WO2024040898A1 - 一种基于LabVIEW的漏磁检测教具装置 - Google Patents

一种基于LabVIEW的漏磁检测教具装置 Download PDF

Info

Publication number
WO2024040898A1
WO2024040898A1 PCT/CN2023/078158 CN2023078158W WO2024040898A1 WO 2024040898 A1 WO2024040898 A1 WO 2024040898A1 CN 2023078158 W CN2023078158 W CN 2023078158W WO 2024040898 A1 WO2024040898 A1 WO 2024040898A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
leakage detection
module
labview
circuit board
Prior art date
Application number
PCT/CN2023/078158
Other languages
English (en)
French (fr)
Inventor
王艺杰
Original Assignee
华能(福建漳州)能源有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能(福建漳州)能源有限责任公司 filed Critical 华能(福建漳州)能源有限责任公司
Publication of WO2024040898A1 publication Critical patent/WO2024040898A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/06Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics
    • G09B23/18Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for electricity or magnetism
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/40Display of information, e.g. of data or controls

Definitions

  • the utility model relates to the field of teaching aids, and in particular to a magnetic leakage detection teaching aid device based on LabVIEW.
  • Magnetic flux leakage detection technology has a long history of research and use in China.
  • the predecessor of magnetic flux leakage detection technology is the traditional magnetic particle flaw detection method, and magnetic flux leakage detection technology can be traced back to the 1770s.
  • Maxwell inherited Faraday’s ideas and Integrating the research of Coulomb, Ampere and others, Maxwell's electromagnetic equations were proposed.
  • the traditional magnetic particle flaw detection method was proposed, and eight years later, magnetic particle flaw detection was realized.
  • the first real magnetic flux leakage detection device was not designed and completed by Hastings until the 1940s.
  • the utility model provides a magnetic flux leakage detection teaching aid device based on LabVIEW to solve the problem in the prior art that the magnetic flux leakage detection device is too large, has a complex composition, and the detection steps are cumbersome and requires the cooperation of multiple components. It cannot be used for teaching magnetic flux leakage detection technology. Need to provide demonstration teaching aids.
  • a magnetic flux leakage detection teaching device based on LabVIEW, including a wire wrapped around a ferrite. Both ends of the wire are connected to the positive and negative poles of the battery respectively.
  • the ferrite, AMR sensor, and displacement sensor are all placed on the At the upper end of the measuring object, the AMR sensor and the displacement sensor are electrically connected to the circuit board.
  • the 3X3 AMR sensor array forms a probe.
  • the circuit board is placed on the display stand.
  • the circuit board is powered by an external power supply.
  • the circuit board is compiled and provided with programs by the host computer, which is externally amplified and displayed on the teaching screen.
  • the circuit board includes a data acquisition card, an amplification circuit, a power supply circuit, and a setting circuit.
  • the data acquisition card is electrically connected to the amplification circuit and the power supply circuit respectively.
  • the external power supply supplies power to the data acquisition card through an electrical connection power circuit, the AMR sensor and the displacement sensor are respectively electrically connected to the positioning circuit, and the positioning circuit is electrically connected to the amplifier circuit.
  • the host computer is connected to the external port provided on the data acquisition card through the universal serial bus, and the host computer program is compiled into the data acquisition card.
  • a magnetic leakage detection teaching aid device based on LabVIEW The host computer program includes a continuous sampling module electrically connected to the amplification circuit.
  • the continuous sampling module transmits the collected analog signals to the AD conversion module. Through the AD
  • the digital signal converted by the conversion module is transmitted to the frequency modulation module.
  • the frequency modulation module transmits the frequency modulated signal to the denoising module.
  • the denoising module transmits the denoised signal to the signal splitting module.
  • the signal decomposition module The sub-module transmits the split signal to the data display module, and the data display module converts the signal into graphics and sends them to the teaching screen.
  • a teaching aid device for magnetic flux leakage detection based on LabVIEW The ferrite is in an undercut shape.
  • the two support arms of the ferrite are in contact with the upper surface of the object to be measured.
  • the wires are intertwined with the on ferrite.
  • the utility model provides a magnetic flux leakage detection teaching aid device based on LabVIEW, which has the following advantages and beneficial effects: the utility model is small in size, easy to assemble and carry, and can conveniently operate the detection of the measured object, and can intuitively demonstrate the detection of the measured object.
  • the detection process of object damage points and real-time display of the measurement process on the teaching screen in the classroom.
  • Labview can use general hardware.
  • Hardware is more convenient in terms of hardware procurement and more suitable for the needs of teaching teaching aids, filling the gap in magnetic leakage detection of teaching demonstration teaching aids.
  • Figure 1 is a schematic structural diagram of the magnetic flux leakage detection teaching aid device based on LabVIEW of the present invention.
  • Figure 2 is a circuit board circuit block diagram of the magnetic flux leakage detection teaching aid device based on LabVIEW of the present invention.
  • Figure 3 is a host computer program block diagram of the magnetic flux leakage detection teaching aid device based on LabVIEW of the present invention.
  • Figure 4 is a circuit diagram of the AMR sensor of the magnetic flux leakage detection teaching aid device based on LabVIEW of the present invention.
  • Figure 5 is a circuit diagram of the positioning circuit of the magnetic flux leakage detection teaching aid device based on LabVIEW of the present invention.
  • Figure 6 is a system block diagram of the data acquisition card of the magnetic flux leakage detection teaching device based on LabVIEW of the present invention.
  • Figure 7 is a wiring diagram of the continuous sampling module of the magnetic flux leakage detection teaching aid device based on LabVIEW of the present invention.
  • Figure 8 is a wiring diagram of the data display module of the magnetic flux leakage detection teaching aid device based on LabVIEW of the present invention.
  • the magnetic flux leakage detection teaching aid device based on LabVIEW in this embodiment includes a wire 2 wound around a ferrite 1. Both ends of the wire 2 are connected to the positive and negative poles of the battery 3 respectively.
  • the ferrite 1 It is in the shape of an undercut, and the two support arms 11 of the ferrite 1 are in contact with the upper surface of the object 6 to form an excitation. The magnetization effect is also linked to the resolution and signal-to-noise ratio of the magnetic field signal converted from the defect.
  • the ferrite Body 1 is a non-metallic magnetic material. Its resistivity is a thousand times that of metal, and its magnetic permeability can be as high as several thousand under high-frequency conditions. It is suitable for high-frequency eddy current detection.
  • the measured object 6 is in a saturated or close to saturated state. Only defects in the object will generate leakage magnetic field signals that are enough to be captured by the probe in the signal detection system.
  • the ferrite 1, AMR sensor 4, and displacement sensor 5 are all placed on the upper end of the measured object 6.
  • the AMR sensor 4 detects the leakage magnetic field of the measured object.
  • the 3X3 array of the AMR sensors 4 constitutes the probe 13.
  • the model is HMC1021 and has Wider range, low power consumption and smaller size, and low cost, the positioning characteristics of the AMR sensor 4 enable it to work in a high sensitivity state, and can also reduce the impact of many aspects such as temperature, vertical axis, etc.
  • the displacement sensor 5 detects the displacement of the object, and can more clearly display the length of the crack on the X, Y, and Z axes, and can further display the three-dimensional model of the waveform through software oscilloscope.
  • the AMR sensor 4 and the displacement sensor 5 are electrically connected to the circuit board 7.
  • the circuit board 7 is placed on the display stand 12.
  • the display stand 12 erects the circuit board 7 to make it easier to observe the layout of the circuit board 7.
  • the circuit board 7 is composed of
  • the external power supply 8 supplies power, the circuit board 7 is compiled and provided by the host computer 9 , and the host computer 9 is externally amplified and displayed on the teaching screen 10 .
  • the circuit board 7 includes a data acquisition card 71, an amplifier circuit 72, a power circuit 73, and a setting circuit 74.
  • the data acquisition card 71 is electrically connected to the amplifier circuit 72 and the power circuit 73 respectively.
  • the external power supply 8 collects data through electrical connection to the power circuit 73.
  • the card 71 supplies power.
  • the AMR sensor 4 and the displacement sensor 5 are electrically connected to the setting circuit 74 respectively.
  • the setting circuit 74 is electrically connected to the amplifier circuit 72.
  • the host computer 9 is connected to the external port provided on the data acquisition card 71 through the universal serial bus. Compile the host computer program 90 into the data acquisition card 71.
  • the working principle of the setting circuit 74 is to convert a short-term relatively large current into the S/R current of the chip.
  • the main function of the setting circuit 74 is to The AMR sensor 4 and the displacement sensor 5 are adjusted to a good working condition, so that the sensitivity of the AMR sensor 4 and the displacement sensor 5 can be optimally exert
  • the data acquisition card 71 uses the model USB3100, which performs the required analog-to-digital conversion and interacts with the computer to provide hardware support for each module.
  • the analog input part of the USB3100 mainly consists of the following parts: AI terminal block, MUX data selector, It is composed of PGIA programmable gain amplifier, low-pass filtering and analog-to-digital conversion, AI cache, analog trigger, etc.
  • AI terminal block mainly consists of the following parts: AI terminal block, MUX data selector, It is composed of PGIA programmable gain amplifier, low-pass filtering and analog-to-digital conversion, AI cache, analog trigger, etc.
  • the difference between this system and the ordinary magnetic flux leakage detection system is that this system captures the magnetic flux leakage signal of ferromagnetic materials through the AMR sensor 4 array group.
  • the data acquisition card 71 is processed through LabVIEW software. Carry out control acquisition and complete the final waveform display.
  • the host computer program 90 includes a continuous sampling module 91 electrically connected to the amplifier circuit 72.
  • the continuous sampling is performed in real time.
  • the AI continuously detects defects in ferromagnetic materials according to the originally set sampling frequency and channel scanning mode. Intermittent sampling means that the sampled continuous data can be read in real time during the sampling process.
  • DLL dynamic link library
  • the continuous sampling module 91 transmits the collected analog signal to the AD conversion module 92, and the digital signal converted by the AD conversion module 92 is transmitted to the frequency modulation module 93.
  • the frequency modulation module 93 transmits the frequency modulated signal to the denoising module 94, to remove
  • the noise module 94 transmits the denoised signal to the signal splitting module 95.
  • the signal splitting module 95 transmits the split signal to the data display module 96.
  • the size of the parameter output terminal determines the voltage collected by the continuous sampling module. value, which mainly functions as a buffer, in which voltage data is stored, the unit is volt-ampere (V), and its data type is double-precision floating point. The data points of each channel interact like dogs, and the point space opened is often a parameter value larger than nSizePoint.
  • the data display module 96 converts the signal into graphics and sends them to the teaching screen 10 for display.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种基于LabVIEW的漏磁检测教具装置,包括缠绕于铁氧体(1)上的导线(2),导线(2)两端分别与电池(3)正负极相连接,铁氧体(1)、AMR传感器(4)、位移传感器(5)均置于被测物(6)上端,AMR传感器(4)、位移传感器(5)与电路板(7)电连接,3X3的AMR传感器(4)阵列组成探头,电路板(7)放置于展示架上,电路板(7)由外部电源(8)供电,电路板(7)由上位机(9)编译提供程序,上位机(9)外接放大送显于教学荧幕(10),本装置体积小,便于组装与携带,检测操作便捷,直观地演示对被测物(6)体损坏点的检测过程,并在教室的教学荧幕(10)上对测量过程进行实时送显,LabVIEW相对于其他现有软件,可采用通用的硬件,相对于其他配适的软件所需要对应的定制硬件,在硬件采购方面更为便利,更适用于教学教具的需求,填补了教学演示教具对漏磁检测方面的空白。

Description

一种基于LabVIEW的漏磁检测教具装置 技术领域
本实用新型涉及教学教具领域,尤其涉及一种基于LabVIEW的漏磁检测教具装置。
背景技术
漏磁检测技术在有着很悠久的研究、使用历史,漏磁检测技术的前身是传统磁粉探伤方法,而漏磁检测技术最早能追溯到18世纪70年代,麦克斯韦在继承了法拉第的思想上,在整合库伦、安培等人的研究,提出了麦克斯韦电磁方程组。上世纪22年,传统磁粉探伤方法被提出,八年后,磁粉探伤实现了。而真正意义上的第一套漏磁检测装置,直到上个世纪40年代才由黑斯廷斯设计完成。
漏磁检测理论的研究,始于1966年,科学家Zastsepin和Scherbinin,为了解释漏磁现象,以关于无限长矩形裂纹磁偶极子理论为基础,建立了漏磁检测法的重要理论基础之一——磁荷模型理论。而漏磁检测的另外一种研究方式有限元分析法,在1970年Swanson J的ANSYS 有限元分析软件诞生后,在漏磁检测领域被很好的使用。五年后,通过有限元分析法,Hwang和Lord两人将内部磁场、磁导率与漏磁场联系,对漏磁场的空间分布进行分析计算。Atherton进一步地研究了缺陷和漏磁场强度的分布关系。Li.Y和Tian G. Y.研究了漏磁检测系统在高速运动下的情况。
现有的漏磁检测装置主要应用于油气管道、海底管道、储罐底板、钢绳、压力容器等,在工业、基础建设等领域对于安全保障的要求以及人们日益增长的安全意识使得漏磁检测技术有了更大的需求,但在漏磁检测原理的教学中,无法给学生进行良好的演示,只能通过书面讲解,使得原理的理解不直观,因漏磁检测装置过大,组成复杂,检测步骤繁琐需要多部件相互配合的原因,市面上目前还未针对漏磁检测技术教学的需要提供演示教具。
实用新型
本实用新型提供一种基于LabVIEW的漏磁检测教具装置,以解决现有技术中因漏磁检测装置过大,组成复杂,检测步骤繁琐需要多部件相互配合的原因无法针对漏磁检测技术教学的需要提供演示教具的问题。
为达到上述目的,本实用新型的方案如下:
一种基于LabVIEW的漏磁检测教具装置,包括缠绕于铁氧体上的导线,所述导线两端分别与电池正负极相连接,所述铁氧体、AMR传感器、位移传感器均置于被测物上端,所述AMR传感器、所述位移传感器与电路板电连接,3X3的所述AMR传感器阵列组成探头,所述电路板放置于展示架上,所述电路板由外部电源供电,所述电路板由上位机编译提供程序,所述上位机外接放大送显于教学荧幕。
一种基于LabVIEW的漏磁检测教具装置,所述电路板包括数据采集卡、放大电路、电源电路、置位电路,所述数据采集卡分别与所述放大电路、所述电源电路电连接,所述外部电源通过电连接电源电路对所述数据采集卡供电,所述AMR传感器、所述位移传感器分别与所述置位电路电连接,所述置位电路与所述放大电路电连接,所述上位机通过通用串行总线与所述数据采集卡上设置的外接端口连接将上位机程序编译入所述数据采集卡中。
一种基于LabVIEW的漏磁检测教具装置,所述上位机程序包括与所述放大电路电连接的连续采样模块,所述连续采样模块将采集到的模拟信号传输至AD转换模块,经所述AD转换模块转换后得到的数字信号传输至调频模块,所述调频模块将调频后的信号传输至去噪模块,所述去噪模块将去噪后的信号传输至信号拆分模块,所述信号拆分模块将拆分后的信号传输至数据显示模块,所述数据显示模块将信号转换为图形并送显至所述教学荧幕上。
一种基于LabVIEW的漏磁检测教具装置,所述铁氧体为倒凹状,所述铁氧体的两只支撑臂与所述被测物的上端表面接触,所述导线等间缠绕与所述铁氧体上。
本实用新型提供了一种基于LabVIEW的漏磁检测教具装置,具备以下优点和有益效果:本实用新型体积小,便于组装与携带,对被测物体的检测操作便捷,很直观地演示对被测物体损坏点的检测过程,并在教室的教学荧幕上对测量过程进行实时送显,labview相对于其他现有软件,可采用了通用的硬件,相对于其他配适的软件所需要对应的定制硬件,在硬件采购方面更为便利,更适用于教学教具的需求,填补了教学演示教具对漏磁检测方面的空白。
附图说明
图1为本实用新型基于LabVIEW的漏磁检测教具装置的结构示意图。
图2为本实用新型基于LabVIEW的漏磁检测教具装置的电路板电路框图。
图3为本实用新型基于LabVIEW的漏磁检测教具装置的上位机程序框图。
图4为本实用新型基于LabVIEW的漏磁检测教具装置的AMR传感器电路图。
图5为本实用新型基于LabVIEW的漏磁检测教具装置的置位电路电路图。
图6为本实用新型基于LabVIEW的漏磁检测教具装置的数据采集卡的系统框图。
图7为本实用新型基于LabVIEW的漏磁检测教具装置的连续采样模块走线图。
图8为本实用新型基于LabVIEW的漏磁检测教具装置的的数据显示模块走线图。
图中附图标记表示为:
1、铁氧体;2、导线;3、电池;4、AMR传感器;5、位移传感器;6、被测物;7、电路板;8、外部电源;9、上位机 ;10、教学荧幕;11、支撑臂;12、展示架;71、数据采集卡;72、放大电路;73、电源电路;74、置位电路;90、上位机程序;91、连续采样模块;92、AD转换模块;93、调频模块;94、去噪模块;95、信号拆分模块;96、数据显示模块。
实施方式
下面结合附图和具体实施例来对本实用新型进行详细的说明。
参见图1至图8,本实施例的基于LabVIEW的漏磁检测教具装置,包括缠绕于铁氧体1上的导线2,导线2两端分别与电池3正负极相连接,铁氧体1为倒凹状,铁氧体1的两只支撑臂11与被测物6的上端表面接触,组成励磁,磁化的效果也和缺陷转化出的磁场信号的分辨率和信噪比相挂钩,铁氧体1为一种非金属磁性材料,其电阻率是金属的千倍,而且高频状态下磁导率可高达几千,适合高频涡流检测,被测物6处于饱和或者接近饱和状态下,物体的缺陷处才会产生出足够被信号检测系统中的探头所捕获的漏磁场信号。
铁氧体1、AMR传感器4、位移传感器5均置于被测物6上端,AMR传感器4对于被测物体漏磁场的检测,3X3的所述AMR传感器4阵列组成探头13,型号为HMC1021,具有较宽的范围,低功率消耗和更小的尺寸,并且成本低,AMR传感器4的置位特性能使得其处于高灵敏度状态下进行工作,还能够降低如温度、垂直轴等等多方面的影响,位移传感器5对物体进行位移检测,能够更加清楚的显示出裂纹在X、Y、Z三轴的上的长度,进一步可以通过软件示波,显现出波形的三维模型。
AMR传感器4、位移传感器5与电路板7电连接,所述电路板7放置于展示架12上,展示架12将电路板7立起更加便于对电路板7的布局进行观察,电路板7由外部电源8供电,电路板7由上位机9编译提供程序,上位机9外接放大送显于教学荧幕10。
电路板7包括数据采集卡71、放大电路72、电源电路73、置位电路74,数据采集卡71分别与放大电路72、电源电路73电连接,外部电源8通过电连接电源电路73对数据采集卡71供电,AMR传感器4、位移传感器5分别与置位电路74电连接,置位电路74与放大电路72电连接,上位机9通过通用串行总线与数据采集卡71上设置的外接端口连接将上位机程序90编译入数据采集卡71中,置位电路74的工作原理就是把短时比较大的电流转变为芯片的S/R电流带来实现,置位电路74最主要的功能就是将AMR传感器4、位移传感器5调节到一个良好的工作状态,使AMR传感器4、位移传感器5的灵敏度得到一个最佳的发挥。
数据采集卡71采用型号USB3100,通过其进行所需要的模数转换并与计算机交互,为各模块提供硬件支持,USB3100的模拟输入部分主要由以下几部分组成:AI接线端子、MUX数据选择器、PGIA可编程增益放大器、低通滤波和模数转换、AI缓存、模拟触发等组成。该系统与普通的漏磁检测系统的区别就在于本系统是通过AMR传感器4阵列组对铁磁材料的漏磁信号进行捕获,在硬件电路中进行信号处理之后,通过LabVIEW软件对数据采集卡71进行控制采集以及完成最终的波形显示。
上位机程序90包括与放大电路72电连接的连续采样模块91,连续采样的实时进行,其实就是在启动后,AI依原本设定的采样频率和通道扫描模式,对铁磁材料缺陷进行连续不间断地采样,即在采样过程中可以实时读取采样到的连续数据。在实现的过程中需要我们就需要用到LabVIEW程序自带动态链接库(DLL)中的诸多函数。
连续采样模块91将采集到的模拟信号传输至AD转换模块92,经AD转换模块92转换后得到的数字信号传输至调频模块93,调频模块93将调频后的信号传输至去噪模块94,去噪模块94将去噪后的信号传输至信号拆分模块95,信号拆分模块95将拆分后的信号传输至数据显示模块96,参数输出端输出的大小决定连续采样模块所采集到的电压值,其主要是起到一个缓冲缓冲的作用,其中存储的为电压数据,单位为伏安(V),其数据类型为双精度浮点型。各通道个数据点犬牙似交互,开辟的点空间往往都是大于nSizePoint的参数值。数据显示模块96将信号转换为图形并送显至教学荧幕10上。
以上对本实用新型及其实施方式进行了描述,这种描述没有限制性,附图中所示的也只是本实用新型的实施方式之一,实际的结构并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本实用新型创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本实用新型的保护范围。
在本实用新型的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、“前”、“后”“侧”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。

Claims (4)

  1. 一种基于LabVIEW的漏磁检测教具装置,其特征在于:包括缠绕于铁氧体(1)上的导线(2),所述导线(2)两端分别与电池(3)正负极相连接,所述铁氧体(1)、AMR传感器(4)、位移传感器(5)均置于被测物(6)上端,所述AMR传感器(4)、所述位移传感器(5)与电路板(7)电连接,3X3的所述AMR传感器(4)阵列组成探头(13),所述AMR传感器(4)所述电路板(7)放置于展示架(12)上,所述电路板(7)由外部电源(8)供电,所述电路板(7)由上位机(9)编译提供程序,所述上位机(9)外接放大送显于教学荧幕(10)。
  2. 根据权利要求1所述的一种基于LabVIEW的漏磁检测教具装置,其特征在于:所述电路板(7)包括数据采集卡(71)、放大电路(72)、电源电路(73)、置位电路(74),所述数据采集卡(71)分别与所述放大电路(72)、所述电源电路(73)电连接,所述外部电源(8)通过电连接电源电路(73)对所述数据采集卡(71)供电,所述AMR传感器(4)、所述位移传感器(5)分别与所述置位电路(74)电连接,所述置位电路(74)与所述放大电路(72)电连接,所述上位机(9)通过通用串行总线与所述数据采集卡(71)上设置的外接端口连接将上位机程序(90)编译入所述数据采集卡(71)中。
  3. 根据权利要求2所述的一种基于LabVIEW的漏磁检测教具装置,其特征在于:所述上位机程序(90)包括与所述放大电路(72)电连接的连续采样模块(91),所述连续采样模块(91)将采集到的模拟信号传输至AD转换模块(92),经所述AD转换模块(92)转换后得到的数字信号传输至调频模块(93),所述调频模块(93)将调频后的信号传输至去噪模块(94),所述去噪模块(94)将去噪后的信号传输至信号拆分模块(95),所述信号拆分模块(95)将拆分后的信号传输至数据显示模块(96),所述数据显示模块(96)将信号转换为图形并送显至所述教学荧幕(10)上。
  4. 根据权利要求1所述的一种基于LabVIEW的漏磁检测教具装置,其特征在于:所述铁氧体(1)为倒凹状,所述铁氧体(1)的两只支撑臂(11)与所述被测物(6)的上端表面接触,所述导线(2)等间缠绕与所述铁氧体(1)上。
PCT/CN2023/078158 2022-08-22 2023-02-24 一种基于LabVIEW的漏磁检测教具装置 WO2024040898A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222212408.8U CN219369648U (zh) 2022-08-22 2022-08-22 一种基于LabVIEW的漏磁检测教具装置
CN202222212408.8 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024040898A1 true WO2024040898A1 (zh) 2024-02-29

Family

ID=87144861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078158 WO2024040898A1 (zh) 2022-08-22 2023-02-24 一种基于LabVIEW的漏磁检测教具装置

Country Status (2)

Country Link
CN (1) CN219369648U (zh)
WO (1) WO2024040898A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140312891A1 (en) * 2013-04-19 2014-10-23 Zetec, Inc. Eddy Current Inspection Probe Based on Magnetoresistive Sensors
CN203908994U (zh) * 2014-05-27 2014-10-29 吕希东 一种脉冲漏磁探伤仪
CN204791709U (zh) * 2015-05-21 2015-11-18 上海理工大学 一种模电教学辅助系统
CN106290551A (zh) * 2016-10-11 2017-01-04 武汉华宇目检测装备有限公司 一种钢管腐蚀的多尺度漏磁精确检测方法与装置
CN106274977A (zh) * 2016-07-27 2017-01-04 南京航空航天大学 一种触发式采集模式的直流漏磁检测系统及其方法
CN207067061U (zh) * 2017-06-09 2018-03-02 昆明理工大学 基于压缩感知的涡流阵列检测装置、涡流阵列探头
CN110220968A (zh) * 2019-07-04 2019-09-10 中国计量大学 一种用于铁磁性材料的三轴缺陷漏磁检测装置
CN213301527U (zh) * 2020-06-11 2021-05-28 中国石油天然气集团有限公司 管道应力检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140312891A1 (en) * 2013-04-19 2014-10-23 Zetec, Inc. Eddy Current Inspection Probe Based on Magnetoresistive Sensors
CN203908994U (zh) * 2014-05-27 2014-10-29 吕希东 一种脉冲漏磁探伤仪
CN204791709U (zh) * 2015-05-21 2015-11-18 上海理工大学 一种模电教学辅助系统
CN106274977A (zh) * 2016-07-27 2017-01-04 南京航空航天大学 一种触发式采集模式的直流漏磁检测系统及其方法
CN106290551A (zh) * 2016-10-11 2017-01-04 武汉华宇目检测装备有限公司 一种钢管腐蚀的多尺度漏磁精确检测方法与装置
CN207067061U (zh) * 2017-06-09 2018-03-02 昆明理工大学 基于压缩感知的涡流阵列检测装置、涡流阵列探头
CN110220968A (zh) * 2019-07-04 2019-09-10 中国计量大学 一种用于铁磁性材料的三轴缺陷漏磁检测装置
CN213301527U (zh) * 2020-06-11 2021-05-28 中国石油天然气集团有限公司 管道应力检测装置

Also Published As

Publication number Publication date
CN219369648U (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
CN108776171A (zh) 基于多回路励磁和图像分析的钢丝绳无损探伤传感装置
CN103645243A (zh) 一种输电线电磁无损检测系统
CN103196996B (zh) 一种用于进行金属缺陷检测的涡流检测装置及其涡流探头
CN102879462B (zh) 一种金属缺陷涡流检测装置及其探头
CN104792858A (zh) 一种交流电磁场检测仪
CN103412039A (zh) 一种多频多种激励模式的电磁探伤传感装置
CN203249889U (zh) 金属管道腐蚀检测装置
WO2024040898A1 (zh) 一种基于LabVIEW的漏磁检测教具装置
CN208705273U (zh) 基于多回路励磁和图像分析的钢丝绳无损探伤传感装置
CN113390954B (zh) 基于交流电磁场的水下结构裂纹扩展可视化监测系统
CN202362440U (zh) 永磁体磁偏角测量装置
CN107422282B (zh) 一种数字化球面型三轴磁通门磁力仪
CN109490406B (zh) 动态磁检测系统、检测方法及电磁控阵方法
CN117054733A (zh) 一种探头及单探头双量程磁通门电流传感器
CN205643248U (zh) 一种便携式在线霍尔磁场连续测量仪
CN117030839A (zh) 双探头巨磁阻抗涡流传感装置
CN101520495A (zh) 测绘铁磁材料磁化特性曲线的装置及测绘方法
CN110441717A (zh) 超磁致伸缩换能器动态电磁损耗的测量方法及系统
CN204101634U (zh) 硅纳米传感阵列巨压阻系数测量系统及四点弯曲施力装置
CN201562045U (zh) 一种弱磁场检测仪
CN203216901U (zh) 一种应力检测装置
CN203572435U (zh) 一种微弱应变测量系统
CN203550904U (zh) 一种厚度测量装置
CN204154375U (zh) 基于电磁感应的电子体重秤
CN203133259U (zh) 一种测量磁性材料矫顽力大小的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855995

Country of ref document: EP

Kind code of ref document: A1