WO2024041132A1 - 移动机器人的运动控制方法和移动机器人 - Google Patents

移动机器人的运动控制方法和移动机器人 Download PDF

Info

Publication number
WO2024041132A1
WO2024041132A1 PCT/CN2023/101084 CN2023101084W WO2024041132A1 WO 2024041132 A1 WO2024041132 A1 WO 2024041132A1 CN 2023101084 W CN2023101084 W CN 2023101084W WO 2024041132 A1 WO2024041132 A1 WO 2024041132A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
state
mobile robot
leg
wheel part
Prior art date
Application number
PCT/CN2023/101084
Other languages
English (en)
French (fr)
Inventor
王帅
张竞帆
李照祥
王家浩
郑宇�
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to KR1020247007161A priority Critical patent/KR20240041371A/ko
Publication of WO2024041132A1 publication Critical patent/WO2024041132A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/028Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs

Definitions

  • the present application relates to the field of robots, and in particular to a motion control method for a mobile robot and a mobile robot.
  • An under-actuated system robot refers to a robot whose number of drives is less than the number of joint degrees of freedom.
  • a typical manifestation of this type of robot is that the robot has balance problems.
  • an underactuated system robot is a wheel-legged robot as an example.
  • the motion plane of its legs has no degree of freedom in the roll direction.
  • the wheel-legged robot as an example including a first wheel part, a second wheel part, and a base part connected to the first wheel part and the second wheel part, the motion planes of the legs of the first wheel part and the second wheel part are Keep vertical to base. Therefore, in actual use, the movement of the robot is usually achieved by controlling the wheels of the wheel-legged robot to roll.
  • the wheel-legged robot can only move by rolling, and the movement method is relatively single.
  • Embodiments of the present application provide a motion control method for a mobile robot and a mobile robot.
  • the technical solutions include at least the following solutions:
  • a motion control method of a mobile robot is provided.
  • the method is executed by a chip.
  • the mobile robot includes a first wheel part with telescopic legs, a second wheel part with telescopic legs, and a third wheel part.
  • a base portion connected to a wheel portion and a second wheel portion, the method includes:
  • the base part is parallel to the horizontal reference plane in a standing equilibrium state.
  • the first wheel part and the second wheel part alternately land on the ground, and the base part tilts and swings.
  • a mobile robot includes a first wheel part with telescopic legs, a second wheel part with telescopic legs, and a wheel connected to the first wheel part and the second wheel part. base part;
  • the mobile robot is provided with a controller, and the controller is used to control the mobile robot to implement the motion control method of the mobile robot as described above.
  • a motion control device for a mobile robot includes:
  • a control module for controlling the first wheel part with telescopic legs and the second wheel part with telescopic legs included in the mobile robot to be in a standing balance state
  • the control module is also used to control the mobile robot to perform bipedal movements based on the standing balance state
  • the base part of the mobile robot is parallel to the horizontal reference plane in a standing equilibrium state.
  • the first wheel part and the second wheel part alternately land on the ground, and the base part tilts and swings.
  • a computer device includes a memory and a processor; a computer program is stored in the memory, and the computer program is loaded and executed by the processor to implement the motion control method of the mobile robot as described above. .
  • a computer-readable storage medium is provided.
  • a computer program is stored in the storage medium, and the computer program is used to be executed by a processor to implement the motion control method of a mobile robot as described above.
  • a chip includes a programmable logic circuit and/or a computer program, and is used to implement the motion control method of a mobile robot as described above when the electronic device installed with the chip is running.
  • a computer program product includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the processor reads and executes the computer instructions from the computer-readable storage medium to implement Motion control method of mobile robot as described above.
  • the mobile robot is controlled to perform bipedal movement based on a standing balance state, thereby providing a new movement method for the wheel-legged mobile robot. It enriches the movement methods of wheel-legged mobile robots.
  • Figure 1 is a schematic structural diagram of a wheel-legged robot provided by an exemplary embodiment of the present application
  • Figure 2 is a partial schematic diagram of a wheel-legged robot provided by an exemplary embodiment of the present application
  • Figure 3 is a front view of a wheel-legged robot provided by an exemplary embodiment of the present application when it is standing on two wheels;
  • Figure 4 is a side view of a wheel-legged robot provided by an exemplary embodiment of the present application when it is standing on two wheels;
  • Figure 5 is a top view of the wheel-legged robot provided by an exemplary embodiment of the present application when it is standing on two wheels;
  • Figure 6 shows a three-dimensional schematic view of the wheel-legged robot provided by an exemplary embodiment of the present application when the counterweight legs are in an adducted state
  • Figure 7 is a front view of a wheel-legged robot provided by an exemplary embodiment of the present application when it is standing on three wheels;
  • Figure 8 is a side view of a wheel-legged robot provided by an exemplary embodiment of the present application when it is standing on three wheels;
  • Figure 9 is a top view of a wheel-legged robot provided by an exemplary embodiment of the present application when it is standing on three wheels;
  • Figure 10 is a three-dimensional schematic diagram of a wheel-legged robot provided by an exemplary embodiment of the present application when it is standing on three wheels;
  • Figure 11 is another three-dimensional schematic diagram of the wheel-legged robot provided by an exemplary embodiment of the present application when it is standing on three wheels;
  • Figure 12 is a schematic morphological diagram of a wheel-legged robot provided by an exemplary embodiment of the present application.
  • Figure 13 is a schematic diagram of three spatial angles provided by an exemplary embodiment of the present application.
  • Figure 14 is a block diagram of balance control in the pitch angle direction provided by an exemplary embodiment of the present application.
  • Figure 15 is a schematic diagram of roll angle direction balance control provided by an exemplary embodiment of the present application.
  • Figure 16 is a schematic diagram of yaw angle direction balance control provided by an exemplary embodiment of the present application.
  • Figure 17 is a flow chart of a motion control method for a mobile robot provided by an exemplary embodiment of the present application.
  • Figure 18 is a schematic diagram of a standing balance state provided by an exemplary embodiment of the present application.
  • Figure 19 is a flow chart of a motion control method for a mobile robot provided by an exemplary embodiment of the present application.
  • Figure 20 is an action exploded view of bipedal-like movement provided by an exemplary embodiment of the present application.
  • Figure 21 is a schematic diagram of the first tilt state provided by an exemplary embodiment of the present application.
  • Figure 22 is a schematic diagram of the first single wheel landing state provided by an exemplary embodiment of the present application.
  • Figure 23 is a schematic diagram of a second tilt state provided by an exemplary embodiment of the present application.
  • Figure 24 is a schematic diagram of the second single wheel landing state provided by an exemplary embodiment of the present application.
  • Figure 25 is an action decomposition diagram of bipedal-like movement provided by an exemplary embodiment of the present application.
  • Figure 26 is a schematic diagram of the standing balance state changing to the first tilted state provided by an exemplary embodiment of the present application.
  • Figure 27 is a schematic diagram of the first tilt state returning to the standing balance state provided by an exemplary embodiment of the present application.
  • Figure 28 is a schematic diagram of the standing balance state changing to the second tilted state provided by an exemplary embodiment of the present application.
  • Figure 29 is a schematic diagram of the second tilt state returning to the standing balance state provided by an exemplary embodiment of the present application.
  • Figure 30 is a schematic diagram of deriving joint angle information through cross-section simulation of a wheel-legged robot provided by an exemplary embodiment of the present application;
  • Figure 31 is a schematic diagram of determining the leg change amount when the mobile robot is in the first tilt state or the second tilt state provided by an exemplary embodiment of the present application;
  • Figure 32 is a schematic diagram of a motion control device of a mobile robot provided by an exemplary embodiment of the present application.
  • Figure 33 is a block diagram of an electronic device provided by an exemplary embodiment of the present application.
  • 124-Drive unit 1241-first motor; 1242-second motor;
  • 01-torsion spring 01-rotating shaft; 03-synchronous belt; 04-synchronous pulley.
  • the motion control method of a mobile robot can be used for any type of robot among redundant drive system robots, fully driven system robots, and under-actuated system robots.
  • a redundant drive system robot refers to a robot whose number of drives is greater than the number of joint degrees of freedom
  • a fully driven system robot refers to a robot whose number of drives is equal to the number of joint degrees of freedom
  • an underactuated system robot refers to a robot whose number of drives is less than the number of joint degrees of freedom.
  • Robots and under-actuated system robots all have body balance problems.
  • under-actuated system robots are unstable and have body balance problems, which makes their motion control more difficult than the other two types of robots.
  • their balance control is challenging and requires the help of linear and nonlinear control technologies.
  • the motion control method provided by the embodiments of the present application is applied to under-actuated system robots.
  • the motion control method provided by the embodiment of the present application is applied to wheel-legged robots.
  • the following description takes an under-actuated system robot as an example.
  • the redundant drive system robot and the fully-actuated system robot are similar and can be used as a reference and will not be described again.
  • FIG 1 shows a wheel-legged robot 10 provided by an exemplary embodiment of the present application.
  • the wheel-legged robot 10 is one of the under-actuated system robots.
  • the wheel-legged robot 10 combines the advantages of wheeled robots and footed robots, has high wheel energy efficiency and strong adaptability, and can use its legs to avoid obstacles on uneven terrain.
  • the wheel-legged robot 10 is an unstable under-actuated system with only two contact points between the ground and the wheels/feet, making the balance control of the wheel-legged robot 10 challenging because it is difficult to obtain body balance.
  • the wheel-legged robot 10 includes a base part 11, a wheel part 12 and a tail part 13.
  • the wheel part 12 and the tail part 13 are respectively connected to the base part 11 in transmission.
  • the wheel portion 12 can be divided into left and right sides, and the left and right sides can be completely symmetrical or not completely symmetrical.
  • the wheel portion 12 includes legs and a wheel portion.
  • the legs include thigh units 121 and calf units 122 , and the wheels include driving wheels 123 .
  • the upper leg unit 121 is composed of two rods and the lower leg unit 122 is composed of two rods.
  • the two rods included in the leg unit 121, the two rods included in the lower leg unit 122 and the base portion 11 form a planar five-bar linkage.
  • the first motor 1241 is fixed on the base portion 11 for providing driving force to the thigh unit 121 .
  • the two rods included in the thigh unit 121 are respectively fixedly connected to the output shafts of the two motors included in the first motor 1241.
  • the two rods included in the thigh unit 121 and the calf unit 122 include The connecting ends of the two rods are connected in the form of rotating pairs to form a planar five-bar linkage.
  • the second motor 1242 is fixed on a certain rod of the lower leg unit 122 for providing driving force to the driving wheel 123 .
  • the driving of the driving wheel 123 can be achieved in the following manner: the second motor 1242 drives the rotating shaft 02 of the driving wheel 123 through a belt drive.
  • the rotating shaft 02 and the lower leg unit 122 include The rotation pair between the two rods is axially coaxial, the torsion spring 01 is set on the rotation shaft 02, and the arms of the torsion spring 01 are respectively fixed on the two rods included in the lower leg unit 122.
  • a synchronous pulley 04 is installed on the output shaft of the second motor 1242.
  • the synchronous pulley 04 is fixed on the rotating shaft 02
  • the driving wheel 123 is fixed on another section of the rotating shaft 02
  • the synchronous belt 03 is sleeved on the synchronous shaft 02.
  • the second motor 1242 drives the synchronous pulley 04 to rotate by driving the synchronous belt 03 , thereby driving the driving wheel 123 to rotate.
  • the tail 13 includes a counterweight leg 131, a passive wheel 132 and a third motor 133.
  • the counterweight leg 131 realizes the balancing function during the movement of the wheel-legged robot 10
  • the third motor 133 is used to provide driving force to the driven wheel 132 .
  • Figures 3-5 respectively show the front view, left view and top view of the wheel-legged robot 10 when it is standing on two wheels;
  • Figure 6 shows the three-dimensional view of the wheel-legged robot 10 when the counterweight leg 131 is in the adducted state.
  • the wheel-legged robot 10 can also be in a three-wheel standing state.
  • Figures 7-9 show the front view, left view and top view of the wheel-legged robot 10 when it is standing on three wheels;
  • Figures 10 and 11 show the wheel-legged robot 10 respectively. Different three-dimensional views of the robot 10 when it is standing on three wheels.
  • the mechanism can be in a self-stable state.
  • the wheel-legged robot 10 may also have other forms, and FIG. 12 shows an example of one form.
  • wheel-legged robot 10 is one of the under-actuated system robots.
  • the following embodiments of this application only use the wheel-legged robot 10 as an example.
  • the specific structure and form of the wheel-legged robot 10 can be It is set based on the actual situation and does not limit this application.
  • Balance feedback control mainly feeds back the self-balance measurement value to the control system so that the final balance measurement value reaches the standard.
  • FIG. 13 is a schematic diagram of three spatial angles provided by an exemplary embodiment of the present application.
  • the embodiment of the present application mainly performs balance through three spatial angles: pitch angle (pitch), yaw angle (yaw) and lateral angle.
  • Roll angle (roll) is a schematic diagram of three spatial angles provided by an exemplary embodiment of the present application.
  • the embodiment of the present application mainly performs balance through three spatial angles: pitch angle (pitch), yaw angle (yaw) and lateral angle.
  • Roll angle (roll) Roll angle
  • a three-dimensional right-hand Cartesian coordinate system is established for the wheel-legged robot 10, in which the roll angle is the angle of rotation around the x-axis, and the x-axis is the coordinate axis along the forward direction of the wheel-legged robot 10, corresponding to the horizontal
  • the roll angle will be represented by ⁇ in the following;
  • the pitch angle is the angle of rotation around the y-axis, and the y-axis is the coordinate axis along the connecting direction of the two wheels of the wheel-legged robot 10, corresponding to the pitch angle, which will be represented by ⁇ in the following;
  • the yaw angle is the rotation angle around the z
  • the z-axis is the coordinate axis in the vertical upward direction, corresponding to the yaw angle. It will be used later. express.
  • the angle in the pitch direction represents the swing amplitude of the wheel-legged robot 10 in the forward direction. That is, the angle in the pitch direction represents the angle of the wheel-legged robot 10 swinging back and forth in the control direction of wheel rotation. This is due to the movement of each wheel and There is only a single contact point between the surfaces and the wheels of the wheel-legged robot 10 are arranged transversely.
  • the control in the pitch direction consists of a multi-closed-loop proportional-integral-derivative (proportional-integral-derivative, PID) controller.
  • PID proportional-integral-derivative
  • the wheel-legged robot 10 is projected onto a two-dimensional plane to form a two-dimensional plane simplified model. The angle of rotation of the wheel multiplied by the radius of the wheel.
  • represents the pitch angle of the wheel-legged robot 10, that is, the angle of rotation in the direction perpendicular to the paper surface in the two-dimensional plane simplified model. corresponding, represents the pitch angular speed of the wheel-legged robot 10, represents the pitch angular velocity reference value of the wheel-legged robot 10 , and ⁇ represents the torque input to the wheel motor of the wheel-legged robot 10 .
  • and Collected by sensors. For example, ⁇ and Acquired through the inertial sensor (Inertial Measurement Unit, IMU), Obtained through the wheel's encoding sensor (Encoder sensor).
  • IMU Inertial Measurement Unit
  • Figure 14 shows a block diagram of balance control in the pitch direction provided by an exemplary embodiment of the present application.
  • the outermost control reference value is the speed reference value of the wheel center movement.
  • this ⁇ ref is used as the control reference quantity of the next control loop.
  • the pitch angle difference is obtained, that is, the difference between the current pitch angle and the reference pitch angle.
  • the pitch angle difference is input to the PID controller 1420 to obtain Subsequently, As the control reference quantity of the next control loop, the and The result after subtraction is input to the PID controller 1430, and the PID controller 1430 outputs ⁇ .
  • ⁇ obtained according to the above balance control can be used as the wheel rotation reference signal of the whole-body type controller of the wheel-legged robot 10.
  • the angle in the roll direction represents the lateral swing amplitude of the wheel-legged robot when the lengths of the two legs are inconsistent, or the heights of the two legs are inconsistent.
  • the ideal angle is input to the PID controller, and the current roll angle is compared with the ideal angle. The angle difference controls the leg length of the wheel-legged robot, thereby keeping the two legs of the wheel-legged robot supporting the main body of the wheel-legged robot at a consistent height.
  • the ideal angle is 0.
  • the leg length that needs to be changed is calculated under the current roll angle, and the joint angle change is calculated based on the leg length that needs to be changed, thereby controlling the joint angle of the leg configuration.
  • Figure 15 to place the ideal angle Angle with roll
  • the difference is input to the PID controller 1510, which outputs the leg length change, thereby determining the change amount of the joint angle based on the leg length change, and inputs the change amount of the joint angle to the motor that controls the leg configuration to control the joint angle.
  • the angle in the yaw direction represents the angle generated by the wheel-legged robot during its rotation.
  • represents the yaw angle of the wheel-legged robot.
  • ⁇ ref represents the yaw angle reference value of the wheel-legged robot
  • this application provides a motion control method for a mobile robot, which can enable the mobile robot to achieve bipedal-like motion.
  • bipedal-like movement is a gait movement that imitates humans' alternating movements of left and right legs.
  • This gait movement can be implemented in various ways such as alternate walking and standing in place. For example, when a mobile robot performs step-on-place motion, the landing positions of the first wheel part and the second wheel part of the mobile robot remain unchanged; another example is when the mobile robot performs linear motion, curved motion, and obstacle-crossing motion in an alternating walking gait. etc., the first wheel part and the second wheel part of the mobile robot are displaced according to different movements.
  • the mobile robot is an underactuated system robot.
  • an underactuated system robot refers to a robot whose number of drives is less than the number of joint degrees of freedom.
  • the wheel motor of the under-actuated system robot is responsible for controlling the rotation position of the wheel in the pitch direction, and is responsible for the attitude balance control of the base part and the adjustment of the pitch attitude. This is based on the fact that the posture of the base part and the rotation distance of the wheel are dynamically coupled, and control can be achieved through the dynamic relationship between the two.
  • a two-wheel balanced wheel-legged robot is a type of underactuated system robot.
  • this type of robot has a common characteristic, that is, the plane in which the legs can move is perpendicular to the base, that is, the plane of movement of the legs has no roll angle. Degree of freedom in (roll) direction.
  • the under-actuated system robot is a robot that lacks one degree of freedom in space.
  • the under-actuated system robot provided by the embodiment of the present application is a wheel-legged robot that achieves two-wheel balance, and lacks a degree of freedom in the roll angle direction between the motion plane of the legs and the base part.
  • the wheel-legged robot as an example including a first wheel part, a second wheel part, and a base part connected to the first wheel part and the second wheel part, the motion planes of the legs of the first wheel part and the second wheel part are Keep vertical to base.
  • the bipedal robot For a bipedal robot, since the bipedal robot has feet, the bipedal robot itself has balance in the pitch angle direction; while for an under-actuated system robot, the motion plane of its single leg and the base The legs are in a fixed position (such as vertical), so that the movement of the legs only has degrees of freedom in the direction of the roll angle and the direction of the yaw angle, but lacks the degree of freedom in the direction of the pitch angle, and the movement of the legs lacks the degree of freedom in the lateral direction. Rotational freedom in the direction of the roll angle.
  • bipedal robots can generate motion trajectories through the Zero Moment Point (ZMP).
  • ZMP Zero Moment Point
  • This kind of motion trajectory generation method does not need to consider balance control in the pitch angle direction.
  • balance control in the pitch and roll angle directions needs to be considered.
  • the movement of the under-actuated system robot can be changed through relevant information such as changes in the length of the legs of the under-actuated system robot and the contact force between the wheels and the ground.
  • the change of the center of mass position and attitude change can realize the balance control of the under-actuated system robot, making it possible to apply the bipedal-like gait to the under-actuated system robot.
  • the mobile robot involved in the embodiment of the present application may be an under-actuated system robot.
  • the mobile robot involved in the embodiment of the present application is an under-actuated system robot that can achieve two-wheel balance, such as a wheel-legged robot that can achieve two-wheel balance.
  • this type of robot lacks a degree of freedom in the roll angle direction between the movement plane of the legs and the base part.
  • the wheel-legged robot as an example including a first wheel part, a second wheel part, and a base part connected to the first wheel part and the second wheel part, the motion planes of the legs of the first wheel part and the second wheel part are Keep vertical to base.
  • Figure 17 shows a flowchart of a motion control method for a mobile robot provided by an exemplary embodiment of the present application.
  • the mobile robot is an underactuated system robot.
  • the mobile robot includes a first wheel part with telescopic legs, a second wheel part with telescopic legs, and a base part connected to the first wheel part and the second wheel part.
  • the wheel-legged robot 10 includes two wheel parts 12 , and the two wheel parts 12 can be understood as a first wheel part and a second wheel part.
  • the tail 13 of the wheel-legged robot 10 shown in FIG. 1 is in an unfolded state, and the tail 13 of the wheel-legged robot 10 shown in FIG. 6 is in a stowed state.
  • the geometric midpoint of the driven wheel 132 of the tail portion 13 coincides with the axis direction of the counterweight leg 131 .
  • the axis direction of its counterweight leg 131 is parallel to the base portion 11 .
  • the forward direction of the wheel-legged robot 10 is the direction from the counterweight leg 131 to the passive wheel 132 .
  • the first wheel portion is the wheel portion 12 located on the left side of the wheel-legged robot 10 in the forward direction
  • the second wheel portion is the wheel portion 12 located on the right side of the wheel-legged robot 10 in the forward direction.
  • the first wheel part includes a first leg part and a first wheel
  • the second wheel part includes a second leg part and a second wheel
  • both the first leg part and the second leg part include a thigh unit 121 and a calf unit 122 .
  • the first leg part and the second leg part have a telescopic function
  • the first wheel part corresponds to a first driving motor
  • the second wheel part corresponds to a second driving motor
  • the first driving motor and the second driving motor respectively It is used to drive different wheel parts to move.
  • driving methods please refer to the above content and will not be described again.
  • the mobile robot involved in the embodiment of the present application may be an under-actuated system robot.
  • the mobile robot involved in the embodiment of the present application is an under-actuated system robot that can achieve two-wheel balance, such as a wheel-legged robot that can achieve two-wheel balance.
  • this type of robot lacks a degree of freedom in the roll angle direction between the movement plane of the legs and the base part.
  • the wheel-legged robot as an example including a first wheel part, a second wheel part, and a base part connected to the first wheel part and the second wheel part, the motion planes of the legs of the first wheel part and the second wheel part are Keep vertical to base.
  • the motion control method provided by the embodiment of the present application includes:
  • Step 102 Control the first wheel part and the second wheel part to be in a standing balance state.
  • the base part is parallel to the horizontal datum plane in a standing equilibrium state.
  • the datum refers to a set of parameters and control points used to define the shape of the three-dimensional earth.
  • the horizontal datum is a type of datum.
  • the line connecting any point on the horizontal datum to the center of the earth is perpendicular to the ground at that point. Tangent.
  • the mobile robot is located on flat ground, and the base part remains parallel to the ground in a standing balance state; in another optional implementation scenario, the mobile robot is located on a slope, and the base part is on Stand parallel to the horizontal datum while standing in balance.
  • the mobile robot may face a variety of road conditions. Taking road conditions including flat road conditions and slope road conditions as an example, no matter what road conditions the mobile robot moves on, if the mobile robot performs bipedal movements, the base part will remain parallel to the ground on flat road conditions in a standing equilibrium state.
  • the standing balance state is a state in which the mobile robot is in static balance or dynamic balance. In this state, the base remains parallel to the horizontal datum plane, and the mobile robot maintains body balance. In some embodiments, the position of the mobile robot remains unchanged in the standing equilibrium state, that is, there is no displacement; in other embodiments, the mobile robot moves in the standing equilibrium state, that is, there is displacement. The following embodiments take the mobile robot's position remaining unchanged in a standing equilibrium state as an example.
  • FIG. 18 shows a schematic diagram of the standing balance state provided by an exemplary embodiment of the present application.
  • the wheel-legged robot 10 includes a base part 11 , a first wheel part 1201 and a second wheel part 1202 .
  • the forward direction of the wheel-legged robot 10 is the direction in which the counterweight leg 131 points to the passive wheel 132 , which can also be understood as the direction in which the passive wheel 132 points to the paper.
  • the first wheel part 1201 is a wheel part located on the left side of the forward direction of the wheel-legged robot 10
  • the second wheel part 1202 is a wheel part located on the right side of the forward direction of the wheel-legged robot 10 .
  • the wheel-legged robot 10 is located on flat ground.
  • both the first wheel part 1201 and the second wheel part 1202 are on the ground, and the base part 11 remains parallel to the ground.
  • the heights of the first wheel part 1201 and the second wheel part 1202 are the same, that is, the first wheel part 1201 and the second wheel part 1202 are at the same height in a standing equilibrium state. Therefore, when the underactuated system robot is on flat ground, the standing equilibrium state can also be understood as the equal height state.
  • Step 104 Control the mobile robot to perform bipedal movements based on a standing balance state.
  • the first wheel part and the second wheel part alternately land on the ground, and the base part tilts and swings.
  • bipedal-like movement is a gait movement that imitates humans' alternating movements of left and right legs.
  • This gait movement can be implemented in various ways such as alternating walking and stepping in place.
  • alternating walking and stepping in place.
  • the landing positions of the first wheel part and the second wheel part of the mobile robot remain unchanged; another example is when the mobile robot performs linear motion, curved motion, and obstacle-crossing motion in an alternating walking gait. etc., the first wheel part and the second wheel part of the mobile robot are displaced according to different motion states.
  • the first wheel portion and the second wheel portion have telescopic legs.
  • the alternate landing of the first wheel part and the second wheel part and the tilting and swinging of the base part can be achieved by the first leg part and the second leg part. Alternating expansion and contraction of the two legs is realized.
  • the first leg is controlled to shorten and the second leg is lengthened so that the base portion tilts in the first direction, and at this time, the first wheel portion and the second wheel portion continue to maintain The state of landing; then the first leg can be controlled to extend and the second leg to shorten, so that the second wheel portion is lifted and suspended from the ground; after the first leg continues to extend and the second leg continues to shorten for a certain period of time , the second wheel part will change from being suspended in the air to landing on the ground again.
  • the base part will also return to a state parallel to the horizontal datum plane, that is, the mobile robot returns to a standing balance state; then the first leg can be controlled to continue Extend and continue to shorten the second leg, so that the base portion tilts in the second direction.
  • the first wheel portion and the second wheel portion continue to maintain a state of touching the ground, and the first direction and the second direction are opposite. direction; then the first leg can be controlled to shorten and the second leg to extend, so that the first wheel portion is lifted and suspended from the ground.
  • the first wheel part will change from being suspended in the ground to landing on the ground again.
  • the base part will also return to a state parallel to the horizontal reference plane, that is, the mobile robot returns to a standing balance state.
  • the mobile robot completed a cycle of standing motion. Subsequently, loop control can be performed based on the process given in the foregoing content to realize multiple cycles of in-situ stepping motion of the mobile robot.
  • bipedal-like movement provides a new way of movement for mobile robots.
  • bipedal locomotion has high terrain adaptability, strong application value, and strong robustness and stability.
  • Step 19 is a flow chart of a motion control method for a mobile robot provided by an exemplary embodiment of the present application.
  • Step 104 can be implemented as step 1041, step 1042, step 1043 and step 1044.
  • the movement is divided into cyclic conversions of standing balance state, first tilt state, standing balance state, second tilt state, and standing balance state.
  • FIG. 20 is an action breakdown of bipedal-like movement provided by an exemplary embodiment of the present application. picture.
  • the mobile robot is an underactuated system robot.
  • first control the first wheel part and the second wheel part to be in a standing balance state.
  • first wheel and the second wheel are on the ground, and the base part is kept parallel to the ground.
  • the bipedal-like movement of the under-actuated system robot can be realized as follows:
  • the first leg of the first wheel part is controlled to shorten and the second leg of the second wheel part is extended, so that the under-driven system machine changes to the first tilt state.
  • the base gradually changes from a horizontal state parallel to the ground to The first direction is tilted, and both the first wheel and the second wheel are on the ground.
  • the underactuated system robot is located on a flat road.
  • the underactuated system robot maintains static balance, and the heights of the first wheel part and the second wheel part are the same, so that the base part remains parallel to the ground.
  • the first wheel part and the second wheel part are driven by the motor to control the first leg to shorten and the second leg to extend.
  • the base since the first leg and the second leg are connected to the base, the base will be driven to tilt, and the base will tilt in the first direction from a horizontal state parallel to the ground.
  • the first wheel and the second wheel are controlled to keep on the ground.
  • the under-actuated system robot changes from the first tilted state to the first single-wheel landing state.
  • the first leg of the first wheel part is controlled to extend, and the second leg of the second wheel part is shortened, so that the under-actuated system robot changes to the first single-wheel landing state.
  • the first wheel landing state is a state where the first wheel is on the ground and the second wheel is suspended.
  • the first wheel and the second wheel always remain on the ground.
  • the first wheel part and the second wheel part are driven by the motor to control the elongation of the first leg and the shortening of the second leg.
  • the under-actuated system robot still maintains body balance, and the inclination angle of the base portion in the first direction will gradually become smaller as the first leg and the second leg expand and contract.
  • the first leg in the first single-wheel landing state, the first leg is controlled to continue to extend, and the second leg continues to shorten, so that the under-driven system machine returns to the standing balance state from the first single-wheel landing state.
  • the base part gradually tilts in the second direction until it returns to a horizontal state parallel to the ground, and the second wheel returns to the ground from being suspended.
  • the other suspended single wheel can be lifted up or moved forward or backward, thereby realizing motion control of the robot.
  • the first leg of the first wheel part is controlled to extend and the second leg of the second wheel part shortens, so that the under-driven system machine changes to the second tilted state.
  • the base part gradually tilts from a horizontal state parallel to the ground to the second direction, and both the first wheel and the second wheel touch the ground.
  • the under-actuated system robot after the under-actuated system robot returns to the standing equilibrium state, it can control the first leg to extend and the second leg to shorten by driving the first wheel part and the second wheel part. At this time, since the first leg and the second leg are connected to the base, the base will be driven to tilt, and the base will tilt in the second direction from a horizontal state parallel to the ground. At the same time, the first wheel and the second wheel are controlled to keep on the ground.
  • the under-actuated system robot changes from the second tilt state to the second single-wheel landing state.
  • the first leg of the first wheel part is controlled to shorten, and the second leg of the second wheel part is extended, so that the under-actuated system robot changes to the second single-wheel landing state.
  • the second wheel landing state is a state where the first wheel is suspended and the second wheel is on the ground.
  • the electronic The machine drives the first wheel part and the second wheel part to control the first leg to shorten and the second leg to extend. It should be understood that at the moment when the switching state condition is met, the inclination angle of the base portion in the second direction will reach the maximum; when changing from the second inclination state to the second single wheel landing state, the shortening of the first leg The elongation of the second leg is performed simultaneously, and the base portion gradually tilts toward the first direction.
  • the second wheel will still remain on the ground, but the first wheel will be raised and suspended from the ground.
  • the under-actuated system robot still maintains body balance, and the inclination angle of the base portion in the second direction will gradually become smaller as the first leg and the second leg expand and contract.
  • the first leg is controlled to continue to shorten, and the second leg continues to extend, so that the under-driven system machine returns to the standing balance state from the second single-wheel landing state.
  • the base gradually tilts in the first direction until it returns to a horizontal state parallel to the ground, and the first wheel changes from being on the ground to being suspended in the air and then returns to the ground again.
  • the inclination of the base portion in the first direction will cause the base to The inclination angle of the part in the second direction gradually decreases until it returns to being parallel to the ground. At this time, the first wheel will return from hanging to the ground, so that the under-actuated system robot returns to a standing balance state.
  • the above process gives a motion cycle of the underactuated system robot in bipedal-like motion.
  • the base part gradually undergoes a process of being parallel to the ground, tilting in the first direction, returning to parallel to the ground, tilting in the second direction, and returning to parallel to the ground, so as to form the shape of the base part. Tilt and rock.
  • steps 1041, 1042, 1043 and 1044 are as follows:
  • Step 1041 Control the mobile robot to change from the standing balance state to the first tilt state.
  • the first tilted state is a state in which the base portion is tilted in the first direction.
  • the mobile robot is an underactuated system robot.
  • FIG. 21 shows a schematic diagram of the first tilt state provided by an exemplary embodiment of the present application.
  • the wheel-legged robot 10 includes a base part 11 , a first wheel part 1201 and a second wheel part 1202 .
  • the forward direction of the wheel-legged robot 10 is the direction in which the counterweight leg 131 points to the passive wheel 132 , which can also be understood as the direction in which the passive wheel 132 points to the paper.
  • the first wheel part 1201 is a wheel part located on the left side of the forward direction of the wheel-legged robot 10
  • the second wheel part 1202 is a wheel part located on the right side of the forward direction of the wheel-legged robot 10 .
  • the wheel-legged robot 10 is located on flat ground.
  • both the first wheel part 1201 and the second wheel part 1202 are on the ground, and the base part 11 is tilted in the first direction.
  • the inclination of the base portion 11 in the first direction will cause the body of the wheel-legged robot 10 to incline.
  • the inclination of the base portion 11 in the first direction will cause the body of the wheel-legged robot 10 to also incline in the first direction.
  • the tilt angle of the wheel-legged robot 10 is used to indicate the tilt angle of the body of the wheel-legged robot 10 .
  • the inclination angle is used to indicate the angle between the base portion 11 and the horizontal plane of the ground.
  • step 1041 can be implemented as follows:
  • the base portion gradually tilts toward the first direction from a horizontal state parallel to the horizontal reference plane, and both the first wheel and the second wheel touch the ground.
  • both the first wheel and the second wheel are on the ground, thereby ensuring the stability of the entire robot body during the expansion and contraction process, thus ensuring the stability of the robot. Stability during motion control.
  • the mobile robot is located on flat ground, and the heights of the first leg and the second leg are equal in a standing equilibrium state. Subsequently, the first leg is controlled to shorten and the second leg is lengthened, so that the height of the first leg decreases and the height of the second leg increases.
  • the mobile robot is located on a slope, and the first leg and the second leg have different heights in a standing equilibrium state. Taking the first leg being higher than the second leg as an example, during the process of controlling the shortening of the first leg and the elongation of the second leg, the height of the first leg in the first time period will still be higher than that of the second leg. 2. Leg height. If the first leg is continuously controlled to shorten and the second leg is lengthened, at a certain moment after the first period, the heights of the first leg and the second leg may become equal.
  • the height of the first leg in the second time period will be lower than the height of the second leg, and the second time period is the first time period. the time period after the period.
  • Step 1042 Control the mobile robot to return to a standing balance state from the first tilt state.
  • the state of the mobile robot can be regarded as the first single wheel landing state.
  • step 1042 can be implemented as follows:
  • the first leg of the first wheel part is controlled to extend, and the second leg of the second wheel part is shortened, so that the mobile robot is in a first single-wheel landing state, and the first single-wheel landing state is when the first wheel lands and the third The second wheel is in the air;
  • the base gradually tilts in the second direction until it returns to a horizontal state parallel to the horizontal reference plane, and the second wheel changes from being on the ground to being suspended in the air and then returns to the ground again.
  • the mobile robot is an underactuated system robot.
  • FIG. 22 shows a schematic diagram of the first single-wheel landing state provided by an exemplary embodiment of the present application.
  • the wheel-legged robot 10 includes a base part 11 , a first wheel part 1201 and a second wheel part 1202 .
  • the forward direction of the wheel-legged robot 10 is the direction from the counterweight leg 131 to the driven wheel 132 .
  • the first wheel part 1201 is on the ground, the second wheel part 1202 is suspended, and the base part 11 is tilted in the first direction.
  • the inclination of the base portion 11 in the first direction will cause the body of the wheel-legged robot 10 to incline.
  • the inclination of the base portion 11 in the first direction will cause the body of the wheel-legged robot 10 to incline in the first direction.
  • the length of the first leg and the height of the second leg in the standing equilibrium state are the same. At this time, during the process of the mobile robot returning from the first tilted state to the standing equilibrium state, the heights of the first leg and the second leg will change. This change can also adopt the height of the first leg and the second leg. length to measure.
  • the mobile robot is on the first single wheel landing within the first period of time. state. in:
  • the length of the first leg is shorter than the length of the second leg
  • the first leg and the second leg are equal in length.
  • the mobile robot is still in the first tilting state.
  • the length of the first leg will be much smaller than the length of the second leg; and based on the fact that the length of the first leg is shortened to the shortest and the length of the second leg is extended to the longest, the base part is in the first direction.
  • the upward tilt angle reaches its maximum.
  • the first leg is controlled to extend and the second leg to shorten.
  • the first leg The length is still less than the length of the second leg.
  • the length gap between the first leg and the second leg gradually narrows; until the end node of the first duration is reached, the first leg The first and second legs are the same length.
  • Step 1043 Control the mobile robot to change from the standing balance state to the second tilted state.
  • the second tilted state is a state in which the base portion is tilted in the second direction.
  • the mobile robot is an underactuated system robot.
  • FIG. 23 shows a schematic diagram of the second tilt state provided by an exemplary embodiment of the present application.
  • the wheel-legged robot 10 includes a base part 11 , a first wheel part 1201 and a second wheel part 1202 .
  • the forward direction of the wheel-legged robot 10 is the direction from the counterweight leg 131 to the passive wheel 132 .
  • the wheel-legged robot 10 is located on flat ground.
  • both the first wheel part 1201 and the second wheel part 1202 are on the ground, and the base part 11 is tilted in the second direction.
  • the inclination of the base portion 11 in the second direction will cause the body of the wheel-legged robot 10 to incline.
  • step 1043 can be implemented as follows:
  • the base part gradually tilts from a horizontal state parallel to the horizontal reference plane to the second direction, and both the first wheel and the second wheel touch the ground.
  • the mobile robot is located on flat ground, and the heights of the first leg and the second leg after returning to the standing equilibrium state are equal. Subsequently, the first leg is controlled to extend and the second leg to shorten, so that the height of the first leg increases and the height of the second leg decreases.
  • the mobile robot is located on a slope, and the heights of the first leg and the second leg after returning to the standing equilibrium state are different.
  • the first leg being higher than the second leg as an example, in the process of controlling the elongation of the first leg and the shortening of the second leg, the height of the first leg in the third time period will still be higher than that of the second leg.
  • the height of the second leg, the third time period is the time period after the second time period, and the description of the second time period can refer to the foregoing content. If the lengthening of the first leg and the shortening of the second leg are continuously controlled, at some point after the third period, the heights of the first leg and the second leg may become equal.
  • the height of the first leg in the fourth time period will be lower than the height of the second leg, and the fourth time period is the third time the time period after the period.
  • Step 1044 Control the mobile robot to return to a standing balance state from the second tilted state.
  • the state of the mobile robot can be regarded as the second single-wheel landing state.
  • step 1044 can be implemented as follows:
  • the first leg of the first wheel part is controlled to shorten, and the second leg of the second wheel part is extended, so that the mobile robot is in a second single-wheel landing state.
  • the second single-wheel landing state is when the first wheel is suspended and the third wheel is in the air. The state of two wheels touching the ground;
  • the base gradually tilts in the first direction until it returns to a horizontal state parallel to the horizontal reference plane, and the first wheel changes from being on the ground to being suspended in the air and then returns to the ground again.
  • the mobile robot is an underactuated system robot.
  • the inclination of the mobile robot can be controlled more smoothly and accurately.
  • FIG. 24 shows a schematic diagram of the second single-wheel landing state provided by an exemplary embodiment of the present application.
  • the wheel-legged robot 10 includes a base part 11 and a first wheel part 1201 and the second wheel part 1202.
  • the forward direction of the wheel-legged robot 10 is the direction from the counterweight leg 131 to the driven wheel 132.
  • the first wheel part 1201 is suspended in the air, the second wheel part 1202 is on the ground, and the base part 11 is tilted in the second direction.
  • the inclination of the base portion 11 in the second direction will cause the body of the wheel-legged robot 10 to incline.
  • the length of the first leg and the height of the second leg in the standing equilibrium state are the same.
  • the heights of the first leg and the second leg will change. This change may also adopt the height of the first leg and the second leg. length to measure.
  • the mobile robot is on the second single wheel landing within the second period of time. status, where:
  • the length of the first leg is longer than the length of the second leg
  • the first leg and the second leg are equal in length.
  • the mobile robot is still in the second tilting state.
  • the length of the first leg will be much longer than the length of the second leg; and based on the length of the first leg extending to the longest and the length of the second leg shortening to the shortest, the base portion is in the second direction
  • the tilt angle reaches the maximum.
  • the first leg is controlled to shorten and the second leg is lengthened.
  • the length of the first leg is still longer than the length of the second leg.
  • the length gap between the first leg and the second leg gradually narrows; until the end node of the second duration is reached, the first leg The first and second legs are the same length.
  • FIG. 25 is an action decomposition diagram of a bipedal-like movement provided by an exemplary embodiment of the present application.
  • the left vertical line in the figure is used to identify the left wheel part
  • the right vertical line is used to identify the right wheel part
  • the area enclosed by two vertical lines and two horizontal lines is used to identify the base part.
  • bipedal-like motion can be achieved as follows:
  • the left wheel part and the right wheel part are controlled to be at the same height so that the base part remains parallel to the ground.
  • the legs of the left wheel part are controlled to shorten and the legs of the right wheel part are lengthened so that the base part tilts to the left as the wheel parts on both sides expand and contract.
  • the wheels of the wheel portions on both sides are controlled to maintain the ground state, so that the mobile robot gradually changes from the equal height state of the wheel portions on both sides to the left leaning state.
  • the telescopic control of the wheels on both sides is stopped to prevent the mobile robot from rolling over.
  • the first limit value of the inclination angle of the mobile robot can be set according to actual needs, such as determined according to the mass of the mobile robot and the length changes of the legs of the wheel portions on both sides.
  • the legs of the left wheel part are controlled to be extended and the legs of the right wheel part are controlled to be shortened.
  • the wheel on the right wheel part will be suspended off the ground, and the mobile robot will enter the first single-wheel landing state.
  • the legs of the left wheel part lengthen and the legs of the right wheel part shorten the leg lengths of the wheel parts on both sides will reach the same point at the end of the first single wheel landing state, and the mobile robot will also move from the first wheel part to the ground.
  • the one-wheel landing state returns to the standing balance state.
  • the base part also returns to being parallel to the ground from the left tilt.
  • the legs of the left wheel part are controlled to extend and the legs of the right wheel part are shortened, so that the base part moves to the right as the wheel parts on both sides expand and contract. Tilt sideways.
  • the wheels of the wheel portions on both sides are controlled to maintain the ground state, so that the mobile robot gradually changes from the equal height state of the wheel portions on both sides to the right-leaning state.
  • the telescopic control of the wheels on both sides is stopped to prevent the mobile robot from rolling over.
  • the second limit value of the inclination angle of the mobile robot can be set according to actual needs, such as determined according to the mass of the mobile robot and the length changes of the legs of the wheel portions on both sides.
  • the leg portion of the left wheel portion is controlled to shorten and the leg portion of the right wheel portion is lengthened.
  • the wheel on the left wheel part will be suspended off the ground, and the mobile robot will enter the second single-wheel landing state.
  • the length of the legs of the wheel parts on both sides will increase in the second
  • the end time of the one-wheel landing state reaches the same time, and the mobile robot will also return to the standing balance state from the second one-wheel landing state.
  • the base part also returns to being parallel to the ground from right tilt.
  • the motion control method of the mobile robot provided by the embodiment of the present application provides a specific process of a motion cycle of bipedal-like motion.
  • the bipedal-like motion of the mobile robot can be realized to improve the flexibility of the mobile robot.
  • state switching can be performed on the mobile robot when different conditions are met.
  • the state of the mobile robot is switched.
  • the inclination angle of the mobile robot is used to indicate the angle between the plane where the base part is located and a plane parallel to the horizontal reference plane.
  • the inclination angle of the mobile robot can be understood as the angle between the first plane and the second plane.
  • the first plane is the plane where the base part is located
  • the second plane is a plane parallel to the ground.
  • the inclination angle of the mobile robot is used as the state switching condition, which can include the following four situations:
  • the tilt angle of the mobile robot reaches the first limit.
  • step 1041 may be implemented as follows: when the tilt angle of the mobile robot reaches the first limit, control the mobile robot to change from a standing balance state to a first tilt state.
  • FIG. 26 shows a schematic diagram of the standing balance state changing to the first tilted state provided by an exemplary embodiment of the present application.
  • the first wheel part and the second wheel part are of the same height.
  • the first wheel part is controlled to shorten and the second wheel part to extend.
  • the attitude of the mobile robot changes, and the base portion tilts toward the first direction where the first wheel portion is located.
  • the inclination angle of the mobile robot reaches the first limit ⁇ 1.
  • ⁇ 1 may be 0 degrees, that is, the base part is parallel to the ground.
  • ⁇ 1 can still be 0 degrees, at which time the base and the ground are no longer parallel.
  • the tilt angle of the mobile robot reaches the second limit.
  • step 1042 may be implemented as follows: when the tilt angle of the mobile robot reaches the second limit, control the mobile robot to return to a standing balance state from the first tilt state.
  • FIG. 27 shows a schematic diagram of the first tilt state returning to the standing balance state provided by an exemplary embodiment of the present application.
  • the first wheel part and the second wheel part touch the ground, and then the first wheel part is controlled to extend and the second wheel part is controlled to shorten, so that the mobile robot changes from the first tilted state to the second wheel part.
  • a single wheel landing state What is shown on the left side in Figure 27 is the first single wheel landing state after the first tilt state is changed.
  • the first wheel part is on the ground and the second wheel part is suspended.
  • the first wheel portion is continued to be controlled to extend and the second wheel portion to shorten.
  • the attitude of the mobile robot changes, and the base portion tilts toward the second direction where the second wheel portion is located until it returns to be parallel to the ground.
  • the inclination angle of the mobile robot reaches the second limit ⁇ 2.
  • the mobile robot is controlled to change from the standing equilibrium state to the first tilt state; when the tilt angle of the mobile robot reaches ⁇ 2, the mobile robot is controlled to change from the first tilt state to The first wheel's landing state changes until it returns to a standing balance state.
  • the center of the mobile robot on the ground during the quasi-bipedal movement is calculated based on the change in length and speed of the legs of the first wheel part and the second wheel part.
  • the deflection range of the projection affects the attitude change of the mobile robot.
  • the rotation range determines the value of ⁇ 2.
  • the value of ⁇ 2 is one of 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees, 40 degrees, and 45 degrees.
  • the tilt angle of the mobile robot reaches the third limit.
  • step 1043 may be implemented as follows: when the inclination angle of the mobile robot reaches the third limit, control the mobile robot to change from a standing balance state to a second inclination state.
  • FIG. 28 shows a schematic diagram of the standing balance state changing to the second tilted state provided by an exemplary embodiment of the present application.
  • the first wheel part and the second wheel part return to the same height.
  • the first wheel portion is controlled to extend and the second wheel portion to shorten.
  • the attitude of the mobile robot changes, and the base portion tilts toward the second direction where the second wheel portion is located.
  • the inclination angle of the mobile robot reaches the third limit ⁇ 3.
  • ⁇ 3 may be 0 degrees, that is, the base part is parallel to the ground.
  • ⁇ 3 can still be 0 degrees, at which time the base and the ground are no longer parallel.
  • the tilt angle of the mobile robot reaches the fourth limit.
  • step 1044 may be implemented as follows: when the tilt angle of the mobile robot reaches the fourth limit, control the mobile robot to return to the standing balance state from the second tilt state.
  • FIG. 29 shows a schematic diagram of the second tilt state returning to the standing balance state provided by an exemplary embodiment of the present application.
  • the first wheel part and the second wheel part touch the ground, and then the first wheel part is controlled to shorten and the second wheel part is controlled to extend, so that the mobile robot changes from the second tilted state to the second wheel part.
  • the second wheel is on the ground.
  • What is shown on the left side in Figure 29 is the second single wheel landing state after the second tilt state change.
  • the first wheel part is suspended in the air and the second wheel part is on the ground.
  • the control of the first wheel part to shorten and the second wheel part to extend continues.
  • the attitude of the mobile robot changes, and the base portion tilts toward the first direction where the first wheel portion is located until it returns to be parallel to the ground.
  • the inclination angle of the mobile robot reaches the fourth limit ⁇ 4.
  • the mobile robot is controlled to change from the standing balance state to the second tilt state; when the tilt angle of the mobile robot reaches ⁇ 4, the movement is controlled
  • the robot changes from the second tilted state to the second one-wheel landing state until it returns to a standing balance state.
  • the center of the mobile robot on the ground during the quasi-bipedal movement is calculated based on the change in length and speed of the legs of the first wheel part and the second wheel part.
  • the deflection range of the projection affects the attitude change of the mobile robot, and the value of ⁇ 4 can be determined based on the calculated deflection range.
  • the value of ⁇ 4 is one of 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees, 40 degrees, and 45 degrees.
  • bipedal-like movement is a gait movement that imitates humans' alternating movements of left and right legs.
  • This gait movement can be implemented in various ways such as alternating walking and stepping in place.
  • bipedal-like movements include at least one of the following movements:
  • the motion of stepping in place can also be understood as the motion of the mobile robot without displacement.
  • the landing positions of the first wheel part and the second wheel part of the mobile robot remain unchanged.
  • Straight-line motion, curved motion, and obstacle-crossing motion can also be understood as the displacement of the mobile robot.
  • the movement The first wheel part and the second wheel part of the robot are displaced according to different movements.
  • the bipedal-like movement includes in-situ stepping movement; during the in-situ stepping movement, the landing position of the first wheel part and the second wheel part after being suspended is the same as the initial landing position, or the first wheel part and the second wheel part
  • the distance difference between the landing position after the wheel part is suspended and the initial landing position is less than the first tolerance value. That is, the distance between the landing position of the first wheel part after it is suspended (that is, the landing position after the first wheel part is suspended) and its initial landing position is less than the first tolerance value; and/or the distance between the second wheel part after it is suspended and The distance between the landing position (that is, the landing position after the second wheel is suspended) and its initial landing position is less than the first tolerance value.
  • the distance between the landing position of the wheel part and the initial landing position to be less than the first tolerance value, it is ensured that the mobile robot maintains in-situ stepping motion.
  • the mobile robot When the mobile robot imitates humans and alternately lifts its left and right feet to achieve in-situ stepping motion, the mobile robot does not shift, so that the first wheel part and the second wheel part are suspended and landed at the initial landing position.
  • the first tolerance value can be understood as the error value of the distance difference, and the first tolerance value can be set according to actual needs. It should be understood that the landing position of the first wheel part and the second wheel part after being suspended should be at the same position as the initial landing position. In order to ensure the balance of the mobile robot's body, a relatively small tolerance range can be set for the distance difference between the two positions.
  • the first tolerance value is a value in the tolerance range, such as the maximum value of the tolerance range. .
  • the quasi-bipedal movement includes at least one of linear motion, curved movement, turning in circles and stepping movements, and obstacle-crossing movements; during the linear movement or curved movement, turning in circles and stepping movements, or crossing obstacles,
  • the landing position of the first wheel part or the second wheel part after being suspended is different from the landing position before being suspended, and the distance difference is not less than the second tolerance value;
  • the base part alternately tilts and swings in the third direction and the fourth direction, and the third
  • the angle between the third direction or the fourth direction and the forward direction of the mobile robot is an acute angle.
  • the distance between the landing position of the first wheel part after it is suspended in the air i.e., the landing position of the first wheel part after it is suspended in the air
  • the distance is greater than or equal to the second tolerance value; and/or, the distance between the landing position after the second wheel part is suspended (that is, the landing position after the second wheel is suspended) and its initial landing position is greater than or equal to the second tolerance value. difference.
  • the moving distance and speed of each movement of the mobile robot are guaranteed, that is, its movement efficiency is ensured.
  • linear motion can be understood as the mobile robot imitating humans to walk forward or backward with left and right feet alternately
  • curved motion can be understood as the mobile robot imitating human beings to alternate left and right feet in S-line, figure-8, pile-winding and other curves.
  • Non-linear walking and obstacle-crossing movements can be understood as a mobile robot imitating human walking in a straight line or curve by alternating left and right feet over obstacles such as small mounds.
  • the second tolerance value can be set according to actual needs. It should be understood that, based on the need for displacement and/or attitude adjustment during linear motion, curved motion, in-situ walking motion, and obstacle-crossing motion, the landing position of the first wheel part and the second wheel part after being suspended should be the same as the initial landing position. are in different locations.
  • a preset tolerance range can be set for the distance difference between the two positions, and the second tolerance value is a value in the tolerance range, such as the tolerance range the minimum value.
  • the mobile robot is displaced, so that the landing position of the first wheel part and the second wheel part after being suspended is different from the landing position before being suspended.
  • the displacement required by the mobile robot will also cause the position of the center of mass of the mobile robot to change following the forward direction of the mobile robot.
  • the mobile robot when the mobile robot changes from a standing equilibrium state to a first tilted state, the first wheel part and the second wheel part remain on the ground.
  • the mobile robot is controlled to change from the first tilted state to the first single-wheel landing state.
  • the first wheel part of the mobile robot is controlled to turn, for example, the first wheel part is controlled to turn to the right front of the initial forward direction (which can be understood as the third wheel part). direction); then, control the mobile robot to return to the standing equilibrium state from the first wheel landing state, then the forward direction of the mobile robot will change, the mobile robot will face left and forward, and the center of mass position of the mobile robot will also face to the right of the initial forward direction. Move forward.
  • the mobile robot is controlled to change from a standing balance state to a second tilted state, with the first wheel part and the second wheel part remaining on the ground. Subsequently, the mobile robot is controlled to change from the second tilted state to the second one-wheel landing state.
  • the second wheel portion of the mobile robot is controlled to turn, for example, the second wheel portion is controlled to turn to the left front of the initial forward direction (can be understood as The fourth direction); then, control the mobile robot to return to the standing balance state from the second single-wheel landing state, then the forward direction of the mobile robot changes, the mobile robot will face the right front, and the center of mass position of the mobile robot also faces the initial forward direction. to move to the left front.
  • angles between the left front and right front and the forward direction of the mobile robot are acute angles. It can be understood that the mobile robot can move in any sub-direction of the original forward direction during the curved motion.
  • the mobile robot further includes a tail portion that is transmission-connected to the base portion, and a third wheel is provided on the tail portion.
  • the tail portion is stowed in a standing balance state, and the third wheel does not touch the ground.
  • the third wheel is the passive wheel 132 provided on the tail 13; Referring to Figure 6, when the tail 13 is in a retracted state, the passive wheel 132 does not touch the ground and can be fixed on the base. The bottom of the seat part 11 avoids affecting the movement of the wheel part 12.
  • step 104 can be implemented as follows:
  • Control the mobile robot to change from a standing balance state to a first wheel landing state, where the first wheel is on the ground and the second wheel is suspended;
  • the mobile robot changing from a standing equilibrium state to a first single-wheel landing state, please refer to the foregoing content. It should be understood that when the mobile robot is in the second single-wheel landing state, the landing wheel can also be adjusted through the tail. For details, please refer to the following content, which will not be described again.
  • the tail When the first wheel lands on the ground, the tail can be controlled to unfold until the third wheel lands on the ground, so that the mobile robot can maintain its body balance when the first wheel and the second wheel land on the ground, thereby improving the stability of the mobile robot.
  • the mobile robot can be controlled to return to the standing balance state from the second single-wheel landing state.
  • the mobile robot can be controlled to return to the standing balance state from the second single-wheel landing state.
  • the mobile robot when the mobile robot changes from the first wheel landing state to the second single wheel landing state, it no longer needs to transition through a standing balance state, and can be assisted by the tail, so that The wheel that hit the ground was replaced.
  • the schematic change method from the first wheel landing state to the second single wheel landing state given in the above content can be applied to the bipedal-like movement of the mobile robot, and will not be described again.
  • bipedal-like movements There are many ways to implement bipedal-like movements.
  • the above-mentioned examples give various specific implementation methods of stepping in place, linear motion, curved motion, turning in circles, stepping in place, and overcoming obstacles. It should be understood that other ways to imitate bipedal movements are within the scope of the present application and will not be described again.
  • the motion control method of the mobile robot provided by the embodiment of the present application also includes:
  • the first wheel part and the second wheel part are controlled to move.
  • step 104 can be implemented as follows:
  • Control the mobile robot to change from a standing balance state to a first wheel landing state, where the first wheel is on the ground and the second wheel is suspended;
  • Control the mobile robot to change from a first one-wheel landing state to a second one-wheel landing state, and the second one-wheel landing state is a state in which the first wheel is suspended and the second wheel is on the ground;
  • the mobile robot changes from the standing balance state to the first single wheel landing state, changes from the first single wheel landing state to the second single wheel landing state, and returns from the second single wheel landing state to the standing balance state, all can refer to the above. The content will not be described again.
  • the wheel on the ground can be controlled to lift off the ground, so that the mobile robot performs at least one jumping action, thereby simulating a human-like one-legged jumping action.
  • the number of hops of the mobile robot can be set according to actual needs. For example, in the first one-wheel landing state, the first wheel is controlled to leave the ground twice, so that the mobile robot performs two jumping movements; then it changes to the second one-wheel landing state, and the second wheel is controlled to leave the ground twice.
  • both the first wheel part and the second wheel part include wheels.
  • the mobile robot can also slide by controlling the wheels.
  • the first wheel of the first wheel part and/or the second wheel of the second wheel part is also locked or unlocked, so as to enable the bipedal-like motion. More flexibility.
  • the first wheel and the second wheel are in a locked state.
  • the first wheel and/or the second wheel are in an unlocked state.
  • the first wheel and the second wheel are in a locked state, and the first wheel and the second wheel are locked so that wheel slipping no longer occurs during the bipedal-like movement of the mobile robot.
  • the locking state may be understood as determining a position-invariant reference signal for the first wheel and/or the second wheel. Based on this reference signal, the first wheel and/or the second wheel can make slight movements in the vicinity of the reference point. That is, there is a motion error in the first wheel and/or the second wheel at the reference point in the locked state, and this error is used to achieve body balance of the mobile robot. It should be understood that the movement error of the first wheel and/or the second wheel at the reference point is small and can be ignored.
  • At least one of the first wheel and the second wheel is in an unlocked state to achieve steering and/or sliding of the wheel in the unlocked state.
  • the motion control method of the mobile robot provided by the embodiment of the present application also includes:
  • the first wheel part and/or the second wheel part in the unlocked state are controlled to move. In this way, a variety of movements can be achieved through the unlocked wheels, improving the diversity of the robot's movement methods.
  • the movement of the first wheel part and/or the second wheel part in bipedal-like movement may be one of sliding movement, jumping movement, and rotation movement.
  • the movement of the first wheel part and/or the second wheel part in a bipedal-like movement may be in a standing balance state, a first tilted state, a first single-wheel landing state, or a second tilted state.
  • the second wheel is on the ground in any one of the states.
  • the first wheel part and the second wheel part are controlled to be in a standing balance state, and then the mobile robot is controlled to change from the standing balance state to the first tilted state.
  • control the first wheel and the second wheel to unlock, and then provide driving force to the first wheel and the second wheel, so that the first wheel and the second wheel drive the mobile robot to tilt the body. status slide.
  • the first wheel part and the second wheel part are controlled to be in a standing balance state, and then the mobile robot is controlled to move from a standing balance state to a standing balance state.
  • the balance state gradually changes to the first wheel landing state.
  • the first wheel is controlled to unlock, and then the first wheel is controlled to slide, so that the mobile robot imitates a single-leg skating action.
  • the locking and unlocking of the first wheel and/or the second wheel can be performed multiple times in a bipedal movement, so that the mobile robot can achieve a mixture of sliding and alternating landing of the left and right wheel parts, further improving the flexibility of the mobile robot. sex.
  • the first wheel and/or the second wheel are locked and unlocked multiple times to control the mobile robot to perform anthropomorphic skating.
  • controlling the movement of the first wheel part and/or the second wheel part in the unlocked state may be implemented in at least one of the following implementations:
  • the mobile robot performs single-wheel sliding motion.
  • Control the mobile robot to change from a standing balance state to a first wheel landing state, where the first wheel is on the ground and the second wheel is suspended;
  • the first wheel When the first wheel is in an unlocked state, the first wheel is controlled to slide a first distance.
  • the wheel on the ground can be unlocked so that it can be in an unlocked state, and the wheel in the air can be unlocked or not.
  • the wheels controlled to land on the ground slide to cause the mobile robot to move. For example, unlock the first wheel so that it is in an unlocked state, and the second wheel is in a locked state; control the first wheel to slide.
  • the first distance can be set according to actual needs, and this application does not limit this.
  • the mobile robot can cyclically perform single-wheel sliding motion in the first single-wheel landing state or the second single-wheel landing state. For example, the mobile robot changes from the standing balance state to the first single wheel landing state, and then performs single wheel sliding motion; after the sliding duration is 1, the mobile robot is controlled to change from the first single wheel landing state to the second single wheel landing state, and then Perform a one-wheel sliding motion.
  • Control the mobile robot to change from a standing balance state to a first wheel landing state, where the first wheel is on the ground and the second wheel is suspended;
  • the first wheel When the first wheel is in an unlocked state, the first wheel is controlled to rotate.
  • the wheel on the ground can be unlocked so that it can be in an unlocked state, and the wheel in the air can be unlocked or not.
  • the wheels that control the landing rotate to change the forward direction of the mobile robot.
  • the first wheel is unlocked so that it is in an unlocked state, and the second wheel is in a locked state; the first wheel is controlled to rotate.
  • the rotation angle of the first wheel can be set according to actual needs, and is not limited in this application.
  • the rotation angle of the first wheel is 360 degrees, so that the mobile robot can imitate the movement of rotating in place.
  • the rotation angle of the first wheel can be determined based on the environmental information of the mobile robot.
  • the environmental information at least includes road condition information, peripheral obstacle information, etc. of the mobile robot. For example, if there are cylindrical obstacles around the mobile robot, the first wheel can be controlled to rotate 90 degrees to change the forward direction of the mobile robot and avoid obstacles.
  • the mobile robot can perform single-wheel rotation cyclically in the first one-wheel landing state or the second one-wheel landing state. For example, the mobile robot changes from a standing balance state to the first single-wheel landing state, and then controls the first wheel to rotate 90 degrees; after a sliding duration of 2, the mobile robot is controlled from the first single-wheel landing state to the second single-wheel landing state. The wheel is on the ground, and then the second wheel is controlled to rotate 180 degrees; after the sliding time is 3, the mobile robot is controlled to change from the second wheel to the ground state to the first wheel to land state, and then the second wheel is controlled to perform a single wheel rotation. 270 degrees.
  • Control the mobile robot to change from a standing balance state to a first wheel landing state, where the first wheel is on the ground and the second wheel is suspended;
  • the second leg of the second wheel part is controlled to extend until the second wheel touches the ground, and the second leg is controlled to shorten until the second leg returns to the length when it is in the locked state.
  • the wheel on the ground when one wheel is on the ground, the wheel on the ground can be unlocked so that it can be in the unlocked state, and the wheel in the air can be unlocked so that it can be in the locked state. Subsequently, the wheels on the ground are controlled to slide to cause the mobile robot to move; after sliding a certain distance, the wheels in the air are controlled to land once and then lifted up, and the wheels on the ground are continued to slide.
  • unlock the first wheel so that it is in an unlocked state and do not unlock the second wheel so that it is in a locked state; after controlling the first wheel to slide a second distance, control the extension of the second leg of the second wheel part Then shorten it so that the second wheel performs an action similar to landing at a single point and then retracting; then continue to control the first wheel to slide.
  • the second distance can be set according to actual needs, and this application does not limit this.
  • the unlocking or locking state of the first wheel and the second wheel can be controlled when the mobile robot is in a standing balance state, or can be controlled when the mobile robot is on one wheel. This application will No restrictions.
  • Implementation methods of bipedal-like movement are given in the foregoing embodiments.
  • the first wheel and the second wheel can perform various types of sliding, rotating, jumping and other actions. It should be understood that the above-mentioned implementation methods of various types of bipedal movements and various types of movements of the first wheel and the second wheel can all be implemented in combination.
  • the mobile robot is controlled to enter the first one-legged state; then the first wheel is unlocked and the first wheel is controlled to rotate, so that the mobile robot performs one rotation on the spot; and then the mobile robot is controlled to enter the second tilted state. Unlock the first wheel and the second wheel, control the sliding of the first wheel and the second wheel, so that the mobile robot performs a sideways sliding action; then control the mobile robot to change to the second one-legged state, unlock the second wheel, and control the third wheel.
  • the two wheels slide so that the mobile robot performs single-wheel sliding motion.
  • the mobile robot can be controlled to achieve more complex and richer bipedal-like movements.
  • a mobile robot is controlled to imitate humans in performing a set of figure skating-like bipedal movements.
  • the first wheel part and the second wheel part alternately land on the ground, then the lengths of the legs of the first wheel part and the second wheel part no longer remain the same, and the heights of the two wheels Changes will occur.
  • the mobile robot is an underactuated system robot.
  • the wheel-legged robot 10 establishes a right-hand Cartesian coordinate system in a three-dimensional space, and controls the balance in the pitch angle direction according to the first wheel and the second wheel. Depending on the wheel landing situation, the corresponding motor torque of the wheel part is also different.
  • the sum of the motor torques of the first drive motor corresponding to the first wheel part and the second drive motor corresponding to the second wheel part is the first torque.
  • the motor torque of the first drive motor is the first torque
  • the motor torque of the second drive motor is the first torque.
  • the first wheel and the second wheel are on the ground, that is, the contact points between the under-actuated system robot and the ground are two wheels.
  • the PID controller it can be obtained that the motor torques of the first driving motor corresponding to the first wheel part and the second driving motor corresponding to the second wheel part are both ⁇ .
  • the first wheel part in the first wheel landing state, the first wheel part is on the ground and the second wheel part is suspended in the air; in the second wheel landing state, the second wheel part is on the ground and the first wheel part is suspended in the air. That is, in the first one-wheel landing state or the second one-wheel landing state, the contact point between the under-actuated system robot and the ground is a single wheel.
  • the motor torque of the drive motor corresponding to the wheel part that touches the ground can be obtained as 2 ⁇ , so that the contact torque between a single wheel and the ground can be used to achieve balance control of the pitch direction of the robot during bipedal motion.
  • the mobile robot can be controlled to achieve bipedal-like motion by planning the length changes and changing speeds of the legs of the first wheel part and the second wheel part of the mobile robot.
  • the bipedal-like motion can be divided into multiple states mentioned above. Control the mobile robot to perform planned actions during the state change process.
  • the deflection range of the robot's center of gravity projected on the ground during the entire movement can be calculated to determine the state switching conditions of different states. Please refer to the above content for details and will not go into details again.
  • the control information of each joint of the mobile robot can be determined in the following way: After determining the bipedal-like motion, the bipedal-like motion can be decomposed and divided into multiple state. Each state corresponds to a set of control parameters. A set of control parameters can be used to determine the position, angle, torque and other information of each joint. Subsequently, a set of control parameters and the whole body dynamics model of the mobile robot are used as input. The controller of the mobile robot processes to obtain the control information under the set of control parameters.
  • the control information at least includes information such as joint torque, joint angular velocity, and base inclination of each joint. The robot is controlled based on these control information.
  • the movements of the first wheel part, the second wheel part and the base part are controlled based on at least one of the following information:
  • the mobile robot is an underactuated system robot.
  • FIG. 13 shows a wheel-legged robot provided by an exemplary embodiment of the present application.
  • 10 Schematic diagram of cross-section simulation to derive joint angle information.
  • FIG. 30 shows an XZ coordinate system constructed corresponding to the cross section of the wheel-legged robot 10 , and the wheel 3300 may be one of a first wheel and a second wheel. Among them, the origin is located at the midpoint of point x 1 and point x 5. Taking the distance between x 1 and x 5 as l 0 as an example, the coordinate of x 1 is (0.5l 0 , 0), and the coordinate of x 5 is (-0.5 l 0 , 0). It is known that the coordinates of the wheel 3300 are (x 3 , z 3 ), and the purpose is to calculate the joint angle information, including the joint angle 3310, the joint angle 3320, the joint angle 3330, and the joint angle 3340.
  • joint angle 3320, joint angle 3330 and joint angle 3340 can be obtained.
  • the controller can output the motor torque to control the leg configuration corresponding to the wheel 3300 to rotate to the corresponding joint angle, thereby controlling the wheel 3300 to reach the specified Position (x 3 , z 3 ).
  • Figure 31 shows a schematic diagram of determining the leg change amount when the mobile robot is in the first tilt state or the second tilt state provided by an exemplary embodiment of the present application.
  • the mobile robot is an under-actuated system robot.
  • the length of DC is 0.5l 0
  • the calculation formula for the changing length of the wheel leg AC is as follows: Formula 4:
  • ⁇ l represents the changing length of the wheel leg, Indicates the reference roll angle of the underactuated system robot.
  • the body when the first wheel and/or the second wheel of the underactuated system robot turns, the body produces a roll angle tilt, and the robot will produce centrifugal force.
  • the size of the centrifugal force is related to the horizontal speed v.
  • It is necessary to tilt the body so that gravity can produce part of the component to balance the centrifugal force, and the roll angle corresponding to the tilted body The relationship with the horizontal velocity v is as shown in Formula 5 below:
  • m represents the weight of the under-actuated system robot
  • R represents the turning radius
  • the first type the roll angle produced by the underactuated system robot is small.
  • the roll angle generated by the underactuated system robot is less than (or equal to) the preset angle threshold.
  • the calculation of the wheel leg change is as shown in Formula 6:
  • the roll angle generated by the underactuated system robot is greater than (or equal to) the preset angle threshold.
  • the wheel leg variation is calculated as follows: Formula 7 and Formula 8:
  • the control of the first wheel part and the second wheel part of the underactuated system robot can be achieved through the following steps:
  • trajectory planning information which is used to represent the target motion trajectory of the under-actuated system robot
  • the trajectory planning information can be preset information, or the trajectory planning information is generated by the under-actuated system robot collecting road information in real time.
  • the trajectory of the under-actuated system robot can be set according to the road information, and the trajectory is input into the memory of the under-actuated system robot to generate the trajectory planning information.
  • the under-actuated system robot follows the trajectory planning information. Move along the set trajectory.
  • the under-actuated system robot includes a road scanning device.
  • the under-actuated system robot includes a camera for collecting images of the road and planning the road based on the collected images.
  • the reference motion state data is used to represent the motion state of the under-actuated system robot when it moves along the target motion trajectory
  • the robot attitude data is used to represent the structural state of the under-actuated system robot when it moves along the target motion path.
  • the reference motion state data is used to represent the requirements that the motion state of the underactuated system robot needs to meet when it moves in a manner consistent with the target motion trajectory. That is, after determining the reference motion state data, the underactuated system robot The current motion state needs to be adjusted based on the reference motion state data.
  • the reference motion state data includes reference speed information, reference yaw angle information, reference motion curvature radius information, etc.
  • the reference motion status data is calculated based on trajectory planning information, or the reference motion status data is pre-stored based on trajectory planning information, that is, when setting the motion trajectory of the underactuated system robot, for
  • the motion state data at the designated position on the motion trajectory is preset to obtain the reference motion state data corresponding to the designated position, and the reference motion state data and trajectory planning information are correspondingly stored. Therefore, when the under-actuated system robot moves to a designated position, the reference motion state data can be obtained from the stored data.
  • the acquisition method of reference motion status data includes at least one of the following methods:
  • the remote controller can control the movement speed, movement direction, movement mode, etc. of the under-actuated system robot. According to the control operation of the remote controller, the movement state changes of the under-actuated system robot are determined, thereby determining the reference movement state data.
  • the under-actuated system robot collects the visual information of the under-actuated system robot and generate reference motion state data based on the visual information. That is to say, the under-actuated system robot is equipped with a camera, and the road information of the under-actuated system robot on the planned trajectory is collected through the camera, and the reference motion state data of the next movement is calculated based on the road information.
  • control signal for the bipedal-like movement of the under-actuated system robot can be given by the remote controller, or the control signal for the bipedal-like movement can be obtained based on the analysis of visual information and/or tactile information.
  • the under-actuated system robot is equipped with a camera and/or a tactile sensor to collect the road information and force conditions of the under-actuated system robot, and determine whether to control the under-actuated system robot by analyzing the road information and force conditions. Quasi-bipedal movement.
  • the pitch angle information of the under-actuated system robot is obtained.
  • the pitch angle information represents the angle of the under-actuated system robot in the forward and backward direction, that is, the under-actuated system robot The angle of pitching in the forward direction or tilting in the backward direction under wheel control.
  • the balance control torque for controlling the under-actuated system robot is determined based on the reference speed information and pitch angle information.
  • the balance control torque refers to the torque used to keep the under-actuated system robot in a balanced state, so that the under-actuated system robot is determined based on the balance control torque. control torque.
  • the balanced state refers to the state in which the under-actuated system robot maintains balance in the pitch angle direction.
  • the under-actuated system robot has no tendency to tip forward or backward.
  • the balanced state refers to the state in which the under-actuated system robot remains stable and has no tendency to tip forward or backward; when the under-actuated system robot moves, the balanced state refers to the under-actuated system robot.
  • the system robot follows the wheel rotation and moves in a balanced state, in which the main part of the under-actuated system robot is supported by the wheel leg part to maintain an upright state, and there is no tendency to fall forward or backward.
  • the balance control torque is directly input to the wheel control motor to control the wheel rotation, thereby controlling the movement of the under-actuated system robot; in another embodiment, when the under-actuated system robot is controlled
  • the under-actuated system robot travels on a curved trajectory, the torques applied to the corresponding motors of the two wheels of the under-actuated system robot are different, so that one wheel can travel faster and the other wheel can travel slower, thus realizing the curve of the under-actuated system robot. Traveling, wherein, after determining the reference yaw angle information according to the curve trajectory, the incremental torque applied to the motors corresponding to different wheels is determined based on the reference yaw angle information.
  • the bending degree of the two-wheeled legs of the underactuated system robot is adjusted according to the trajectory planning information,
  • the bending degree of the wheel legs of the underactuated system robot is related to the length of the wheel legs.
  • the robot posture data includes wheel leg adjustment data of the first wheel part and the second wheel part, that is, the wheel leg adjustment data is determined based on the trajectory planning information.
  • the roll angle determined based on the trajectory planning information is a value within the preset roll angle range to avoid imbalance problems caused by excessive control caused by the roll angle exceeding the preset roll angle range.
  • the under-actuated system robot includes a first wheel and a second wheel, wherein the first wheel and the second wheel are respectively arranged on both sides of the under-actuated system robot.
  • the first wheel is driven and controlled by the first drive motor
  • the second wheel is driven and controlled by the first drive motor.
  • the wheels are driven and controlled by the second drive motor.
  • the first torque is input to the first drive motor, and the first drive motor drives the first wheel to rotate;
  • the second torque is input to the second drive motor, and the second drive motor drives the second wheel to rotate.
  • the pitch angle information represents the angular information of the under-actuated system robot in the forward and backward direction
  • the yaw angle information represents the angular information of the under-actuated system robot in the direction around the vertical rotation axis.
  • the balance control torque and incremental torque of the underactuated system robot are determined based on the pitch angle information and/or the yaw angle information.
  • the balance control torque can refer to the relevant description in Figure 13.
  • the incremental torque refers to the torque used to control the rotation of the robot in the under-actuated system. Subsequently, through the combination of balance control torque and incremental torque, the control of the underactuated system robot is achieved.
  • the robot attitude data when controlling the under-actuated system robot to perform bipedal-like motion according to the robot attitude data, includes wheel leg adjustment data, that is, the wheel leg change amount. Taking the wheel leg variation as ⁇ l as an example, one wheel leg is extended and the other wheel leg is shortened through the wheel leg variation.
  • the adjusted position coordinates of the wheel are determined based on the wheel leg changes, and the joint angles of the wheel legs are calculated based on the adjusted position coordinates, and the joint angles are input into the motors that control the wheel legs to adjust the wheel legs.
  • embodiments of the present application also provide a mobile robot.
  • the mobile robot includes a first wheel part with telescopic legs, a second wheel part with telescopic legs, and a base part connected to the first wheel part and the second wheel part; the mobile robot is provided with a control unit The controller is used to control the mobile robot to implement the motion control method of the mobile robot as described above.
  • the mobile robot involved in the embodiment of the present application may be an under-actuated system robot.
  • the mobile robot involved in the embodiment of the present application is a mobile robot that can achieve two-wheel balance, such as a wheel-legged robot that can achieve two-wheel balance.
  • this type of robot lacks a degree of freedom in the roll angle direction between the movement plane of the legs and the base part.
  • the wheel-legged robot as an example including a first wheel part, a second wheel part, and a base part connected to the first wheel part and the second wheel part, the motion planes of the legs of the first wheel part and the second wheel part are Keep vertical to base.
  • the settings of the controller can be set according to actual needs. This application does not limit this. All mobile robots that can achieve the goal of keeping the load object on the base without falling through the motion control of the controller are included in this application. within the scope of application for protection.
  • the motion control method of the mobile robot has been described in detail in the foregoing content and can be used as a reference and will not be described again.
  • Figure 32 shows a schematic diagram of a motion control device of a mobile robot provided by an exemplary embodiment of the present application. Should be installed Settings include:
  • the control module 3220 is used to control the first wheel part with telescopic legs and the second wheel part with telescopic legs included in the mobile robot to be in a standing balance state;
  • the control module 3220 is also used to control the mobile robot to perform bipedal movements based on the standing balance state;
  • the base part of the mobile robot is parallel to the horizontal reference plane in a standing equilibrium state.
  • the first wheel part and the second wheel part alternately land on the ground, and the base part tilts and swings.
  • the first wheel part is located in the first direction of the base part, and the second wheel part is located in the second direction of the base part; the control module 3220 is used to control the mobile robot to change from the standing balance state to the first tilted state,
  • the first tilt state is a state in which the base portion tilts in the first direction; the mobile robot is controlled to return to a standing balance state from the first tilt state; the mobile robot is controlled to change from a standing balance state to a second tilt state, and the second tilt state is the base
  • the seat is tilted in the second direction; the mobile robot is controlled to return to the standing balance state from the second tilted state; wherein, during the process of the mobile robot returning to the standing balance state from the first tilted state, the first wheel portion of the first wheel portion When the wheel lands on the ground, the second wheel of the second wheel part is suspended in the air; during the process of the mobile robot returning from the second tilted state to the standing equilibrium state, the second wheel lands on the ground and the first wheel is suspended in the air
  • control module 3220 is used to control the first leg of the first wheel part to shorten and the second leg of the second wheel part to extend, so that the under-driven system machine is in the first tilt state; wherein, in the During the expansion and contraction process of the first leg and the second leg, the base gradually tilts toward the first direction from a horizontal state parallel to the horizontal reference plane, and both the first wheel and the second wheel touch the ground.
  • control module 3220 is used to control the first leg of the first wheel part to extend, and the second leg of the second wheel part to shorten, so that the mobile robot is in the first single-wheel landing state, and the first single-wheel landing state is
  • the wheel landing state is a state where the first wheel is on the ground and the second wheel is suspended; the first leg is controlled to continue to extend and the second leg continues to shorten, so that the under-driven system machine returns to a standing balance from the first wheel landing state state; wherein, during the expansion and contraction process of the first leg and the second leg, the base gradually tilts in the second direction until it returns to a horizontal state parallel to the horizontal reference plane, and the second wheel changes from being on the ground to being suspended in the air again. Recovery landing.
  • the length of the first leg and the length of the second leg are the same in the standing equilibrium state, and the mobile robot is in the first single-wheel landing state within the first duration, where: within the first duration, the first leg The length of the first leg is shorter than the length of the second leg; at the end node of the first duration, the first leg and the second leg are equal in length.
  • control module 3220 is used to control the first leg of the first wheel part to extend and the second leg of the second wheel part to shorten, so that the under-driven system machine is in the second tilt state; wherein, in the third During the expansion and contraction process of the first leg and the second leg, the base part gradually tilts from a horizontal state parallel to the horizontal reference plane to the second direction, and both the first wheel and the second wheel touch the ground.
  • control module 3220 is used to control the first leg of the first wheel part to shorten and the second leg of the second wheel part to extend, so that the mobile robot is in the second single-wheel landing state, and the second single-wheel landing state is
  • the wheel landing state is a state where the first wheel is suspended in the air and the second wheel is on the ground; the first leg is controlled to continue to shorten and the second leg continues to extend, so that the under-driven system machine returns to a standing balance from the second wheel landing state state; wherein, during the expansion and contraction process of the first leg and the second leg, the base gradually tilts in the first direction until it returns to a horizontal state parallel to the horizontal reference plane, and the first wheel changes from being on the ground to being suspended in the air again. Recovery landing.
  • the length of the first leg and the length of the second leg are the same in the standing equilibrium state, and the mobile robot is in the second one-wheel landing state within the second duration, where: within the second duration, the first leg The length of the first leg is longer than the length of the second leg; at the end node of the second duration, the first leg and the second leg are equal in length.
  • control module 3220 is used to control the mobile robot to change from a standing balance state to a first tilt state when the tilt angle of the mobile robot reaches the first limit; wherein the tilt angle of the mobile robot is used to indicate the base portion The angle between the plane and the plane parallel to the horizontal datum.
  • control module 3220 is used to control the mobile robot to return to the standing balance state from the first tilt state when the tilt angle of the mobile robot reaches the second limit; wherein the tilt angle of the mobile robot is used to indicate the base portion. The angle between the plane and the plane parallel to the horizontal datum.
  • control module 3220 is used to control the mobile robot to change from the standing balance state to the second tilt state when the tilt angle of the mobile robot reaches the third limit; wherein the tilt angle of the mobile robot is used to indicate the base portion The angle between the plane and the plane parallel to the horizontal datum.
  • control module 3220 is used to control the mobile robot to return to the standing balance state from the second tilted state when the tilt angle of the mobile robot reaches the fourth limit; wherein the tilt angle of the mobile robot is used to indicate the base portion The angle between the plane and the plane parallel to the horizontal datum.
  • the bipedal-like movement includes at least one of the following movements: stepping in place; linear movement; curved movement; stepping in circles; and obstacle crossing.
  • the bipedal-like movement includes in-situ stepping movement; during the in-situ stepping movement, the landing position of the first wheel part and the second wheel part after being suspended is the same as the initial landing position, or the first wheel part and the second wheel part are suspended in the air. The distance difference between the landing position after the second wheel part is suspended and the initial landing position is less than the first tolerance value.
  • the quasi-bipedal movement includes at least one of linear motion, curved movement, turning in circles and stepping movements, and obstacle-crossing movements; during the linear movement or curved movement, turning in circles and stepping movements, or crossing obstacles,
  • the landing position of the first wheel part or the second wheel part after being suspended is different from the landing position before being suspended, and the distance difference between the landing position of the first wheel part or the second wheel part after being suspended and the landing position before being suspended is different.
  • the base part alternately tilts and swings in the third direction and the fourth direction, and the angle between the third direction or the fourth direction and the forward direction of the mobile robot is an acute angle.
  • the first wheel of the first wheel part and the second wheel of the second wheel part are in a locked state.
  • the first wheel of the first wheel part and/or the second wheel of the second wheel part are in an unlocked state.
  • control module 3220 is also used to control the first wheel part and/or the second wheel part in the unlocked state to perform sliding movement during bipedal-like movement.
  • the movements of the first wheel part, the second wheel part and the base part are controlled based on at least one of the following information: the length of the first leg of the first wheel part. Change; the angle and change amount of at least one joint motor of the first leg part; the length change of the second leg part of the second wheel part; the angle and change amount of at least one joint motor of the second leg part; the change amount of the first wheel part
  • the sum of the motor torques of the first drive motor corresponding to the first wheel part and the second drive motor corresponding to the second wheel part is the first torque.
  • the motor torque of the first drive motor is the first torque
  • the motor torque of the second drive motor is The motor torque is the first torque.
  • Figure 33 shows a structural block diagram of an electronic device 3300 provided by an exemplary embodiment of the present application.
  • the electronic device 3300 can be a portable mobile terminal, such as: an electronic device used to control a mobile robot, a smart phone, a tablet computer, an MP3 player (Moving Picture Experts Group Audio Layer III, Moving Picture Experts Compression Standard Audio Layer 3 ), MP4 (Moving Picture Experts Group Audio Layer IV, Moving Picture Experts Compression Standard Audio Layer 4) player, laptop or desktop computer.
  • the electronic device 3300 may also be called a user device, a portable terminal, a laptop terminal, a desktop terminal, and other names. In this embodiment of the present application, the electronic device 3300 can be implemented as a control device part of the robot.
  • the electronic device 3300 includes: a processor 3301 and a memory 3302.
  • the processor 3301 may include one or more processing cores, such as a 4-core processor, an 8-core processor, etc.
  • the processor 3301 can adopt DSP (Digital Signal Processing, digital signal processing), FPGA (Field-Programmable Gate Array, field programmable gate array), PLA (Programmable Logic Array, programmable logic array).
  • DSP Digital Signal Processing, digital signal processing
  • FPGA Field-Programmable Gate Array, field programmable gate array
  • PLA Programmable Logic Array, programmable logic array
  • the processor 3301 may also include a main processor and a co-processor.
  • the main processor is a processor used to process data in the wake-up state, also called CPU (Central Processing Unit, central processing unit); the co-processor is A low-power processor used to process data in standby mode.
  • the processor 3301 may be integrated with a GPU (Graphics Processing Unit, image processor), and the GPU is responsible for rendering and drawing content to be displayed on the display screen.
  • the processor 3301 may also include an AI (Artificial Intelligence, artificial intelligence) processor, which is used to process computing operations related to machine learning.
  • AI Artificial Intelligence, artificial intelligence
  • Memory 3302 may include one or more computer-readable storage media, which may be non-transitory. Memory 3302 may also include high-speed random access memory, and non-volatile memory, such as one or more disk storage devices, flash memory storage devices. In some embodiments, the non-transitory computer-readable storage medium in the memory 3302 is used to store at least one instruction, and the at least one instruction is used to be executed by the processor 3301 to implement the mobile robot provided by the method embodiments in this application. motion control method.
  • the electronic device 3300 optionally further includes: a peripheral device interface 3303 and at least one peripheral device.
  • the processor 3301, the memory 3302 and the peripheral device interface 3303 may be connected through a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface 3303 through a bus, a signal line or a circuit board.
  • the peripheral device includes: at least one of a radio frequency circuit 3304, a display screen 3305, a camera component 3306, an audio circuit 3307, a positioning component 3308 and a power supply 3309.
  • the peripheral device interface 3303 may be used to connect at least one I/O (Input/Output, input/output) related peripheral device to the processor 3301 and the memory 3302 .
  • the processor 3301, the memory 3302, and the peripheral device interface 3303 are integrated on the same chip or circuit board; in some other embodiments, any one of the processor 3301, the memory 3302, and the peripheral device interface 3303 or Both of them can be implemented on separate chips or circuit boards, which is not limited in this embodiment.
  • Radio frequency circuit 3304 is used to receive and transmit RF (Radio Frequency, radio frequency) signals, also called electromagnetic signals. Radio frequency circuit 3304 communicates with communication networks and other communication devices through electromagnetic signals. The radio frequency circuit 3304 converts electrical signals into electromagnetic signals for transmission, or converts received electromagnetic signals into electrical signals. Optionally, the radio frequency circuit 3304 includes: an antenna system, an RF transceiver, one or more amplifiers, a tuner, an oscillator, a digital signal processor, a codec chipset, a user identity module card, and the like. Radio frequency circuitry 3304 can communicate with other terminals through at least one wireless communication protocol.
  • RF Radio Frequency, radio frequency
  • the wireless communication protocol includes but is not limited to: World Wide Web, metropolitan area network, intranet, mobile communication networks of all generations (2G, 3G, 4G and 5G), wireless local area network and/or Wi-Fi (Wireless Fidelity, wireless fidelity) network .
  • the radio frequency circuit 3304 may also include NFC (Near Field Communication) related circuits, which is not limited in this application.
  • the display screen 3305 is used to display UI (User Interface, user interface).
  • the UI can include graphics, text, icons, videos, and any combination thereof.
  • display screen 3305 is a touch display screen, display screen 3305 also has the ability to collect touch signals on or above the surface of display screen 3305.
  • the touch signal can be input to the processor 3301 as a control signal for processing.
  • the display screen 3305 can also be used to provide virtual buttons and/or virtual keyboards, also called soft buttons and/or soft keyboards.
  • the display screen 3305 may be a flexible display screen, disposed on the curved surface or folding surface of the electronic device 3300. Even the display screen 3305 can be set into a non-rectangular irregular shape, that is, a special-shaped screen.
  • the display screen 3305 can be made of LCD (Liquid Crystal Display, liquid crystal display), OLED (Organic Light-Emitting Diode, organic light-emitting diode) and other materials.
  • the camera component 3306 is used to capture images or videos.
  • the camera component 3306 includes a front camera and a rear camera.
  • the front camera is set on the front panel of the terminal, and the rear camera is set on the back of the terminal.
  • there are at least two rear cameras one of which is a main camera, a depth-of-field camera, a wide-angle camera, and a telephoto camera, so as to realize the integration of the main camera and the depth-of-field camera to realize the background blur function. Integrate with the wide-angle camera to achieve panoramic shooting and VR (Virtual Reality, virtual reality) shooting functions or other fusion shooting functions able.
  • camera assembly 3306 may also include a flash.
  • the flash can be a single color temperature flash or a dual color temperature flash. Dual color temperature flash refers to a combination of warm light flash and cold light flash, which can be used for light compensation under different color temperatures.
  • Audio circuitry 3307 may include a microphone and speakers.
  • the microphone is used to collect sound waves from the user and the environment, and convert the sound waves into electrical signals that are input to the processor 3301 for processing, or to the radio frequency circuit 3304 to implement voice communication.
  • the microphone can also be an array microphone or an omnidirectional collection microphone.
  • the speaker is used to convert electrical signals from the processor 3301 or the radio frequency circuit 3304 into sound waves.
  • the loudspeaker can be a traditional membrane loudspeaker or a piezoelectric ceramic loudspeaker.
  • audio circuitry 3307 may also include a headphone jack.
  • the positioning component 3308 is used to locate the current geographical location of the electronic device 3300 to implement navigation or LBS (Location Based Service).
  • the positioning component 3308 may be a positioning component based on GPS (Global Positioning System), Beidou system or Galileo system.
  • the power supply 3309 is used to power various components in the electronic device 3300 .
  • the power source 3309 may be AC, DC, disposable batteries, or rechargeable batteries.
  • the rechargeable battery may be a wired rechargeable battery or a wireless rechargeable battery. Wired rechargeable batteries are batteries that are charged through wired lines, and wireless rechargeable batteries are batteries that are charged through wireless coils.
  • the rechargeable battery can also be used to support fast charging technology.
  • electronic device 3300 also includes one or more sensors 3310.
  • the one or more sensors 3310 include, but are not limited to: acceleration sensor 3311, gyro sensor 3312, pressure sensor 3313, optical sensor 3314, and proximity sensor 3315.
  • the acceleration sensor 3311 can detect the acceleration on the three coordinate axes of the coordinate system established by the electronic device 3300 .
  • the acceleration sensor 3311 can be used to detect the components of gravity acceleration on three coordinate axes.
  • the processor 3301 can control the display screen 3305 to display the user interface in a horizontal view or a vertical view according to the gravity acceleration signal collected by the acceleration sensor 3311.
  • the acceleration sensor 3311 can also be used to collect game or user motion data.
  • the gyro sensor 3312 can detect the body direction and rotation angle of the electronic device 3300, and the gyro sensor 3312 can cooperate with the acceleration sensor 3311 to collect the user's 3D movements on the electronic device 3300. Based on the data collected by the gyro sensor 3312, the processor 3301 can implement the following functions: motion sensing (such as changing the UI according to the user's tilt operation), image stabilization during shooting, game control, and inertial navigation.
  • the pressure sensor 3313 may be provided on the side frame of the electronic device 3300 and/or on the lower layer of the display screen 3305 .
  • the pressure sensor 3313 When the pressure sensor 3313 is disposed on the side frame of the electronic device 3300, it can detect the user's holding signal of the electronic device 3300, and the processor 3301 performs left and right hand identification or quick operation based on the holding signal collected by the pressure sensor 3313.
  • the processor 3301 controls the operability controls on the UI interface according to the user's pressure operation on the display screen 3305.
  • the operability control includes at least one of a button control, a scroll bar control, an icon control, and a menu control.
  • the optical sensor 3314 is used to collect ambient light intensity.
  • the processor 3301 can control the display brightness of the display screen 3305 according to the ambient light intensity collected by the optical sensor 3314. Specifically, when the ambient light intensity is high, the display brightness of the display screen 3305 is increased; when the ambient light intensity is low, the display brightness of the display screen 3305 is decreased.
  • the processor 3301 can also dynamically adjust the shooting parameters of the camera assembly 3306 according to the ambient light intensity collected by the optical sensor 3314.
  • the proximity sensor 3315 also called a distance sensor, is usually provided on the front panel of the electronic device 3300.
  • the proximity sensor 3315 is used to collect the distance between the user and the front of the electronic device 3300 .
  • the processor 3301 controls the display screen 3305 to switch from the bright screen state to the closed screen state; when the proximity sensor 3315 detects When the distance between the user and the front of the electronic device 3300 gradually increases, the processor 3301 controls the display screen 3305 to switch from the screen-off state to the screen-on state.
  • FIG. 33 does not constitute a limitation on the electronic device 3300, and may include more or fewer components than shown, or combine certain components, or adopt different component arrangements.
  • An embodiment of the present application also provides a computer device.
  • the computer device includes a memory and a processor; a computer program is stored in the memory, and the computer program is loaded and executed by the processor to implement the motion control method of the mobile robot as described above.
  • the computer device may be the electronic device described above.
  • the computer device may be the above-mentioned mobile robot, or may be an electronic device that has established a communication connection with the mobile robot.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored in the storage medium.
  • the computer program is used to be executed by a processor to implement the motion control method of a mobile robot as described above.
  • Embodiments of the present application also provide a chip.
  • the chip includes a programmable logic circuit and/or a computer program. When the chip is running, it is used to implement the motion control method of the mobile robot as described above.
  • Embodiments of the present application also provide a computer program product or computer program.
  • the computer program product or computer program includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the processor reads and executes the computer program from the computer-readable storage medium. Instructions to implement the motion control method of the mobile robot as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)

Abstract

本申请公开了一种移动机器人的运动控制方法和移动机器人,涉及机器人领域。所述移动机器人包括具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部、以及与第一车轮部和第二车轮部连接的基座部,所述方法包括:控制第一车轮部和第二车轮部处于站立平衡状态(102);控制移动机器人基于站立平衡状态进行类双足运动(104);其中,基座部在站立平衡状态下与水平基准面平行,在类双足运动的过程中,第一车轮部和第二车轮部交替着地,基座部倾斜摇摆。

Description

移动机器人的运动控制方法和移动机器人
本申请要求于2022年08月20日提交的、申请号为202211002012.9、发明名称为“移动机器人的运动控制方法和移动机器人”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及机器人领域,特别涉及一种移动机器人的运动控制方法和移动机器人。
背景技术
以移动机器人是欠驱动系统机器人为例,欠驱动系统机器人是指驱动数量少于关节自由度数量的机器人,在该类机器人中的典型表现是机器人存在平衡问题。
在相关技术中,以欠驱动系统机器人是轮腿式机器人为例。对于双轮平衡的轮腿式机器人而言,其腿部的运动平面没有横滚角(roll)方向的自由度。以轮腿式机器人包括第一车轮部、第二车轮部、以及与第一车轮部和第二车轮部连接的基座部为例,第一车轮部和第二车轮部的腿部的运动平面与基座部保持垂直。因此,在实际使用过程中,通常是通过控制轮腿式机器人的车轮进行滚动,以实现机器人的运动。
但是,在上述相关技术中,轮腿式机器人只能通过滚动的方式进行移动,移动方式较为单一。
发明内容
本申请实施例提供了一种移动机器人的运动控制方法和移动机器人,所述技术方案至少包括如下方案:
根据本申请的一个方面,提供了一种移动机器人的运动控制方法,该方法由芯片执行,移动机器人包括具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部、以及与第一车轮部和第二车轮部连接的基座部,所述方法包括:
控制第一车轮部和第二车轮部处于站立平衡状态;
控制移动机器人基于站立平衡状态进行类双足运动;
其中,基座部在站立平衡状态下与水平基准面平行,在类双足运动的过程中,第一车轮部和第二车轮部交替着地,基座部倾斜摇摆。
根据本申请的一个方面,提供了一种移动机器人,移动机器人包括具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部、以及与第一车轮部和第二车轮部连接的基座部;
移动机器人中设置有控制器,控制器用于控制移动机器人实现如上所述的移动机器人的运动控制方法。
根据本申请的一个方面,提供了一种移动机器人的运动控制装置,所述装置包括:
控制模块,用于控制移动机器人包括的具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部处于站立平衡状态;
控制模块,还用于控制移动机器人基于站立平衡状态进行类双足运动;
其中,移动机器人的基座部在站立平衡状态下与水平基准面平行,在类双足运动的过程中,第一车轮部和第二车轮部交替着地,基座部倾斜摇摆。
根据本申请的一个方面,提供了一种计算机设备,该计算机设备包括存储器和处理器;存储器中存储有计算机程序,计算机程序由处理器加载并执行以实现如上所述的移动机器人的运动控制方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如上所述的移动机器人的运动控制方法。
根据本申请的一个方面,提供了一种芯片,芯片包括可编程逻辑电路和/或计算机程序,当安装有芯片的电子设备运行时,用于实现如上所述的移动机器人的运动控制方法。
根据本申请的一个方面,提供了一种计算机程序产品,计算机程序产品包括计算机指令,计算机指令存储在计算机可读存储介质中,处理器从计算机可读存储介质读取并执行计算机指令,以实现如上所述的移动机器人的运动控制方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
通过具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部,控制移动机器人基于站立平衡状态进行类双足运动,从而为轮腿式移动机器人提供了一种新的运动方式,丰富了轮腿式移动机器人的移动方式。
附图说明
图1是本申请一个示例性实施例提供的轮腿式机器人的结构示意图;
图2是本申请一个示例性实施例提供的轮腿式机器人的局部示意图;
图3是本申请一个示例性实施例提供的轮腿式机器人处于两轮站立情况下的主视图;
图4是本申请一个示例性实施例提供的轮腿式机器人处于两轮站立情况下的侧视图;
图5是本申请一个示例性实施例提供的轮腿式机器人处于两轮站立情况下的俯视图;
图6示出了本申请一个示例性实施例提供的轮腿式机器人在配重腿处于内收状态下的立体示意图;
图7是本申请一个示例性实施例提供的轮腿式机器人处于三轮站立情况下的主视图;
图8是本申请一个示例性实施例提供的轮腿式机器人处于三轮站立情况下的侧视图;
图9是本申请一个示例性实施例提供的轮腿式机器人处于三轮站立情况下的俯视图;
图10是本申请一个示例性实施例提供的轮腿式机器人处于三轮站立情况下的立体示意图;
图11是本申请一个示例性实施例提供的轮腿式机器人处于三轮站立情况下的另一种立体示意图;
图12是本申请一个示例性实施例提供的轮腿式机器人的形态示意图;
图13是本申请一个示例性实施例提供的三个空间角度的示意图;
图14是本申请一个示例性实施例提供的俯仰角方向的平衡控制的框图;
图15是本申请一个示例性实施例提供的横滚角方向平衡控制示意图;
图16是本申请一个示例性实施例提供的偏航角方向平衡控制示意图;
图17是本申请一个示例性实施例提供的移动机器人的运动控制方法的流程图;
图18是本申请一个示例性实施例提供的站立平衡状态的示意图;
图19是本申请一个示例性实施例提供的移动机器人的运动控制方法的流程图;
图20是本申请一个示例性实施例提供的类双足运动的动作分解图;
图21是本申请一个示例性实施例提供的第一倾斜状态的示意图;
图22是本申请一个示例性实施例提供的第一单轮着地状态的示意图;
图23是本申请一个示例性实施例提供的第二倾斜状态的示意图;
图24是本申请一个示例性实施例提供的第二单轮着地状态的示意图;
图25是本申请一个示例性实施例提供的类双足运动的动作分解图;
图26是本申请一个示例性实施例提供的站立平衡状态变为第一倾斜状态的示意图;
图27是本申请一个示例性实施例提供的第一倾斜状态恢复为站立平衡状态的示意图;
图28是本申请一个示例性实施例提供的站立平衡状态变为第二倾斜状态的示意图;
图29是本申请一个示例性实施例提供的第二倾斜状态恢复为站立平衡状态的示意图;
图30是本申请一个示例性实施例提供的以轮腿式机器人横截面模拟推导关节角度信息的示意图;
图31是本申请一个示例性实施例提供的移动机器人处于第一倾斜状态或第二倾斜状态下确定腿部变化量的示意图;
图32是本申请一个示例性实施例提供的移动机器人的运动控制装置的示意图;
图33是本申请一个示例性实施例提供的电子设备的框图。
下面对附图中的各个标号进行说明:
10-轮腿式机器人;
11-基座部;
12-车轮部:
121-大腿单元;
122-小腿单元;
123-主动轮;
124-驱动单元:1241-第一电机;1242-第二电机;
13-尾部:
131-配重腿;
132-被动轮;
133-第三电机;
01-扭簧;02-转动轴;03-同步带;04-同步带轮。
具体实施方式
在本申请实施例中,所涉及的“前”、“后”均以附图中所示的前和后为基准。“第一端”、“第二端”为相对的两端。
本申请实施例提供的移动机器人的运动控制方法,可用于冗余驱动系统机器人、完全驱动系统机器人和欠驱动系统机器人中的任意一种机器人。其中,冗余驱动系统机器人是指驱动数量大于关节自由度数量的机器人;完全驱动系统机器人是指驱动数量等于关节自由度数量的机器人;欠驱动系统机器人是指驱动数量少于关节自由度数量的机器人,欠驱动系统机器人均存在机身平衡问题。
应当理解的是,欠驱动系统机器人具有不稳定性,存在机身平衡问题,从而导致其运动控制相较于其他两种类型的机器人更具难度。以轮腿式机器人为例,其平衡控制具有挑战性,需要借助线性和非线性控制技术来实现。
在一些实施例中,本申请实施例提供的运动控制方法,应用于欠驱动系统机器人。可选的,本申请实施例提供的运动控制方法,应用于轮腿式机器人。以下均以欠驱动系统机器人为例进行描述,冗余驱动系统机器人和完全驱动系统机器人与之类似,可作参考,不再赘述。
图1示出了本申请一个示例性实施例提供的轮腿式机器人10,轮腿式机器人10是欠驱动系统机器人中的一种。轮腿式机器人10结合了轮式机器人和足式机器人的优点,具有很高的车轮能量效率和很强的适应能力,可以在不平坦的地形上利用腿避开障碍物。轮腿式机器人10是不稳定的欠驱动系统,地面与车轮/支脚之间只有两个接触点,从而使得轮腿式机器人10的平衡控制具有挑战性,因为较难获得机身平衡。
示意性的,轮腿式机器人10包括基座部11、车轮部12和尾部13,车轮部12和尾部13分别与基座部11传动连接。可选的,车轮部12可分为左右两侧,且左右两侧可以是完全对称的,也可以是不完全对称的。
示意性的,车轮部12包括腿部和轮部。其中,腿部包括大腿单元121和小腿单元122,轮部包括主动轮123。以大腿单元121由两杆件组成,小腿单元122由两杆件组成为例,大 腿单元121包括的两杆件、小腿单元122包括的两杆件和基座部11构成平面五连杆机构。
可选的,第一电机1241固定于基座部11上,用于向大腿单元121提供驱动力。
以第一电机1241包括两个电机为例,大腿单元121包括的两杆件分别与第一电机1241包括的两个电机的输出轴固定连接,大腿单元121包括的两杆件、小腿单元122包括的两杆件相连的一端均以转动副形式连接,以构成平面五连杆机构。
可选的,第二电机1242固定于小腿单元122的某一个杆件上,用于向主动轮123提供驱动力。
参考图2示出的轮腿式机器人10的局部示意图,主动轮123的驱动可通过如下方式实现:第二电机1242通过皮带传动驱动主动轮123的转动轴02,转动轴02与小腿单元122包括的两杆件之间转动副的轴向共轴,扭簧01套装在转动轴02上,扭簧01的臂分别固定在小腿单元122包括的两杆件上。
可选的,第二电机1242的输出轴上安装有同步带轮04,同步带轮04固定在转动轴02上,主动轮123固定在转动轴02的另一段上,同步带03套接在同步带轮04上,第二电机1242通过驱动同步带03驱动同步带轮04进行转动,从而带动主动轮123的转动。
可选的,本申请实施例提供的轮腿式机器人10中,尾部13包括配重腿131、被动轮132和第三电机133。其中,配重腿131在轮腿式机器人10的运动过程中实现平衡功能,第三电机133用于向被动轮132提供驱动力。
图3-5分别示出了轮腿式机器人10处于两轮站立情况下的主视图、左视图和俯视图;图6示出了轮腿式机器人10在配重腿131处于内收状态下的立体示意图。
在一种可选的实施场景下,轮腿式机器人10还可以处于三轮站立状态。其中。在轮腿式机器人10处于三轮站立情况下,图7-9示出了轮腿式机器人10处于三轮站立情况下的主视图、左视图和俯视图;图10和11分别示出了轮腿式机器人10处于三轮站立情况下的不同立体图。
参考图7,以大腿单元121包括的两杆件的轴心线构成的位置角度是θ为例,位置角度θ<180°,机构可处于自稳状态。
在一种可选的实施场景下,轮腿式机器人10还可以具有其他形态,图12给出了一种形态的示例。
应当理解的是,轮腿式机器人10作为欠驱动系统机器人中的一种,本申请以下实施例仅以轮腿式机器人10来进行示例,轮腿式机器人10的具体结构和所具有的形态可根据实际情况设定,不对本申请构成限定。
为实现轮腿式机器人10的平衡,通常需要对轮腿式机器人10进行平衡反馈控制。平衡反馈控制主要是,将自我平衡测量值反馈给控制系统,使最后的平衡测量值达到标准。
示意性的,图13是本申请一个示例性实施例提供的三个空间角度的示意图,本申请实施例主要通过三个空间角度进行平衡:俯仰角(pitch)、偏航角(yaw)以及横滚角(roll)。
参考图13,针对轮腿式机器人10建立三维空间的右手笛卡尔坐标系,其中,横滚角是围绕x轴旋转的角,x轴为沿轮腿式机器人10前进方向的坐标轴,对应横滚角,后续使用θ表示;俯仰角是围绕y轴旋转的角,y轴为沿轮腿式机器人10双轮连接方向的坐标轴,对应俯仰角,后续使用φ表示;偏航角是围绕z轴旋转的角,z轴为竖直向上方向的坐标轴,对应偏航角,后续使用表示。
针对三个空间角度方向的平衡控制分别进行说明:
俯仰角pitch方向的平衡控制:
pitch方向的角度表示轮腿式机器人10在前进方向上的摆动幅度,也即,pitch方向的角度表示轮腿式机器人10在车轮转动的控制方向上前后摇摆的角度,是由于每个车轮与运动面之间仅存在单接触点,且轮腿式机器人10的车轮横向排列产生的。
pitch方向上的控制由多闭环比例-积分-微分(proportional-integral-derivative,PID)控制器组成。其中,将轮腿式机器人10投影至二维平面上,形成二维平面简化模型,X表示车轮中心在二维平面简化模型中横向移动的距离,假设轮子不打滑不离地的情况下,X等于轮子转动的角度与轮子的半径的乘积。
示意性的,表示车轮中心的移动速度,表示车轮中心移动的参考速度,θ表示轮腿式机器人10的俯仰角,即二维平面简化模型中绕垂直于纸面的方向转动地角度。相应的,表示轮腿式机器人10的俯仰角速度,表示轮腿式机器人10的俯仰角速度参考值,τ表示输入轮腿式机器人10的车轮电机的力矩。其中,θ、由传感器采集得到。比如,θ和通过惯性传感器(Inertial Measurement Unit,IMU)获取,通过轮子的编码传感器(Encoder传感器)获取。
图14示出本申请实施例一个示例性实施例提供的pitch方向的平衡控制的框图。其中,最外层的控制参考量是轮子中心移动的速度参考值
首先,获取车轮中心移动的参考速度也即车轮根据运动预期需要达到的速度,以及通过传感器采集得到车轮中心的移动速度与轮子中心移动的速度相减之后的结果,输入到PID控制器1410,通过PID控制器1410输出得到θref
其次,该θref作为下一个控制环的控制参考量。将θref与θ相减后,得到俯仰角差值,也即当前俯仰角与参考俯仰角之间的差值,将俯仰角差值输入到PID控制器1420,得到随后,作为下一个控制环的控制参考量,将相减之后的结果,输入到PID控制器1430,PID控制器1430输出得到τ。将τ发给轮腿式机器人10的轮子电机即可实现机器人的平衡控制。
同时,轮腿式机器人10的状态发生相应的改变后,θ、的值会相应的发生变化,这些值由传感器获取之后用于轮腿式机器人10的新一轮的控制中,由此形成控制闭环。
根据上述平衡控制得到的τ可作为轮腿式机器人10的全身的类型控制器的轮子转动参考信号,该参考信号的计算生成方法有多种实现方式,本申请仅为示例性举例,其他获取τ的计算生成方法不对本申请造成限制。
横滚角roll方向的平衡控制:
可选的,roll方向的角度表示轮腿式机器人在两腿长度不一致,或者两腿所处高度不一致而导致的横向摆动幅度,则向PID控制器输入理想角度,并根据当前的roll角度与理想角度之差对轮腿式机器人的腿长进行控制,从而保持轮腿式机器人的两腿支撑轮腿式机器人主体部分达到的高度一致。通常,理想角度为0,根据PID控制器计算在当前roll角度下,需要变化的腿长,并根据需要变化的腿长计算关节角度变化量,从而对腿部构型的关节角度进行控制。
示意性的,请参考图15,将理想角度与roll角度之差输入PID控制器1510,输出腿长变化,从而基于腿长变化确定关节角度的变化量,并向控制腿部构型的电机输入该关节角度的变化量以对关节角度进行控制。
偏航角yaw方向的平衡控制:
yaw方向的角度表示轮腿式机器人在旋转过程中产生的角度,本实施例中,用φ表示轮腿式机器人的偏航角,表示轮腿式机器人的偏航角速度,φref表示轮腿式机器人的偏航角参考值,表示轮腿式机器人的偏航角速度参考值。示意性的,请参考图16,将之差输入PID控制器1610,输出得到力矩增量Δτ,将力矩增量作用于车轮电机,从而对轮腿式机器人的yaw方向角度进行改变。
基于前述内容,本申请提供了一种移动机器人的运动控制方法,能够使得移动机器人实现类双足运动。应当理解的是,类双足运动是模仿人类进行左右腿交替运动的一种步态运动,该步态运动可以具体实现为交替行走、原地踏步等多种方式。比如,移动机器人进行原地踏步运动,移动机器人的第一车轮部和第二车轮部的着地位置保持不变;又如,移动机器人以交替行走的步态进行直线运动、曲线运动、跨越障碍运动等,移动机器人的第一车轮部和第二车轮部根据不同的运动发生位移。
在一些实施例中,移动机器人是欠驱动系统机器人。其中,欠驱动系统机器人是指驱动数量少于关节自由度数量的机器人。其中,欠驱动系统机器人的轮子电机在俯仰角(pitch)方向上,用于负责控制轮子的转动位置,且负责基座部的姿态平衡控制和pitch姿态的调整。这是基于:基座部的姿态和轮子的转动距离在动力学上是耦合的,可通过二者之间的动力学关系,根据动力学关系来实现控制。
示例性的,双轮平衡的轮腿式机器人是欠驱动系统机器人的一种类型。相较于传统的两足机器人,这一类型的机器人存在一个共同的特性,也即,腿部所能运动的平面与基座部是垂直的,也即,腿部的运动平面没有横滚角(roll)方向的自由度。
可以理解为,本申请实施例中,欠驱动系统机器人是在空间中缺乏一个自由度的机器人。可选的,本申请实施例提供的欠驱动系统机器人是实现双轮平衡的轮腿式机器人,其腿部的运动平面和基座部之间缺乏横滚角方向自由度。以轮腿式机器人包括第一车轮部、第二车轮部、以及与第一车轮部和第二车轮部连接的基座部为例,第一车轮部和第二车轮部的腿部的运动平面与基座部保持垂直。
对于两足机器人而言,由于两足机器人具有足部,从而使得两足机器人在俯仰角方向上本身就具有平衡性;而对于欠驱动系统机器人而言,其单个腿部的运动平面与基座部处于位置固定(比如垂直)的关系,从而使得腿部的运动仅具有横滚角方向和偏航角方向上的自由度,而缺乏俯仰角方向上的自由度,且腿部的运动缺乏横滚角方向上的旋转自由度。
基于此,双足机器人的运动控制方法将无法实现机器人的质心在指定方向上的稳态调整,从而无法用于实现对腿部的运动平面和基座部之间缺乏横滚角方向自由度的机器人的迈步动作生成和运动控制。
以类双足运动是原地踏步运动为例,双足机器人可通过零力矩点(Zero Moment Point,ZMP)来生成运动轨迹,该种运动轨迹的生成方式不需要考虑俯仰角方向上的平衡控制。而对于欠驱动系统机器人而言,需要考虑俯仰角方向和横滚角方向上的平衡控制。示意性的,本申请实施例提供的欠驱动系统机器人的运动控制方法中,可通过欠驱动系统机器人的腿部的长度变化、车轮与地面的接触力等相关信息,来改变欠驱动系统机器人的质心位置的改变和姿态变化,从而实现欠驱动系统机器人的平衡控制,使得类双足运动的步态应用于欠驱动系统机器人成为可能。
应当理解的是,本申请实施例涉及的移动机器人,可以是欠驱动系统机器人。更进一步的,本申请实施例涉及的移动机器人,是能够实现双轮平衡的欠驱动系统机器人,比如实现双轮平衡的轮腿式机器人。其中,该种类型的机器人的腿部的运动平面和基座部之间缺乏横滚角方向自由度。以轮腿式机器人包括第一车轮部、第二车轮部、以及与第一车轮部和第二车轮部连接的基座部为例,第一车轮部和第二车轮部的腿部的运动平面与基座部保持垂直。
图17示出了本申请一个示例性实施例提供的移动机器人的运动控制方法的流程图。
在一些实施例中,移动机器人是欠驱动系统机器人。
其中,移动机器人包括具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部、以及与第一车轮部和第二车轮部连接的基座部。参考图1,以欠驱动系统机器人是轮腿式机器人10为例,轮腿式机器人10包括两个车轮部12,这两个车轮部12即可理解为第一车轮部和第二车轮部。
图1示出的轮腿式机器人10的尾部13处于展开状态,图6示出的轮腿式机器人10的尾部13处于收起状态。在一些实施例中,尾部13的被动轮132的几何中点与配重腿131的轴线方向重合。在一些实施例中,尾部13在收起状态下,其配重腿131的轴线方向与基座部11平行。示例性的,以尾部13处于收起状态为例,轮腿式机器人10的前进方向为由配重腿131指向被动轮132的方向。
以下实施例中,均以第一车轮部是位于轮腿式机器人10的前进方向的左侧的车轮部12,第二车轮部是位于轮腿式机器人10的前进方向的右侧的车轮部12为例进行描述。
其中,第一车轮部包括第一腿部和第一车轮,第二车轮部包括第二腿部和第二车轮,第一腿部和第二腿部均包括大腿单元121和小腿单元122。应当理解的是,第一腿部和第二腿部具有伸缩功能,第一车轮部对应有第一驱动电机,第二车轮部对应有第二驱动电机,第一驱动电机和第二驱动电机分别用于驱动不同的车轮部进行运动,具体驱动方式可参考前述内容,不再赘述。
应当理解的是,本申请实施例涉及的移动机器人可以是欠驱动系统机器人。更进一步的,本申请实施例涉及的移动机器人,是能够实现双轮平衡的欠驱动系统机器人,比如实现双轮平衡的轮腿式机器人。其中,该种类型的机器人的腿部的运动平面和基座部之间缺乏横滚角方向自由度。以轮腿式机器人包括第一车轮部、第二车轮部、以及与第一车轮部和第二车轮部连接的基座部为例,第一车轮部和第二车轮部的腿部的运动平面与基座部保持垂直。
以下均以移动机器人是欠驱动系统机器人进行详细说明:
示意性的,本申请实施例提供的运动控制方法包括:
步骤102:控制第一车轮部和第二车轮部处于站立平衡状态。
示意性的,基座部在站立平衡状态下与水平基准面平行。
其中,基准面是指用来定义三维地球形状的一组参数和控制点,水平基准面是基准面的一种,水平基准面上的任意一点与地心的连线均垂直于该点的地面切线。
在一种可选的实施场景下,移动机器人位于平地上,基座部在站立平衡状态下与地面保持平行;在另一种可选的实现场景下,移动机器人位于斜坡上,基座部在站立平衡状态下与水平基准面保持平行。也可以理解为,在移动机器人的控制场景中,移动机器人可能面对多种路况。以路况包括平地路况和斜坡路况为例,无论移动机器人在何种路况下进行运动,若移动机器人进行类双足运动,则基座部在站立平衡状态下均与平地路况时的地面保持平行。
可以理解为,站立平衡状态是移动机器人处于静态平衡或动态平衡的一种状态,在该种状态下,基座部保持与水平基准面平行,且移动机器人保持机身平衡。在一些实施例中,移动机器人在站立平衡状态下的位置保持不变,也即不存在位移;在另一些实施例中,移动机器人在站立平衡状态下进行运动,也即存在位移。以下实施例均以移动机器人在站立平衡状态下的位置保持不变为例。
以欠驱动系统机器人是轮腿式机器人为例,图18示出了本申请一个示例性实施例提供的站立平衡状态的示意图。其中,轮腿式机器人10包括基座部11、第一车轮部1201和第二车轮部1202。
参考前述内容,轮腿式机器人10的前进方向为由配重腿131指向被动轮132的方向,也可以理解为被动轮132指向纸面的方向。示例性的,第一车轮部1201是位于轮腿式机器人10的前进方向的左侧的车轮部,第二车轮部1202是位于轮腿式机器人10的前进方向的右侧的车轮部。
参考图18,轮腿式机器人10位于平地上,在站立平衡状态下,第一车轮部1201和第二车轮部1202均着地,基座部11与地面保持平行。可选的,第一车轮部1201和第二车轮部1202的高度相同,也即,第一车轮部1201和第二车轮部1202在站立平衡状态下处于等高状态。因此,在欠驱动系统机器人位于平地上时,站立平衡状态也可理解为等高状态。
步骤104:控制移动机器人基于站立平衡状态进行类双足运动。
示意性的,在类双足运动的过程中,第一车轮部和第二车轮部交替着地,基座部倾斜摇摆。
其中,类双足运动是模仿人类进行左右腿交替运动的一种步态运动,该步态运动可具体实现为交替行走、原地踏步等多种方式。比如,移动机器人进行原地踏步运动,移动机器人的第一车轮部和第二车轮部的着地位置保持不变;又如,移动机器人以交替行走的步态进行直线运动、曲线运动、跨越障碍运动等,移动机器人的第一车轮部和第二车轮部根据不同的运动状态发生位移。
以类双足运动是原地踏步运动为例,在原地踏步运动的过程中,第一车轮部和第二车轮部模仿人类的双足,进行交替抬举的动作,以实现原地踏步。
根据前述内容,第一车轮部和第二车轮部具有伸缩腿部。以第一车轮部包括第一腿部,第二车轮部包括第二腿部为例,第一车轮部和第二车轮部的交替着地、基座部的倾斜摇摆可通过第一腿部和第二腿部的交替伸缩实现。
示例性的,在站立平衡状态下,控制第一腿部缩短且第二腿部伸长,以使得基座部向第一方向发生倾斜,此时的第一车轮部和第二车轮部持续保持着地的状态;随后可控制第一腿部伸长且第二腿部缩短,以使得第二车轮部抬举而离地悬空;在第一腿部持续伸长且第二腿部持续缩短一定时长后,第二车轮部将由离地悬空重新变为着地,此时的基座部也将恢复为与水平基准面平行的状态,也即移动机器人恢复为站立平衡状态;随后可控制第一腿部继续伸长且第二腿部继续缩短,以使得基座部向第二方向发生倾斜,此时的第一车轮部和第二车轮部持续保持着地的状态,且第一方向和第二方向是相反的方向;随后可控制第一腿部缩短且第二腿部伸长,以使得第一车轮部抬举而离地悬空,在第一腿部持续缩短且第二腿部持续伸长一定时长后,第一车轮部将由离地悬空重新变为着地,此时的基座部也将恢复为与水平基准面平行的状态,也即移动机器人恢复为站立平衡状态。
基于上述过程,移动机器人完成了一个周期的原地踏步运动。随后,可基于前述内容给出的过程进行循环控制,以实现移动机器人的多个周期的原地踏步运动。
综上所述,本申请实施例提供的移动机器人的运动控制方法中,通过具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部,实现了控制移动机器人基于站立平衡状态进行类双足运动,从而为移动机器人提供了一种新的运动方式。其中,类双足运动具有较高的地形适应性、较强的应用价值以及较强的鲁棒性和稳定性。
基于图17,图19是本申请一个示例性实施例提供的移动机器人的运动控制方法的流程图,步骤104可实现为步骤1041、步骤1042、步骤1043和步骤1044,将移动机器人的类双足运动分为站立平衡状态、第一倾斜状态、站立平衡状态、第二倾斜状态、站立平衡状态的循环转换。
以第一车轮部包括第一腿部和第一车轮,第二车轮部包括第二腿部和第二车轮为例,图20是本申请一个示例性实施例提供的类双足运动的动作分解图。
在一些实施例中,移动机器人是欠驱动系统机器人。
以欠驱动系统机器人在平地上运动为例,若需要控制欠驱动系统机器人进行类双足运动,首先控制第一车轮部和第二车轮部处于站立平衡状态。其中,在站立平衡状态下,第一车轮和第二车轮着地,基座部与地面保持平行。
可选的,以第一车轮部位于基座部的第一方向,第二车轮部位于基座部的第二方向为例,欠驱动系统机器人的类双足运动可实现为如下:
1、控制欠驱动系统机器人从站立平衡状态变化为第一倾斜状态。
示意性的,在站立平衡状态下,控制第一车轮部的第一腿部缩短,第二车轮部的第二腿部伸长,以使得欠驱动系统机器变化为第一倾斜状态。
其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐从由平行于地面的水平状态向 第一方向倾斜,第一车轮和第二车轮均着地。
参考图20,欠驱动系统机器人位于平地路况中。在站立平衡状态下,欠驱动系统机器人保持静止平衡,第一车轮部和第二车轮部的高度相同,以使得基座部与地面保持平行。
随后,通过电机驱动第一车轮部和第二车轮部,以控制第一腿部缩短且第二腿部伸长。此时,基于第一腿部和第二腿部与基座部相连,将带动基座部发生倾斜,基座部将由平行于地面的水平状态向第一方向倾斜。同时,控制第一车轮和第二车轮保持着地状态。
2、欠驱动系统机器人从第一倾斜状态变化为第一单轮着地状态。
示意性的,在第一倾斜状态下,控制第一车轮部的第一腿部伸长,且第二车轮部的第二腿部缩短,以使得欠驱动系统机器人变化为第一单轮着地状态。
其中,第一单轮着地状态是第一车轮着地且第二车轮悬空的状态。
参考图20,在第一腿部缩短且第二腿部伸长的过程,第一车轮和第二车轮始终保持着地状态。可选的,在欠驱动系统机器人的机身的倾斜程度满足切换状态条件的情况下,通过电机驱动第一车轮部和第二车轮部,以控制第一腿部伸长且第二腿部缩短。应当理解的是,在满足切换状态条件的时刻,基座部在第一方向上的倾斜角度将达到最大;在从第一倾斜状态向第一单轮着地状态变化时,第一腿部的伸长和第二腿部的缩短是同时进行的,且基座部逐渐向第二方向倾斜。
随后,基于第一腿部和第二腿部的长度变化,将导致第一车轮仍然保持着地状态,但第二车轮抬高而离地悬空。此时,欠驱动系统机器人仍然保持机身平衡,且基座部在第一方向上的倾斜角度将随着第一腿部和第二腿部的伸缩逐渐变小。
3、控制欠驱动系统机器人从第一单轮着地状态恢复为站立平衡状态。
示意性的,在第一单轮着地状态下,控制第一腿部持续伸长,且第二腿部持续缩短,以使得欠驱动系统机器从第一单轮着地状态恢复为站立平衡状态。
其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐向第二方向倾斜直至恢复为平行于地面的水平状态,第二车轮由悬空恢复着地。
参考图20,随着第一腿部的持续伸长和第二腿部的持续缩短,基于第一腿部和第二腿部的长度变化,基座部向第二方向的倾斜将导致基座部在第一方向上的倾斜角度逐渐缩小,直至恢复为平行于地面。此时,第二车轮将由悬空恢复为着地,从而使得欠驱动系统机器人恢复为站立平衡状态。
在本申请实施例中,在单轮着地状态过程中,另一个悬空的单轮就可以抬起或向前或向后移动,从而实现机器人的运动控制。
4、控制欠驱动系统机器人从站立平衡状态变化为第二倾斜状态。
示意性的,在站立平衡状态下,控制第一车轮部的第一腿部伸长,第二车轮部的第二腿部缩短,以使得欠驱动系统机器变化为第二倾斜状态。
其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐从由平行于地面的水平状态向第二方向倾斜,第一车轮和第二车轮均着地。
参考图20,欠驱动系统机器人恢复站立平衡状态后,可通过驱动第一车轮部和第二车轮部,以控制第一腿部伸长且第二腿部缩短。此时,基于第一腿部和第二腿部与基座部相连,将带动基座部发生倾斜,基座部将由平行于地面的水平状态向第二方向倾斜。同时,控制第一车轮和第二车轮保持着地状态。
5、欠驱动系统机器人从第二倾斜状态变化为第二单轮着地状态。
示意性的,在第二倾斜状态下,控制第一车轮部的第一腿部缩短,且第二车轮部的第二腿部伸长,以使得欠驱动系统机器人变化为第二单轮着地状态。
其中,第二单轮着地状态是第一车轮悬空且第二车轮着地的状态。
参考图20,在第一腿部伸长且第二腿部缩短的过程,第一车轮和第二车轮始终保持着地状态。可选的,在欠驱动系统机器人的机身的倾斜程度满足切换状态条件的情况下,通过电 机驱动第一车轮部和第二车轮部,以控制第一腿部缩短且第二腿部伸长。应当理解的是,在满足切换状态条件的时刻,基座部在第二方向上的倾斜角度将达到最大;在从第二倾斜状态向第二单轮着地状态变化时,第一腿部的缩短和第二腿部的伸长是同时进行的,且基座部逐渐向第一方向倾斜。
随后,基于第一腿部和第二腿部的长度变化,将导致第二车轮仍然保持着地状态,但第一车轮抬高而离地悬空。此时,欠驱动系统机器人仍然保持机身平衡,且基座部在第二方向上的倾斜角度将随着第一腿部和第二腿部的伸缩逐渐变小。
6、控制欠驱动系统机器人从第二单轮着地状态恢复为站立平衡状态。
示意性的,在第二单轮着地状态下,控制第一腿部持续缩短,且第二腿部持续伸长,以使得欠驱动系统机器从第二单轮着地状态恢复为站立平衡状态。
其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐向第一方向倾斜直至恢复为平行于地面的水平状态,第一车轮由着地变为悬空后再次恢复着地。
参考图20,随着第一腿部的持续缩短和第二腿部的持续伸长,基于第一腿部和第二腿部的长度变化,基座部向第一方向的倾斜将导致基座部在第二方向上的倾斜角度逐渐缩小,直至恢复为平行于地面。此时,第一车轮将由悬空恢复为着地,从而使得欠驱动系统机器人恢复为站立平衡状态。
上述过程给出了欠驱动系统机器人在类双足运动中的一个运动周期。其中,在一个运动周期内,基座部逐步经历与地面平行、向第一方向倾斜、恢复为与地面平行、向第二方向倾斜、恢复为与地面平行的过程,以形成了基座部的倾斜摇摆。
应当理解的是,循环重复上述过程给出的六个步骤,能够实现类双足运动的多个运动周期,不再赘述。
参考图19,以第一车轮部位于基座部的第一方向,第二车轮部位于基座部的第二方向为例,步骤1041、步骤1042、步骤1043和步骤1044具体如下:
步骤1041:控制移动机器人从站立平衡状态变化为第一倾斜状态。
示意性的,第一倾斜状态是基座部向第一方向倾斜的状态。
在一些实施例中,移动机器人是欠驱动系统机器人。
以欠驱动系统机器人是轮腿式机器人为例,图21示出了本申请一个示例性实施例提供的第一倾斜状态的示意图。其中,轮腿式机器人10包括基座部11、第一车轮部1201和第二车轮部1202。
参考前述内容,轮腿式机器人10的前进方向为由配重腿131指向被动轮132的方向,也可以理解为被动轮132指向纸面的方向。示例性的,第一车轮部1201是位于轮腿式机器人10的前进方向的左侧的车轮部,第二车轮部1202是位于轮腿式机器人10的前进方向的右侧的车轮部。
参考图21,轮腿式机器人10位于平地上,在第一倾斜状态下,第一车轮部1201和第二车轮部1202均着地,基座部11向第一方向倾斜。其中,基座部11向第一方向的倾斜将导致轮腿式机器人10的机身的倾斜。在一些实施例中,基座部11向第一方向的倾斜将导致轮腿式机器人10的机身也向第一方向倾斜。可选的,轮腿式机器人10的倾斜角度用于指示轮腿式机器人10的机身的倾斜角度。参考图21,该倾斜角度用于指示基座部11与地面的水平面的夹角。
可选的,步骤1041可实现为如下:
控制第一车轮部的第一腿部缩短,第二车轮部的第二腿部伸长,以使得欠驱动系统机器处于第一倾斜状态;
其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐从由平行于水平基准面的水平状态向第一方向倾斜,第一车轮和第二车轮均着地。
在该实施例中,在第一腿部和第二腿部的伸缩过程中,第一车轮和第二车轮均着地,从而保证了该伸缩过程中机器人机身整体的平稳性,从而保证了机器人在运动控制过程中的稳定性。
在一种可选的实现场景下,移动机器人位于平地上,第一腿部和第二腿部在站立平衡状态下的高度相等。随后,控制第一腿部缩短且第二腿部伸长,以使得第一腿部的高度降低且第二腿部的高度增加。
在另一种可选的实现场景下,移动机器人位于斜坡上,第一腿部和第二腿部在站立平衡状态下的高度不同。以第一腿部高于第二腿部为例,在控制第一腿部缩短且第二腿部伸长的过程中,在第一时间段内的第一腿部的高度将仍然高于第二腿部的高度。若持续控制第一腿部缩短且第二腿部伸长,则在第一时段过后的某一时刻,第一腿部和第二腿部的高度可能达到相等。随后,若持续控制第一腿部缩短且第二腿部伸长,则在第二时间段内的第一腿部的高度将低于第二腿部的高度,第二时间段是第一时间段后的时间段。
步骤1042:控制移动机器人从第一倾斜状态恢复为站立平衡状态。
示意性的,在移动机器人从第一倾斜状态恢复为站立平衡状态的过程中,第一车轮部的第一车轮着地,第二车轮部的第二车轮悬空。
参考前述内容,移动机器人从第一倾斜状态恢复到站立平衡状态的过程中,第一车轮保持着地状态,第二车轮将依次经历着地、悬空、恢复着地的变化。其中,在第一车轮着地且第二车轮悬空的情况下,可将移动机器人的状态视为第一单轮着地状态。
可选的,步骤1042可实现为如下:
控制第一车轮部的第一腿部伸长,且第二车轮部的第二腿部缩短,以使得移动机器人处于第一单轮着地状态,第一单轮着地状态是第一车轮着地且第二车轮悬空的状态;
控制第一腿部持续伸长,且第二腿部持续缩短,以使得欠驱动系统机器从第一单轮着地状态恢复为站立平衡状态;
其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐向第二方向倾斜直至恢复为平行于水平基准面的水平状态,第二车轮由着地变为悬空后再次恢复着地。
在一些实施例中,移动机器人是欠驱动系统机器人。
仍然以欠驱动系统机器人是轮腿式机器人为例,图22示出了本申请一个示例性实施例提供的第一单轮着地状态的示意图。其中,轮腿式机器人10包括基座部11、第一车轮部1201和第二车轮部1202,轮腿式机器人10的前进方向为由配重腿131指向被动轮132的方向。
参考图22,在第一单轮着地状态下,第一车轮部1201着地,且第二车轮部1202悬空,基座部11向第一方向倾斜。其中,基座部11向第一方向的倾斜将导致轮腿式机器人10的机身的倾斜。在一些实施例中,基座部11向第一方向的倾斜将导致轮腿式机器人10的机身向第一方向倾斜。
在一种可选的实现场景下,移动机器人位于平地上,则第一腿部的长度和第二腿部在站立平衡状态下的高度相同。此时,在移动机器人从第一倾斜状态恢复为站立平衡状态的过程中,第一腿部和第二腿部的高度将发生变化,该变化也可采用第一腿部和第二腿部的长度来进行衡量。
可选的,在第一腿部的长度和第二腿部的长度在站立平衡状态下相同的情况下(也即移动机器人位于平地上),移动机器人在第一时长内处于第一单轮着地状态。其中:
在第一时长内,第一腿部的长度短于第二腿部的长度;
在第一时长的终止节点下,第一腿部和第二腿部等长。
其中,在第一时长的初始节点的前一个时间节点下,移动机器人仍然处于第一倾斜状态。此时,第一腿部的长度将远小于第二腿部的长度;且基于第一腿部的长度缩短至最短且第二腿部的长度伸长至最长,基座部在第一方向上的倾斜角度达到最大。
随后,在第一时长的初始节点下,控制第一腿部伸长且第二腿部缩短,此时的第一腿部 的长度仍然小于第二腿部的长度。随着时间推移,基于第一腿部的持续伸长且第二腿部持续缩短,第一腿部和第二腿部的长度差距逐渐缩小;直至达到第一时长的终止节点下,第一腿部和第二腿部的长度相同。
步骤1043:控制移动机器人从站立平衡状态变化为第二倾斜状态。
示意性的,第二倾斜状态是基座部向第二方向倾斜的状态。
在一些实施例中,移动机器人是欠驱动系统机器人。
以欠驱动系统机器人是轮腿式机器人为例,图23示出了本申请一个示例性实施例提供的第二倾斜状态的示意图。其中,轮腿式机器人10包括基座部11、第一车轮部1201和第二车轮部1202,轮腿式机器人10的前进方向为由配重腿131指向被动轮132的方向。
参考图23,轮腿式机器人10位于平地上,在第二倾斜状态下,第一车轮部1201和第二车轮部1202均着地,基座部11向第二方向倾斜。其中,基座部11向第二方向的倾斜将导致轮腿式机器人10的机身的倾斜。
可选的,步骤1043可实现为如下:
控制第一车轮部的第一腿部伸长,第二车轮部的第二腿部缩短,以使得欠驱动系统机器处于第二倾斜状态;
其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐从由平行于水平基准面的水平状态向第二方向倾斜,第一车轮和第二车轮均着地。
在一种可选的实现场景下,移动机器人位于平地上,第一腿部和第二腿部恢复站立平衡状态后的高度相等。随后,控制第一腿部伸长且第二腿部缩短,以使得第一腿部的高度增加且第二腿部的高度降低。
在另一种可选的实现场景下,移动机器人位于斜坡上,第一腿部和第二腿部恢复站立平衡状态后的高度不同。以第一腿部高于第二腿部为例,在控制第一腿部伸长且第二腿部缩短的过程中,在第三时间段内的第一腿部的高度将仍然高于第二腿部的高度,第三时间段是第二时间段后的时间段,第二时间段的描述可参考前述内容。若持续控制第一腿部伸长且第二腿部缩短,则在第三时段过后的某一时刻,第一腿部和第二腿部的高度可能达到相等。随后,若持续控制第一腿部伸长且第二腿部缩短,则在第四时间段内的第一腿部的高度将低于第二腿部的高度,第四时间段是第三时间段后的时间段。
步骤1044:控制移动机器人从第二倾斜状态恢复为站立平衡状态。
示意性的,在移动机器人从第二倾斜状态恢复为站立平衡状态的过程中,第二车轮着地,第一车轮悬空。
参考前述内容,移动机器人从第二倾斜状态恢复到站立平衡状态的过程中,第二车轮保持着地状态,第一车轮将依次经历着地、悬空、恢复着地的变化。其中,在第一车轮悬空且第二车轮着地的情况下,可将移动机器人的状态视为第二单轮着地状态。
可选的,步骤1044可实现为如下:
控制第一车轮部的第一腿部缩短,且第二车轮部的第二腿部伸长,以使得移动机器人处于第二单轮着地状态,第二单轮着地状态是第一车轮悬空且第二车轮着地的状态;
控制第一腿部持续缩短,且第二腿部持续伸长,以使得欠驱动系统机器从第二单轮着地状态恢复为站立平衡状态;
其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐向第一方向倾斜直至恢复为平行于水平基准面的水平状态,第一车轮由着地变为悬空后再次恢复着地。
在一些实施例中,移动机器人是欠驱动系统机器人。
在上述实施例中,通过控制第一腿部和第二腿部的长度,可以较为平稳精准地控制移动机器人的倾斜程度。
仍然以欠驱动系统机器人是轮腿式机器人为例,图24示出了本申请一个示例性实施例提供的第二单轮着地状态的示意图。其中,轮腿式机器人10包括基座部11、第一车轮部1201 和第二车轮部1202,轮腿式机器人10的前进方向为由配重腿131指向被动轮132的方向。
参考图24,在第二单轮着地状态下,第一车轮部1201悬空,且第二车轮部1202着地,基座部11向第二向倾斜。其中,基座部11向第二方向的倾斜将导致轮腿式机器人10的机身的倾斜。
在一种可选的实现场景下,移动机器人位于平地上,则第一腿部的长度和第二腿部在站立平衡状态下的高度相同。此时,在移动机器人从第二倾斜状态恢复为站立平衡状态的过程中,第一腿部和第二腿部的高度将发生变化,该变化也可采用第一腿部和第二腿部的长度来进行衡量。
可选的,在第一腿部的长度和第二腿部的长度在站立平衡状态下相同的情况下(也即移动机器人位于平地上),移动机器人在第二时长内处于第二单轮着地状态,其中:
在第二时长内,第一腿部的长度长于第二腿部的长度;
在第二时长的终止节点下,第一腿部和第二腿部等长。
其中,在第二时长的初始节点的前一个时间节点下,移动机器人仍然处于第二倾斜状态。此时,第一腿部的长度将远长于第二腿部的长度;且基于第一腿部的长度伸长至最长且第二腿部的长度缩短至最短,基座部在第二方向上的倾斜角度达到最大。
随后,在第二时长的初始节点下,控制第一腿部缩短且第二腿部伸长,此时的第一腿部的长度仍然长于第二腿部的长度。随着时间推移,基于第一腿部的持续缩短且第二腿部持续伸长,第一腿部和第二腿部的长度差距逐渐缩小;直至达到第二时长的终止节点下,第一腿部和第二腿部的长度相同。
以第一倾斜状态为左倾状态,第二倾斜状态为右倾状态为例,图25是本申请一个示例性实施例提供的类双足运动的动作分解图。其中,图中的左侧垂线用于标识左侧车轮部,右侧垂线用于标识右侧车轮部,两条垂线与两条水平线的围合区域用于标识基座部。
参考图25,以移动机器人位于平地为例,类双足运动可实现为如下:
控制左侧车轮部和右侧车轮部处于等高状态,以使得基座部与地面保持平行。
控制左侧车轮部的腿部缩短且右侧车轮部的腿部伸长,以使得基座部随两侧车轮部的伸缩而向左侧倾斜。同时,控制两侧车轮部的轮子保持着地状态,以使得移动机器人从两侧车轮部的等高状态逐渐变化为左倾状态。可选的,在移动机器人的倾斜角度达到第一极限值时,停止对两侧车轮部的伸缩控制,以避免移动机器人侧翻。其中,移动机器人的倾斜角度的第一极限值可根据实际需要设定,如根据移动机器人的质量、两侧车轮部的腿部的长度变化来确定。
在移动机器人的倾斜角度达到第一极限值的情况下,控制左侧车轮部的腿部伸长且右侧车轮部的腿部缩短。此时的右侧车轮部的轮子将悬空离地,移动机器人进入第一单轮着地状态。随着左侧车轮部的腿部伸长和右侧车轮部的腿部缩短,两侧车轮部的腿部长度将在第一单轮着地状态的终止时刻达到相同,移动机器人也将从第一单轮着地状态恢复为站立平衡状态。此时,受两侧车轮部的伸缩,基座部也由左倾恢复为与地面平行。
与左倾状态类似,在移动机器人恢复为站立平衡状态后,控制左侧车轮部的腿部伸长且右侧车轮部的腿部缩短,以使得基座部随两侧车轮部的伸缩而向右侧倾斜。同时,控制两侧车轮部的轮子保持着地状态,以使得移动机器人从两侧车轮部的等高状态逐渐变化为右倾状态。可选的,在移动机器人的倾斜角度达到第二极限值时,停止对两侧车轮部的伸缩控制,以避免移动机器人侧翻。其中,移动机器人的倾斜角度的第二极限值可根据实际需要设定,如根据移动机器人的质量、两侧车轮部的腿部的长度变化来确定。
在移动机器人的倾斜角度达到第二极限值的情况下,控制左侧车轮部的腿部缩短且右侧车轮部的腿部伸长。此时的左侧车轮部的轮子将悬空离地,移动机器人进入第二单轮着地状态。随着左侧车轮部的腿部缩短和右侧车轮部的腿部伸长,两侧车轮部的腿部长度将在第二 单轮着地状态的终止时刻达到相同,移动机器人也将从第二单轮着地状态恢复为站立平衡状态。此时,受两侧车轮部的伸缩,基座部也由右倾恢复为与地面平行。
综上所述,本申请实施例提供的移动机器人的运动控制方法中,给出了类双足运动的一个运动周期的具体过程。其中,通过对具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部的伸缩控制,能够实现移动机器人的类双足运动,以提高移动机器人的灵活性。
类双足运动过程中的状态切换条件:
根据前述内容,为实现对移动机器人的类双足运动的运动控制,可在满足不同条件的情况下可在移动机器人进行状态切换。
可选的,在移动机器人的倾斜角度达到指定限幅的情况下,进行移动机器人的状态切换。其中,移动机器人的倾斜角度用于指示基座部所在的平面与平行于水平基准面的平面的夹角。参考图25,以移动机器人位于平地为例,移动机器人的倾斜角度可理解为第一平面和第二平面的夹角。其中,第一平面是基座部所在平面,第二平面是平行于地面的平面。通过控制移动机器人的倾斜角度不超过限幅,从而避免移动机器人因倾斜过度而翻到,进而保障运动控制过程的稳定性。
可选的,以移动机器人的倾斜角度作为状态切换条件,具体可包括如下四种情况:
1、移动机器人的倾斜角度达到第一限幅。
可选的,步骤1041可实现为如下:在移动机器人的倾斜角度达到第一限幅时,控制移动机器人从站立平衡状态变化为第一倾斜状态。
以移动机器人位于平地上为例,图26示出了本申请一个示例性实施例提供的站立平衡状态变为第一倾斜状态的示意图。移动机器人在站立平衡状态下时,第一车轮部和第二车轮部等高。随后,控制第一车轮部缩短且第二车轮部伸长。在这一过程中,移动机器人发生姿态变化,基座部向第一车轮部所在的第一方向倾斜。
示意性的,控制第一车轮部缩短且第二车轮部伸长的实现,需要满足如下条件:移动机器人的倾斜角度达到第一限幅θ1。参考图26,θ1可以是0度,也即基座部与地面平行。在另一种可选的实现场景,移动机器人位于斜坡上,θ1仍然可以是0度,此时基座部与地面不再保持平行。
2、移动机器人的倾斜角度达到第二限幅。
可选的,步骤1042可实现为如下:在移动机器人的倾斜角度达到第二限幅时,控制移动机器人从第一倾斜状态恢复为站立平衡状态。
以移动机器人位于平地上为例,图27示出了本申请一个示例性实施例提供的第一倾斜状态恢复为站立平衡状态的示意图。参考图26,在第一倾斜状态下,第一车轮部和第二车轮部着地,随后控制第一车轮部伸长且控制第二车轮部缩短,以使得移动机器人从第一倾斜状态变化为第一单轮着地状态。图27中左侧示出的即为第一倾斜状态变化后的第一单轮着地状态,此时的第一车轮部着地,第二车轮部悬空。随后,继续控制第一车轮部伸长且第二车轮部缩短。在这一过程中,移动机器人发生姿态变化,基座部向第二车轮部所在的第二方向倾斜直至恢复为与地面平行。
示意性的,控制第一车轮部伸长且第二车轮部缩短的实现,需要满足如下条件:移动机器人的倾斜角度达到第二限幅θ2。参考图26和图27,在移动机器人的倾斜角度达到θ1时,控制移动机器人从站立平衡状态向第一倾斜状态变化;在移动机器人的倾斜角度达到θ2时,控制移动机器人从第一倾斜状态向第一单轮着地状态变化,直至恢复为站立平衡状态。
应当理解的是,θ2的取值可根据实际需要进行设定。
示例性的,结合移动机器人的机械结构和质量分布,根据第一车轮部和第二车轮部的腿部的长度大小的变化以及变化速度计算得到移动机器人在类双足运动过程中的中心在地面投影的偏转范围。其中,该偏转范围对移动机器人的姿态变化造成影响,可根据计算得到的偏 转范围确定θ2的取值。比如,θ2的取值为10度、15度、20度、25度、30度、35度、40度、45度中的一个。
3、移动机器人的倾斜角度达到第三限幅。
可选的,步骤1043可实现为如下:在移动机器人的倾斜角度达到第三限幅时,控制移动机器人从站立平衡状态变化为第二倾斜状态。
以移动机器人位于平地上为例,图28示出了本申请一个示例性实施例提供的站立平衡状态变为第二倾斜状态的示意图。在恢复站立平衡状态后,第一车轮部和第二车轮部恢复等高。随后,控制第一车轮部伸长且第二车轮部缩短。在这一过程中,移动机器人发生姿态变化,基座部向第二车轮部所在的第二方向倾斜。
示意性的,控制第一车轮部伸长且第二车轮部缩短的实现,需要满足如下条件:移动机器人的倾斜角度达到第三限幅θ3。参考图28,与第一限幅类似,θ3可以是0度,也即基座部与地面平行。在另一种可选的实现场景,移动机器人位于斜坡上,θ3仍然可以是0度,此时基座部与地面不再保持平行。
4、移动机器人的倾斜角度达到第四限幅。
可选的,步骤1044可实现为如下:在移动机器人的倾斜角度达到第四限幅时,控制移动机器人从第二倾斜状态恢复为站立平衡状态。
以移动机器人位于平地上为例,图29示出了本申请一个示例性实施例提供的第二倾斜状态恢复为站立平衡状态的示意图。参考图28,在第二倾斜状态下,第一车轮部和第二车轮部着地,随后控制第一车轮部缩短且控制第二车轮部伸长,以使得移动机器人从第二倾斜状态变化为第二单轮着地状态。图29中左侧示出的即为第二倾斜状态变化后的第二单轮着地状态,此时的第一车轮部悬空,第二车轮部着地。随后,继续控制第一车轮部缩短且第二车轮部伸长。在这一过程中,移动机器人发生姿态变化,基座部向第一车轮部所在的第一方向倾斜直至恢复为与地面平行。
示意性的,控制第一车轮部缩短且第二车轮部伸长的实现,需要满足如下条件:移动机器人的倾斜角度达到第四限幅θ4。参考图26和图27,与第二限幅类似,在移动机器人的倾斜角度达到θ3时,控制移动机器人从站立平衡状态向第二倾斜状态变化;在移动机器人的倾斜角度达到θ4时,控制移动机器人从第二倾斜状态向第二单轮着地状态变化,直至恢复为站立平衡状态。
应当理解的是,θ4的取值可根据实际需要进行设定。
示例性的,结合移动机器人的机械结构和质量分布,根据第一车轮部和第二车轮部的腿部的长度大小的变化以及变化速度计算得到移动机器人在类双足运动过程中的中心在地面投影的偏转范围。其中,该偏转范围对移动机器人的姿态变化造成影响,可根据计算得到的偏转范围确定θ4的取值。比如,θ4的取值为10度、15度、20度、25度、30度、35度、40度、45度中的一个。
类双足运动的分类:
根据前述内容,应当理解的是,类双足运动是模仿人类进行左右腿交替运动的一种步态运动,该步态运动可以具体实现为交替行走、原地踏步等多种方式。可选的,类双足运动包括如下运动中的至少一种:
·原地踏步运动;
·直线运动;
·曲线运动;
·原地转圈踏步运动;
·跨越障碍运动。
其中,原地踏步运动还可以理解为移动机器人不发生位移的运动,在移动机器人进行原 地踏步运动的过程,移动机器人的第一车轮部和第二车轮部的着地位置保持不变。直线运动、曲线运动、跨越障碍运动也可以理解为移动机器人发生位移的运动,在移动机器人以交替行走的步态进行直线运动、曲线运动、原地转圈踏步运动、跨越障碍运动的过程中,移动机器人的第一车轮部和第二车轮部根据不同的运动发生位移。
可选的,类双足运动包括原地踏步运动;在原地踏步运动的过程中,第一车轮部和第二车轮部悬空后的着地位置与初始着地位置相同,或第一车轮部和第二车轮部悬空后的着地位置与初始着地位置距离差小于第一容差值。也即,第一车轮部悬空后的着地位置(即第一车轮悬空后的着地位置),与其初始着地位置之间的距离小于第一容差值;和/或,第二车轮部悬空后的着地位置(即第二车轮悬空后的着地位置),与其初始着地位置之间的距离小于第一容差值。在该实施例中,通过控制车轮部的着地位置与初始着地位置之间的距离小于第一容差值,保证移动机器人保持原地踏步运动。
在移动机器人模仿人类进行左右脚交替抬举来实现原地踏步运动的过程中,移动机器人不发生位移,从而使得第一车轮部和第二车轮部在初始着地位置进行悬空和落地。
示意性的,可将第一容差值理解为距离差的误差值,第一容差值可根据实际需要设定。应当理解的是,第一车轮部和第二车轮部悬空后的着地位置与初始着地位置应当是在同一个位置上。为保证移动机器人的机身平衡,可为两个位置的距离差设定一个比较小的容差范围,第一容差值即为该容差范围中的一个数值,如容差范围的最大值。
可选的,类双足运动包括直线运动、曲线运动、原地转圈踏步运动、跨越障碍运动中的至少一种;在直线运动或曲线运动或原地转圈踏步运动或跨越障碍运动的过程中,第一车轮部或第二车轮部悬空后的着地位置与悬空前的着地位置不同,且距离差不小于第二容差值;基座部交替向第三方向和第四方向进行倾斜摇摆,第三方向或第四方向与移动机器人的前进方向的夹角为锐角。也即,在直线运动或曲线运动或原地转圈踏步运动或跨越障碍运动的过程中,第一车轮部悬空后的着地位置(即第一车轮悬空后的着地位置),与其初始着地位置之间的距离大于或等于第二容差值;和/或,第二车轮部悬空后的着地位置(即第二车轮悬空后的着地位置),与其初始着地位置之间的距离大于或等于第二容差值。在该实施例中,通过控制车轮部的着地位置与初始着地位置之间的距离大于或等于第二容差值,保证移动机器人的每次的移动距离和移动速度,即保证其移动效率。
其中,直线运动可以理解为移动机器人模仿人类进行左右脚交替的向前或向后行走,曲线运动可以理解为移动机器人模仿人类进行左右脚交替的S线、8字型、绕桩等多种曲线轨迹的非直线行走,跨越障碍运动可以理解为移动机器人模仿人类进行左右脚交替的翻越如小土堆等障碍的直线或曲线行走。
示意性的,第二容差值可根据实际需要设定。应当理解的是,基于直线运动、曲线运动、原地转圈踏步运动、跨越障碍运动中需要发生位移和/或姿态调整,第一车轮部和第二车轮部悬空后的着地位置与初始着地位置应当是在不同的位置。为实现移动机器人的位移和/或姿态调整,可为两个位置的距离差设定一个预设的容差范围,第二容差值即为该容差范围中的一个数值,如容差范围的最小值。
上述三种运动中,移动机器人均发生位移,从而使得第一车轮部和第二车轮部悬空后的着地位置与悬空前的着地位置不同。同时,基于移动机器人需要发生位移,也将导致移动机器人的质心位置跟随移动机器人的前进方向发生变化。
以曲线运动为例,在移动机器人从站立平衡状态变为第一倾斜状态时,第一车轮部和第二车轮部保持着地。控制移动机器人从第一倾斜状态向第一单轮着地状态变化,此时将控制移动机器人的第一车轮部进行转向,比如控制第一车轮部转向初始前进方向的右前方(可以理解为第三方向);随后,控制移动机器人从第一单轮着地状态恢复为站立平衡状态,则移动机器人的前进方向发生改变,移动机器人将面朝左前方,移动机器人的质心位置也朝向初始前进方向的右前方进行移动。
控制移动机器人从站立平衡状态变为第二倾斜状态,第一车轮部和第二车轮部保持着地。随后,控制移动机器人从第二倾斜状态向第二单轮着地状态变化,此时将控制移动机器人的第二车轮部进行转向,比如控制第二车轮部转向初始前进方向的左前方(可以理解为第四方向);随后,控制移动机器人从第二单轮着地状态恢复为站立平衡状态,则移动机器人的前进方向发生改变,移动机器人将面朝右前方,移动机器人的质心位置也朝向初始前进方向的左前方进行移动。
上述过程中,左前方和右前方与移动机器人的前进方向的夹角为锐角。可以理解为,移动机器人在曲线运动过程中,可以朝向原始前进方向的任意一个子方向前进。
根据前述内容,类双足运动中,在移动机器人从第一车轮着地状态变为第二单轮着地状态的过程中,需要经过一个站立平衡状态进行过渡,以使得移动机器人保持机身平衡。
在一些实施例中,移动机器人还包括与基座部传动连接的尾部,尾部上设置有第三车轮,尾部在站立平衡状态下收起,第三车轮不着地。参考图1示出的轮腿式机器人10,第三车轮即为尾部13上设置的被动轮132;参考图6,尾部13处于收起状态的情况下,被动轮132不着地,可固定在基座部11的底部,避免影响车轮部12的运动。
可选的,步骤104可实现为如下:
控制移动机器人从站立平衡状态变化为第一单轮着地状态,第一单轮着地状态是第一车轮着地且第二车轮悬空的状态;
控制尾部展开,直至第三车轮着地;
控制第一车轮部的第一腿部缩短且第二车轮部的第二腿部伸长,以使得移动机器人从第一单轮着地状态变化为第二单轮着地状态,第二单轮着地状态是第一车轮悬空且第二车轮着地的状态;
控制移动机器人从第二单轮着地状态恢复为站立平衡状态。
其中,移动机器人从站立平衡状态变化为第一单轮着地状态的具体描述可参考前述内容。应当理解的是,当移动机器人处于第二单轮着地状态的情况下,同样可以通过尾部来调整着地的车轮,具体可参考下述内容,不再赘述。
在第一单轮着地状态下,可控制尾部展开直至第三车轮着地,以使得移动机器人在第一车轮和第二车轮着地的状态下保持机身平衡,提高移动机器人的稳定性。
随后,控制第一车轮的第一腿部缩短且第二车轮部的第二腿部伸长,可以理解为,移动机器人的第一腿部抬起且第二腿部放下,直至第二车轮着地。在这一过程中,移动机器人仅有尾部上设置的第三车轮着地;在第二车轮着地后,第一车轮不再缩短,保持悬空,从而使得移动机器人从第一单轮着地状态变化为第二单轮着地状态。
随后,可控制移动机器人从第二单轮着地状态恢复为站立平衡状态。该过程具体可参考前述内容,不再赘述。
根据上述内容,类双足运动中,在移动机器人从第一车轮着地状态变为第二单轮着地状态的过程中,不再需要经过一个站立平衡状态进行过渡,可通过尾部进行辅助,以使得着地的车轮得以更换。
示意性的上述内容给出的从第一车轮着地状态到第二单轮着地状态的变化方式,均可应用于移动机器人的类双足运动,不再赘述。
类双足运动有多种实现方式,上述多个举例中给出了原地踏步运动、直线运动、曲线运动、原地转圈踏步运动、跨越障碍运动的多种具体的实现方式。应当理解的是,其他可实现模仿双足运动的方式均在本申请保护范围之列,不再赘述。
比如,在第一车轮部和第二车轮部之间增加其他运动方式。可选的,本申请实施例所提供的移动机器人的运动控制方法,还包括:
在所述类双足运动中,控制所述第一车轮部和所述第二车轮部进行运动。
示例性的,步骤104可实现为如下:
控制移动机器人从站立平衡状态变化为第一单轮着地状态,第一单轮着地状态是第一车轮着地且第二车轮悬空的状态;
控制第一车轮离地,以使得移动机器人进行至少一次跳跃运动;
控制移动机器人从第一单轮着地状态变化为第二单轮着地状态,第二单轮着地状态是第一车轮悬空且第二车轮着地的状态;
控制第二车轮离地,以使得移动机器人进行至少一次跳跃运动;
控制移动机器人从第二单轮着地状态恢复为站立平衡状态。
其中,移动机器人从站立平衡状态变化为第一单轮着地状态、从第一单轮着地状态变化为第二单轮着地状态、以及从第二单轮着地状态恢复为站立平衡状态均可参考前述内容,不再赘述。
在单轮着地的状态下,可控制着地的车轮离地,以使得移动机器人进行至少一次跳跃动作,从而模仿一种类人的单脚跳动作。应当理解的是,移动机器人的单脚跳次数可根据实际需要进行设定。比如,在第一单轮着地状态下,控制第一车轮离地两次,以使得移动机器人进行两次跳跃运动;随后变为第二单轮着地状态,控制第二车轮离地两次。
类双足运动过程中的车轮状态:
在移动机器人进行类双足运动的过程中,移动机器人处于模仿人类进行左右腿交替运动的状态。参考前述内容,第一车轮部和第二车轮部均包括车轮,相较于人类进行的双足运动,移动机器人还可通过控制车轮进行滑动。
示意性的,在移动机器人进行类双足运动的过程中,还对第一车轮部的第一车轮和/或所述第二车轮部的第二车轮进行锁定或解锁,以使得类双足运动更具灵活性。
可选的,在类双足运动的过程中,第一车轮和第二车轮处于锁定状态。
可选的,在类双足运动的过程中,第一车轮和/或第二车轮处于解锁状态。
在一种可选的实现场景下,第一车轮和第二车轮处于锁定状态,第一车轮和第二车轮被锁死,以使得移动机器人的类双足运动中不再出现车轮滑动的情况。
其中,锁定状态可以理解为,为第一车轮和/或第二车轮确定一个位置不变的参考信号。基于该参考信号,第一车轮和/或第二车轮可在参考点附近进行轻微运动。也即,锁定状态下第一车轮和/或第二车轮在参考点存在运动误差,该误差用于实现移动机器人的机身平衡。应当理解的是,第一车轮和/或第二车轮在参考点的运动误差较小,可忽略不计。
在另一种可选的实现场景下,第一车轮和第二车轮中的至少一个处于解锁状态,以实现解锁状态下的车轮的转向和/或滑动。
可选的,本申请实施例提供的移动机器人的运动控制方法,还包括:
在类双足运动的过程中,控制处于解锁状态的第一车轮部和/或第二车轮部进行运动。从而可以通过解锁状态的车轮部实现多种运动,提升机器人运动方式的多样性。
示意性的,第一车轮部和/或第二车轮部在类双足运动中的进行的运动,可以是滑动运动、跳跃运动、旋转运动中的一种。
应当理解的是,第一车轮部和/或第二车轮部在类双足运动中的进行的运动,可以是在站立平衡状态、第一倾斜状态、第一单轮着地状态、第二倾斜状态、第二单轮着地状态中的任意一种状态进行的。
以下以滑动运动为例进行两种不同的举例:
比如,控制第一车轮部和第二车轮部处于站立平衡状态,随后控制移动机器人从站立平衡状态变化为第一倾斜状态。在移动机器人处于第一倾斜状态下,控制第一车轮和第二车轮解锁,随后向第一车轮和第二车轮提供驱动力,以使得第一车轮和第二车轮带动移动机器人以机身倾斜的状态进行滑动。
又如,控制第一车轮部和第二车轮部处于站立平衡状态,随后控制移动机器人从站立平 衡状态逐渐变化为第一单轮着地状态。在移动机器人处于第一单轮着地状态下,控制第一车轮解锁,随后控制第一车轮滑动,以使得移动机器人模仿单腿滑冰动作。
示例性的,第一车轮和/或第二车轮的锁定和解锁可在类双足运动中多次进行,从而使得移动机器人可实现滑动和左右车轮部交替着地的混合,进一步提高移动机器人的灵活性。比如,在类双足运动的过程中,多次对第一车轮和/或第二车轮进行锁定和解锁,控制移动机器人进行拟人滑冰表演。
可选的,在类双足运动的过程中,控制处于解锁状态的第一车轮部和/或第二车轮部进行运动,可实现为如下实现方式中的至少一种:
(1)移动机器人做单轮滑动运动。
控制移动机器人从站立平衡状态变化为第一单轮着地状态,第一单轮着地状态是第一车轮着地且第二车轮悬空的状态;
在第一车轮处于解锁状态的情况下,控制第一车轮滑动第一距离。
其中,移动机器人从站立平衡状态变化为第一单轮着地状态的具体描述可参考前述内容。应当理解的是,当移动机器人处于第二单轮着地状态的情况下,同样可以做单轮滑动运动,具体可参考下述内容,不再赘述。
示意性的,在单轮着地的状态下,可对着地的车轮进行解锁,以使其能够处于解锁状态,悬空的车轮可解锁也可不解锁。随后,控制着地的车轮进行滑动以使得移动机器人产生位移。比如,对第一车轮解锁以使其处于解锁状态,第二车轮处于锁定状态;控制第一车轮进行滑动。
其中,第一距离可根据实际需要进行设定,本申请对此不做限定。
在一些实施例中,移动机器人可在第一单轮着地状态或第二单轮着地状态循环进行单轮滑动运动。比如,移动机器人从站立平衡状态变为第一单轮着地状态,随后进行单轮滑动运动;在滑动时长1后,控制移动机器人从第一单轮着地状态变为第二单轮着地状态,随后进行单轮滑动运动。
(2)移动机器人做单轮旋转运动。
控制移动机器人从站立平衡状态变化为第一单轮着地状态,第一单轮着地状态是第一车轮着地且第二车轮悬空的状态;
在第一车轮处于解锁状态的情况下,控制第一车轮进行旋转。
其中,移动机器人从站立平衡状态变化为第一单轮着地状态的具体描述可参考前述内容。应当理解的是,当移动机器人处于第二单轮着地状态的情况下,同样可以做单轮滑动运动,具体可参考下述内容,不再赘述。
示意性的,在单轮着地的状态下,可对着地的车轮进行解锁,以使其能够处于解锁状态,悬空的车轮可解锁也可不解锁。随后,控制着地的车轮进行旋转以使得移动机器人的前进方向发生改变。比如,对第一车轮解锁以使其处于解锁状态,第二车轮处于锁定状态;控制第一车轮进行旋转。
其中,第一车轮的旋转角度可根据实际需要进行设定,本申请对此不做限定。示例性的,第一车轮的旋转角度为360度,以使得移动机器人可模仿进行原地旋转一周的运动。或者,第一车轮的旋转角度可根据移动机器人所处的环境信息确定,环境信息至少包括移动机器人所处的路况信息、周侧障碍物信息等。比如,在移动机器人的周侧有柱体障碍物,可控制第一车轮旋转90度,以改变移动机器人的前进方向,避开障碍物。
在一些实施例中,移动机器人可在第一单轮着地状态或第二单轮着地状态循环进行单轮旋转。比如,移动机器人从站立平衡状态变为第一单轮着地状态,随后控制第一车轮进行单轮旋转90度;在滑动时长2后,控制移动机器人从第一单轮着地状态变为第二单轮着地状态,随后控制第二车轮进行单轮旋转180度;在滑动时长3后,控制移动机器人从第二单轮着地状态变为第一单轮着地状态,随后控制第二车轮进行单轮旋转270度。
(3)移动机器人做滑板运动。
控制移动机器人从站立平衡状态变化为第一单轮着地状态,第一单轮着地状态是第一车轮着地且第二车轮悬空的状态;
在第一车轮处于解锁状态的情况下,控制第一车轮滑动第二距离;
在第二车轮处于锁定状态的情况下,控制第二车轮部的第二腿部伸长直至第二车轮着地后,控制第二腿部缩短直至第二腿部恢复到处于锁定状态时的长度。
其中,移动机器人从站立平衡状态变化为第一单轮着地状态的具体描述可参考前述内容。应当理解的是,当移动机器人处于第二单轮着地状态的情况下,同样可以做滑板运动,具体可参考下述内容,不再赘述。
示意性的,在单轮着地的状态下,可对着地的车轮进行解锁以使其能够处于解锁状态,可对悬空的车轮不解锁以使其处于锁定状态。随后,控制着地的车轮进行滑动以使得移动机器人产生位移;在滑动一定距离后,控制悬空的车轮着地一次后抬起,继续控制着地的车轮进行滑动。比如,对第一车轮解锁以使其处于解锁状态,且不对第二车轮进行解锁以使其处于锁定状态;控制第一车轮滑动第二距离后,控制第二车轮部的第二腿部伸长再缩短,以使得第二车轮做一个类似于单点着地再收起的动作;随后继续控制第一车轮进行滑动。
其中,第二距离可根据实际需要进行设定,本申请对此不做限定。
应当理解的是,第一车轮和第二车轮的解锁或锁定状态,既可以在移动机器人处于站立平衡状态下进行控制,也可在移动机器人处于单轮着地得状态下进行控制,本申请对此不做限定。
应当理解的是,上述内容仅为示例性举例,结合车轮部的其他运动方式和左右车轮部交替着地的运动均在本申请保护范围之列,不再赘述。
前述多个实施例中给出了类双足运动的实现方式。其中,每种实现方式下,第一车轮和第二车轮可进行多种不同类型的滑动、旋转、跳动等动作。应当理解的是,上述多种类双足运动的实现方式和第一车轮、第二车轮的多种类型的动作,均可组合实现。
比如,控制移动机器人变为第一单足着地状态;随后解锁第一车轮,控制第一车轮进行旋转,以使得移动机器人进行原地旋转一周的动作;随后控制移动机器人变为第二倾斜状态,解锁第一车轮和第二车轮,控制第一车轮和第二车轮滑动,以使得移动机器人进行一个侧身滑动的动作;随后控制移动机器人变为第二单足着地状态,解锁第二车轮,控制第二车轮进行滑动,以使得移动机器人进行单轮滑动运动。
基于此,能够控制移动机器人实现更为复杂且更丰富的类双足运动。例如,控制移动机器人模仿人类进行一套花样滑冰的类双足运动。
根据前述内容,在类双足运动的过程中,第一车轮部和第二车轮部交替着地,则第一车轮部和第二车轮部的腿部的长度不再保持相同,两个车轮的高度将发生改变。
在一些实施例中,移动机器人是欠驱动系统机器人。
以欠驱动系统机器人是轮腿式机器人为例,参考图13和14,轮腿式机器人10建立三维空间的右手笛卡尔坐标系中,针对俯仰角方向的平衡控制,根据第一车轮和第二车轮的着地情况的不同,对应的车轮部的电机力矩也不同。
可选的,在第一车轮部和第二车轮部均着地的情况下,第一车轮部对应的第一驱动电机和第二车轮部对应的第二驱动电机的电机力矩之和为第一力矩;
在第一车轮部着地且第二车轮部悬空的情况下,第一驱动电机的电机力矩为第一力矩;
在第二车轮部着地且第一车轮部悬空的情况下,第二驱动电机的电机力矩为第一力矩。
示意性的,在站立平衡状态、第一倾斜状态和第二倾斜状态下,第一车轮和第二车轮着地,也即,欠驱动系统机器人与地面之间的接触点为两个轮子。此时,根据PID控制器能够得到第一车轮部对应的第一驱动电机和第二车轮部对应的第二驱动电机的电机力矩均为τ。
示意性的,在第一单轮着地状态下,第一车轮部着地且第二车轮部悬空;在第二单轮着地状态下,第二车轮部着地且第一车轮部悬空。也即,在第一单轮着地状态或第二单轮着地状态下,欠驱动系统机器人与地面之间的接触点为单个轮子。此时,根据PID控制器能够得到着地的车轮部对应的驱动电机的电机力矩为2τ,以此来使用单个轮子与地面的接触力矩实现机器人在类双足运动过程中的pitch方向的平衡控制。
根据前述内容,可通过规划移动机器人的第一车轮部和第二车轮部的腿部的长度变化以及变化速度,来控制移动机器人实现类双足运动。其中,可通过分析移动机器人的运动与结构特点,将类双足运动分为前述内容涉及的多个状态。在状态变化过程中控制移动机器人执行规划的动作。同时,结合移动机器人的机械结构及质量分布,可以计算出机器人在整个运动过程中重心在地面投影的偏转范围,以确定不同状态的状态切换条件。具体可参考前述内容,不再赘述。
示意性的,在类双足运动的过程中,移动机器人的各个关节的控制信息可通过如下方式确定:在确定类双足运动后,可对类双足运动进行分解,将其划分为多个状态,每个状态下对应于一组控制参数,一组控制参数可用于确定各个关节的位置、角度、力矩等信息;随后,将一组控制参数和移动机器人的全身动力学模型作为输入,经过移动机器人的控制器处理,以得到该组控制参数下的控制信息,控制信息至少包括各个关节的关节力矩、关节角速度、基座倾斜度等信息,根据这些控制信息来实现对机器人的控制。
应当理解的是,上述过程仅为示例性举例,具体可根据实际需要进行调整,本申请对此不做限定。
可选的,在类双足运动的过程中,第一车轮部、第二车轮部和基座部的运动根据如下信息中的至少一种进行控制:
·第一车轮部的第一腿部的长度变化;
·第一腿部的至少一个关节电机的角度及变化量;
·第二车轮部的第二腿部的长度变化;
·第二腿部的至少一个关节电机的角度及变化量;
·第一车轮部的第一车轮与地面的接触力;
·第二车轮部的第二车轮与地面的接触力;
·移动机器人的俯仰角度信息及角速度;
·移动机器人的横滚角度信息及角速度;
·移动机器人的偏航角度信息及角速度。
在一些实施例中,移动机器人是欠驱动系统机器人。
以欠驱动系统机器人是轮腿式机器人为例,参考图13示出的轮腿式机器人10的右手笛卡尔坐标系,图30示出了本申请一个示例性实施例提供的以轮腿式机器人10横截面模拟推导关节角度信息的示意图。
参考图13,图30示出了对应轮腿式机器人10的横截面构建的XZ坐标系,车轮3300可以是第一车轮和第二车轮中的一个。其中,原点位于点x1和点x5中点,以x1和x5之间的距离为l0为例,则x1坐标为(0.5l0,0),x5坐标为(-0.5l0,0)。已知车轮3300的坐标为(x3,z3),目的为计算关节角度信息,包括关节角3310、关节角3320、关节角3330、关节角3340。
由于车轮3300的坐标已知,且x1和x5已知。因此,可基于坐标计算得到线段l5和线段l6的长度,示意性的,计算公式如下公式一和公式二所示:
公式一:
公式二:
由于轮腿的长度l1和l2已知,故根据余弦定理能够得到关节角3310,以θ11表示,则计 算公式如下公式三所示:
公式三:
同理可得关节角3320、关节角3330以及关节角3340。
基于计算得到的关节角,将其输入车轮3300对应的驱动电机中,即可通过控制器输出电机力矩,以控制车轮3300对应的腿部构型转动至相应的关节角,从而控制车轮3300到达指定位置(x3,z3)。
图31示出了本申请一个示例性实施例提供的移动机器人处于第一倾斜状态或第二倾斜状态下确定腿部变化量的示意图,移动机器人是欠驱动系统机器人。其中,在三角形ACD中,DC的长度为0.5l0,则轮腿变化长度AC的计算公式如下公式四所示:
公式四:
其中,Δl表示轮腿变化长度,表示欠驱动系统机器人的参考横滚角大小。
在一些实施例中,当欠驱动系统机器人的第一车轮和/或第二车轮发生转向时,车身产生横滚角倾斜,机器人将产生离心力,离心力的大小与水平的速度v相关,为了保持平衡需要倾斜车身,使重力产生一部分分量平衡离心力的大小,倾斜车身对应的横滚角大小与水平速度v之间的关系如下公式五所示:
公式五:
其中,m表示欠驱动系统机器人的重量,R表示转向半径。
示意性的,欠驱动系统机器人轮腿的变化量分为如下两种情况:
第一种,欠驱动系统机器人产生的横滚角较小。
示意性的,欠驱动系统机器人产生的横滚角小于(或者等于)预设角度阈值。当横滚角较小时,则轮腿变化量的计算如下公式六所示:
公式六:
第二种,欠驱动系统机器人产生的横滚角较大。
示意性的,欠驱动系统机器人产生的横滚角大于(或者等于)预设角度阈值。当横滚角较大时,则轮腿变化量的计算如下公式七和公式八所示:
公式七:
公式八:
根据前述内容,以移动机器人是欠驱动系统机器人为例,在类双足运动的过程中,可通过如下步骤实现对欠驱动系统机器人的第一车轮部和第二车轮部的控制:
1、获取轨迹规划信息,轨迹规划信息用于表示欠驱动系统机器人的目标运动轨迹;
其中,轨迹规划信息可以是预先设定好的信息,或者,轨迹规划信息为欠驱动系统机器人实时采集道路信息后生成的。
轨迹规划信息为预先设定好的信息时,可根据道路信息设定欠驱动系统机器人的轨迹,并将轨迹输入欠驱动系统机器人的存储器中生成轨迹规划信息,欠驱动系统机器人根据轨迹规划信息按照已经设定好的轨迹进行运动。当轨迹规划信息为欠驱动系统机器人实时采集道路信息生成的时,欠驱动系统机器人中包括道路扫描设备。可选的,欠驱动系统机器人中包括摄像头,用于对道路进行图像采集,根据采集到的图像进行道路规划。
2、基于轨迹规划信息对欠驱动系统机器人的腿部构型进行调整,以及基于轨迹规划信息 确定参考运动状态数据和/或机器人姿态数据;
其中,参考运动状态数据用于表示欠驱动系统机器人以目标运动轨迹运动时的运动状态,机器人姿态数据用于表示欠驱动系统机器人以目标运动轨迹运动时的结构状态。
在一些实施例中,参考运动状态数据用于表示欠驱动系统机器人在以符合目标运动轨迹的方式运动时,运动状态需要达到的要求,也即,在确定参考运动状态数据后,欠驱动系统机器人需要以参考运动状态数据为目标对当前运动状态进行调整。在一些实施例中,参考运动状态数据包括参考速度信息、参考偏航角信息、参考运动曲率半径信息等。在一些实施例中,参考运动状态数据为根据轨迹规划信息计算得到的,或者,参考运动状态数据为根据轨迹规划信息预先存储的,也即,在设定欠驱动系统机器人的运动轨迹时,针对在运动轨迹上指定位置处的运动状态数据进行预先设定,得到指定位置处对应的参考运动状态数据,并将参考运动状态数据与轨迹规划信息对应存储。从而,当欠驱动系统机器人运动至指定位置处时,即可从已存储的数据中获取参考运动状态数据。
示意性的,参考运动状态数据的获取方式包括如下方式中的至少一种:
第一,接收遥控器的控制操作,根据遥控器的控制操作确定参考运动状态数据。其中,遥控器可以对欠驱动系统机器人的运动速度、运动方向、运动模式等进行控制,根据遥控器的控制操作确定欠驱动系统机器人的运动状态变化,从而确定参考运动状态数据。
第二,读取数据文件,从数据文件中获取当前欠驱动系统机器人的参考运动状态数据。也即,欠驱动系统机器人在不同位置处的参考运动状态数据为预先设定并存储在数据文件中的,根据当前欠驱动系统机器人所处的位置确定对应的参考运动状态数据。
第三,采集欠驱动系统机器人的视觉信息,基于视觉信息生成参考运动状态数据。也即,欠驱动系统机器人上设置有摄像头,通过摄像头采集欠驱动系统机器人在规划轨迹上的道路信息,并根据道路信息计算得到下一步运动的参考运动状态数据。
值得注意的是,上述获取参考运动状态数据的方式仅为示意性的举例,本申请实施例对参考运动状态数据的获取方式不加以限定。
与之类似的,欠驱动系统机器人的类双足运动的控制信号可由遥控器给出,或者,类双足运动的控制信号基于视觉信息和/或触觉信息分析得到。可选的,欠驱动系统机器人上设置有摄像头和/或触觉传感器,以采集欠驱动系统机器人的道路信息和受力情况,通过对道路信息和受力情况的分析确定是否控制欠驱动系统机器人进行类双足运动。
在一些实施例中,参考运动状态数据中包括参考速度信息,则获取欠驱动系统机器人的俯仰角度信息,该俯仰角度信息表示欠驱动系统机器人在前进后退方向上的角度,也即欠驱动系统机器人在车轮控制作用下向前进方向俯或者向后退方向仰的角度。基于参考速度信息和俯仰角度信息确定对欠驱动系统机器人进行控制的平衡控制力矩,平衡控制力矩是指用于保持欠驱动系统机器人处于平衡状态的力矩,从而基于平衡控制力矩确定对欠驱动系统机器人进行控制的力矩。其中,平衡状态是指欠驱动系统机器人在俯仰角方向上保持平衡的状态,也即,在平衡状态下,欠驱动系统机器人不存在向前或者向后倾倒的趋势。其中,在欠驱动系统机器人保持静止时,平衡状态是指欠驱动系统机器人保持稳定不动,无向前或向后倾倒趋势的状态;在欠驱动系统机器人进行运动时,平衡状态是指欠驱动系统机器人跟随车轮转动而平衡移动的状态,其中,欠驱动系统机器人的主体部分由轮腿部分支撑保持竖直状态,且不存在向前或向后倾倒的趋势。
在一些实施例中,当控制欠驱动系统机器人在直线上行进时,直接将平衡控制力矩输入车轮控制电机,控制车轮转动,从而控制欠驱动系统机器人的运动;在另一个实施例中,当控制欠驱动系统机器人在曲线轨迹上行进时,对欠驱动系统机器人双轮分别对应的电机施加的力矩不同,从而实现一个车轮行驶速度快,另一个车轮行驶速度慢,从而实现欠驱动系统机器人的曲线行进,其中,根据曲线轨迹确定参考偏航角信息后,基于参考偏航角信息确定向不同车轮对应的电机施加的增量力矩。
在一些实施例中,根据轨迹规划信息对欠驱动系统机器人的双轮腿弯曲程度进行调整, 欠驱动系统机器人的轮腿弯曲程度与轮腿长度相关。可选的,欠驱动系统机器人的轮腿弯曲程度越大,轮腿长度对应越短。
在一些实施例中,机器人姿态数据中包括第一车轮部和第二车轮部的轮腿调整数据,也即,基于轨迹规划信息确定轮腿调整数据。在一些实施例中,根据轨迹规划信息首先确定欠驱动系统机器人需要产生横滚角大小,也即,在给定横滚角的基础上,确定欠驱动系统机器人的轮腿调整数据。
可选的,根据轨迹规划信息确定的横滚角大小为在预设横滚角范围内的数值,避免横滚角超出预设横滚角范围而导致过度控制产生的不平衡问题。
3、基于调整后的腿部构型,根据参考运动状态数据和/或机器人姿态数据,控制欠驱动系 统机器人沿目标运动轨迹进行类双足运动。
根据前述内容,欠驱动系统机器人包括第一车轮和第二车轮,其中,第一车轮和第二车轮分别设置在欠驱动系统机器人的两侧,第一车轮通过第一驱动电机驱动控制,第二车轮通过第二驱动电机驱动控制,在确定对欠驱动系统机器人进行控制的电机力矩时,确定对第一驱动电机进行驱动的第一力矩,以及对第二驱动电机进行驱动的第二力矩。
将第一力矩输入第一驱动电机,通过第一驱动电机驱动第一车轮转动;将第二力矩输入第二驱动电机,通过第二驱动电机驱动第二车轮转动。从而根据第一车轮的转动和第二车轮的转动带动欠驱动系统机器人沿目标运动轨迹进行类双足运动。
在一些实施例中,在根据参考运动状态数据控制欠驱动系统机器人进行类双足运动时,还需要通过惯性传感器(Inertial Measurement Unit,IMU)采集得到欠驱动系统机器人的俯仰角度信息和/或偏航角信息。其中,俯仰角度信息表示欠驱动系统机器人在前进后退方向上的角度信息,偏航角信息表示欠驱动系统机器人在围绕竖直旋转轴方向上的角度信息。
随后,基于俯仰角度信息和/或偏航角信息确定欠驱动系统机器人的平衡控制力矩和增量力矩。其中,平衡控制力矩可参考图13的相关描述,增量力矩是指用于控制欠驱动系统机器人旋转的力矩。随后,通过平衡控制力矩和增量力矩的结合,来实现对欠驱动系统机器人的控制。
在一些实施例中,在根据机器人姿态数据控制欠驱动系统机器人进行类双足运动时,机器人姿态数据中包括轮腿调整数据,也即轮腿变化量。以轮腿变化量为Δl为例,则通过轮腿变化量将一条轮腿伸展,并将另一条轮腿缩短。
在一些实施例中,根据轮腿变化量确定车轮在调整后的位置坐标,并根据调整后的位置坐标计算轮腿的关节角度,将关节角度输入控制轮腿的电机实现对轮腿的调整。
示意性的,本申请实施例还提供了一种移动机器人。
示意性的,移动机器人包括具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部、以及与第一车轮部和第二车轮部连接的基座部;移动机器人中设置有控制器,控制器用于控制移动机器人实现如上所述的移动机器人的运动控制方法。
应当理解的是,本申请实施例涉及的移动机器人,可以是欠驱动系统机器人。更进一步的,本申请实施例涉及的移动机器人,是能够实现双轮平衡的移动机器人,比如实现双轮平衡的轮腿式机器人。
其中,该种类型的机器人的腿部的运动平面和基座部之间缺乏横滚角方向自由度。以轮腿式机器人包括第一车轮部、第二车轮部、以及与第一车轮部和第二车轮部连接的基座部为例,第一车轮部和第二车轮部的腿部的运动平面与基座部保持垂直。
其中,控制器的设置可根据实际需要设置,本申请对此不做限定,凡是能够通过控制器的运动控制,以实现负载物体保持在基座部上不掉落的目标的移动机器人均在本申请保护范围之内。移动机器人的运动控制方法在前述内容中已详细描写,可作参考,不再赘述。
图32示出了本申请一个示例性实施例提供的移动机器人的运动控制装置的示意图。该装 置包括:
控制模块3220,用于控制移动机器人包括的具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部处于站立平衡状态;
控制模块3220,还用于控制移动机器人基于站立平衡状态进行类双足运动;
其中,移动机器人的基座部在站立平衡状态下与水平基准面平行,在类双足运动的过程中,第一车轮部和第二车轮部交替着地,基座部倾斜摇摆。
可选的,第一车轮部位于基座部的第一方向,第二车轮部位于基座部的第二方向;控制模块3220,用于控制移动机器人从站立平衡状态变化为第一倾斜状态,第一倾斜状态是基座部向第一方向倾斜的状态;控制移动机器人从第一倾斜状态恢复为站立平衡状态;控制移动机器人从站立平衡状态变化为第二倾斜状态,第二倾斜状态是基座部向第二方向倾斜的状态;控制移动机器人从第二倾斜状态恢复为站立平衡状态;其中,在移动机器人从第一倾斜状态恢复为站立平衡状态的过程中,第一车轮部的第一车轮着地,第二车轮部的第二车轮悬空;在移动机器人从第二倾斜状态恢复为站立平衡状态的过程中,第二车轮着地,第一车轮悬空。
可选的,控制模块3220,用于控制第一车轮部的第一腿部缩短,第二车轮部的第二腿部伸长,以使得欠驱动系统机器处于第一倾斜状态;其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐从由平行于水平基准面的水平状态向第一方向倾斜,第一车轮和第二车轮均着地。
可选的,控制模块3220,用于控制第一车轮部的第一腿部伸长,且第二车轮部的第二腿部缩短,以使得移动机器人处于第一单轮着地状态,第一单轮着地状态是第一车轮着地且第二车轮悬空的状态;控制第一腿部持续伸长,且第二腿部持续缩短,以使得欠驱动系统机器从第一单轮着地状态恢复为站立平衡状态;其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐向第二方向倾斜直至恢复为平行于水平基准面的水平状态,第二车轮由着地变为悬空后再次恢复着地。
可选的,第一腿部的长度和第二腿部的长度在站立平衡状态下相同,移动机器人在第一时长内处于第一单轮着地状态,其中:在第一时长内,第一腿部的长度短于第二腿部的长度;在第一时长的终止节点下,第一腿部和第二腿部等长。
可选的,控制模块3220,用于控制第一车轮部的第一腿部伸长,第二车轮部的第二腿部缩短,以使得欠驱动系统机器处于第二倾斜状态;其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐从由平行于水平基准面的水平状态向第二方向倾斜,第一车轮和第二车轮均着地。
可选的,控制模块3220,用于控制第一车轮部的第一腿部缩短,且第二车轮部的第二腿部伸长,以使得移动机器人处于第二单轮着地状态,第二单轮着地状态是第一车轮悬空且第二车轮着地的状态;控制第一腿部持续缩短,且第二腿部持续伸长,以使得欠驱动系统机器从第二单轮着地状态恢复为站立平衡状态;其中,在第一腿部和第二腿部的伸缩过程中,基座部逐渐向第一方向倾斜直至恢复为平行于水平基准面的水平状态,第一车轮由着地变为悬空后再次恢复着地。
可选的,第一腿部的长度和第二腿部的长度在站立平衡状态下相同,移动机器人在第二时长内处于第二单轮着地状态,其中:在第二时长内,第一腿部的长度长于第二腿部的长度;在第二时长的终止节点下,第一腿部和第二腿部等长。
可选的,控制模块3220,用于在移动机器人的倾斜角度达到第一限幅时,控制移动机器人从站立平衡状态变化为第一倾斜状态;其中,移动机器人的倾斜角度用于指示基座部所在的平面与平行于水平基准面的平面的夹角。
可选的,控制模块3220,用于在移动机器人的倾斜角度达到第二限幅时,控制移动机器人从第一倾斜状态恢复为站立平衡状态;其中,移动机器人的倾斜角度用于指示基座部所在的平面与平行于水平基准面的平面的夹角。
可选的,控制模块3220,用于在移动机器人的倾斜角度达到第三限幅时,控制移动机器人从站立平衡状态变化为第二倾斜状态;其中,移动机器人的倾斜角度用于指示基座部所在的平面与平行于水平基准面的平面的夹角。
可选的,控制模块3220,用于在移动机器人的倾斜角度达到第四限幅时,控制移动机器人从第二倾斜状态恢复为站立平衡状态;其中,移动机器人的倾斜角度用于指示基座部所在的平面与平行于水平基准面的平面的夹角。
可选的,类双足运动包括如下运动中的至少一种:原地踏步运动;直线运动;曲线运动;原地转圈踏步运动;跨越障碍运动。
可选的,类双足运动包括原地踏步运动;在原地踏步运动的过程中,第一车轮部和第二车轮部悬空后的着地位置与初始着地位置相同,或所述第一车轮部和所述第二车轮部悬空后的着地位置与初始着地位置的距离差小于第一容差值。
可选的,类双足运动包括直线运动、曲线运动、原地转圈踏步运动、跨越障碍运动中的至少一种;在直线运动或曲线运动或原地转圈踏步运动或跨越障碍运动的过程中,第一车轮部或第二车轮部悬空后的着地位置与悬空前的着地位置不同,且所述第一车轮部或所述第二车轮部悬空后的着地位置与悬空前的着地位置的距离差不小于第二容差值;基座部交替向第三方向和第四方向进行倾斜摇摆,第三方向或第四方向与移动机器人的前进方向的夹角为锐角。
可选的,在类双足运动的过程中,第一车轮部的第一车轮和第二车轮部的第二车轮处于锁定状态。
可选的,在类双足运动的过程中,第一车轮部的第一车轮和/或第二车轮部的第二车轮处于解锁状态。
可选的,控制模块3220,还用于在类双足运动的过程中,控制处于解锁状态的第一车轮部和/或第二车轮部进行滑动运动。
可选的,在类双足运动的过程中,第一车轮部、第二车轮部和基座部的运动根据如下信息中的至少一种进行控制:第一车轮部的第一腿部的长度变化;第一腿部的至少一个关节电机的角度及变化量;第二车轮部的第二腿部的长度变化;第二腿部的至少一个关节电机的角度及变化量;第一车轮部的第一车轮与地面的接触力;第二车轮部的第二车轮与地面的接触力;移动机器人的俯仰角度信息及角速度;移动机器人的横滚角度信息及角速度;移动机器人的偏航角度信息及角速度。
可选的,在第一车轮部和第二车轮部均着地的情况下,第一车轮部对应的第一驱动电机和第二车轮部对应的第二驱动电机的电机力矩之和为第一力矩;在第一车轮部着地且第二车轮部悬空的情况下,第一驱动电机的电机力矩为第一力矩;在第二车轮部着地且第一车轮部悬空的情况下,第二驱动电机的电机力矩为第一力矩。
图33示出了本申请一个示例性实施例提供的电子设备3300的结构框图。
该电子设备3300可以是便携式移动终端,比如:用于实现对移动机器人的控制的电子设备、智能手机、平板电脑、MP3播放器(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、笔记本电脑或台式电脑。电子设备3300还可能被称为用户设备、便携式终端、膝上型终端、台式终端等其他名称。本申请实施例中,该电子设备3300可实现为机器人中的控制设备部分。
通常,电子设备3300包括有:处理器3301和存储器3302。
处理器3301可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器3301可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至 少一种硬件形式来实现。处理器3301也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central Processing Unit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器3301可以集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器3301还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器3302可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器3302还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器3302中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器3301所执行以实现本申请中方法实施例提供的移动机器人的运动控制方法。
在一些实施例中,电子设备3300还可选包括有:外围设备接口3303和至少一个外围设备。处理器3301、存储器3302和外围设备接口3303之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口3303相连。具体地,外围设备包括:射频电路3304、显示屏3305、摄像头组件3306、音频电路3307、定位组件3308和电源3309中的至少一种。
外围设备接口3303可被用于将I/O(Input/Output,输入/输出)相关的至少一个外围设备连接到处理器3301和存储器3302。在一些实施例中,处理器3301、存储器3302和外围设备接口3303被集成在同一芯片或电路板上;在一些其他实施例中,处理器3301、存储器3302和外围设备接口3303中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。
射频电路3304用于接收和发射RF(Radio Frequency,射频)信号,也称电磁信号。射频电路3304通过电磁信号与通信网络以及其他通信设备进行通信。射频电路3304将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。可选的,射频电路3304包括:天线系统、RF收发器、一个或多个放大器、调谐器、振荡器、数字信号处理器、编解码芯片组、用户身份模块卡等等。射频电路3304可以通过至少一种无线通信协议来与其它终端进行通信。该无线通信协议包括但不限于:万维网、城域网、内联网、各代移动通信网络(2G、3G、4G及5G)、无线局域网和/或Wi-Fi(Wireless Fidelity,无线保真)网络。在一些实施例中,射频电路3304还可以包括NFC(Near Field Communication,近距离无线通信)有关的电路,本申请对此不加以限定。
显示屏3305用于显示UI(User Interface,用户界面)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。当显示屏3305是触摸显示屏时,显示屏3305还具有采集在显示屏3305的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至处理器3301进行处理。此时,显示屏3305还可以用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在一些实施例中,显示屏3305可以为一个,设置在电子设备3300的前面板;在另一些实施例中,显示屏3305可以为至少两个,分别设置在电子设备3300的不同表面或呈折叠设计;在另一些实施例中,显示屏3305可以是柔性显示屏,设置在电子设备3300的弯曲表面上或折叠面上。甚至,显示屏3305还可以设置成非矩形的不规则图形,也即异形屏。显示屏3305可以采用LCD(Liquid Crystal Display,液晶显示屏)、OLED(Organic Light-Emitting Diode,有机发光二极管)等材质制备。
摄像头组件3306用于采集图像或视频。可选的,摄像头组件3306包括前置摄像头和后置摄像头。通常,前置摄像头设置在终端的前面板,后置摄像头设置在终端的背面。在一些实施例中,后置摄像头为至少两个,分别为主摄像头、景深摄像头、广角摄像头、长焦摄像头中的任意一种,以实现主摄像头和景深摄像头融合实现背景虚化功能、主摄像头和广角摄像头融合实现全景拍摄以及VR(Virtual Reality,虚拟现实)拍摄功能或者其它融合拍摄功 能。在一些实施例中,摄像头组件3306还可以包括闪光灯。闪光灯可以是单色温闪光灯,也可以是双色温闪光灯。双色温闪光灯是指暖光闪光灯和冷光闪光灯的组合,可以用于不同色温下的光线补偿。
音频电路3307可以包括麦克风和扬声器。麦克风用于采集用户及环境的声波,并将声波转换为电信号输入至处理器3301进行处理,或者输入至射频电路3304以实现语音通信。出于立体声采集或降噪的目的,麦克风可以为多个,分别设置在电子设备3300的不同部位。麦克风还可以是阵列麦克风或全向采集型麦克风。扬声器则用于将来自处理器3301或射频电路3304的电信号转换为声波。扬声器可以是传统的薄膜扬声器,也可以是压电陶瓷扬声器。当扬声器是压电陶瓷扬声器时,不仅可以将电信号转换为人类可听见的声波,也可以将电信号转换为人类听不见的声波以进行测距等用途。在一些实施例中,音频电路3307还可以包括耳机插孔。
定位组件3308用于定位电子设备3300的当前地理位置,以实现导航或LBS(Location Based Service,基于位置的服务)。定位组件3308可以是基于GPS(Global Positioning System,全球定位系统)、北斗系统或伽利略系统的定位组件。
电源3309用于为电子设备3300中的各个组件进行供电。电源3309可以是交流电、直流电、一次性电池或可充电电池。当电源3309包括可充电电池时,该可充电电池可以是有线充电电池或无线充电电池。有线充电电池是通过有线线路充电的电池,无线充电电池是通过无线线圈充电的电池。该可充电电池还可以用于支持快充技术。
在一些实施例中,电子设备3300还包括有一个或多个传感器3310。该一个或多个传感器3310包括但不限于:加速度传感器3311、陀螺仪传感器3312、压力传感器3313、光学传感器3314以及接近传感器3315。
加速度传感器3311可以检测以电子设备3300建立的坐标系的三个坐标轴上的加速度大小。比如,加速度传感器3311可以用于检测重力加速度在三个坐标轴上的分量。处理器3301可以根据加速度传感器3311采集的重力加速度信号,控制显示屏3305以横向视图或纵向视图进行用户界面的显示。加速度传感器3311还可以用于游戏或者用户的运动数据的采集。
陀螺仪传感器3312可以检测电子设备3300的机体方向及转动角度,陀螺仪传感器3312可以与加速度传感器3311协同采集用户对电子设备3300的3D动作。处理器3301根据陀螺仪传感器3312采集的数据,可以实现如下功能:动作感应(比如根据用户的倾斜操作来改变UI)、拍摄时的图像稳定、游戏控制以及惯性导航。
压力传感器3313可以设置在电子设备3300的侧边框和/或显示屏3305的下层。当压力传感器3313设置在电子设备3300的侧边框时,可以检测用户对电子设备3300的握持信号,由处理器3301根据压力传感器3313采集的握持信号进行左右手识别或快捷操作。当压力传感器3313设置在显示屏3305的下层时,由处理器3301根据用户对显示屏3305的压力操作,实现对UI界面上的可操作性控件进行控制。可操作性控件包括按钮控件、滚动条控件、图标控件、菜单控件中的至少一种。
光学传感器3314用于采集环境光强度。在一个实施例中,处理器3301可以根据光学传感器3314采集的环境光强度,控制显示屏3305的显示亮度。具体地,当环境光强度较高时,调高显示屏3305的显示亮度;当环境光强度较低时,调低显示屏3305的显示亮度。在另一个实施例中,处理器3301还可以根据光学传感器3314采集的环境光强度,动态调整摄像头组件3306的拍摄参数。
接近传感器3315,也称距离传感器,通常设置在电子设备3300的前面板。接近传感器3315用于采集用户与电子设备3300的正面之间的距离。在一个实施例中,当接近传感器3315检测到用户与电子设备3300的正面之间的距离逐渐变小时,由处理器3301控制显示屏3305从亮屏状态切换为息屏状态;当接近传感器3315检测到用户与电子设备3300的正面之间的距离逐渐变大时,由处理器3301控制显示屏3305从息屏状态切换为亮屏状态。
本领域技术人员可以理解,图33中示出的结构并不构成对电子设备3300的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
本申请实施例还提供了一种计算机设备,计算机设备包括存储器和处理器;存储器中存储有计算机程序,计算机程序由处理器加载并执行以实现如上所述的移动机器人的运动控制方法。在一些实施例中,计算机设备可以是上述电子设备。在一些实施例中,计算机设备可以是上述移动机器人,也可以是与移动机器人建立有通信连接的电子设备。
本申请实施例还提供了一种计算机可读存储介质,存储介质中存储有计算机程序,计算机程序用于被处理器执行,以实现如上所述的移动机器人的运动控制方法。
本申请实施例还提供了一种芯片,芯片包括可编程逻辑电路和/或计算机程序,当芯片运行时,用于实现如上所述的移动机器人的运动控制方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,计算机程序产品或计算机程序包括计算机指令,计算机指令存储在计算机可读存储介质中,处理器从计算机可读存储介质读取并执行计算机指令,以实现如上所述的移动机器人的运动控制方法。
在本申请中,应该理解到,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
上述所有可选技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (25)

  1. 一种移动机器人的运动控制方法,所述方法由芯片执行,所述移动机器人包括具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部、以及与所述第一车轮部和所述第二车轮部连接的基座部,所述方法包括:
    控制所述第一车轮部和所述第二车轮部处于站立平衡状态;
    控制所述移动机器人基于所述站立平衡状态进行类双足运动;
    其中,所述基座部在所述站立平衡状态下与水平基准面平行,在所述类双足运动的过程中,所述第一车轮部和所述第二车轮部交替着地,所述基座部倾斜摇摆。
  2. 根据权利要求1所述的方法,其中,所述第一车轮部位于所述基座部的第一方向,所述第二车轮部位于所述基座部的第二方向;
    所述控制所述移动机器人基于站立平衡状态进行类双足运动,包括:
    控制所述移动机器人从所述站立平衡状态变化为第一倾斜状态,所述第一倾斜状态是所述基座部向所述第一方向倾斜的状态;
    控制所述移动机器人从所述第一倾斜状态恢复为所述站立平衡状态;
    控制所述移动机器人从所述站立平衡状态变化为第二倾斜状态,所述第二倾斜状态是所述基座部向所述第二方向倾斜的状态;
    控制所述移动机器人从所述第二倾斜状态恢复为所述站立平衡状态;
    其中,在所述移动机器人从所述第一倾斜状态恢复为所述站立平衡状态的过程中,所述第一车轮部的第一车轮着地,所述第二车轮部的第二车轮悬空;在所述移动机器人从所述第二倾斜状态恢复为所述站立平衡状态的过程中,所述第二车轮着地,所述第一车轮悬空。
  3. 根据权利要求2所述的方法,其中,所述控制所述移动机器人从所述站立平衡状态变化为第一倾斜状态,包括:
    控制所述第一车轮部的第一腿部缩短,所述第二车轮部的第二腿部伸长,以使得所述欠驱动系统机器处于所述第一倾斜状态;
    其中,在所述第一腿部和所述第二腿部的伸缩过程中,所述基座部逐渐从由平行于所述水平基准面的水平状态向所述第一方向倾斜,所述第一车轮和所述第二车轮均着地。
  4. 根据权利要求2或3所述的方法,其中,所述控制所述移动机器人从所述第一倾斜状态恢复为所述站立平衡状态,包括:
    控制所述第一车轮部的第一腿部伸长,且所述第二车轮部的第二腿部缩短,以使得所述移动机器人处于第一单轮着地状态,所述第一单轮着地状态是所述第一车轮着地且所述第二车轮悬空的状态;
    控制所述第一腿部持续伸长,且所述第二腿部持续缩短,以使得所述欠驱动系统机器从所述第一单轮着地状态恢复为所述站立平衡状态;
    其中,在所述第一腿部和所述第二腿部的伸缩过程中,所述基座部逐渐向所述第二方向倾斜直至恢复为平行于所述水平基准面的水平状态,所述第二车轮由着地变为悬空后再次恢复着地。
  5. 根据权利要求4所述的方法,其中,所述第一腿部的长度和所述第二腿部的长度在所述站立平衡状态下相同,所述移动机器人在第一时长内处于所述第一单轮着地状态,其中:
    在所述第一时长内,所述第一腿部的长度短于所述第二腿部的长度;
    在所述第一时长的终止节点下,所述第一腿部和所述第二腿部等长。
  6. 根据权利要求2至5任一所述的方法,其中,所述控制所述移动机器人从所述站立平衡状态变化为第二倾斜状态,包括:
    控制所述第一车轮部的第一腿部伸长,所述第二车轮部的第二腿部缩短,以使得所述欠驱动系统机器处于所述第二倾斜状态;
    其中,在所述第一腿部和所述第二腿部的伸缩过程中,所述基座部逐渐从由平行于所述水平基准面的水平状态向所述第二方向倾斜,所述第一车轮和所述第二车轮均着地。
  7. 根据权利要求2至6任一所述的方法,其中,所述控制所述移动机器人从所述第二倾斜状态恢复为所述站立平衡状态,包括:
    控制所述第一车轮部的第一腿部缩短,且所述第二车轮部的第二腿部伸长,以使得所述移动机器人处于第二单轮着地状态,所述第二单轮着地状态是所述第一车轮悬空且所述第二车轮着地的状态;
    控制所述第一腿部持续缩短,且所述第二腿部持续伸长,以使得所述欠驱动系统机器从所述第二单轮着地状态恢复为所述站立平衡状态;
    其中,在所述第一腿部和所述第二腿部的伸缩过程中,所述基座部逐渐向所述第一方向倾斜直至恢复为平行于所述水平基准面的水平状态,所述第一车轮由着地变为悬空后再次恢复着地。
  8. 根据权利要求2至7任一所述的方法,其中,所述第一腿部的长度和所述第二腿部的长度在所述站立平衡状态下相同,所述移动机器人在第二时长内处于所述第二单轮着地状态,其中:
    在所述第二时长内,所述第一腿部的长度长于所述第二腿部的长度;
    在所述第二时长的终止节点下,所述第一腿部和所述第二腿部等长。
  9. 根据权利要求2至8任一项所述的方法,其中,所述控制所述移动机器人从所述站立平衡状态变化为第一倾斜状态,包括:
    在所述移动机器人的倾斜角度达到第一限幅时,控制所述移动机器人从所述站立平衡状态变化为所述第一倾斜状态;
    其中,所述移动机器人的倾斜角度用于指示所述基座部所在的平面与所述平行于水平基准面的平面的夹角。
  10. 根据权利要求2至9任一所述的方法,其中,所述控制所述移动机器人从所述第一倾斜状态恢复为所述站立平衡状态,包括:
    在所述移动机器人的倾斜角度达到第二限幅时,控制所述移动机器人从所述第一倾斜状态恢复为所述站立平衡状态;
    其中,所述移动机器人的倾斜角度用于指示所述基座部所在的平面与平行于所述水平基准面的平面的夹角。
  11. 根据权利要求2至10任一所述的方法,其中,所述控制所述移动机器人从所述站立平衡状态变化为第二倾斜状态,包括:
    在所述移动机器人的倾斜角度达到第三限幅时,控制所述移动机器人从所述站立平衡状态变化为所述第二倾斜状态;
    其中,所述移动机器人的倾斜角度用于指示所述基座部所在的平面与平行于所述水平基准面的平面的夹角。
  12. 根据权利要求2至11任一所述的方法,其中,所述控制所述移动机器人从所述第二倾斜状态恢复为所述站立平衡状态,包括:
    在所述移动机器人的倾斜角度达到第四限幅时,控制所述移动机器人从所述第二倾斜状态恢复为所述站立平衡状态;
    其中,所述移动机器人的倾斜角度用于指示所述基座部所在的平面与平行于所述水平基准面的平面的夹角。
  13. 根据权利要求1至12任一所述的方法,其中,所述类双足运动包括如下运动中的至少一种:
    原地踏步运动;
    直线运动;
    曲线运动;
    原地转圈踏步运动;
    跨越障碍运动。
  14. 根据权利要求1至13任一所述的方法,其中,所述类双足运动包括所述原地踏步运动;
    在所述原地踏步运动的过程中,所述第一车轮部和所述第二车轮部悬空后的着地位置与初始着地位置相同,或所述第一车轮部和所述第二车轮部悬空后的着地位置与初始着地位置的距离差小于第一容差值。
  15. 根据权利要求1至14任一所述的方法,其中,在所述直线运动或所述曲线运动或所述原地转圈踏步运动或所述跨越障碍运动的过程中,所述第一车轮部或所述第二车轮部悬空后的着地位置与悬空前的着地位置不同,且所述第一车轮部或所述第二车轮部悬空后的着地位置与悬空前的着地位置的距离差不小于第二容差值;
    所述基座部交替向第三方向和第四方向进行倾斜摇摆,所述第三方向或所述第四方向与所述移动机器人的前进方向的夹角为锐角。
  16. 根据权利要求1至15任一所述的方法,其中,
    在所述类双足运动的过程中,所述第一车轮部的第一车轮和所述第二车轮部的第二车轮处于锁定状态。
  17. 根据权利要求1至15任一所述的方法,其中,
    在所述类双足运动的过程中,所述第一车轮部的第一车轮和/或所述第二车轮部的第二车轮处于解锁状态。
  18. 根据权利要求17所述的方法,其中,所述方法还包括:
    在所述类双足运动的过程中,控制处于所述解锁状态的所述第一车轮部和/或所述第二车轮部进行运动。
  19. 根据权利要求1至18任一所述的方法,其中,在所述类双足运动的过程中,所述第一车轮部、所述第二车轮部和所述基座部的运动根据如下信息中的至少一种进行控制:
    所述第一车轮部的第一腿部的长度变化;
    所述第一腿部的至少一个关节电机的角度及变化量;
    所述第二车轮部的第二腿部的长度变化;
    所述第二腿部的至少一个关节电机的角度及变化量;
    所述第一车轮部的第一车轮与地面的接触力;
    所述第二车轮部的第二车轮与地面的接触力;
    所述移动机器人的俯仰角度信息及角速度;
    所述移动机器人的横滚角度信息及角速度;
    所述移动机器人的偏航角度信息及角速度。
  20. 根据权利要求1至19任一所述的方法,其中,
    在所述第一车轮部和所述第二车轮部均着地的情况下,所述第一车轮部对应的第一驱动电机和所述第二车轮部对应的第二驱动电机的电机力矩之和为第一力矩;
    在所述第一车轮部着地且所述第二车轮部悬空的情况下,所述第一驱动电机的电机力矩为所述第一力矩;
    在所述第二车轮部着地且所述第一车轮部悬空的情况下,所述第二驱动电机的电机力矩为所述第一力矩。
  21. 一种移动机器人,所述移动机器人包括具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部、以及与所述第一车轮部和所述第二车轮部连接的基座部;
    所述移动机器人中设置有控制器,所述控制器用于控制所述移动机器人实现如权利要求1至20任一所述的移动机器人的运动控制方法。
  22. 一种移动机器人的运动控制装置,所述装置包括:
    控制模块,用于控制移动机器人包括的具有伸缩腿部的第一车轮部和具有伸缩腿部的第二车轮部处于站立平衡状态;
    所述控制模块,还用于控制所述移动机器人基于所述站立平衡状态进行类双足运动;
    其中,所述移动机器人的基座部在所述站立平衡状态下与水平基准面平行,在所述类双足运动的过程中,所述第一车轮部和所述第二车轮部交替着地,所述基座部倾斜摇摆。
  23. 一种计算机设备,所述计算机设备包括存储器和处理器;
    所述存储器中存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如权利要求1至20中任一项所述的移动机器人的运动控制方法。
  24. 一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至20中任一项所述的移动机器人的运动控制方法。
  25. 一种芯片,所述芯片包括可编程逻辑电路和/或计算机程序,当安装有所述芯片的电子设备运行时,用于实现如权利要求1至20中任一项所述的移动机器人的运动控制方法。
PCT/CN2023/101084 2022-08-20 2023-06-19 移动机器人的运动控制方法和移动机器人 WO2024041132A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247007161A KR20240041371A (ko) 2022-08-20 2023-06-19 이동 로봇의 모션 제어 방법 및 이동 로봇

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211002012.9A CN116991154A (zh) 2022-08-20 2022-08-20 移动机器人的运动控制方法和移动机器人
CN202211002012.9 2022-08-20

Publications (1)

Publication Number Publication Date
WO2024041132A1 true WO2024041132A1 (zh) 2024-02-29

Family

ID=88532692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101084 WO2024041132A1 (zh) 2022-08-20 2023-06-19 移动机器人的运动控制方法和移动机器人

Country Status (3)

Country Link
KR (1) KR20240041371A (zh)
CN (1) CN116991154A (zh)
WO (1) WO2024041132A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111267989A (zh) * 2020-03-18 2020-06-12 腾讯科技(深圳)有限公司 轮足式移动平台及轮足式移动机器人
CN111267990A (zh) * 2020-04-03 2020-06-12 太原科技大学 一种轮腿复合式机器人运动控制设备、方法、装置及系统
CN113200099A (zh) * 2021-06-11 2021-08-03 西安电子科技大学 一种全地形轮腿式机器人
CN113485398A (zh) * 2021-07-19 2021-10-08 北京理工大学 一种轮式双足机器人姿态控制方法
CN113552880A (zh) * 2021-07-14 2021-10-26 中国北方车辆研究所 一种双足轮式机器人平衡控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111267989A (zh) * 2020-03-18 2020-06-12 腾讯科技(深圳)有限公司 轮足式移动平台及轮足式移动机器人
CN111267990A (zh) * 2020-04-03 2020-06-12 太原科技大学 一种轮腿复合式机器人运动控制设备、方法、装置及系统
CN113200099A (zh) * 2021-06-11 2021-08-03 西安电子科技大学 一种全地形轮腿式机器人
CN113552880A (zh) * 2021-07-14 2021-10-26 中国北方车辆研究所 一种双足轮式机器人平衡控制方法
CN113485398A (zh) * 2021-07-19 2021-10-08 北京理工大学 一种轮式双足机器人姿态控制方法

Also Published As

Publication number Publication date
KR20240041371A (ko) 2024-03-29
CN116991154A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
US11151773B2 (en) Method and apparatus for adjusting viewing angle in virtual environment, and readable storage medium
US11087537B2 (en) Method, device and medium for determining posture of virtual object in virtual environment
CN101655749B (zh) 输入设备、控制设备、控制系统和控制方法
EP3316735B1 (en) Motion control seat input device
JP2009066064A (ja) プログラム、情報記憶媒体、及びゲーム装置
US20110172823A1 (en) Robot and control method thereof
CN113752250A (zh) 机器人关节的控制方法、装置、机器人及存储介质
CN109166150A (zh) 获取位姿的方法、装置存储介质
CN114283229A (zh) 虚拟角色的行走动画生成方法、装置、设备及存储介质
JP2011140096A (ja) 重心移動装置を有する2足歩行ロボット及び重心移動方法
US20200097069A1 (en) Virtual Reality Input Device
CN108844529A (zh) 确定姿态的方法、装置及智能设备
CN108393882B (zh) 机器人姿态控制方法及机器人
WO2023130824A1 (zh) 欠驱动系统机器人的运动控制方法和欠驱动系统机器人
WO2024041132A1 (zh) 移动机器人的运动控制方法和移动机器人
WO2018170159A1 (en) Virtual reality training device
CN115480560A (zh) 运动状态的控制方法、装置、轮腿式机器人及存储介质
JP5718992B2 (ja) 携帯端末を用いた運転シミュレーション装置及び運転シミュレーションプログラム
CN115480594A (zh) 跳跃控制方法、装置、设备及介质
CN114791729A (zh) 轮式机器人的控制方法、装置、设备及可读存储介质
CN114764241A (zh) 运动状态的控制方法、装置、设备及可读存储介质
CN115480483A (zh) 机器人的动力学参数辨识方法、装置、设备及介质
CN116991153A (zh) 移动机器人的运动控制方法和移动机器人
WO2017185521A1 (zh) 基于移动终端的无人机控制方法和装置
JP2008502399A5 (zh)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20247007161

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023856224

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023856224

Country of ref document: EP

Effective date: 20240503