first network and Communication between the second part is back to normal.
  • the network management device sends recovery information to the second network aggregation node.
  • the convergence node of the second network receives the recovery information and sends the recovery information to the second node of the second network.
  • the second node receives the recovery information and sends the recovery information to the first node. Reply information.
  • the first node receives the recovery information sent by the second node, disconnects the communication connection with the second node based on the recovery information, and sends the second data to the head node of the first network, where the second data belongs to the second node.
  • the first data and the second data are data obtained by the first node at different times.
  • the first node also sends the recovery information to the nodes in the second part except the first node. For the node located between the fault location where the fault occurs in the first network and the first node, after receiving the recovery information, the node changes The data direction is sent, and then the data is sent to the head node of the first network.
  • the node changes the direction of sending data from the direction of sending data to the first node to the direction of sending data to the head node of the first network.
  • the second data is the data of the first node.
  • the second data may be data sent by the tail node of the first network, or the second data may be an intermediate node between the first node and the tail node of the first network. Data sent by the node.
  • the node request in the second part when the first network returns to normal, the node request in the second part also requests the head node of the first network to assign an address based on which the node communicates with the head node in the first network, for example, When the node sends data to the sink node in the first network, the address of the node is the source address of the data.
  • the first node in the first network and the second node in the second network can communicate.
  • the communication between the first node and the second node is disconnected. This avoids the formation of a ring network.
  • the first network is divided into a first part and a second part due to the fault.
  • the first part includes the head node of the first network, and the second part includes the first node.
  • the first node detects When a fault occurs in the first network, a communication connection is made with the second node of the second network, and the first data is sent to the second node, where the first data is the second part of data.
  • the second node then sends the first data to the network management device, so that the nodes in the second part can continue to send data, thereby restoring communication and improving the reliability of data transmission.
  • an embodiment of the present application provides a communication device 1000.
  • the device 1000 is deployed on the first node in the network architecture 500 shown in Figure 5, Figure 6, Figure 7 or Figure 8, or, the The device 1000 is deployed on the first node in the method 900 shown in FIG. 9 .
  • the processing unit 1001 is configured to communicate with the second node in the second network when the first network fails.
  • the first network is a chain network. Due to the failure, the first network is divided into a first part and a second part.
  • the first part includes the head node of the first network, the communication between the first part and the second part is disconnected, the second part includes the device 1000;
  • the communication unit 1002 is configured to send first data to the second node, where the first data is data belonging to the second part.
  • step 901 of the method 900 shown in Figure 9 please refer to the relevant content in step 901 of the method 900 shown in Figure 9, which will not be described in detail here.
  • step 902 of the method 900 shown in Figure 9 please refer to the relevant content in step 902 of the method 900 shown in Figure 9, which will not be described in detail here.
  • the location relationship between the device 1000 and the second node satisfies specified conditions.
  • the specified condition includes one or more of the following: the distance between the device 1000 and the second node is less than a distance threshold, or the altitude difference between the device 1000 and the second node is less than a difference threshold. .
  • processing unit 1001 is used for:
  • a communication connection is made with the second node based on the network information.
  • the processing unit 1001 obtains the network information of the wireless local area network of the second node and the detailed implementation process of communicating with the second node based on the network information.
  • the first data is data collected by the device 1000 on the environment where the device 1000 is located.
  • the communication unit 1002 is also configured to receive first data, which is data collected by nodes other than the device 1000 in the second part about the environment where the node is located.
  • step 902 of the method 900 shown in Figure 9 please refer to the relevant content in step 902 of the method 900 shown in Figure 9, which will not be described in detail here.
  • the second part also includes a third node, and the failure is a communication failure between the third node and an upstream neighbor node of the third node,
  • the communication unit 1002 is also used to receive a fault identification, which is sent by the third node when it detects that the fault occurs in the first network;
  • the processing unit 1001 is also configured to determine that the fault occurs in the first network based on the fault identification.
  • step 901 of the method 900 shown in Figure 9 please refer to the relevant content in step 901 of the method 900 shown in Figure 9, which will not be described in detail here.
  • the detailed implementation process of the processing unit 1001 determining that the fault occurs in the first network refers to the relevant content in step 901 of the method 900 shown in Figure 9, which will not be described in detail here.
  • the fault is a communication fault between the device 1000 and an upstream neighbor node of the device 1000 .
  • the communication unit 1002 is also used to:
  • the second data is sent to the head node based on the recovery information.
  • the second data is data belonging to the second part.
  • the first data and the second data are data obtained by the device 1000 at different times.
  • step 903 of the method 900 shown in Figure 9 please refer to the relevant content in step 903 of the method 900 shown in Figure 9, which will not be described in detail here.
  • the device 1000 is a tail node of the first network.
  • the second network is a chain network.
  • the second node is a tail node of the second network.
  • the first network when a fault occurs in the first network, the first network is divided into a first part and a second part due to the fault.
  • the first part includes the head node of the first network, and the link between the first part and the second part is Communication is broken and the second part includes the device.
  • the processing unit communicates with the second node in the second network, and the communication unit sends the first data to the second node.
  • the first data is data belonging to the second part, so that in the second part
  • the node is able to continue sending data belonging to the second part through the second network, and communication with the nodes in the second part is restored.
  • an embodiment of the present application provides a communication device 1100.
  • the device 1100 is deployed in Figure 5, The second node in the network architecture 500 shown in Figure 6, Figure 7 or Figure 8, or the device 1100 is deployed on the second node in the method 900 shown in Figure 9.
  • the processing unit 1101 is used to communicate with the first node in the first network.
  • the device 1100 is a node in the second network.
  • a fault occurs in the first network. Due to the fault, the first network is divided into a first part and a first node. a second part, the first part including the head node of the first network, communication between the first part and the second part being disconnected, the second part including the first node;
  • the communication unit 1102 is configured to receive the first data sent by the first node, where the first data is data belonging to the second part; and send the first data.
  • step 901 of the method 900 shown in Figure 9 please refer to the relevant content in step 901 of the method 900 shown in Figure 9, which will not be described in detail here.
  • the location relationship between the first node and the device 1100 satisfies specified conditions.
  • the specified condition includes one or more of the following: the distance between the first node and the device 1100 is less than a distance threshold, or the altitude difference between the first node and the device 1100 is less than a difference threshold. .
  • the communication unit 1102 is also used to:
  • recovery information the recovery information being used to indicate that communication between the first part and the second part returns to normal
  • the recovery information is sent to the first node.
  • the recovery information is also used to instruct the first node to send the second data to the head node.
  • the second data is the data belonging to the second part.
  • the first data and the second data are the data between the first node and the head node. Data obtained at different times.
  • the first node is a tail node of the first network.
  • the second network is a chain network.
  • the device 1100 is a tail node of the second network.
  • the first network when a fault occurs in the first network, the first network is divided into a first part and a second part due to the fault.
  • the first part includes the head node of the first network, and the link between the first part and the second part is Communication is broken and the second part includes the first node.
  • the processing unit communicates with the first node in the first network.
  • the communication unit receives the first data sent by the first node.
  • the first data is data belonging to the second part, and sends the first data so that the first node can continue to pass through
  • the second network sends data belonging to the second part, restoring communication with the nodes in the second part.
  • an embodiment of the present application provides a schematic diagram of a device 1200.
  • the device 1200 may be the first node or the second node provided in any of the above embodiments.
  • the device 1200 may be the first node or the second node in the network architecture 500 as shown in Figure 5, Figure 6, Figure 7 or Figure 8, or the device 1200 may be as shown in Figure 9
  • the device 1200 includes at least one processor 1201, internal connections 1202, memory 1203 and at least one communication interface 1204.
  • the device 1200 is a hardware structure device.
  • the device 1200 can be used to implement the functional modules in the device 1000 described in FIG. 10 .
  • the processing unit 1001 in the device 1000 shown in FIG. 10 can pass the One less processor 1201 calls the code in the memory 1203 to implement.
  • the communication unit 1002 in the device 1000 shown in FIG. 10 can be implemented through the at least one communication interface 1204.
  • the device 1200 can also be used to implement the functions of the first node in any of the above embodiments.
  • the device 1200 can be used to implement the functional modules in the device 1100 described in FIG. 11 .
  • the processing unit 1101 in the device 1100 shown in FIG. 11 can be implemented by calling the code in the memory 1203 through the at least one processor 1201.
  • the communication unit 1102 in the device 1100 shown in FIG. 11 can be implemented through the at least one communication interface 1204.
  • the device 1200 can also be used to implement the functions of the second node in any of the above embodiments.
  • the above-mentioned processor 1201 is, for example, a general central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), a network processor (Network Processer, NP), and a graphics processor (Graphics Processing Unit, GPU). , neural network processor (Neural-network Processing Units, NPU), data processing unit (Data Processing Unit, DPU), microprocessor or one or more integrated circuits used to implement the solution of this application.
  • the processor 1201 includes an Application-specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • ASIC Application-specific Integrated Circuit
  • PLD Programmable Logic Device
  • PLD is, for example, Complex Programmable Logic Device (CPLD), Field-programmable Gate Array (FPGA), General Array Logic (Generic Array Logic, GAL) or any combination thereof. It may implement or execute various logical blocks, modules and circuits described in connection with the disclosure of the embodiments of this application.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the internal connection 1202 may include a path for transmitting information between the components.
  • the internal connection 1202 may be a single board or a bus, etc.
  • the bus can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • the above-mentioned at least one communication interface 1204 uses any device such as a transceiver for communicating with other devices or communication networks.
  • the communication network can be Ethernet, a wireless access network, or a wireless local area network (Wireless Local Area Networks, WLAN), etc.
  • the communication interface 1204 may include a wired communication interface and may also include a wireless communication interface.
  • the communication interface 1204 can be an Ethernet interface, a Fast Ethernet (FE) interface, a Gigabit Ethernet (GE) interface, an asynchronous transfer mode (Asynchronous Transfer Mode, ATM) interface, a wireless LAN WLAN interface, a cellular Network communication interface or combination thereof.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the communication interface 1204 can be used for the device 1200 to communicate with other devices.
  • the above-mentioned memory 1203 can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types that can store information and instructions.
  • type of dynamic storage device which can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical discs Storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used Any other medium that carries or stores the desired program code in the form of instructions or data structures and capable of being accessed by a computer, without limitation.
  • the memory can exist independently and be connected to the processor through a bus. Memory 1203 may also be integrated with processor 1201.
  • the processor 1201 may include one or more CPUs, such as CPU0 and CPU1 in Figure 12. Each of these CPUs can be a single-core processor or a multi-core processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the device 1200 may include multiple processors, such as the processor 1201 and the processor 1207 in Figure 12 . Each of these processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the embodiment of the present application also provides a communication system 1300.
  • the system includes the device 1000 shown in Figure 10 and the device 1100 shown in Figure 11.
  • the device 1000 shown in Figure 10 can be the first A node 1301, the device 1100 shown in FIG. 11 may be a second node 1302.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置、系统及存储介质,属于通信领域。所述方法包括:第一节点在第一网络发生故障时与第二网络中的第二节点进行通信连接,所述第一网络为链型网络,由于所述故障所述第一网络被分割成第一部分和第二部分,所述第一部分包括所述第一网络的头节点,所述第一部分与所述第二部分之间的通信断开,所述第二部分包括所述第一节点;所述第一节点向所述第二节点发送第一数据,所述第一数据是属于所述第二部分的数据。本申请能够在第一网络发生故障时,恢复该故障位置与第一网络的尾节点之间的节点的通信。

Description

通信方法、装置、系统及存储介质
本申请要求于2022年8月23日提交中国国家知识产权局、申请号为202211013523.0、申请名称为“通信方法、装置、系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种通信方法、装置、系统及存储介质。
背景技术
链型网络应用于电力输电线、油气管线或河道沿线的监控场景。例如,以电力输电线为例,电力输电线架设在多个电力塔上,在多个电力塔上部署节点,对于任一电力塔上部署的节点,该节点包括路由设备和传感器设备,该节点通过该路由设备与该节点前后相邻的两个节点建立无线连接,这样各电力塔上部署的节点形成链型网络,该链型网络的头节点与网管设备通信。
该节点的传感器设备用于采集该节点周边环境的数据,该节点向头节点发送该数据,头节点向网管设备转发该数据,网管设备接收该数据。其中,网管设备可以接收到链型网络中的各节点周边环境的数据,实现对电力输电线的周边环境进行监控。
目前在链型网络出现故障时,该故障的发生位置与头节点之间的节点还能够向头节点发送数据,而该故障的发生位置与链型网络的尾节点之间的节点与头节点之间的通信中断,导致该节点的数据发送失败,因此,在第一网络发生故障时如何恢复该节点的通信是亟需解决的问题。
发明内容
本申请提供了一种通信方法、装置、系统及存储介质,以在第一网络发生故障时,恢复该故障位置与第一网络的尾节点之间的节点的通信。所述技术方案如下:
第一方面,本申请提供了一种通信方法,在所述方法中,第一节点在第一网络发生故障时与第二网络中的第二节点进行通信连接,第一网络为链型网络,由于该故障第一网络被分割成第一部分和第二部分,第一部分包括第一网络的头节点,第一部分与第二部分之间的通信断开,第二部分包括第一节点。第一节点向第二节点发送第一数据,第一数据是属于第二部分的数据。
因该故障第一网络被分割成第一部分和第二部分,第一部分与第二部分之间的通信断开,第二部分中的第一节点与第二网络中的第二节点进行通信连接,这样第一节点能够继续通过第二网络发送属于第二部分的数据,恢复了第二部分中的节点的通信。
在一种可能的实现方式中,第一节点与第二节点之间的位置关系满足指定条件。这样保证第一节点能够与第二节点成功地进行通信连接。
在另一种可能的实现方式中,该指定条件包括如下一个或多个:第一节点与第二节点之间的距离小于距离阈值,或者,第一节点与第二节点之间的海拔差值小于差值阈值。这样保证第一节点能够与第二节点成功地进行通信连接。
在另一种可能的实现方式中,第一节点获取第二节点的无线局域网的网络信息。第一节点基于该网络信息与第二节点进行通信连接。这样第一节点通过该无线局域网的网络信息,能够建立与第二节点之间的无线连接,以实现第一节点与第二节点进行通信连接。
在另一种可能的实现方式中,第一数据是第一节点对第一节点所在环境进行采集的数据。
在另一种可能的实现方式中,第一节点接收第一数据,第一数据是第二部分中除第一节点之外的节点对该节点所在环境进行采集的数据。
在另一种可能的实现方式中,第二部分还包括第三节点,该故障是第三节点与第三节点的上游邻居节点之间的通信故障。第一节点接收故障标识,该故障标识是第三节点在检测到第一网络发生该故障时发送的。这样第一节点基于该故障标识能够成功确定第一网络发生了故障,从而能够在第一网络发生故障时,快速与第二节点进行通信连接,快速恢复通信。
在另一种可能的实现方式中,该故障是第一节点与第一节点的上游邻居节点之间的通信故障。
在另一种可能的实现方式中,第一节点接收第二节点发送的恢复信息,该恢复信息用于指示第一部分与第二部分之间的通信恢复正常。第一节点基于该恢复信息向头节点发送第二数据,第二数据是属于第二部分的数据,第一数据和第二数据是第一节点在不同时刻得到的数据。这样在第一网络恢复正常时,第二部分的节点重新恢复通过第一网络的头节点向网管设备发送数据。
在另一种可能的实现方式中,第一节点为第一网络的尾节点,这样在第一网络故障时,位于故障位置和该尾节点之间的中间节点均改变发送数据的方向,向该尾节点发送数据,简化方案实现的复杂度。
在另一种可能的实现方式中,第二网络为链型网络,便于部署在电力输电线的沿线、油气管线的沿线或河流的沿线等场景。
在另一种可能的实现方式中,第二节点为第二网络的尾节点,第二网络为链型网络,第二网络的尾节点与第一网络的第一节点可能距离最近,这样保证第一节点与第二节点能够成功进行通信连接。
第二方面,本申请提供了一种通信方法,在所述方法中,第二节点与第一网络中的第一节点进行通信连接,第二节点为第二网络中的节点,第一网络发生了故障,由于该故障第一网络被分割成第一部分和第二部分,第一部分包括第一网络的头节点,第一部分与第二部分之间的通信断开,第二部分包括第一节点。第二节点接收第一节点发送的第一数据,第一数据是属于第二部分的数据。第二节点发送第一数据。
因第一网络发生的故障,第一网络被分割成第一部分和第二部分,第一部分与第二部分之间的通信断开,第二网络中的第二节点与第二部分中的第一节点进行通信连接。第二节点能够接收第一节点发送的第一数据,第一数据是属于第二部分的数据。这样第一节点能够继续通过第二网络发送属于第二部分的数据,恢复了第二部分中的节点的通信。
在一种可能的实现方式中,第一节点与第二节点之间的位置关系满足指定条件。这样保证第一节点能够与第二节点成功地进行通信连接。
在另一种可能的实现方式中,该指定条件包括如下一个或多个:第一节点与第二节点之间的距离小于距离阈值,或者,第一节点与第二节点之间的海拔差值小于差值阈值。这样保证第一节点能够与第二节点成功地进行通信连接。
在另一种可能的实现方式中,第二节点接收恢复信息,该恢复信息用于指示第一部分和第二部分之间的通信恢复正常。第二节点向第一节点发送恢复信息,该恢复信息还用于指示第一节点向头节点发送第二数据,第二数据是属于第二部分的数据,第一数据和第二数据是第一节点在不同时刻得到的数据。这样在第一网络恢复正常时,第二部分的节点重新恢复通过第一网络的头节点向网管设备发送数据。
在另一种可能的实现方式中,第一节点为第一网络的尾节点,这样在第一网络故障时,位于故障位置和该尾节点之间的中间节点均改变发送数据的方向,向该尾节点发送数据,简化方案实现的复杂度。
在另一种可能的实现方式中,第二网络为链型网络,便于部署在电力输电线的沿线、油气管线的沿线或河流的沿线等场景。
在另一种可能的实现方式中,第二节点为第二网络的尾节点,第二网络为链型网络,第二网络的尾节点与第一网络的第一节点可能距离最近,这样保证第一节点与第二节点能够成功进行通信连接。
第三方面,本申请提供了一种通信装置,用于执行第一方面或第一方面的任意一种可能的实现方式中的方法。具体地,所述装置包括用于执行第一方面或第一方面的任意一种可能的实现方式中的方法的单元。
第四方面,本申请提供了一种通信装置,用于执行第二方面或第二方面的任意一种可能的实现方式中的方法。具体地,所述装置包括用于执行第二方面或第二方面的任意一种可能的实现方式中的方法的单元。
第五方面,本申请提供了一种第一节点,所述第一节点包括存储器、处理器及存储在所述存储器上的计算机程序,所述处理器执行所述计算机程序时,使得所述第一节点完成第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,本申请提供了一种第二节点,所述第二节点包括存储器、处理器及存储在所述存储器上的计算机程序,所述处理器执行所述计算机程序时,使得所述第二节点完成第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括在计算机可读存储介质中存储的计算机程序,并且所述计算程序通过处理器进行加载来实现上述第一方面、第二方面、第一方面任意可能的实现方式或第二方面任意可能的实现方式的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序或指令,所述计算机程序或指令通过处理器进行加载来实现上述第一方面、第二方面、第一方面任意可能的实现方式或第二方面任意可能的实现方式的方法。
第九方面,本申请提供了一种芯片,包括存储器和处理器,存储器用于存储计算机指令,处理器用于从存储器中调用并运行该计算机指令,以实现上述第一方面、第二方面、第一方面任意可能的实现方式或第二方面任意可能的实现方式的方法。
第十方面,本申请提供了一种通信系统,包括第三方面所述的通信装置和第四方面所述的通信装置,或者,包括第五方面所述的第一节点和第六方面所述的第二节点。
附图说明
图1是本申请实施例提供的一种链型网络的结构示意图;
图2是本申请实施例提供的一种节点的结构示意图;
图3是本申请实施例提供的另一种节点的结构示意图;
图4是本申请实施例提供的另一种链型网络的结构示意图;
图5是本申请实施例提供的一种网络架构的结构示意图;
图6是本申请实施例提供的另一种网络架构的结构示意图;
图7是本申请实施例提供的另一种网络架构的结构示意图;
图8是本申请实施例提供的另一种网络架构的结构示意图;
图9是本申请实施例提供的一种通信方法流程图;
图10是本申请实施例提供的一种通信装置结构示意图;
图11是本申请实施例提供的另一种通信装置结构示意图;
图12是本申请实施例提供的一种设备结构示意图;
图13是本申请实施例提供的一种通信系统结构示意图。
具体实施方式
下面将结合附图对本申请实施方式作进一步地详细描述。
电力输电线、油气管线或河道等环境往往有监控需求。以电力输电线为例,需要在电力输电线的沿线布放多个节点,任意相邻的两个节点之间间隔一段距离。对于该多个节点中的任一个节点,该节点定期对该节点所在环境进行采集,将采集的数据定期发送给网管设备。网管设备能够接收到各节点发送的数据,基于各节点发送的数据实现对电力输电线的周边环境进行监控。
在电力输电线的沿线布放的多个节点往往呈链型分布。该多个节点采用多级级联组网方式形成链型网络,该链型网络中的节点包括头节点、尾节点以及位于头节点与尾节点之间的至少一个中间节点。
对于该链型网络中除头节点之外的任一个节点,该节点与该节点的上游邻居节点之间建立连接,该链型网络的头节点与网管设备通信。
该节点与该节点的上游邻居节点之间建立的连接有两种类型,该两种类型分别为如下第一类型和第二类型。
第一类型,该连接是无线连接。
该节点的上游邻居节点产生无线局域网,该节点接入该无线局域网,并通过该无线局域网与该节点的上游邻居节点建立无线连接。
例如,该节点的上游邻居节点产生wifi(可称为移动热点)网络,该节点接入该wifi网络,并通过该wifi网络与该节点的上游邻居节点建立wifi连接。
在该连接为无线连接时,该节点与该节点的上游邻居节点之间的位置关系满足指定条件。可选地,该指定条件包括如下一个或多个:该节点与该节点的上游邻居节点之间的距离小于距离阈值,或者,该节点与该节点的上游邻居节点之间的海拔差值小于差值阈值。
在该节点与该节点的上游邻居节点之间的位置关系满足指定条件时,该节点与该节点的上游邻居节点之间才能成功建立无线连接。例如,假设该无线连接为wifi连接,距离阈值为2km,在该节点与该节点的上游邻居节点之间的距离小于2km时,该节点与该节点的上游邻居节点之间才可能成功建立wifi连接。
第二类型,该节点与该节点的上游邻居节点之间存在物理链路,该连接是在该物理链路上建立的连接。
对于该链型网络中除头节点之外的任一个节点,该节点采集到数据后,向网管设备发送该数据。在实现时,该节点向该节点的上游邻居节点发送该数据。如果该上游邻居节点是头节点,则头节点向网管设备转发该数据,如果该上游邻居节点不是头节点,则该上游邻居节点向其自身的上游邻居节点发送该数据。对于该链型网络中的头节点,头节点采集到数据后,直接向网管设备发送该数据。所以该链型网络中除头节点之外的各节点的数据汇聚到头节点,由头节点向网管设备转发。
例如,以电力输电线的监控场景为例,用于架设电力输电线的多个电力塔通常是链型分布,可以在各电力塔上布放节点,在各电力塔上布放的节点组成链型网络。参见图1,假设该链型网络包括节点1、节点2、节点3,节点4和节点5,节点1为头节点并与网管设备通信,节点5为尾节点,节点5的上游邻居节点是节点4,节点5与节点4之间建立连接。节点4的上游邻居节点为节点3,节点4与节点3之间建立连接。节点3的上游邻居节点为节点2,节点3与节点2之间建立连接。节点2的上游邻居节点为节点1,节点2与节点1之间建立连接。
节点5对节点5所在环境进行采集,向节点4发送采集的数据。该数据经过节点4、节点3和节点2后被节点1接收到,节点1向网管设备发送该数据,网管设备接收该数据,基于该数据实现对节点5所在环境进行监控。节点4、节点3和节点2同节点5一样向网管设备发送数据,节点1可直接向网络设备发送数据。
参见图2,节点包括路由设备和传感器设备,传感器设备用于对该节点周边环境进行采集,路由设备用于向网管设备发送传感器设备采集的数据。对于链型网络中除头节点之外的节点,该节点包括的路由设备与该节点的上游邻居节点包括的路由设备之间建立连接。对于该节点的传感器设备采集的数据,该节点的路由设备通过该连接向该节点的上游邻居节点发送该数据。该上游邻居节点的路由设备接收该数据,再向网管设备的方向转发该数据。
在一些实施例中,参见图3,该节点的路由设备可能包括内置中继器(repeater,RT)和外置RT,该内置RT与传感器设备集成一起,该外置RT与该内置RT连接。可选地,该外置RT与该内置RT通过线缆相连,例如,该外置RT与该内置RT使用网线相连。
在一些实施例中,该节点的内置RT与该节点的上游邻居节点中的外置RT建立连接。在实现时,
该节点的上游邻居节点包括的外置RT产生无线局域网,该节点包括该无线局域网的网络信息,该节点的内置RT基于该无线局域网的网络信息接入该无线局域,并通过该无线局域网与该节点的上游邻居节点建立连接。
例如,该节点的上游邻居节点的外置RT产生的无线局域网为wifi网络,该wifi网络的网络信息包括wifi网络的名称和/或密码等信息。该节点包括该wifi网络的网络信息,该节点的内置RT基于该wifi网络的网络信息接入该wifi网络,并通过该wifi网络与该节点的上游邻居节点建立连接。
以图1所示的链型网络为例,图1所示的链型网络的节点1、节点2、节点3、节点4和节点5的结构为图3和图4所示的节点结构。节点5包括节点4的外置RT产生的wifi网络4的网络信息4,节点5的内置RT基于网络信息4接入wifi网络4,并通过wifi网 络4与节点4建立wifi连接4。节点4包括节点3的外置RT产生的wifi网络3的网络信息3,节点4的内置RT基于网络信息3接入wifi网络3,并通过wifi网络3与节点3建立wifi连接3。节点3包括节点2的外置RT产生的wifi网络2的网络信息2,节点3的内置RT基于网络信息2接入wifi网络2,并通过wifi网络2与节点2建立wifi连接2。节点2包括节点1的外置RT产生的wifi网络1的网络信息1,节点2的内置RT基于网络信息1接入wifi网络1,并通过wifi网络1与节点1建立wifi连接1。
在一些实施例中,节点的传感器设备为摄像头、温度传感器或湿度传感器等。摄像头采集的数据是对该节点中周边环境进行拍摄的图像或视频,温度传感器采集的数据是该节点周边环境的温度,湿度传感器采集的数据是该节点周边环境的湿度。网管设备为服务器或终端等设备。
其中,在第一网络发生故障时,可能会导致第一网络中的部分节点无法向网管设备发送数据,接下来对此情况进行详细说明。
在链型网络的相邻两个节点之间建立的连接为第一类型的连接(无线连接)时,对于链型网络中的某个节点,该节点的上游邻居节点是一个中间节点,在该节点与该节点的上游邻居节点之间的通信故障的情况下,如果该节点和该中间节点的上游邻居节点之间的位置关系不满足指定条件,该节点与该中间节点的上游邻居节点之间无法建立无线连接,这样该节点、尾节点以及位于该节点和尾节点之间的节点不能够继续向网管设备发送数据。其中,第一网络发生的故障为该节点与该节点的上游邻居节点之间的通信故障。
如果该节点和该中间节点的上游邻居节点之间的位置关系满足指定条件,该节点与该中间节点的上游邻居节点之间能够建立无线连接,这样该节点、尾节点以及位于该节点和尾节点之间的节点还能够继续向网管设备发送数据。
该节点与该节点的上游邻居节点之间的通信故障可能是该节点的上游邻居节点发生的故障或该节点与该节点的上游邻居节点通信的接口发生的故障。
例如,参见图1,假设节点2与节点3之间的通信故障,如果节点1与节点3之间的位置关系满足指定条件,则节点3与节点1建立无线连接。节点3、节点4和节点5还能够继续向网管设备发送数据。如果节点1与节点3之间的位置关系不满足指定条件,则节点3与节点1无法建立无线连接。节点3、节点4和节点5不能继续向网管设备发送数据,导致数据发送失败,通信中断,数据传输的可靠性低。
在链型网络的相邻两个节点之间建立的连接为第二类型的连接(在该两个节点之间的物理链路上建立的连接)时,在该节点与该节点的上游邻居节点之间的通信故障的情况下,该节点、尾节点以及位于该节点和尾节点之间的节点不能够继续向网管设备发送数据。
该节点与该节点的上游邻居节点之间的通信故障可能是该节点的上游邻居节点发生的故障,该节点与该节点的上游邻居节点之间的物理链路发生的故障或该节点与物理链路连接的接口发生的故障。
例如,参见图1,第一网络中的相邻两个节点之间使用物理链路相连,假设节点2与节点3之间的通信故障,节点3、节点4和节点5不能继续向网管设备发送数据,导致数据发送失败,能信中断,数据传输的可靠性低。
为了能够恢复通信,并提高数据传输的可靠性,参见图5,本申请实施例提供了一种网络架构500,该网络架构500包括第一网络501和第二网络502,第一网络501为链型网络。
第一网络501包括第一节点,第二网络502包括第二节点,第一节点和第二节点能够通信,第一节点是第一网络501中除头节点之外的节点。
其中,在第一网络501正常时,第一节点与第二节点之间的通信断开,在第一网络501故障时,且该故障导致第一节点与第一网络501的头节点之间的通信断开,第一节点与第二节点进行通信连接。
第一网络501的头节点与网管设备503通信。第二网络502包括汇聚节点,第二网络502中除汇聚节点之外的节点与该汇聚节点通信,该汇聚节点还与网管设备503通信。
电力输电线的沿线、油气管线的沿线或河道的沿线等监控场景分成第一区域和第二区域,第一网络501中的节点布放在该监控场景中的第一区域内,第一网络501中的节点对第一区域内的环境进行采集得到数据,且第一网络501中的节点采集得到的数据被汇聚到头节点,头节点向网管设备503转发该数据。
第二网络502中的节点布放在该监控场景中的第二区域内,第二网络502中的节点对第二区域内的环境进行采集得到数据,且第二网络502中的节点采集得到的数据被汇聚到汇聚节点,汇聚节点向网管设备503转发该数据。
参见图5,第一节点为第一网络501的尾节点,或者,参见图6,第一节点为第一网络501的头节点与尾节点之间的中间节点。
参见图5或图6,第二网络502为链型网络,第二节点为第二网络502的尾节点。或者,参见图7,第二节点为第二网络502的头节点与尾节点之间的中间节点。第二网络502的汇聚节点为第二网络502的头节点。
以电力输电线的场景为例,图5所示一种电力输电线示例,一条电力输电线被分成两段,其中一段的沿线布放第一网络501中的各节点,另一段的沿线布放第二网络502的各节点,在此场景下,第一节点可能为第一网络501的尾节点(节点5),第二节点可能为第二网络502的尾节点(节点6)。
图6所示另一种电力输电线示例,两条电力输电线会交汇在一起。如图6所示,电力输电线1和电力输电线2交汇于A点,电力输电线1的沿线布放第一网络501中的各节点,电力输电线2的沿线布放第二网络502中的各节点。在此场景下,第一节点可能为第一网络501中的靠近A点的中间节点(节点4),第二节点可能为第二网络502中的靠近A点的尾节点(节点6)。
图7所示另一种电力输电线示例,两条电力输电线会交叉。如图7所示,电力输电线1和电力输电线2交叉于A点,电力输电线1的沿线布放第一网络501中的各节点,电力输电线2的沿线布放第二网络502中的各节点。在此场景下,第一节点可能为第一网络501中的靠近A点的中间节点(节点4),第二节点可能为第二网络502中的靠近A点的中间节点(节点7)。
参见图8,第二网络502为星型网络,第二网络502中除汇聚节点之外的节点与该汇聚节点通信,第二节点为该汇聚节点或者为第二网络502中除该汇聚节点之外的节点。
在第一网络501中的相邻两个节点之间的连接是第一类型的连接(无线连接)时,第一节点是第一网络501的指定节点与尾节点之间的中间节点,或者,第一节点是第一网络501的尾节点。
指定节点的下游邻居节点与指定节点的上游邻居节点之间的位置关系不满足指定条件。即指定节点的下游邻居节点与指定节点的上游邻居节点之间的距离大于或等于距离阈值,和/或,指定节点的下游邻居节点与指定节点的上游邻居节点之间的海拔差值大于或等于差值阈值。
在指定节点与指定节点的下游邻居节点之间的通信故障时,指定节点的下游邻居节点无法通过指定节点的上游邻居节点产生的无线局域网,与指定节点的上游邻居节点建立无线连接。如此使得位于指定节点与尾节点之间的中间节点无法向头节点发送数据,以及使得尾节点也无法向头节点发送数据。在此情况下,第一节点检测到该故障时,与第二节点进行通信连接,这样使得指定节点与尾节点之间的中间节点向第二网络发送数据,以及使得尾节点向第二网络发送数据,
例如,参见图5,第一网络501包括节点1、节点2、节点3、节点4和节点5,假设指定节点为节点2,节点2的上游邻居节点为节点1,节点2的下游邻居节点为节点3。节点1和节点3之间的距离大于或等于距离阈值,和/或,节点1和节点3之间的海拔差值大于或等于差值阈值。在节点2与节点3之间的通信故障时,节点3无法与节点1建立无线连接,为了在第一网络故障后,保证在节点2与节点3之间的通信故障时能够成功向网管设备503发送数据,第一节点为节点3、节点4或节点5。
在一些实施例中,第二节点用于产生无线局域网,第一节点包括该无线局域网的网络信息。第一节点基于该网络信息接入该无线局域网,并在该无线局域网中与第二节点之间建立无线连接,以实现了第一节点与第二节点进行通信连接。
在一些实施例中,第一网络501中的第一节点包括内置RT,第二网络502中的第二节点包括外置RT,第二节点的外置RT用于产生该无线局域网络,可以在第一节点中配置该无线局域网络的网络信息。在布放第一网络501中的第一节点和第二网络502中的第二节点时,使第一节点的内置RT基于该网络信息连接到第二节点,即在布放第一节点和第二节点时,测试第一节点是否能够连到第二节点。在第一成功连接到第二节点后,断开第一节点和第二节点之间的连接,第一网络501和第二网络502各自独立正常工作。
在第二网络502中的相邻两个节点之间的连接是第一类型的连接(无线连接)的情况,第二节点是第二网络502的指定节点与尾节点之间的中间节点,或者,第二节点是第二网络502的尾节点。
第二网络502的指定节点的含义与第一网络501的指定节点的含义相同,在此不再详细说明。
在第二网络502中的相邻两个节点之间的连接是第一类型的连接(无线连接)的情况,如果第二网络502故障,第二节点能够执行同第一节点一样的操作。第二节点与第一节点进行通信连接,并通过第一网络501向网管设备503发送数据,以恢复通信,提高数据传输的可靠性。
在一些实施例,第一节点包括外置RT,第二节点包括内置RT,第一节点的外置RT用 于产生无线局域网络,以及在第二节点中配置该无线局域网络的网络信息。在布放第一网络501中的第一节点和第二网络502中的第二节点时,使第二节点的内置RT基于该网络信息连接到第一节点,即在布放第一节点和第二节点时,测试第二节点是否能够连到第一节点。在第二节点成功连接到第一节点后断开第一节点和第二节点之间的连接,第一网络501和第二网络502各自独立正常工作。
在一些实施例中,第一节点与第二节点之间采用物理链路相连,在第一网络正常时,第一节点上与该物理链路相连的接口的接口状态为关闭状态。在第一网络故障时,第一节点将该接口的接口状态由关闭状态设置为打开状态,以在该物理链路上建立与第二节点之间的连接,即实现了第一节点与第二节点进行通信连接。
参见图9,本申请提供了一种通信方法900,所述方法900应用图5、图6或图7所示的网络架构500中,所述方法900包括如下步骤901-步骤903的流程。
步骤901:第一节点在检测到第一网络故障时与第二节点进行通信连接。
第一网络为链型网络,由于该故障,第一网络被分割成第一部分和第二部分,第一部分包括第一网络的头节点,第一部分与第二部分之间的通信断开,第二部分包括第一节点。
第一部分除头节点之外的节点还与头节点通信,第一部分除头节点之间的节点还可继续对该节点所在环境进行采集,并向该头节点发送采集的数据,头节点接收该数据,并向网管设备转发该数据。头节点还可继续对头节点所在环境进行采集,向网管设备发送该数据。
由于第一部分与第二部分之间的通信断开,也就是说第二部分中的每个节点与头节点之间的通信断开,第二部分中的每个节点无法向头节点发送数据。
第二部分中除第一节点之外的节点还与第一节点通信。
接下来列举了第一节点与第二节点采用如下方式一和方式二进行通信连接,当然第一节点和第二节点还可能采用其他方式进行通信连接,在此不再一一列举说明。
方式一、第二节点产生无线局域网,第一节点包括该无线局域网的网络信息。在步骤901中,第一节点在检测到第一网络故障时,获取第二节点的无线局域网的网络信息,基于该网络信息与第二节点进行通信连接。在实现时,
第一节点基于该网络信息接入该无线局域网,通过该无线局域网建立与第二节点之间的无线连接,以实现与第二节点进行通信连接。
在一些实施例中,该网络信息可能是管理员事先配置在第一节点上的。该网络信息可能包括该无线局域网的名称和/或密码等信息。
在方式一中,第一节点与第二节点之间的位置关系满足指定条件。该指定条件包括如下一个或多个:第一节点与第二节点之间的距离小于距离阈值,或者,第一节点与第二节点之间的海拔差值小于差值阈值。
在方式一中,第一节点中可能包括至少一个节点的无线局域网的网络信息,该至少一个节点为第二网络中的节点,且第一节点与该至少一个节点中的每个节点之间的位置关系均满足指定条件。可选地,第一节点可能从该至少一个节点中选择与第一节点之间的通信质量最好的一个节点作为第二节点,或者,第一节点可能从该至少一个节点中选择与第一 节点之间的通信质量超过质量阈值的一个节点作为第二节点,或者,第一节点可能从该至少一个节点中选择与第一节点之间的距离最短的一个节点作为第二节点。第一节点与第二节点进行通信连接。
例如,参见图5,第一网络包括节点1、节点2、节点3、节点4和节点5,节点1为第一网络的头节点,节点5为第一网络的尾节点,节点2、节点3和节点4为第一网络的中间节点。第二网络包括节点6、节点7和节点8,节点8为汇聚节点并与网管设备通信,节点6和节点7分别与节点8通信。
假设第一节点为第一网络的节点5,第二节点为第二网络的节点6。第一网络发生故障,该故障是节点2与节点3之间的通信故障。由于该故障,第一网络被分割为第一部分和第二部分,第一部分包括节点1和节点2,第二部分包括节点3、节点4和节点5,第一部分与第二部分之间的通信断开。第一部分中的节点2和节点1还能够向网管设备发送数据。
第一节点包括第二节点产生的无线局域网的网络信息,第一节点基于该网络信息接入该无线局域网,并通过该无线局域网与第二节点进行通信连接,这样第二部分中的节点3、节点4和节点5(第一节点)通过第二网络向网管设备发送数据。
方式二、第一节点与第二节点之间采用物理链路相连,第一节点与该物理链路相连的接口的接口状态为关闭状态。在步骤901中,第一节点在检测到第一网络故障时,将该接口的接口状态由关闭状态设置为打开状态,基于该物理链路与第二节点进行通信连接。在实现时,
第一节点在该物理链路上建立与第二节点之间的连接,以实现与第二节点进行通信连接。
例如,参见图5,第一网络的节点5与第二网络的节点6之间使用物理链路相连,节点5上与该物理链路相连的接口的状态为关闭状态。第一网络发生故障,该故障是节点2与节点3之间的通信故障。由于该故障,第一网络被分割为第一部分和第二部分,第一部分包括节点1和节点2,第二部分包括节点3、节点4和节点5。节点5将与该物理链路相连的接口的状态设置为打开状态,在该物理链路上与节点6进行通信连接,这样第二部分中的节点3、节点4和节点5通过第二网络向网管设备发送数据。
在一些实施例中,第二部分还包括第三节点,第一网络发生的故障是第三节点与第三节点的上游邻居节点之间的通信故障。在步骤901中,第一节点接收第一故障标识,第一故障标识是第三节点在检测到第一网络发生故障时发送的;基于第一故障标识确定第一网络发生故障。
第三节点和第三节点的上游邻居节点相互周期性地发送心跳报文。即第三节点周期性地接收第三节点的上游邻居节点发送的心跳报文,第三节点周期性地向第三节点的上游邻居节点发送心跳报文。在第三节点检测出没有接收到第三节点的上游邻居节点发送的心跳报文的时间长度达到时间长度阈值时,第三节点检测出第三节点与第三节点的上游邻居节点之间的通信发生了故障,向第二部分中除第三节点之外的节点发送第一故障标识。
第二部分中除第三节点之外的节点接收第一故障标识,基于第一故障标识确定第一网络发生故障。
在一些实施例中,第一故障标识用于指示第一网络发生的该故障的故障位置。可选地,第一故障标识包括第三节点的标识信息,第一故障标识用于指示该故障的故障位置位于第三节点与第三节点的上游邻居节点之间。第二部分中除第三节点之外的节点基于第一故障标识确定该故障位置。
该心跳报文可能为邻居组播报文等。
接下来列举了一种第三节点还向第二部分除第三节点之外的节点发送第一故障标识的示例,该示例为:
第三节点向第三节点的下游邻居节点发送第一心跳报文,第一心跳报文包括第一故障标识。该下游邻居节点接收第一心跳报文,向其下游邻居节点发送第二心跳报文,第二心跳报文包括第一故障标识。
例如,参见图5,节点3检测出未接收到节点2发送的第三心跳报文的时间长度达到时间长度阈值时,节点3检测出节点3与节点3的上游邻居节点(节点2)之间的通信发生了故障。其中,第二部分包括节点3、节点4和节点5,节点3向节点4发送第一心跳报文,第一心跳报文包括第一故障标识。节点4接收第一心跳报文,基于第一心跳报文中的第一故障标识确定第一网络发生了故障,向其下游邻居节点(节点5)发送第二心跳报文,第二心跳报文包括第一故障标识。节点5接收第二心跳报文,基于第二心跳报文中的第一故障标识确定第一网络发生了故障。
在一些实施例中,第一网络发生的故障是第一节点与第一节点的上游邻居节点之间的通信故障。
第一节点和第一节点的上游邻居节点相互周期性地发送心跳报文。即第一节点周期性地接收第一节点的上游邻居节点发送的心跳报文,第一节点周期性地向第一节点的上游邻居节点发送心跳报文。在第一节点检测出没有接收到第一节点的上游邻居节点发送的心跳报文的时间长度达到时间长度阈值时,第一节点检测出第一节点与第一节点的上游邻居节点之间的通信发生故障。
第二部分还包括除第一节点之外的节点,第一节点之外的节点与第一节点通信,第一节点还向第二部分除第一节点之外的节点发送第二故障标识,第二部分除第一节点之外的节点接收第二故障标识,基于第二故障标识检测出第一网络发生了故障。其中,第一节点向第二部分除第一节点之外的节点发送第二故障标识的过程,请参见上述第三节点向第二部分除第三节点之外的节点发送第一故障标识的过程,在此不再详细说明。
在一些实施例中,第二故障标识用于指示第一网络发生的该故障的故障位置。可选地,第二故障标识包括第一节点的标识信息,第二故障标识用于指示该故障的故障位置位于第一节点与第一节点的上游邻居节点之间。
在一些实施例中,在第一节点与第二节点进行通信连接后,第二部分中的节点还请求第二网络的汇聚节点分配地址,该节点基于该地址与第二网络中的汇聚节点进行通信,例如,该节点在向第二网络中的汇聚节点发送数据时,该节点的地址为该数据的源地址。
步骤902:第一节点向第二节点发送第一数据,第一数据是属于第二部分的数据。
在步骤902中,第一数据可能是第一节点的数据,第一数据可能包括第一节点对第一节点所在环境进行采集的数据,和/或,第一节点自身的数据。可选地,第一节点自身的 数据可能包括如下一个或多个:第一节点的位置、第一节点的设备属性数据、或者、第一节点产生的数据等。或者,
在步骤902中,第一数据是第一节点接收来自第二部分中除第一节点之外的节点发送的数据。
对于第二部分中除第一节点之外的任一个节点,为了便于说明,将该节点称为第四节点,第一数据可能是第四节点的数据,第一数据可能包括第四节点对第四节点所在环境进行采集的数据,和/或,第四节点自身的数据。可选地,第四节点自身的数据可能包括如下一个或多个:第四节点的位置、第四节点的设备属性数据、或者、第四节点产生的数据等。
对于第四节点,第四节点在接收到故障标识(第一故障标识或第二故障标识)时,基于该故障标识检测出第一网络发生故障以及该故障的故障位置,然后向第一节点发送第一数据。
如果第四节点位于该故障位置与第一节点之间,第四节点需要改变发送的数据方向,然后向第一节点发送第一数据。
其中,在第一网络发生故障前,第四节点的发送数据的方向为向第一网络的头节点发送数据的方向。在第一网络发生了故障,且第四节点位于该故障位置与第一节点之间时,第四节点将发送的数据方向改变为向第一节点发送数据的方向。
例如,参见图5,第一网络发生的故障为节点2与节点3之间的通信故障,第一节点为尾节点(节点5),节点3和节点4为该故障的位置与节点5之间的节点,所以节点3和节点4在检测出第一网络发生故障后,将发送数据的方向由向第一网络的头节点(节点1)发送数据的方向改变为向第一网络的尾节点(节点5)发送数据的方向。
然后,节点3向节点4发送数据1,数据1为节点3采集的数据,节点4向节点5转发数据1,节点5再向第二网络的第二节点(节点6)转发数据1。同样,节点4向节点5发送数据2,数据2为节点4采集的数据,节点5向第二网络的第二节点(节点6)转发数据2,以及,节点5向第二网络的第二节点(节点6)发送数据3,数据3为节点6采集的数据。
步骤903:第二节点接收第一节点发送的第一数据,向网管设备发送第一数据。
由于第二节点与第二网络的汇聚节点通信,第二网络汇聚节点与网管设备通信。第二节点向第二网络的汇聚节点发送第一数据,第二网络的汇聚节点向网管设备发送第一数据。
例如,参见图5,在第一网络发生的故障后,第一节点(节点5)向第二节点(节点6)发送数据1、数据2和数据3。节点6接收数据1、数据2和数据3,向节点7发送数据1、数据2和数据3,节点7向节点8发送数据1、数据2和数据3,节点8再向网管设备发送数据1、数据2和数据3。
在第一网络发生故障后,可以对第一网络发生的故障进行维修,在第一网络恢复正常时,网管设备向第一节点发送恢复信息,该恢复信息用于指示第一网络的第一部分和第二部分之间的通信恢复正常。可选地,在实现时,
网管设备向第二网络汇聚节点发送恢复信息。第二网络的汇聚节点接收该恢复信息,向第二网络的第二节点发送该恢复信息。第二节点接收该恢复信息,向第一节点发送该恢 复信息。
其中,第一节点接收第二节点发送的恢复信息,基于该恢复信息断开与第二节点之间的通信连接,以及向第一网络的头节点发送第二数据,第二数据是属于第二部分的数据,第一数据和第二数据是第一节点在不同时刻得到的数据。
第一节点还向第二部分中除第一节点外的节点发送该恢复信息,对于位于第一网络发生的故障的故障位置与第一节点之间的节点,该节点接收该恢复信息后,改变发送的数据方向,然后向第一网络的头节点发送数据。
其中,该节点将发送数据的方向由向第一节点发送数据的方向改变为向第一网络的头节点发送数据的方向。
第二数据是第一节点的数据。或者,在第一节点是第一网络的中间节点时,第二数据可能是第一网络的尾节点发送的数据,或者,第二数据是第一节点与第一网络的尾节点之间的中间节点发送的数据。
在一些实施例中,在第一网络恢复正常时,第二部分中的节点请求还请求第一网络的头节点分配地址,该节点基于该地址与第一网络中的头节点进行通信,例如,该节点在向第一网络中的汇聚节点发送数据时,该节点的地址为该数据的源地址。
在本申请实施例中,第一网络中的第一节点与第二网络中的第二节点能够通信,在第一网络正常的情况下,第一节点与第二节点之间的通信断开,这样避免形成环形网络。在第一网络发生了故障的情况下,第一网络由该故障割成第一部分和第二部分,第一部分包括第一网络的头节点,第二部分包括第一节点,第一节点在检测到第一网络发生了故障时,与第二网络的第二节点进行通信连接,向第二节点发送第一数据,第一数据是第二部分的数据。第二节点再向网管设备发送第一数据,这样第二部分中的节点还能够继续发送数据,从而恢复了通信,提高数据传输的可靠性。
参见图10,本申请实施例提供了一种通信装置1000,所述装置1000部署在如图5、图6、图7或图8所示的网络架构500中的第一节点,或者,所述装置1000部署在如图9所示方法900中的第一节点。所述装置1000:
处理单元1001,用于在第一网络发生故障时与第二网络中的第二节点进行通信连接,第一网络为链型网络,由于该故障第一网络被分割成第一部分和第二部分,第一部分包括第一网络的头节点,第一部分与第二部分之间的通信断开,第二部分包括所述装置1000;
通信单元1002,用于向第二节点发送第一数据,第一数据是属于第二部分的数据。
可选地,处理单元1001与第二网络中的第二节点进行通信连接的详细实现过程,参见图9所示方法900的步骤901中的相关内容,在此不再详细说明。
可选地,通信单元1002向第二节点发送第一数据的详细实现过程,参见图9所示方法900的步骤902中的相关内容,在此不再详细说明。
可选地,所述装置1000与第二节点之间的位置关系满足指定条件。
可选地,该指定条件包括如下一个或多个:所述装置1000与第二节点之间的距离小于距离阈值,或者,所述装置1000与第二节点之间的海拔差值小于差值阈值。
可选地,处理单元1001,用于:
获取第二节点的无线局域网的网络信息;
基于该网络信息与第二节点进行通信连接。
可选地,处理单元1001获取第二节点的无线局域网的网络信息以及基于该网络信息与第二节点进行通信连接的详细实现过程,参见图9所示方法900的步骤901中的相关内容,在此不再详细说明。
可选地,第一数据是所述装置1000对所述装置1000所在环境进行采集的数据。
可选地,通信单元1002,还用于接收第一数据,第一数据是第二部分中除所述装置1000之外的节点对该节点所在环境进行采集的数据。
可选地,通信单元1002接收第一数据的详细实现过程,参见图9所示方法900的步骤902中的相关内容,在此不再详细说明。
可选地,第二部分还包括第三节点,该故障是第三节点与第三节点的上游邻居节点之间的通信故障,
通信单元1002,还用于接收故障标识,该故障标识是第三节点在检测到第一网络发生该故障时发送的;
处理单元1001,还用于基于该故障标识确定第一网络发生该故障。
可选地,通信单元1002接收故障标识的详细实现过程,参见图9所示方法900的步骤901中的相关内容,在此不再详细说明。
可选地,处理单元1001确定第一网络发生该故障的详细实现过程,参见图9所示方法900的步骤901中的相关内容,在此不再详细说明。
可选地,该故障是所述装置1000与所述装置1000的上游邻居节点之间的通信故障。
可选地,通信单元1002,还用于:
接收第二节点发送的恢复信息,该恢复信息用于指示第一部分与第二部分之间的通信恢复正常;
基于该恢复信息向头节点发送第二数据,第二数据是属于第二部分的数据,第一数据和第二数据是所述装置1000在不同时刻得到的数据。
可选地,通信单元1002接收恢复信息以及发送第二数据的详细实现过程,参见图9所示方法900的步骤903中的相关内容,在此不再详细说明。
可选地,所述装置1000为第一网络的尾节点。
可选地,第二网络为链型网络。
可选地,第二节点为第二网络的尾节点。
在本申请实施例中,在第一网络发生故障时,由于该故障第一网络被分割成第一部分和第二部分,第一部分包括第一网络的头节点,第一部分与第二部分之间的通信断开,第二部分包括所述装置。处理单元在第一网络发生故障时与第二网络中的第二节点进行通信连接,通信单元向第二节点发送第一数据,第一数据是属于第二部分的数据,如此第二部分中的节点能够继续通过第二网络发送属于第二部分的数据,恢复了第二部分中的节点的通信。
参见图11,本申请实施例提供了一种通信装置1100,所述装置1100部署在如图5、 图6、图7或图8所示的网络架构500中的第二节点,或者,所述装置1100部署在如图9所示方法900中的第二节点。所述装置1100:
处理单元1101,用于与第一网络中的第一节点进行通信连接,所述装置1100为第二网络中的节点,第一网络发生了故障,由于该故障第一网络被分割成第一部分和第二部分,第一部分包括第一网络的头节点,第一部分与第二部分之间的通信断开,第二部分包括第一节点;
通信单元1102,用于接收第一节点发送的第一数据,第一数据是属于第二部分的数据;发送第一数据。
可选地,处理单元1101与第一网络中的第一节点进行通信连接的详细实现过程,参见图9所示方法900的步骤901中的相关内容,在此不再详细说明。
可选地,通信单元1102接收第一数据以及发送第一数据的详细实现过程,参见图9所示方法900的步骤903中的相关内容,在此不再详细说明。
可选地,第一节点与所述装置1100之间的位置关系满足指定条件。
可选地,该指定条件包括如下一个或多个:第一节点与所述装置1100之间的距离小于距离阈值,或者,第一节点与所述装置1100之间的海拔差值小于差值阈值。
可选地,通信单元1102,还用于:
接收恢复信息,该恢复信息用于指示第一部分和第二部分之间的通信恢复正常;
向第一节点发送该恢复信息,该恢复信息还用于指示第一节点向头节点发送第二数据,第二数据是属于第二部分的数据,第一数据和第二数据是第一节点在不同时刻得到的数据。
可选地,通信单元1102接收恢复信息以及向第一节点发送该恢复信息的详细实现过程,参见图9所示方法900的步骤903中的相关内容,在此不再详细说明。
可选地,第一节点为第一网络的尾节点。
可选地,第二网络为链型网络。
可选地,所述装置1100为第二网络的尾节点。
在本申请实施例中,在第一网络发生故障时,由于该故障第一网络被分割成第一部分和第二部分,第一部分包括第一网络的头节点,第一部分与第二部分之间的通信断开,第二部分包括第一节点。处理单元与第一网络中的第一节点进行通信连接,通信单元接收第一节点发送的第一数据,第一数据是属于第二部分的数据,发送第一数据,这样第一节点能够继续通过第二网络发送属于第二部分的数据,恢复了第二部分中的节点的通信。
参见图12,本申请实施例提供了一种设备1200示意图。所述设备1200可以是上述任意实施例提供的第一节点或第二节点。例如,所述设备1200可以是如图5、图6、图7或图8所示的网络架构500中的第一节点或第二节点,或者,所述设备1200可以是如图9所示的方法900中的第一节点或第二节点。所述设备1200包括至少一个处理器1201,内部连接1202,存储器1203以及至少一个通信接口1204。
所述设备1200是一种硬件结构的装置。
在一些实施例中,所述设备1200可以用于实现图10所述的装置1000中的功能模块。例如,本领域技术人员可以想到图10所示的装置1000中的处理单元1001可以通过该至 少一个处理器1201调用存储器1203中的代码来实现。图10所示的装置1000中的通信单元1002可以通过该至少一个通信接口1204来实现。所述设备1200还可以用于实现上述任一实施例中第一节点的功能。
在一些实施例中,所述设备1200可以用于实现图11所述的装置1100中的功能模块。例如,本领域技术人员可以想到图11所示的装置1100中的处理单元1101可以通过该至少一个处理器1201调用存储器1203中的代码来实现。图11所示的装置1100中的通信单元1102可以通过该至少一个通信接口1204来实现。所述设备1200还可以用于实现上述任一实施例中第二节点的功能。
上述处理器1201例如是通用中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、网络处理器(Network Processer,NP)、图形处理器(Graphics Processing Unit,GPU)、神经网络处理器(Neural-network Processing Units,NPU)、数据处理单元(Data Processing Unit,DPU)、微处理器或者一个或多个用于实现本申请方案的集成电路。例如,处理器1201包括专用集成电路(Application-specific Integrated Circuit,ASIC),可编程逻辑器件(Programmable Logic Device,PLD)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。PLD例如是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程逻辑门阵列(Field-programmable Gate Array,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种逻辑方框、模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。
上述内部连接1202可包括一通路,在上述组件之间传送信息。内部连接1202可以为单板或总线等。总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
上述至少一个通信接口1204使用任何收发器一类的装置,用于与其它设备或通信网络通信,通信网络可以为以太网、无线接入网或无线局域网(Wireless Local Area Networks,WLAN)等。通信接口1204可以包括有线通信接口,还可以包括无线通信接口。具体的,通信接口1204可以为以太接口、快速以太(Fast Ethernet,FE)接口、千兆以太(Gigabit Ethernet,GE)接口,异步传输模式(Asynchronous Transfer Mode,ATM)接口,无线局域网WLAN接口,蜂窝网络通信接口或其组合。以太网接口可以是光接口,电接口或其组合。在本申请实施例中,通信接口1204可以用于所述设备1200与其他设备进行通信。
上述存储器1203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于 携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器1203也可以和处理器1201集成在一起。
在具体实现中,作为一种实施例,处理器1201可以包括一个或多个CPU,例如图12中的CPU0和CPU1。这些CPU中的每一个可以是一个单核处理器,也可以是一个多核处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,所述设备1200可以包括多个处理器,例如图12中的处理器1201和处理器1207。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
参见图13,本申请实施例还提供了一种通信系统1300,所述系统包括如图10所示的装置1000和如图11所示的装置1100,如图10所示的装置1000可以为第一节点1301,如图11所示的装置1100可以为第二节点1302。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (43)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一节点在第一网络发生故障时与第二网络中的第二节点进行通信连接,所述第一网络为链型网络,由于所述故障所述第一网络被分割成第一部分和第二部分,所述第一部分包括所述第一网络的头节点,所述第一部分与所述第二部分之间的通信断开,所述第二部分包括所述第一节点;
    所述第一节点向所述第二节点发送第一数据,所述第一数据是属于所述第二部分的数据。
  2. 如权利要求1所述的方法,其特征在于,所述第一节点与所述第二节点之间的位置关系满足指定条件。
  3. 如权利要求2所述的方法,其特征在于,所述指定条件包括如下一个或多个:所述第一节点与所述第二节点之间的距离小于距离阈值,或者,所述第一节点与所述第二节点之间的海拔差值小于差值阈值。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一节点与所述第二网络中的第二节点进行通信连接,包括:
    所述第一节点获取所述第二节点的无线局域网的网络信息;
    所述第一节点基于所述网络信息与所述第二节点进行通信连接。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一数据是所述第一节点对所述第一节点所在环境进行采集的数据。
  6. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收所述第一数据,所述第一数据是所述第二部分中除所述第一节点之外的节点对所述节点所在环境进行采集的数据。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第二部分还包括第三节点,所述故障是所述第三节点与所述第三节点的上游邻居节点之间的通信故障,所述方法还包括:
    所述第一节点接收故障标识,所述故障标识是所述第三节点在检测到所述第一网络发生所述故障时发送的;
    所述第一节点基于所述故障标识确定所述第一网络发生所述故障。
  8. 如权利要求1-6任一项所述的方法,其特征在于,所述故障是所述第一节点与所述第一节点的上游邻居节点之间的通信故障。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收所述第二节点发送的恢复信息,所述恢复信息用于指示所述第一部分与所述第二部分之间的通信恢复正常;
    所述第一节点基于所述恢复信息向所述头节点发送第二数据,所述第二数据是属于所述第二部分的数据,所述第一数据和所述第二数据是所述第一节点在不同时刻得到的数据。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述第一节点为所述第一网络的尾节点。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述第二网络为链型网络。
  12. 如权利要求11所述的方法,其特征在于,所述第二节点为所述第二网络的尾节点。
  13. 一种通信方法,其特征在于,所述方法包括:
    第二节点与第一网络中的第一节点进行通信连接,所述第二节点为第二网络中的节点,所述第一网络发生了故障,由于所述故障所述第一网络被分割成第一部分和第二部分,所述第一部分包括所述第一网络的头节点,所述第一部分与所述第二部分之间的通信断开,所述第二部分包括所述第一节点;
    所述第二节点接收所述第一节点发送的第一数据,所述第一数据是属于所述第二部分的数据;
    所述第二节点发送所述第一数据。
  14. 如权利要求13所述的方法,其特征在于,所述第一节点与所述第二节点之间的位置关系满足指定条件。
  15. 如权利要求14所述的方法,其特征在于,所述指定条件包括如下一个或多个:所述第一节点与所述第二节点之间的距离小于距离阈值,或者,所述第一节点与所述第二节点之间的海拔差值小于差值阈值。
  16. 如权利要求13-15任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点接收恢复信息,所述恢复信息用于指示所述第一部分和所述第二部分之间的通信恢复正常;
    所述第二节点向所述第一节点发送所述恢复信息,所述恢复信息还用于指示所述第一节点向所述头节点发送第二数据,所述第二数据是属于所述第二部分的数据,所述第一数据和所述第二数据是所述第一节点在不同时刻得到的数据。
  17. 如权利要求13-16任一项所述的方法,其特征在于,所述第一节点为所述第一网络的尾节点。
  18. 如权利要求13-17任一项所述的方法,其特征在于,所述第二网络为链型网络。
  19. 如权利要求18所述的方法,其特征在于,所述第二节点为所述第二网络的尾节点。
  20. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于在第一网络发生故障时与第二网络中的第二节点进行通信连接,所述第一网络为链型网络,由于所述故障所述第一网络被分割成第一部分和第二部分,所述第一部分包括所述第一网络的头节点,所述第一部分与所述第二部分之间的通信断开,所述第二部分包括所述装置;
    通信单元,用于向所述第二节点发送第一数据,所述第一数据是属于所述第二部分的数据。
  21. 如权利要求20所述的装置,其特征在于,所述装置与所述第二节点之间的位置关系满足指定条件。
  22. 如权利要求21所述的装置,其特征在于,所述指定条件包括如下一个或多个:所述装置与所述第二节点之间的距离小于距离阈值,或者,所述装置与所述第二节点之间的海拔差值小于差值阈值。
  23. 如权利要求20-22任一项所述的装置,其特征在于,所述处理单元,用于:
    获取所述第二节点的无线局域网的网络信息;
    基于所述网络信息与所述第二节点进行通信连接。
  24. 如权利要求20-23任一项所述的装置,其特征在于,所述第一数据是所述装置对所述装置所在环境进行采集的数据。
  25. 如权利要求20-23任一项所述的装置,其特征在于,所述通信单元,还用于接收所述第一数据,所述第一数据是所述第二部分中除所述装置之外的节点对所述节点所在环境进行采集的数据。
  26. 如权利要求20-25任一项所述的装置,其特征在于,所述第二部分还包括第三节点,所述故障是所述第三节点与所述第三节点的上游邻居节点之间的通信故障,
    所述通信单元,还用于接收故障标识,所述故障标识是所述第三节点在检测到所述第一网络发生所述故障时发送的;
    所述处理单元,还用于基于所述故障标识确定所述第一网络发生所述故障。
  27. 如权利要求20-25任一项所述的装置,其特征在于,所述故障是所述装置与所述装置的上游邻居节点之间的通信故障。
  28. 如权利要求20-27任一项所述的装置,其特征在于,所述通信单元,还用于:
    接收所述第二节点发送的恢复信息,所述恢复信息用于指示所述第一部分与所述第二部分之间的通信恢复正常;
    基于所述恢复信息向所述头节点发送第二数据,所述第二数据是属于所述第二部分的数据,所述第一数据和所述第二数据是所述装置在不同时刻得到的数据。
  29. 如权利要求20-28任一项所述的装置,其特征在于,所述装置为所述第一网络的尾节点。
  30. 如权利要求20-29任一项所述的装置,其特征在于,所述第二网络为链型网络。
  31. 如权利要求30所述的装置,其特征在于,所述第二节点为所述第二网络的尾节点。
  32. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于与第一网络中的第一节点进行通信连接,所述装置为第二网络中的节点,所述第一网络发生了故障,由于所述故障所述第一网络被分割成第一部分和第二部分,所述第一部分包括所述第一网络的头节点,所述第一部分与所述第二部分之间的通信断开,所述第二部分包括所述第一节点;
    通信单元,用于接收所述第一节点发送的第一数据,所述第一数据是属于所述第二部分的数据;发送所述第一数据。
  33. 如权利要求32所述的装置,其特征在于,所述第一节点与所述装置之间的位置关系满足指定条件。
  34. 如权利要求33所述的装置,其特征在于,所述指定条件包括如下一个或多个:所述第一节点与所述装置之间的距离小于距离阈值,或者,所述第一节点与所述装置之间的海拔差值小于差值阈值。
  35. 如权利要求32-34任一项所述的装置,其特征在于,所述通信单元,还用于:
    接收恢复信息,所述恢复信息用于指示所述第一部分和所述第二部分之间的通信恢复正常;
    向所述第一节点发送所述恢复信息,所述恢复信息还用于指示所述第一节点向所述头节点发送第二数据,所述第二数据是属于所述第二部分的数据,所述第一数据和所述第二数据是所述第一节点在不同时刻得到的数据。
  36. 如权利要求32-35任一项所述的装置,其特征在于,所述第一节点为所述第一网络的尾节点。
  37. 如权利要求32-36任一项所述的装置,其特征在于,所述第二网络为链型网络。
  38. 如权利要求37所述的装置,其特征在于,所述装置为所述第二网络的尾节点。
  39. 一种第一节点,其特征在于,所述第一节点包括存储器、处理器及存储在所述存储器上的计算机程序,所述处理器执行所述计算机程序时,使得所述第一节点实现权利要求1-12任一项所述的方法。
  40. 一种第二节点,其特征在于,所述第二节点包括存储器、处理器及存储在所述存储器上的计算机程序,所述处理器执行所述计算机程序时,使得所述第二节点为实现权利要求13-19任一项所述的方法。
  41. 一种通信系统,其特征在于,所述通信系统包括如权利要求20-31任一项所述的装置和如权利要求32-38任一项所述的装置,或者,所述通信系统包括如权利要求39所述的第一节点和如权利要求40所述的第二节点。
  42. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被处理器执行时,实现权利要求1-19任一项所述的方法。
  43. 一种计算机程序产品,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现权利要求1-19任一项所述的方法。
PCT/CN2023/104920 2022-08-23 2023-06-30 通信方法、装置、系统及存储介质 WO2024041213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211013523.0 2022-08-23
CN202211013523.0A CN117675527A (zh) 2022-08-23 2022-08-23 通信方法、装置、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2024041213A1 true WO2024041213A1 (zh) 2024-02-29

Family

ID=90012397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104920 WO2024041213A1 (zh) 2022-08-23 2023-06-30 通信方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN117675527A (zh)
WO (1) WO2024041213A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105896730A (zh) * 2016-04-01 2016-08-24 全球能源互联网研究院 一种适用于输电线路的分层混合通信系统的维护方法
WO2016165675A1 (zh) * 2015-04-17 2016-10-20 国家电网公司 一种面向输电线路无线通信网络的安全通信方法
US20200329399A1 (en) * 2019-04-12 2020-10-15 Samsung Electronics Co., Ltd. Electronic device supporting dual connectivity and method of operating the same
CN112104732A (zh) * 2020-09-11 2020-12-18 清华大学 一种输电线路监测系统及监测方法
CN112532437A (zh) * 2020-11-24 2021-03-19 锐捷网络股份有限公司 基于lora中继组网的备份实现方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165675A1 (zh) * 2015-04-17 2016-10-20 国家电网公司 一种面向输电线路无线通信网络的安全通信方法
CN105896730A (zh) * 2016-04-01 2016-08-24 全球能源互联网研究院 一种适用于输电线路的分层混合通信系统的维护方法
US20200329399A1 (en) * 2019-04-12 2020-10-15 Samsung Electronics Co., Ltd. Electronic device supporting dual connectivity and method of operating the same
CN112104732A (zh) * 2020-09-11 2020-12-18 清华大学 一种输电线路监测系统及监测方法
CN112532437A (zh) * 2020-11-24 2021-03-19 锐捷网络股份有限公司 基于lora中继组网的备份实现方法及装置

Also Published As

Publication number Publication date
CN117675527A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US10674486B2 (en) System, security and network management using self-organizing communication orbits in distributed networks
US9054958B2 (en) System and method for reducing information loss in an aggregated information handling system
WO2021047668A1 (zh) 路径探测方法、装置及计算机存储介质
CN105024855A (zh) 分布式集群管理系统和方法
US11095476B2 (en) Spanning tree protocol enabled n-node link aggregation system
WO2016116050A1 (zh) 环保护链路故障保护方法、设备及系统
CN109462533B (zh) 链路切换方法、链路冗余备份网络和计算机可读存储介质
US8131871B2 (en) Method and system for the automatic reroute of data over a local area network
US11223559B2 (en) Determining connectivity between compute nodes in multi-hop paths
US11095510B2 (en) Aggregated networking device maintenance system
CN113852529A (zh) 轨旁设备数据通信用背板总线系统及其数据传输方法
US10819628B1 (en) Virtual link trunking control of virtual router redundancy protocol master designation
WO2019079961A1 (zh) 一种确定共享风险链路组的方法及装置
US10735247B2 (en) Spanning tree protocol traffic handling system
WO2024041213A1 (zh) 通信方法、装置、系统及存储介质
US11159424B2 (en) Networking aggregation link provisioning system
WO2023011047A1 (zh) 一种处理方法及装置
US10397099B2 (en) Spanning tree protocol enabled N-node link aggregation system
CN101729349B (zh) 一种基于rrpp的主环通道连通性检测方法及装置
JP2014513891A (ja) イーサネットノードの検出フレームタイムアウト時間の設定方法及びシステム
US10277700B2 (en) Control plane redundancy system
CN109450794A (zh) 一种基于sdn网络的通信方法及设备
CN113438197B (zh) 跨网采集的多级级联通信系统、方法、计算机设备和介质
CN117675505A (zh) 事件处理方法、装置及系统
CN117201295A (zh) 报文转发方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856303

Country of ref document: EP

Kind code of ref document: A1