WO2024041072A1 - 热泵式洗碗机 - Google Patents

热泵式洗碗机 Download PDF

Info

Publication number
WO2024041072A1
WO2024041072A1 PCT/CN2023/097579 CN2023097579W WO2024041072A1 WO 2024041072 A1 WO2024041072 A1 WO 2024041072A1 CN 2023097579 W CN2023097579 W CN 2023097579W WO 2024041072 A1 WO2024041072 A1 WO 2024041072A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage medium
cold storage
heat pump
washing
water
Prior art date
Application number
PCT/CN2023/097579
Other languages
English (en)
French (fr)
Inventor
刘闪闪
孙凯
刘日超
陈盈杰
Original Assignee
佛山市顺德区美的洗涤电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222227917.8U external-priority patent/CN218738854U/zh
Priority claimed from CN202211011984.4A external-priority patent/CN117652986A/zh
Application filed by 佛山市顺德区美的洗涤电器制造有限公司 filed Critical 佛山市顺德区美的洗涤电器制造有限公司
Publication of WO2024041072A1 publication Critical patent/WO2024041072A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details

Definitions

  • the present application relates to the technical field of dishwashers, specifically to a heat pump dishwasher.
  • a heat pump dishwasher is a dishwashing equipment that uses a heat pump system to heat the wash water.
  • the heat pump heating technology currently on the market usually connects the condenser of the heat pump system directly to the washing device of the dishwasher.
  • the washing water directly passes through the condenser and is circulated and heated to a specified temperature. Achieve high-temperature washing of tableware.
  • Embodiments of the present application provide a heat pump dishwasher that can effectively collect the cold energy discharged after heat exchange between the cold storage medium and the refrigerant in the heat pump, and can effectively control the discharge of the cold storage medium.
  • embodiments of the present application provide a heat pump dishwasher; the heat pump dishwasher includes a heat pump, a cold storage medium container, a first liquid inlet pipeline, a liquid discharge pipeline and a control device.
  • the heat pump can accommodate refrigerant.
  • the cold storage medium container can accommodate the cold storage medium that exchanges heat with the refrigerant.
  • the cold storage medium container is connected to the heat pump.
  • the cold storage medium container has a liquid inlet and a liquid outlet.
  • the first liquid inlet pipe is connected to the liquid inlet, and the liquid drain pipe It is connected with the liquid outlet, and the liquid drainage pipeline can discharge the cold storage medium to the outside of the casing of the heat pump dishwasher, and the control device can control the opening and closing of the drainage pipeline.
  • the cold storage medium is stored in the cold storage medium container, and the cold energy discharged after the cold storage medium exchanges heat with the refrigerant in the heat pump is collected in the cold storage medium container; controlled by the control device
  • the drain pipe is connected, so that the old cool storage medium flows out of the cool storage medium container from the drain port through the drain pipe, and then is discharged to the outside of the casing of the heat pump dishwasher through the drain pipe, and through the control
  • the device controls the drain pipeline to be shut off to block the cold storage medium from flowing out of the cold storage medium container from the drain port through the drain pipeline, thereby effectively controlling the discharge of the cold storage medium.
  • control device includes a controller configured to conduct the drain line when the heat pump runs for a preset number of times.
  • the controller controls the drainage pipeline to be turned on, so that the cold storage medium in the cold storage medium container flows out of the cold storage medium container from the liquid outlet through the drainage pipeline, On the one hand, it can effectively improve the utilization rate of the cold storage medium, and on the other hand, it can effectively reduce the energy consumption of the heat pump dishwasher.
  • the heat pump dishwasher further includes a first drainage pump.
  • the first drainage pump is provided in the drainage pipeline. When the heat pump runs to a preset number of times, the controller turns on the first drainage pump.
  • the first drainage pump can function as a drainage valve, and the opening and closing of the first drainage pump is controlled by the controller to control the opening and closing of the drainage pipeline.
  • the first drainage pump can function as a drainage valve.
  • the function of the suction machine is to control the opening of the first drainage pump through the controller to increase the speed at which the old cold storage medium flows out of the cold storage medium container from the drain port through the drain pipeline.
  • the heat pump dishwasher further includes a first water inlet valve
  • the control device further includes a liquid level sensor.
  • the first water inlet valve is located in the first liquid inlet pipeline, and the liquid level sensor collects data from the cold storage medium container.
  • the liquid level of the cold storage medium the controller opens the first water inlet valve when the liquid level reaches the preset range.
  • the liquid level sensor is used to detect the liquid level of the cold storage medium in the cold storage medium container, so that when the liquid level of the cold storage medium is within the preset range, the controller can open the first water inlet in time
  • the valve allows the new cold storage medium to flow from the liquid inlet into the cold storage medium container through the first liquid inlet pipe, thereby ensuring that the heat pump dishwasher can achieve heat exchange between the cold storage medium and the refrigerant the next time it works normally.
  • the controller is configured to open the first water inlet valve when the liquid level of the cold storage medium in the cold storage medium container is lower than a preset liquid level, wherein the preset liquid level is within a preset range. lower limit.
  • the preset liquid level is designed to be the lower limit of the preset range, which enables the controller to accurately control the liquid level sensor, thereby improving the intelligence of the heat pump dishwasher.
  • the heat pump dishwasher further includes a washing device.
  • the washing device includes a washing cavity and a washing pump.
  • the washing cavity is connected with the washing pump to form a water supply loop, and the water supply loop is used to circulate water for washing dishes.
  • the washing pump and the washing cavity by designing the washing pump and the washing cavity, the water used for washing the dishes is pumped out from the washing cavity through the washing pump, and is pumped back into the washing cavity under the action of the washing pump, so that the washing The water for the tableware can circulate in the water supply circuit formed by the washing cavity and the washing pump.
  • the heat pump includes a first heat exchange device, a compressor, a second heat exchange device and a throttling device, and the first heat exchange device, the compressor, the second heat exchange device and the throttling device are connected in sequence to form In a circulation loop for refrigerant circulation, the second heat exchange device is connected in series between the washing chamber and the washing pump to form part of the water supply circuit.
  • the cold storage medium in the cold storage medium container performs heat exchange with the refrigerant in the first heat exchange device.
  • the refrigerant after heat exchange passes through the compressor and flows into the second heat exchange device, and is used for washing with the water supply circuit.
  • the water for the tableware undergoes heat exchange, so that the water used for washing the tableware in the water supply circuit is heated, and is pumped out of the washing cavity and re-pumped into the washing cavity under the action of the washing pump, thereby realizing the cleaning of the washing cavity. Effective cleaning of tableware.
  • the heat pump dishwasher further includes a second liquid inlet pipeline connected to the washing cavity, and the second liquid inlet pipeline is connected in parallel with the first liquid inlet pipeline.
  • the second liquid inlet pipe is designed to be connected in parallel with the first liquid inlet pipe, so that the second liquid inlet pipe and the first liquid inlet pipe can share a water source, which simplifies the water circuit structure of the heat pump dishwasher.
  • the heat pump dishwasher further includes a water softener and a second water inlet valve.
  • the second water inlet valve is provided in the second liquid inlet pipeline.
  • the water softener is provided in the second water inlet valve and the washing cavity. between.
  • the second water inlet valve to control the opening and closing of the second liquid inlet pipeline, it is possible to facilitate the realization of the split control of the water flow in the second liquid inlet pipeline and the first liquid inlet pipeline.
  • the water softener can soften the water flowing into the washing cavity from the second water inlet valve through the second liquid inlet pipe to optimize the quality of the water used for washing tableware.
  • the washing device further includes a water diverting valve and a plurality of spray arms located in the washing cavity. One end of the water diverting valve is connected to the washing pump, and the other end of the water diverting valve is connected to the plurality of spray arms.
  • the water used for washing dishes is extracted from the washing cavity under the action of the washing pump, and is dispersed through the water diverting valve to form multiple water channels, and is Under the action of the washing pump, multiple water channels are pumped to the corresponding spray arms and sprayed from the nozzle holes of the spray arms back into the washing cavity to improve the cleaning effect of the heat pump dishwasher on tableware.
  • Figure 1 is a schematic structural diagram of a heat pump dishwasher in an embodiment of the present application.
  • a heat pump dishwasher is a dishwashing equipment that uses a heat pump system to heat the wash water.
  • the heat pump heating technology currently on the market usually connects the condenser of the heat pump system directly to the washing device of the dishwasher.
  • the washing water directly passes through the condenser and is circulated and heated to a specified temperature. Achieve high-temperature washing of tableware.
  • a heat pump dishwasher includes a fan for sucking indoor air, and the indoor air serves as a cold storage medium and is transported to the evaporator of the heat pump system under the action of the fan to circulate in the evaporator.
  • the refrigerant in the evaporator performs heat exchange, and the heat released from the indoor air after heat exchange with the refrigerant in the evaporator is converted into cold air with a lower temperature (i.e., cooling capacity) and is directly discharged into the air.
  • a lower temperature i.e., cooling capacity
  • the first aspect of the present application proposes a heat pump dishwasher 1 that can effectively perform heat exchange on the cold energy discharged after the cold storage medium and the refrigerant in the heat pump 10 are exchanged. Collect and effectively control the discharge of cold storage medium.
  • the heat pump dishwasher 1 includes a heat pump 10, a cold storage medium container 20, a first liquid inlet pipe 31, a liquid discharge pipe 41 and a control device.
  • the heat pump 10 can accommodate refrigerant
  • the cold storage medium container 20 can accommodate a liquid that performs heat exchange with the refrigerant.
  • Cold storage medium the cold storage medium container 20 is connected to the heat pump 10
  • the cold storage medium container 20 has a liquid inlet 21 and a liquid outlet 22
  • the control device can control the opening and closing of the drain pipe 41 .
  • the specific structure of the heat pump dishwasher 1 is introduced below with reference to Figure 1.
  • the heat pump dishwasher 1 includes a heat pump 10, a cold storage medium container 20, a first liquid inlet pipe 31, a liquid drain pipe 41 and a control device (not shown in the figure).
  • the heat pump 10 can realize heat exchange.
  • the specific structure of the heat pump 10 and the principle of the heat pump 10 realizing heat exchange will be introduced below.
  • the heat pump 10 can accommodate refrigerant, that is, the refrigerant is stored in the heat pump 10.
  • refrigerant should be understood as a medium that absorbs heat and is easily converted into a gas and releases heat and is easily converted into a liquid.
  • the refrigerant can be a refrigerant such as Freon.
  • the cold storage medium container 20 can be used to store other media (such as the refrigerant introduced below).
  • the specific shape and material of the cold storage medium container 20 are not limited here. Designers can adjust the cold storage medium container 20 according to different models of heat pump dishwashers 1. The shape and material of the cold storage medium container 20 can be reasonably designed and selected, and for different models of heat pump dishwashers 1, the shape and material of the cold storage medium container 20 can be the same or different.
  • the cold storage medium container 20 can accommodate a cold storage medium that exchanges heat with the refrigerant.
  • heat exchange is the process of heat transfer between two objects or between parts of the same object due to temperature difference, and heat is directly or indirectly transferred from the hot fluid (higher temperature object) to the cold fluid (lower temperature objects).
  • Cold storage medium should be understood as a medium that releases latent heat of phase change and stores cold energy through state changes (for example, from liquid to solid).
  • the cold storage medium may be water.
  • the cold storage medium and the refrigerant are two different media.
  • the cold storage medium releases phase change latent heat and stores cold energy.
  • the refrigerant absorbs the phase change latent heat released by the cold storage medium, that is, the cold storage medium releases the latent heat of phase change.
  • the latent heat of phase change is transferred from the higher temperature storage medium to the lower temperature refrigerant.
  • the cold storage medium is water
  • the water releases latent heat of phase change and stores the cold energy and converts it into ice.
  • the refrigerant absorbs the latent heat of phase change released by the water and converts it into a refrigerant with a higher temperature.
  • the cold storage medium container 20 has a liquid inlet 21 and a liquid outlet 22.
  • the "liquid inlet 21" should be understood as an opening for the above-mentioned cold storage medium to flow into the cold storage medium container 20, and the “liquid outlet 22" should be understood as an opening for the above-mentioned cold storage medium to flow into the cold storage medium container 20.
  • the cold storage medium flows out of the opening outside the cold storage medium container 20 .
  • the specific shapes and sizes of the liquid inlet 21 and the liquid outlet 22 and the relative positions of the liquid inlet 21 and the liquid outlet 22 on the cold storage medium container 20 are not limited here. Designers can make reasonable designs according to actual needs.
  • the cold storage medium container 20 is connected to the heat pump 10 so that the cold storage medium contained in the cold storage medium container 20 can exchange heat with the refrigerant contained in the heat pump 10 .
  • the cold storage medium container 20 and the heat pump 10 can be directly connected or indirectly connected.
  • the first heat exchange device 11 of the heat pump 10 (described below, such as the evaporator) can be directly located at In the cold storage medium container 20, when the cold storage medium container 20 is indirectly connected to the heat pump 10, the first heat exchange device 11 of the heat pump 10 is located outside the cold storage medium container 20, and the heat pump dishwasher 1 also includes a guide pipe, the cold storage medium container 20 is connected to the first heat exchange device 11 of the heat pump 10 via a guide pipe.
  • the specific connection method between the cold storage medium container 20 and the heat pump 10 will be introduced below.
  • the first liquid inlet pipe 31 is used to circulate the new cold storage medium injected into the cold storage medium container 20.
  • the first liquid inlet pipe 31 is connected with the liquid inlet 21 of the cold storage medium container 20, that is, the new cold storage medium can pass through the first liquid inlet pipe 31.
  • a liquid inlet pipe 31 flows into the cold storage medium container 20 from the liquid inlet 21 .
  • the specific shape and material of the first liquid inlet pipe 31 are not limited here, and designers can carry out reasonable design on the basis of improving space utilization and saving costs.
  • the drain pipe 41 is used to circulate the old cold storage medium discharged from the cold storage medium container 20.
  • the drain pipe 41 is connected to the liquid outlet 22 of the cold storage medium container 20, and the drain pipe 41 can discharge the cold storage medium to the heat pump.
  • the casing of the heat pump dishwasher 1 is the complete machine casing, and the other end of the drain pipe 41 extends out of the casing and can be directly or indirectly pulled to the sewer pipe.
  • one end of the drain pipe 41 is connected to the liquid outlet 22 of the cold storage medium container 20, and the other end of the drain pipe 41 can directly extend out of the casing of the heat pump dishwasher 1 and be pulled to the sewer pipe.
  • the other end of the drain pipe 41 can be disposed adjacent to the corresponding shell opening, and the other end of the drain pipe 41 is indirectly connected to the opening through a separate pipe. Pull it to the sewer pipe to discharge the cold storage medium.
  • the other end of the drain pipe 41 extends out of the casing of the heat pump dishwasher 1, so that the old cold storage medium can flow out of the cold storage medium container 20 from the liquid outlet 22 through the drain pipe 41, and then pass through the drain pipe 41.
  • the pipeline 41 is discharged to the outside of the casing of the heat pump dishwasher 1 .
  • the specific shape and material of the drain pipe 41 are not limited here, and designers can carry out reasonable design on the basis of improving space utilization and saving costs.
  • the control device is used to control the opening and closing of the drain pipe 41. That is to say, the control device can control the conduction of the drain pipe 41 so that the old cold storage medium flows out of the cold storage medium container from the drain port through the drain pipe 41. 20, of course, the control device can also control the drain pipe 41 to be closed to block the cold storage medium from flowing out of the cold storage medium container 20 from the drain port through the drain pipe 41.
  • the control device controls the drainage pipeline 41 to achieve The specific manifestations of interruption will be introduced below.
  • the cold storage medium is stored in the cold storage medium container 20, and the cold energy discharged after the cold storage medium exchanges heat with the refrigerant in the heat pump 10 is collected in the cold storage medium container 20. ; Control the conduction of the drain pipe 41 through the control device, so that the old cold storage medium flows out of the cold storage medium container 20 from the drain port through the drain pipe 41, and then is discharged to the heat pump dishwasher through the drain pipe 41
  • the outside of the casing of the machine 1 and the drain pipe 41 are controlled to be closed by the control device to block the cold storage medium from flowing out of the cold storage medium container 20 from the drain port through the drain pipe 41 to effectively control the discharge of the cold storage medium.
  • the control device includes a controller, and the controller is configured to conduct the drain pipeline 41 when the heat pump 10 runs to a preset number of times. That is to say, after the heat pump 10 runs to a preset number of times, the controller controls the drain pipe 41 to be turned on, and the old cold storage medium flows out of the cold storage medium container 20 from the drain port through the drain pipe 41 .
  • the "preset number of times" can be understood as the number of times the heat pump 10 needs to be run before the old cold storage medium in the cold storage medium container 20 is discharged.
  • the specific value of the preset number of times is not limited here. The designer can determine the number of times after repeated tests. Reasonable design of the preset times is required to achieve optimal tableware cleaning results. In this design, after the heat pump 10 has been run for a preset number of times, the controller controls the drain pipe 41 to be turned on, so that the cold storage medium in the cold storage medium container 20 flows out of the cold storage medium from the liquid outlet 22 through the drain pipe 41 Outside the media container 20.
  • the preset number of times can be one or more times.
  • the method of running the heat pump 10 multiple times and then draining it can effectively improve the utilization of the cold storage medium on the one hand.
  • efficiency on the other hand, the energy consumption of the heat pump dishwasher 1 can be effectively reduced.
  • the old cold storage medium in the cold storage medium container 20 can flow out of the cold storage medium container 20 from the drain port through the drain pipe 41 under the action of gravity.
  • a drain valve is designed on the drain line 41, and the controller controls the drain valve to open to conduct the drain line 41.
  • the heat pump dishwasher 1 also includes a first drainage pump 42, The first drainage pump 42 is provided in the drainage pipe 41. When the heat pump 10 runs to a preset number of times, the controller turns on the first drainage pump 42.
  • the first drainage pump 42 can function as a drainage valve, and the opening and closing of the first drainage pump 42 is controlled by the controller to control the opening and closing of the drainage pipeline 41.
  • the first drainage pump 42 It can function as a suction machine, and the controller controls the opening of the first drainage pump 42 to increase the speed at which the old cold storage medium flows out of the cold storage medium container 20 from the drain port through the drain pipeline 41 .
  • the heat pump dishwasher 1 also includes a first water inlet valve 32, and the control device also includes a liquid level sensor 51.
  • the first water inlet valve 32 is located at the first liquid inlet.
  • the liquid level sensor 51 collects the liquid level of the cold storage medium in the cold storage medium container 20. When the liquid level reaches the preset range, the controller opens the first water inlet valve 32.
  • the liquid level sensor 51 is designed, and the liquid level sensor 51 is used to detect the liquid level of the cold storage medium in the cold storage medium container 20, so that when the liquid level of the cold storage medium is within the preset range, the controller can promptly open the first
  • the water inlet valve 32 allows the new cold storage medium to flow into the cold storage medium container 20 from the liquid inlet 21 through the first liquid inlet pipe 31, thereby ensuring that the heat pump dishwasher 1 can realize the cooling of the cold storage medium and the refrigerant the next time it works normally. heat exchange.
  • the liquid level sensor 51 can be used to monitor the liquid level of the cold storage medium in the cold storage medium container 20 in real time.
  • the specific model of the liquid level sensor 51 is not limited here, and the designer can select an appropriate model according to the design and manufacturing requirements.
  • the liquid level sensor 51 may be disposed on the outer surface of the cold storage medium container 20 and partially inserted into the cold storage medium.
  • the liquid level sensor 51 may also be disposed on the inner surface of the cold storage medium container 20 and at least partially inserted into the cold storage medium.
  • preset range should be understood as a liquid level interval in the cold storage medium when the controller controls the first water inlet valve 32 in the open state according to the liquid level of the cold storage medium detected by the liquid level sensor 51.
  • the “preset range” may include a lower limit liquid level value and an upper limit liquid level value.
  • the controller controls the first water inlet valve 32 to be in an open state. .
  • the liquid level sensor 51 is connected to the controller to transmit the electrical signal corresponding to the liquid level of the cold storage medium monitored in real time to the controller. After receiving the corresponding electrical signal, the controller controls the first electrical signal according to the different electrical signals. The opening and closing of the water inlet valve 32. For example, when the liquid level sensor 51 detects that the liquid level of the cold storage medium is outside the above-mentioned preset range, the liquid level sensor 51 transmits a first electrical signal (for example, signal “1”) to the controller, and the controller receives the first electrical signal. After receiving the electric signal, the first water inlet valve 32 is controlled to close according to the first electric signal.
  • a first electrical signal for example, signal “1”
  • the liquid level sensor 51 controls the The controller emits a second electrical signal (for example, signal "0"). After receiving the second electrical signal, the controller controls the first water inlet valve 32 to open according to the second electrical signal.
  • a second electrical signal for example, signal "0"
  • the controller is configured to open the first water inlet valve 32 when the liquid level of the cold storage medium in the cold storage medium container 20 is at a preset level,
  • the preset liquid level is the lower limit of the preset range.
  • the preset liquid level is designed to be the lower limit of the preset range, allowing the controller to accurately control the liquid level sensor 51 to improve the intelligence of the heat pump dishwasher 1 .
  • the plane where the bottom surface of the cold storage medium container 20 is located can be used as the above-mentioned preset liquid level.
  • the controller opens the first water inlet valve 32, and the new cold storage medium flows into the cold storage medium container 20 from the liquid inlet 21 through the first liquid inlet pipe 31, so that the cold storage medium container 20 is almost filled with new cold storage medium.
  • the medium is filled for heat exchange in the next operation of the heat pump dishwasher 1 .
  • the dishwasher also includes a washing device 60.
  • the washing device 60 includes a washing cavity 61 and a washing pump 62.
  • the washing cavity 61 communicates with the washing pump 62 to form a water supply circuit 65.
  • the water supply circuit 65 is used for Circulate water for washing dishes.
  • the washing cavity 61 can be understood as a container for holding the tableware to be washed and the water for washing the tableware.
  • the specific shape and material of the washing cavity 61 are not limited here.
  • the designer can design according to different models of heat pump dishwashing.
  • the machine 1 rationally designs the shape of the washing cavity 61, and the designer can reasonably select the material of the washing cavity 61 according to the design and manufacturing requirements.
  • the washing pump 62 is used to pump the water used for washing dishes from the washing cavity 61 and pump it back into the washing cavity 61 to achieve cyclic cleaning of the tableware contained in the washing cavity 61 .
  • the specific model of the washing pump 62 is not limited here, and the designer can select a suitable washing pump 62 while ensuring that water for washing dishes can be pumped into the washing cavity 61 normally.
  • the washing cavity 61 communicates with the washing pump 62 to form a water supply circuit 65.
  • the washing pump 62 can be connected with the bottom wall of the washing cavity 61, and the washing pump 62 can also be connected with the side wall of the washing cavity 61 close to the bottom wall. .
  • the water used for washing dishes is pumped out from the washing cavity 61 through the washing pump 62, and is pumped back into the washing cavity 61 under the action of the washing pump 62, so that the water for washing the dishes can be circulated in the washing cavity.
  • 61 and the washing pump 62 form a water supply circuit 65.
  • the heat pump 10 is designed to include a first heat exchange device 11, a compressor 12, a second heat exchange device 13 and a throttling device. 14.
  • the first heat exchange device 11, the compressor 12, the second heat exchange device 13 and the throttling device 14 are connected in sequence to form a circulation loop for refrigerant circulation.
  • the second heat exchange device 13 is connected in series between the washing cavity 61 and the washing machine. between the pumps 62 to form a part of the water supply circuit 65.
  • the cold storage medium in the cold storage medium container 20 performs heat exchange with the refrigerant in the first heat exchange device 11.
  • the refrigerant after heat exchange passes through the compressor 12 and flows into the second heat exchange device 13, and is connected to the water supply circuit 65.
  • the water used for washing tableware undergoes heat exchange, so that the water used for washing tableware in the water supply circuit 65 is heated, and is pumped out of the washing cavity 61 and re-pumped to the washing cavity under the action of the washing pump 62 61, thereby achieving effective cleaning of the tableware in the washing cavity 61.
  • the first heat exchange device 11 is configured to perform heat exchange between the refrigerant and the cold storage medium stored in the cold storage medium container 20.
  • the refrigerant is a low-temperature and low-pressure liquid refrigerant
  • the cold storage medium is a liquid cold storage medium.
  • the liquid cold storage medium releases phase change latent heat and stores cold energy and converts it into a solid cold storage medium.
  • the low-temperature and low-pressure liquid refrigerant absorbs the phase-change latent heat released by the liquid cold storage medium and converts it into a high-temperature and low-pressure gaseous refrigerant.
  • the conversion of the solid cold storage medium into the liquid cold storage medium can be caused by natural melting under normal temperature conditions.
  • an additional heating structure can also be provided.
  • the specific form of expression is not limited, and designers can choose existing heating structures based on design and manufacturing requirements.
  • the first heat exchange device 11 may be an evaporator, and the evaporator may be a tube-fin evaporator or a micro-channel evaporator.
  • the compressor 12 is configured to pressurize the high-temperature and low-pressure gaseous refrigerant after heat exchange with the first heat exchange device 11 , so that the high-temperature and low-pressure gaseous refrigerant is converted into high-temperature and high-pressure gaseous refrigerant through the compressor 12 .
  • the compressor 12 can be a horizontal compressor 12 or a vertical compressor 12.
  • the second heat exchange device 13 is configured to perform heat exchange between the water used for washing the dishes and the high-temperature and high-pressure gaseous refrigerant compressed by the compressor 12 .
  • the water used for washing the dishes is low-temperature and low-pressure.
  • Liquid water, after heat exchange the high-temperature and high-pressure gas refrigerant releases heat and is converted into low-temperature and high-pressure liquid refrigerant.
  • the low-temperature and low-pressure liquid water used for washing tableware absorbs the heat and converts it into high-temperature and low-pressure liquid water, which is used for washing tableware.
  • the high-temperature and low-pressure liquid water is pumped into the washing cavity 61 under the action of the washing pump 62, thereby effectively cleaning the tableware in the washing cavity 61.
  • the second heat exchange device 13 can be a condenser or a condenser tube.
  • the specific form of the second heat exchange device 13 is not limited here, and the designer can choose according to the actual situation.
  • the throttling device 14 is configured to depressurize the low-temperature and high-pressure liquid refrigerant after heat exchange with the second heat exchange device 13 , so that the low-temperature and high-pressure liquid refrigerant is converted back into low-temperature and low-pressure liquid refrigerant after passing through the throttling device 14 .
  • the throttling device 14 may include an expansion valve.
  • the low-temperature and high-pressure liquid refrigerant formed after being condensed by the second heat exchange device 13 can be converted into a low-temperature and low-pressure mist-like liquid refrigerant after being throttled by the throttle hole of the expansion valve.
  • the evaporation of the primary refrigerant in the first heat exchange device 11 creates conditions.
  • the throttling device 14 can also be of other types, such as a capillary structure, etc., and is not specifically limited.
  • the heat pump dishwasher 1 1 also includes a second liquid inlet pipe 71 connected with the washing cavity 61, and the second liquid inlet pipe 71 is connected in parallel with the first liquid inlet pipe 31. That is to say, the second liquid inlet pipe 71 and the first liquid inlet pipe 31 form a dual-mode liquid inlet mode.
  • the second liquid inlet pipe 71 and the first liquid inlet pipe 31 can share a water source, especially in cold storage.
  • the medium is water.
  • the second liquid inlet connected to the washing cavity 61 is designed to
  • the pipeline 71 is convenient for injecting new water for washing tableware into the washing cavity 61 to ensure that the heat pump dishwasher 1 can effectively clean the tableware.
  • the pipelines 31 are connected in parallel, so that the second liquid inlet pipeline 71 and the first liquid inlet pipeline 31 can share a water source, which simplifies the water circuit structure of the heat pump dishwasher 1 .
  • the heat pump dishwasher 1 further includes a water softener 80 and a second water inlet valve 72.
  • the second water inlet valve 72 is provided in the second liquid inlet pipe 71
  • the water softener 80 is provided in the second liquid inlet pipe 71. between the second water inlet valve 72 and the washing cavity 61.
  • the above-mentioned controller can also be used to open the second water inlet valve 72.
  • the controller controls the second water inlet valve 72 to open, so that new water for washing dishes can be injected into the washing cavity 61 through the second liquid inlet pipe 71 .
  • the controller controls the second water inlet valve 72 to open, so that new water for washing dishes can be injected into the washing cavity 61 through the second liquid inlet pipe 71 .
  • the water softener 80 is designed to soften the water flowing into the washing cavity 61 from the second water inlet valve 72 through the second liquid inlet pipe 71 to optimize the quality of the water used for washing dishes.
  • the first liquid inlet pipe 31 and the second liquid inlet pipe 71 are connected in parallel, and the first liquid inlet pipe 31 and the second liquid inlet pipe 71 can also be connected and disconnected. At the same time, it is controlled by the first water inlet valve 32.
  • the first water inlet valve 32 is a reversing valve.
  • the reversing valve includes a water inlet and two water outlets. The water inlet of the reversing valve is connected to an external water source. One water outlet of the valve is connected to the first liquid inlet pipe 31, and the other water outlet of the reversing valve is connected to the second liquid inlet pipe 71.
  • the reversing valve When water needs to be supplied to the washing cavity 61, the reversing valve is switched to the second liquid inlet pipe 31. The water outlet connected to the liquid inlet pipe 71 is opened. When water needs to be supplied to the cold storage medium container 20 , the reversing valve is switched to open the water outlet connected to the first liquid inlet pipe 31 .
  • the washing device 60 also includes a water diverting valve 63 and a plurality of water valves located in the washing cavity 61. (Two or more than two) spray arms 64, one end of the water diverting valve 63 is connected to the washing pump 62, and the other end of the water diverting valve 63 is connected to a plurality of spray arms 64.
  • the specific number, shape and structure of the spray arms 64, the relative position and connection relationship between the spray arms 64 and the washing cavity 61 are not limited here. Designers can make reasonable designs based on different models of heat pump dishwashers 1.
  • the heat pump dishwasher 1 can also include a second drainage pump 90.
  • the second drainage pump 90 is connected to the washing cavity 61 to remove the sewage formed after washing the dishes from the washing cavity 61. Pull out.

Landscapes

  • Washing And Drying Of Tableware (AREA)

Abstract

一种热泵式洗碗机,热泵式洗碗机包括热泵、蓄冷介质容器、第一进液管路、排液管路及控制装置,热泵能够容纳冷媒,蓄冷介质容器能够容纳与冷媒进行热交换的蓄冷介质,蓄冷介质容器与热泵连接,蓄冷介质容器具有进液口及出液口,第一进液管路与进液口连接,排液管路与出液口连接并能够将蓄冷介质排出到热泵式洗碗机的壳体外部,控制装置能够控制排液管路的通断。

Description

热泵式洗碗机
相关申请的交叉引用
本申请基于申请号为:202211011984.4,申请日为2022年08月23日,以及申请号为:202222227917.8,申请日为2022年08月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及洗碗机技术领域,具体而言,涉及一种热泵式洗碗机。
背景技术
热泵式洗碗机是一种采用热泵系统来加热洗涤水的洗碗设备。
目前市面上的热泵制热技术,通常将热泵系统的冷凝器直接接入洗碗机的洗涤装置,洗碗机洗涤餐具的过程中,洗涤水直接经过冷凝器后被循环加热到指定温度,以实现对餐具的高温洗涤。
但是,整个热泵系统在冷凝器产生热量加热洗涤水的过程中,同时伴随着蓄冷介质与蒸发器中的冷媒进行热交换后冷量的排出,造成室内温度降低。因此,有必要提供一种新的热泵式洗碗机。
发明内容
本申请实施例提供一种热泵式洗碗机,能够对蓄冷介质与热泵中的冷媒进行热交换后排出的冷量进行有效收集,并可有效控制蓄冷介质的排放。
第一方面,本申请实施例提供了一种热泵式洗碗机;该热泵式洗碗机包括热泵、蓄冷介质容器、第一进液管路、排液管路及控制装置,热泵能够容纳冷媒,蓄冷介质容器能够容纳与冷媒进行热交换的蓄冷介质,蓄冷介质容器与热泵连接,蓄冷介质容器具有进液口及出液口,第一进液管路与进液口连接,排液管路与出液口连接,且排液管路能够将蓄冷介质排出到热泵式洗碗机的壳体外部,控制装置能够控制排液管路的通断。
基于本申请实施例的热泵式洗碗机,通过将蓄冷介质储存于蓄冷介质容器中,蓄冷介质与热泵中的冷媒进行热交换后排出的冷量被收集在蓄冷介质容器中;通过控制装置控制排液管路导通,以使旧的蓄冷介质从排液口经由排液管路流出蓄冷介质容器外,进而通过该排液管路排到热泵式洗碗机的壳体外部,以及通过控制装置控制排液管路关断,以阻断蓄冷介质从排液口经由排液管路流出蓄冷介质容器外,以有效控制蓄冷介质的排放。
在其中一些实施例中,控制装置包括控制器,控制器配置成在热泵运行至预设次数时,使排液管路导通。
基于上述实施例,通过设计热泵在运行到预设次数后,控制器控制排液管路导通,以使蓄冷介质容器内的蓄冷介质从出液口经由排液管路流出蓄冷介质容器外,一方面能够有效提升蓄冷介质的利用率,另一方面能够有效降低该热泵式洗碗机的能耗。
在其中一些实施例中,热泵式洗碗机还包括第一排水泵,第一排水泵设于排液管路,热泵运行至预设次数时,控制器打开第一排水泵。
基于上述实施例,一方面第一排水泵能够起到排水阀的作用,通过控制器控制第一排水泵的开闭来控制排液管路的通断,另一方面第一排水泵能够起到抽吸机的作用,通过控制器控制第一排水泵打开以提升旧的蓄冷介质从排液口经排液管路流出蓄冷介质容器外的速度。
在其中一些实施例中,热泵式洗碗机还包括第一进水阀,控制装置还包括液位传感器,第一进水阀设于第一进液管路,液位传感器采集蓄冷介质容器内的蓄冷介质的液位,控制器在液位达到预设范围时,打开第一进水阀。
基于上述实施例,通过设计液位传感器,液位传感器用于检测蓄冷介质容器内的蓄冷介质的液位,以在蓄冷介质的液位处于预设范围时,控制器能够及时打开第一进水阀,使新的蓄冷介质经由第一进液管路从进液口流入蓄冷介质容器内,从而保证该热泵式洗碗机在下次正常工作时能够实现蓄冷介质与冷媒的热交换。
在其中一些实施例中,控制器配置成在蓄冷介质容器内的蓄冷介质的液位低于预设液位时,控制器打开第一进水阀,其中,预设液位为预设范围的下限值。
基于上述实施例,将预设液位设计成预设范围的下限值,实现了控制器对液位传感器的精确控制,以提升该热泵式洗碗机的智能性。
在其中一些实施例中,热泵式洗碗机还包括洗涤装置,洗涤装置包括洗涤腔体和洗涤泵,洗涤腔体与洗涤泵连通以形成供水回路,供水回路用于流通洗涤餐具的水。
基于上述实施例,通过设计洗涤泵和洗涤腔体,用于洗涤餐具的水通过洗涤泵从洗涤腔体中被抽出,并在洗涤泵的作用下被重新抽送至洗涤腔体中,以使洗涤餐具的水可循环地在洗涤腔体和洗涤泵所形成的供水回路中流通。
在其中一些实施例中,热泵包括第一换热装置、压缩机、第二换热装置和节流装置,第一换热装置、压缩机、第二换热装置及节流装置依次连通以形成供冷媒流通的循环回路,第二换热装置串联连通于洗涤腔体与洗涤泵之间以形成供水回路的部分。
基于上述实施例,蓄冷介质容器内的蓄冷介质与第一换热装置中的冷媒进行热交换,经过热交换后的冷媒经过压缩机并流入第二换热装置,同供水回路中的用于洗涤餐具的水进行热交换,使得供水回路中的用于洗涤餐具的水被加热,并在洗涤泵的作用下被循环从洗涤腔体中抽出并重新抽送至洗涤腔体内,从而实现对洗涤腔体内的餐具的有效清洗。
在其中一些实施例中,热泵式洗碗机还包括与洗涤腔体连通的第二进液管路,且第二进液管路与第一进液管路并联连通。
基于上述实施例,通过设计与洗涤腔体连通的第二进液管路,便于将新的用于洗涤餐具的水注入洗涤腔体内,以保证该热泵式洗碗机对餐具的有效清洗,通过设计第二进液管路与第一进液管路并联,使得第二进液管路能够与第一进液管路共用一个水源,简化了该热泵式洗碗机的水路结构。
在其中一些实施例中,热泵式洗碗机还包括软水器和第二进水阀,第二进水阀设于第二进液管路,软水器设于第二进水阀和洗涤腔体之间。
基于上述实施例,通过设计第二进水阀来控制第二进液管路的通断,能够便于实现第二进液管路和第一进液管路的水流的分流控制,通过设计软水器,软水器能够对从第二进水阀经由第二进液管路流进洗涤腔体内的水进行软化处理,以优化用于洗涤餐具的水的质量。
在其中一些实施例中,洗涤装置还包括分水阀和位于洗涤腔体内的多个喷臂,分水阀的一端与洗涤泵连通,分水阀的另一端与多个喷臂连通。
基于上述实施例,通过设计分水阀和多个喷臂,用于洗涤餐具的水在洗涤泵的作用下被从洗涤腔体中抽出后,经过分水阀被分散形成多条水路,并在洗涤泵的作用下,多条水路被抽送至对应的喷臂中并从喷臂的喷孔中喷出重新回到洗涤腔体内,以提升该热泵式洗碗机对餐具的清洁效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一种实施例中的热泵式洗碗机的结构示意图。
附图标记:1、热泵式洗碗机;10、热泵;11、第一换热装置;12、压缩机;13、第二换热装置;14、节流装置;20、蓄冷介质容器;21、进液口;22、出液口;31、第一进液管路;32、第一进水阀;41、排液管路;42、第一排水泵;51、液位传感器;60、洗涤装置;61、洗涤腔体;62、洗涤泵;63、分水阀;64、喷臂;65、供水回路;71、第二进液管路;72、第二进水阀;80、软水器;90、第二排水泵。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
热泵式洗碗机是一种采用热泵系统来加热洗涤水的洗碗设备。
目前市面上的热泵制热技术,通常将热泵系统的冷凝器直接接入洗碗机的洗涤装置,洗碗机洗涤餐具的过程中,洗涤水直接经过冷凝器后被循环加热到指定温度,以实现对餐具的高温洗涤。
但是,整个热泵系统在冷凝器产生热量加热洗涤水的过程中,同时伴随着蓄冷介质与蒸发器中的冷媒进行热交换后冷量的排出。
例如,在一种相关技术中,热泵式洗碗机包括风机,风机用于抽吸室内空气,室内空气作为蓄冷介质在风机的作用下被输送至热泵系统的蒸发器以与流通于蒸发器中的冷媒进行热交换,经与蒸发器中的冷媒进行热交换后的室内空气放热转换成温度较低的冷空气(即冷量)被直接排放到空气中。由于热泵式洗碗机一般安装于厨房内,一方面冷量直接被排放至空气中会对厨房室内温度影响较大,另一方面风机工作过程中会产生较大的噪声会对用户的正常生活产生影响。
因此,基于但不仅限于上述热泵式洗碗机的应用场景,有必要提供一种新的热泵式洗碗机。
为了解决上述技术问题,请参照图1所示,本申请的第一方面提出了一种热泵式洗碗机1,能够对蓄冷介质与热泵10中的冷媒进行热交换后排出的冷量进行有效收集,并可有效控制蓄冷介质的排放。
热泵式洗碗机1包括热泵10、蓄冷介质容器20、第一进液管路31、排液管路41及控制装置,热泵10能够容纳冷媒,蓄冷介质容器20能够容纳与冷媒进行热交换的蓄冷介质,蓄冷介质容器20与热泵10连接,蓄冷介质容器20具有进液口21及出液口22,第一进液管路31与进液口21连接,排液管路41与出液口22连接,且排液管路41能够将蓄冷介质排出到热泵式洗碗机1的壳体外部,控制装置能够控制排液管路41的通断。
以下结合图1所示对热泵式洗碗机1的具体结构进行展开介绍,热泵式洗碗机1包括热泵10、蓄冷介质容器20,第一进液管路31、排液管路41及控制装置(图中未示出)。
热泵10可实现热交换,关于热泵10的具体结构、热泵10实现热交换的原理将在下文进行展开介绍。
热泵10能够容纳冷媒,也即冷媒储存于热泵10中,其中,“冷媒”应该理解成吸热容易转换成气体且放热容易转换成液体的介质,例如,冷媒可以是氟利昂等制冷剂。
蓄冷介质容器20可用于储存其他介质(例如下文介绍的冷媒),这里对蓄冷介质容器20的具体形状和材质不做限定,设计人员可根据不同型号的热泵式洗碗机1对蓄冷介质容器20的形状和材质进行合理设计及选择,且针对不同型号的热泵式洗碗机1,蓄冷介质容器20的形状和材质可以相同也可以不同。
蓄冷介质容器20能够容纳与冷媒进行热交换的蓄冷介质。其中,“热交换”是由于温差而引起的两个物体之间或者同一物体的各部分之间的热量传递的过程,且热量从热流体(温度较高的物体)直接或者间接传递给冷流体(温度较低的物体)。“蓄冷介质”应该理解成通过状态改变(例如从液态转换成固态)来释放相变潜热并蓄存冷量的介质,例如,蓄冷介质可以是水。
蓄冷介质与冷媒属于两种不同的介质,蓄冷介质与冷媒进行热交换的过程中,蓄冷介质释放相变潜热并蓄存冷量,冷媒吸收蓄冷介质释放的相变潜热,也即蓄冷介质所释放的相变潜热从温度较高的蓄冷介质传递给温度较低的冷媒。例如,当蓄冷介质为水时,水释放相变潜热并蓄存冷量转换成冰,冷媒吸收水释放的相变潜热转换成温度较高的冷媒。
蓄冷介质容器20具有进液口21及出液口22,其中,“进液口21”应该理解成供上述蓄冷介质流入蓄冷介质容器20内的开口,“出液口22”应该理解成供上述蓄冷介质流出蓄冷介质容器20外的开口。这里对进液口21和出液口22的具体形状和大小、进液口21和出液口22在蓄冷介质容器20上的相对位置不做限定,设计人员可根据实际需要进行合理设计。
蓄冷介质容器20与热泵10连接,以使容纳于蓄冷介质容器20的蓄冷介质能够与容纳于热泵10的冷媒进行热交换。例如,蓄冷介质容器20与热泵10可以直接连接也可以间接连接,当蓄冷介质容器20与热泵10直接连接时,热泵10的第一换热装置11(下文有介绍,如蒸发器)可以直接位于蓄冷介质容器20内,当蓄冷介质容器20与热泵10间接连接时,热泵10的第一换热装置11位于蓄冷介质容器20外,且热泵式洗碗机1还包括导引管,蓄冷介质容器20经由导引管与热泵10的第一换热装置11连接。关于蓄冷介质容器20与热泵10之间的具体连接方式将在下文进行展开介绍。
第一进液管路31用于流通注入蓄冷介质容器20内的新的蓄冷介质,第一进液管路31与蓄冷介质容器20的进液口21连通,也即新的蓄冷介质可以经由第一进液管路31从进液口21流进蓄冷介质容器20内。这里对第一进液管路31的具体形状和材质不做限定,设计人员可在提高空间利用率和节省成本的基础上进行合理设计。
排液管路41用于流通排出蓄冷介质容器20外的旧的蓄冷介质,排液管路41与蓄冷介质容器20的出液口22连接,且排液管路41能够将蓄冷介质排出到热泵式洗碗机1的壳体外部。其中,热泵式洗碗机1的壳体即为整机外壳,排液管路41的另一端伸出壳体外部后可直接或者间接地被牵引至下水管道。例如,排液管路41的一端与蓄冷介质容器20的出液口22连接,排液管路41的另一端可以直接伸出热泵式洗碗机1的壳体外部而被牵引至下水管道,实现蓄冷介质的排出;或者是,排液管路41的该另一端可以邻近与其对应的壳体开口设置,排液管路41的另一端间接通过一另设的管路与该开口对接而被牵引至下水管道,实现蓄冷介质的排出。排液管路41的另一端伸出热泵式洗碗机1的壳体外部,使旧的蓄冷介质可以从出液口22经由排液管路41流出蓄冷介质容器20外,进而通过该排液管路41排到热泵式洗碗机1的壳体外部。这里对排液管路41的具体形状和材质不做限定,设计人员可在提高空间利用率和节省成本的基础上进行合理设计。
控制装置用于控制排液管路41的通断,也就是说,控制装置可以控制排液管路41导通,以使旧的蓄冷介质从排液口经由排液管路41流出蓄冷介质容器20外,当然,控制装置也可以控制排液管路41关断,以阻断蓄冷介质从排液口经由排液管路41流出蓄冷介质容器20外。关于控制装置的具体结构、控制装置控制排液管路41实现通 断的具体表现方式将在下文进行展开介绍。
基于本申请实施例中的热泵式洗碗机1,通过将蓄冷介质储存于蓄冷介质容器20中,蓄冷介质与热泵10中的冷媒进行热交换后排出的冷量被收集在蓄冷介质容器20中;通过控制装置控制排液管路41导通,以使旧的蓄冷介质从排液口经由排液管路41流出蓄冷介质容器20外,进而通过该排液管路41排到热泵式洗碗机1的壳体外部,以及通过控制装置控制排液管路41关断,以阻断蓄冷介质从排液口经由排液管路41流出蓄冷介质容器20外,以有效控制蓄冷介质的排放。
如图1所示,考虑到每次对餐具进行清洗,蓄冷介质容器20内的蓄冷介质都需要与热泵10内的冷媒进行热交换,为在提升蓄冷介质的利用率的同时降低该热泵式洗碗机1的能耗,故设计,在一种实施例中,控制装置包括控制器,控制器配置成在热泵10运行至预设次数时,使排液管路41导通。也就是说,热泵10运行至预设次数,控制器控制排液管路41导通,旧的蓄冷介质从排液口经由排液管路41流出蓄冷介质容器20外。其中,“预设次数”可以理解成排放蓄冷介质容器20内的旧的蓄冷介质之前热泵10所需要运行的次数,这里对预设次数的具体数值不做限定,设计人员可经反复试验后在餐具清洗达到最优效果的条件下对预设次数进行合理设计。该设计中,通过设计热泵10在运行到预设次数后,控制器控制排液管路41导通,以使蓄冷介质容器20内的蓄冷介质从出液口22经由排液管路41流出蓄冷介质容器20外。预设次数可以为一次或多次,相对于热泵10每运行一次控制器就控制排液管路41导通依次而言,采用运行多次再排出的方式,一方面能够有效提升蓄冷介质的利用率,另一方面能够有效降低该热泵式洗碗机1的能耗。
如图1所示,考虑到排液管路41导通后,蓄冷介质容器20内旧的蓄冷介质可以在重力作用下从排液口经由排液管路41流出蓄冷介质容器20,此时可以在排液管路41上设计排水阀,控制器控制排水阀打开来使排液管路41导通。为提升旧的蓄冷介质从排液口经排液管路41流出蓄冷介质容器20外的速度,故进一步设计,在一种实施例中,热泵式洗碗机1还包括第一排水泵42,第一排水泵42设于排液管路41,热泵10运行至预设次数时,控制器打开第一排水泵42。该设计中,一方面第一排水泵42能够起到排水阀的作用,通过控制器控制第一排水泵42的开闭来控制排液管路41的通断,另一方面第一排水泵42能够起到抽吸机的作用,通过控制器控制第一排水泵42打开以提升旧的蓄冷介质从排液口经排液管路41流出蓄冷介质容器20外的速度。
如图1所示,考虑到旧的蓄冷介质从出液口22经排液管路41流出蓄冷介质容器20后,为保证该热泵式洗碗机1在下次正常工作时能够实现蓄冷介质与冷媒的热交换,故设计,在一种实施例中,热泵式洗碗机1还包括第一进水阀32,控制装置还包括液位传感器51,第一进水阀32设于第一进液管路31,液位传感器51采集蓄冷介质容器20内的蓄冷介质的液位,控制器在液位达到预设范围时,打开第一进水阀32。该设计中,通过设计液位传感器51,液位传感器51用于检测蓄冷介质容器20内的蓄冷介质的液位,以在蓄冷介质的液位处于预设范围时,控制器能够及时打开第一进水阀32,使新的蓄冷介质经由第一进液管路31从进液口21流入蓄冷介质容器20内,从而保证该热泵式洗碗机1在下次正常工作时能够实现蓄冷介质与冷媒的热交换。
具体地,液位传感器51可用于实时监测蓄冷介质容器20内的蓄冷介质的液位,这里对液位传感器51的具体型号不做限定,设计人员可以根据设计和制造的要求选择合适的型号。
液位传感器51可以设置在蓄冷介质容器20的外表面且部分插入蓄冷介质中,液位传感器51也可以设置在蓄冷介质容器20的内表面且至少部分插入蓄冷介质中。
上述“预设范围”应该理解成蓄冷介质中控制器根据液位传感器51所检测到的蓄冷介质的液位控制第一进水阀32处于打开状态时的一个液位区间,换句话说,上述“预设范围”可以包括下限液位值和上限液位值,在蓄冷介质的液位介于下限液位值和上限液位值之间时,控制器控制第一进水阀32处于打开状态。
液位传感器51与控制器连接,以将实时监测到的蓄冷介质的液位所对应的电信号传递给控制器,控制器在接收到相应的电信号后,根据不同的电信号来控制第一进水阀32的打开与关闭。例如,在液位传感器51监测到蓄冷介质的液位处于上述预设范围之外时,液位传感器51向控制器发射第一电信号(例如信号“1”),控制器接收到该第一电信号后,根据该第一电信号控制第一进水阀32关闭,同理,在液位传感器51监测到蓄冷介质的液位处于处于上述预设范围之内时,液位传感器51向控制器发射第二电信号(例如信号“0”),控制器接收到该第二电信号后,根据该第二电信号控制第一进水阀32打开。
如图1所示,考虑到为使旧的蓄冷介质能够尽可能多的从排液口经由排液管路41流出蓄冷介质容器20外,以降低旧的蓄冷介质残留于蓄冷介质容器20内而滋生细菌的可能性,故进一步设计,在一种实施例中,控制器配置成在蓄冷介质容器20内的蓄冷介质的液位处于预设液位时,控制器打开第一进水阀32,预设液位为预设范围的下限值。该设计中,将预设液位设计成预设范围的下限值,实现了控制器对液位传感器51的精确控制,以提升该热泵式洗碗机1的智能性。
例如,可以将蓄冷介质容器20的底面所在平面作为上述预设液位,此时,蓄冷介质容器20内的旧的蓄冷介质在该热泵式洗碗机1的上一次工作中几乎被完全排出蓄冷介质容器20外,控制器打开第一进水阀32,新的蓄冷介质经由第一进液管路31从进液口21流进蓄冷介质容器20内,使得蓄冷介质容器20几乎被新的蓄冷介质填充以供该热泵式洗碗机1在下一次工作中的热交换。
如图1所示,当然,洗碗机还包括洗涤装置60,洗涤装置60包括洗涤腔体61和洗涤泵62,洗涤腔体61与洗涤泵62连通以形成供水回路65,供水回路65用于流通洗涤餐具的水。
其中,洗涤腔体61可以理解成用于盛放待洗涤餐具和洗涤餐具的水的容器,这里对洗涤腔体61的具体形状和材质不做限定,设计人员可根据不同型号的热泵式洗碗机1对洗涤腔体61的形状进行合理设计,设计人员可以根据设计和制造要求对洗涤腔体61的材质进行合理选择。
洗涤泵62用于将洗涤餐具的水从洗涤腔体61中抽出并重新抽送至洗涤腔体61内,以实现对盛放于洗涤腔体61内的餐具进行循环清洗。这里对洗涤泵62的具体型号不做限定,设计人员可在保证洗涤餐具的水能够正常被抽送至洗涤腔体61内的情况下选择合适的洗涤泵62。
洗涤腔体61与洗涤泵62连通以形成供水回路65,例如,洗涤泵62可以与洗涤腔体61的底壁连通,洗涤泵62也可以与洗涤腔体61的侧壁靠近底壁的位置连通。用于洗涤餐具的水通过洗涤泵62从洗涤腔体61中被抽出,并在洗涤泵62的作用下被重新抽送至洗涤腔体61中,以使洗涤餐具的水可循环地在洗涤腔体61和洗涤泵62所形成的供水回路65中流通。
如图1所示,考虑到热泵10用于实现冷媒与蓄冷介质之间的热交换,故设计,热泵10包括第一换热装置11、压缩机12、第二换热装置13和节流装置14,第一换热装置11、压缩机12、第二换热装置13及节流装置14依次连通以形成供冷媒流通的循环回路,第二换热装置13串联连通于洗涤腔体61与洗涤泵62之间以形成供水回路65的一部分。该设计中,蓄冷介质容器20内的蓄冷介质与第一换热装置11中的冷媒进行热交换,经过热交换后的冷媒经过压缩机12并流入第二换热装置13,同供水回路65中的用于洗涤餐具的水进行热交换,使得供水回路65中的用于洗涤餐具的水被加热,并在洗涤泵62的作用下被循环从洗涤腔体61中抽出并重新抽送至洗涤腔体61内,从而实现对洗涤腔体61内的餐具的有效清洗。
其中,第一换热装置11被配置成通过将冷媒与储存于蓄冷介质容器20内的蓄冷介质进行热交换,在进行热交换之前,冷媒为低温低压的液态冷媒,蓄冷介质为液态蓄冷介质,在进行热交换之后,液态蓄冷介质释放相变潜热并蓄存冷量转换成固态蓄冷介质,低温低压的液态冷媒吸收液态蓄冷介质所释放的相变潜热转换成高温低压的气态冷媒。需要注意的是,固态蓄冷介质重新转换成液态蓄冷介质可以是常温条件下的自然融化,当然,为加快固态蓄冷介质重新转换成液态蓄冷介质的速度,也可以额外设置加热结构,这里对加热结构的具体表现形式不做限定,设计人员可以在设计和制造的要求上对现有的加热结构进行选择。
第一换热装置11可以是蒸发器,蒸发器可采用管翅式蒸发器或微通道式蒸发器。
压缩机12配置成将经与第一换热装置11进行热交换后的高温低压的气态冷媒进行加压,使高温低压的气态冷媒经压缩机12后转换成高温高压的气态冷媒。其中,压缩机12可以采用卧式压缩机12也或者立式压缩机12。
第二换热装置13被配置成通过将用于洗涤餐具的水与经由压缩机12压缩后的高温高压的气态冷媒进行热交换,在进行热交换之前,用于洗涤餐具的水为低温低压的液态水,在进行热交换之后,高温高压的气态冷媒释放热量转换成低温高压的液态冷媒,用于洗涤餐具的低温低压的液态水吸收该热量转换成高温低压的液态水,该用于洗涤餐具的高温低压的液态水在洗涤泵62的作用下被抽送至洗涤腔体61内,从而对洗涤腔体61内的餐具进行有效清洗。
第二换热装置13可以是冷凝器或冷凝管,这里对第二换热装置13的具体表现形式不做限定,设计人员可根据实际情况进行选择。
节流装置14配置成将经与第二换热装置13进行热交换后的低温高压的液态冷媒进行降压,使低温高压的液态冷媒经节流装置14后重新转换成低温低压的液态冷媒。
节流装置14可以包括膨胀阀,经过第二换热装置13冷凝后形成的低温高压的液态冷媒经过膨胀阀的节流孔节流后,能够转换成低温低压的雾状的液态冷媒,为下一次冷媒在第一换热装置11中的蒸发创造条件。当然,节流装置14也可以为其他类型,例如毛细管结构等,具体不做限制。
如图1所示,考虑到热泵式洗碗机1在工作之前,需要向洗涤腔体61内注入新的用于洗涤餐具的水,故设计,在一种实施例中,热泵式洗碗机1还包括与洗涤腔体61连通的第二进液管路71,且第二进液管路71与第一进液管路31并联连通。也就是说,第二进液管路71与第一进液管路31形成双模进液模式,第二进液管路71和第一进液管路31可共用一个水源,特别是在蓄冷介质是水的情况下。该设计中,通过设计与洗涤腔体61连通的第二进液 管路71,便于将新的用于洗涤餐具的水注入洗涤腔体61内,以保证该热泵式洗碗机1对餐具的有效清洗,通过设计第二进液管路71与第一进液管路31并联连通,使得第二进液管路71能够与第一进液管路31共用一个水源,简化了该热泵式洗碗机1的水路结构。
如图1所示,考虑到第二进液管路71与第一进液管路31并联连通,为便于实现第二进液管路71和第一进液管路31的水流控制,故进一步设计,在一种实施例中,热泵式洗碗机1还包括软水器80和第二进水阀72,第二进水阀72设于第二进液管路71,软水器80设于第二进水阀72和洗涤腔体61之间。其中,也可以采用上述控制器打开第二进水阀72,例如当需要向洗涤腔体61内注入新的用于洗涤餐具的水时,用户按下触发按钮,触发按钮向控制器发送第三电信号,控制器接收到该第三电信号后,控制第二进水阀72打开,便可使新的用于洗涤餐具的水经由第二进液管路71注入到洗涤腔体61内。该设计中,通过设计第二进水阀72来控制第二进液管路71的通断,能够便于实现第二进液管路71和第一进液管路31的水流的分流控制,通过设计软水器80,软水器80能够对从第二进水阀72经由第二进液管路71流进洗涤腔体61内的水进行软化处理,以优化用于洗涤餐具的水的质量。
当然,在其他实施例中,第一进液管路31和第二进液管路71并联连通,且第一进液管路31的通断和第二进液管路71的通断也可以同时通过第一进水阀32来控制,此时第一进水阀32为换向阀,该换向阀包括一个进水口和两个出水口,换向阀的进水口连接外部水源,换向阀的其一出水口连接第一进液管路31,换向阀的另一出水口连接第二进液管路71,当需要给洗涤腔体61供水时,换向阀切换至与第二进液管路71连接的出水口打开,当需要给蓄冷介质容器20供水时,换向阀切换至与第一进液管路31连接的出水口打开。
如图1所示,为提升该热泵式洗碗机1对餐具的清洁效果,故设计,在一种实施例中,洗涤装置60还包括分水阀63和位于洗涤腔体61内的多个(两个及超过两个)喷臂64,分水阀63的一端与洗涤泵62连通,分水阀63的另一端与多个喷臂64连通。用于洗涤餐具的水在洗涤泵62的作用下被从洗涤腔体61中抽出后,经过分水阀63被分散形成多条水路,并在洗涤泵62的作用下,多条水路被重新抽送至对应的喷臂64中并从喷臂64的喷孔中喷出重新回到洗涤腔体61内。这里对喷臂64的具体数量、形状结构,喷臂64与洗涤腔体61的相对位置关系、连接关系等不做限定,设计人员可根据不同型号的热泵式洗碗机1进行合理设计。
如图1所示,当然,该热泵式洗碗机1还可以包括第二排水泵90,第二排水泵90与洗涤腔体61连通,以将洗涤餐具后形成的污水从洗涤腔体61中抽出。
本实施例的附图中相同或相似的标号对应相同或相似的部件;在本申请的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种热泵式洗碗机,其中,包括:
    热泵,所述热泵能够容纳冷媒;
    蓄冷介质容器,所述蓄冷介质容器能够容纳与所述冷媒进行热交换的蓄冷介质,所述蓄冷介质容器与所述热泵连接,所述蓄冷介质容器具有进液口及出液口;
    第一进液管路,所述第一进液管路与所述进液口连接;
    排液管路,所述排液管路与所述出液口连接,且所述排液管路能够将所述蓄冷介质排出到所述热泵式洗碗机的壳体外部;及,
    控制装置,所述控制装置能够控制所述排液管路的通断。
  2. 如权利要求1所述的热泵式洗碗机,其中,所述控制装置包括控制器,所述控制器配置成在所述热泵运行至预设次数时,使所述排液管路导通。
  3. 如权利要求2所述的热泵式洗碗机,其中,所述热泵式洗碗机还包括第一排水泵,所述第一排水泵设于所述排液管路,所述热泵运行至所述预设次数时,所述控制器打开所述第一排水泵。
  4. 如权利要求2或3所述的热泵式洗碗机,其中,所述热泵式洗碗机还包括第一进水阀,所述控制装置还包括液位传感器,所述第一进水阀设于所述第一进液管路,所述液位传感器采集所述蓄冷介质容器内的所述蓄冷介质的液位,所述控制器在所述液位达到预设范围时,打开所述第一进水阀。
  5. 如权利要求4所述的热泵式洗碗机,其中,所述控制器配置成在所述蓄冷介质容器内的所述蓄冷介质的所述液位处于预设液位时,所述控制器打开所述第一进水阀,其中,所述预设液位为所述预设范围的下限值。
  6. 如权利要求1至5中任一项所述的热泵式洗碗机,其中,所述热泵式洗碗机还包括洗涤装置,所述洗涤装置包括洗涤腔体和洗涤泵,所述洗涤腔体与所述洗涤泵连通以形成供水回路,所述供水回路用于流通洗涤餐具的水。
  7. 如权利要求6所述的热泵式洗碗机,其中,所述热泵包括第一换热装置、压缩机、第二换热装置和节流装置,所述第一换热装置、所述压缩机、所述第二换热装置及所述节流装置依次连通以形成供所述冷媒流通的循环回路,所述第二换热装置串联连通于所述洗涤腔体与所述洗涤泵之间以形成所述供水回路的一部分。
  8. 如权利要求6或7所述的热泵式洗碗机,其中,所述热泵式洗碗机还包括与所述洗涤腔体连通的第二进液管路,且所述第二进液管路与所述第一进液管路并联。
  9. 如权利要求8所述的热泵式洗碗机,其中,所述热泵式洗碗机还包括软水器和第二进水阀,所述第二进水阀设于所述第二进液管路,所述软水器设于所述第二进水阀和所述洗涤腔体之间。
  10. 如权利要求6-9中任一项所述的热泵式洗碗机,其中,所述洗涤装置还包括分水阀和位于所述洗涤腔体内的多个喷臂,所述分水阀的一端与所述洗涤泵连通,所述分水阀的另一端与所述多个喷臂连通。
PCT/CN2023/097579 2022-08-23 2023-05-31 热泵式洗碗机 WO2024041072A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202222227917.8U CN218738854U (zh) 2022-08-23 2022-08-23 热泵式洗碗机
CN202222227917.8 2022-08-23
CN202211011984.4 2022-08-23
CN202211011984.4A CN117652986A (zh) 2022-08-23 2022-08-23 热泵式洗碗机

Publications (1)

Publication Number Publication Date
WO2024041072A1 true WO2024041072A1 (zh) 2024-02-29

Family

ID=90012330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097579 WO2024041072A1 (zh) 2022-08-23 2023-05-31 热泵式洗碗机

Country Status (1)

Country Link
WO (1) WO2024041072A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106606342A (zh) * 2015-10-22 2017-05-03 杭州三花家电热管理系统有限公司 热泵式洗碗机及其控制方法
CN109381143A (zh) * 2017-08-11 2019-02-26 青岛海尔洗碗机有限公司 一种热泵式洗碗机及控制方法
CN109381145A (zh) * 2017-08-11 2019-02-26 青岛海尔洗碗机有限公司 一种热泵式洗碗机及控制方法
CN109620082A (zh) * 2017-10-09 2019-04-16 青岛海尔洗碗机有限公司 一种洗碗机的洗涤水循环系统及洗碗机
CN110662474A (zh) * 2017-05-23 2020-01-07 美诺两合公司 清洗装置和用于操作清洗装置的方法
US20200163530A1 (en) * 2018-11-28 2020-05-28 Lg Electronics Inc. Dishwasher with heat pump
CN218738854U (zh) * 2022-08-23 2023-03-28 佛山市顺德区美的洗涤电器制造有限公司 热泵式洗碗机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106606342A (zh) * 2015-10-22 2017-05-03 杭州三花家电热管理系统有限公司 热泵式洗碗机及其控制方法
CN110662474A (zh) * 2017-05-23 2020-01-07 美诺两合公司 清洗装置和用于操作清洗装置的方法
CN109381143A (zh) * 2017-08-11 2019-02-26 青岛海尔洗碗机有限公司 一种热泵式洗碗机及控制方法
CN109381145A (zh) * 2017-08-11 2019-02-26 青岛海尔洗碗机有限公司 一种热泵式洗碗机及控制方法
CN109620082A (zh) * 2017-10-09 2019-04-16 青岛海尔洗碗机有限公司 一种洗碗机的洗涤水循环系统及洗碗机
US20200163530A1 (en) * 2018-11-28 2020-05-28 Lg Electronics Inc. Dishwasher with heat pump
CN218738854U (zh) * 2022-08-23 2023-03-28 佛山市顺德区美的洗涤电器制造有限公司 热泵式洗碗机

Similar Documents

Publication Publication Date Title
CN106580219B (zh) 洗碗机
KR102595022B1 (ko) 식기세척기
KR102603449B1 (ko) 식기세척기의 제어방법
WO2014198300A1 (en) Washing machine
CN106415136A (zh) 制热热水供给系统
CN107647834B (zh) 热泵式洗碗机
CN108670162A (zh) 洗涤电器
CN218738854U (zh) 热泵式洗碗机
CN215227352U (zh) 洗涤电器
WO2024041072A1 (zh) 热泵式洗碗机
CN109381144B (zh) 一种热泵式洗碗机及控制方法
KR20200064266A (ko) 히트펌프를 구비한 식기세척기
CN208920434U (zh) 空调式洗涤电器
CN109000317B (zh) 空调式洗涤电器
US20230136135A1 (en) Dishwashing Device
CN208910122U (zh) 洗涤电器
CN208920433U (zh) 空调式洗涤电器
CN117652986A (zh) 热泵式洗碗机
CN208920435U (zh) 空调式洗涤电器
CN109620083A (zh) 一种热泵洗碗机
CN109620082A (zh) 一种洗碗机的洗涤水循环系统及洗碗机
CN209315776U (zh) 洗涤电器
CN109381145B (zh) 一种热泵式洗碗机及控制方法
KR101657711B1 (ko) 냉장고의 폐열 활용 시스템
JP7126707B2 (ja) 食器洗浄機の温水生成貯湯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856164

Country of ref document: EP

Kind code of ref document: A1