WO2024041025A1 - 一种igct三电平功率单元试验系统及方法 - Google Patents

一种igct三电平功率单元试验系统及方法 Download PDF

Info

Publication number
WO2024041025A1
WO2024041025A1 PCT/CN2023/091392 CN2023091392W WO2024041025A1 WO 2024041025 A1 WO2024041025 A1 WO 2024041025A1 CN 2023091392 W CN2023091392 W CN 2023091392W WO 2024041025 A1 WO2024041025 A1 WO 2024041025A1
Authority
WO
WIPO (PCT)
Prior art keywords
igct
level power
power unit
voltage
unit
Prior art date
Application number
PCT/CN2023/091392
Other languages
English (en)
French (fr)
Inventor
田凯
袁媛
楚子林
俞智斌
孙传杰
杨敬然
姜一达
李楠
Original Assignee
天津电气科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津电气科学研究院有限公司 filed Critical 天津电气科学研究院有限公司
Publication of WO2024041025A1 publication Critical patent/WO2024041025A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the invention belongs to the technical field of IGCT testing, and in particular is an IGCT three-level power unit testing system and method.
  • the purpose of this invention is to overcome the shortcomings of the existing technology and propose an IGCT three-level converter power experimental method based on synchronous symmetric modulation and temperature estimation models, which can test the device capacity under different load power factors and reversible operation.
  • the temperature rise of the three-level power unit is accurately tested; in addition, the present invention adopts the method of real-time adjustment of PWM pulse width, which further reduces the current ripple compared with the method of directly changing the table look-up angle or table look-up voltage in the general synchronous modulation method. , making the test current closer to the actual situation.
  • the purpose of the present invention is to overcome the shortcomings of the existing technology and propose an IGCT three-level power unit test system and method.
  • the power consumption and heating test of the IGCT three-level power unit using synchronous symmetrical PWM modulation is consistent with the actual working conditions, and the The phase and amplitude of the load current can be adjusted arbitrarily, thereby being able to evaluate the ultimate output capability of large-capacity power electronic devices.
  • the accurate estimation of the temperature of the IGCT three-level power unit it can effectively reduce damage to the IGCT three-level power unit during extreme testing. The probability.
  • An IGCT three-level power unit test system including a rectifier unit, a DC power supply, an intermediate DC side and a load inductor L.
  • the DC power supply is connected to the intermediate DC side, and the output end of the intermediate DC side is connected to the rectification unit and the IGCT three-level power respectively.
  • the input terminal of the inverter unit in the unit, the rectifier unit and the output terminal of the inverter unit in the IGCT three-level power unit are connected through a load inductor L.
  • a test method for an IGCT three-level power unit test system including the following steps:
  • Step 1 The control module changes the pulse width adjustment amount given by the inverter unit in the IGCT three-level power unit according to the relationship between the pulse width adjustment amount and the expanded sinusoidal voltage. A voltage difference is formed at both ends of the load inductor L and is expanded at the same time. The resulting sinusoidal voltage;
  • Step 2 The control module builds the thermal resistance model of the IGCT three-level power unit and calculates the temperature of the IGCT three-level power unit based on different sinusoidal voltages;
  • Step 3 The control module compares the relationship between the temperature of the IGCT three-level power unit and the maximum temperature of the IGCT three-level power unit to obtain the limit current output capability of the tested IGCT three-level power unit.
  • the relationship between the pulse width adjustment amount ⁇ t in step 1 and the expanded sinusoidal voltage u is: based on the PWM pulse voltage generated by the sinusoidal voltage given value U, the ⁇ t time is expanded. When ⁇ t>0, the expanded sinusoidal voltage u The amplitude of the sinusoidal voltage u increases. When ⁇ t ⁇ 0, the amplitude of the expanded voltage u decreases. The given sinusoidal voltage U and the expanded voltage u are added to both ends of the load inductor to form a voltage difference.
  • is the angle of the sinusoidal voltage given value U
  • is the additional angle of the vector angle ⁇ of the sinusoidal voltage given value U
  • ⁇ u is the additional voltage of the sinusoidal voltage given value U.
  • the total power consumption of the PIGCT three-level power unit R jc is the thermal resistance between the IGCT three-level power unit shell, R ch is the thermal resistance between the IGCT three-level power unit shell and the radiator, R ha is Thermal resistance of the radiator, C jc is the heat capacity between the shell of the IGCT three-level power unit, C ch is the heat capacity between the shell of the IGCT three-level power unit and the radiator, C ha is the heat capacity of the radiator, ⁇ jc is IGCT three-level power unit shell layer thermal time constant, ⁇ ch is the IGCT three-level power unit shell-radiator layer thermal time constant, ⁇ ha is the radiator thermal time constant, T a is the ambient temperature.
  • P IGCT conduction is the IGCT conduction loss
  • P switch is the IGCT switching loss
  • P diode conduction is diode
  • the conduction loss of the tube, and the P diode loss is the switching loss of the diode.
  • step 3 is: adjusting the sinusoidal voltage by changing the pulse width adjustment amount, changing the amplitude and phase of the output current, so that the phase difference between the output current phase and the reference voltage U is maintained at 0° or 180°, and gradually Increase the output current amplitude until the measured IGCT three-level power unit junction temperature T j reaches the maximum value, and record the current amplitude at this time.
  • the current amplitude at this time is the limit of the measured IGCT three-level power unit. Current output capability.
  • the control module of the present invention changes the pulse width adjustment amount given by the inverter unit in the IGCT three-level power unit according to the relationship between the pulse width adjustment amount and the expanded sinusoidal voltage.
  • a voltage difference is formed at both ends of the load inductor L.
  • the expanded sinusoidal voltage is obtained;
  • the control module constructs a thermal resistance model of the IGCT three-level power unit, and calculates the IGCT three-level power unit temperature based on different sinusoidal voltages;
  • the control module compares the IGCT three-level power unit temperature with the IGCT three-level According to the relationship between the maximum temperature of the power unit, the ultimate current output capability of the tested IGCT three-level power unit is obtained.
  • the invention can evaluate the limit output capability of large-capacity power electronic devices, and combined with the accurate estimation of the temperature of the IGCT three-level power unit, can effectively reduce the probability of damage to the IGCT three-level power unit during limit testing.
  • the test system of the present invention includes a rectifier unit, an inverter unit, a DC power supply, an intermediate DC side and a load inductor L.
  • the DC power supply is connected to the intermediate DC side, and the output end of the intermediate DC side is connected to the inputs of the rectifier unit and the inverter unit respectively. terminal, the output terminals of the rectifier unit and the inverter unit are connected through the load inductor L.
  • the test system uses synchronous symmetrical PWM modulation to conduct the power consumption and heating test of the IGCT three-level power unit consistent with the actual working conditions, and the load current phase, The amplitude can be adjusted arbitrarily.
  • the present invention is expanded by changing the additional angle ⁇ of the vector angle ⁇ of the sinusoidal voltage given value U and the additional voltage ⁇ u of the sinusoidal voltage given value U, thereby changing the pulse width adjustment amount, and changing the pulse width adjustment amount to adjust the sinusoidal voltage.
  • the present invention is closer to the actual working conditions, the current sinusoidality is better, and the current envelope is stable and has no fluctuations.
  • the current ripple of the present invention is smaller.
  • Figure 1 is a topological structure diagram of the test system of the present invention.
  • Figure 2 is a schematic diagram of the output relationship between the rectifier unit and the inverter unit of the test system of the present invention
  • Figure 3 is a schematic diagram of the sinusoidal voltage given value U and the additional voltage ⁇ u and the additional angle ⁇ of the present invention
  • Figure 4 is a schematic diagram of the pulse width adjustment amount of the present invention and the adjustment of the prior art
  • Figure 5 is a schematic diagram comparing the synchronous symmetric PWM modulation and SPWM modulation adopted in the present invention.
  • Figure 6 is a schematic diagram of the thermal resistance model of the IGCT three-level power unit of the present invention.
  • An IGCT three-level power unit test system as shown in Figure 1, includes a rectifier unit, a DC power supply, an intermediate DC side and a load inductor L.
  • the DC power supply is connected to the intermediate DC side, and the output ends of the intermediate DC side are connected to the rectifier unit respectively.
  • the input end of the inverter unit in the IGCT three-level power unit, the rectifier unit and the output end of the inverter unit in the IGCT three-level power unit are connected through the load inductor L.
  • the test system uses synchronous symmetrical optimized PWM modulation to form rectification The voltage of the unit is given, and an adjustment voltage is added to the reference voltage of the rectified power supply to form the voltage given of the inverter unit.
  • the output level can be deduced in the same way.
  • An IGCT three-level power unit testing system and method includes the following steps:
  • Step 1 The control module changes the pulse width adjustment amount given by the inverter unit in the IGCT three-level power unit according to the relationship between the pulse width adjustment amount and the expanded sinusoidal voltage. A voltage difference is formed at both ends of the load inductor L and is expanded at the same time. the resulting sinusoidal voltage.
  • ⁇ and ⁇ u the amplitude and phase of the output current can be adjusted arbitrarily.
  • the relationship between the pulse width adjustment amount ⁇ t and the expanded sinusoidal voltage u is: the ⁇ t time is expanded based on the PWM pulse voltage generated by the sinusoidal voltage given value U. When ⁇ t>0, the amplitude of the expanded sinusoidal voltage u increases. When When ⁇ t ⁇ 0, the amplitude of the expanded voltage u decreases.
  • the sinusoidal voltage given value U and the expanded voltage u are added to both ends of the load inductor to form a voltage difference. The voltage fluctuation caused by this method is later than the conventional table lookup. The angle approach is much smaller.
  • one end of the load inductor is the PWM voltage U formed by the table lookup, and the other end forms the PWM voltage u by delaying the table lookup angle.
  • the voltage difference between the two is added to the load inductor.
  • a load current is formed at both ends.
  • This method forms the output current by adjusting the output phase difference.
  • the disadvantage is that the load current ripple is large. This method greatly reduces the current ripple by changing ⁇ and ⁇ u and converting ⁇ t into ⁇ t to participate in the pulse given by the inverter unit, and the current phase amplitude is arbitrarily adjustable.
  • Figure 5 shows a test comparison chart between the present invention and the conventional SPWM modulation method at a switching frequency of 700Hz.
  • Channel 1 is the output voltage PWM waveform on both sides
  • channel 2 is the inductor voltage drop and output current.
  • this method has better current sinusoidality and symmetrical voltage synchronization, while the conventional SPWM modulation method has slightly worse current waveform and PWM voltage pulse. There are random fluctuations in the width.
  • Step 2 The control module builds the thermal resistance model of the IGCT three-level power unit and calculates the temperature of the IGCT three-level power unit based on different sinusoidal voltages.
  • the thermal resistance model and its calculation method used in this step refer to the ZL202110521626.7 patent for modeling an IGCT water-cooled radiator and its junction temperature calculation method.
  • P is the total power consumption of the IGCT three-level power unit
  • R jc is the thermal resistance between the IGCT three-level power unit shell
  • R ch is the thermal resistance between the IGCT three-level power unit shell and the radiator
  • R ha is the heat sink thermal resistance
  • C jc is the heat capacity between the IGCT three-level power unit shell
  • C ch is the heat capacity between the IGCT three-level power unit shell and the radiator
  • C ha is the heat sink heat capacity
  • ⁇ jc is the thermal time constant of the IGCT three-level power unit shell layer
  • ⁇ ch is the thermal time constant of the IGCT three-level power unit shell-radiator layer
  • ⁇ ha is the thermal time constant of the radiator
  • T a is the ambient temperature.
  • P IGCT conduction is the IGCT conduction loss
  • P switch is the IGCT switching loss
  • P diode conduction is the conduction loss of the diode
  • P diode loss is the switching loss of the diode.
  • the conduction loss of IGCT is related to conduction voltage drop, resistivity, and conduction current.
  • P IGCT conduction is the IGCT conduction power
  • I T is the current flowing through the IGCT
  • V (T0) is the conduction voltage drop
  • r T is the conduction resistance
  • the switching loss of IGCT consists of conduction loss and turn-off loss, which is related to switching frequency, switching moment current, and DC bus voltage.
  • P IGCT loss P on +P off
  • P on and P off are the switching power of the IGCT converted into one calculation period
  • V D is the DC bus voltage
  • I T is the current flowing through the IGCT
  • E on and E off are the IGCT turn-on and turn-off losses each time. of energy
  • T s is the calculation period.
  • the conduction loss of IGCT is related to conduction voltage drop, resistivity, and conduction current.
  • P diode conduction V F0 *I F +r F *I F 2
  • P diode conduction is the diode conduction power
  • I F is the current flowing through the diode
  • V F0 is the conduction voltage drop
  • r F is the conduction resistance
  • the switching loss of the diode mainly refers to the reverse recovery loss during the turn-off process. This value is related to the shutdown current, DC bus voltage, and shutdown current change rate.
  • P off is the diode turn-off loss
  • (di/dt crit ) is the turn-off current change rate
  • I F is the turn-off current
  • V DC-Link is the DC bus voltage
  • E rr is the turn-off energy
  • T s is Calculation cycle
  • Step 3 The control module compares the relationship between the temperature of the IGCT three-level power unit and the maximum temperature of the IGCT three-level power unit to obtain the limit current output capability of the tested IGCT three-level power unit.
  • the sinusoidal voltage is adjusted, and the amplitude and phase of the output current are changed, so that the output current
  • the phase difference between the current phase and the reference voltage U is maintained at 0° or 180°, and the output current amplitude is gradually increased until the measured IGCT three-level power unit junction temperature T j reaches the maximum value, and the current amplitude at this time is recorded.
  • the current amplitude at this time is the ultimate current output capability of the tested IGCT three-level power unit.

Abstract

本发明涉及一种IGCT三电平功率单元试验系统及方法,控制模块根据脉宽调节量与扩展后正弦电压的关系,改变IGCT三电平功率单元中逆变单元给定的脉宽调节量,负载电感L的两端形成电压差,同时得到扩展后的正弦电压;控制模块构建IGCT三电平功率单元热阻模型,并根据不同的正弦电压计算IGCT三电平功率单元温度;控制模块比较IGCT三电平功率单元温度与IGCT三电平功率单元温度最大值的关系,得到被测IGCT三电平功率单元的极限电流输出能力。本发明能够评估大容量电力电子装置的极限输出能力,结合了对IGCT三电平功率单元温度的准确估计,可有效减少极限测试时IGCT三电平功率单元损坏的概率。

Description

一种IGCT三电平功率单元试验系统及方法 技术领域
本发明属于IGCT测试技术领域,尤其是一种IGCT三电平功率单元试验系统及方法。
背景技术
随着工业电力系统的高速发展,各种MVA级大容量电力电子装置在冶金、机车电力牵引、大型船舶电力推进和电厂发电机励磁系统中应运而生。大容量电力电子装置的极限输出能力是重要的试验内容之一,对于大功率或超大功率变频器,因受试验设备容量、电源容量等因素,难以对装置的最大输出能力进行测试。如今大功率IGCT三电平变流器常采用同步对称优化PWM调制降低电流谐波、提高输出功率,而已报道的测试方法大多采用SPWM进行额定功率等效近似测试,其测试条件与实际运行工况存在较大误差,无法实现装置极限输出能力的准确评估,进而限制了IGCT等IGCT三电平功率单元能力的充分利用。本发明的目的在于克服现有技术不足,提出基于同步对称调制及温度估计模型的IGCT三电平变流器功率实验方法,可测试不同负载功率因数下、可逆运行下的装置容量,对功率IGCT三电平功率单元温升进行准确测试;此外本发明采用PWM脉宽实时调节的方式,相比于一般同步调制方法中直接改变查表角度或查表电压的方式,进一步减小了电流纹波,使测试电流更贴近实际情况。
发明内容
本发明的目的在于克服现有技术的不足,提出一种IGCT三电平功率单元试验系统及方法,采用同步对称PWM调制进行IGCT三电平功率单元功耗发热测试与实际工况一致,且做到负载电流相位、幅值任意调节,进而能够评估大容量电力电子装置的极限输出能力,结合了对IGCT三电平功率单元温度的准确估计,可有效减少极限测试时IGCT三电平功率单元损坏的概率。
本发明解决其技术问题是采取以下技术方案实现的:
一种IGCT三电平功率单元试验系统,包括整流单元、直流电源、中间直流侧和负载电感L,其中直流电源连接中间直流侧,中间直流侧的输出端分别连接整流单元和IGCT三电平功率单元中逆变单元的输入端,整流单元和IGCT三电平功率单元中逆变单元的输出端之间通过负载电感L相连。
一种IGCT三电平功率单元试验系统的试验方法,包括以下步骤:
步骤1、控制模块根据脉宽调节量与扩展后正弦电压的关系,改变IGCT三电平功率单元中逆变单元给定的脉宽调节量,负载电感L的两端形成电压差,同时得到扩展后的正弦电压;
步骤2、控制模块构建IGCT三电平功率单元热阻模型,并根据不同的正弦电压计算IGCT三电平功率单元温度;
步骤3、控制模块比较IGCT三电平功率单元温度与IGCT三电平功率单元温度最大值的关系,得到被测IGCT三电平功率单元的极限电流输出能力。
而且,所述步骤1的中脉宽调节量Δt与扩展后正弦电压u的关系为:在正弦电压给定值U生成的PWM脉冲电压基础上扩展Δt时间,当Δt>0时,扩展后的正弦电压u幅值增加,当Δt<0时,扩展后的电压u幅值减小,正弦电压给定值U和扩展后的电压u加在负载电感两端形成电压差。
而且,所述脉宽调节量Δt的调节方法为:
Δt=sin(θ+Δθ)*Δu
其中,θ为正弦电压给定值U的角度,Δθ为正弦电压给定值U的向量角θ的附加角度,Δu为正弦电压给定值U的附加电压。
而且,所述步骤2中IGCT三电平功率单元热阻模型为:

τjc=Rjc*Cjc
τch=Rch*Cch
τha=Rha*Cha
其中,PIGCT三电平功率单元的总功耗,Rjc是IGCT三电平功率单元结壳之间热阻,Rch是IGCT三电平功率单元壳与散热器之间热阻,Rha是散热器热阻,Cjc是IGCT三电平功率单元结壳之间热容,Cch是IGCT三电平功率单元壳与散热器之间热容,Cha是散热器热容,τjc是IGCT三电平功率单元结壳层热时间常数,τch是IGCT三电平功率单元壳-散热器层热时间常数,τha是散热器热时间常数,Ta是环境温度。
而且,所述IGCT三电平功率单元的总功耗P的计算方法为:
P=PIGCT导通+PIGCT损耗+P二极极导通+P二极管损耗
其中,PIGCT导通为IGCT导通损耗,P开关为IGCT开关损耗,P二极极导通为二极管的导通损耗,P二极管损耗为二极管的开关损耗。
而且,所述步骤3的具体实现方法为:通过改变脉宽调节量调节正弦电压,改变输出电流的幅值和相位,使输出电流相位与基准电压U相位差保持为0°或180°,逐渐加大输出电流幅值,直到测得的IGCT三电平功率单元结温Tj达到最大值,记录此时的电流幅值,此时的电流幅值为被测IGCT三电平功率单元的极限电流输出能力。
本发明的优点和积极效果是:
1、本发明的控制模块根据脉宽调节量与扩展后正弦电压的关系,改变IGCT三电平功率单元中逆变单元给定的脉宽调节量,负载电感L的两端形成电压差,同时得到扩展后的正弦电压;控制模块构建IGCT三电平功率单元热阻模型,并根据不同的正弦电压计算IGCT三电平功率单元温度;控制模块比较IGCT三电平功率单元温度与IGCT三电平功率单元温度最大值的关系,得到被测IGCT三电平功率单元的极限电流输出能力。本发明能够评估大容量电力电子装置的极限输出能力,结合了对IGCT三电平功率单元温度的准确估计,可有效减少极限测试时IGCT三电平功率单元损坏的概率。
2、本发明的试验系统包括整流单元、逆变单元、直流电源、中间直流侧和负载电感L,其中直流电源连接中间直流侧,中间直流侧的输出端分别连接整流单元和逆变单元的输入端,整流单元和逆变单元的输出端之间通过负载电感L相连,试验系统采用同步对称PWM调制进行IGCT三电平功率单元功耗发热测试与实际工况一致,且做到负载电流相位、幅值任意调节。
3、本发明通过改变正弦电压给定值U的向量角θ的附加角度Δθ以及正弦电压给定值U的附加电压Δu,进而改变脉宽调节量,改变脉宽调节量调节正弦电压,得到扩展后的正弦电压,本发明相对对于常规SPWM方法更加贴近实际工况,电流正弦度更好且电流包络线稳定无波动。本发明相对于常规推迟查表角度的方法,电流纹波更小。
附图说明
图1为本发明试验系统的拓扑结构图;
图2为本发明试验系统整流单元和逆变单元输出关系示意图;
图3为本发明正弦电压给定值U和附加电压Δu附加角度Δθ的示意图;
图4为本发明脉宽调节量与现有技术调节的示意图;
图5为本发明采用的同步对称PWM调制与SPWM调制对比示意图;
图6为本发明IGCT三电平功率单元热阻模型示意图。
具体实施方式
以下结合附图对本发明做进一步详述。
一种IGCT三电平功率单元试验系统,如图1所示,包括整流单元、直流电源、中间直流侧和负载电感L,其中直流电源连接中间直流侧,中间直流侧的输出端分别连接整流单元和IGCT三电平功率单元中逆变单元的输入端,整流单元和IGCT三电平功率单元中逆变单元的输出端之间通过负载电感L相连,试验系统采用同步对称优化PWM调制方式形成整流单元的电压给定,在整流电源的基准电压给定基础上附加调节电压,形成逆变单元的电压给定。
其原理如图2所示,整流单元和逆变单元电压给定为U、θ,不同的U对应不同开关角度α1、α2...αn
当θ<180°时,
0<θ<α1,输出零电平
α1<θ<α2,输出正电平
依此类推
当θ>180°时,θ2=θ-180°
0<θ21,输出零电平
α122,输出负电平
...
输出电平依此类推。
一种IGCT三电平功率单元试验系统及方法,包括以下步骤:
步骤1、控制模块根据脉宽调节量与扩展后正弦电压的关系,改变IGCT三电平功率单元中逆变单元给定的脉宽调节量,负载电感L的两端形成电压差,同时得到扩展后的正弦电压。
同步对称PWM调制形成了整流单元和逆变单元的正弦电压给定U,再在逆变单元电压U的基础上附加电压Δu,将其转化成脉宽调节量Δt=sin(θ+Δθ)*Δu,如图3所示,整流单元和逆变单元输出电压就在负载电抗两端形成电压差,通过改变Δθ和Δu即可任意调节输出电流的幅值和相位。
脉宽调节量Δt与扩展后正弦电压u的关系为:在正弦电压给定值U生成的PWM脉冲电压基础上扩展Δt时间,当Δt>0时,扩展后的正弦电压u幅值增加,当Δt<0时,扩展后的电压u幅值减小,正弦电压给定值U和扩展后的电压u加在负载电感两端形成电压差,此方法进行调节形成的电压波动比常规推迟查表角度的方法要小很多。
如图4所示,常规推迟查表角度的方法,负载电感一端是查表形成的PWM电压U,另一端通过推迟查表角度形成PWM电压u,两者电压差加在负载电感两端形成负载电流,该方法通过调节输出相位差的方式形成输出电流,缺点是负载电流纹波较大。本方法通过改变Δθ和Δu再转化成的Δt参与到逆变单元脉冲给定的方式,大幅减小了电流纹波,且电流相位幅值任意可调。
如图5所示为本发明与常规SPWM调制方法在700Hz开关频率下的测试对比图。通道1是两侧的输出电压PWM波形,通道2是电感压降和输出电流,从图中可知,本方法电流正弦度更好且电压同步对称,常规SPWM调制方法电流波形稍差且PWM电压脉宽存在随机波动。
步骤2、控制模块构建IGCT三电平功率单元热阻模型,并根据不同的正弦电压计算IGCT三电平功率单元温度。本步骤中采用的热阻模型及其计算方法,参考一种IGCT水冷散热器建模及其结温计算方法ZL202110521626.7专利。
如图6所示,IGCT三电平功率单元热阻模型为:

τjc=Rjc*Cjc
τch=Rch*Cch
τha=Rha*Cha
其中,P为IGCT三电平功率单元的总功耗,Rjc是IGCT三电平功率单元结壳之间热阻,Rch是IGCT三电平功率单元壳与散热器之间热阻,Rha是散热器热阻,Cjc是IGCT三电平功率单元结壳之间热容,Cch是IGCT三电平功率单元壳与散热器之间热容,Cha是散热器热容,τjc是IGCT三电平功率单元结壳层热时间常数,τch是IGCT三电平功率单元壳-散热器层热时间常数,τha是散热器热时间常数,Ta是环境温度。
IGCT三电平功率单元的总功耗P的计算方法为:
P=PIGCT导通+PIGCT损耗+P二极极导通+P二极管损耗
其中,PIGCT导通为IGCT导通损耗,P开关为IGCT开关损耗,P二极极导通为二极管的导通损耗,P二极管损耗为二极管的开关损耗。
IGCT导通损耗:
IGCT的导通损耗与导通压降、电阻率、导通电流有关。
PIGCT导通=V(T0)*IT+rT*IT 2
其中PIGCT导通是IGCT导通功率,IT是流过IGCT的电流,V(T0)是导通压降,rT是导通电阻。
IGCT开关损耗:
IGCT的开关损耗由导通损耗和关断损耗组成,它与开关频率、开关时刻电流、直流母线电压有关。
PIGCT损耗=Pon+Poff
上式中Pon和Poff是IGCT折算到一个计算周期内的开关功率,VD是直流母线电压,IT是流过IGCT的电流,Eon、Eoff是IGCT每次开通、关断损耗的能量,Ts是计算周期。
二极管的导通损耗:
IGCT的导通损耗与导通压降、电阻率、导通电流有关。
P二极管导通=VF0*IF+rF*IF 2
上式中P二极管导通是二极管导通功率,IF是流过二极管的电流,VF0是导通压降,rF是导通电阻。
二极管的开关损耗
二极管的开关损耗主要指关断过程中的反向恢复损耗。该值与关断电流、直流母线电压、关断电流变化速率有关。
上式中Poff是二极管关断损耗,(di/dtcrit)是关断电流变化速率,IF是关断电流,VDC-Link是直流母线电压,Err是关断能量,Ts是计算周期
步骤3、控制模块比较IGCT三电平功率单元温度与IGCT三电平功率单元温度最大值的关系,得到被测IGCT三电平功率单元的极限电流输出能力。
通过改变脉宽调节量调节正弦电压,改变输出电流的幅值和相位,使输出电 流相位与基准电压U相位差保持为0°或180°,逐渐加大输出电流幅值,直到测得的IGCT三电平功率单元结温Tj达到最大值,记录此时的电流幅值,此时的电流幅值为被测IGCT三电平功率单元的极限电流输出能力。
需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (7)

  1. 一种IGCT三电平功率单元试验系统,其特征在于:包括控制模块、整流单元、直流电源、中间直流侧和负载电感L,所述直流电源连接中间直流侧,中间直流侧的输出端分别连接整流单元和IGCT三电平功率单元中逆变单元的输入端,控制模块的输出端连接IGCT三电平功率单元中逆变单元的输入端,整流单元和IGCT三电平功率单元中逆变单元的输出端之间通过负载电感L相连。
  2. 一种如权利要求1所述的IGCT三电平功率单元试验系统的试验方法,其特征在于:包括以下步骤:
    步骤1、控制模块根据脉宽调节量与扩展后正弦电压的关系,改变IGCT三电平功率单元中逆变单元给定的脉宽调节量,负载电感L的两端形成电压差,同时得到扩展后的正弦电压;
    步骤2、控制模块构建IGCT三电平功率单元热阻模型,并根据不同的正弦电压计算IGCT三电平功率单元温度;
    步骤3、控制模块比较IGCT三电平功率单元温度与IGCT三电平功率单元温度最大值的关系,得到被测IGCT三电平功率单元的极限电流输出能力。
  3. 根据权利要求2所述的一种IGCT三电平功率单元试验系统的试验方法,其特征在于:所述步骤1的中脉宽调节量Δt与扩展后的正弦电压u的关系为:在正弦电压给定值U生成的PWM脉冲电压基础上扩展Δt时间,当Δt>0时,扩展后的正弦电压u幅值增加,当Δt<0时,扩展后的电压u幅值减小,整流单元输出电压为给定值U,IGCT三电平功率单元中逆变单元输出电压为扩展后的电压u加在负载电感两端形成电压差。
  4. 根据权利要求2所述的一种IGCT三电平功率单元试验系统的试验方法,其特征在于:所述脉宽调节量Δt的调节方法为:
    Δt=sin(θ+Δθ)*Δu
    其中,θ为正弦电压给定值U的角度,Δθ为正弦电压给定值U的向量角θ的附加角度,Δu为正弦电压给定值U的附加电压。
  5. 根据权利要求2所述的一种IGCT三电平功率单元试验系统的试验方法,其特征在于:所述步骤2中IGCT三电平功率单元热阻模型为:

    τjc=Rjc*Cjc
    τch=Rch*Cch
    τha=Rha*Cha
    其中,PIGCT三电平功率单元的总功耗,Rjc是IGCT三电平功率单元结壳之间热阻,Rch是IGCT三电平功率单元壳与散热器之间热阻,Rha是散热器热阻,Cjc是IGCT三电平功率单元结壳之间热容,Cch是IGCT三电平功率单元壳与散热器之间热容,Cha是散热器热容,τjc是IGCT三电平功率单元结壳层热时间常数,τch是IGCT三电平功率单元壳-散热器层热时间常数,τha是散热器热时间常数,Ta是环境温度。
  6. 根据权利要求4所述的一种IGCT三电平功率单元试验系统的试验方法,其特征
    在于:所述IGCT三电平功率单元的总功耗P的计算方法为:
    P=PIGCT导通+PIGCT损耗+P二极极导通+P二极管损耗
    其中,PIGCT导通为IGCT导通损耗,P开关为IGCT开关损耗,P二极极导通为二极管的导通损耗,P二极管损耗为二极管的开关损耗。
  7. 根据权利要求2所述的一种IGCT三电平功率单元试验系统的试验方法,其特征在于:所述步骤3的具体实现方法为:通过改变脉宽调节量调节正弦电压,改变输出电流的幅值和相位,使输出电流相位与基准电压U相位差保持为0°或180°,逐渐加大输出电流幅值,直到测得的IGCT三电平功率单元结温Tj达到最大值,记录此时的电流幅值,此时的电流幅值为被测IGCT三电平功率单元的极限电流输出能力。
PCT/CN2023/091392 2022-08-26 2023-04-27 一种igct三电平功率单元试验系统及方法 WO2024041025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211031122.8A CN115308515B (zh) 2022-08-26 2022-08-26 一种igct三电平功率单元试验系统及方法
CN202211031122.8 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024041025A1 true WO2024041025A1 (zh) 2024-02-29

Family

ID=83863814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091392 WO2024041025A1 (zh) 2022-08-26 2023-04-27 一种igct三电平功率单元试验系统及方法

Country Status (2)

Country Link
CN (1) CN115308515B (zh)
WO (1) WO2024041025A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2023792B1 (en) 2019-08-16 2021-03-24 Illumina Inc Method for measuring thermal resistance at interface between consumable and thermocycler
CN115308515B (zh) * 2022-08-26 2024-02-20 天津电气科学研究院有限公司 一种igct三电平功率单元试验系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049760A (zh) * 1989-08-23 1991-03-06 三菱电机株式会社 具有温度补偿的脉冲宽度调制型逆变器
CN102508072A (zh) * 2011-11-03 2012-06-20 天津电气传动设计研究所 采用有源前端的大功率三电平变频器温升和损耗试验方法
CN102508073A (zh) * 2011-11-03 2012-06-20 天津电气传动设计研究所 采用有源前端的大功率变频器负载试验装置
CN105044411A (zh) * 2015-09-02 2015-11-11 荣信电力电子股份有限公司 一种负载电流含直流分量的功率模块通流试验平台
KR20160054769A (ko) * 2014-11-07 2016-05-17 삼성중공업 주식회사 전력변환장치의 시험장치
CN108574305A (zh) * 2018-05-22 2018-09-25 国电南京自动化股份有限公司 具有回馈功能的级联型高压变频器功率单元负载平台
CN108802590A (zh) * 2018-06-22 2018-11-13 华北电力大学 一种半导体器件的功率循环测试方法及测试系统
CN109283418A (zh) * 2018-11-28 2019-01-29 天津农学院 一种通用变频器的出厂功率测试试验方法
CN113395000A (zh) * 2021-06-11 2021-09-14 天津电气科学研究院有限公司 基于电流观测器的pwm脉宽动态调节及其中点平衡方法
CN115308515A (zh) * 2022-08-26 2022-11-08 天津电气科学研究院有限公司 一种igct三电平功率单元试验系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015225909A1 (de) * 2015-12-18 2017-06-22 Zf Friedrichshafen Ag Verfahren und Vorrichtung zur Detektion einer Alterung einer ein Halbleiterbauelement umfassenden leistungselektronischen Vorrichtung und leistungelektronisches System
CN113420407B (zh) * 2021-05-13 2022-04-15 天津电气科学研究院有限公司 一种igct水冷散热器建模及其结温计算方法
CN113676071B (zh) * 2021-08-18 2023-02-03 中车青岛四方车辆研究所有限公司 三电平辅助逆变器控制方法
CN114678884A (zh) * 2021-11-08 2022-06-28 许继电气股份有限公司 一种用于低频输电变流器子模块的运行试验方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049760A (zh) * 1989-08-23 1991-03-06 三菱电机株式会社 具有温度补偿的脉冲宽度调制型逆变器
CN102508072A (zh) * 2011-11-03 2012-06-20 天津电气传动设计研究所 采用有源前端的大功率三电平变频器温升和损耗试验方法
CN102508073A (zh) * 2011-11-03 2012-06-20 天津电气传动设计研究所 采用有源前端的大功率变频器负载试验装置
KR20160054769A (ko) * 2014-11-07 2016-05-17 삼성중공업 주식회사 전력변환장치의 시험장치
CN105044411A (zh) * 2015-09-02 2015-11-11 荣信电力电子股份有限公司 一种负载电流含直流分量的功率模块通流试验平台
CN108574305A (zh) * 2018-05-22 2018-09-25 国电南京自动化股份有限公司 具有回馈功能的级联型高压变频器功率单元负载平台
CN108802590A (zh) * 2018-06-22 2018-11-13 华北电力大学 一种半导体器件的功率循环测试方法及测试系统
CN109283418A (zh) * 2018-11-28 2019-01-29 天津农学院 一种通用变频器的出厂功率测试试验方法
CN113395000A (zh) * 2021-06-11 2021-09-14 天津电气科学研究院有限公司 基于电流观测器的pwm脉宽动态调节及其中点平衡方法
CN115308515A (zh) * 2022-08-26 2022-11-08 天津电气科学研究院有限公司 一种igct三电平功率单元试验系统及方法

Also Published As

Publication number Publication date
CN115308515B (zh) 2024-02-20
CN115308515A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2024041025A1 (zh) 一种igct三电平功率单元试验系统及方法
CN101710797B (zh) Z源型并网逆变器的电流预测无差拍控制方法及其控制装置
EP2398140B1 (en) Adjustable speed drive lifetime improvement method
CN102508072B (zh) 采用有源前端的大功率三电平变频器温升和损耗试验方法
CN102291008A (zh) 用于双馈感应发电机的转换器使用期限改善方法
CN107944209A (zh) 一种计算光伏逆变器元器件igbt工作温度的方法
WO2022016897A1 (zh) 一种直流母线的电压控制方法及装置和电力系统
Wang et al. The loss analysis and efficiency optimization of power inverter based on SiC mosfet s under the high-switching frequency
CN107888096B (zh) 一种三相两桥臂三电平混合整流器
CN107525990A (zh) 多电平功率变换器状态监测系统及功率器件损耗计算方法
JP2023542564A (ja) 電池パック加熱方法、電池加熱システム及び電力消費装置
CN113517821A (zh) 基于高变比变压器的电解制氢整流电源及控制方法
CN112186307A (zh) 一种锂电池加热装置及加热方法
CN112217224A (zh) 一种直流微电网的灵活虚拟同步发电机控制方法
CN114172382A (zh) 输出并联型双有源桥式变流器及热分布优化方法
WO2022011521A1 (zh) 逆变器无功电流控制方法及装置
CN110034685B (zh) 基于Si-IGBT和SiC-MOSFET混合开关的串联谐振型双有源桥变换器
CN107785934B (zh) 五相光伏逆变器系统及其控制方法
CN202221967U (zh) 一种基于空间矢量新型算法的三相pwm整流装置
CN115622421A (zh) 一种基于多采样技术的电池模拟器的控制方法
CN115173714A (zh) 一种三相clllc谐振变换器轻载运行控制系统及方法
Yin et al. Evaluation of power loss and efficiency for 50 kW SiC high power density converter
CN204536976U (zh) 一种实现新型最大功率跟踪算法的光伏控制装置
Zhu et al. Optimized design of an onboard resonant self-heater for automotive lithium-ion batteries at cold climates
He et al. SiC MOSFET zero-voltage-switching SVM controlled three-phase grid inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856119

Country of ref document: EP

Kind code of ref document: A1