WO2024040972A1 - 电池系统和电池包连接状态识别方法 - Google Patents

电池系统和电池包连接状态识别方法 Download PDF

Info

Publication number
WO2024040972A1
WO2024040972A1 PCT/CN2023/085153 CN2023085153W WO2024040972A1 WO 2024040972 A1 WO2024040972 A1 WO 2024040972A1 CN 2023085153 W CN2023085153 W CN 2023085153W WO 2024040972 A1 WO2024040972 A1 WO 2024040972A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
voltage
battery
signal line
voltage value
Prior art date
Application number
PCT/CN2023/085153
Other languages
English (en)
French (fr)
Inventor
施海驹
黄成成
Original Assignee
如果新能源科技(江苏)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 如果新能源科技(江苏)股份有限公司 filed Critical 如果新能源科技(江苏)股份有限公司
Publication of WO2024040972A1 publication Critical patent/WO2024040972A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of new energy technology, and in particular to a method for identifying the connection status of a battery system and a battery pack.
  • a battery system including:
  • Signal lines are controllably connected to each of the battery packs.
  • a detection and judgment module is used to obtain the voltage value of the signal line, and determine at least one selected from a group consisting of a connection mode and a relative position between a plurality of battery packs based on the voltage value.
  • a method for identifying battery pack connection status is also provided, which method is applied to the first battery pack in a battery system composed of at least one first battery pack and at least one second battery pack. , the method includes:
  • connection state between the first battery pack and the second battery pack is determined according to the voltage value.
  • Figure 1 is a schematic structural diagram of a battery pack in an embodiment
  • Figure 2 is a schematic structural diagram of a control module in an embodiment
  • Figure 3 is a schematic structural diagram of the first voltage access module and the second voltage access module in one embodiment
  • Figure 4 is a schematic structural diagram of a voltage dividing circuit, a first voltage access module and a second voltage access module in one embodiment
  • Figure 5 is another structural schematic diagram of the voltage dividing circuit, the first voltage access module and the second voltage access module in one embodiment
  • Figure 6 is a schematic structural diagram of the voltage measurement circuit of the detection and judgment module in one embodiment
  • Figure 7 is a schematic structural diagram of a battery system in an embodiment
  • Figure 8 is a schematic diagram of the specific structure of the battery system in one embodiment
  • Figure 9 is a schematic structural diagram of a battery pack in another embodiment
  • Figure 10 is a schematic structural diagram of the voltage access module and voltage sampling module of the battery pack in another embodiment
  • Figure 11 is a schematic structural diagram of a battery system in another embodiment
  • Figure 12 is a schematic flowchart of a method for identifying battery pack connection status in one embodiment
  • Figure 13 is a schematic flowchart of a method for identifying battery pack connection status in another embodiment
  • Figure 14 is a schematic flowchart of the steps of determining the control host in one embodiment
  • Figure 15 is a schematic flow chart of measuring the voltage value on the signal line in one embodiment
  • Figure 16 is a schematic flow chart of measuring the voltage value on the signal line in another embodiment
  • Figure 17 is a schematic flowchart of determining the connection status between the first battery pack and the second battery pack in one embodiment
  • Figure 18 is a schematic flowchart of the steps of determining the battery pack connection status in one embodiment
  • Figure 19 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack and the first voltage access module and the second voltage access module in one embodiment
  • Figure 20 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack and the first voltage access module and the second voltage access module in one embodiment
  • Figure 21 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack, as well as the voltage access module and the voltage sampling module in one embodiment;
  • Figure 22 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack as well as the voltage access module and the voltage sampling module in one embodiment;
  • Figure 23 is a schematic flow chart of the steps of determining the battery pack connection status
  • Figure 24 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack and the first voltage access module and the second voltage access module in one embodiment
  • Figure 25 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack and the first voltage access module and the second voltage access module in one embodiment
  • Figure 26 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack, as well as the voltage access module and the voltage sampling module in one embodiment;
  • Figure 27 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack as well as the voltage access module and the voltage sampling module in one embodiment;
  • Figure 28 is a schematic flow chart of the steps of determining the battery pack connection status
  • Figure 29 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack as well as the voltage access module and the voltage sampling module in one embodiment;
  • Figure 30 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack, as well as the voltage access module and the voltage sampling module in one embodiment;
  • Figure 31 is a schematic flow chart of the steps of determining the battery pack connection status
  • Figure 32 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack, as well as the voltage access module and the voltage sampling module in one embodiment;
  • Figure 33 is a schematic structural diagram of the relative positions of the first battery pack and the second battery pack as well as the voltage access module and the voltage sampling module in one embodiment;
  • Figure 34 is a schematic diagram of a hybrid connection structure of multiple battery packs in one embodiment.
  • first, second, third, etc. may be used herein to describe various parameters or modules, these parameters or modules should not be limited to these terms. These terms are only used to distinguish parameters or modules of the same type from each other.
  • a first parameter may also be referred to as a second parameter, and similarly, a second parameter may also be referred to as a first parameter.
  • the words “if” or “if” as used herein may be interpreted as “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if determined” or “if (stated condition or event) is detected” may be interpreted as “when determined” or “in response to determining” or “when (stated condition or event) is detected )” or “in response to detecting (a stated condition or event)”.
  • components, features, and elements with the same names in different embodiments of this application may have the same meaning or may have different meanings. Their specific meanings need to be explained in the specific embodiment or further combined with the specific embodiment. context to determine.
  • each step in the flow chart in the embodiment of the present application is displayed in sequence as indicated by the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated in this article, the execution of these steps is not strictly limited in order, and they can be executed in other orders. Moreover, at least some of the steps in the figure may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times, and their execution order is not necessarily sequential. may be performed in turn or alternately with other steps or sub-steps of other steps or at least part of stages.
  • the battery system provided by this application is suitable for a variety of application scenarios, such as the field of grid-connected power generation and energy storage, the field of off-grid optical storage (used to power electrical equipment in homes, RVs, and yachts), the field of wind storage power generation, electric Equipment fields, etc. can be determined based on actual application scenarios and are not limited here. The following will take the field of off-grid optical storage as an example. Other application scenarios are basically similar and will not be described again.
  • the complete photovoltaic storage system at least includes a photovoltaic power generation system, a power conversion system, a battery system and a power consumption system.
  • the photovoltaic power generation system is composed of several solar panels connected in series and parallel to convert solar energy into electrical energy.
  • the power conversion system injects the electric energy generated by the photovoltaic power generation system into the battery system for storage, and the electric system adapts the electric energy stored in the battery system to the electric power required by the electric equipment.
  • the aforementioned power conversion system can usually be implemented by a DC/DC converter with MPPT function
  • the power consumption system can usually be implemented by a DC/DC converter or a DC/AC converter.
  • the battery system is usually composed of multiple battery packs connected to each other. Battery packs connected in series can increase the output voltage of the battery pack. Battery packs connected in parallel can obtain larger battery capacity. Therefore, in order to obtain a battery system with a target voltage level and capacity, users will connect multiple battery packs in series and parallel to each other to obtain a high-voltage and large-capacity battery system for energy storage and power supply. At present, after receiving the battery pack, some users usually connect in series and/or parallel at will or mishandle the battery pack in series and parallel connection, resulting in connection errors. After the battery pack is powered on, the battery system fails to recognize each battery. The connection relationship between the packages makes it impossible to manage the charge and discharge of each battery pack well, affecting the normal use of the battery system. In serious cases, it may cause safety hazards for the battery packs.
  • this application provides a battery system and a battery pack connection status identification method that can automatically identify the connection status of each battery pack after connecting the battery packs in series and parallel.
  • This application provides a battery pack 100, including: a battery pack 120, a first voltage access module 140, a second voltage access module 160 and a control module 180.
  • the battery pack 120 is connected to the first voltage access module 140, the second voltage access module 160 and the control module 180 respectively.
  • the battery pack 120 is composed of several battery cells connected in series and/or parallel to each other for energy storage and power supply; the number of battery cells is greater than or equal to 1, and the specific number can be determined by the actual application scenario, where No restrictions.
  • Types of battery cells may include, but are not limited to, lithium cobalt oxide batteries, lithium manganate batteries, lithium nickel cobalt manganate batteries, lithium nickel cobalt aluminate batteries, lithium iron phosphate batteries, or lithium titanate batteries.
  • the voltage access module 140 and the second voltage access module 160 are used to controllably connect the positive electrode and the negative electrode of the battery pack 120 to the first signal line (not shown) and the second signal line (not shown), respectively. This will be explained in detail in subsequent embodiments.
  • the control module 180 is used to detect performance parameters of the battery pack 120 .
  • the control module 180 may include a detection and judgment module, which may include a BMS (Battery Management Systerm) 182 and a voltage measurement circuit 184 .
  • the BMS 182 is connected to the battery pack 120 and the voltage measurement circuit 184 respectively.
  • BMS 182 is used to intelligently manage and maintain each battery pack 100, monitor the status of the battery pack 100, prevent overcharge and over-discharge of the battery pack 100, and extend the service life of the battery pack 100.
  • the BMS 182 can implement one or more of the following functions: cell parameter measurement or monitoring of single battery cells in the battery pack 120, including one or more of the following cell parameters: cell voltage, cell The remaining power (State of Charge, SOC), cell temperature, cell current, and cell health (State of Health, SOH); the energy balance of the individual battery cells in the battery pack 120 is the cell The battery cells are charged and discharged uniformly to make the battery pack 120 reach a balanced and consistent state; the total voltage of the battery pack 120 is measured; the total current of the battery pack 120 is measured and SOC is calculated to accurately estimate the state of charge of the battery pack 120, that is, the remaining battery capacity , ensure that the SOC is maintained within a reasonable range and prevent damage to the battery due to overcharging or over-discharging; dynamically monitor the working status of the battery pack 120: during the battery charging and discharging process, collect the voltage and temperature of the battery pack 120 in real time; charge and discharge Current and total voltage to prevent battery overcharge or overdischarge, real-time data display;
  • the voltage measurement circuit 184 is connected to the output end of the first voltage access module 140 and the output end of the second voltage access module 160 respectively, and is used to measure the output end of the first voltage access module 140 and the second voltage access module 160
  • the voltage measurement circuit 184 is used to collect the voltage between the first signal line and the second signal line. After obtaining the voltage, the BMS 182 performs corresponding judgment and control. This content will be discussed later in this application. Detailed description in the Examples.
  • the first voltage access module 140 includes at least a first switch
  • the second voltage access module 160 includes at least a second switch.
  • the first voltage access module 140 can be directly a first switch
  • the second voltage access module 160 can be directly a second switch, that is, the two poles of the battery pack 120 can be directly connected through the first switch and the second switch respectively.
  • the first voltage access module 140 may also include a first switch 142 and a first resistor 144.
  • the battery pack 120 and the first resistor 144 are connected to the first switch 142, or the battery pack 120 may also be connected to the first resistor 144.
  • the switch 142 is connected to the first resistor 144 .
  • the second voltage access module 160 may also include a second switch 162 and a second resistor 164.
  • the battery pack 120 and the second resistor 164 are connected to the second switch 162, or the battery pack 120 may also be connected to the second switch 162. Connected to second resistor 164.
  • the number of the first switch 142 and the second switch 162 is not limited in this embodiment, as long as the two poles of the battery pack 120 can be controllably connected to the first signal line (not shown) and the second signal line (not shown). shown).
  • the first switch 142 and the second switch 162 can be implemented using metal oxide semiconductor field effect transistors (metal oxide semiconductor field effect transistor, which can be referred to as MOSFET or MOS tube for short), or can also be implemented using electronic components such as transistors and relays. There is no limit here, as long as it can achieve the purpose of conducting on and off according to the corresponding driving signal to achieve a controllable connection between the battery pack and the signal line.
  • the first resistor 144 and the second resistor 164 can reduce the problem of excessive current when the battery pack is connected to the signal line. That is to say, the first resistor 144 and the second resistor 164 can respectively adopt the first resistor 144 and the second resistor 164 .
  • the current limiting element and the second current limiting element are replaced.
  • the number, connection method and element type of the current limiting element are not limited, as long as it can achieve the purpose of reducing the current when the battery pack 120 is connected to the signal line. This implementation method is within the protection scope of this application.
  • the battery pack may also include a voltage dividing module connected to the battery pack 120.
  • the voltage dividing module is used to divide the output voltage of the battery pack 120, so that when the battery pack 120 is connected to the signal line
  • the time voltage dividing module can reduce the output current of the battery pack 120 to avoid damage or impact on the voltage measurement circuit 184 .
  • the positive electrode of the battery pack 120 is connected to the first access module through a voltage dividing module, and the negative electrode of the battery pack 120 is directly connected to the second access module.
  • the voltage dividing module may include resistors connected in parallel or in series.
  • Figures 4 and 5 show a possible implementation of a battery pack including a voltage dividing module, where P can be the aforementioned battery pack 120.
  • the first voltage access module 140 includes a first switch S positive
  • the second voltage access module 160 includes a second switch S negative
  • resistors R1 and R2 are connected in series to form a voltage dividing module in this embodiment. .
  • the voltage measured by the voltage measurement circuit 184 is the voltage across the voltage dividing resistor R1, not the voltage across the battery pack P. Therefore, the circuit overhead of the voltage measurement circuit can be reduced and the voltage measurement circuit can be prevented from being directly connected to the battery pack P. This may lead to the risk of circuit damage caused by large currents.
  • the voltage access module may further include a resistor.
  • the first voltage access module 140 includes a first switch. S positive and resistor R positive
  • the second voltage access module 160 includes a second switch S negative and resistor R negative . Resistor R positive and resistor R negative can further reduce the amount of current in the entire circuit.
  • the battery pack 120 is connected to the signal line after passing through the voltage dividing module.
  • the reason for voltage dividing is that if the voltage of a single battery pack is relatively high, or the system voltage is too high when multiple battery packs are used in series, it will cause The voltage measurement circuit 184 is subjected to excessive pressure, causing the voltage measurement circuit 184 to be damaged.
  • the detection and judgment module as described above includes a BMS 182 and a voltage measurement circuit 184.
  • the voltage measurement circuit at least includes an operational amplifier for obtaining the voltage value between the first signal line and the second signal line. ;
  • the microprocessor MCU of the BMS is used to determine the connection mode between multiple battery packs and/or the relative position between multiple battery packs based on the voltage value.
  • the microprocessor MCU can be the MCU in the BMS of the battery pack.
  • the first input end (inverting input end) of the operational amplifier is connected to the resistor R3, and the resistor R3 is connected to the switch S1.
  • the switch S1 can be connected to any one of the first signal line and the second signal line and the first voltage access module. 140 output.
  • the second input terminal (non-inverting input terminal) of the operational amplifier is connected to the balance resistor R5.
  • the balance resistor R5 is connected to the switch S2 and the pull-down resistor R6 respectively.
  • the switch S2 is connected to the other one of the first signal line and the second signal line and the third signal line.
  • the output terminals of the two voltage access modules 160 are connected.
  • the first input end of the operational amplifier is controllably connected to the first signal line through the resistor R3 and the first switch S1
  • the second input end is controllably connected through the balancing resistor R5 and the second switch S2.
  • Pull-down resistor R6 is connected to ground.
  • the output end of the operational amplifier is connected to the microprocessor MCU through the resistor R7, and is used to output the value V out representing the voltage difference between the first signal line and the second signal line measured by the voltage measurement circuit to the MCU.
  • the detection and judgment module also includes a feedback resistor R4, one end of the feedback resistor R4 is connected to the first input end of the operational amplifier, and the other end is connected to the output end of the operational amplifier.
  • each battery pack can be judged by connecting the battery pack of each battery pack to the signal line through the voltage access module and measuring the voltage value of the signal line.
  • the connection method and/or the relative position between each of the battery packs facilitates the battery system to better charge and discharge management of each battery pack in the battery system.
  • the present application also provides a battery system, which includes: multiple battery packs 100 , signal lines, and a detection and judgment module 220 .
  • Multiple battery packs 100 are connected directly or indirectly.
  • Signal lines are controllably connected to each battery pack 100 .
  • the detection and judgment module is used to obtain the voltage value of the signal line, and determine the connection mode between multiple battery packs based on the voltage value. It can also determine the relative position between the multiple battery packs based on the voltage value.
  • multiple battery packs 100 may be directly or indirectly connected to each other in series or parallel and/or in series. Specifically, the multiple battery packs 100 can be connected in series, in parallel, in series and then in parallel, or in parallel and then in series.
  • the specific connection method is not limited in this embodiment, and the user can configure it according to the actual application scenario. and power demand to set the connection method between multiple battery packs.
  • a typical application scenario is for users to expand the capacity of the original battery system. Generally speaking, as the battery life increases, the number or power of electrical equipment increases, and other factors, the original battery system will no longer be able to meet the demand for electricity.
  • communication connections can be made between multiple battery packs 100.
  • each battery pack 100 has a built-in RS485 or CAN communication chip, and the battery packs are connected to each other through the RS485 or CAN communication bus, and form a Communication connection.
  • the battery system may also include a power bus, which is used to connect the battery system to the load, the power conversion module, or the power grid.
  • the battery system is charged or discharged using the load, power conversion module or power grid.
  • signal lines are controllably connected to each battery pack 100 .
  • the implementation of controllable connection usually means that the on and off of the circuit connected between each battery pack 100 and the signal line is controllable.
  • the battery pack 100 receives the first type of signal, the battery pack 100 and the signal line Connection; when the battery pack 100 receives the second type of signal, the battery pack 100 is disconnected from the signal line; thus, each battery pack 100 can be Controlled connection to signal lines.
  • the output voltage of the battery pack 100 can be loaded onto the signal line, and thereby detected by the detection and determination module 220 .
  • the detection and judgment module 220 is used to obtain the voltage value of the signal line, execute a corresponding judgment strategy according to the voltage value, and then determine the previous connection mode of multiple battery packs and the relative positional relationship between the multiple battery packs.
  • each battery pack 100 is controllably connected to the signal line, different battery packs 100 can be controlled to be connected to the signal line in sequence to obtain the voltage value of the corresponding signal line.
  • the battery pack includes a battery pack 120, a first voltage access module 140 and a second voltage access module 160; the signal lines include at least a first signal line and at least a second signal line.
  • the positive electrode of the battery pack 120 is controllably connected to the first signal line through the first voltage access module 140
  • the negative electrode of the battery pack 120 is connected to the second voltage access module 160 through the second voltage access module 160 .
  • the first voltage access module 140 at least includes a first switch 142
  • the second voltage access module 160 at least includes a second switch 162 .
  • connection modes of the positive and negative electrodes of the battery pack 120 and the voltage access module can be exchanged.
  • the negative electrode of the battery pack 120 is connected to the first signal line through the first voltage access module 140 .
  • the positive electrode of the battery pack 120 is controllably connected to the second signal line through the second voltage access module 160 .
  • the first voltage access module 140 at least includes a first switch 142
  • the second voltage access module 160 at least includes a second switch 162 .
  • the first switch 142 and the second switch 162 can be turned on or off according to the control signal, so that the bipolar poles (positive pole and negative pole) of the battery pack 120 and the first signal line and the second signal line are connected or not connected to each other. .
  • communication connections can be established between each battery pack 100 and between the battery pack 100 and the detection and judgment module 220 , for example, through RS485 or CAN communication bus. It can be understood that the communication connections between each battery pack 100 and between the battery pack 100 and the detection and judgment module 220 can also be communicated through other wired or wireless methods. In this embodiment, there is no limit to the communication connection between each battery pack and the detection and judgment module 220 . Specific communication methods between the battery pack and the detection and judgment module 220. Through this communication connection, multiple functions such as host competition, address allocation, control signal transmission, and operation data transmission can be performed between each battery pack 100 and between the battery pack 100 and the detection and judgment module 220 .
  • the detection and judgment module 220 is provided as an independent module in the power supply system.
  • the independent module can be a control box with a display screen.
  • the control box can be separated from multiple battery packs independently, can be installed and controlled independently, and has a wiring port for connecting to the first signal line.
  • the display screen Connected to the second signal line, the display screen can be used to display the obtained voltage value of the signal line, status parameters of the battery system, status parameters of each battery pack 100 in the battery system, and the connection status between the battery packs 100 .
  • the control box can also establish communication connections such as Bluetooth, Wi-Fi, NFC, etc.
  • the battery system or the battery pack 100 in the battery system can be remotely controlled.
  • the detection and judgment module 220 may also be provided in at least one battery pack 100 in the battery system.
  • the battery pack 100 may be the battery pack 100 in the embodiment as shown in any one of FIGS. 1 to 3 .
  • the detection and judgment module 220 can be connected to the signal line through the voltage access module of the battery pack 100. That is to say, the battery pack 100 can only be provided with two wiring ports, which can be used to connect the battery pack
  • the battery pack 120 of the battery pack 100 is connected to the signal line, and can also be used to connect the detection and judgment module 220 of the battery pack 100 to the signal line.
  • the detection and determination module 220 may be provided in a battery pack 100 of the battery system.
  • the battery pack 100 provided with the detection and judgment module 220 can serve as the control host of the entire battery system.
  • the other battery packs 100 act as slaves.
  • the slave machine can communicate with the control host and accept the control of the control host, thereby reducing the cost and control complexity of the battery system.
  • each battery pack 100 of the battery system may be provided with a detection and judgment module 220.
  • each battery pack 100 needs to compete to select the control host through communication connections.
  • Other battery packs 100 As a slave, it accepts the control of the control host. Therefore, when the control host fails, the control host can be switched to other battery packs to ensure the stability of the entire battery system.
  • each battery pack 100 in the battery system further includes a voltage dividing module connected in series with the battery pack, and the positive electrode of the battery pack is connected to the voltage dividing module and the first voltage access module via the voltage dividing module and the first voltage access module.
  • the first signal line is controllably connected
  • the negative electrode of the battery pack is controllably connected to the second signal line through the second voltage access module.
  • the positive electrode of the battery pack of each battery pack 100 in the battery system is connected to the first access module through a voltage dividing module, and the negative electrode of the battery pack is directly connected to the second access module.
  • the voltage dividing module may include a parallel connection. Or a resistor in series.
  • Figures 4 and 5 show a possible implementation of the battery pack 100 including a voltage dividing module, where P can be the aforementioned Battery pack 120.
  • the first voltage access module 140 includes a first switch S positive
  • the second voltage access module 160 includes a second switch S negative
  • resistors R1 and R2 are connected in series to form a voltage dividing module in this embodiment.
  • the voltage measured by the voltage measurement circuit 184 is the voltage across the voltage dividing resistor R1 rather than the voltage across the battery pack P. Therefore, the circuit overhead of the voltage measurement circuit can be reduced and the voltage measurement circuit can be prevented from being directly connected to the battery pack. P connection may cause circuit damage due to large current.
  • the voltage access module may further include a resistor.
  • the first voltage access module 140 includes a first switch. S positive and resistor R positive
  • the second voltage access module 160 includes a second switch S negative and resistor R negative . Resistor R positive and resistor R negative can further reduce the amount of current in the entire circuit.
  • the battery pack 120 is connected to the signal line after passing through the voltage dividing module.
  • the reason for voltage dividing is that if the voltage of a single battery pack 100 is relatively high, or the system voltage is too high when multiple battery packs 100 are used in series, This may cause the voltage measurement circuit 184 to withstand excessive voltage, thereby causing the voltage measurement circuit 184 to be damaged.
  • the detection and judgment module 220 at least includes an operational amplifier and a microprocessor.
  • the first input terminal of the operational amplifier is connected to the first signal line, and the second input terminal of the operational amplifier is connected to the first signal line.
  • the second signal line is connected to obtain the voltage value between the first signal line and the second signal line;
  • the microprocessor is used to determine the connection mode between multiple battery packs according to the voltage value. , and determine the relative positions between multiple battery packs based on the voltage values.
  • the first input terminal of the operational amplifier can usually be an inverting input terminal, and the second input terminal can usually be a non-inverting input terminal; as an optional implementation, the first input terminal of the operational amplifier can also be It can be a non-inverting input terminal, and the second input terminal can also be an inverting input terminal.
  • the first input end of the operational amplifier is controllably connected to the first signal line through the resistor R3 and the first switch S1, and the second input end is through the balancing resistor R5 and the second switch S2. It is controllably connected to the second signal line, so that the operational amplifier can collect the voltage difference between the first signal line and the second signal line, and output the sampling value V out representing the voltage difference to the microprocessor MCU. Based on the voltage difference, the MCU can determine the connection mode between the battery packs currently connected to the signal line and/or the relative positions between multiple battery packs.
  • the voltage values of the first signal line and the second signal line can be directly connected to the operational amplifier through resistors, or after proportional voltage division, they can be connected to the operational amplifier for subtraction, and then the voltage value can be calculated.
  • the output of the first-stage operational amplifier can be used to raise the negative voltage to a positive voltage using a second-stage operational amplifier, and then reduce the ratio. This enables better measurement of voltage values.
  • the switch S1 in the detection and judgment module 220 is connected to the first signal line.
  • the switch S2 in the detection and judgment module 220 is connected to the second signal line.
  • the MCU in the detection and judgment module 220 is connected to the communication bus.
  • the specific connection structure and limitations of the battery pack in this embodiment please refer to the above-mentioned embodiment of the battery pack, and will not be repeated here.
  • the voltage measurement circuit 184 and the BMS 182 in the battery pack as described above constitute the detection and judgment module 220 in this embodiment, and their specific structures and functions are the same. Therefore, as an optional implementation, the detection and judgment module 220 may be disposed inside at least one first battery pack among the plurality of battery packs 100 , that is, through one or more battery packs among the plurality of battery packs 100
  • the voltage measurement circuit 184 and the BMS 182 in the battery pack (the battery pack may be the first battery pack) determine the connection mode between multiple battery packs and/or the relative positions between the multiple battery packs.
  • the battery packs in the battery system use battery packs with the same rated voltage, and due to the existence of balancing control, the battery pack voltage value of each battery pack in the entire battery system is basically the same. In other words, even if the voltage value of each battery pack is different, the voltage difference between any two battery packs is within a small range. For example, for a battery pack with a rated voltage of 12V, the voltage difference between any two battery packs generally does not exceed 2V, or even in most cases, does not exceed 1V. Therefore, the voltage value obtained through the detection and judgment module 220 should usually be or should be close to an integer multiple of the voltage of a single battery pack, so that the connection method and/or relative position between each battery pack can be determined.
  • the detection and judgment module 220 may be disposed inside at least one first battery pack among the plurality of battery packs 100 , and the detection and judgment module 220 is used to control the first voltage of the first battery pack.
  • the access module 140 connects the first signal line and communicates with at least one second battery pack among the plurality of battery packs, so that the second battery pack controls the second voltage of the second battery pack.
  • the access module 160 is connected to the second signal line.
  • the detection and judgment module 220 is also used to obtain the voltage value between the first signal line and the second signal line, and determine the voltage value between the first battery pack and the second battery pack according to the voltage value.
  • the relative position between the first battery pack and the second battery pack is determined based on the connection method between them and/or the voltage value.
  • the first battery pack can serve as a control host to include at least a first Control other slave battery packs including the second battery pack.
  • the detection and judgment module 220 is disposed in at least one first battery pack of the battery system (i.e., the voltage measurement circuit 184 and the BMS 182 in the first battery pack).
  • the detection and judgment module 220 controls the first voltage in the first battery pack.
  • the first switch 142 in the access module 140 is closed (conducted), so that the positive electrode of the battery pack 120 of the first battery pack is connected to the first signal line through the first voltage access module 140 .
  • the detection and judgment module 220 also communicates with at least one second battery pack among the plurality of battery packs, so that the second battery pack controls the second switch 162 in its own second voltage access module 160 to close (conduct).
  • the negative electrode of the battery pack 120 of the second battery pack is connected to the second signal line through the second voltage access module 160 .
  • the communication with the second battery pack can be carried out in a wired or wireless manner, and the wired method can be, for example, connected through a CAN bus or an RS485 bus.
  • the detection and judgment module 220 is also used to obtain the voltage value between the first signal line and the second signal line, and determine the voltage value between the first battery pack and the second battery pack according to the voltage value. The connection method between them and/or the relative position between the first battery pack and the second battery pack.
  • the detection and determination module 220 can obtain the first signal line and the second signal. The voltage value between the lines, and then execute the corresponding strategy according to the voltage value, determine the connection mode between the first battery pack and the second battery pack, and determine the first battery pack and the third battery pack. The relative position between the two battery packs.
  • the detection and judgment module 220 is disposed in the first battery pack (that is, the first battery pack serves as the control unit). host), when the positive electrode of the first battery pack is connected to the first signal line, and the negative electrode of the second battery pack is connected to the second signal line, at this time, the voltage value measured by the detection and judgment module 220 should be a negative value, and The absolute value of the voltage value is close to the voltage value of the first battery pack (or the second battery pack, because the voltage values of the first battery pack and the second battery pack are substantially the same).
  • connection relationship between other slave battery packs and the control host battery pack can be determined by obtaining the voltage value of the signal line through the detection and judgment module of the control host. Further, if the obtained voltage value of the signal line is equal to or close to the negative voltage value of one battery pack, it can be determined that the slave battery pack and the control host battery pack are connected in parallel.
  • the detection and judgment module 220 is disposed in the first battery pack (that is, the first battery pack serves as the control host), when the positive electrode of the first battery pack After being connected to the first signal line and the negative electrode of the second battery pack to the second signal line, at this time, if the voltage value measured by the detection and judgment module 220 is zero or close to zero, it can be determined that the second battery pack is connected to the second signal line.
  • One battery pack is connected in series, and the negative electrode of the second battery pack is directly connected to the positive electrode of the first battery pack, and there are no other battery packs and/or battery pack groups connected in series between the second battery pack and the first battery pack; if the detection and judgment module The voltage value measured by 220 is negative, and the absolute value of the voltage value is N times or close to N times the voltage of a single battery pack (N is a number greater than or equal to 2), then it can be determined that the second battery pack is different from the first battery pack.
  • the positive electrode of the second battery pack is connected to the negative electrode of the first battery pack, and a total of N-2 battery packs and/or battery pack groups are connected in series between the positive electrode of the second battery pack and the negative electrode of the first battery pack. .
  • the voltage value measured by the detection and judgment module 220 is a positive value, and the voltage value is M times or close to M times the voltage of a single battery pack (M is a number greater than or equal to 1), then it can be determined that the second battery pack is the same as the first battery.
  • the packs are connected in series, and the negative electrode of the second battery pack is connected to the positive electrode of the first battery pack, and a total of M battery packs and/or battery pack groups are connected in series between the negative electrode of the second battery pack and the positive electrode of the first battery pack.
  • the detection and judgment module 220 is used to control the first voltage access module 140 of the first battery pack to connect to the first signal line and communicate with a plurality of the batteries. At least one second battery pack in the pack communicates, so that the second battery pack controls the second voltage access module 160 of the second battery pack to connect the second signal line, the first battery pack and the second.
  • the voltage values between the first signal line and the second signal line obtained by the detection and judgment module 220 are also completely different due to different connection methods of the battery pack. Therefore, a battery pack with an internal detection and judgment module is used as the control host to measure the voltage value of the signal line.
  • the connection method and/or other connections between other slave battery packs and the control host battery pack can be determined.
  • the relative position between the slave battery pack and the control host battery pack that is, the number of battery packs or parallel battery packs connected in series between the slave battery pack and the control host battery pack.
  • the detection and judgment module 220 is used to communicate with the at least one second battery pack, so that the second battery pack controls the second voltage access module 160 of the second battery pack to disconnect from The connection of the second signal line; the detection and judgment module 220 is also used to communicate with at least a third battery pack of the plurality of battery packs, so that the third battery pack controls the third battery pack.
  • the second voltage access module 160 is connected to the second signal line; the detection and judgment module 220 is also used to obtain the voltage value between the first signal line and the second signal line, and calculate the voltage value according to the voltage The value determines the connection mode between the first battery pack and the third battery pack and/or the relative position between the first battery pack and the third battery pack.
  • the first battery pack serves as the control host and needs to detect and determine each slave battery pack in turn. Therefore, after determining the connection method between the first battery pack and the second battery pack and/or the relative position between the first battery pack and the second battery pack, it is necessary to control the second battery pack.
  • the battery pack disconnects from the signal line, and controls the third battery pack to connect with the signal line, thereby further determining the connection mode between the first battery pack and the third battery pack and/or the third battery pack.
  • the relative position between a battery pack and the third battery pack are exactly the same as the determination strategy of the second battery pack described above, and will not be described again here.
  • connection method and/or relative position thus the connection method and/or relative position of each battery pack in the entire battery system can be determined.
  • the detection and judgment module 220 is disposed inside at least one first battery pack among the plurality of battery packs, and the detection and judgment module 220 is used to control the second battery pack of the first battery pack.
  • the voltage access module 160 is connected to the second signal line and communicates with at least one second battery pack among the plurality of battery packs, so that the second battery pack controls the first battery pack of the second battery pack.
  • the voltage access module 140 is connected to the first signal line; the detection and judgment module 220 is also used to obtain the voltage value between the first signal line and the second signal line, and determine the voltage value based on the voltage value.
  • the connection method between the first battery pack and the second battery pack and/or the relative position between the first battery pack and the second battery pack, wherein the first battery pack can serve as the control host Control other slave battery packs including at least one second battery pack.
  • the detection and judgment module 220 is disposed in at least one first battery pack of the battery system (i.e., the voltage measurement circuit 184 and the BMS 182 in the first battery pack).
  • the detection and judgment module 220 controls the second voltage in the first battery pack.
  • the second switch 162 in the access module 160 is closed (conducted), so that the negative electrode of the battery pack 120 of the first battery pack is connected to the second signal line through the second voltage access module 160 .
  • the detection and judgment module 220 also communicates with at least one second battery pack among the plurality of battery packs, causing the second battery pack to control the first switch 142 in its first voltage access module 140 to close (turn on), so that The positive electrode of the battery pack 120 of the second battery pack is connected to the second signal line through the first voltage access module 140 .
  • the communication with the second battery pack can be carried out in a wired or wireless manner, and the wired method can be, for example, connected through a CAN bus or an RS485 bus.
  • the detection and judgment module 220 is also used to obtain the voltage value between the first signal line and the second signal line, and determine the voltage value between the first battery pack and the second battery pack according to the voltage value. The connection method between them and/or the relative position between the first battery pack and the second battery pack.
  • the detection and determination module 220 can obtain the first signal line and the second signal The voltage value between the lines, and then the voltage value between the first battery pack and the second battery pack. Then the corresponding strategy can be executed according to the voltage value to determine the connection mode between the first battery pack and the second battery pack and/or the connection between the first battery pack and the second battery pack. relative position.
  • the detection and judgment module 220 is disposed in the first battery pack (that is, the first battery pack serves as the control unit). host), when the negative electrode of the first battery pack is connected to the second signal line, and the positive electrode of the second battery pack is connected to the first signal line, at this time, the voltage value measured by the detection and judgment module 220 should be a positive value, and The absolute value of the voltage value is close to the voltage value of the first battery pack (or the second battery pack, because the voltage values of the first battery pack and the second battery pack are substantially the same).
  • connection relationship between other slave battery packs and the control host battery pack can be determined by obtaining the voltage value of the signal line through the detection and judgment module of the control host. Further, if the absolute value of the obtained voltage value of the signal line is equal to or close to the positive voltage value of one battery pack, it can be determined that the slave battery pack and the control host battery pack are connected in parallel.
  • the detection and judgment module 220 is disposed in the first battery pack (that is, the first battery pack serves as the control host), when the negative electrode of the first battery pack After being connected to the second signal line, and the positive electrode of the second battery pack being connected to the first signal line, at this time, if the voltage value measured by the detection and judgment module 220 is zero or close to zero, it can be determined that the second battery pack is connected to the first signal line.
  • One battery pack is connected in series, and the positive electrode of the second battery pack is directly connected to the negative electrode of the first battery pack, and there are no other battery packs and/or battery pack groups connected in series between the second battery pack and the first battery pack; if the detection and judgment module The voltage value measured by 220 is positive, and the voltage value is N times or close to N times the voltage of a single battery pack (N is a number greater than or equal to 2), then it can be determined that the second battery pack is connected in series with the first battery pack, and The negative electrode of the second battery pack is connected to the positive electrode of the first battery pack, and a total of N-2 battery packs and/or battery pack groups are connected in series between the negative electrode of the second battery pack and the positive electrode of the first battery pack; if it is detected If the voltage value measured by the judgment module 220 is a negative value, and the absolute value of the voltage value is M times or close to M times the voltage of a single battery pack (M is a number greater than or equal to 1), then it can be determined that the second battery
  • the battery packs are connected in series, and the positive electrode of the second battery pack is connected to the first battery
  • the negative electrode of the battery pack is connected, and a total of M battery packs and/or battery pack groups are connected in series between the negative electrode of the second battery pack and the positive electrode of the first battery pack.
  • the detection and judgment module 220 is used to control the second voltage access module 160 of the first battery pack to connect the second signal line and communicate with multiple batteries. At least one second battery pack in the pack communicates, so that the second battery pack controls the first voltage access module 140 of the second battery pack to connect the first signal line, the first battery pack and the second
  • the voltage values between the first signal line and the second signal line obtained by the detection and judgment module 220 are also completely different due to different connection methods of the battery pack. Therefore, a battery pack with an internal detection and judgment module is used as the control host to measure the voltage value of the signal line. According to the voltage value, the connection method and/or other connections between other slave battery packs and the control host battery pack can be determined. The relative position between the slave battery pack and the control host battery pack (that is, the number of battery packs or parallel battery packs connected in series between the slave battery pack and the control host battery pack).
  • the detection and judgment module 220 is used to communicate with the at least one second battery pack, so that the second battery pack controls the first voltage access module 140 of the second battery pack to disconnect from The connection of the first signal line; the detection and judgment module 220 is also used to communicate with at least a third battery pack among the plurality of battery packs, so that the third battery pack controls the third battery pack.
  • the first voltage access module 140 is connected to the first signal line; the detection and judgment module 220 is also used to obtain the voltage value between the first signal line and the second signal line, and calculate the voltage value according to the voltage The value determines the connection mode between the first battery pack and the third battery pack and/or the relative position between the first battery pack and the third battery pack.
  • the first battery pack serves as the control host and needs to detect and determine each slave battery pack in turn. Therefore, after determining the connection method between the first battery pack and the second battery pack and/or the relative position between the first battery pack and the second battery pack, it is necessary to control the second battery pack.
  • the battery pack disconnects from the signal line, and controls the third battery pack to connect with the signal line, thereby further determining the connection mode between the first battery pack and the third battery pack and/or the third battery pack.
  • the relative position between a battery pack and the third battery pack are exactly the same as the determination strategy of the second battery pack described above, and will not be described again here.
  • connection method and/or relative position thus the connection method and/or relative position of each battery pack in the entire battery system can be determined.
  • the detection and judgment module 220 is not limited to being provided in the battery pack, but can be provided as an independent module in the battery system.
  • the independent module can be a control box with a display screen.
  • the control box can be separated from multiple battery packs independently, can be installed and controlled individually, and has a wiring port for connecting the first signal line and the second signal line. To connect; the control box can also communicate and control multiple battery packs through wired or wireless methods.
  • the display screen can be used to display the obtained voltage value of the signal line, the status parameters of the battery system, the status parameters of each battery pack in the battery system, and the connection status between each battery pack.
  • control box can also establish communication connections with the user's mobile terminal through Bluetooth, Wi-Fi, NFC, etc., so that the user can obtain the operating status and operating parameters of the entire battery system through the mobile terminal.
  • the battery system or the battery pack in the battery system can be remotely controlled.
  • the detection and judgment module 220 is provided in the battery system as an independent module.
  • the detection and judgment module 220 is used to communicate with at least one first battery pack and at least one second battery pack among the plurality of battery packs.
  • the battery pack communicates, so that the first battery pack controls the first voltage access module 140 of the first battery pack to connect to the first signal line, and the second battery pack controls the second battery pack.
  • the second voltage access module 160 is connected to the second signal line; the detection and judgment module 220 is also used to obtain the voltage value between the first signal line and the second signal line, and determine the voltage value according to the voltage value. Determine the connection method between the first battery pack and the second battery pack and/or the relative position between the first battery pack and the second battery pack.
  • the detection and determination module 220 serves as a control host to control other slave battery packs including at least one first battery and at least one second battery pack.
  • the detection and judgment module 220 is used to communicate with the at least one second battery pack, so that the second battery pack controls the second voltage access module 160 of the second battery pack to disconnect from The connection of the second signal line; the detection and judgment module 220 is also used to communicate with at least a third battery pack of the plurality of battery packs, so that the third battery pack controls the third battery pack.
  • the second voltage access module 160 is connected to the second signal line; the detection and judgment module 220 is also used to obtain the voltage value between the first signal line and the second signal line, and calculate the voltage value according to the voltage The value determines the connection mode between the first battery pack and the third battery pack and/or the relative position between the first battery pack and the third battery pack.
  • the detection and judgment module 220 as the control host and the first battery pack as a reference point to control other slave battery packs. Connect to the signal lines in turn, and measure the voltage of the signal lines to determine the connection mode and/or relative position of each slave battery pack and the first battery pack (reference point), thus determining each slave battery pack in the entire battery system. How the battery packs are connected and/or relative to each other.
  • the detection and judgment module 220 is provided in the battery system as an independent module, and the detection and judgment module 220 is used to communicate with at least one first battery pack and at least one of the plurality of battery packs.
  • the second battery pack communicates so that the first battery pack controls the second voltage access module 160 of the first battery pack to connect to the second signal line, and the second battery pack controls the second battery
  • the first voltage access module 140 of the package is connected to the first signal line; the detection and judgment module 220 is also used to obtain the voltage value between the first signal line and the second signal line, and according to the The voltage value determines the connection mode between the first battery pack and the second battery pack and/or the relative position between the first battery pack and the second battery pack.
  • the detection and determination module 220 serves as a control host to control other slave battery packs including at least one first battery and at least one second battery pack.
  • the detection and judgment module 220 is used to communicate with the at least one second battery pack, so that the second battery pack controls the first voltage access module 140 of the second battery pack to disconnect from The connection of the first signal line; the detection and judgment module 220 is also used to communicate with at least one third battery pack of the plurality of battery packs, so that the third battery pack controls the third battery pack.
  • the first voltage access module 140 is connected to the first signal line; the detection and judgment module 220 is also used to obtain the voltage value between the first signal line and the second signal line, and calculate the voltage value according to the voltage The value determines the connection mode between the first battery pack and the third battery pack and/or the relative position between the first battery pack and the third battery pack.
  • connection method and/or relative position of the first battery pack can be used to determine the connection method and/or relative position of each battery pack in the entire battery system.
  • the detection and judgment module is provided as an independent module in the battery system
  • how to determine the connection mode and the battery pack according to the obtained voltage value between the first signal line and the second signal line? /or the relative position is exactly the same as the determination method in the embodiment in which the detection and judgment module is disposed inside at least one first battery pack among the plurality of battery packs, and regarding how to communicate specifically in this embodiment Refer to the communication method with the second battery pack in the above embodiment. The above content will not be repeated here.
  • the steps in the above embodiment please refer to the steps in the above embodiment.
  • the absolute value of the voltage value measured by the detection and judgment module is not necessarily exactly equal to An integer multiple of a battery pack voltage.
  • the voltage value measured by the detection and judgment module can be divided by the voltage of a single battery pack and then rounded to an integer to determine the specific multiple (ie, the aforementioned N times, M times, or zero).
  • the detection and judgment module For a battery pack with a voltage of 12V, if the voltage value measured by the detection and judgment module is 32.5V, then the calculation is 32.5/12 ⁇ 2.708, and then rounded to determine 3 times the battery pack voltage; if the detection and judgment module If the voltage value measured by the module is 1.5V, then calculate 1.5/12 ⁇ 0.125, then round to determine the voltage value is 0; if the voltage value measured by the detection and judgment module is -7.5V, take the absolute value first and then proceed. Calculate 7.5/12 ⁇ 0.625, and then round it to determine 1 times the battery pack voltage; and so on, which can help determine the measured signal line voltage value more accurately.
  • the battery system as described above obtains the voltage value of the signal line by controllably connecting each of the plurality of battery packs connected to each other with a signal line, and determines a plurality of the signal lines based on the voltage value.
  • the connection method between battery packs and/or the relative position between multiple battery packs Through the above method, after the user connects the battery packs arbitrarily, the connection status between each battery pack can be automatically identified without other operations, and then the connection mode and/or connection between each battery pack in the entire battery system can be determined. The relative position allows for better and precise management of the battery system.
  • the battery pack 100 in the battery system may include: a battery pack 320, a voltage access module 340, and a voltage sampling module. module 360 and detection and judgment module 380.
  • the positive electrode of the battery pack 320 is controllably connected to the signal line through the voltage access module, and the negative electrode of the battery pack is controllably connected to the signal line through the voltage sampling module.
  • the voltage access module 340 may include at least a third switch 342 for controlling the controllable connection between the voltage access module 340 and the signal line (not shown).
  • the voltage sampling module 360 may at least include a voltage sampling circuit and a fourth switch 362.
  • the fourth switch 362 is used to control the voltage sampling module 360 to be controllably connected to a signal line (not shown); the voltage sampling circuit may be composed of a fourth resistor 364 and The fifth resistor 366 is connected in series.
  • the detection and judgment module 380 is used to detect the voltage between the fourth resistor 364 and the fifth resistor 366, and calculate the voltage value mapped to the signal line according to the voltage division principle, which will be described in detail in the following embodiments.
  • the detection and judgment module 380 in the embodiment is disposed inside at least one battery pack among multiple battery packs in the battery system, and can be implemented by a battery management system (Battery Management System, BMS) of the battery pack.
  • BMS Battery Management System
  • the voltage sampling circuit in this embodiment may also be the voltage measurement circuit 184 mentioned in the above embodiment, and the voltage sampling circuit will not be described again here.
  • the voltage access module 340 can be directly the third switch 342 .
  • the positive and negative poles of the battery pack 320 can be controllably connected to the signal line through the third switch 342 and the voltage sampling module 360 respectively.
  • the voltage access module 340 may include a third switch 342 and a third resistor 344.
  • the battery pack 320 is connected to the third resistor 344 and then connected to the third switch 342 .
  • the battery pack may also be connected to the third switch 342 and then to the third resistor 344 .
  • the voltage sampling module 360 may include a fourth switch 362 and a voltage sampling circuit.
  • the battery pack 320 may be connected to the fourth switch 362 and the voltage sampling circuit in sequence, or may be connected to the voltage sampling circuit and the fourth switch 362 in sequence.
  • the order of the sequential connections is not limited in this embodiment.
  • the number of the third switch and the fourth switch is not limited in this embodiment, as long as the two poles of the battery pack 320 can be controllably connected to the signal line.
  • the power interfaces of multiple battery packs are connected to the power bus to form a battery system; it should be noted that Figure 11 shows multiple
  • the specific connection method between the battery packs does not constitute a specific limitation on this embodiment. It is only used to illustrate that multiple battery packs may be connected in series, in parallel, in series first and then to form a battery pack and then in parallel, or in parallel to form a battery pack and then in series.
  • the two poles of the battery packs of multiple battery packs are controllably connected to the signal lines through the voltage access module 340 and the voltage sampling module 360 (right side of the battery pack in Figure 11).
  • the detection and judgment module of the first battery pack (BMS in the first battery pack)
  • the voltage sampling module used to control the first battery pack is connected to the signal line; the detection and judgment module is also used to communicate with at least one second battery pack among the plurality of battery packs, so that the second battery pack
  • the package controls the voltage access module of the second battery pack to connect to the signal line; the detection and judgment module is also used to obtain the voltage value of the signal line, and determine the first battery pack and the third battery pack according to the voltage value.
  • the detection and judgment module of the first battery pack (BMS in the first battery pack) is used to control the voltage access module of the first battery pack to connect to the signal line; the detection and judgment module is also used to control Communicate with at least one second battery pack among the plurality of battery packs, so that the second battery pack controls the voltage sampling module of the second battery pack to connect to the signal line; the detection and judgment module also uses To communicate with the second battery pack, obtain the voltage value of the signal line detected by the detection and judgment module of the second battery pack, and determine the distance between the first battery pack and the second battery pack based on the voltage value. mode of connection and/or relative position.
  • This implementation takes the connection between the positive electrode of the battery pack and the voltage access module and the connection between the negative electrode of the battery pack and the voltage sampling module of each battery pack as an example. introduced, but it should be understood that this embodiment is not limited to this manner. Since the two poles of the battery pack 320 of each battery pack are controllably connected to the signal line, the BMS in the detection and judgment module can control the fourth switch 362 in the voltage sampling module 360 of the first battery pack to close (turn on), The negative electrode of the battery pack 320 of the first battery pack is connected to the signal line through the voltage sampling module 360 .
  • the first battery pack can also communicate with the second battery pack, so that the third switch 342 of the voltage access module 340 of the second battery pack is closed (conducted), so that the positive electrode of the battery pack of the second battery pack is connected through the voltage.
  • the module is connected to the signal line.
  • the first battery pack and the second battery pack can communicate through wired or wireless communication, and the wired communication method can, for example, communicate through CAN bus or RS485 bus connection.
  • the detection and judgment module 380 is also configured to obtain the voltage value of the signal line measured by the voltage sampling module of the first battery pack, and determine the voltage value selected from the first battery pack and the third battery pack based on the voltage value. At least one of the groups formed by the connection method and relative position between the two battery packs.
  • the voltage sampling module 360 of the first battery pack can obtain the voltage on the signal line.
  • the voltage value is transmitted to the detection and judgment module 380 through the Input/Output port of the detection and judgment module 380 .
  • the detection and judgment module 380 can execute a judgment strategy according to the voltage value, determine the connection mode between the first battery pack and the second battery pack according to the judgment strategy, and/or determine the first battery pack and the second battery according to the judgment strategy. The relative position between packages.
  • the detection and judgment module is provided inside at least one first battery pack among the plurality of battery packs;
  • the detection and judgment module is used to control the voltage sampling module of the first battery pack to connect to the signal line;
  • the detection and judgment module is used to communicate with at least one second battery pack among the plurality of battery packs, so that the second battery pack controls the voltage access module of the second battery pack to connect to the signal line. ;
  • the detection and judgment module is also used to obtain the voltage value of the signal line measured by the voltage sampling module of the first battery pack, and determine the The voltage value determines at least one selected from the group consisting of a connection mode and a relative position between the first battery pack and the second battery pack.
  • the detection and judgment module 380 may be a BMS built in the first battery pack, which is used to control the voltage sampling module 360 of the first battery pack to connect the negative electrode of the battery pack of the first battery pack to the signal line.
  • the first battery pack can then communicate with a plurality of second battery packs in sequence. Each time the first battery pack closes the voltage access module 340 in the second battery pack, the positive electrode of the second battery pack is connected to the signal line. At this time, the second battery pack can map its own voltage to the signal line. .
  • the detection and judgment module 380 in the first battery pack can sequentially obtain the voltage value on the signal line between the first battery pack and each second battery pack, and the voltage value can represent the first battery pack and the second battery. After the packs are connected to each other, the actual voltage value between the negative pole of the first battery pack and the positive pole of the second battery pack can be determined based on the voltage value and the judgment strategy. Connection method and/or relative positional relationship.
  • the voltage value measured by the detection and judgment module in the first battery pack should be a positive value, and the voltage value The absolute value is close to the voltage value of the first battery pack (or the second battery pack, because the voltage values of the first battery pack and the second battery pack are basically the same). Therefore, if the obtained voltage value of the signal line is positive and equal to or close to the voltage value of one battery pack, it can be determined that the first battery pack and the second battery pack are connected in parallel.
  • the first battery pack and the second battery pack are connected in series. At this time, if the voltage value measured by the detection and judgment module in the first battery pack is zero. It can be determined that the second battery pack and the first battery pack are connected in series, and the positive electrode of the second battery pack is directly connected to the negative electrode of the first battery pack, and there are no other battery packs connected in series between the first battery pack and the second battery pack and/or Battery pack set.
  • the second battery can be determined
  • the battery pack and/or the battery pack are connected in series with the first battery pack, and the negative electrode of the second battery pack is connected in series with the positive electrode side of the first battery pack, and the negative electrode of the second battery pack is connected in series with the positive electrode of the first battery pack.
  • N-2 groups in total.
  • the second battery pack is connected to the first battery pack.
  • One battery pack is connected in series, and the positive electrode of the second battery pack is connected in series to the negative electrode side of the first battery pack, and there are battery packs and/or battery pack groups connected in series between the positive electrode of the second battery pack and the negative electrode of the first battery pack. indivual.
  • the detection and judgment module is provided inside at least one first battery pack among the plurality of battery packs;
  • the detection and judgment module is used to control the voltage access module of the first battery pack to connect to the signal line;
  • the detection and judgment module is used to communicate with at least one second battery pack among the plurality of battery packs, so that the second battery pack controls the voltage sampling module of the second battery pack to connect to the signal line.
  • the detection and judgment module is also configured to obtain the voltage value of the signal line measured by the voltage sampling module of the second battery pack, and determine the voltage value selected from the first battery pack and the second battery pack based on the voltage value. At least one of the groups formed by the connection methods and relative positions between battery packs.
  • the detection and judgment module 380 may be a BMS built in the first battery pack, which is used to control the third switch 342 in the voltage access module 340 of the first battery pack to close (conduct), so that the first battery pack The positive electrode of the battery pack is connected to the signal line through the voltage access module 340.
  • the first battery pack can also send a control command to the second battery pack through the communication connection (CAN or RS485) with the second battery pack, so that the second battery pack controls the voltage sampling module 360 of the second battery pack according to the control command.
  • the fourth switch 362 in is closed (conducted), so that the negative electrode of the battery pack of the second battery pack is connected to the signal line through the voltage sampling module 360 .
  • the voltage sampling module 360 of the second battery pack can obtain the voltage value on the signal line.
  • the first battery pack can communicate with the second battery pack so that the detection and judgment module 380 of the first battery pack obtains the voltage value, and further determines the first battery pack and the second battery pack based on the voltage value and the corresponding judgment strategy. connection method and/or relative positional relationship between them.
  • the detection and judgment module 380 is provided in the first battery pack (that is, the first battery pack serves as the control host).
  • the first battery pack can close the third switch 342 of its own voltage access module 340 to connect the positive electrode of the battery pack of the first battery pack to the signal line.
  • the first battery pack can communicate with the second battery pack in sequence, so that the fourth switch 362 of the voltage sampling module 360 in the second battery pack is closed, so that the negative electrode of the battery pack of the second battery pack is connected to the signal line.
  • the detection and judgment module in the first battery pack can sequentially obtain the voltage values collected by each second battery pack and the first battery pack.
  • the voltage sampling module 360 of the second battery pack is connected to the signal line. Therefore, the voltage sampling module in the second battery pack can obtain the voltage value on the signal line.
  • the detection and judgment module 380 of the first battery pack can sequentially obtain the voltage sampling module in each second battery pack through the communication connection with each second battery pack.
  • the obtained voltage value on the signal line can represent the actual voltage value between the positive electrode of the first battery pack and the negative electrode of the second battery pack after the first battery pack and the second battery pack are connected to each other.
  • the connection mode and/or relative positional relationship between the first battery pack and each second battery pack can be determined based on the voltage value and the judgment strategy.
  • the voltage value obtained by the BMS in the detection and judgment module of the first battery pack should be a positive value, and the voltage value should be close to The voltage value of the second battery pack (or the first battery pack, because the first battery pack and the second battery pack are usually of the same model, and their voltage values are basically the same). If the obtained voltage value of the signal line is equal to or close to the negative voltage value of one battery pack, it can be determined that the first battery pack and the second battery pack are connected in parallel.
  • the first battery pack and the second battery pack are connected in series.
  • the voltage value measured by the second battery pack obtained by the detection and judgment module is zero or close to zero, it can be determined that the second battery pack is connected in series with the first battery pack, and the negative electrode of the second battery pack is connected to the first battery pack.
  • the positive electrodes of the packs are directly connected, and no other battery packs and/or battery pack groups are connected in series between the second battery pack and the first battery pack.
  • the voltage value obtained by the detection and judgment module is a negative value, and the absolute value of the voltage value is M times the voltage of the first battery pack (M is a number greater than or equal to 1), it can be determined that the second battery pack
  • the battery pack is connected in series with the first battery pack, and the negative electrode of the second battery pack is connected in series with the positive electrode side of the first battery pack, and the battery pack is connected in series between the positive electrode of the first battery pack and the negative electrode of the second battery pack and/ Or there are M battery packs in total.
  • the second battery pack can be determined to be the same as the first battery pack.
  • the positive electrode of the second battery pack is connected in series to the negative electrode side of the first battery pack, and a total of N-2 battery packs and/or battery pack groups are connected in series between the positive electrode of the second battery pack and the negative electrode of the first battery pack.
  • the detection and judgment module is used to control the voltage access module of the first battery pack to connect to the signal line.
  • the detection and judgment module is used to communicate with at least one second battery pack among the plurality of battery packs, so that the second battery pack controls the voltage sampling module of the second battery pack to connect to the signal line.
  • the first battery pack and the second battery pack have different connection methods, and the voltage values on the signal lines obtained by the detection and judgment module are also completely different. Therefore, the battery pack of the detection and judgment module is used to measure the voltage value of the signal line. According to the voltage value, the connection method between other battery packs and this battery pack and/or the connection between other battery packs and this battery pack can be determined. relative position.
  • the detection and judgment module is used to communicate with the at least one second battery pack, so that the second battery pack controls the voltage access module of the second battery pack to disconnect from the signal line .
  • the detection and judgment module is also used to communicate with at least a third battery pack among the plurality of battery packs, so that the third battery pack controls the voltage access module of the third battery pack to connect the signal line;
  • the detection and judgment module is also used to obtain the voltage value on the signal line, and determine the connection mode between the first battery pack and the third battery pack and/or the first battery pack and the third battery pack according to the voltage value.
  • the relative positions between the third battery packs is used to communicate with the at least one second battery pack, so that the second battery pack controls the voltage access module of the second battery pack to disconnect from the signal line .
  • the detection and judgment module is also used to communicate with at least a third battery pack among the plurality of battery packs, so that the third battery pack controls the voltage access module of the third battery pack to connect the signal line;
  • the detection and judgment module is also used to obtain
  • the detection and judgment module is used to communicate with the at least one second battery pack, so that the second battery pack controls the voltage sampling module of the second battery pack to disconnect from the signal line.
  • the detection and judgment module is also used to communicate with at least a third battery pack of the plurality of battery packs, so that the third battery pack controls the voltage sampling module of the third battery pack to connect the signal line.
  • the detection and judgment module is also used to obtain the voltage value on the signal line.
  • the detection and judgment module is used to determine the connection mode between the first battery pack and the third battery pack and/or the relative position between the first battery pack and the third battery pack according to the voltage value.
  • connection method and relative position determination strategy of the first battery pack and the third battery pack are exactly the same as the determination strategy of the second battery pack described above, and will not be described again here.
  • the absolute value of the voltage value measured by the detection and judgment module is not necessarily exactly equal to An integer multiple of a battery pack voltage.
  • the voltage value measured by the detection and judgment module can be divided by the voltage of a single battery pack and then rounded to an integer to determine the specific multiple (ie, the aforementioned N times, M times, or zero).
  • the detection and judgment module For a battery pack with a voltage of 12V, if the voltage value measured by the detection and judgment module is 32.5V, then the calculation is 32.5/12 ⁇ 2.708, and then rounded to determine 3 times the battery pack voltage; if the detection and judgment module If the voltage value measured by the module is 1.5V, then calculate 1.5/12 ⁇ 0.125, then round to determine the voltage value is 0; if the voltage value measured by the detection and judgment module is -7.5V, take the absolute value first and then proceed. Calculate 7.5/12 ⁇ 0.625, and then round it to determine 1 times the battery pack voltage; and so on, which can help determine the measured signal line voltage value more accurately.
  • the battery system as described above obtains the voltage value of the signal line by controllably connecting each of the plurality of battery packs connected to each other with a signal line, and determines a plurality of the signal lines based on the voltage value.
  • the connection method between battery packs and/or the relative position between multiple battery packs Through the above method, after the user connects the battery packs arbitrarily, the connection status between each battery pack can be automatically identified without other operations, and then the connection structure between each battery pack in the entire battery system can be determined, and the connection structure between each battery pack can be updated. Accurately manage the battery system.
  • a method for identifying the battery pack connection status is provided.
  • the identification method can be explained by taking the battery system in Figure 8 or Figure 11 as an example, but is not limited thereto. It can also be applied to any battery system as described above. Specifically, the method can be applied to at least one first battery pack in a battery system composed of multiple battery packs. The battery system further includes at least a second battery pack. The method includes the following steps:
  • the first battery pack may communicate with the second battery pack. Connect the battery pack to the signal line according to the structure of the battery pack in different situations. Specifically, the first polarity terminal of the battery pack of the first battery pack and the second polarity terminal of the battery pack of the second battery pack are controlled to connect signals, wherein the first polarity terminal and the second polarity terminal The terminals are two relatively different polarity terminals of the battery pack. The first polarity terminal is the positive electrode or the negative electrode, and the second polarity terminal is the negative electrode or the positive electrode. Thus, the voltage values between the first battery pack and the second battery pack can be mapped onto the signal line.
  • the battery pack is the battery pack in Figure 1
  • the detection and judgment module in the first battery pack can control the first voltage access module or the second voltage access module in the first battery pack and the signal line. connect.
  • the detection and judgment module in the first battery pack can control the first voltage access module or the second voltage access module in the second battery pack to be connected to the signal line.
  • the battery pack is the battery pack in Figure 9, and the detection and judgment module in the first battery pack can control the voltage access module or voltage sampling module in the first battery pack to be connected to the signal line.
  • the detection and judgment module in the first battery pack can control the voltage sampling module or voltage access module in the second battery pack to be connected to the signal line. Thereby, a different polarity end of each of the first battery pack and the second battery pack can be connected to the signal line.
  • the detection and judgment module in the first battery pack obtains the voltage value on the signal line.
  • the voltage measurement circuit 184 shown in FIG. 3 may be used to obtain the voltage value on the signal line.
  • the voltage measurement circuit shown in FIG. 6 can be used to obtain the voltage value on the signal line.
  • a voltage sampling module as shown in Figure 9 can be used to obtain the voltage value on the signal line. This voltage value can represent the actual voltage value between the first polarity end of the first battery pack and the second polarity end of the second battery pack after the first battery pack and the second battery pack are connected to each other.
  • S106 Determine the connection relationship between the first battery pack and the second battery pack according to the voltage value.
  • the detection and judgment module in the first battery pack can automatically identify the connection status between the first battery pack and the second battery pack based on the voltage rules and voltage values of the series or parallel connection.
  • the connection state between the first battery pack and the second battery pack not only includes the connection mode between the first battery pack and the second battery pack (such as series connection, parallel connection), but may also include the first battery pack The relative position after being connected to the second battery pack, including whether the second battery pack is connected to the positive side or the negative side of the first battery pack, whether there are other battery packs and other battery packs between the first battery pack and the second battery pack quantity.
  • connection status identification method by controlling the first battery pack and the second battery pack to connect the signal line, thereby connecting the first polarity end of the first battery pack to the second polarity end of the second battery pack.
  • the actual voltage value is mapped to the signal line, and then the connection status between the first battery pack and the second battery pack can be determined according to the voltage value on the signal line. Therefore, after the user connects multiple battery packs to form a battery system, this solution can automatically identify the connection status between each battery pack without any other operations, and then identify the connections between the battery systems composed of multiple battery packs.
  • the connection structure allows for better and precise management of battery packs and battery systems.
  • the first battery pack and the second battery pack respectively pass their own first voltage
  • the access module is controllably connected to the first signal line
  • the second voltage access module is controllably connected to the second signal line
  • the control of connecting signal lines between the first battery pack and the second battery pack includes:
  • S202 Control the second voltage access module of the first battery pack to connect to the second signal line.
  • the first battery pack may be a control host in the battery system, and the first battery pack communicates with other slave battery packs, thereby causing the slave battery packs to act according to instructions from the control host.
  • the first battery pack is used as a reference point to sequentially identify the connection status of other slave battery packs relative to the first battery pack. From this, the connection status of each battery pack in the entire battery system can be Sure.
  • the control may be that the control host controls the second voltage access module of the first battery pack to connect to the second signal line, and the control host may be the first battery pack or other battery packs or devices.
  • the second battery pack may generally be a battery pack whose connection status with the first battery pack needs to be determined.
  • the second battery pack may be one or multiple. Normally, only the connection status between a second battery pack and a first battery pack is determined each time.
  • the charge and discharge circuit of each battery pack needs to be opened first to realize the interconnection of each battery pack.
  • This step can be performed during the power-on self-test phase of the battery system.
  • the second voltage access module that controls the first battery pack is connected to the second signal line.
  • the two poles of the cell unit of the first battery pack are controllably connected to the first signal line and the second signal line through the first voltage access module and the second voltage access module respectively.
  • the positive electrode of the battery cell unit of the first battery pack is controllably connected to the first signal line through the first voltage access module
  • the negative electrode of the battery cell unit of the first battery pack is connected to the second voltage access module through the second voltage access module.
  • the signal line is controllably connected; however, it is not limited to this.
  • the negative electrode of the battery cell unit of the first battery pack can also be controllably connected to the first signal line through the first voltage access module, and the negative electrode of the battery cell unit of the first battery pack can be controllably connected.
  • the positive electrode is controllably connected to the second signal line through the second voltage access module, which is not limited here.
  • S204 Send first information to the second battery pack, where the first information is used to instruct the first voltage access module of the second battery pack to connect to the first signal line.
  • the first battery pack as the control host, can send the first information to the second battery pack through the communication connection established with the second battery pack.
  • the second battery pack After receiving the first information, the second battery pack can control its first voltage access module to connect to the first signal line according to the instructions of the first information, and the second voltage access module of the second battery pack remains connected to the second signal line. Disconnected state.
  • the obtaining the voltage value of the signal line includes:
  • the connection status between the first battery pack and the second battery pack can be determined through the third signal line.
  • the voltage value between the first signal line and the second signal line is reflected, so the voltage value between the first signal line and the second signal line can be obtained through the detection and judgment module in the battery pack.
  • controlling the different voltage access modules of the first battery pack and the second battery pack to connect to different signal lines that is, controlling one voltage access module of the first battery pack to access the first signal line
  • controlling Another voltage access module of the second battery pack is connected to the second signal line, and then measures the voltage value between the first signal line and the second signal line to determine the voltage between the first signal line and the second signal line. difference. Therefore, after the user connects multiple battery packs, the voltage value between the first signal line and the second signal line can be automatically obtained through this solution without any other operations, and then the battery composed of multiple battery packs can be identified.
  • the connection structure between systems can better accurately manage battery packs and battery systems.
  • the method before controlling the second voltage access module of the first battery pack to connect the second signal line, the method further includes:
  • each battery pack is turned on.
  • Each battery pack can check whether its own voltage is consistent with the voltages at both ends through its own voltage measurement circuit. If they are consistent, Or if the difference is not large, for example, when the difference is less than a preset range threshold, it can be determined that the connection is normal. Otherwise, it means there is an error in the battery pack connection, and the battery pack can issue an alarm.
  • the battery pack completes the power-on self-test, multiple battery packs need to compete for master and slave machines and assign addresses. The specific method of competing for the master-slave machine is shown in Figure 14. It is judged whether there is a control box.
  • the control box can be a control box with a display screen or a control box without a display screen.
  • the control box is installed in the battery system as an independent module, which is exactly the same as the detection and judgment module installed as an independent module in the battery system described above, and will not be described again. If present, the control box serves as the control host.
  • the step of determining whether there is a control box can be omitted.
  • the control box can be connected to each battery through The communication connections between the packages communicate directly and notify each battery package that the control box serves as the control host. Furthermore, if there is no control box, the control host can be determined according to preset rules.
  • Specific preset rules include any of the following methods: determine the control host according to the order in which the battery pack sends data, or determine the control host according to the theoretical SOC of each battery. Or the maximum value of the current SOC is used to determine the control host, or the largest or smallest ID is selected as the control host based on the factory ID number of each battery pack. Among them, the factory ID number of each battery pack is unique and increases sequentially according to the factory date. As a preferred implementation method, the battery pack with the largest theoretical SOC or the one with the largest factory ID number is selected as the control host, that is, the latest battery pack is selected as the control host, thus ensuring the stability and sustainability of the entire battery system operation. sex.
  • each battery pack needs an address. Therefore, after determining the control host, slave addresses can be assigned to other battery packs in turn through the factory ID number of each battery pack.
  • the control host controls the first battery pack and the second battery pack, and then determines the connection status between the first battery pack and the second battery pack.
  • the embodiment shown in Figure 13 is a battery pack connection status identification method executed by using the first battery pack as the control host.
  • the battery pack connection status identification method can also be performed according to the following steps: The steps are performed by the control box in the battery system, and the method includes:
  • control information other than the first information to the second battery pack, where the control information is used to instruct the first voltage access module of the second battery pack to connect to the first signal line;
  • control box serves as the control host and communicates with the first battery pack and the second battery pack in sequence, so that the different voltage access modules of the first battery pack and the second battery pack are connected to the first signal line and
  • the second signal line identifies the connection status between the first battery pack and the second battery pack based on the measured voltage value.
  • the first battery pack and the second battery pack are controllably connected to the signal lines through their own voltage access modules and voltage sampling modules, so The method of controlling the battery pack to access the signal line includes:
  • the first battery pack may be a control master in the battery system, and the second battery pack may be a slave in the battery system.
  • the first battery pack and other slave battery packs communicate with each other, so that the slave battery packs act according to the instructions of the control host.
  • the first battery pack is used as a reference point to sequentially identify the connection status of other slave battery packs relative to the first battery pack.
  • the first battery pack can close the switch in its voltage sampling module, so that the first battery pack is connected to the signal line through the voltage sampling module.
  • S304 Send second information to the second battery pack, where the second information is used to instruct the voltage access module of the second battery pack to connect to the signal line.
  • the first battery pack as the control host, can send the second information to the second battery pack through the communication connection established with the second battery pack.
  • the second battery pack can control the voltage access module of the second battery pack to connect to the signal line according to the instructions of the second information, and the voltage sampling module of the second battery pack remains disconnected from the signal line. .
  • the obtaining the voltage value of the signal line includes:
  • the voltage sampling module of the first battery pack is connected to the signal line, the voltage value on the signal line can be measured through the voltage sampling module of the first battery pack. Then the BMS in the detection and judgment module in the first battery pack can obtain the voltage value on the signal line measured by the voltage sampling module of the first battery pack.
  • the first battery pack and the second battery pack are controllably connected to the signal lines through their own voltage access modules and voltage sampling modules, respectively.
  • the method of controlling the battery pack to access the signal line includes:
  • S402 Control the voltage access module of the first battery pack to connect to the signal line.
  • the switch in the voltage access module of the first battery pack can also be closed, so that the first battery pack is connected to the signal line through the voltage access module.
  • S404 Send third information to the second battery pack, where the third information is used to instruct the voltage sampling module of the second battery pack to connect to the signal line.
  • the first battery pack as the control host, can send the third information to the second battery pack through the communication connection established with the second battery pack.
  • the second battery pack can control the voltage sampling module of the second battery pack to connect to the signal line according to the instructions of the third information, and the voltage access module of the second battery pack remains disconnected from the signal line. .
  • the obtaining the voltage value of the signal line includes:
  • the voltage sampling module of the second battery pack is connected to the signal line. Therefore, the voltage sampling module of the second battery pack can measure the voltage value on the signal line. Then the BMS in the detection and judgment module in the first battery pack can communicate with the voltage sampling module of the second battery pack through the signal line to obtain the voltage on the signal line measured by the voltage sampling module of the second battery pack. value.
  • different modules in the first battery pack and the second battery pack are used to access the signal line, so that the voltage sampling module in the first battery pack or the second battery pack obtains the voltage on the signal line.
  • value can adapt to a variety of different connection scenarios, and can better determine the connection status between battery packs.
  • the voltage value between the first signal line and the second signal line is obtained, and the first battery pack and the second battery pack are determined according to the voltage value.
  • the connection status between them includes at least one of the following:
  • the measured distance between the first signal line and the second signal line The voltage value should be equal to or close to the voltage of one battery pack or negative to the voltage of one battery pack.
  • the measured voltage value between the signal lines should be equal to or close to the voltage of one battery pack; conversely, When the positive electrode of the first battery pack is connected to the second signal line through the second voltage access module, and the negative electrode of the second battery pack is connected to the first signal line through the first voltage access module, the measured voltage between the signal lines The voltage value should be equal to or close to the negative voltage of a battery pack.
  • the first preset range is set to ensure the accuracy of the identification process.
  • the first preset range may be set according to the rated voltage value of the battery pack. For example, when the rated voltage of a single battery pack is 12V, the first preset range may be set to 10.5V. ⁇ 13.8V or -13.8V ⁇ -10.5V. This preset range is just an example. You can set the preset range by consulting the design document of the battery pack.
  • the first battery pack and the negative electrode of the second battery pack are controllably connected to the second signal line through its own second voltage access module.
  • the first preset range may be equal to or close to the voltage range of a battery pack, for example, the first battery pack Or the rated voltage of the second battery pack is 12V, then the first preset range can be between 10.5V and 13.8V.
  • the first preset range may be a voltage value close to the negative first battery pack or the second battery pack. For example, if the rated voltage of the first battery pack or the second battery pack is 12V, the first preset range may be between -13.8V and -10.5V.
  • the signal line measured by the voltage sampling module of the first battery pack The voltage value should be equal to or close to the voltage of a battery pack or negative to the voltage of a battery pack.
  • the voltage value on the signal line measured by the voltage sampling module should be equal to or close to the voltage of a battery pack.
  • the value on the signal line measured by the voltage sampling module of the second battery pack should be equal to Or a battery pack voltage that is close to negative.
  • the first preset range can be set to ensure the accuracy of the identification process.
  • the area of the first preset range can be determined according to the situation in which the positive electrode or the negative electrode of the battery pack is connected to the signal line, and then it can be determined whether the obtained voltage value is within the first preset range. If the voltage value is within the first preset range, based on the parallel connection relationship, it can be determined that the first battery pack and the second battery pack are in a parallel state. If the voltage value is not within the first preset range, it is determined that the first battery pack and the second battery pack are connected in series.
  • the first preset range may be set according to the rated voltage value of the battery pack. For example, when the rated voltage of a single battery pack is 12V, the first preset range may be set to 10.5V. ⁇ 13.8V or -13.8V ⁇ -10.5V. This preset range is just an example. You can set the preset range by consulting the design document of the battery pack.
  • the voltage value of the signal line between each second battery pack and the first battery pack can be determined sequentially, and then the voltage value of each second battery pack can be determined.
  • the series or parallel connection status between the first battery pack and the first battery pack ultimately determines the connection status of all second battery packs relative to the first battery pack.
  • the total voltage and total capacity of the batteries containing all battery packs can then be calculated based on the connection status. Therefore, further, based on the embodiment shown in Figure 12, the voltage value of the signal line is obtained, and the connection status between the first battery pack and the second battery pack is determined based on the voltage value.
  • the identification method also includes:
  • the identification method may also include:
  • the first battery pack is kept connected to the signal line
  • the second battery pack is controlled to disconnect from the signal line
  • the The third battery pack is connected to the signal line, thereby identifying the connection status between the first battery pack and the third battery pack.
  • the final SOC is composed of all battery packs or battery pack groups in series (multiple battery packs are connected in parallel as a whole, and the SOC after parallel connection is the SOC of multiple battery packs) Determined by the minimum SOC value in the sum of SOCs).
  • determining that the first battery pack and the second battery pack are in a series connection state in response to the voltage value not being within the first preset range further includes:
  • At least one selected from the group consisting of the relative positions of the first battery pack and the second battery pack and the number of battery packs connected in series is determined.
  • the relative position can be understood as the position where the second battery pack is connected to the first voltage access module or the second voltage access module in the first battery pack, or the second battery pack is connected to the first battery pack.
  • the position of the positive or negative side When the second battery pack is connected to the positive electrode side of the first battery pack, the negative electrode of the second battery pack is connected to the positive electrode of the first battery pack; when the second battery pack is connected to the negative electrode side of the first battery pack, the negative electrode of the second battery pack is connected to the positive electrode of the first battery pack.
  • the positive electrode of the second battery pack is connected to the negative electrode of the first battery pack.
  • the first battery pack and the second battery pack when it is determined that the first battery pack and the second battery pack are connected in series, usually the first battery pack and the second battery pack may be directly connected in series, that is, there are no other battery packs in between; It is also possible that the first battery pack and the second battery pack are indirectly connected in series, that is, there is at least one battery pack between the first battery pack and the second battery pack, or there is at least one battery pack group between the first battery pack and the second battery pack. , or there is a battery pack and a battery pack group between the first battery pack and the second battery pack.
  • the battery pack group includes multiple parallel battery packs.
  • the relative positional relationship between the first battery pack and the second battery pack can be determined based on the voltage values between the series connection states, that is, the second battery pack is connected to the first battery pack.
  • the first voltage of a battery pack is connected to the module side or the second voltage is connected to the module side.
  • first battery pack and the second battery pack when connected in series, their relative position relationship can be determined based on the voltage value and the number of battery packs connected in series, so that the first battery pack and the second battery pack can be better determined.
  • the connection structure in the secondary battery pack when the first battery pack and the second battery pack are connected in series, their relative position relationship can be determined based on the voltage value and the number of battery packs connected in series, so that the first battery pack and the second battery pack can be better determined.
  • the first The negative poles of the battery pack and the second battery pack are controllably connected to the second signal line through their own second voltage access modules; or, if the positive poles of the first battery pack and the second battery pack are respectively connected to the second signal line through their own second voltage access modules;
  • the voltage access module is controllably connected to the signal line, and the negative electrodes of the first battery pack and the second battery pack are controllably connected to the signal line through their own voltage sampling modules; then, according to the voltage value, the The connection state between the first battery pack and the second battery pack, or determining a group selected from the group consisting of the relative positions of the first battery pack and the second battery pack and the number of battery packs connected in series. At least one of, including at least one of the following:
  • N At least one selected from the group consisting of a battery pack and a battery pack group.
  • S608 In response to the voltage value being negative or zero, determine that the second battery pack is directly or indirectly connected to the negative side of the first battery pack.
  • S610 in response to the voltage value being a negative value and the absolute value of the voltage value being M times the voltage of the first battery pack, determine that the first battery pack and the second battery pack are connected in series.
  • N is a number greater than or equal to 2
  • M is a number greater than 1
  • the battery pack group includes a plurality of battery packs connected in parallel.
  • the positions of the first voltage access module and the second voltage access module in the first battery pack and the second battery pack are usually the same, that is, the first battery pack and the second voltage access module
  • the battery packs are battery packs with the same structure. Specifically, after determining the voltage value between the first battery pack and the second battery pack, since the battery pack structure and connection method have been determined, the voltage value between the first battery pack and the second battery pack can be determined based on the voltage value.
  • the relative position of the battery packs and/or the number of series-connected battery packs between the first battery pack and the second battery pack As shown in FIGS. 19 and 20 , the first battery pack and the second battery pack marked in FIGS. 19 and 20 are used for illustration.
  • the negative electrode of the first battery pack when the negative electrode of the first battery pack is connected to the second signal line and the positive electrode of the second battery pack is connected to the first signal line, if the measured voltage value is positive, the negative electrode of the second battery pack It is connected to the positive electrode of the first battery pack, that is, the second battery pack is connected to the positive electrode side of the first battery pack (the first access module side). If the voltage value is N times or close to N times the voltage of a single battery pack (N is a number greater than or equal to 2), it can be determined that the second battery pack is connected in series with the first battery pack, and the negative electrode of the second battery pack is connected to the first battery pack. The positive electrode of the battery pack is connected, and a total of N-2 battery packs and/or battery pack groups are connected in series between the negative electrode of the second battery pack and the positive electrode of the first battery pack.
  • the measured voltage value is zero or close to zero
  • the The positive electrode of the second battery pack is directly connected to the negative electrode of the first battery pack, that is, the second battery pack is directly connected to the negative electrode side of the first battery pack (the second access module side). No other batteries are connected in series between pack or battery pack set. If the measured voltage value is negative, it can be determined that the second battery pack is connected in series with the first battery pack, and the positive electrode of the second battery pack is connected to the negative electrode of the first battery pack, that is, the second battery pack is connected to the first battery pack.
  • the negative side of the battery pack (second access module side). If the measured voltage value is negative, and the absolute value of the voltage value is M times or close to M times the voltage of a single battery pack (M is a number greater than or equal to 1), then it can be determined whether the second battery pack is the same as the first battery pack. connected in series, and the positive electrode of the second battery pack is connected to the negative electrode of the first battery pack, that is, the second battery pack is connected to the negative electrode side of the first battery pack (the second access module side), and the negative electrode of the second battery pack is connected to the negative electrode of the first battery pack. A total of M battery packs and/or battery pack groups are connected in series between the positive electrodes of the first battery pack.
  • the positions of the voltage access module and the voltage sampling module in the first battery pack and the second battery pack are also fixed and the same, that is, the first battery pack and the second battery pack are batteries with the same structure. Bag. Since the connection status between the first battery pack and the second battery pack has been determined, the relative position between the first battery pack and the second battery pack and/or the first battery can be determined according to the voltage value of the signal line.
  • the number of battery packs connected in series between the battery pack and the second battery pack is as shown in Figures 21 and 22. For example, the first battery pack and the second battery pack are marked in Figures 21 and 22.
  • the second battery pack is connected in series with the first battery pack, and the positive electrode of the battery pack of the second battery pack is connected in series with the negative electrode side of the battery pack of the first battery pack. (Voltage sampling module side). If the voltage value measured by the first battery pack is negative, and the absolute value of the voltage value is M times or close to M times the voltage of a single battery pack (M is a number greater than or equal to 1), then it can be determined that the voltage value of the second battery pack is the same as that of the second battery pack.
  • the first battery pack is connected in series, and the positive electrode of the second battery pack is connected in series to the negative side (voltage sampling module side) of the first battery pack, and the negative electrode of the second battery pack is connected in series with the positive electrode of the first battery pack.
  • the voltage value measured by the first battery pack may generally be the voltage value measured by the voltage sampling module in the first battery pack.
  • the negative electrodes of the first battery pack and the second battery pack are controllably connected to the first signal line through their own first voltage access modules
  • the The positive poles of the first battery pack and the second battery pack are controllably connected to the second signal line through their own second voltage access modules; or, if the negative poles of the first battery pack and the second battery pack are respectively
  • the signal line is controllably connected through its own voltage access module
  • the positive electrodes of the first battery pack and the second battery pack are controllably connected to the signal line through its own voltage sampling module; then according to the voltage value, Determine the connection status between the first battery pack and the second battery pack, or determine a condition selected from the relative positions of the first battery pack and the second battery pack and the number of battery packs connected in series.
  • At least one of the group including at least one of the following:
  • N-2 are selected from at least one group consisting of a battery pack and a battery pack group.
  • S708 In response to the voltage value being positive or zero, determine that the second battery pack is directly or indirectly connected to the positive side of the first battery pack.
  • S710 in response to the voltage value being a positive value and the voltage value being M times the voltage of the first battery pack, determine that M batteries are connected in series between the first battery pack and the second battery pack. At least one selected from the group consisting of a battery pack and a battery pack group.
  • N is a number greater than or equal to 2
  • M is a number greater than or equal to 1
  • the battery pack group includes a plurality of battery packs connected in parallel.
  • each module in the battery pack is connected to the bipolar poles of the battery pack in a different manner.
  • FIGS. 24 and 25 the first battery pack and the second battery pack marked in FIGS. 24 and 25 are used for illustration.
  • the positive electrode of the first battery pack when the positive electrode of the first battery pack is connected to the first signal line and the negative electrode of the second battery pack is connected to the second signal line, if the measured voltage value is a negative value, the positive electrode of the second battery pack is directly Or indirectly connected to the negative electrode of the first battery pack, that is, the second battery pack is connected to the negative electrode side of the first battery pack (the first access module side). Further, if the measured voltage value is a negative value, and the absolute value of the voltage value is N times or close to N times the voltage of a single battery pack (N is a number greater than or equal to 2), then the positive electrode of the second battery pack is connected to the third battery pack.
  • the negative electrode connection of a battery pack that is, the battery pack in which the second battery pack is connected to the negative electrode side of the first battery pack (the first access module side) and the positive electrode of the second battery pack is connected in series with the negative electrode of the first battery pack and/or the total number of battery packs is N-2.
  • the second battery pack is connected in series with the first battery pack, and The negative electrode of the second battery pack is connected to the positive electrode of the first battery pack, that is, the second battery pack is connected to the positive electrode side of the first battery pack (the second access module side), and the negative electrode of the second battery pack is connected to the first battery pack.
  • a total of M battery packs and/or battery pack groups are connected in series between the positive electrodes of the packs.
  • first battery pack and the second battery pack marked in FIG. 26 and FIG. 27 are used for illustration.
  • the positive electrode of the battery pack of the first battery pack When the positive electrode of the battery pack of the first battery pack is connected to the signal line through the voltage sampling module, and the negative electrode of the battery pack of the second battery pack is connected to the signal line through the voltage access module.
  • the voltage value measured by the first battery pack is a negative value, it can be determined that the positive electrode of the battery pack of the second battery pack is directly or indirectly connected to the negative electrode of the battery pack of the first battery pack, that is, the second battery The battery pack is connected to the negative side of the battery pack (voltage access module side) of the first battery pack.
  • the second battery pack The positive electrode of the battery pack is connected to the negative electrode side of the battery pack (voltage access module side) of the first battery pack, and the battery pack positive electrode of the second battery pack is connected in series with the negative electrode of the battery pack of the first battery pack. /or the total number of battery packs is N-2.
  • the voltage value measured by the first battery pack is positive, and the voltage value is M times or close to M times the voltage of a single battery pack (M is a number greater than or equal to 1), then it can be determined that the second battery pack is the same as the first battery.
  • the packs are connected in series, and the negative pole of the second battery pack is connected to the positive pole of the first battery pack, that is, the second battery pack is connected to the positive side of the first battery pack (voltage sampling module side), and the second battery pack A total of M battery packs and/or battery pack groups are connected in series between the negative electrode and the positive electrode of the first battery pack.
  • connection status between the first battery pack and the second battery pack is determined based on the voltage value, Include at least one of the following:
  • N At least one selected from the group consisting of a battery pack and a battery pack group.
  • S808 In response to the voltage value being negative or zero, determine that the second battery pack is directly or indirectly connected to the negative side of the first battery pack.
  • N is a number greater than or equal to 2
  • M is a number greater than or equal to 1
  • the battery pack group includes a plurality of battery packs connected in parallel.
  • the description is made with the first battery pack and the second battery pack labeled in FIGS. 29 and 30 .
  • the voltage sampling module in the second battery pack can measure the voltage value on the signal line. If the voltage in the second battery pack If the voltage value measured by the sampling module is a positive value, it can be determined that the negative electrode of the second battery pack is connected to the positive electrode of the first battery pack, that is, the second battery pack is connected to the positive electrode side of the first battery pack (voltage access module 1). side).
  • the relationship between the first battery pack and the second battery can be determined. There is a series relationship between them, it is determined that the negative electrode of the second battery pack is connected to the positive electrode of the first battery pack, and there are also battery packs and/or battery pack groups connected in series between the negative electrode of the second battery pack and the positive electrode of the first battery pack, a total of N -2 pcs.
  • the positive electrode of the first battery pack When the positive electrode of the first battery pack is connected to the signal line through the voltage access module, and the negative electrode of the second battery pack is connected to the signal line through the voltage sampling module. As shown in Figure 30, if the voltage value measured by the voltage sampling module of the second battery pack is zero, it can be determined that the positive electrode of the second battery pack is directly connected to the negative electrode of the first battery pack, that is, the second battery pack is directly connected. On the negative side of the first battery pack (voltage sampling module side). There is no other battery pack or battery pack group connected in series between the second battery pack and the first battery pack.
  • the voltage value measured by the voltage sampling module of the second battery pack is a negative value, it can be determined that the second battery pack and the first battery pack are connected in series, and the positive electrode of the second battery pack is connected to the negative electrode of the first battery pack, That is, the second battery pack is connected to the negative side (voltage sampling module side) of the first battery pack.
  • the second battery pack is The first battery pack is connected in series, and the positive electrode of the second battery pack is connected to the negative electrode of the first battery pack, that is, the second battery pack is connected to the negative electrode side (voltage sampling module side) of the first battery pack, and the second battery pack A total of M battery packs and/or battery pack groups are connected in series between the negative electrode of the battery pack and the positive electrode of the first battery pack.
  • the connection status between the first battery pack and the second battery pack is determined based on the voltage value, Include at least one of the following:
  • S908 In response to the voltage value being positive or zero, determine that the second battery pack is directly or indirectly connected to the negative side of the first battery pack.
  • S910 in response to the voltage value being a positive value and the voltage value being M times the voltage of the first battery pack, determine that M batteries are connected in series between the first battery pack and the second battery pack. At least one selected from the group consisting of a battery pack and a battery pack group.
  • S912 in response to the voltage value being zero, determine that no battery pack or battery pack group is connected in series between the first battery pack and the second battery pack; where N is a number greater than or equal to 2, and M is greater than or equal to
  • the battery pack group includes a plurality of battery packs connected in parallel.
  • first battery pack and the second battery pack marked in FIGS. 32 and 33 are used for illustration.
  • the voltage sampling module in the second battery pack can measure the voltage value on the signal line. If the voltage value measured by the voltage sampling module in the second battery pack is zero, it can be determined that the positive electrode of the second battery pack is directly connected to the negative electrode of the first battery pack, that is, the second battery pack is connected to the negative electrode of the first battery pack. side (voltage access module side).
  • the voltage value measured by the voltage sampling module in the second battery pack is positive and the absolute value of the missing voltage value is M times or close to M times the voltage of a single battery pack (M is a number greater than or equal to 1), it can be determined
  • the second battery pack is connected in series with the first battery pack, and the positive electrode of the second battery pack is connected to the negative electrode of the first battery pack, that is, the second battery pack is connected to the negative electrode side (voltage access module side) of the first battery pack.
  • a total of M battery packs and/or battery pack groups are connected in series between the negative electrode of the second battery pack and the positive electrode of the first battery pack.
  • the voltage sampling module in the second battery pack can measure the voltage value on the signal line. If the voltage value measured by the voltage sampling module in the second battery pack is a negative value, it can be determined that the negative electrode of the second battery pack is connected to the positive electrode of the first battery pack, that is, the second battery pack is connected to the positive electrode of the first battery pack. side (voltage sampling module side).
  • the voltage value measured by the voltage sampling module in the second battery pack is a negative value, and the absolute value of the voltage value is N times or close to N times the voltage of a single battery pack (N is a number greater than or equal to 2)
  • N is a number greater than or equal to 2
  • the first battery pack and the second battery pack are connected in series. It is determined that the negative electrode of the second battery pack is connected to the positive electrode of the first battery pack, and there is a battery pack connected in series between the negative electrode of the second battery pack and the positive electrode of the first battery pack. and/or battery packs, a total of N-2.
  • the battery packs and/or battery pack groups mentioned above are connected in series, a total of N-2 or battery pack groups are connected in series.
  • There are a total of M battery packs and/or battery pack groups which means that there are other battery packs connected in series between the first battery pack and the second battery pack, and since the voltage of multiple battery packs connected in parallel is equal to the voltage of a single battery pack, Therefore, only the number of battery units connected in series can be determined based on the voltage value.
  • the battery unit may be a single battery pack or a battery pack composed of multiple battery packs connected in parallel; the number of battery packs in the battery pack is only based on the currently obtained signal. The line voltage value cannot yet be determined.
  • Hybrid connection is a special battery system that combines series battery packs and parallel battery packs.
  • P 1 , P 2 ...P n-1 and P n are battery packs
  • the two dotted lines connected to the isolation communication module are communication lines, such as CAN bus; each battery pack can communicate through the isolation communication module .
  • the two thin solid lines connected to the voltage access module are signal lines; the two thick solid lines connected to the fuse are the power bus bars.
  • BMS is the battery management system, which is used to obtain various parameters of the battery pack of the battery pack from the current sensor and voltage detection unit (not shown) and perform corresponding control;
  • M1 , charging , M1 is the charge and discharge circuit unit of the battery pack, which controls the charge and discharge of the battery pack according to the control signal of the BMS;
  • K1 , pre- and R1 pre- constitutes the pre-charge unit of the battery pack, which is used to buffer when powering on.
  • K 1 is set between the fuse and the battery pack of the P 1 battery pack, as the main loop control switch, used to communicate with the power supply Bus connection;
  • S 1, positive and R 1, positive constitute the first voltage access module of the battery pack, which is used to controllably connect the positive electrode of the battery pack to the first signal line;
  • S 1, negative and R 1, negative constitute the battery
  • the second voltage access module of the package is used to controllably connect the negative electrode of the battery pack to the second signal line;
  • the isolation communication unit is connected to the communication bus (two dotted lines in the figure), thereby communicating with other devices through the communication bus.
  • the battery pack establishes a communication connection; the voltage measurement circuit and the BMS constitute the detection and judgment module of the battery pack.
  • the voltage measurement circuit is used to measure the voltage value between the first signal line and the second signal line, and the BMS is used to determine the battery based on the voltage value.
  • the connection status of the package The structure of other battery packs is exactly the same as that of battery pack P 1. The only difference lies in the connection methods between battery packs, which will not be described again here.
  • the control host in the battery system can be determined first through the steps of competing for master and slave.
  • the determination method of the control host please refer to the above embodiments and will not be repeated here.
  • battery pack P3 is used as the control master, and the other battery packs are slave machines.
  • the control host may be equivalent to the above-mentioned first battery pack, and each slave machine may be equivalent to the above-mentioned second battery pack or third battery pack. It should be noted that this embodiment is only described as a possible implementation manner, and its purpose is to further explain the technical solution of the present application, and does not constitute a limitation on the actual protection scope of the present application.
  • battery pack P 3 as the control host, first controls S 3.
  • the negative closure connects the negative electrode of battery pack P 3 to the second signal line, and sends information to battery pack P 1 through the communication bus to control S 1.
  • the battery pack P 3 measures the voltage values of the first signal line and the second signal line through its own voltage measurement circuit. At this time, the battery pack P 1 and the battery pack P 3 are connected in series, and the negative electrode of the battery pack P 1 is connected to The positive terminal of battery pack P3 is directly connected. Therefore, the voltage value measured at this time is approximately twice the voltage value of battery pack P3.
  • the specific multiple can be determined by dividing the measured voltage value by the voltage value of battery pack P3 and then rounding off. Based on the measured voltage value, battery pack P 3 can determine that battery pack P1 and battery pack P 3 are connected in series, and are directly connected in series at its positive terminal (first voltage access module side).
  • the battery pack P 3 controls the battery pack P 1 to control S 1 through the communication bus, which is opening, and controls the battery pack P 2 to control S 2 through the communication bus, which is closing.
  • the battery pack P3 measures the voltage values of the first signal line and the second signal line through its own voltage measurement circuit. The measured voltage value at this time is also approximately twice the voltage value of the battery pack P3 , so the battery pack P 3 can determine that battery P 2 is connected in series with it, and is directly connected in series at its positive terminal (first voltage access module side). At the same time, battery pack P 3 can also determine that battery pack P 1 and battery pack P 2 are connected in parallel.
  • the battery pack P 3 controls the battery pack P 2 to control S 2 through the communication bus, which is turning off, and controls the battery pack P 4 to control S 4 through the communication bus, which is turning on.
  • Battery pack P3 measures the voltage value through the voltage measurement circuit. The voltage value at this time is approximately twice the voltage value of battery pack P3 . Therefore, battery pack P3 can determine that battery P4 and battery P4 are connected in parallel.
  • the battery pack P3 controls the battery pack P4 through the communication bus to control S4 , which is turning off, and controls the battery pack P5 through the communication bus to control S5, which is turning on.
  • Battery pack P 3 measures the voltage value through the voltage measurement circuit. The voltage value at this time is approximately 0.
  • Battery pack P 3 can determine that battery P 5 is connected in series with itself, and at its negative terminal (the second voltage is connected module side) and directly connected in series;
  • battery pack P 3 determines the series-parallel relationship between all slave battery packs and itself, and can calculate the series-parallel relationship of battery pack P and the total capacity and total voltage of battery pack P.
  • connection status between each battery pack can be automatically identified without other operations, and then the connection structure between each battery pack in the entire battery system can be determined, and the connection structure between each battery pack can be updated. Accurately manage the battery system.
  • N and M can be the integer value obtained by dividing the measured voltage value by the voltage value of a single battery pack and then rounding to an integer, thereby determining the specific multiple (i.e., the aforementioned N times, M times or zero). For example, for a battery pack with a voltage of 12V, if the voltage value measured by the detection and judgment module or voltage sampling module is 32.5V, then calculate 32.5/12 ⁇ 2.708, and then round it to determine 3 times the battery pack voltage.
  • the voltage value measured by the detection and judgment module or voltage sampling module is 1.5V, then calculate 1.5/12 ⁇ 0.125, and then round to determine the voltage value is 0; if the voltage value measured by the detection and judgment module or voltage sampling module is -7.5V, then take the absolute value first and then calculate 7.5/12 ⁇ 0.625, then round it up and determine it as 1 times the battery pack voltage; and so on, which can help determine the measured signal line voltage value more accurately .
  • the relative positional relationship between the first battery pack and the second battery pack can be further determined based on the voltage value, and the access of the second battery pack.
  • the positive side or negative side of the first battery pack, as well as the number of battery packs connected in series can better determine the connection structure of the first battery pack and the second battery pack, and subsequently facilitate the calculation of series and/or parallel connections.
  • the total voltage and total capacity of the battery pack can be further determined based on the voltage value, and the access of the second battery pack.
  • a battery management system including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the computer program, it implements the steps in the above method embodiments.
  • a computer-readable storage medium is also provided, on which a computer program is stored.
  • the computer program is executed by a processor, the steps in the above method embodiments are implemented.
  • a computer program product including a computer program that implements the steps in each of the above method embodiments when executed by a processor.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in one of the above storage media (such as ROM/RAM, magnetic disk, optical disk), including several instructions to cause a terminal device (which may be an electrical device or a network device, etc.) to execute the method of each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请涉及一种电池系统和电池包连接状态识别方法,电池系统包括:多个电池包,多个电池包直接或间接连接;信号线,信号线与每个电池包可控连接;以及检测判断模块,用于获取信号线的电压值,根据电压值确定选自由多个电池包之间的连接方式和相对位置构成的组中的至少一个。

Description

电池系统和电池包连接状态识别方法
相关申请
本申请要求2022年08月22日申请的,申请号为202211004551.6,名称为“电池系统和电池包连接状态识别方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及新能源技术领域,特别是涉及一种电池系统和电池包连接状态识别方法。
背景技术
随着新能源技术的发展,电池应用的范围越来越广泛。目前很多厂商都会制造电池包进行生产销售,而用户在购买到电池包后,对电池包进行串并联,以满足用电系统对电池容量和输出电压的需求。
通常而言,用户在进行串并联时,需要先确保所有的每个电池包的总容量、剩余容量和电池包两端电压都是完全一致的,然后再选择若干个电池包进行并联形成电池包串,最后再将多个电池包串进行串联,得到用户期望的额定容量和电压的由多个电池包构成的电池系统。
然而,在实际应该过程中,无法保证每个用户都阅读操作指南,根据操作指南进行处理,并且也无法保证每个用户都具有一定的电工理论基础知识和必要的电工工具。通常情况下,用户会随意对电池包进行串并联连接,此时若电池包之间连接不合理或连接出错,可能会造成无法正确上电的风险,甚至可能会产生安全隐患,严重影响用户的用电体验。
因此,需要提出一种能够在对电池包进行串联、并联或者串联和并联后,自动识别每个电池包连接状态的方法。
发明内容
基于此,有必要针对上述技术问题,提供一种能够在对电池包进行连接后,自动识别每个电池包连接状态的电池系统和电池包连接状态识别方法。
为此,作为本申请的第一方面,提供一种电池系统,包括:
多个电池包,多个所述电池包直接或间接连接;
信号线,所述信号线与每个所述电池包可控连接;以及
检测判断模块,用于获取所述信号线的电压值,根据所述电压值确定选自由多个所述电池包之间的连接方式和相对位置构成的组中的至少一个。
根据本申请的另一方面,还提供一种电池包连接状态识别方法,所述方法应用于由至少一第一电池包和至少一第二电池包构成的电池系统中的所述第一电池包,所述方法包括:
控制所述第一电池包和所述第二电池包连接信号线;
获取所述信号线的电压值;
根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据申请的附图获得其他的附图。
图1为一个实施例中电池包的结构示意图;
图2为一个实施例中控制模块的结构示意图;
图3为一个实施例中第一电压接入模块和第二电压接入模块的结构示意图;
图4为一个实施例中分压电路、第一电压接入模块和第二电压接入模块一结构示意图;
图5为一个实施例中分压电路、第一电压接入模块和第二电压接入模块另一结构示意图;
图6为一个实施例中检测判断模块的电压测量电路的结构示意图;
图7为一个实施例中电池系统的结构示意图;
图8为一个实施例中电池系统的具体结构示意图;
图9为另一个实施例中电池包的结构示意图;
图10为另一个实施例中电池包的电压接入模块和电压采样模块的结构示意图;
图11为另一个实施例中电池系统的结构示意图;
图12为一个实施例中电池包连接状态识别方法的流程示意图;
图13为另一个实施例中电池包连接状态识别方法的流程示意图;
图14为一个实施例中确定控制主机的步骤的流程示意图;
图15为一个实施例中测量信号线上的电压值的流程示意图;
图16为另一个实施例中测量信号线上的电压值的流程示意图;
图17为一个实施例中确定第一电池包和第二电池包之间的连接状态的流程示意图;
图18为一个实施例中确定电池包连接状态的步骤的流程示意图;
图19为一个实施例中第一电池包和第二电池包相对位置以及第一电压接入模块和第二电压接入模块的结构示意图;
图20为一个实施例中第一电池包和第二电池包相对位置以及第一电压接入模块和第二电压接入模块的结构示意图;
图21为一个实施例中第一电池包和第二电池包相对位置以及电压接入模块和电压采样模块的结构示意图;
图22为一个实施例中第一电池包和第二电池包相对位置以及电压接入模块和电压采样模块的结构示意图;
图23为确定电池包连接状态的步骤的流程示意图;
图24为一个实施例中第一电池包和第二电池包相对位置以及第一电压接入模块和第二电压接入模块的结构示意图;
图25为一个实施例中第一电池包和第二电池包相对位置以及第一电压接入模块和第二电压接入模块的结构示意图;
图26为一个实施例中第一电池包和第二电池包相对位置以及电压接入模块和电压采样模块的结构示意图;
图27为一个实施例中第一电池包和第二电池包相对位置以及电压接入模块和电压采样模块的结构示意图;
图28为确定电池包连接状态的步骤的流程示意图;
图29为一个实施例中第一电池包和第二电池包相对位置以及电压接入模块和电压采样模块的结构示意图;
图30为一个实施例中第一电池包和第二电池包相对位置以及电压接入模块和电压采样模块的结构示意图;
图31为确定电池包连接状态的步骤的流程示意图;
图32为一个实施例中第一电池包和第二电池包相对位置以及电压接入模块和电压采样模块的结构示意图;
图33为一个实施例中第一电池包和第二电池包相对位置以及电压接入模块和电压采样模块的结构示意图;
图34为一个实施例中多个电池包的混连的连接结构示意图。
附图中各部件标记如下:100、电池包;120、电池组;140、第一电压接入模块;160、第二电压接入模块;180、控制模块;182、BMS;184、电压测量电路;142、第一开关;144、第一电阻;162、第二开关;164、第二电阻;220、检测判断模块;320、电池组;340、电压接入模块;360、电压采样模块;380、检测判断模块。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的 含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。应当进一步理解,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。再者,本文中使用的术语“或”、“和/或”、“包括以下至少一个”等可被解释为包括性的,或意味着任一个或任何组合。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种参数或模块,但这些参数或模块不应限于这些术语。这些术语仅用来将同一类型的参数或模块彼此区分开。例如,在不脱离本文范围的情况下,第一参数也可以被称为第二参数,类似地,第二参数也可以被称为第一参数。取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。此外,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应该理解的是,虽然本申请实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
应当理解,此处所描述的具体实施例仅仅用于解释本申请,并不用于限定本申请。
本申请提供的电池系统适用于多种应用场景,如并网发电储能领域、离网光储领域(用于对家庭、房车、游艇中的用电设备进行供电)、风储发电领域、电动设备领域等,具体可根据实际应用场景确定,在此不做限制。以下将以离网光储领域为例进行说明,对于其他应用场景基本类似,不再赘述。
在离网光储应用场景下,完整的光储系统至少包括光伏发电系统、电力变换系统、电池系统以及用电系统,光伏发电系统由若干太阳能电池板串并联构成,用于将太阳能转换成电能,电力变换系统将光伏发电系统产生的电能注入至电池系统中进行存储,用电系统再将电池系统中储存的电能适配为用电设备所需的电力。前述的电力变换系统通常可以采用如带有MPPT功能的DC/DC变换器来实现,用电系统通常可以采用DC/DC变换器、DC/AC变换器来实现。在此重点介绍电池系统,电池系统通常是通过将多个电池包彼此连接组成,电池包相互串联使用能够提高电池组的输出电压,电池包相互并联使用能够获得更大的电池容量。因此为了获得目标电压等级和容量的电池系统,用户会将多个电池包彼此串并联,从而得到高电压大容量的电池系统来进行储能和供电。而目前有些用户在得到电池包后,通常会随意的进行串联和/或并联或者在电池包串并联过程中误操作而导致连接错误,在电池包上电后,由于电池系统未能识别各个电池包的连接关系,造成不能很好地管理各个电池包的充放电,影响电池系统的正常使用,严重的情况可能会产生电池包的安全隐患。
为解决上述问题,本申请提供了一种能够在对电池包进行串并联后,自动识别每个电池包连接状态的电池系统和电池包连接状态识别方法。
在一个实施例中,请参照图1,本申请提供了一种电池包100,包括:电池组120、第一电压接入模块140、第二电压接入模块160和控制模块180。
其中,电池组120分别和第一电压接入模块140、第二电压接入模块160以及控制模块180连接。
可选地,电池组120由若干个电池电芯彼此串联和/或并联构成,用于储能和供电;其中电池电芯的数量大于或者等于1,且具体数量可由实际应用场景决定,在此不做限定。电池电芯的类型可包括但不限于钴酸锂电池,锰酸锂电池,镍钴锰酸锂电池,镍钴铝酸锂电池,磷酸铁锂电池,或者钛酸锂电池。第一电 压接入模块140和第二电压接入模块160,分别用于将电池组120的正极和负极可控连接至第一信号线(未图示)和第二信号线(未图示),将在后续实施例中具体阐述。控制模块180,用于检测电池组120的性能参数。
在一些可行的实施方式中,如图2所示,控制模块180可以包括检测判断模块,所述检测判断模块可以包括BMS(Battery Management Systerm)182和电压测量电路184。BMS 182分别和电池组120和电压测量电路184连接。BMS 182用于智能化管理及维护各个电池包100,监控电池包100的状态,防止电池包100出现过充电和过放电,延长电池包100的使用寿命。具体地,BMS 182可以实现如下一种或者多种功能:电池组120中的单体电池电芯的电芯参数测量或监控,包括如下一种或多种电芯参数:电芯电压、电芯剩余电量(State of Charge,即SOC)、电芯温度、电芯电流、电芯健康状态(State of Health,即SOH);电池组120中的单体电池电芯的能量均衡,即为单体电池电芯进行均衡充放电,使电池组120达到均衡一致的状态;电池组120总电压测量;电池组120总电流测量、SOC计算,准确估测电池组120的荷电状态,即电池剩余电量,保证SOC维持在合理的范围内,防止由于过充电或过放电对电池的损伤;动态监测电池组120的工作状态:在电池充放电过程中,实时采集电池组120的电压和温度;充放电电流及总电压,防止电池发生过充电或过放电现象、实时数据显示;数据记录及分析,同时挑选出有问题的电池,保持电池运行的可靠性和高效性;通讯组网功能。
电压测量电路184分别和第一电压接入模块140的输出端以及第二电压接入模块160的输出端连接,用于测量第一电压接入模块140的输出端以及第二电压接入模块160的输出端之间的电压;当第一电压接入模块140的输出端与第一信号线(未图示)连接、第二电压接入模块160的输出端与第二信号线(未图示)连接时,电压测量电路184测得的电压值即等于第一信号线和第二信号线之间的电压。在实际工作过程中,电压测量电路184用于采集第一信号线和第二信号线之间的电压,BMS 182在获得该电压后再进行相应的判断和控制,该内容将在本申请后续的实施例中具体描述。
在一些可行的实施方式中,如图3所示,第一电压接入模块140至少包括一第一开关,第二电压接入模块160至少包括一第二开关。
可选地,第一电压接入模块140可以直接为第一开关,第二电压接入模块160可以直接为第二开关,即电池组120的两极可以直接通过第一开关和第二开关分别连接第一信号线(未图示)和第二信号线(未图示)。
可选地,第一电压接入模块140还可以包括第一开关142和第一电阻144,电池组120和第一电阻144连接后与第一开关142连接,或者电池组120也可以和第一开关142连接后与第一电阻144连接。第二电压接入模块160还可以包括第二开关162和第二电阻164,电池组120和第二电阻164连接后与第二开关162连接,或者电池组120也可以和第二开关162连接后与第二电阻164连接。第一开关142和第二开关162的数量在本实施例中不做限制,只要能实现将电池组120的两极可控连接至第一信号线(未图示)和第二信号线(未图示)的目的即可。第一开关142和第二开关162可以采用金属氧化物半导体型场效应管(metal oxide semiconductor fieldeffect transistor,可简称为MOSFET或者MOS管)来实现,也可以采用三极管、继电器等电子元器件来实现,在此不做限定,只要能实现根据对应的驱动信号来进行导通和断开、使得电池组与信号线之间可控连接的目的即可。
在本实施方式中,第一电阻144和第二电阻164的可以减小电池包与信号线连接时电流过大的问题,也就是说,第一电阻144和第二电阻164可以分别采用第一限流元件和第二限流元件代替,限流元件的数量、连接方式以及元件类型均不作限制,只要能起到电池组120与信号线连接时降低电流的目的即可,该实现方式均在本申请的保护范围之内。
在一些可行的实施方式中,所述电池包还可以包括与电池组120连接的分压模块,分压模块用于对电池组120的输出电压进行分压,使得当电池组120连接到信号线时分压模块可以降低电池组120的输出电流大小,避免对电压测量电路184造成损坏或影响。
可选地,电池组120的正极经过分压模块和第一接入模块连接,电池组120的负极和第二接入模块直接连接,分压模块可以包括并联或者串联的电阻。图4和图5示出了一种可行的包括分压模块的电池包实施方式,其中P可以为前述的电池组120。如图4所示,第一电压接入模块140包括第一开关S,第二电压接入模块160包括第二开关S,电阻R1和电阻R2串联后构成本实施方式中的分压模块。在本实施方 式中,电压测量电路184测得的电压为分压电阻R1两端的电压,而并非电池组P两端的电压,因此可以降低电压测量电路的电路开销,避免电压测量电路直接与电池组P连接,导致出现大电流造成电路损坏的风险。作为一种可选地实施方式,在图4所示的电池包实施方式的基础上,电压接入模块还可以进一步包括电阻,如图5所述,第一电压接入模块140包括第一开关S和电阻R,第二电压接入模块160包括第二开关S和电阻R。电阻R和电阻R可以进一步降低整个电路中的电流大小。
在本实施例中,电池组120经过分压模块后接入信号线,分压的原因在于,如果单个电池包的电压比较高,或者多个电池包串联使用的时候系统电压过高,会导致电压测量电路184承受压力过大,从而导致电压测量电路184损坏。
在一个实施例中,如上所述的检测判断模块包括BMS182和电压测量电路184,所述电压测量电路至少包括运算放大器,用于获取所述第一信号线和第二信号线之间的电压值;所述BMS的微处理器MCU用于根据所述电压值确定多个所述电池包之间的连接方式和/或多个所述电池包之间的相对位置。
具体地,如图6所示的检测判断模块的电压测量电路结构示意图,微处理器MCU(Microcontroller Unit)可以是电池包的BMS中的MCU。运算放大器的第一输入端(反向输入端)与电阻R3连接,电阻R3和开关S1连接,开关S1可以连接至第一信号线和第二信号线中的任意一个以及第一电压接入模块140的输出端。运算放大器的第二输入端(同相输入端)与平衡电阻R5连接,平衡电阻R5分别和开关S2和下拉电阻R6连接,开关S2连接至第一信号线和第二信号线中的另一个以及第二电压接入模块160的输出端连接。作为一种优选的实施方式,运算放大器的第一输入端通过电阻R3和第一开关S1与第一信号线可控连接,第二输入端通过平衡电阻R5和第二开关S2可控连接。下拉电阻R6接地。运算放大器的输出端通过电阻R7和微处理器MCU连接,用于将表示电压测量电路所测得的第一信号线和第二信号线之间的电压差值的数值Vout输出至MCU。MCU在获得数值Vout后,即可根据所述电压值确定多个所述电池包之间的连接方式和/或多个所述电池包之间的相对位置,具体判断方法将在后续的实施例中具体介绍,在此不再赘述。其中,检测判断模块还包括反馈电阻R4,反馈电阻R4一端与运算放大器的第一输入端连接,另一端与运算放大器的输出端连接。
如上所述的电池包,当多个电池包相互连接时,通过将每个电池包的电池组通过电压接入模块与信号线连接,并测量信号线的电压值,即可判断每个电池包之间的连接方式和/或每个所述电池包之间的相对位置,进而方便电池系统更好地对电池系统中每个电池包进行充放电管理。
在本申请的另一个实施例中,请参阅图7,本申请还提供了一种电池系统,所述电池系统包括:多个电池包100、信号线和检测判断模块220。多个电池包100直接或间接连接。信号线,信号线与每个电池包100可控连接。检测判断模块,用于获取信号线的电压值,并根据电压值确定多个电池包之间的连接方式,还可以根据电压值确定多个电池包之间的相对位置。
在一些实施方式中,多个电池包100之间直接或间接连接可以是以串联或者并联的方式和/或串联的方式彼此连接。具体来说,多个电池包100彼此之间的连接方式可以是串联、并联、先串联再并联或者先并联再串联,具体的连接方式在本实施方式中并不限定,用户可以根据实际应用场景和用电需求来设定多个电池包之间的连接方式。一个典型的应用场景为用户对原有的电池系统进行扩容,通常而言,随着电池使用时长的增加、用电设备数量或功率的增加等因素,原有的电池系统将无法继续满足用电需求,此时用户会购买新的电池包对原有电池系统进行扩容,然后由于无法保证每个用户都阅读操作指南,根据操作指南进行处理,并且也无法保证每个用户都具有一定的电工理论基础知识和必要的电工工具,因此在进行扩容过程中,可能会存在电池包之间连接不合理或连接出错的问题,例如,原本应该串联的电池包被连接为并联,原本应该并联的电池包被连接为串联,混联系统中每个并联电池包组中的电池包数量不同。
在一些实施方式中,多个电池包100之间可以进行通信连接,例如,每个电池包100内置有RS485或者CAN通讯芯片,各电池包之间通过RS485或者CAN通讯总线相互彼此连接,并形成通信连接。
在一些实施方式中,电池系统中还可以包括电源母线,电源母线用于将电池系统与负载、电力变换模块或者电网连接。利用负载、电力变换模块或者电网对电池系统进行充电或者放电。
在一些实施方式中,信号线与每个电池包100可控连接。可控连接的实现方式通常是指每个电池包100与信号线连接的电路的导通与关断是可控的,电池包100在接收到第一类型的信号时,电池包100与信号线连接;电池包100在接收到第二类型的信号时,电池包100与信号线断开;由此可以实现每个电池包100 与信号线之间的可控连接。当电池包100与信号线连接时,该电池包100的输出电压可以加载到信号线上,并由此被检测判断模块220检测到。
检测判断模块220,用于获取信号线的电压值,根据电压值执行对应的判断策略,进而确定多个电池包之前的连接方式,以及多个电池包之间的相对位置关系。
在一些实施方式中,由于每个电池包100与信号线是可控连接的,因此可以依次控制不同的电池包100与信号线连接,获取相应的信号线的电压值。
在一些实施方式中,电池包包括电池组120、第一电压接入模块140和第二电压接入模块160;所述信号线包括至少一第一信号线和至少一第二信号线。所述电池组120的正极经所述第一电压接入模块140与所述第一信号线可控连接,所述电池组120的负极经所述第二电压接入模块160与所述第二信号线可控连接。所述第一电压接入模块140至少包括一第一开关142,所述第二电压接入模块160至少包括一第二开关162。
在另一些实施方式中,电池组120的正极和负极与电压接入模块的连接方式可以交换,如所述电池组120的负极经所述第一电压接入模块140与所述第一信号线可控连接,所述电池组120的正极经所述第二电压接入模块160与所述第二信号线可控连接。所述第一电压接入模块140至少包括一第一开关142,所述第二电压接入模块160至少包括一第二开关162。其中,第一开关142和第二开关162可以根据控制信号实现导通或关断,从而使得电池组120的双极(正极和负极)与第一信号线和第二信号线彼此连接或不连接。
可选地,如图8所示,每个电池包100之间、以及电池包100和检测判断模块220之间可以建立通信连接,例如通过RS485或者CAN通讯总线相互彼此连接。可以理解的是,每个电池包100之间、以及电池包100和检测判断模块220还可以通过其他有线或者无线的方式通信连接,在本实施例中不进行限制每个电池包之间、以及电池包和检测判断模块220具体的通信方式。通过该通信连接,每个电池包100之间、以及电池包100和检测判断模块220之间可以进行主机竞争、地址分配、控制信号传输、运行数据传输等多个功能。
在如图8所示的实施例中,检测判断模块220作为独立模块设置于电源系统中。在具体实施中,该独立模块可以是带有显示屏的控制盒,该控制盒可以与多个电池包彼此独立分割,可以进行单独的安装和控制,且具有接线端口用于与第一信号线和第二信号线进行连接,显示屏可以用于显示获取到的信号线的电压值、电池系统的状态参数、电池系统中各个电池包100的状态参数以及各电池包100之间的连接状态。此外,该控制盒还可以与用户的移动终端之间建立诸如蓝牙、Wi-Fi、NFC等方式的通信连接,使得用户通过移动终端即可获取整个电池系统或者电池系统中的电池包100的运行状态以及运行参数等信息,同时可以对电池系统或者电池系统中的电池包100进行远程控制。
在一些实施方式中,检测判断模块220也可以设置于电池系统中的至少一个电池包100中,该电池包100可以是如图1至3中任意一个所示出的实施方式中的电池包100。在这种实施方式中,检测判断模块220可以通过电池包100的电压接入模块与信号线连接,也就是说,电池包100可以只设置两个接线端口,该接线端口既可用于将电池包100的电池组120与信号线连接,还可用于电池包100的检测判断模块220与信号线连接。
在一些实施方式中,可以在电池系统的一个电池包100中设置检测判断模块220。在这种情况下,设置有检测判断模块220的电池包100可以作为整个电池系统的控制主机。其他电池包100作为从机。从机可以与控制主机通信和接受控制主机的控制,由此可以降低电池系统的成本和控制复杂度。
在一些实施方式中,电池系统的每个电池包100中都可以设置有检测判断模块220,在这种情况下,每个电池包100需要通过通信连接进行竞争选出控制主机,其他电池包100作为从机接受控制主机的控制,由此当控制主机出现故障时可以将控制主机切换至其他电池包,保证整个电池系统运行的稳定性。
在一些实施方式中,电池系统中每个电池包100还包括与所述电池组串联的分压模块,所述电池组的正极经所述分压模块和所述第一电压接入模块与所述第一信号线可控连接,所述电池组的负极经所述第二电压接入模块与所述第二信号线可控连接。在一些实施方式中,电池系统中每个电池包100的电池组的正极经过分压模块和第一接入模块连接,电池组的负极和第二接入模块直接连接,分压模块可以包括并联或者串联的电阻。图4和图5示出了一种可行的包括分压模块的电池包100实施方式,其中P可以为前述的 电池组120。如图4所示,第一电压接入模块140包括第一开关S,第二电压接入模块160包括第二开关S,电阻R1和电阻R2串联后构成本实施方式中的分压模块。在本实施方式中,电压测量电路184测得的电压为分压电阻R1两端的电压,而并非电池组P两端的电压,因此可以降低电压测量电路的电路开销,避免电压测量电路直接与电池组P连接而出现大电流造成电路损坏的风险。作为一种可选地实施方式,在图4所示的电池包实施方式的基础上,电压接入模块还可以进一步包括电阻,如图5所述,第一电压接入模块140包括第一开关S和电阻R,第二电压接入模块160包括第二开关S和电阻R。电阻R和电阻R可以进一步降低整个电路中的电流大小。
在本实施例中,电池组120经过分压模块后接入信号线,分压的原因在于,如果单个电池包100的电压比较高,或者多个电池包100串联使用的时候系统电压过高,会导致电压测量电路184承受电压过大,从而导致电压测量电路184损坏。
在一些实施方式中,所述检测判断模块220至少包括运算放大器和微处理器,所述运算放大器的第一输入端与所述第一信号线连接,所述运算放大器的第二输入端与所述第二信号线连接,用于获取所述第一信号线和第二信号线之间的电压值;所述微处理器用于根据所述电压值确定多个所述电池包之间的连接方式,以及根据电压值确定多个所述电池包之间的相对位置。
关于检测判断模块220中具体的实现方式可以参见上述如图6所示出的实施方式。如图6所示,运算放大器的第一输入端通常可以是反向输入端,第二输入端通常可以是同向输入端;作为一种可选地实施方式,运算放大器的第一输入端也可以是同向输入端,第二输入端也可以是反向输入端。
进一步地,如图6所示的实施方式中,运算放大器的第一输入端通过电阻R3和第一开关S1与第一信号线可控连接,第二输入端通过平衡电阻R5和第二开关S2与第二信号线可控连接,由此运算放大器可以采集第一信号线和第二信号线的电压差值,并将代表该电压差值的采样值Vout输出给微处理器MCU。MCU根据该电压差值,即可确定当前接入信号线的电池包之间的连接方式和/或多个所述电池包之间的相对位置。
可选地,第一信号线和第二信号线的电压值可以通过电阻直接连接到运算放大器,也可以再进行一次比例分压后,再接入运算放大器做一次减法,然后计算电压值。
在接入运算放大器做一次减法时,第一级运算放大器输出可以再用一级运算放大器将负电压抬升到正电压,然后比例缩小后。这样能够更好的测量电压值。
关于检测判断模块220中具体的实现方式可以参见上述如图6所示的电压测量电路184中的具体结构,检测判断模块220中的开关S1和第一信号线连接。检测判断模块220中的开关S2和第二信号线连接。检测判断模块220中的MCU和通信总线连接。另外关于本实施例中的电池包中的具体连接结构和限定可以参见上述电池包的实施例,在此不进行重复赘述。
在一个实施例中,如上所述电池包中的电压测量电路184和BMS 182构成了该实施例中的检测判断模块220,其两者的具体结构和作用是相同的。因此,作为一种可选地实施方式,检测判断模块220可以设置于多个所述电池包100中的至少一第一电池包的内部,即通过多个电池包100中一个或者多个电池包(该电池包可以为第一电池包)中的电压测量电路184和BMS 182来确定多个所述电池包之间的连接方式和/或多个所述电池包之间的相对位置。
通常而言,电池系统中的电池包采用的都是相同额定电压的电池包,并且由于存在均衡控制,在整个电池系统中的每个电池包的电池包电压值基本相同。也就是说,即使每个电池包的电压值不同,任意两个电池包的电压差值也在很小的范围内。譬如,对于额定电压为12V的电池包来说,任意两个电池包的电压差值一般不超过2V,甚至在大多数情况下,不超过1V。因此,通过检测判断模块220获取到的电压值,通常应该是或者应该接近于单个电池包电压的整数倍,由此即可确定各个电池包之间的连接方式和/或相对位置。
在一些实施方式中,检测判断模块220可以设置于多个所述电池包100中的至少一第一电池包的内部,所述检测判断模块220用于控制所述第一电池包的第一电压接入模块140连接所述第一信号线,并与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的第二电压接入模块160连接所述第二信号线。所述检测判断模块220还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第二电池包之间的连接方式和/或根据电压值确定所述第一电池包和所述第二电池包之间的相对位置。其中,第一电池包可以作为控制主机来对包括至少一第 二电池包在内的其他从机电池包进行控制。
具体的,检测判断模块220设置于电池系统的至少一第一电池包中(即第一电池包中的电压测量电路184和BMS 182),检测判断模块220控制第一电池包中的第一电压接入模块140中的第一开关142闭合(导通),使第一电池包的电池组120的正极通过第一电压接入模块140与第一信号线连接。进一步地,检测判断模块220还与多个电池包中至少一第二电池包进行通信,使第二电池包控制其自身的第二电压接入模块160中的第二开关162闭合(导通),使第二电池包的电池组120的负极通过第二电压接入模块160与第二信号线连接。与第二电池包进行通信可以通过有线或者无线的方式来通信,有线的方式可以例如通过CAN总线或者RS485总线连接进而进行通信。
所述检测判断模块220还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置。
具体地,如上所述,当第一电池包的正极和第一信号线连接,以及第二电池包的负极和第二信号线连接后,检测判断模块220可以获取第一信号线和第二信号线之间的电压值,进而根据该电压值来执行对应的策略,确定所述第一电池包和所述第二电池包之间的连接方式,以及确定所述第一电池包和所述第二电池包之间的相对位置。
具体地,在这种实施方式中,作为第一种情况,假设第一电池包与第二电池包是并联的,且检测判断模块220设置于第一电池包中(即第一电池包作为控制主机),当第一电池包的正极和第一信号线连接,以及第二电池包的负极和第二信号线连接后,此时,检测判断模块220测得的电压值应当为负值,且该电压值的绝对值接近于第一电池包(或第二电池包,因为第一电池包与第二电池包的电压值基本相同)的电压值。由此可见,通过控制主机的检测判断模块来获取信号线的电压值即可判断其他从机电池包与控制主机电池包之间的连接关系。进一步地,如果获取到的信号线的电压值等于或接近负的一个电池包的电压值,则可以确定从机电池包与控制主机电池包为并联连接。
作为第二种情况,假设第一电池包与第二电池包是串联的,且检测判断模块220设置于第一电池包中(即第一电池包作为控制主机),当第一电池包的正极和第一信号线连接,以及第二电池包的负极和第二信号线连接后,此时,若检测判断模块220测得的电压值为零或接近零,则可以确定第二电池包与第一电池包串联,且第二电池包的负极与第一电池包的正极直接连接,且第二电池包与第一电池包之间没有串联其他电池包和/或电池包组;若检测判断模块220测得的电压值为负值,且电压值的绝对值是单个电池包电压的N倍或接近N倍(N为大于等于2的数),则可以确定第二电池包与第一电池包串联,且第二电池包的正极与第一电池包的负极连接,且第二电池包的正极与第一电池包的负极之间还串联有电池包和/或电池包组共N-2个。若检测判断模块220测得的电压值为正值,且电压值是单个电池包电压的M倍或接近M倍(M为大于等于1的数),则可以确定第二电池包与第一电池包串联,且第二电池包的负极与第一电池包的正极连接,且第二电池包的负极与第一电池包的正极之间串联有电池包和/或电池包组共M个。
基于上述检测判断模块所执行的判断策略可知,所述检测判断模块220用于控制所述第一电池包的第一电压接入模块140连接所述第一信号线,并与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的第二电压接入模块160连接所述第二信号线,第一电池包和第二电池包不同的连接方式,检测判断模块220获取到的第一信号线和第二信号线之间的电压值也完全不同。因此,利用内部设置有检测判断模块的电池包作为控制主机来测量信号线的电压值,根据该电压值即可确定其他从机电池包与该控制主机电池包之间的连接方式和/或其他从机电池包与控制主机电池包之间的相对位置(即从机电池包与控制主机电池包之间串联的电池包或并联电池包组的数量)。
作为进一步的可能的实施方式,在确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置之后,还包括:所述检测判断模块220用于与所述至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的第二电压接入模块160断开与所述第二信号线的连接;所述检测判断模块220还用于与多个所述电池包的至少一第三电池包进行通信,以使所述第三电池包控制所述第三电池包的第二电压接入模块160连接所述第二信号线;所述检测判断模块220还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第三电池包之间的连接方式和/或所述第一电池包和所述第三电池包之间的相对位置。
在该实施方式中,为了获取整个电池系统中每个电池包的连接方式和/或相对位置,第一电池包作为控制主机,需要对每一个从机电池包依次进行检测判断。因此,在确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置之后,需要控制使第二电池包断开与信号线的连接,并控制使第三电池包与信号线进行连接,从而进一步确定所述第一电池包和所述第三电池包之间的连接方式和/或所述第一电池包和所述第三电池包之间的相对位置。具体的连接方式和相对位置的确定策略,与上述描述的第二电池包的确定策略完全相同,在此不再赘述。
重复上述步骤,将第一电池包作为控制主机,控制其他从机电池包依次与信号线连接,并测量信号线的电压,从而确定每个从机电池包与第一电池包(控制主机)的连接方式和/或相对位置,由此即可确定整个电池系统中每个电池包的连接方式和/或相对位置。
作为另一种可能的实施方式,检测判断模块220设置于多个所述电池包中的至少一第一电池包的内部,所述检测判断模块220用于控制所述第一电池包的第二电压接入模块160连接所述第二信号线,并与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的第一电压接入模块140连接所述第一信号线;所述检测判断模块220还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置,其中,第一电池包可以作为控制主机来对包括至少一第二电池包在内的其他从机电池包进行控制。
具体地,检测判断模块220设置于电池系统的至少一第一电池包中(即第一电池包中的电压测量电路184和BMS 182),检测判断模块220控制第一电池包中的第二电压接入模块160中的第二开关162闭合(导通),使第一电池包的电池组120的负极通过第二电压接入模块160与第二信号线连接。进一步地,检测判断模块220还与多个电池包中的至少一第二电池包进行通信,使第二电池包控制其第一电压接入模块140中第一开关142闭合(导通),使第二电池包的电池组120的正极通过第一电压接入模块140与第二信号线连接。与第二电池包进行通信可以通过有线或者无线的方式来通信,有线的方式可以例如通过CAN总线或者RS485总线连接进而进行通信。
所述检测判断模块220还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置。
具体地,如上所述,当第一电池包的负极和第二信号线连接,以及第二电池包的正极和第一信号线连接后,检测判断模块220可以获取第一信号线和第二信号线之间的电压值,进而第一电池包和第二电池包之间的电压值。然后可以根据该电压值来执行对应的策略,进而确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置。
具体地,在这种实施方式中,作为第三种情况,假设第一电池包与第二电池包是并联的,且检测判断模块220设置于第一电池包中(即第一电池包作为控制主机),当第一电池包的负极和第二信号线连接,以及第二电池包的正极和第一信号线连接后,此时,检测判断模块220测得的电压值应当为正值,且该电压值的绝对值接近于第一电池包(或第二电池包,因为第一电池包与第二电池包的电压值基本相同)的电压值。由此可见,通过控制主机的检测判断模块来获取信号线的电压值即可判断其他从机电池包与控制主机电池包之间的连接关系。进一步地,如果获取到的信号线的电压值的绝对值等于或接近正的一个电池包的电压值,则可以确定从机电池包与控制主机电池包为并联连接。
作为第四种情况,假设第一电池包与第二电池包是串联的,且检测判断模块220设置于第一电池包中(即第一电池包作为控制主机),当第一电池包的负极和第二信号线连接,以及第二电池包的正极和第一信号线连接后,此时,若检测判断模块220测得的电压值为零或接近零,则可以确定第二电池包与第一电池包串联,且第二电池包的正极与第一电池包的负极直接连接,且第二电池包与第一电池包之间没有串联其他电池包和/或电池包组;若检测判断模块220测得的电压值为正值,且电压值是单个电池包电压的N倍或接近N倍(N为大于等于2的数),则可以确定第二电池包与第一电池包串联,且第二电池包的负极与第一电池包的正极连接,且第二电池包的负极与第一电池包的正极之间还串联有电池包和/或电池包组共N-2个;若检测判断模块220测得的电压值为负值,且电压值的绝对值是单个电池包电压的M倍或接近M倍(M为大于等于1的数),则可以确定第二电池包与第一电池包串联,且第二电池包的正极与第一电池 包的负极连接,且第二电池包的负极与第一电池包的正极之间串联有电池包和/或电池包组共M个。
基于上述检测判断模块所执行的判断策略可知,所述检测判断模块220用于控制所述第一电池包的第二电压接入模块160连接所述第二信号线,并与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的第一电压接入模块140连接所述第一信号线,第一电池包和第二电池包不同的连接方式,检测判断模块220获取到的第一信号线和第二信号线之间的电压值也完全不同。因此,利用内部设置有检测判断模块的电池包作为控制主机来测量信号线的电压值,根据该电压值即可确定其他从机电池包与该控制主机电池包之间的连接方式和/或其他从机电池包与控制主机电池包之间的相对位置(即从机电池包与控制主机电池包之间串联的电池包或并联电池包组的数量)。
作为进一步的可能的实施方式,在确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置之后,还包括:所述检测判断模块220用于与所述至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的第一电压接入模块140断开与所述第一信号线的连接;所述检测判断模块220还用于与多个所述电池包中至少一第三电池包进行通信,以使所述第三电池包控制所述第三电池包的第一电压接入模块140连接所述第一信号线;所述检测判断模块220还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第三电池包之间的连接方式和/或所述第一电池包和所述第三电池包之间的相对位置。
在该实施方式中,为了获取整个电池系统中每个电池包的连接方式和/或相对位置,第一电池包作为控制主机,需要对每一个从机电池包依次进行检测判断。因此,在确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置之后,需要控制使第二电池包断开与信号线的连接,并控制使第三电池包与信号线进行连接,从而进一步确定所述第一电池包和所述第三电池包之间的连接方式和/或所述第一电池包和所述第三电池包之间的相对位置。具体的连接方式和相对位置的确定策略,与上述描述的第二电池包的确定策略完全相同,在此不再赘述。
重复上述步骤,将第一电池包作为控制主机,控制其他从机电池包依次与信号线连接,并测量信号线的电压,从而确定每个从机电池包与第一电池包(控制主机)的连接方式和/或相对位置,由此即可确定整个电池系统中每个电池包的连接方式和/或相对位置。
可选地,检测判断模块220并不限制于设置在电池包中,而是可以作为独立模块设置于电池系统中。该独立模块可以是带有显示屏的控制盒,该控制盒可以与多个电池包彼此独立分割,可以进行单独的安装和控制,且具有接线端口用于与第一信号线和第二信号线进行连接;控制盒还可以通过有线或者无线的方式和多个电池包进行通信和控制。显示屏可以用于显示获取到的信号线的电压值、电池系统的状态参数、电池系统中各个电池包的状态参数以及各电池包之间的连接状态。此外,该控制盒还可以与用户的移动终端之间建立诸如蓝牙、Wi-Fi、NFC等方式的通信连接,使得用户通过移动终端即可获取整个电池系统的运行状态以及运行参数等信息,同时可以对电池系统或者电池系统中的电池包进行远程控制。
作为另一种可能的实施方式,检测判断模块220作为独立模块设置于电池系统中,所述检测判断模块220用于与多个所述电池包中的至少一第一电池包和至少一第二电池包进行通信,以使所述第一电池包控制所述第一电池包的第一电压接入模块140连接所述第一信号线,所述第二电池包控制所述第二电池包的第二电压接入模块160连接所述第二信号线;所述检测判断模块220还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置。在这种实施方式中,检测判断模块220作为控制主机来对包括至少一第一电池和至少一第二电池包在内的其他从机电池包进行控制。
作为进一步的可能的实施方式,在确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置之后,还包括:所述检测判断模块220用于与所述至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的第二电压接入模块160断开与所述第二信号线的连接;所述检测判断模块220还用于与多个所述电池包的至少一第三电池包进行通信,以使所述第三电池包控制所述第三电池包的第二电压接入模块160连接所述第二信号线;所述检测判断模块220还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第三电池包之间的连接方式和/或所述第一电池包和所述第三电池包之间的相对位置。
重复上述步骤,将检测判断模块220作为控制主机,将第一电池包作为参考点,控制其他从机电池包 依次与信号线连接,并测量信号线的电压,从而确定每个从机电池包与第一电池包(参考点)的连接方式和/或相对位置,由此即可确定整个电池系统中每个电池包的连接方式和/或相对位置。
作为另一种可能的实施方式,所述检测判断模块220作为独立模块设置于电池系统中,所述检测判断模块220用于与多个所述电池包中的至少一第一电池包和至少一第二电池包进行通信,以使所述第一电池包控制所述第一电池包的第二电压接入模块160连接所述第二信号线,所述第二电池包控制所述第二电池包的第一电压接入模块140连接所述第一信号线;所述检测判断模块220还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置。在这种实施方式中,检测判断模块220作为控制主机来对包括至少一第一电池和至少一第二电池包在内的其他从机电池包进行控制。
作为进一步的可能的实施方式,在确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置之后,还包括:所述检测判断模块220用于与所述至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的第一电压接入模块140断开与所述第一信号线的连接;所述检测判断模块220还用于与多个所述电池包的至少一第三电池包进行通信,以使所述第三电池包控制所述第三电池包的第一电压接入模块140连接所述第一信号线;所述检测判断模块220还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第三电池包之间的连接方式和/或所述第一电池包和所述第三电池包之间的相对位置。
重复上述步骤,将检测判断模块220作为控制主机,将第一电池包作为参考点,控制其他从机电池包依次与信号线连接,并测量信号线的电压,从而确定每个从机电池包与第一电池包(参考点)的连接方式和/或相对位置,由此即可确定整个电池系统中每个电池包的连接方式和/或相对位置。
需要说明的是,在检测判断模块作为独立模块设置于电池系统中的实施方式中,具体如何根据获取到的第一信号线和第二信号线之间的电压值来确定电池包的连接方式和/或相对位置,与前述的检测判断模块设置于多个所述电池包中的至少一第一电池包的内部的实施方式中的确定方法完全相同,并且,关于本实施例中具体如何通信的可以参见上述实施例中与第二电池包的通信方式,上述内容在此不进行重复赘述,其余的具体实施方式可参见上述实施方式中的步骤。
进一步需要说明的是,尽管电池系统中每个电池包的电压值基本相同或相似,但仍然具有不可忽略的电压差,因此,检测判断模块测得的电压值的绝对值,并不一定正好等于一个电池包电压的整数倍。为解决该问题,可以将检测判断模块测得的电压值除以单个电池包的电压后进行四舍五入取整数,由此来确定具体的倍数(即前述的N倍、M倍或零)。例如,对于电压为12V的电池包来说,若检测判断模块测得的电压值为32.5V,则进行计算32.5/12≈2.708,再进行四舍五入后确定为3倍的电池包电压;若检测判断模块测得的电压值为1.5V,则进行计算1.5/12≈0.125,再进行四舍五入后确定电压值为0;若检测判断模块测得的电压值为-7.5V,则先取绝对值后再进行计算7.5/12≈0.625,再进行四舍五入后确定为1倍的电池包电压;以此类推,可以帮助更准确地确定所测得的信号线电压值。
如上所述的电池系统,通过将彼此连接的多个电池包中的每一个电池包与信号线进行可控连接,获取所述信号线的电压值,并根据所述电压值确定多个所述电池包之间的连接方式和/或多个所述电池包之间的相对位置。通过上述方式,可以在用户对电池包任意进行连接后,无需其他操作,自动地识别每个电池包之间的连接状态,进而确定整个电池系统中每个电池包之间的连接方式和/或相对位置,可以更好地对电池系统进行精准管理。
可选地,本申请还提出另一种实施例中,如图9所示,在另一种情况下,电池系统中的电池包100可以包括:电池组320、电压接入模块340、电压采样模块360和检测判断模块380。所述电池组320的正极经所述电压接入模块与所述信号线可控连接,所述电池组的负极经所述电压采样模块与所述信号线可控连接。需要说明的是,关于可控连接的具体限定可以参见上述实施例,在此不进行重复赘述。
在一些实施方式中,参见图10,电压接入模块340可以至少包括一第三开关342,用于控制电压接入模块340与信号线(未图示)可控连接。电压采样模块360可以至少包括电压采样电路和第四开关362,第四开关362用于控制电压采样模块360与信号线(未图示)可控连接;电压采样电路可以是由第四电阻364和第五电阻366串联构成。检测判断模块380用于检测第四电阻364和第五电阻366之间的电压,并且根据分压原理即可计算得到映射到信号线上的电压值,将在下述实施例中具体描述。需要说明的是,本 实施方式实施例中的检测判断模块380设置于电池系统的多个电池包中的至少一个电池包的内部,其可以由电池包的电池管理系统(Battery Management Systerm,BMS)来实现。可选地,本实施例中的电压采样电路也可以是如上述实施例所提到的电压测量电路184,在此不对电压采样电路进行重复赘述。
可选地,电压接入模块340可以直接为第三开关342。电池组320的正负两极可以分别通过第三开关342和电压采样模块360与信号线可控连接。
可选地,电压接入模块340可以包括第三开关342和第三电阻344。电池组320和第三电阻344连接后与第三开关342连接。电池组也可以和第三开关342连接后与第三电阻344连接。电压采样模块360可以包括一第四开关362和电压采样电路。电池组320可以依次与第四开关362和电压采样电路连接,也可以依次与电压采样电路和第四开关362连接,本实施例中不限制依次连接的顺序。另外,第三开关和第四开关的数量在本实施例中不进行限制,只要能够将电池组320的两极可控连接至信号线即可。
在一些实施例中,如图11所示,多个电池包的电源接口(图11中电池包的左侧)与电源母线连接从而构成电池系统;需要说明的是,图11中示出多个电池包之间具体的连接方式不对本实施例构成具体的限制,仅用于说明多个电池包之间可能是串联、并联、先串联后形成电池组再并联或者先并联成电池组后再串联。另外,多个电池包的电池组的两极分别通过电压接入模块340和电压采样模块360(图11中电池包的右侧)与信号线可控连接;需要说明的是,本实施例中仅需要一根信号线,即每个电池包中的电池组的正负极都是与同一根信号线可控连接。在确定多个所述电池包之间的连接方式和/或相对位置时,以电池系统中的第一电池包作为参考点,第一电池包的检测判断模块(第一电池包中的BMS)用于控制第一电池包的电压采样模块连接所述信号线;所述检测判断模块还用于与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的电压接入模块连接所述信号线;所述检测判断模块还用于获取信号线的电压值,并根据所述电压值来确定所述第一电池包和第二电池包之间的连接方式和/或相对位置,具体确定原理将在下文中详细描述。作为另一种实现方式,第一电池包的检测判断模块(第一电池包中的BMS)用于控制第一电池包的电压接入模块连接所述信号线;所述检测判断模块还用于与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的电压采样模块连接所述信号线;所述检测判断模块还用于与第二电池包进行通信,获取第二电池包的检测判断模块所检测到的信号线的电压值,并根据所述电压值来确定所述第一电池包和第二电池包之间的连接方式和/或相对位置。
下面以具体的实施方式来介绍本实施例所涉及的技术方案,本实施方式是以每个电池包的电池组的正极与电压接入模块连接、电池组的负极与电压采样模块连接为例展开介绍的,但应当可以理解,本实施例并不限于这种方式。由于每个电池包的电池组320的两极与信号线是可控连接的,因此检测判断模块中的BMS可以控制第一电池包的电压采样模块360中的第四开关362闭合(导通),使第一电池包的电池组320负极通过电压采样模块360与信号线连接。第一电池包还可以与第二电池包进行通信,使第二电池包的电压接入模块340的第三开关342闭合(导通),使第二电池包的电池组的正极通过电压接入模块与信号线连接。第一电池包与第二电池包进行通信可以通过有线或者无线的方式来通信,有线通信方式例如可以通过CAN总线或者RS485总线连接进行通信。
所述检测判断模块380还用于获取所述第一电池包的电压采样模块测得的所述信号线的电压值,并根据所述电压值确定选自由所述第一电池包和所述第二电池包之间的连接方式和相对位置构成的组中的至少一个。
具体地,如上所述,当第一电池包的电池组320的负极和第二电池包的电池组320的正极与信号线连接后,第一电池包的电压采样模块360可以获取信号线上的电压值并将该电压值通过检测判断模块380的Input/Output口传输给检测判断模块380。检测判断模块380可以根据该电压值来执行判断策略,根据判断策略确定第一电池包和第二电池包之间的连接方式,和/或,根据判断策略来确定第一电池包和第二电池包之间的相对位置。
在一个可选的实施方式中,所述检测判断模块设置于多个所述电池包中的至少一第一电池包的内部;
所述检测判断模块用于控制所述第一电池包的电压采样模块连接所述信号线;
所述检测判断模块用于与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的电压接入模块连接所述信号线;
所述检测判断模块还用于获取所述第一电池包的电压采样模块测得的所述信号线的电压值,并根据所 述电压值确定选自由所述第一电池包和所述第二电池包之间的连接方式和相对位置构成的组中的至少一个。
具体地,检测判断模块380可以是内置在第一电池包内的BMS,其用于控制第一电池包的电压采样模块360,使第一电池包的电池组负极和信号线连接。然后第一电池包可以依次与多个第二电池包进行通信。第一电池包每次使一个第二电池包中的电压接入模块340闭合,使第二电池包的正极和信号线连接,此时第二电池包可以将其自身的电压映射到信号线上。第一电池包中的检测判断模块380可以依次获取第一电池包采集到的与每个第二电池包之间的信号线上的电压值,该电压值可以表征第一电池包和第二电池包相互连接后,第一电池包的负极到第二电池包的正极之间的实际电压值,以此可以根据该电压值和判断策略确定第一电池包和每个第二电池包之间的连接方式和/或相对位置关系。
例如,第一种情况下,假设第一电池包和第二电池包之间是并联的,此时第一电池包中的检测判断模块测得的电压值应当为正值,且该电压值的绝对值接近于第一电池包(或第二电池包,因为第一电池包与第二电池包的电压值基本相同)的电压值。因此,如果获取到的信号线的电压值为正值且等于或接近一个电池包的电压值,则可以确定第一电池包和第二电池包为并联连接。
第二种情况下,假设第一电池包和第二电池包之间是串联的。此时,若第一电池包中的检测判断模块测得的电压值为零。可以确定第二电池包和第一电池包串联,且第二电池包的正极与第一电池包的负极直接连接,且第一电池包和第二电池包之间没有串联其他电池包和/或电池包组。若第一电池包中的检测判断模块测得的电压值为正值,且电压值是单个电池包电压的N倍或接近N倍(N为大于等于2的数),则可以确定第二电池包与第一电池包串联,且第二电池包的负极串联于第一电池包的正极侧,且第二电池包的负极与第一电池包的正极之间串联的电池包和/或电池包组共N-2个。若检测判断模块测得的电压值为负值,且电压值的绝对值是单个电池包电压的M倍或接近M倍(M为大于等于1的数),则可以确定第二电池包与第一电池包串联,且第二电池包的正极串联于第一电池包的负极侧,且第二电池包的正极与第一电池包的负极之间串联有电池包和/或电池包组共M个。
在另一个可选的实施方式中,所述检测判断模块设置于多个所述电池包中的至少一第一电池包的内部;
所述检测判断模块用于控制所述第一电池包的电压接入模块连接所述信号线;
所述检测判断模块用于与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的电压采样模块连接所述信号线。
所述检测判断模块还用于获取所述第二电池包的电压采样模块测得的所述信号线的电压值,并根据所述电压值确定选自由所述第一电池包和所述第二电池包之间的连接方式和相对位置构成的组中的至少一个。
具体地,检测判断模块380可以是内置在第一电池包内的BMS,其用于控制第一电池包的电压接入模块340中的第三开关342闭合(导通),使第一电池包的电池组的正极通过电压接入模块340与信号线连接。第一电池包还可以通过与第二电池包之间的通信连接(CAN或者RS485)给第二电池包发送控制指令,使第二电池包根据该控制指令控制第二电池包的电压采样模块360中的第四开关362闭合(导通),使第二电池包的电池组的负极通过电压采样模块360与信号线连接。
具体地,如上所述,当第一电池包的电池组正极和第二电池包的电池组负极分别与信号线连接后,第二电池包的电压采样模块360可以获取信号线上的电压值。第一电池包可以与第二电池包进行通信从而使第一电池包的检测判断模块380获取该电压值,并进而根据该电压值和对应的判断策略来确定第一电池包和第二电池包之间的连接方式和/或相对位置关系。
在一些实施方式中,检测判断模块380设置于第一电池包中(即第一电池包作为控制主机)。第一电池包可以闭合其自身的电压接入模块340的第三开关342,使第一电池包的电池组正极和信号线连接。然后第一电池包可以依次与第二电池包进行通信,使第二电池包中的电压采样模块360的第四开关362闭合,使第二电池包的电池组负极和信号线连接。第一电池包中的检测判断模块可以依次获取每个第二电池包采集到的与第一电池包之间的电压值。
当第一电池包的电池组正极和第二电池包的电池组负极与信号线连接后,由于第二电池包的电压采样模块360与信号线连接。因此,第二电池包中的电压采样模块可以获取信号线上的电压值。第一电池包的检测判断模块380可以依次通过与每个第二电池包之间的通信连接获取每个第二电池包中电压采样模块获 取到的信号线上的电压值,该电压值可以表征第一电池包和第二电池包相互连接后,第一电池包的正极到第二电池包的负极之间的实际电压值,以此可以根据该电压值和判断策略确定第一电池包和每个第二电池包之间的连接方式和/或相对位置关系。
例如,在第三种情况下,假设第一电池包与第二电池包是并联的,第一电池包的检测判断模块中的BMS获取到的电压值应当为正值,且该电压值接近于第二电池包(或第一电池包,因为第一电池包与第二电池包通常为相同型号,两者的电压值基本相同)的电压值。如果获取到的信号线的电压值等于或接近负的一个电池包的电压值,则可以确定第一电池包与第二电池包为并联连接。
在第四种情况下,假设第一电池包与第二电池包是串联的。此时,若检测判断模块获取到的第二电池包测得的电压值为零或接近零,则可以确定第二电池包与第一电池包串联,且第二电池包的负极与第一电池包的正极直接连接,且第二电池包与第一电池包之间没有串联其他电池包和/或电池包组。若检测判断模块获取到的电压值为负值,且所述电压值的绝对值为所述第一电池包的电压的M倍(M为大于等于1的数),则可以确定第二电池包与第一电池包串联,且第二电池包的负极串联在第一电池包的正极侧,且所述第一电池包的正极和所述第二电池包的负极之间串联的电池包和/或电池组共M个。若检测判断模块获取到的电压值为正值,且电压值是单个电池包电压的N倍或接近N倍(N为大于等于2的数),则可以确定第二电池包与第一电池包串联,且第二电池包的正极串联在第一电池包的负极侧,且第二电池包的正极与第一电池包的负极之间串联有电池包和/或电池包组共N-2个。
基于上述检测判断模块所执行的判断策略可知,所述检测判断模块用于控制所述第一电池包的电压接入模块连接所述信号线。所述检测判断模块用于与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的电压采样模块连接所述信号线。第一电池包和第二电池包不同的连接方式,检测判断模块获取到的信号线上的电压值也完全不同。因此,利用检测判断模块的电池包作为来测量信号线的电压值,根据该电压值即可确定其他电池包与该电池包之间的连接方式和/或其他电池包与该电池包之间的相对位置。
可以理解,通过将第一电池包的电池组的一极性端(可以是正极,也可以是负极)和第二电池包的电池组的另一极性端(可以是负极,也可以是正极)连接到信号线,并检测信号线上的电压值,即可判断出第一电池包和第二电池包之间的连接方式和/或相对位置关系;重复上述步骤,控制多个第二电池包依次与信号线连接并确定每个第二电池包相对于第一电池包的连接方式和/或相对位置关系,由此,整个电池系统所有的电池包的连接状态即可确定。需要说明的是,以上仅示例了两种具体实施方式,但显然本实施例并不仅限于这两种实施方式,本领域技术人员可以理解,每个电池包的正负极连接的电压接入模块和电压采样模块可以不同,每次与信号线连接的极性也可以不同,由哪个电池包来执行判断策略也可以不同,其所依据的原理是相同的,在此不再赘述,其均应纳入在本实施例的范围内。
作为进一步的可能的实施方式,在确定所述第一电池包和所述第二电池包之间的连接方式和/或所述第一电池包和所述第二电池包之间的相对位置之后,还包括:所述检测判断模块用于与所述至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的电压接入模块断开与信号线的连接。所述检测判断模块还用于与多个所述电池包中至少一第三电池包进行通信,以使所述第三电池包控制所述第三电池包的电压接入模块连接信号线;所述检测判断模块还用于获取信号线上的电压值,并根据所述电压值确定所述第一电池包和所述第三电池包之间的连接方式和/或所述第一电池包和所述第三电池包之间的相对位置。
或者,所述检测判断模块用于与所述至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的电压采样模块断开与信号线的连接。所述检测判断模块还用于与多个电池包的至少一第三电池包进行通信,以使所述第三电池包控制所述第三电池包的电压采样模块连接信号线。所述检测判断模块还用于获取信号线上的电压值。检测判断模块用于根据电压值确定所述第一电池包和所述第三电池包之间的连接方式和/或所述第一电池包和所述第三电池包之间的相对位置。
关于第一电池包和第三电池包具体的连接方式和相对位置的确定策略,与上述描述的第二电池包的确定策略完全相同,在此不再赘述。
这样,重复上述步骤,依次获取第一电池包和每个第二电池包之间的信号线的电压值,从而确定每个第一电池包和每个第二电池包之间的连接方式和/或相对位置,由此即可确定整个电池系统中每个电池包的连接方式和/或相对位置。
进一步需要说明的是,尽管电池系统中每个电池包的电压值基本相同或相似,但仍然具有不可忽略的电压差,因此,检测判断模块测得的电压值的绝对值,并不一定正好等于一个电池包电压的整数倍。为解决该问题,可以将检测判断模块测得的电压值除以单个电池包的电压后进行四舍五入取整数,由此来确定具体的倍数(即前述的N倍、M倍或零)。例如,对于电压为12V的电池包来说,若检测判断模块测得的电压值为32.5V,则进行计算32.5/12≈2.708,再进行四舍五入后确定为3倍的电池包电压;若检测判断模块测得的电压值为1.5V,则进行计算1.5/12≈0.125,再进行四舍五入后确定电压值为0;若检测判断模块测得的电压值为-7.5V,则先取绝对值后再进行计算7.5/12≈0.625,再进行四舍五入后确定为1倍的电池包电压;以此类推,可以帮助更准确地确定所测得的信号线电压值。
如上所述的电池系统,通过将彼此连接的多个电池包中的每一个电池包与信号线进行可控连接,获取所述信号线的电压值,并根据所述电压值确定多个所述电池包之间的连接方式和/或多个所述电池包之间的相对位置。通过上述方式,可以在用户对电池包任意进行连接后,无需其他操作,自动地识别每个电池包之间的连接状态,进而确定整个电池系统中每个电池包之间的连接结构,可以更好地对电池系统进行精准管理。
在一个实施例中,如图12所示,提供了一种电池包连接状态识别方法,该识别方法可以以图8或图11中的电池系统为例进行说明,但并不限制于此,其也可适用于如前文所描述的任意一种电池系统中。具体来说,该方法可以应用于由多个电池包构成的电池系统中的至少一第一电池包,所述电池系统还包括至少一第二电池包,所述方法包括以下步骤:
S102,控制所述第一电池包和所述第二电池包连接信号线。
在该实施方式中,可以由第一电池包来与第二电池包进行通信。根据不同情况下电池包的结构,使电池包与信号线连接。具体地,控制所述第一电池包的电池组的第一极性端和所述第二电池包的电池组的第二极性端连接信号,其中,第一极性端和第二极性端为电池组相对不同的两个极性端,第一极性端为正极或负极,第二极性端为负极或正极。由此,可以将第一电池包至第二电池包之间的电压值映射到信号线上。在一些实施方式中,例如电池包为图1的电池包,第一电池包中的检测判断模块则可以控制第一电池包中的第一电压接入模块或者第二电压接入模块与信号线连接。第一电池包中的检测判断模块可以控制第二电池包中的第一电压接入模块或者第二电压接入模块与信号线连接。在另一些实施方式中,例如电池包为图9的电池包,第一电池包中的检测判断模块可以控制第一电池包中的电压接入模块或者电压采样模块与信号线连接,对应地,第一电池包中的检测判断模块可以控制第二电池包中的电压采样模块或者电压接入模块与信号线连接。由此,可以使第一电池包和第二电池包各自不同的一个极性端与信号线连接。
S104,获取所述信号线的电压值。
在该实施方式中,根据不同的电池包结构,第一电池包中的检测判断模块获取信号线上的电压值。在一些实施方式中,可以采用图3中示出的电压测量电路184来获取信号线上的电压值。在可选的另外一些实施方式中,可以采用图6中示出的电压测量电路来获取信号线上的电压值。在可选的再一些实施方式中,可以采用如图9示出的电压采样模块来获取信号线上的电压值。该电压值可以表征第一电池包和第二电池包相互连接后,第一电池包的第一极性端到第二电池包的第二极性端之间的实际电压值。
S106,根据所述电压值确定所述第一电池包和第二电池包之间的连接关系。
在该实施方式中,第一电池包中的检测判断模块可以根据串联或者并联的电压规律以及电压值,自动识别出第一电池包和第二电池包之间的连接状态。可选地,所述第一电池包和第二电池包之间的连接状态不仅包括第一电池包和第二电池包之间的连接方式(如串联、并联),还可以包括第一电池包和第二电池包连接后的相对位置,包括第二电池包连接在第一电池包的正极侧还是负极侧,第一电池包和第二电池包之间是否还存在其他电池包以及其他电池包的数量。
上述电池包连接状态识别方法中,通过控制第一电池包和第二电池包连接信号线,由此将第一电池包的第一极性端到第二电池包的第二极性端之间的实际电压值映射到信号线上,进而根据信号线上的电压值能够确定第一电池包和第二电池包之间的连接状态。因此,在用户对多个电池包进行连接构成电池系统后,可以无需其他操作,通过本方案来自动的识别每个电池包之间的连接状态,进而识别多个电池包构成的电池系统之间的连接结构,可以更好的对电池包以及电池系统进行精准管理。
在一个可选的实施例中,如图13所示,所述第一电池包和所述第二电池包分别通过自身的第一电压 接入模块可控连接第一信号线,通过自身的第二电压接入模块可控连接第二信号线;
所述控制所述第一电池包和所述第二电池包连接信号线,包括:
S202,控制所述第一电池包的第二电压接入模块连接所述第二信号线。
在该实施方式中,第一电池包可以是电池系统中的控制主机,由第一电池包与其他从机电池包相互通信,从而使从机电池包按照控制主机的指令进行动作。在识别电池包连接状态时,是以第一电池包作为参考点,依次识别其他从机电池包相对于第一电池包的连接状态,由此整个电池系统中每个电池包的连接状态即可确定。作为一种可能的实施方式,控制可以是控制主机控制第一电池包的第二电压接入模块连接第二信号线,而控制主机可以是第一电池包也可以是其他电池包或者设备。第二电池包通常可以是需要判断其和第一电池包之间的连接状态的电池包。第二电池包可以为一个也可以为多个。通常情况下,每次只判断一个第二电池包和一个第一电池包之间的连接状态。
在本实施方式中,在执行S122步骤前,需要先打开每个电池包的充放电回路,实现每个电池包的互相连接,该步骤可以在电池系统上电自检阶段执行。随后,控制第一电池包的第二电压接入模块连接第二信号线。如前述内容所描述的电池系统,第一电池包的电芯单元的两极分别通过第一电压接入模块和第二电压接入模块与第一信号线和第二信号线可控连接。可选地,第一电池包的电芯单元的正极通过第一电压接入模块与第一信号线可控连接,第一电池包的电芯单元的负极通过第二电压接入模块与第二信号线可控连接;然而并不限制于此,也可以第一电池包的电芯单元的负极通过第一电压接入模块与第一信号线可控连接,第一电池包的电芯单元的正极通过第二电压接入模块与第二信号线可控连接,在此不做限制。在控制所述第一电池包的第二电压接入模块连接所述第二信号线时,第一电池包的第一电压接入模块与第一信号线保持断开状态。
S204,发送第一信息至所述第二电池包,所述第一信息用于指示所述第二电池包的第一电压接入模块连接所述第一信号线。
在该实施方式中,第一电池包作为控制主机可以通过与第二电池包之间建立的通信连接发送第一信息至第二电池包。第二电池包接收到第一信息后,可以根据第一信息的指示,控制其第一电压接入模块连接第一信号线,第二电池包的第二电压接入模块与第二信号线保持断开状态。
所述获取所述信号线的电压值,包括:
S206,获取所述第一信号线和第二信号线之间的电压值。
在该实施方式中,当第一电池包和第二电池包的其中一端分别连接到第一信号线和第二信号线后,第一电池包和第二电池包之间的连接状态能够通过第一信号线和第二信号线之间的电压值反应出来,因此可以通过电池包中的检测判断模块来获取第一信号线和第二信号线之间的电压值。
在本实施例中,通过控制第一电池包和第二电池包各自不同的电压接入模块连接不同的信号线,即控制第一电池包的一个电压接入模块接入第一信号线,控制第二电池包的另一个电压接入模块接入第二信号线,进而测量第一信号线和第二信号线之间的电压值,能够确定第一信号线和第二信号线之间的电压差值。因此,在用户对多个电池包进行连接后,可以无需其他操作,通过本方案来自动的获取得到第一信号线和第二信号线之间的电压值,进而识别多个电池包构成的电池系统之间的连接结构,可以更好的对电池包以及电池系统进行精准管理。
在一个可能的实施方式中,控制所述第一电池包的第二电压接入模块连接所述第二信号线之前,所述方法还包括:
根据预设规则确定控制主机,分配每个电池包的从机地址。
在本实施方式中,在电池系统连接完成并建立通信连接后,将每个电池包开机,每个电池包可以通过其自身的电压测量电路检查其自身的电压和两端的电压是否一致,若一致或者相差不大的情况下,例如差值小于预设的范围阈值时,可以确定连接正常。否则,说明电池包连接存在错误,电池包可以进行告警提示。在电池包完成上电自检后,需要对多个电池包进行竞争主从机及分配地址。具体的竞争主从机的方法如图14所示,判断是否存在控制盒,该控制盒可以是带有显示屏的控制盒,也可以是不带有显示屏的控制盒。在本实施方式中,控制盒是以独立模块设置在电池系统中的,其与前面描述电池系统中的作为独立模块设置的检测判断模块完全相同,在此不再赘述。若存在,则控制盒作为控制主机。可选地,在本实施方式中,判断是否存在控制盒的步骤可以省略,当在电池系统中存在控制盒时,控制盒可以通过与各电池 包之间的通信连接直接进行通信,并通知各电池包由控制盒作为控制主机。进一步地,若不存在控制盒,可以按照预设规则确定控制主机,具体的预设规则包括如下任意一种方式:根据电池包发送数据的顺序确定控制主机,或者,根据每个电池的理论SOC或者当前的SOC的最大值来确定控制主机,或者,根据每个电池包的出厂ID号选择最大或者最小的ID作为控制主机。其中,各个电池包的出厂ID号都是唯一的,并根据出厂日期依次增大。作为一种优选的实施方式,选择理论SOC最大的电池包或者出厂ID号最大的作为控制主机,也即选择最新的电池包作为控制主机,由此可以保证整个电池系统运行的稳定性和可持续性。
在多个电池包相互连接时,如果想要实现多个电池包之间的RS485或者CAN总线通讯,那么每个电池包就需要一个地址。因此,在确定控制主机后,可以通过每个电池包的出厂ID号依次为其他电池包分配从机地址。
另外,在多个电池包相互连接时,可以在每个电池包的SOC和/或电压基本一致的时候再进行连接,可以避免电池包之间的电压差过大而产生大的环流,导致出现不期望的危险,也可以让连接得到的电池系统的性能达到最佳。
另外,在多个电池包进行串联和/或并联时,都必须在如下任一种条件下进行操作:
(1)所有电池包进入关机(或者休眠)状态;
(2)在开机正常工作状态下,需要先接通讯线,让电池包之间建立通讯后,再进行串并联操作。
如果没有满足上面条件的任意一种,也就是没有先接通讯线(建立通信的基础上)并且在开机的状态下出现连接错误的话,电池包自己会进行过流或者短路保护。因此通过上述方式,可以在出现错误操作的时候,尽可能的消除安全隐患和减少损失。
在确定控制主机后,后续都是通过控制主机控制第一电池包和第二电池包,进而来确定第一电池包和第二电池包之间的连接状态。图13所示的实施例是以第一电池包作为控制主机所执行的电池包连接状态识别方法,作为一种可选的实施方式,还可以按照下述步骤执行电池包连接状态识别方法,该步骤由电池系统中的控制盒执行,所述方法包括:
发送第一信息至所述第一电池包,所述第一信息用于指示所述第一电池包的第二电压接入模块连接所述第二信号线;
发送非第一信息的控制信息至所述第二电池包,所述控制信息用于指示所述第二电池包的第一电压接入模块连接所述第一信号线;
获取所述第一信号线和第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态。
在本实施方式中,控制盒作为控制主机,依次与第一电池包和第二电池包进行通信,以使得第一电池包和第二电池包各自不同的电压接入模块连接第一信号线和第二信号线,再根据测得的电压值来识别第一电池包和第二电池包之间的连接状态。可以理解,该实施方式与前面描述的实施方式仅是执行主体不同,基本原理是一样的,在此不再赘述。
在另一个可选的实施例中,如图15所示,所述第一电池包和所述第二电池包分别通过自身的电压接入模块和电压采样模块可控连接所述信号线,所述控制所述电池包接入所述信号线,包括:
S302,控制所述第一电池包的电压采样模块连接所述信号线。
在该实施方式中,第一电池包可以是电池系统中的控制主机,第二电池包是电池系统中的从机。由第一电池包与其他从机电池包相互通信,从而使从机电池包按照控制主机的指令进行动作。在识别电池包连接状态时,是以第一电池包作为参考点,依次识别其他从机电池包相对于第一电池包的连接状态。第一电池包可以闭合其电压采样模块中的开关,使第一电池包通过电压采样模块与信号线连接。
S304,发送第二信息至所述第二电池包,所述第二信息用于指示所述第二电池包的电压接入模块连接所述信号线。
在该实施方式中,第一电池包作为控制主机可以通过与第二电池包之间建立的通信连接发送第二信息至第二电池包。第二电池包接收到第二信息后,可以根据第二信息的指示,控制第二电池包的电压接入模块连接信号线,第二电池包的电压采样模块与信号线之间保持断开状态。
所述获取所述信号线的电压值,包括:
S306,获取所述第一电池包的电压采样模块测得的所述信号线的电压值。
在该实施方式中,因为第一电池包的电压采样模块与信号线连接,因此可以通过第一电池包的电压采样模块来测量信号线上的电压值。然后第一电池包中的检测判断模块中的BMS可以获取第一电池包的电压采样模块来测得的信号线上的电压值。
在再一个可选的实施例中,如图16所示,所述第一电池包和所述第二电池包分别通过自身的电压接入模块和电压采样模块可控连接所述信号线,所述控制所述电池包接入所述信号线,包括:
S402,控制所述第一电池包的电压接入模块连接所述信号线。
在该实施方式中,第一电池包也可以闭合其中电压接入模块中的开关,使第一电池包通过电压接入模块连接信号线。
S404,发送第三信息至所述第二电池包,所述第三信息用于指示所述第二电池包的电压采样模块连接所述信号线。
在该实施方式中,第一电池包作为控制主机可以通过与第二电池包之间建立的通信连接发送第三信息至第二电池包。第二电池包接收到第三信息后,可以根据第三信息的指示,控制第二电池包的电压采样模块连接信号线,第二电池包的电压接入模块与信号线之间保持断开状态。
所述获取所述信号线的电压值,包括:
S406,获取所述第二电池包的电压采样模块测得的所述信号线的电压值。
在该实施方式中,因为第二电池包的电压采样模块与信号线连接。因此,第二电池包的电压采样模块可以测量信号线上的电压值。然后第一电池包中的检测判断模块中的BMS可以通过信号线与第二电池包的电压采样模块进行通信,以此来获取第二电池包的电压采样模块来测得的信号线上的电压值。
在本实施例中,通过利用第一电池包和第二电池包中不同的模块来接入信号线,进而使得第一电池包或者第二电池包中的电压采样模块来获取信号线上的电压值,能够适应多种不同的连接场景,可以更好的确定电池包之间的连接状态。
在一个实施例中,如图17所示,获取所述第一信号线和第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态,包括以下至少一种:
S502,判断电压值是否处于第一预设范围内;
S504,响应于所述电压值处于第一预设范围内,确定所述第一电池包和所述第二电池包之间为并联状态;
S506,响应于所述电压值未处于所述第一预设范围内,确定所述第一电池包和所述第二电池包之间为串联状态。
在本实施方式中,在图12所示的实施例的基础上,本领域技术人员知晓,若两个电池包是并联状态,则所测得的第一信号线和第二信号线之间的电压值应当等于或者接近于一个电池包的电压或者负的一个电池包的电压,例如,假设第一电池包和第二电池包并联,当第一电池包的负极通过第二电压接入模块与第二信号线连接,第二电池包的正极通过第一电压接入模块与第一信号线连接时,测得的信号线之间的电压值应当等于或者接近于一个电池包的电压;反之,当第一电池包的正极通过第二电压接入模块与第二信号线连接,第二电池包的负极通过第一电压接入模块与第一信号线连接时,测得的信号线之间的电压值应当等于或者接近于负的一个电池包的电压。此外,考虑到第一电池包和第二电池包之间可能存在细微的压差,因此设定第一预设范围来确保识别过程的准确性。
示例性地,在实际情况中,第一预设范围可以是根据电池包的额定电压值来设定,例如对于单个电池包的额定电压为12V时,第一预设范围可以设定为10.5V~13.8V或者-13.8V~-10.5V,该预设范围仅为一种示例,具体可以通过查阅电池包的设计文档来设置该预设范围。
具体地,在一种实施方式中,若所述第一电池包和所述第二电池包的正极分别通过自身的第一电压接入模块可控连接第一信号线,所述第一电池包和所述第二电池包的负极分别通过自身的第二电压接入模块可控连接第二信号线,第一预设范围可以等于或接近于一个电池包的电压范围,例如,第一电池包或第二电池包的额定电压为12V,则第一预设范围可以在10.5V~13.8V之间。
在另一种实施方式中,若所述第一电池包和所述第二电池包的负极分别通过自身的第一电压接入模块可控连接第一信号线,所述第一电池包和所述第二电池包的正极分别通过自身的第二电压接入模块可控连 接第二信号线,则第一预设范围可以是接近负的第一电池包或第二电池包的电压值。例如,第一电池包或第二电池包的额定电压为12V,则第一预设范围可以在-13.8V~-10.5V之间。
可选地,在如图15或图16所示的实施例的基础上,若第一电池包和第二电池包是并联连接的,则第一电池包的电压采样模块所测的信号线上的电压值应当等于或者接近于一个电池包的电压或者负的一个电池包的电压。例如,假设第一电池包和第二电池包并联,当第一电池包的电池组负极通过电压采样模块与信号线连接,第二电池包的电池组正极通过电压接入模块与信号线连接时,电压采样模块测量得到的信号线上的电压值应该等于或者接近于一个电池包的电压。当第一电池包的正极通过电压接入模块与信号线连接,第二电池包的负极通过电压采样模块与信号线连接时,第二电池包的电压采样模块测得的信号线上的应该等于或者接近于负的一个电池包的电压。
此外,考虑到第一电池包和第二电池包之间可能存在细微的压差,因此可以设定第一预设范围来确保识别过程的准确性。具体地,可以根据电池包的正极或者负极接入信号线的情况来确定第一预设范围的区域,进而可以判断获取到的电压值是否处于第一预设范围内。若电压值处于第一预设范围内,则根据并联的关系,可以确定第一电池包和第二电池包为并联状态。若电压值未处于第一预设范围内,则确定第一电池包和第二电池包之间为串联状态。
示例性地,在实际情况中,第一预设范围可以是根据电池包的额定电压值来设定,例如对于单个电池包的额定电压为12V时,第一预设范围可以设定为10.5V~13.8V或者-13.8V~-10.5V,该预设范围仅为一种示例,具体可以通过查阅电池包的设计文档来设置该预设范围。
在一些示例性的实施例中,若存在多个第二电池包,则可以依次判断每个第二电池包和第一电池包之间的信号线的电压值,进而确定每个第二电池包和第一电池包之间的串联或并联状态,最终确定所有第二电池包相对于第一电池包的连接状态。然后根据连接状态可以计算出包含所有电池包的电池的总电压和总容量。因此,进一步地,在图12所示的实施例的基础上,获取信号线的电压值,并根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态的步骤之后,所述识别方法还包括:
发送第一控制信息至所述第二电池包,所述第一控制信息用于指示所述第二电池包的第一电压接入模块断开与所述第一信号线的连接;发送第二控制信息至第三电池包,所述第二控制信息用于指示所述第三电池包的第一电压接入模块连接所述第一信号线;获取所述第一信号线和第二信号线之间的电压值,并根据所述电压值确定所述第一电池包和所述第三电池包之间的连接状态。
可选地,在图15或者16所实施的实施例的基础上,所述识别方法还可以包括:
发送第三控制信息至所述第二电池包,所述第三控制信息用于指示所述第二电池包的电压接入模块断开与所述信号线连接;
发送第四控制信息至所述第三电池包,所述第四控制信息用于指示所述第三电池包的电压接入模块连接所述信号线。或者,发送第五控制信息至所述第二电池包,所述第五控制信息用于指示所述第二电池包的电压采样模块断开与所述信号线的连接。
发送第六控制信息至所述第三电池包,所述第六控制信息用于指示所述第三电池包的电压采样模块连接所述信号线。
在本实施方式中,在识别第一电池包和第二电池包之间的连接状态后,保持第一电池包与信号线的连接,控制第二电池包断开与信号线的连接,并控制第三电池包与信号线连接,进而识别第一电池包和第三电池包之间的连接状态。重复上述步骤,依次将不同电池包连接信号线后识别该电池包与第一电池包的连接状态,直至完成所有电池包的识别,由此即可识别出整个电池系统中每个电池包的连接状态。
在一种可能的实施方式中,在识别出电池包仅进行并联后,计算各个并联之后电池的理论SOC是否一致,如果相差太大则说明并联不合理,其中,并联电池包的实际容量为各个电池包的额定容量×SOH之后求和所得数值。在识别出同时存在串联和并联的电池包来说,最终的SOC是由所有串联中的电池包或电池包组(多个电池包并联后作为一个整体,并联之后的SOC为多个电池包的SOC之和)中的SOC最小值决定的。
本实施例中,通过信号线上的电压值,并且将电压值和预设的范围进行比较,即使在电池包之间存在压差的情况下,依然可以适应不同的电池系统情况,可以准确判断出第一电池包和第二电池包之间的连接状态。
在一个实施例中,所述响应于所述电压值未处于所述第一预设范围内,确定所述第一电池包和所述第二电池包之间为串联状态,还包括:
根据所述电压值,确定选自由所述第一电池包和所述第二电池包的相对位置和串联的电池包的数量构成的组中的至少一个。
在本实施方式中,相对位置可以理解为第二电池包接入在第一电池包中第一电压接入模块或者第二电压接入模块的位置,或者第二电池包连接在第一电池包的正极一侧或者负极一侧的位置。当第二电池包连接在第一电池包的正极一侧时,第二电池包的负极与第一电池包的正极连接;当第二电池包连接在第一电池包的负极一侧时,第二电池包的正极与第一电池包的负极连接。
在本实施方式中,当确定第一电池包和第二电池包之间为串联状态时,通常情况下可以包括第一电池包和第二电池包直接串联,即中间并未存在其他电池包;也可以是第一电池包和第二电池包间接串联,即第一电池包和第二电池包中间存在至少一个电池包,或者第一电池包和第二电池包中间存在至少宇哥电池包组,或者第一电池包和第二电池包中间存在电池包和电池包组。其中电池包组包括多个并联的电池包。因此,在第一电池包和第二电池包为串联状态时,可以根据串联状态之间的电压值确定第一电池包和第二电池包的相对位置关系,即第二电池包接入在第一电池包的第一电压接入模块侧或者第二电压接入模块侧。
在本实施方式中,当第一电池包和第二电池包为串联状态时,可以根据电压值确定其相对位置关系,以及串联的电池包的数量,能够更好地确定第一电池包和第二电池包中的连接结构。
在一个实施例中,如图18所示,若所述第一电池包和所述第二电池包的正极分别通过自身的第一电压接入模块可控连接第一信号线,所述第一电池包和所述第二电池包的负极分别通过自身的第二电压接入模块可控连接第二信号线;或者,若所述第一电池包和所述第二电池包的正极分别通过自身的电压接入模块可控连接信号线,所述第一电池包和所述第二电池包的负极分别通过自身的电压采样模块可控连接信号线;则所述根据所述电压值,确定所述第一电池包和所述第二电池包之间的连接状态,或者,确定选自由所述第一电池包和所述第二电池包的相对位置和串联的电池包的数量构成的组中的至少一个,包括以下至少一种:
S602,判断电压值是否为正值。
S604,响应于所述电压值为正值,确定所述第二电池包直接或间接连接于所述第一电池包的正极侧。
S606,响应于所述电压值为正值,且所述电压值为所述第一电池包的电压的N倍,确定所述第一电池包和所述第二电池包之间串联有N-2个选自由电池包和电池包组构成的组中的至少一个。
S608,响应于所述电压值为负值或者零,确定所述第二电池包直接或间接连接于所述第一电池包的负极侧。
S610,响应于所述电压值为负值,且所述电压值的绝对值为所述第一电池包的电压的M倍,确定所述第一电池包和所述第二电池包之间串联有M个选自由电池包和电池组构成的组中的至少一个;
S612,响应于所述电压值为零,确定所述第一电池包和所述第二电池包之间未串联电池包或电池包组。
其中,N为大于等于2的数,M为大于1的数,所述电池包组包括多个并联的所述电池包。
在本申请的一些实施例中,第一电池包和第二电池包中的第一电压接入模块和第二电压接入模块的位置通常情况下是相同的,即第一电池包和第二电池包为结构相同的电池包。具体地,确定第一电池包和第二电池包之间的电压值之后,由于电池包结构和连接方式已经确定,因此根据所述电压值即可确定所述第一电池包和所述第二电池包的相对位置和/或所述第一电池包和所述第二电池包之间的串联的电池包的数量。如图19和20所示,以图19和20中标记的第一电池包和第二电池包进行举例说明。
如图19所示,当第一电池包的负极连接所述第二信号线,第二电池包的正极连接第一信号线时,若测得的电压值为正值,第二电池包的负极与第一电池包的正极连接,即第二电池包接入在第一电池包的正极侧(第一接入模块侧)。若电压值是单个电池包电压的N倍或接近N倍(N为大于等于2的数),则可以确定第二电池包与第一电池包串联,且第二电池包的负极与第一电池包的正极连接,且第二电池包的负极与第一电池包的正极之间还串联有电池包和/或电池包组共N-2个。
如图20所示,当第一电池包的负极连接所述第二信号线,第二电池包的正极连接第一信号线时,若测得的电压值为零或者接近零,则可以确定第二电池包的正极与第一电池包的负极直接连接,即第二电池包直接接入在第一电池包的负极侧(第二接入模块侧),第二电池包与第一电池包之间没有串联其他电池 包或电池包组。若测得的电压值为负值,则可以确定第二电池包与第一电池包串联,且第二电池包的正极与第一电池包的负极连接,即第二电池包接入在第一电池包的负极侧(第二接入模块侧)。若测得的电压值为负值,且电压值的绝对值是单个电池包电压的M倍或接近M倍(M为大于等于1的数),则可以确定第二电池包与第一电池包串联,且第二电池包的正极与第一电池包的负极连接,即第二电池包接入在第一电池包的负极侧(第二接入模块侧),且第二电池包的负极与第一电池包的正极之间串联有电池包和/或电池包组共M个。
在本申请的另一些实施例中,第一电池包和第二电池包中电压接入模块和电压采样模块的位置也是固定相同的,即第一电池包和第二电池包为结构相同的电池包。由于第一电池包和第二电池包之间的连接状态已经确定,因此,可以根据信号线的电压值确定第一电池包和第二电池包之间的相对位置和/或所述第一电池包和第二电池包之间串联的电池包的数量,如图21和图22所示,以图21和图22中标记第一电池包和第二电池包进行举例说明。
如图21所示,当第一电池包的电池组负极通过电压采样模块连接信号线,第二电池包的电池组正极通过电压接入模块连接信号线时,若第一电池包测得的电压值为正值,则可以确定第二电池包的负极连接在第一电池包的正极侧(电压接入模块一侧)。若第一电池包测得的电压值是单个电池包的电压的N倍或者接近N倍(N为大于等于2的数),则可以确定第一电池包与第二电池之间为串联关系,确定第二电池包的负极与第一电池包的正极连接,且第二电池包的负极与第一电池包的正极之间还串联有电池包和/或电池包组共N-2个。
如图22所示,当第一电池包的电池组负极通过电压采样模块连接信号线,第二电池包的电池组正极通过电压接入模块连接信号线时。若第一电池包测得的电压值为零或者接近零,则可以确定第二电池包的正极与第一电池包的负极直接连接,即第二电池包直接接入在第一电池包的负极侧(电压采样模块一侧),第二电池包与第一电池包之间没有串联其他电池包或电池包组。若第一电池包测得的电压值为负值,则可以确定第二电池包与第一电池包之间串联,且第二电池包的电池组正极串联在第一电池包的电池组负极侧(电压采样模块一侧)。若第一电池包测得的电压值为负值,且电压值的绝对值是单个电池包电压的M倍或接近M倍(M为大于等于1的数),则可以确定第二电池包与第一电池包串联,且第二电池包的电池组正极串联在第一电池包的负极侧(电压采样模块一侧),且第二电池包的负极与第一电池包的正极之间串联有电池包和/或电池包组共M个。在本实施方式中,需要说明的是,上述第一电池包测得的电压值通常可以是第一电池包中电压采样模块测得的电压值。
在另一种实施方式中,如图23所示,若所述第一电池包和所述第二电池包的负极分别通过自身的第一电压接入模块可控连接第一信号线,所述第一电池包和所述第二电池包的正极分别通过自身的第二电压接入模块可控连接第二信号线;或者,若所述第一电池包和所述第二电池包的负极分别通过自身的电压接入模块可控连接信号线,所述第一电池包和所述第二电池包的正极分别通过自身的电压采样模块可控连接信号线;则所述根据所述电压值,确定所述第一电池包和所述第二电池包之间的连接状态,或者,确定选自由所述第一电池包和所述第二电池包的相对位置和串联的电池包的数量构成的组中的至少一个,包括以下至少一种:
S702,判断电压值是否为负值。
S704,响应于所述电压值为负值,确定所述第二电池包直接或间接连接于所述第一电池包的负极侧。
S706,响应于所述电压值为负值,且所述电压值的绝对值为所述第一电池包的电压的N倍,确定所述第一电池包和所述第二电池包之间串联N-2个选自由电池包和电池包组构成的组中的至少一个。
S708,响应于所述电压值为正值或者零,确定所述第二电池包直接或间接连接于所述第一电池包的正极侧。
S710,响应于所述电压值为正值,且所述电压值为所述第一电池包的电压的M倍,确定所述第一电池包和所述第二电池包之间串联有M个选自由电池包和电池包组构成的组中的至少一个。
S712,响应于所述电压值为零,确定所述第一电池包和所述第二电池包之间未串联电池包或电池包组;
其中,N为大于等于2的数,M为大于等于1的数,所述电池包组包括多个并联的所述电池包。
在该可能的实施例中,与前述实施例相比,电池包中的各模块与电池包双极的连接方式不同。如图24和25所示,以图24和25中标记的第一电池包和第二电池包进行举例说明。
如图24所示,当第一电池包的正极连接第一信号线,第二电池包的负极连接第二信号线时,若测得的电压值为负值,则第二电池包的正极直接或间接地与第一电池包的负极连接,即第二电池包接入在第一电池包的负极侧(第一接入模块侧)。进一步地,若测得的电压值为负值,且电压值的绝对值是单个电池包电压的N倍或接近N倍(N为大于等于2的数),则第二电池包的正极与第一电池包的负极连接,即第二电池包接入在第一电池包的负极侧(第一接入模块侧)且第二电池包的正极与第一电池包的负极之间串联的电池包和/或电池包组的数量共N-2个。
如图25所示,当第一电池包的正极连接第一信号线,第二电池包的负极连接第二信号线时。若测得的电压值为零或者接近零,则可以确定第二电池包与第一电池包串联,且第二电池包的负极与第一电池包的正极直接连接,即第二电池包直接接入在第一电池包的正极侧(第二接入模块侧)且第二电池包与第一电池包之间没有串联其他电池包或电池包组。若测得的电压值为正值,且电压值是单个电池包电压的M倍或接近M倍(M为大于等于1的数),则可以确定第二电池包与第一电池包串联,且第二电池包的负极与第一电池包的正极连接,即第二电池包接入在第一电池包的正极侧(第二接入模块侧),且第二电池包的负极与第一电池包的正极之间串联有电池包和/或电池包组的数量共M个。
在另一些实施方式中,以图26和图27中标记的第一电池包和第二电池包进行举例说明。
当第一电池包的电池组正极通过电压采样模块连接信号线,第二电池包的电池组负极通过电压接入模块连接信号线时。如图26所示,若第一电池包测得的电压值为负值,则可以确定第二电池包的电池组正极直接或间接地与第一电池包的电池组负极连接,即第二电池包接入在第一电池包的电池组负极侧(电压接入模块一侧)。进一步的,若第一电池包测得的电压值为负值,且电压值的绝对值是单个电池包电压的N倍或者接近N倍(N为大于等于2的数),则第二电池包的电池组正极接入在第一电池包的电池组负极侧(电压接入模块一侧),且第二电池包的电池组正极与第一电池包的电池组负极之间串联的电池包和/或电池包组的数量共N-2个。
当第一电池包的电池组正极通过电压采样模块连接信号线,第二电池包的电池组负极通过电压接入模块连接信号线时。如图27所示,若第一电池包测得的电压值为零或者接近零,则可以确定第二电池包与第一电池包串联,且第二电池包的负极与第一电池包的正极直接连接,即第二电池包直接接入在第一电池包的正极侧(电压采样模块一侧),且第二电池包与第一电池包之间没有串联其他电池包或电池包组。若第一电池包测得的电压值为正值,且电压值是单个电池包电压的M倍或者接近M倍(M为大于等于1的数),则可以确定第二电池包与第一电池包之间串联,且第二电池包的负极与第一电池包的正极连接,即第二电池包接入在第一电池包的正极侧(电压采样模块一侧),且第二电池包的负极与第一电池包的正极之间串联有电池包和/或电池包组的数量共M个。
在另一种实施方式中,如图28所示,若所述第一电池包和所述第二电池包的正极分别通过自身的电压接入模块可控连接信号线,所述第一电池包和所述第二电池包的负极分别通过自身的电压采样模块可控连接信号线,则所述根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态,包括以下至少一种:
S802,判断电压值是否为正值。
S804,响应于所述电压值为正值,确定所述第二电池包直接或间接连接于所述第一电池包的正极侧。
S806,响应于所述电压值为正值,且所述电压值为所述第一电池包的电压的N倍,确定所述第一电池包和所述第二电池包之间串联有N-2个选自由电池包和电池包组构成的组中的至少一个。
S808,响应于所述电压值为负值或者零,确定所述第二电池包直接或间接连接于所述第一电池包的负极侧。
S810,响应于所述电压值为负值,且所述电压值的绝对值为所述第一电池包的电压的M倍,确定所述第一电池包和所述第二电池包之间串联有M个选自由电池包和电池组构成的组中的至少一个。
S812,响应于所述电压值为零,确定所述第一电池包和所述第二电池包之间未串联电池包或电池包组。其中,N为大于等于2的数,M为大于等于1的数,所述电池包组包括多个并联的所述电池包。
在一些实施方式中,以图29和图30中标记的第一电池包和第二电池包进行说明。
当第一电池包的正极通过电压接入模块连接信号线,第二电池包的负极通过电压采样模块连接信号线时。如图29所示,此时第二电池包中的电压采样模块可以测量信号线上的电压值。若第二电池包中电压 采样模块测得的电压值为正值,则可以确定第二电池包的负极与第一电池包的正极连接,即第二电池包接入在第一电池包的正极侧(电压接入模块一侧)。若第二电池包中的电压采样模块测得的电压值是单个电池包的电压的N倍或者接近N倍(N为大于等于2的数),则可以确定第一电池包与第二电池之间为串联关系,确定第二电池包的负极与第一电池包的正极连接,且第二电池包的负极与第一电池包的正极之间还串联有电池包和/或电池包组共N-2个。
当第一电池包的正极通过电压接入模块连接信号线,第二电池包的负极通过电压采样模块连接信号线时。如图30所示,若第二电池包的电压采样模块测得的电压值为零,则可以确定第二电池包的正极与第一电池包的负极直接连接,即第二电池包直接接入在第一电池包的负极侧(电压采样模块一侧)。第二电池包与第一电池包之间没有串联其他电池包或电池包组。若第二电池包的电压采样模块测得的电压值为负值,则可以确定第二电池包与第一电池包之间串联,且第二电池包的正极与第一电池包的负极连接,即第二电池包接入在第一电池包的负极侧(电压采样模块一侧)。若第二电池包测得的电压值为负值,且电压值的绝对值是单个电池包电压的M倍或接近M倍(M为大于等于1的数),则可以确定第二电池包与第一电池包串联,且第二电池包的正极与第一电池包的负极连接,即第二电池包接入在第一电池包的负极侧(电压采样模块一侧),且第二电池包的负极与第一电池包的正极之间串联有电池包和/或电池包组共M个。
在另一种实施方式中,如图31所示,若所述第一电池包和所述第二电池包的负极分别通过自身的电压接入模块可控连接信号线,所述第一电池包和所述第二电池包的正极分别通过自身的电压采样模块可控连接信号线,则所述根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态,包括以下至少一种:
S902,判断电压值是否为负值。
S904,响应于所述电压值为负值,确定所述第二电池包直接或间接连接于所述第一电池包的正极侧。
S906,响应于所述电压值为负值,且所述电压值的绝对值为所述第一电池包的电压的N倍,确定所述第一电池包和所述第二电池包之间串联有N-2个选自由电池包和电池组构成的组中的至少一个。
S908,响应于所述电压值为正值或者零,确定所述第二电池包直接或间接连接于所述第一电池包的负极侧。
S910,响应于所述电压值为正值,且所述电压值为所述第一电池包的电压的M倍,确定所述第一电池包和所述第二电池包之间串联有M个选自由电池包和电池包组构成的组中的至少一个。
S912,响应于所述电压值为零,确定所述第一电池包和所述第二电池包之间未串联电池包或电池包组;其中,N为大于等于2的数,M为大于等于1的数,所述电池包组包括多个并联的所述电池包。
具体地,以图32和图33中标记的第一电池包和第二电池包进行举例说明。
如图32所示,当第一电池包的负极通过电压接入模块连接信号线,第二电池包的正极通过电压采样模块连接信号线时。此时第二电池包中的电压采样模块可以测量信号线上的电压值。若第二电池包中电压采样模块测得的电压值为零,则可以确定第二电池包的正极与第一电池包的负极直接连接,即第二电池包接入在第一电池包的负极侧(电压接入模块一侧)。若第二电池包中的电压采样模块测得的电压值为正值,缺电压值的绝对值是单个电池包电压的M倍或者接近M倍(M为大于等于1的数),则可以确定第二电池包与第一电池包串联,且第二电池包的正极与第一电池包的负极连接,即第二电池包接入在第一电池包的负极侧(电压接入模块一侧),且第二电池包的负极与第一电池包的正极之间串联有电池包和/或电池包组共M个。
如图33所示,当第一电池包的负极通过电压接入模块连接信号线,第二电池包的正极通过电压采样模块连接信号线时。此时第二电池包中的电压采样模块可以测量信号线上的电压值。若第二电池包中电压采样模块测得的电压值为负值,则可以确定第二电池包的负极与第一电池包的正极连接,即第二电池包接入在第一电池包的正极侧(电压采样模块一侧)。若第二电池包中的电压采样模块测得的电压值为负值,且电压值的绝对值为单个电池包电压的N倍或者接近N倍(N为大于等于2的数),则可以确定第一电池包与第二电池包为串联关系,确定第二电池包的负极与第一电池包的正极连接,且第二电池包的负极与第一电池包的正极之间还串联有电池包和/或电池包组共N-2个。
同样地,在本实施方式中,需要说明的是,前面所述的串联有电池包和/或电池包组共N-2个或者串联 有电池包和/或电池包组共M个,是指第一电池包和第二电池包之间还串联有其他电池包,并且由于多个电池包并联后的电压等于单个电池包的电压,因此根据电压值仅能确定串联的电池单元数量,该电池单元可能是单个电池包,也可能是并联的多个电池包构成的电池组;该电池组中的电池包数量仅根据当前获得的信号线电压值还无法确定,当对所有电池包依次识别完成后,整个电池系统中所有的电池包连接方式以及数量即可完全确定。
在一些示例性的实施例中,如图34所示,串联和并联都存在的电池包的电路是最复杂的,因此以串联和并联均存在的情况,即混合连接(混连)情况为例进行说明。混连是由串联电池包和并联电池包组合在一起的特殊电池系统。图中P1、P2...Pn-1、Pn为电池包,与隔离通信模块连接的两条虚线为通信线,如CAN总线;各个电池包之间可以通过隔离通信模块进行通信。与电压接入模块(每个电池包的开关和电阻构成的)连接的两条细实线为信号线;与熔断器连接的两条粗实线为电源母线。以P1电池包为例,其中BMS为电池管理系统,用于从电流传感器和电压检测单元(未图示)中获取电池包的电池组的各类参数并进行相应的控制;M1,充、M1,放为电池包的充放电回路单元,其根据BMS的控制信号从而对电池包的充放电进行控制;K1,预、R1,预构成电池包的预充单元,用于缓冲上电时的大电流冲击,其中预充单元与充放电回路单元并联后与电源母线连接;K1,正设置在熔断器和P1电池包的电池组之间,作为总回路控制开关,用于与电源母线连接;S1,正和R1,正构成电池包的第一电压接入模块,用于使电池组的正极与第一信号线可控连接;S1,负和R1,负构成电池包的第二电压接入模块,用于使电池组的负极与第二信号线可控连接;隔离通信单元,其与通信总线(图示中的两条虚线)连接,从而通过通信总线与其他电池包建立通信连接;电压测量电路和BMS构成电池包的检测判断模块,电压测量电路用于测量第一信号线和第二信号线之间的电压值,BMS用于根据该电压值来确定电池包的连接状态。其他电池包的结构与电池包P1的结构完全相同,区别仅在于电池包之间的连接方式不同,在此不再赘述。
在识别电池包的连接状态时,可以先通过竞争主从机的步骤确定电池系统中的控制主机,关于控制主机的确定方式可以参见上述实施例,在此不进行重复赘述。在本实施例中,以电池包P3为控制主机,其余的电池包为从机。控制主机可以相当于上述提及的第一电池包,每个从机相当于上述提及的第二电池包或第三电池包。需要说明的是,本实施例仅作为一种可能的实施方式来描述,其目的在于进一步解释本申请的技术方案,而不构成对本申请实际保护范围的限制。
具体地,电池包P3作为控制主机其先控制S3,负闭合使得电池包P3的负极与第二信号线连接,并通过通讯总线发送信息给电池包P1使其控制S1,正闭合。电池包P3通过其自身的电压测量电路,测量第一信号线和第二信号线的电压值,此时由于电池包P1和电池包P3为串联关系,且电池包P1的负极与电池包P3的正极直接连接。因此此时测得的电压值,大约为电池包P3的电压值的两倍,具体的倍数可以用测得的电压值除以电池包P3的电压值后四舍五入取整来确定。根据该测得的电压值情况,电池包P3可以判断出电池包P1和其是串联关系,并且在自己的正端(第一电压接入模块侧)直接串联。
进一步地,电池包P3通过通信总线控制电池包P1控制S1,正断开,并通过通信总线控制电池包P2控制S2,正闭合。电池包P3通过其自身的电压测量电路,测量第一信号线和第二信号线的电压值,此时测得的电压值同样大约为电池包P3的电压值的两倍,因此电池包P3可以判断出电池P2和其是串联关系,并且在自己的正端(第一电压接入模块侧)直接串联。同时,电池包P3还可判断出电池包P1和电池包P2为并联连接。
进一步地,电池包P3通过通信总线控制电池包P2控制S2,正断开,并通过通信总线控制电池包P4控制S4,正闭合。电池包P3通过电压测量电路,测量电压值,此时的电压值大约为电池包P3的电压值的一倍,因此电池包P3可以判断出电池P4和其是并联关系。
进一步地,电池包P3通过通信总线控制电池包P4控制S4,正断开,并通过通信总线控制电池包P5控制S5,正闭合。电池包P3通过电压测量电路,测量电压值,此时的电压值大约为0,电池包P3可以判断出电池P5和自己是串联关系,并且在自己的负端(第二电压接入模块侧)和其直接串联;
以此类推,直至电池包P3判断出所有从机电池包和自己的串并联关系,并可以计算得到电池包P的串并联关系和电池包P的总容量和总电压。
通过上述方式,可以在用户对电池包任意进行连接后,无需其他操作,自动地识别每个电池包之间的连接状态,进而确定整个电池系统中每个电池包之间的连接结构,可以更好地对电池系统进行精准管理。
进一步需要说明的是,考虑在实际应用过程中电池包之间以及电流传输时可能存在损耗,或者存在一些不可忽略的电压差,因此,测得的电压值或者电压值的绝对值并不一定正好等于一个电池包电压的整数倍。因此,通常情况下N和M可以为将测得的电压值除以单个电池包的电压值后进行四舍五入取整后得到的整数值,由此来确定具体的倍数(即前述的N倍、M倍或零)。例如,对于电压为12V的电池包来说,若检测判断模块或电压采样模块测得的电压值为32.5V,则进行计算32.5/12≈2.708,再进行四舍五入后确定为3倍的电池包电压;若检测判断模块或电压采样模块测得的电压值为1.5V,则进行计算1.5/12≈0.125,再进行四舍五入后确定电压值为0;若检测判断模块或电压采样模块测得的电压值为-7.5V,则先取绝对值后再进行计算7.5/12≈0.625,再进行四舍五入后确定为1倍的电池包电压;以此类推,可以帮助更准确地确定所测得的信号线电压值。
在本实施例中,当确定第一电池包和第二电池包为串联状态后,还可以根据电压值进一步确定第一电池包和第二电池包的相对位置关系,及第二电池包接入第一电池包的正极侧或者负极侧,以及其中串联的电池包的数量,因此能够更好的确定第一电池包和第二电池包中的连接结构,后续便于计算串联和/或并联后得到的电池包的总电压和总容量。
在一个实施例中,还提供一种电池管理系统,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
在一个实施例中,还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述各方法实施例中的步骤。
在一个实施例中,还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
上述本申请实施例的排列顺序仅仅为了描述,不代表实施例的优劣。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在本申请中,对于相同或相似的术语概念、技术方案和/或应用场景描述,一般只在第一次出现时进行详细描述,后面再重复出现时,为了简洁,一般未再重复阐述,在理解本申请技术方案等内容时,对于在后未详细描述的相同或相似的术语概念、技术方案和/或应用场景描述等,可以参考其之前的相关详细描述。
在本申请中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本申请技术方案的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本申请记载的范围。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是用电设备或者网络设备等)执行本申请每个实施例的方法。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种电池系统,其中,包括:
    多个电池包,多个所述电池包直接或间接连接;
    信号线,所述信号线与每个所述电池包可控连接;以及
    检测判断模块,用于获取所述信号线的电压值,根据所述电压值确定选自由多个所述电池包之间的连接方式和相对位置构成的组中的至少一个。
  2. 根据权利要求1所述的电池系统,其中,所述电池包包括电池组、第一电压接入模块和第二电压接入模块;
    所述信号线包括至少一第一信号线和至少一第二信号线;
    所述电池组的正极经所述第一电压接入模块与所述第一信号线可控连接;
    所述电池组的负极经所述第二电压接入模块与所述第二信号线可控连接。
  3. 根据权利要求2所述的电池系统,其中,所述电池包还包括与所述电池组串联的分压模块;
    所述电池组的正极经所述分压模块和所述第一电压接入模块与所述第一信号线可控连接;
    所述电池组的负极经所述第二电压接入模块与所述第二信号线可控连接。
  4. 根据权利要求3所述的电池系统,其中,所述检测判断模块包括运算放大器和微处理器;
    所述运算放大器的第一输入端与所述第一信号线连接,所述运算放大器的第二输入端与所述第二信号线连接,所述运算放大器用于获取所述第一信号线和第二信号线之间的电压值;
    所述微处理器,用于根据所述电压值确定选自由多个所述电池包之间的连接方式和相对位置构成的组中的至少一个。
  5. 根据权利要求2-4任一项所述的电池系统,其中,所述检测判断模块设置于多个所述电池包中的至少一第一电池包的内部;
    所述检测判断模块用于控制所述第一电池包的第一电压接入模块连接所述第一信号线;
    所述检测判断模块用于与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的第二电压接入模块连接所述第二信号线;
    所述检测判断模块还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定选自由所述第一电池包和所述第二电池包之间的连接方式和相对位置构成的组中的至少一个。
  6. 根据权利要求2-4任一项所述的电池系统,其中,所述检测判断模块设置于多个所述电池包中的至少一第一电池包的内部;
    所述检测判断模块用于控制所述第一电池包的第二电压接入模块连接所述第二信号线;
    所述检测判断模块用于与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的第一电压接入模块连接所述第一信号线;
    所述检测判断模块还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定选自由所述第一电池包和所述第二电池包之间的连接方式和相对位置构成的组中的至少一个。
  7. 根据权利要求2-4任一项所述的电池系统,其中,所述检测判断模块作为独立模块设置于电池系统中;
    所述检测判断模块用于与多个所述电池包中的至少一第一电池包和至少一第二电池包进行通信,以使所述第一电池包控制所述第一电池包的第一电压接入模块连接所述第一信号线,和所述第二电池包控制所述第二电池包的第二电压接入模块连接所述第二信号线;
    所述检测判断模块还用于获取所述第一信号线和所述第二信号线之间的电压值,根据所述电压值确定选自由所述第一电池包和所述第二电池包之间的连接方式和相对位置构成的组中的至少一个。
  8. 根据权利要求2-4任一项所述的电池系统,其中,所述检测判断模块作为独立模块设置于电池系统中;
    所述检测判断模块用于与多个所述电池包中的至少一第一电池包和至少一第二电池包进行通信,以使所述第一电池包控制所述第一电池包的第二电压接入模块连接所述第二信号线,所述第二电池包控制所述第二电池包的第一电压接入模块连接所述第一信号线;
    所述检测判断模块还用于获取所述第一信号线和所述第二信号线之间的电压值,并根据所述电压值确定选自由所述第一电池包和所述第二电池包之间的连接方式和相对位置构成的组中的至少一个。
  9. 根据权利要求1所述的电池系统,其中,所述电池包包括电池组、电压接入模块和电压采样模块;
    所述电池组的正极经所述电压接入模块与所述信号线可控连接;
    所述电池组的负极经所述电压采样模块与所述信号线可控连接。
  10. 根据权利要求9所述的电池系统,其中,所述检测判断模块设置于多个所述电池包中的至少一第一电池包的内部;
    所述检测判断模块用于控制所述第一电池包的电压采样模块连接所述信号线;
    所述检测判断模块用于与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的电压接入模块连接所述信号线;
    所述检测判断模块还用于获取所述第一电池包的电压采样模块测得的所述信号线的电压值,并根据所述电压值确定选自由所述第一电池包和所述第二电池包之间的连接方式和相对位置构成的组中的至少一个。
  11. 根据权利要求9所述的电池系统,其中,所述检测判断模块设置于多个所述电池包中的至少一第一电池包的内部;
    所述检测判断模块用于控制所述第一电池包的电压接入模块连接所述信号线;
    所述检测判断模块用于与多个所述电池包中的至少一第二电池包进行通信,以使所述第二电池包控制所述第二电池包的电压采样模块连接所述信号线;
    所述检测判断模块还用于获取所述第二电池包的电压采样模块测得的所述信号线的电压值,并根据所述电压值确定选自由所述第一电池包和所述第二电池包之间的连接方式和相对位置构成的组中的至少一个。
  12. 一种电池包连接状态识别方法,其中,所述方法应用于由至少一第一电池包和至少一第二电池包构成的电池系统中的所述第一电池包,所述方法包括:
    控制所述第一电池包和所述第二电池包连接信号线;
    获取所述信号线的电压值;
    根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态。
  13. 根据权利要求12的方法,其中,所述第一电池包和所述第二电池包分别通过自身的第一电压接入模块可控连接第一信号线,通过自身的第二电压接入模块可控连接第二信号线;
    控制所述第一电池包和所述第二电池包连接信号线,包括:
    控制所述第一电池包的第二电压接入模块连接所述第二信号线;
    发送第一信息至所述第二电池包,所述第一信息用于指示所述第二电池包的第一电压接入模块连接所述第一信号线;
    所述获取所述信号线的电压值,包括:
    获取所述第一信号线和第二信号线之间的电压值。
  14. 根据权利要求13所述方法,其中,所述根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态,包括以下至少一种:
    响应于所述电压值处于第一预设范围内,确定所述第一电池包和所述第二电池包之间为并联状态;
    响应于所述电压值未处于所述第一预设范围内,确定所述第一电池包和所述第二电池包之间为串联状态。
  15. 根据权利要求14所述的方法,其中,所述确定所述第一电池包和所述第二电池包之间为串联状态,还包括:
    根据所述电压值,确定选自由所述第一电池包和所述第二电池包的相对位置和串联的电池包的数量构成的组中的至少一个。
  16. 根据权利要求15所述的方法,其中,若所述第一电池包和所述第二电池包的正极分别通过自身的第一电压接入模块可控连接第一信号线,所述第一电池包和所述第二电池包的负极分别通过自身的第二电压接入模块可控连接第二信号线;
    所述根据所述电压值,确定选自由所述第一电池包和所述第二电池包的相对位置和串联的电池包的数量构成的组中的至少一个,包括以下至少一种:
    响应于所述电压值为正值,确定所述第二电池包直接或间接连接于所述第一电池包的正极侧;
    响应于所述电压值为负值或者零,确定所述第二电池包直接或间接连接于所述第一电池包的负极侧;
    响应于所述电压值为正值,且所述电压值为所述第一电池包的电压的N倍,确定所述第一电池包和所述第二电池包之间串联有N-2个选自由电池包和电池包组构成的组中的至少一个;
    响应于所述电压值为负值,且所述电压值的绝对值为所述第一电池包的电压的M倍,确定所述第一电池包和所述第二电池包之间串联有M个选自由电池包和电池组构成的组中的至少一个;
    响应于所述电压值为零,确定所述第一电池包和所述第二电池包之间未串联电池包或电池包组;
    其中,N为大于等于2的数,M为大于等于1的数,所述电池包组包括多个并联的所述电池包;
    或者,
    若所述第一电池包和所述第二电池包的负极分别通过自身的第一电压接入模块可控连接第一信号线;
    所述第一电池包和所述第二电池包的正极分别通过自身的第二电压接入模块可控连接第二信号线;
    所述根据所述电压值,确定选自由所述第一电池包和所述第二电池包的相对位置和串联的电池包的数量构成的组中的至少一个,包括以下至少一种:
    响应于所述电压值为正值或者零,确定所述第二电池包直接或间接连接于所述第一电池包的正极侧;
    响应于所述电压值为负值,确定所述第二电池包直接或间接连接于所述第一电池包的负极侧;
    响应于所述电压值为正值,且所述电压值为所述第一电池包的电压的M倍,确定所述第一电池包和所述第二电池包之间串联有M个选自由电池包和电池包组构成的组中的至少一个;
    响应于所述电压值为负值,且所述电压值的绝对值为所述第一电池包的电压的N倍,确定所述第一电池包和所述第二电池包之间串联N-2个选自由电池包和电池包组构成的组中的至少一个;
    响应于所述电压值为零,确定所述第一电池包和所述第二电池包之间未串联电池包或电池包组;
    其中,N为大于等于2的数,M为大于等于1的数,所述电池包组包括多个并联的所述电池包。
  17. 根据权利要求12的方法,其中,所述第一电池包和所述第二电池包分别通过自身的电压接入模块和电压采样模块可控连接所述信号线,
    所述控制所述电池包接入所述信号线,包括:
    控制所述第一电池包的电压采样模块连接所述信号线;
    发送第二信息至所述第二电池包,所述第二信息用于指示所述第二电池包的电压接入模块连接所述信号线;
    所述获取所述信号线的电压值,包括:
    获取所述第一电池包的电压采样模块测得的所述信号线的电压值。
  18. 根据权利要求12的方法,其中,所述第一电池包和所述第二电池包分别通过自身的电压接入模块和电压采样模块可控连接所述信号线,
    所述控制所述电池包接入所述信号线,包括:
    控制所述第一电池包的电压接入模块连接所述信号线;
    发送第三信息至所述第二电池包,所述第三信息用于指示所述第二电池包的电压采样模块连接所述信号线;
    所述获取所述信号线的电压值,包括:
    获取所述第二电池包的电压采样模块测得的所述信号线的电压值。
  19. 根据权利要求17或18所述的方法,其中,所述根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态,包括以下至少一种:
    响应于所述电压值处于第一预设范围内,确定所述第一电池包和所述第二电池包之间为并联状态;
    响应于所述电压值未处于所述第一预设范围内,确定所述第一电池包和所述第二电池包之间为串联状态。
  20. 根据权利要求17所述的方法,其中,若所述第一电池包和所述第二电池包的正极分别通过自身的电压接入模块可控连接信号线,所述第一电池包和所述第二电池包的负极分别通过自身的电压采样模块可控连接信号线,则所述根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态,包括以下至少一种:
    响应于所述电压值为正值,确定所述第二电池包直接或间接连接于所述第一电池包的正极侧;
    响应于所述电压值为负值或者零,确定所述第二电池包直接或间接连接于所述第一电池包的负极侧;
    响应于所述电压值为正值,且所述电压值为所述第一电池包的电压的N倍,确定所述第一电池包和所述第二电池包之间串联有N-2个选自由电池包和电池包组构成的组中的至少一个;
    响应于所述电压值为负值,且所述电压值的绝对值为所述第一电池包的电压的M倍,确定所述第一电池包和所述第二电池包之间串联有M个选自由电池包和电池组构成的组中的至少一个;
    响应于所述电压值为零,确定所述第一电池包和所述第二电池包之间未串联电池包或电池包组;
    其中,N为大于等于2的数,M为大于等于1的数,所述电池包组包括多个并联的所述电池包;
    或者,
    若所述第一电池包和所述第二电池包的负极分别通过自身的电压接入模块可控连接信号线,所述第一电池包和所述第二电池包的正极分别通过自身的电压采样模块可控连接信号线,则所述根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态,包括以下至少一种:
    响应于所述电压值为正值或者零,确定所述第二电池包直接或间接连接于所述第一电池包的正极侧;
    响应于所述电压值为负值,确定所述第二电池包直接或间接连接于所述第一电池包的负极侧;
    响应于所述电压值为正值,且所述电压值为所述第一电池包的电压的M倍,确定所述第一电池包和所述第二电池包之间串联有M个选自由电池包和电池包组构成的组中的至少一个;
    响应于所述电压值为负值,且所述电压值的绝对值为所述第一电池包的电压的N倍,确定所述第一电池包和所述第二电池包之间串联有N-2个选自电池包和电池包组构成的组中的至少一个;
    响应于所述电压值为零,确定所述第一电池包和所述第二电池包之间未串联电池包或电池包组;
    其中,N为大于等于2的数,M为大于等于1的数,所述电池包组包括多个并联的所述电池包。
  21. 根据权利要求18所述的方法,其中,若所述第一电池包和所述第二电池包的正极分别通过自身的电压接入模块可控连接信号线,所述第一电池包和所述第二电池包的负极分别通过自身的电压采样模块可控连接信号线,则所述根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态,包括以下至少一种:
    响应于所述电压值为正值,确定所述第二电池包直接或间接连接于所述第一电池包的负极侧;
    响应于所述电压值为负值或者零,确定所述第二电池包直接或间接连接于所述第一电池包的正极侧;
    响应于所述电压值为正值,且所述电压值为所述第一电池包的电压的N倍,确定所述第一电池包和所述第二电池包之间串联有N-2个选自由电池包和电池包组构成的组中的至少一个;
    响应于所述电压值为负值,且所述电压值的绝对值为所述第一电池包的电压的M倍,确定所述第一电池包和所述第二电池包之间串联有M个选自由电池包和电池组构成的组中的至少一个;
    响应于所述电压值为零,确定所述第一电池包和所述第二电池包之间未串联电池包或电池包组;
    其中,N为大于等于2的数,M为大于等于1的数,所述电池包组包括多个并联的所述电池包;
    或者,
    若所述第一电池包和所述第二电池包的负极分别通过自身的电压接入模块可控连接信号线,所述第一电池包和所述第二电池包的正极分别通过自身的电压采样模块可控连接信号线,则所述根据所述电压值确定所述第一电池包和所述第二电池包之间的连接状态,包括以下至少一种:
    响应于所述电压值为正值或者零,确定所述第二电池包直接或间接连接于所述第一电池包的负极侧;
    响应于所述电压值为负值,确定所述第二电池包直接或间接连接于所述第一电池包的正极侧;
    响应于所述电压值为正值,且所述电压值为所述第一电池包的电压的M倍,确定所述第一电池包和所述第二电池包之间串联有M个选自由电池包和电池包组构成的组中的至少一个;
    响应于所述电压值为负值,且所述电压值的绝对值为所述第一电池包的电压的N倍,确定所述第一电池包和所述第二电池包之间串联有N-2个选自由电池包和电池组构成的组中的至少一个;
    响应于所述电压值为零,确定所述第一电池包和所述第二电池包之间未串联电池包或电池包组;
    其中,N为大于等于2的数,M为大于等于1的数,所述电池包组包括多个并联的所述电池包。
PCT/CN2023/085153 2022-08-22 2023-03-30 电池系统和电池包连接状态识别方法 WO2024040972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211004551.6A CN115101840B (zh) 2022-08-22 2022-08-22 电池系统和电池包连接状态识别方法
CN202211004551.6 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024040972A1 true WO2024040972A1 (zh) 2024-02-29

Family

ID=83300580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085153 WO2024040972A1 (zh) 2022-08-22 2023-03-30 电池系统和电池包连接状态识别方法

Country Status (2)

Country Link
CN (1) CN115101840B (zh)
WO (1) WO2024040972A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101840B (zh) * 2022-08-22 2022-12-02 如果新能源科技(江苏)股份有限公司 电池系统和电池包连接状态识别方法
CN116826209A (zh) * 2023-07-04 2023-09-29 深圳市龙星辰电源有限公司 获取电池包内电池连接的方法、系统、存储介质及设备
CN117117354B (zh) * 2023-10-20 2024-03-19 如果新能源科技(江苏)股份有限公司 电池系统、电池系统的管理方法及电池管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623767A (zh) * 2012-03-28 2012-08-01 力帆实业(集团)股份有限公司 一种电池组高压连接管理方法
CN104753126A (zh) * 2013-12-31 2015-07-01 南京德朔实业有限公司 电池包、充电组合和电动工具
CN106712202A (zh) * 2017-01-23 2017-05-24 深圳市哈威飞行科技有限公司 飞行器电源管理系统及飞行器
CN108957196A (zh) * 2018-08-24 2018-12-07 深圳拓邦股份有限公司 一种电池包接入检测电路、方法及充电装置
JP2020198183A (ja) * 2019-05-31 2020-12-10 株式会社デンソーテン 接続制御装置及び接続制御方法
CN115101840A (zh) * 2022-08-22 2022-09-23 如果新能源科技(江苏)股份有限公司 电池系统和电池包连接状态识别方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623767A (zh) * 2012-03-28 2012-08-01 力帆实业(集团)股份有限公司 一种电池组高压连接管理方法
CN104753126A (zh) * 2013-12-31 2015-07-01 南京德朔实业有限公司 电池包、充电组合和电动工具
CN106712202A (zh) * 2017-01-23 2017-05-24 深圳市哈威飞行科技有限公司 飞行器电源管理系统及飞行器
CN108957196A (zh) * 2018-08-24 2018-12-07 深圳拓邦股份有限公司 一种电池包接入检测电路、方法及充电装置
JP2020198183A (ja) * 2019-05-31 2020-12-10 株式会社デンソーテン 接続制御装置及び接続制御方法
CN115101840A (zh) * 2022-08-22 2022-09-23 如果新能源科技(江苏)股份有限公司 电池系统和电池包连接状态识别方法

Also Published As

Publication number Publication date
CN115101840A (zh) 2022-09-23
CN115101840B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024040972A1 (zh) 电池系统和电池包连接状态识别方法
US10074997B2 (en) Method and apparatus for creating a dynamically reconfigurable energy storage device
KR101485665B1 (ko) 셀 밸런싱 회로 및 이를 이용한 셀 밸런싱 방법
CN102064356B (zh) 一种电池管理系统
CN104821611A (zh) 电池托盘、电池架、储能系统和操作电池托盘的方法
JP2014230488A (ja) バッテリラックおよびその駆動方法
RU2546978C2 (ru) Аккумуляторная батарея и система управления аккумуляторной батареей
JP2014063567A (ja) 電池パック及び電力消費機器
US20220140623A1 (en) Method and system for an ac battery
CN104009519A (zh) 微型电动车电池管理系统
CN104052130A (zh) 用于服务机器人的磷酸铁锂电池电源管理系统及工作方法
JP2015015777A (ja) 蓄電装置および蓄電装置の制御方法
CN111478387A (zh) 一种电池管理系统
CN103081288A (zh) 电池模块的充电系统
US20140354236A1 (en) Battery management system and driving method thereof
CN201341030Y (zh) 一种用于串联蓄电池组的监控及均衡装置
Zich et al. Active battery management system for home battery energy storage
JP2018157746A (ja) バッテリパック及びバッテリパックを外部バッテリシステムに並列に接続する方法
CN106655301A (zh) 一种适用于电动叉车的电源管理系统及方法
CN110445229A (zh) 储能电源
US20220373606A1 (en) Power storage system and management method
JP4108339B2 (ja) リチウムイオン二次電池の充電方法及び装置
EP4304042A1 (en) Energy storage system, control method for energy storage system, and photovoltaic power generation system
CN109494851B (zh) 一种智能电池系统
KR101965655B1 (ko) 배터리 모듈 시스템 및 그의 구동방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856067

Country of ref document: EP

Kind code of ref document: A1