WO2024040757A1 - 多电池包切换控制方法以及储能设备 - Google Patents

多电池包切换控制方法以及储能设备 Download PDF

Info

Publication number
WO2024040757A1
WO2024040757A1 PCT/CN2022/132142 CN2022132142W WO2024040757A1 WO 2024040757 A1 WO2024040757 A1 WO 2024040757A1 CN 2022132142 W CN2022132142 W CN 2022132142W WO 2024040757 A1 WO2024040757 A1 WO 2024040757A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
switch tube
charging
discharge
switching
Prior art date
Application number
PCT/CN2022/132142
Other languages
English (en)
French (fr)
Inventor
幸云辉
于扬鑫
Original Assignee
深圳市正浩创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市正浩创新科技股份有限公司 filed Critical 深圳市正浩创新科技股份有限公司
Publication of WO2024040757A1 publication Critical patent/WO2024040757A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/36Arrangements using end-cell switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices

Definitions

  • the present application relates to the field of battery technology, and in particular to a multi-battery pack switching control method and energy storage equipment.
  • the energy storage device may not be able to continuously and stably supply power to the load during the switching, causing the load voltage to fluctuate briefly, affecting the normal operation of the load. Work.
  • a multi-battery pack switching control method, device, storage medium, energy storage device and energy storage system are provided.
  • An embodiment of the present application provides a multi-battery pack switching control method.
  • the multi-battery pack switching control method includes:
  • the discharge instruction is used to instruct the power supply of the load to be switched from the first battery pack to the second battery pack;
  • the first shutdown signal is used to indicate that the charging switch of the first battery pack is turned off;
  • a first conduction signal is sent to the charging switch tube and the discharge switch tube of the second battery pack, and the first conduction signal is used to Instruct the charging switch tube and the discharge switch tube of the second battery pack to be conductive;
  • a second turn-off signal is sent to the discharge switch tube of the first battery pack, and the second turn-off signal is
  • the discharge switch tube of the first battery pack is instructed to be turned off, and when the charging switch tube and the discharge switch tube of any battery pack are both turned off, the battery pack stops supplying power to the load.
  • the embodiment of the present application also provides a multi-battery pack switching control method.
  • the multi-battery pack switching control method includes:
  • a first conduction signal is sent to the discharge switch tube of the second battery pack, the first conduction signal is used to indicate that the discharge switch tube of the second battery pack is turned on; the charging switching instruction Used to instruct the charging object to be switched from the first battery pack to the second battery pack;
  • a shutdown signal is sent to the charge switch tube and the discharge switch tube of the first battery pack, and the shutdown signal is used to indicate the third battery pack.
  • the charging switch tube and discharge switch tube of a battery pack are turned off;
  • a second conduction signal is sent to the charging switch transistor of the second battery pack, and the second conduction signal is To indicate that the charging switch tube of the second battery pack is turned on.
  • the embodiment of the present application also provides a multi-battery pack switching control device.
  • the multi-battery pack switching control device includes:
  • the first shutdown module is configured to send a first shutdown signal to the charging switch tube of the first battery pack in response to a discharge switching instruction, where the discharge instruction is used to instruct the power supply of the load from the first battery pack. Switch to the second battery pack; the first shutdown signal is used to indicate that the charging switch of the first battery pack is turned off;
  • the first conduction module is configured to send a first conduction signal to the charge switch transistor and the discharge switch transistor of the second battery pack when it is detected that the charging switch transistor of the first battery pack is in an off state,
  • the first conduction signal is used to indicate that the charging switch tube and the discharge switch tube of the second battery pack are turned on;
  • the second shutdown module is configured to send a second shutdown signal to the discharge switch of the first battery pack when it is detected that the charging switch and the discharge switch of the second battery pack are both in a conductive state.
  • the second shutdown signal is used to indicate that the discharge switch tube of the first battery pack is turned off, wherein when the charging switch tube and the discharge switch tube of any battery pack are both turned off, the battery pack stops charging all power supply to the load.
  • the embodiment of the present application also provides an energy storage device.
  • the energy storage device includes a parallel port, a controller and a battery pack.
  • the parallel port is used to connect to other energy storage devices or independent battery packs.
  • the controller is used to connect to other energy storage devices or independent battery packs.
  • An embodiment of the present application also provides an energy storage system.
  • the energy storage system includes a controller and at least two battery packs.
  • the controller is used to execute the multi-battery pack switching control method as described in any of the above embodiments.
  • Embodiments of the present application also provide a computer-readable medium on which a computer program is stored.
  • the computer program is executed by a processor, the multi-battery pack switching control method in the above technical solution is implemented.
  • FIG. 1 schematically shows a battery charging and discharging circuit that can be applied to the multi-battery pack switching control method according to the embodiment of the present application.
  • Figure 2 schematically shows a flowchart of steps of a multi-battery pack switching control method according to certain embodiments of the present application.
  • Figure 3 schematically shows a flow chart of steps after sending a first conduction signal to the charging switch tube and the discharge switch tube of the second battery pack in an embodiment of the present application.
  • FIG. 4 schematically shows a flow chart of steps after detecting that the charging switch tube of the first battery pack is in an off state in an embodiment of the present application.
  • Figure 5 schematically shows a step flow chart of a multi-battery pack switching control method in an embodiment of the present application.
  • FIG. 6 schematically shows a flow chart of steps after sending a third shutdown signal to the charging switch tube and the discharge switch tube of the first battery pack in an embodiment of the present application.
  • FIG. 7 schematically shows a flow chart of steps after detecting that the discharge switch tube of the second battery pack is in a conductive state in an embodiment of the present application.
  • FIG. 8 schematically shows a step flow chart of a multi-battery pack switching control method in other embodiments of the present application.
  • Figure 9 schematically shows a structural block diagram of the energy storage device provided by the embodiment of the present application.
  • Figure 10 schematically shows a structural block diagram of a multi-battery pack switching control device provided by an embodiment of the present application.
  • the multi-battery pack switching control method in the embodiment of the present application can be applied to multi-battery pack charging and discharging circuits.
  • Figure 1 schematically shows a schematic diagram of a dual battery pack parallel machine that can be applied to the multi-battery pack switching control method according to the embodiment of the present application. It can be understood that in some other embodiments, the above-mentioned multi-battery pack switching control method can also be applied to switching control between multiple battery packs.
  • the positive output terminals of the battery pack 10 and the battery pack 20 are connected, and the negative output terminals of the battery pack 10 and the battery pack 20 are connected, thereby realizing the parallel connection of the two battery packs.
  • the output side of the battery pack is also used to connect to the load to use the output power of the battery pack to power the load.
  • each battery pack it includes a battery module and a battery management system, such as the battery module 100 or the battery module 200 shown in FIG. 1 .
  • the battery management system is used to manage and protect battery modules.
  • Figure 1 does not show the complete structure of the battery management system, but only illustrates the charging switch tube and the discharge switch tube in the battery management system.
  • the charging switch tube and the discharge switch tube are connected in series on the charging and discharging circuit of the battery module to control the on and off of the circuit.
  • a first charging switch 110 and a first discharging switch 120 are connected in series on the charge return circuit of the battery pack 10.
  • the battery module 100 forms a first charge and discharge circuit through the first charging switch 110, the first discharge switch 120, and the capacitor 30.
  • the output side of the battery pack can be connected to a load or an external power source to discharge or receive external power.
  • the second charging switch tube 210 and the second discharging switch tube 220 are connected in series on the charging circuit of the battery pack 20.
  • the battery module 200 A second charging and discharging circuit is formed through the second charging switch 210, the second discharging switch 220, and the capacitor 30.
  • the output side of the battery pack can be connected to a load or an external power source to discharge externally or receive charging from an external power source.
  • the charging switch tube and the discharging switch tube shown in Figure 1 are connected in series on the positive output side circuit of the battery pack. It can be understood that in other embodiments, the charging switch tube and the discharging switch tube can also be connected in series on the negative output side circuit of the battery pack. superior.
  • the embodiment of the present application provides a multi-battery pack switching control method.
  • Figure 2 schematically shows a flowchart of steps of a multi-battery pack switching control method according to certain embodiments of the present application.
  • the execution subject of the multi-battery pack switching control method may be a controller or processor used to control the battery charging and discharging circuit.
  • the multi-battery pack switching control method may mainly include the following steps S210 to S230.
  • S210 In response to the discharge switching instruction, send a first shutdown signal to the charging switch tube of the first battery pack.
  • the discharge instruction is used to instruct the power supply of the load to be switched from the first battery pack to the second battery pack; first shutdown The signal is used to indicate that the charging switch of the first battery pack is turned off.
  • the charging switch transistor of the first battery pack may be a MOS transistor.
  • the charging switch tube 110 is a MOS tube, and the MOS tube 110 includes a body diode 111 .
  • the conduction direction of the charging switch transistor 110 of the first battery pack 100 is opposite to the conduction direction of the body diode 111 of the charging switch transistor 110 .
  • the discharge switch tube of the first battery pack may be a MOS tube.
  • the discharge switch tube 120 is a MOS tube
  • the MOS tube includes a body diode 121 .
  • the conduction direction of the discharge switch tube 120 of the first battery pack 100 is opposite to the conduction direction of the body diode 121 of the discharge switch tube 120 .
  • the first battery pack is the currently discharged battery pack, and the multi-battery pack also includes alternative battery packs that meet the discharge conditions in addition to the first battery pack and can provide power to the load.
  • the second battery pack may be one of the alternative battery packs. It can be understood that the second battery pack can be the battery pack with the highest capacity among the alternative battery packs that can supply power to the load, or it can be any battery pack that meets the discharge conditions, for example, an alternative battery with a higher capacity than the first battery pack. any of the packages.
  • a first shutdown signal is sent to the charging switch tube of the first battery pack to turn off the charging switch tube of the first battery pack.
  • the discharge switch tube is still in the conducting state at this time.
  • the first battery pack can discharge to the outside through the body diode and the discharge switch tube in the charging switch tube of the first battery pack until the switch is switched. to discharge the second battery pack, thereby enabling seamless switching from the discharge of the first battery pack to the discharge of the second battery pack during the battery pack switching process, thereby ensuring stable power supply on the load side during power supply switching.
  • S220 when it is detected that the charging switch tube of the first battery pack is in the off state, send a first conduction signal to the charging switch tube and the discharge switch tube of the second battery pack.
  • the first conduction signal is used to indicate the second battery
  • the charging switch tube and discharge switch tube of the package are connected.
  • the charging switch transistor of the second battery pack may be a MOS transistor.
  • the charging switch tube 210 is a MOS tube, and the MOS tube 210 includes a body diode 211 .
  • the conduction direction of the charging switch transistor 210 of the second battery pack 200 is opposite to the conduction direction of the body diode 211 of the charging switch transistor 210 .
  • the discharge switch tube of the second battery pack may be a MOS tube.
  • the discharge switch tube 220 is a MOS tube
  • the MOS tube 220 includes a body diode 221 .
  • the conduction direction of the discharge switch tube 220 of the second battery pack 200 is opposite to the conduction direction of the body diode 221 of the discharge switch tube 220 .
  • the first conduction signal is sent to the charging switch tube and the discharge switch tube of the second battery pack, and the charging circuit of the first battery pack can be determined.
  • the discharge circuit of the second battery pack is turned on, thereby preventing the second battery pack from charging the first battery pack when the charging circuit of the first battery pack and the discharge circuit of the second battery pack are turned on at the same time. situation to avoid power loss caused by the process of charging the first battery pack by the second battery pack.
  • the charge and discharge circuit of the battery pack is switched, and the battery pack cannot discharge to the outside, nor can it accept charging.
  • the second battery pack can provide stable power supply to the outside through the charging switch tube and the discharging switch tube.
  • the discharge switch of the first battery pack is turned off, completely cutting off the external discharge circuit of the first battery pack, and completing the discharge switching from the first battery pack to the second battery pack.
  • the second turn-off signal is sent to the discharge switch tube of the first battery pack to turn off the discharge switch tube of the first battery pack. Achieve seamless switching from the discharge of the first battery pack to the discharge of the second battery pack.
  • the present application detects that the charging switch tube of the first battery pack is in the off state, it turns on the charging switch tube and the discharge switch tube of the second battery pack, which can avoid the charging circuit of the first battery pack and the second battery.
  • the discharge circuits of the packs are turned on at the same time, the second battery pack charges the first battery pack, thereby avoiding power loss caused by the second battery pack charging the first battery pack.
  • Figure 3 schematically shows a flow chart of steps after sending a first conduction signal to the charging switch tube and the discharge switch tube of the second battery pack in an embodiment of the present application.
  • step S220 sends the first conduction signal to the charging switch tube and the discharge switch tube of the second battery pack
  • steps S310 to S340 may be further included.
  • the external discharge current of the first battery pack can only pass through the charging of the first battery pack.
  • the body diode of the switch tube flows to the load.
  • the charging switch tube and the discharging switch tube of the second battery pack do not turn on in time after receiving the first conduction signal, they are still in the off state, and the off time of the charging switch tube of the first battery pack reaches the preset shutdown time.
  • the safety of the circuit will be endangered.
  • the voltage sensor or the current sensor is used to detect whether the charging switch tube of the first battery pack, the charging switch tube and the discharge switch tube of the second battery pack are in the off state, and the charging switch tube of the first battery pack is in the off state.
  • the shutdown time of the battery pack is monitored, so that a circuit safety warning can be realized so that corresponding safety measures can be taken in time.
  • the safety measure adopted is to send a second conduction signal to the charging switch tube of the first battery pack, so that The discharge current of the first battery pack can be allowed to pass normally through the MOS transistor of the charging switch tube of the first battery pack, thereby preventing the discharge current from continuing to pass through the body diode of the charging switch tube of the first battery pack, and thus preventing the discharge current from flowing through the body diode of the charging switch tube of the first battery pack.
  • the body diode of the charging switch tube is overheated due to long-term current flow, causing component damage or other circuit hazards.
  • the preset off time can be set according to the characteristics of the switch tube, for example, according to the maximum temperature that the switch tube body diode can withstand, so as to ensure that the switch tube body diode temperature does not exceed the standard.
  • S320 increase the number of discharge switching failures by one, and record the number of failures in switching from the first battery pack to the second battery pack.
  • step S310 In the switching process of switching from the first battery pack discharge to the second battery pack discharge as shown in steps S210 to S230, if a discharge switching failure occurs as shown in step S310, the number of discharge switching failures is increased by one. Recording the number of discharge switching failures can avoid constantly switching between two battery packs.
  • the switching can be attempted again, that is, the discharge switching command can be responded to again. Wait for the preset time before switching again, which can reserve a certain recovery time for the recovery of the device.
  • the preset times and the preset duration can be set according to the device characteristics and the device working environment, for example, according to the reaction duration of the switch tube, and this application does not limit this.
  • the discharge switching of the battery pack can be managed, thereby preventing resource consumption caused by the system's continuous attempts to switch battery packs and failed switching.
  • the preset number of times may be 3 times, 5 times, 7 times, etc., and this application does not impose any special restrictions on this.
  • the preset shutdown time may be 8s, 10s, 12s, 15s, etc., and this application does not place special restrictions on this.
  • steps S310 to S340 are executed after step S220.
  • the state of the charging and discharging switch of the second battery pack is detected. If The charging switch tube and the discharge switch tube of the second battery pack are always in the off state and meet the conditions of step S310, then steps S320 to S340 are executed. If the charging switch tube and the discharge switch tube of the second battery pack are switched to the on state, Then enter step S230.
  • FIG. 4 schematically shows a flow chart of steps after detecting that the charging switch tube of the first battery pack is in an off state in an embodiment of the present application. As shown in FIG. 4 , based on the above embodiment, after detecting that the charging switch tube of the first battery pack is in the off state in step S220 , the following steps S410 to S450 may be further included.
  • the first temperature can be obtained through a temperature acquisition device provided near the charging switch tube of the first battery pack.
  • the temperature acquisition device can be a temperature sensor to collect the first temperature of the charging switch tube of the first battery pack.
  • the second conduction signal is used to indicate that the charging switch transistor of the first battery pack is turned on.
  • the discharge current of the first battery pack flows to the load through the discharge switch tube and the body diode of the charging switch tube of the first battery pack.
  • the body diode temperature of the charging switch tube will rise faster. If the discharge current is allowed to flow through the body diode for a long time, the charging switch tube will be easily damaged. Therefore, the temperature of the charging switch tube of the first battery pack is monitored. If the temperature reaches the first preset temperature, the charging switch tube should be turned on again to allow The discharge current normally flows to the load through the charging switch. At the same time, this also indicates that this discharge switching failed.
  • the first preset temperature can be set according to the maximum temperature resistance temperature of the charging switch tube. It can be understood that the first preset temperature can also be set according to the highest temperature resistance temperature that can ensure the safety of the circuit.
  • S430 increase the number of discharge switching failures by one, and record the number of failures in switching from the first battery pack to the second battery pack.
  • step S420 In the switching process of switching from the first battery pack discharge to the second battery pack discharge as shown in steps S210 to S230, if a discharge switching failure occurs as shown in step S420, the number of discharge switching failures is increased by one.
  • the switching can be attempted again, that is, the discharge switching command can be responded to again. Wait for the preset time before switching again, which can reserve a certain recovery time for the recovery of the device.
  • step S230 is entered.
  • the number of discharge switching failures is reset and the response to the discharge switching command resumes.
  • the circuit composition changes. At this time, the entire energy storage system including multiple battery packs has changed. Therefore, the number of discharge switching failures should be reset to 0. , at this time, if the discharge switching command is triggered, it will respond normally and execute each step of the above embodiments.
  • step S230 that is, after sending the second shutdown signal to the discharge switch of the first battery pack, the following steps may be further included: if the first The discharge switch tube of the battery pack is in the off state, confirm the successful discharge switching and clear the number of failed discharge switching to zero.
  • the discharge switch tube of the first battery pack is in the off state, it can be determined that the battery pack switching operation has been completed. At this time, it is confirmed that the discharge switching is successful and the number of failed discharge switching is cleared, and the discharge statistics can be re-calculated. The number of switching failures enables efficient management of battery pack switching.
  • the multi-battery pack switching control method may further include the following steps:
  • the first battery pack when multiple battery packs are used to power the load, after using the first battery pack to power the load for a long time, the first battery pack has low power and causes the voltage to be too low. At this time, it is necessary to switch to the second battery pack. Supply power to the load.
  • the second battery pack when multiple battery packs are used to power a load, if it is detected that the output voltage of the second battery pack is higher than the output voltage of the first battery pack and the difference between the output voltages of the first battery pack and the second battery pack is If the voltage is higher than the first preset voltage difference, a discharge switching instruction is generated, and automatic switching of battery packs can be realized without manual operation, which can improve the intelligence of using multiple battery packs to power loads.
  • the discharge switching instruction can also be triggered by the user, for example, by the user operating a corresponding button on the energy storage device or battery pack, or through an application program interface on the mobile device for managing the battery pack. Operation triggering, this application does not limit this.
  • Figure 5 schematically shows a flow chart of steps in a multi-battery pack switching control method according to another embodiment of the present application. As shown in Figure 5, based on the above embodiment, the following steps S510 to S530 may be further included.
  • the third conduction signal is used to instruct the discharge switch tube of the third battery pack to be turned on, and the charging switching instruction is used to instruct the charging object to be switched from the fourth battery pack to the third battery pack.
  • the fourth battery pack is the currently discharged battery pack, and the multi-battery pack also includes, in addition to the fourth battery pack, alternative battery packs to be charged.
  • the third battery pack may be one of the alternative battery packs. It can be understood that the third battery pack can be the battery pack with the lowest power among the alternative battery packs to be charged, or it can be any battery pack that meets the charging conditions among the alternative battery packs to be charged, for example, the power is lower than that of the fourth battery pack. Any of the battery pack's alternative battery packs.
  • the energy storage device can supply power to the load while charging the battery pack.
  • charging of the battery pack and power supply to the load are performed by an external power source, such as mains power or photovoltaic components.
  • the battery pack briefly stops charging.
  • the load power supply can still be powered by an external power supply, but in order to ensure that the load, especially the large one, For the stability of the power load supply voltage, the battery pack also needs to have stable external discharge capability, that is, the voltage of the battery side capacitor needs to remain stable.
  • a third conduction signal is sent to the discharge switch tube of the third battery pack to turn on the discharge switch tube of the third battery pack.
  • the third battery pack can form a discharge circuit through the conductive discharge switch tube and the body diode in the charging switch tube.
  • the external discharge circuit of the third battery pack is turned on, which can ensure that the load provides corresponding power supply capability when it needs to be discharged.
  • the third battery pack can also be used to discharge the first battery pack to ensure the stability of the load voltage. Therefore, when it is detected that the discharge switch tube of the third battery pack is in a conductive state, a third shutdown signal is sent to the charge switch tube and the discharge switch tube of the fourth battery pack, and the charge and discharge circuit of the fourth battery pack is cut off. It can achieve seamless switching during charging and ensure stable power supply to the load.
  • steps S510 to S530 describe the charging switching process, and the discharging switching process described in each step of the above embodiment is performed sequentially.
  • This application does not limit the order. For example, discharge switching may be performed first, and then discharge switching may be performed. It is also possible to perform charging switching first and then discharge switching.
  • FIG. 6 schematically shows a flow chart of steps after sending a third shutdown signal to the charging switch tube and the discharge switch tube of the fourth battery pack in an embodiment of the present application.
  • step S520 sends the third shutdown signal to the charging switch tube and the discharge switch tube of the fourth battery pack
  • steps S610 to S640 may be further included.
  • the temperature of the body diode of the charging switch tube will rise faster. If the discharge current is allowed to flow through the body diode for a long time, the charging switch tube will be easily damaged. Therefore, if the discharge switch tube of the third battery pack is turned on for a preset conduction time, the charging switch tube and the discharge switch of the fourth battery pack will The tube is still in the on state, indicating that the charging switch failed this time.
  • the fourth shutdown control signal should be sent to the discharge switch tube of the third battery pack to prevent the third battery pack from continuing to discharge to the outside through the body diode of the charging switch tube. Therefore, which can prevent the charging switch tube of the third battery pack from overheating due to the body diode being exposed to current for a long time, causing component damage or other circuit hazards.
  • S620 Increase the number of charging switching failures by one, and record the number of failures in switching the charging object from the fourth battery pack to the third battery pack.
  • step S610 In the switching process of switching the charging object from the fourth battery pack to the third battery pack as shown in steps S510 to S530, if a discharge switching failure occurs as shown in step S610, the number of discharge switching failures is increased by one. .
  • the switching can be attempted again, that is, the charging switching command can be responded to again. Wait for the preset time before switching again, which can reserve a certain recovery time for the recovery of the device.
  • the preset times and the preset duration can be set according to the device characteristics and the device working environment, for example, according to the reaction duration of the switch tube, and this application does not limit this.
  • the number of failed charging switching operations reaches the preset number, it means that a large number of failed charging switching operations have been reached. At this time, it is forbidden to respond to the charging switching command to avoid unlimited switching.
  • the battery pack charging switching can be managed.
  • the number of charging switching failures reaches the preset number, it is prohibited to respond to charging switching instructions, which can prevent the system from continuously trying to switch battery packs and causing system resource consumption caused by failed switching.
  • the preset number of times may be 3 times, 5 times, 7 times, etc., and this application does not impose any special restrictions on this.
  • the preset conduction time period may be 8s, 10s, 12s, 15s, etc., and this application does not impose special restrictions on this.
  • steps S610 to S640 are executed after step S520.
  • step S520 After sending the third shutdown signal to the charging switch tube and the discharging switch tube of the fourth battery pack, the state of the charging and discharging switch tube of the fourth battery pack is detected. If The charging switch tube and the discharge switch tube of the fourth battery pack are always in the conducting state and meet the conditions of step S610, then steps S620 to S640 are executed. If the charging switch tube and the discharging switch tube of the fourth battery pack are switched from the conducting state to In the off state, step S530 is entered.
  • FIG. 7 schematically shows a flow chart of steps after detecting that the discharge switch tube of the third battery pack is in a conductive state in an embodiment of the present application. As shown in FIG. 7 , based on the above embodiment, after detecting that the discharge switch tube of the third battery pack is in a conductive state in step S520 , the following steps S710 to S750 may be further included.
  • a temperature sensor may be provided near the charging switch tube of the third battery pack to collect the first temperature of the charging switch tube of the third battery pack.
  • the first preset temperature can be set according to the maximum temperature resistance of the charging switch tube.
  • the first preset temperature is set according to the highest temperature resistance temperature that can ensure the safety of the circuit.
  • the discharge switch tube of the third battery pack when the discharge switch tube of the third battery pack is turned on, the discharge switch tube of the third battery pack and the body diode of the charging switch tube have formed a discharge circuit.
  • the third battery pack can pass through the discharge switch tube, The body diode of the charging switch discharges the load. Compared with flowing directly through the charging switch tube in the on state, the temperature of the body diode of the charging switch tube will rise faster. If the discharge current is allowed to flow through the body diode for a long time, the charging switch tube will be easily damaged. Therefore, the temperature of the charging switch tube of the third battery pack is monitored. If the temperature reaches the second preset temperature, the discharge of the third battery pack should be turned off. The switch tube stops the third battery pack from continuing to discharge through the body diode of the charging switch tube. At the same time, this also indicates that this discharge switching failed.
  • S730 Increase the number of charging switching failures by one, and record the number of failures in switching the charging object from the fourth battery pack to the third battery pack.
  • step S720 In the switching process of switching the charging object from the fourth battery pack to the third battery pack as shown in steps S510 to S530, if a discharge switching failure occurs as shown in step S720, the number of discharge switching failures is increased by one. .
  • the switching can be attempted again, that is, the charging switching command can be responded to again. Wait for the preset time before switching again, which can reserve a certain recovery time for the recovery of the device. It can be understood that the preset number of times and the preset duration can be set according to different circuit compositions, for example, the number of battery packs, and this application does not impose special restrictions on this.
  • the number of charging switching failures reaches the preset number, it means that a large number of charging switching failures have occurred. At this time, it is forbidden to respond to the charging switching command, and the second temperature of the charging switch tube of the third battery pack can be monitored, and when the second temperature reaches the second preset temperature, a signal is sent to the charging switch tube of the third battery pack.
  • the fourth turn-off control signal is used to turn off the discharge switch tube of the third battery pack to prevent the charging current from continuing to pass through the body diode of the charge switch tube of the third battery pack, thereby preventing the charge switch tube of the third battery pack from continuing to heat up and improving the efficiency of the battery pack. Circuit security.
  • the response to the charging switching command is prohibited, if a battery pack insertion operation or a battery pack removal operation is detected, the number of discharge switching failures is reset and the response to the charging switching command resumes.
  • step S530 after sending the fourth conduction signal to the charging switch tube of the third battery pack in step S530, the following steps may be further included:
  • the multi-battery pack switching control method before responding to the charging switching instruction, further includes the following steps:
  • FIG. 8 schematically shows a step flow chart of a multi-battery pack switching control method in other embodiments of the present application.
  • the execution subject of the multi-battery pack switching control method may be a controller or processor used to control the battery charging and discharging circuit.
  • the multi-battery pack switching control method according to the embodiment of the present application may include the following steps S810 to S830.
  • the charging switching instruction is used to instruct switching from charging the first battery pack to charging the second battery pack line.
  • the first battery pack is the currently discharged battery pack
  • the multi-battery pack also includes, in addition to the first battery pack, alternative battery packs to be charged.
  • the second battery pack may be one of the alternative battery packs. It can be understood that the second battery pack can be the battery pack with the lowest battery capacity among the candidate battery packs to be charged, or it can be any battery pack that meets the charging conditions among the candidate battery packs to be charged. For example, the battery pack has a lower battery capacity than the first battery pack. Any of the battery pack's alternative battery packs.
  • the energy storage device can supply power to the load while charging the battery pack.
  • charging of the battery pack and power supply to the load are performed by an external power source, such as mains power or photovoltaic components.
  • the battery pack briefly stops charging.
  • the load power supply can still be powered by an external power supply, but in order to ensure that the load, especially large loads, For the stability of the power load supply voltage, the battery pack also needs to have stable external discharge capability, that is, the voltage of the battery side capacitor needs to remain stable.
  • a first conduction signal is sent to the discharge switch tube of the second battery pack to turn on the discharge switch tube of the second battery pack.
  • the second battery pack can form a discharge circuit through the conductive discharge switch tube and the body diode in the charging switch tube.
  • S820 when it is detected that the discharge switch of the second battery pack is in a conductive state, send a shutdown signal to the charging switch and the discharge switch of the first battery pack.
  • the shutdown signal is used to indicate the charging switch of the first battery pack. tube and discharge switch tube are turned off.
  • the external discharge circuit of the second battery pack is turned on, which can ensure that the load provides corresponding power supply capability when it needs to be discharged.
  • the second battery pack can also be used to discharge the first battery pack to ensure the stability of the load voltage. Therefore, when it is detected that the discharge switch tube of the second battery pack is in a conductive state, a shutdown signal is sent to the charge switch tube and the discharge switch tube of the first battery pack, and the charge and discharge circuit of the first battery pack is cut off, which can be achieved. Seamless switching during charging ensures stable power supply to the load.
  • An embodiment of the present application also provides an energy storage device.
  • Energy storage equipment includes parallel ports, controllers and battery packs.
  • the parallel port is used to connect to other energy storage devices or independent battery packs.
  • the controller is used to execute the multi-battery pack switching control method in any of the above embodiments.
  • FIG. 9 schematically shows a structural block diagram of the energy storage device provided by the embodiment of the present application.
  • the energy storage device 900 includes a controller 910 , a battery pack 920 and a parallel port 930 .
  • the parallel port 930 is connected in parallel with the output end of the battery pack 920 (not shown in the figure).
  • the first end of the parallel port is connected to the positive output end of the battery pack 920
  • the second end of the parallel port is connected to the positive output end of the battery pack 920 .
  • Negative output connection is a structural block diagram of the energy storage device provided by the embodiment of the present application.
  • the energy storage device 900 includes a controller 910 , a battery pack 920 and a parallel port 930 .
  • the parallel port 930 is connected in parallel with the output end of the battery pack 920 (not shown in the figure).
  • the first end of the parallel port is connected to the positive output end of the battery pack 920
  • the second end of the parallel port is connected to the positive output end of
  • the battery pack 920 is connected in parallel with another battery pack in the energy storage device or with an independent battery pack to form a multi-battery pack.
  • the controller 910 executes a multi-battery pack switching control method to implement switching between multiple battery packs.
  • the energy storage device may also include a battery-side capacitor, which is connected in parallel to the output end of the battery pack.
  • the energy storage system includes a controller and at least two battery packs.
  • the controller is configured to execute the multi-battery pack switching control method described in the above embodiment.
  • the controller may be a controller in any battery pack.
  • the controller is used to implement battery management for the battery pack and is also used to execute the multi-battery pack switching control method shown in the above embodiment.
  • the controller may be a controller in a battery management system of one of the battery packs, and performs the above method while implementing battery management. It is understood that the controller can also be an independent controller.
  • each battery pack is integrated with a controller, which is the controller in the battery management system.
  • the energy storage system also includes an independent controller for executing the above-mentioned multi-battery pack switching control method.
  • the embodiment of the present application also provides a multi-battery pack switching control device.
  • Figure 10 schematically shows a structural block diagram of a multi-battery pack switching control device provided by an embodiment of the present application. As shown in Figure 10, the multi-battery pack switching control device 1000 includes:
  • the first shutdown module 1010 is configured to send a first shutdown signal to the charging switch of the first battery pack in response to a discharge switching instruction.
  • the discharge instruction is used to instruct to switch the power supply of the load from the first battery pack to the third battery pack. Two battery packs.
  • the first shutdown signal is used to indicate that the charging switch of the first battery pack is turned off.
  • the first conduction module 1020 is configured to send a first conduction signal to the charge switch transistor and the discharge switch transistor of the second battery pack when it is detected that the charging switch transistor of the first battery pack is in an off state.
  • the second shutdown module 1030 is configured to send a second shutdown signal to the discharge switch of the first battery pack when it is detected that both the charging switch and the discharge switch of the second battery pack are in a conductive state.
  • the shutdown signal is used to indicate that the discharge switch tube of the first battery pack is turned off.
  • Embodiments of the present application also provide a computer-readable medium on which a computer program is stored.
  • the computer-readable medium may take the form of a portable compact disk read-only memory (CD-ROM) and include program code, and may be run on a terminal device such as a personal computer.
  • CD-ROM portable compact disk read-only memory
  • the program product of the present invention is not limited thereto.
  • a readable storage medium may be any tangible medium containing or storing a program that may be used by or in combination with an instruction execution system, apparatus or device.
  • the program product described above may take the form of any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a readable signal medium may also be any readable medium other than a readable storage medium that can send, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a readable medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for performing the operations of the present invention may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., as well as conventional procedural Programming language—such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device, such as provided by an Internet service. (business comes via Internet connection).
  • LAN local area network
  • WAN wide area network

Abstract

一种多电池包切换控制方法,包括:响应于放电切换指令,向第一电池包的充电开关管发送第一关断信号;当检测到第一电池包的充电开关管处于关断状态时,向第二电池包的充电开关管和放电开关管发送第一导通信号;当检测到第二电池包的充电开关管和放电开关管均处于导通状态时,向第一电池包的放电开关管发送第二关断信号。

Description

多电池包切换控制方法以及储能设备
相关申请的交叉引用
本申请要求于2022年08月23日提交中国专利局、申请号为202211016915.2、发明名称为“多电池包切换控制方法、储能设备以及储能系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种多电池包切换控制方法以及储能设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
在采用多电池包供电的设备中,当在电池包充电或放电时,如果切换电池包,会存在切换时储能设备无法对负载连续稳定供电的情况,使得负载电压短暂波动,影响负载的正常工作。
因此,如何在切换电池包时实现对于负载的连续稳定供电,是亟需解决的技术问题。
发明内容
根据本申请的各种实施例,提供一种多电池包切换控制方法、装置、存储介质、储能设备以及储能系统。
本申请实施方式提供一种多电池包切换控制方法,所述多电池包切换控制方法包括:
响应于放电切换指令,向第一电池包的充电开关管发送第一关断信号,所述放电指令用于指示将负载的供电电源从所述第一电池包切换为第二电池包;所述第一关断信号用于指示所述第一电池包的充电开关管关断;
当检测到所述第一电池包的充电开关管处于关断状态时,向所述第二电池包的充电开关管和放电开关管发送第一导通信号,所述第一导通信号用于指示所述第二电池包的充电开关管和放电开关管导通;
当检测到所述第二电池包的充电开关管和放电开关管均处于导通状态时,向所述第一电池包的放电开关管发送第二关断信号,所述第二关断信号用于指示所述第一电池包的放电开关管关断,其中,任一电池包的充电开关管和放电开关管均关断时,所述电池包停止对所述负载供电。
本申请实施方式还提供一种多电池包切换控制方法,所述多电池包切换控制方法包括:
响应于充电切换指令,向第二电池包的放电开关管发送第一导通信号,所述第一导通信号用于指示所述第二电池包的放电开关管导通;所述充电切换指令用于指示将充电对象从所述第一电池包切换为所述第二电池包;
当检测到所述第二电池包的放电开关管处于导通状态时,向所述第一电池包的充电开关管和放电开关管发送关断信号,所述关断信号用于指示所述第一电池包的充电开关管和放电开关管关断;
当检测到所述第一电池包的充电开关管和放电开关管均处于关断状态时,向所述第二电池包的充电开关管发送第二导通信号,所述第二导通信号用于指示所述第二电池包的充电开关管导通。
本申请实施方式还提供一种多电池包切换控制装置,所述多电池包切换控制装置包括:
第一关断模块,被配置为响应于放电切换指令,向第一电池包的充电开关管发送第一关断信号,所述放电指令用于指示将负载的供电电源从所述第一电池包切换为第二电池包;所述第一关断信号用于指示所述第一电池包的充电开关管关断;
第一导通模块,被配置为当检测到所述第一电池包的充电开关管处于关断状态时,向所述第二电池包的充电开关管和放电开关管发送第一导通信号,所述第一导通信号用于指示所述第二电池包的充电开关管和放电开关管导通;
第二关断模块,被配置为当检测到所述第二电池包的充电开关管和放电开关管均处于导通状态时,向所述第一电池包的放电开关管发送第二关断信号,所述第二关断信号用于指示所述第一电池包的放电开关管关断,其中,任一电池包的充电开关管和放电开关管均关断时,所述电池包停止对所述负载供电。
本申请实施方式还提供一种储能设备,所述储能设备包括并机端口、控制器以及电池包,所述并机端口用于与其他储能设备或者独立电池包连接,所述控制器用于执行如上任一实施方式所述的多电池包切换控制方法。
本申请实施方式还提供一种储能系统,所述储能系统包括控制器以及至少两个电池包,所述控制器用于执行如上任一实施方式所述的多电池包切换控制方法。
本申请实施方式还提供一种计算机可读介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如以上技术方案中的多电池包切换控制方法。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或示例性技术中的技术方案,下面将对实施例或示例性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1示意性地示出了能够适用本申请实施方式的多电池包切换控制方法的电池充放电电路。
图2示意性地示出了本申请某些实施方式的多电池包切换控制方法的步骤流程图。
图3示意性地示出了本申请某实施例中向第二电池包的充电开关管和放电开关管发送第一导通信号之后的步骤流程图。
图4示意性地示出了本申请某实施例中检测到第一电池包的充电开关管处于关断状态之后的步骤流程图。
图5示意性地示出了本申请某实施例中多电池包切换控制方法的步骤流程图。
图6示意性地示出了本申请某实施例中向第一电池包的充电开关管和放电开关管发送第三关断信号之后的步骤流程图。
图7示意性地示出了本申请某实施例中检测到第二电池包的放电开关管处于导通状态之后的步骤流程图。
图8示意性地示出了本申请另一些实施方式的多电池包切换控制方法的步骤流程图。
图9示意性地示出了本申请实施例提供的储能设备的结构框图。
图10示意性地示出了本申请实施例提供的多电池包切换控制装置的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施方式的多电池包切换控制方法可适用于多电池包充放电电路。图1示意性地示出了能够适用本申请实施方式的多电池包切换控制方法的双电池包并机示意图。可以理解,在其他一些实施例中,上述多电池包切换控制方法也可以适用于多个电池包之间的切换控制。
如图1所示,电池包10和电池包20的输出正极相连接,电池包10和电池包20的输出负极相连接,从而实现两个电池包的并联。在每个电池包的输出侧还并联有电容30。电池包的输出侧还用于与负载连接,以利用电池包的输出电能给负载供电。对于每个电池包,其均包括电池模组以及电池管理系统,如图1中所示的电池模组100或电池模组200。电池管理系统用于对电池模组进行管理以及保护。图1中并未示出电池管理系统的完整结构,仅仅示意出来了电池管理系统中的充电开关管和放电开关管。充电开关管和放电开关管串联在电池模组的充放电回路上,以控制该回路的通断。
如图1所示,在电池包10中的充放回路上串联有第一充电开关管110、第一放电开关管120,第一充电开关管110、第一放电开关管120均导通时,电池模组100经第一充电开关管110、第一放电开关管120、电容30形成第一充放电回路,此时电池包的输出侧可接入负载或外部电源,以对外放电或接收外部电源充电。同样的,电池包20中的充放回路上串联有第二充电开关管210、第二放电开关管220,第二充电开关管210、第二放电开关管220均导通时,电池模组200经第二充电开关管210、第二放电开关管220、电 容30形成第二充放电回路,此时电池包的输出侧可接入负载或外部电源,以对外放电或接收外部电源充电。
图1所示的充电开关管和放电开关管串联在电池包的正极输出侧回路上,可以理解,在其他实施例中,充电开关管和放电开关管也可以串联在电池包的负极输出侧回路上。
可以理解,在如图1所示的实施例中,当需要从通过第一充放电电路对负载供电切换至通过第二充放电电路对负载供电,若直接关断第一充放电电路的第一放电开关管120和第一充电开关管110后,再导通第二充放电电路的第二放电开关管220和第二充电开关管210,由于开关管具有导通延迟,在第一充放电电路的第一放电开关管120和第一充电开关管110关断到第二放电开关管220和第二充电开关管210导通之间的时间间隔中,需依赖电池侧电容30的能量支撑为负载供电。当负载的工作功率较大时,电池侧电容30的能量会很快耗尽,电压快速下降,此时,难以保证负载侧的连续稳定供电,甚至导致负载掉电。
本申请实施方式提供一种多电池包切换控制方法。图2示意性地示出了本申请某些实施方式的多电池包切换控制方法的步骤流程图。该多电池包切换控制方法的执行主体可以是用于控制电池充放电电路的控制器或处理器等。
如图2所示,本申请实施方式的多电池包切换控制方法主要可以包括如下步骤S210至S230。
S210,响应于放电切换指令,向第一电池包的充电开关管发送第一关断信号,放电指令用于指示将负载的供电电源从第一电池包切换为第二电池包;第一关断信号用于指示第一电池包的充电开关管关断。
在某些实施方式中,第一电池包的充电开关管可以为MOS管。如图1所示,充电开关管110为MOS管,该MOS管110中包括有体二极管111。第一电池包100的充电开关管110的导通方向与该充电开关管110的体二极管111的导通方向相反。
在某些实施方式中,第一电池包的放电开关管可以为MOS管。如图1所示,放电开关管120为MOS管,该MOS管中包括有体二极管121。第一电池包100的放电开关管120的导通方向与该放电开关管120的体二极管121的导通方向相反。
第一电池包为当前放电的电池包,多电池包还包括除第一电池包外满足放电条件,可向负载供电的备选电池包。第二电池包可以是备选电池包中的一个。可以理解的,第二电池包可以是可向负载供电的备选电池包中电量最高的电池包,也可以是满足放电条件的任意电池包,例如,电量高于第一电池包的备选电池包中的任意一个。在第一电池包对外放电时,第一电池包的充电开关管以及放电开关管均处于导通状态。当需要进行放电切换时,向第一电池包的充电开关管发送第一关断信号,以关断第一电池包的充电开关管。第一电池包的充电开关管关断后,放电开关管此时仍旧处于导通状态,第一电池包能够通过第一电池包的充电开关管中的体二极管、放电开关管对外放电,直至切换至第二电池包放电,进而能够使得电池包切换过程中,能够实现从第一电池包放电到第二电池包放电的无缝切换,从而实现供电切换时确保负载侧的稳定供电。
S220,当检测到第一电池包的充电开关管处于关断状态时,向第二电池包的充电开关管和放电开关管发送第一导通信号,第一导通信号用于指示第二电池包的充电开关管和放电开关管导通。
具体地,在某些实施方式中,第二电池包的充电开关管可以为MOS管。如图1所示,充电开关管210为MOS管,该MOS管210中包括有体二极管211。第二电池包200的充电开关管210的导通方向与该充电开关管210的体二极管211的导通方向相反。
在某些实施方式中,第二电池包的放电开关管可以为MOS管。如图1所示,放电开关管220为MOS管,该MOS管220中包括有体二极管221。第二电池包200的放电开关管220的导通方向与该放电开关管220的体二极管221的导通方向相反。
由此,当检测到第一电池包的充电开关管处于关断状态时,向第二电池包的充电开关管和放电开关管发送第一导通信号,能够在确定第一电池包的充电回路关断之后再导通第二电池包的放电回路,从而能够避免第一电池包的充电回路和第二电池包的放电回路同时导通时,发生第二电池包对第一电池包进行充电的情况,避免第二电池包对第一电池包进行充电的过程导致的电能损耗。
S230,当检测到第二电池包的充电开关管和放电开关管均处于导通状态时,向第一电池包的放电开关管发送第二关断信号,第二关断信号用于指示第一电池包的放电开关管关断。
对于电池包,任一电池包的充电开关管和放电开关管均关断时,该电池包所在的充放电回路被切换,电池包无法对外放电,也不能接受充电。在第二电池包的充电开关管和放电开关管完全导通后,第二电池包可以通过充电开关管和放电开关管对外稳定供电。此时,再将第一电池包的放电开关管关断,完全切断第一电池包的对外放电回路,完成由第一电池包到第二电池包的放电切换。
由此,在确定第二电池包的充电开关管和放电开关管均导通后,向第一电池包的放电开关管发送第二关断信号以关断第一电池包的放电开关管,能够实现从第一电池包放电到第二电池包放电的无缝切换。
并且,本申请在检测到第一电池包的充电开关管处于关断状态时,再导通第二电池包的充电开关管和放电开关管,能够避免第一电池包的充电回路和第二电池包的放电回路同时导通时,发生第二电池包对第一电池包进行充电的情况,从而能够避免第二电池包对第一电池包进行充电的过程导致的电能损耗。
图3示意性地示出了本申请某实施例中向第二电池包的充电开关管和放电开关管发送第一导通信号之后的步骤流程图。如图3所示,在以上实施例的基础上,步骤S220的向第二电池包的充电开关管和放电开关管发送第一导通信号之后,可以进一步包括以下步骤S310至S340。
S310,若检测到第二电池包的充电开关管和放电开关管均处于关断状态,且第一电池包的充电开关管的关断时长达到预设关断时长,则向第一电池包的充电开关管发送第二导通信号,第二导通信号用于指示以第一电池包的充电开关管导通。
可以理解,从第一电池包的充电开关管关断后到第二电池包的充电开关管和放电开关管导通前,第一电池包对外放电的电流均只能通过第一电池包的充电开关管的体二极管流向负载。当第二电池包的充电开关管和放电开关管接收到第一导通信号后没有及时导通,仍处于关断状态,而第一电池包的充电开关管的关断时长达到预设关断时长时,电流长时间流经第一电池包的充电开关管的体二极管时,会危害电路安全性。此时,即便第二电池包的充电开关管和放电开关管仍未导通,未完成切换,也不能继续通过第一电池包的放电 开关管、充电开关管的体二极管继续对外放电。因此,本申请如上实施例通过电压传感器或电流传感器检测第一电池包的充电开关管、第二电池包的充电开关管和放电开关管是否处于关断状态并对第一电池包的充电开关管的关断时长进行监控,从而能够实现电路安全预警,以便及时作出对应的安全措施,在本实施例中,采用的安全措施为向第一电池包的充电开关管发送第二导通信号,从而能够使得第一电池包的放电电流从第一电池包的充电开关管的MOS管中正常通过,进而避免放电电流继续通过第一电池包的充电开关管的体二极管,能够避免由于第一电池包的充电开关管的体二极管由于长时间流经电流导致温度过高导致元件损坏或其他电路危害。
可以理解,预设关断时长可以根据开关管的特性设置,例如,根据开关管体二极管所能承受的最大温度设置,以保证开关管体二极管温度不超标。
S320,将放电切换失败次数增加一,放电切换失败次数记录从第一电池包切换为第二电池包的失败次数。
在如步骤S210至S230所示的从第一电池包放电切换为第二电池包放电的切换流程中,如出现如S310步骤所示的放电切换失败情况时,则将放电切换失败次数增加一。记录放电切换失败次数,可以避免不断地在两个电池包之间切换。
S330,若放电切换失败次数未达到预设次数,等待预设时长后再次响应放电切换指令。
具体地,对于放电切换失败,若失败次数较少,可能是由于器件的不稳定性导致,则可以再次尝试切换,也即,再次响应放电切换指令。再次切换等待预设时长后进行,可以为器件的恢复预留一定的恢复时间。
可以理解,预设次数以及预设时长可以依据器件特性以及器件工作环境设置,例如,根据开关管的反应时长设置,本申请对此不做限制。
可以理解,每次电池包插入或拔出后,放电切换次数会重置为零。
S340,若放电切换失败次数达到预设次数,则禁止响应放电切换指令。
若放电切换失败次数达到预设次数,说明已达到较多次数的放电切换失败操作。此时,禁止响应放电切换指令,可以避免无限次的切换。通过预设关断时长的设置以及对放电切换失败次数的记录,能够对对电池包的放电切换进行管理,从而防止系统不断尝试切换电池包并切换失败带来的资源消耗。
在某些实施方式中,预设次数可以为3次、5次、7次等,本申请对此不作特殊限制。
在具体实施方式中,预设关断时长可以为8s、10s、12s、15s等,本申请对此不作特殊限制。
可以理解,上述步骤S310至S340在步骤S220之后执行,在向第二电池包的充电开关管和放电开关管发送第一导通信号后,检测第二电池包的充放电开关管的状态,若第二电池包的充电开关管和放电开关管一直处于关断状态且满足步骤S310的条件,则执行步骤S320至S340,若第二电池包的充电开关管和放电开关管切换到导通状态,则进入到步骤S230。
图4示意性地示出了本申请某实施例中检测到第一电池包的充电开关管处于关断状态之后的步骤流程图。如图4所示,在以上实施例的基础上,步骤S220的检测到第一电池包的充电开关管处于关断状态之后,可以进一步包括以下步骤S410至S450。
S410,获取第一电池包的充电开关管的第一温度。
可以通过在第一电池包的充电开关管附近设置的温度采集器件获取该第一温度,温度采集器件可以为温度传感器,以采集第一电池包的充电开关管的第一温度。
S420,当第一温度达到第一预设温度时,向第一电池包的充电开关管发送第二导通信号。
本申请实施例中,第二导通信号用于指示以第一电池包的充电开关管导通。
在放电切换过程中,当第一电池包的充电开关管关断后,第一电池包的放电电流是通过第一电池包的放电开关管、充电开关管的体二极管流向负载,相比于导通状态下直接流经充电开关管,充电开关管的体二极管温度会上升更快。若任由放电电流长时间流经体二极管,容易损坏充电开关管,因此,监测第一电池包充电开关管的温度,若温度达到第一预设温度,则应当再次导通充电开关管,让放电电流正常通过充电开关管流向负载。同时,这也表明本次放电切换失败。
对于第一预设温度,可以根据充电开关管的最高耐温温度设置第一预设温度。可以理解,也可以根据能够保证电路安全的最高耐温温度设置第一预设温度。
S430,将放电切换失败次数增加一,放电切换失败次数记录从第一电池包切换为第二电池包的失败次数。
在如步骤S210至S230所示的从第一电池包放电切换为第二电池包放电的切换流程中,如出现如S420步骤所示的放电切换失败情况时,则将放电切换失败次数增加一。
S440,若放电切换失败次数未达到预设次数,等待预设时长后再次响应放电切换指令。
如前所述,对于放电切换失败,若失败次数较少,可能是由于器件的不稳定性导致,则可以再次尝试切换,也即,再次响应放电切换指令。再次切换等待预设时长后进行,可以为器件的恢复预留一定的恢复时间。
S450,若放电切换失败次数达到预设次数,则禁止响应放电切换指令。
若放电切换失败次数达到预设次数,说明已达到较多次数的放电切换失败。此时,禁止响应放电切换指令。若还未达到预设次数,则可以等待预设时长后再次响应放电切换指令,以再次尝试切换。本实施例中通过对第一电池包的充电开关管的第一温度的监控,能够在温度较高时避免放电电流继续通过第一电池包的充电开关管的体二极管,从而避免第一电池包的充电开关管继续升温导致器件损坏,提高了电路的安全性。可以理解,上述步骤S410至S450在步骤S220之后执行。在检测到所述第一电池包的充电开关管处于关断状态后,检测第一电池包的充电开关管的温度,也检测第二电池包的充放电开关管的状态。若第一电池包的充电开关管的温度先超标,则执行步骤S420至S450。若第一电池包的充电开关管的温度超标前,第二电池包的充电开关管和放电开关管已经导通,则进入到步骤S230。
在某些实施方式中,在禁止响应放电切换指令之后,若检测到电池包接入操作或电池包拔出操作,则重置放电切换失败次数并恢复响应放电切换指令。
若有新的电池包接入或当前电池包被拔出,电路组成发生了变化,此时,包括多个电池包的整个储能系统已经发生变化,因此,放电切换失败次数应当重置为0,此时,若触发放电切换指令,则正常响应,执行上述各实施例的各个步骤。
在某些实施方式中,在以上实施例的基础上,步骤S230之后,也即在向第一电池包的放电开关管发送第二关断信号之后,可以进一步包括以下步骤:若检测到第一电池包的放电开关管处于关断状态,确认放电切换成功并将放电切换失败次数清零。
由此,若检测到第一电池包的放电开关管处于关断状态,从而能确定本次电池包切换动作已完成,此时确认放电切换成功并将放电切换失败次数清零,能够重新统计放电切换失败次数,实现对电池包切换的高效管理。
在某些实施方式中,在响应于放电切换指令之前,多电池包切换控制方法还可以包括如下步骤:
在采用多电池包对负载进行供电时,若检测第二电池包的输出电压高于第一电池包的输出电压且第一电池包和第二电池包的输出电压差值高于第一预设电压差,则生成放电切换指令。
可以理解,在采用多电池包对负载进行供电时,在长时间使用第一电池包对负载进行供电后,第一电池包电量较低并且导致电压过低,此时需要切换至第二电池包对负载进行供电。本申请某些实施方式在采用多电池包对负载进行供电时,若检测第二电池包的输出电压高于第一电池包的输出电压且第一电池包和第二电池包的输出电压差值高于第一预设电压差,则生成放电切换指令,无需人工操作就能实现电池包的自动切换,能够提高采用多电池包对负载进行供电的智能程度。
可以理解,在其他一些实施例中,放电切换指令也可以由用户触发,例如,由用户操作储能设备或电池包上的相应按钮,或通过移动设备上用于管理电池包的应用程序界面进行操作触发,本申请对此不做限制。
图5示意性地示出了本申请另一实施例的多电池包切换控制方法中步骤流程图。如图5所示,在以上实施例的基础上,可以进一步包括以下步骤S510至S530。
S510,响应于充电切换指令,向第三电池包的放电开关管发送第三导通信号。
本申请实施例中,第三导通信号用于指示第三电池包的放电开关管导通,充电切换指令用于指示将充电对象从第四电池包切换为第三电池包。第四电池包为当前放电的电池包,多电池包还包括除第四电池包外,待充电的备选电池包。第三电池包可以是备选电池包中的一个。可以理解的,第三电池包可以是待充电的备选电池包中电量最低的电池包,也可以是待充电的备选电池包中满足充电条件的任意电池包,例如,电量低于第四电池包的备选电池包中的任意一个。在某些实施方式中,可以理解,储能设备可以在对电池包充电的同时对负载进行供电,此时,电池包的充电和负载的供电由外部电源进行,例如市电或光伏组件。在进行充电切换的时候,例如,从对第四电池包充电切换为对第三电池包充电,电池包短暂停止充电,此时,负载供电依旧可以由外部电源供电,但为了确保负载特别是大功率负载供电电压的稳定,此时电池包同样需要有稳定的对外放电能力,也即电池侧电容的电压需要保持稳定。若直接将第四电池包的放电开关管和充电开关管关闭后,再导通第三电池包的放电开关管和充电开关管,由于开关管的导通关断均有一定的延时,在第四电池包的放电开关管和充电开关管关闭后到第三电池包的放电开关管和充电开关管导通前,两个电池包均无法对外放电,电池侧电容的电压无法保持稳定。
本申请实施例中,在响应充电切换指令进行充电切换时,向第三电池包的放电开关管发送第三导通信号,以导通第三电池包的放电开关管,此时,若负载侧需要第三电池包放 电,则第三电池包可以通过导通的放电开关管以及充电开关管中的体二极管形成放电回路。
S520,当检测到第三电池包的放电开关管处于导通状态时,向第四电池包的充电开关管和放电开关管发送第三关断信号,第三关断信号用于指示第四电池包的充电开关管和放电开关管关断。
如前所述,第三电池包的放电开关管导通后,第三电池包对外放电的回路导通,可以确保负载在需要放电时提供相应的供电能力,此时,即便切断第四电池包的充放电回路,也可以由第三电池包代替第一电池包进行放电,确保负载电压稳定。由此,当检测到第三电池包的放电开关管处于导通状态时,向第四电池包的充电开关管和放电开关管发送第三关断信号,切断第四电池包的充放电回路,能够实现充电时的无缝切换,确保负载的稳定供电。
S530,当检测到第四电池包的充电开关管和放电开关管均处于关断状态时,向第三电池包的充电开关管发送第四导通信号,第四导通信号用于指示第三电池包的充电开关管导通。
在确定第四电池包的充电开关管和放电开关管均关断后,说明第四电池包的充放电回路已经被完全切断,此时,向第二电池包的充电开关管发送第四导通信号以导通第三电池包的充电回路,外部电源能够通过充电回路对第三电池包进行充电,由此,完成了边充边放过程中的电池包的无缝切换。
可以理解,上述步骤S510至S530描述的是充电切换的过程,与以上实施例各步骤描述的放电切换过程是先后进行的,本申请对先后顺序不做限制。例如,可以先进行放电切换,再进行放电切换。也可以是先进行充电切换,再进行放电切换。
图6示意性地示出了本申请某实施例中向第四电池包的充电开关管和放电开关管发送第三关断信号之后的步骤流程图。如图6所示,在以上实施例的基础上,步骤S520的向第四电池包的充电开关管和放电开关管发送第三关断信号之后,可以进一步包括以下步骤S610至S640。
S610,若检测到第四电池包的充电开关管和放电开关管均处于导通状态,并且第三电池包的放电开关管的导通时长达到预设导通时长时,向第三电池包的放电开关管发送第四关断控制信号,第四关断控制信号用于指示第三电池包的放电开关管关断。
可以理解,若在向第四电池包的充电开关管和放电开关管发送第三关断信号的预设导通时长后,仍然检测到第四电池包的充电开关管和放电开关管处于导通状态,由于第四电池包电压高于第三电池包,此时若导通第三电池包的充电开关管,第四电池包可能会给第三电池包充电,因此,无法导通第三电池包的充电开关管。在第三电池包的充电开关管不导通时,第三电池包对外放电是通过放电开关管、充电开关管的体二极管释放放电电流。相比于导通状态下直接流经充电开关管,充电开关管的体二极管温度会上升更快。若任由放电电流长时间流经体二极管,容易损坏充电开关管,因此,若在第三电池包的放电开关管导通预设导通时长时,第四电池包的充电开关管和放电开关管仍处于导通状态,表明本次充电切换失败,应向第三电池包的放电开关管发送第四关断控制信号,避免第三电池包继续通过充电开关管的体二极管对外放电,由此,可以避免第三电池包的充电开关管由于体二极管长时间承受电流导致温度过高,导致元件损坏或其他电路危害。
S620,将充电切换失败次数增加一,充电切换失败次数记录将充电对象从第四电池包切换为第三电池包的失败次数。
在如步骤S510至S530所示的将充电对象从第四电池包切换为第三电池包的切换流程中,如出现如S610步骤所示的放电切换失败情况时,则将放电切换失败次数增加一。
S630,若充电切换失败次数未达到预设次数,等待预设时长后再次响应充电切换指令。
具体地,对于上述充电切换失败,若失败次数较少,可能是由于器件的不稳定性导致,则可以再次尝试切换,也即,再次响应充电切换指令。再次切换等待预设时长后进行,可以为器件的恢复预留一定的恢复时间。
可以理解,预设次数以及预设时长可以依据器件特性以及器件工作环境设置,例如,根据开关管的反应时长设置,本申请对此不做限制。
可以理解,每次电池包插入或拔出后,放电切换次数会重置为零。
S640,若充电切换失败次数达到预设次数时,则禁止响应充电切换指令。
若充电切换失败次数达到预设次数,说明已达到较多次数的充电切换失败操作。此时,禁止响应充电切换指令,可以避免无限次的切换。通过预设导通时长的设置以及对充电切换失败次数的记录,能够实现对电池包充电切换的管理。当充电切换失败次数达到预设次数时,禁止响应充电切换指令,可以防止系统不断尝试切换电池包并切换失败带来的系统资源消耗。
在某些实施方式中,预设次数可以为3次、5次、7次等,本申请对此不作特殊限制。
在具体实施方式中,预设导通时长可以为8s、10s、12s、15s等,本申请对此不作特殊限制。
可以理解,上述步骤S610至S640在步骤S520之后执行,在向第四电池包的充电开关管和放电开关管发送第三关断信号后,检测第四电池包的充放电开关管的状态,若第四电池包的充电开关管和放电开关管一直处于导通状态且满足步骤S610的条件,则执行步骤S620至S640,若第四电池包的充电开关管和放电开关管从导通状态切换到关断状态,则进入到步骤S530。
图7示意性地示出了本申请某实施例中检测到第三电池包的放电开关管处于导通状态之后的步骤流程图。如图7所示,在以上实施例的基础上,步骤S520的检测到第三电池包的放电开关管处于导通状态之后,可以进一步包括以下步骤S710至S750。
S710,获取第三电池包的充电开关管的第二温度。
例如,可以通过在第三电池包的充电开关管附近设置温度传感器以采集第三电池包的充电开关管的第一温度。
S720,当第二温度达到第二预设温度时,向第三电池包的放电开关管发送第四关断控制信号,第四关断控制信号用于指示第三电池包的放电开关管关断。
例如,可以根据充电开关管的最高耐温温度设置第一预设温度。或者,根据能够保证电路安全的最高耐温温度设置第一预设温度。
在充电切换过程中,当第三电池包的放电开关管导通后,第三电池包的放电开关管、充电开关管的体二极管已经形成了放电回路,第三电池包可以通过放电开关管、充电开关管的体二极管对负载放电。相比于导通状态下直接流经充电开关管,充电开关管的体二极 管温度会上升更快。若任由放电电流长时间流经体二极管,容易损坏充电开关管,因此,监测第三电池包充电开关管的温度,若温度达到第二预设温度,则应当关断第三电池包的放电开关管,停止第三电池包通过充电开关管的体二极管继续放电。同时,这也表明本次放电切换失败。
S730,将充电切换失败次数增加一,充电切换失败次数记录将充电对象从第四电池包切换为第三电池包的失败次数。
在如步骤S510至S530所示的将充电对象从第四电池包切换为第三电池包的切换流程中,如出现如S720步骤所示的放电切换失败情况时,则将放电切换失败次数增加一。
S740,若充电切换失败次数未达到预设次数,等待预设时长后再次响应充电切换指令。
与上述放电切换失败类似,在充电切换过程中,若失败次数较少,可能是由于器件的不稳定性导致,则可以再次尝试切换,也即,再次响应充电切换指令。再次切换等待预设时长后进行,可以为器件的恢复预留一定的恢复时间。可以理解,预设次数、预设时长可以根据不同电路组成,例如,电池包数量设置,本申请对此不做特殊限制。
S750,若充电切换失败次数达到预设次数时,则禁止响应充电切换指令。
若充电切换失败次数达到预设次数,说明已达到较多次数的充电切换失败。此时,禁止响应充电切换指令,能够通过对第三电池包的充电开关管的第二温度的监控,并且当第二温度达到第二预设温度时,向第三电池包的充电开关管发送第四关断控制信号以关断第三电池包的放电开关管,避免充电电流继续通过第三电池包的充电开关管的体二极管,从而避免第三电池包的充电开关管继续升温,提高了电路的安全性。
在某些实施方式中,在禁止响应充电切换指令之后,若检测到电池包接入操作或电池包拔出操作,则重置放电切换失败次数并恢复响应充电切换指令。
在某些实施方式中,在以上实施例的基础上,步骤S530的向第三电池包的充电开关管发送第四导通信号后,可以进一步包括以下步骤:
若检测到第三电池包的充电开关管处于导通状态,确认充电切换成功并将充电切换失败次数清零。
由此,若检测到第三电池包的充电开关管处于导通状态,从而能确定本次电池包切换动作已完成,此时确认充放电切换成功并将充电切换失败次数清零,能够重新统计充电切换失败次数,实现对电池包切换的高效管理。
在某些实施方式中,在响应于充电切换指令之前,多电池包切换控制方法还包括如下步骤:
在对多电池包进行充电时,若检测第三电池包的输出电压低于第四电池包的输出电压且第四电池包和第三电池包的输出电压差值高于第二预设电压差,则生成充电切换指令。
可以理解,在对多电池包进行充电时,在对第四电池包进行的充电完成后,第四电池包的电压较高,可能比第三电池包高出如上所述的差值,此时生成充电切换指令以将对第四电池包充电切换至对第三电池包充电,无需人工操作就能实现电池包的自动切换,能够提高对多电池包进行充电的充电便捷性。
本申请实施方式还提供一种多电池包切换控制方法。图8示意性地示出了本申请另一些实施方式的多电池包切换控制方法的步骤流程图。该多电池包切换控制方法的执行主体 可以是用于控制电池充放电电路的控制器或处理器等。如图8所示,本申请实施方式的多电池包切换控制方法可以包括如下步骤S810至S830。
S810,响应于充电切换指令,向第二电池包的放电开关管发送第一导通信号,第一导通信号用于指示第二电池包的放电开关管导通。
本申请实施例中,充电切换指令用于指示由对第一电池包充电切换至对第二电池包充电线。第一电池包为当前放电的电池包,多电池包还包括除第一电池包外,待充电的备选电池包。第二电池包可以是备选电池包中的一个。可以理解的,第二电池包可以是待充电的备选电池包中电量最低的电池包,也可以是待充电的备选电池包中满足充电条件的任意电池包,例如,电量低于第一电池包的备选电池包中的任意一个。
在某些实施方式中,可以理解,储能设备可以在对电池包充电的同时对负载进行供电,此时,电池包的充电和负载的供电由外部电源进行,例如市电或光伏组件。在进行充电切换的时候,例如,从对第一电池包充电切换为对第二电池包充电,电池包短暂停止充电,此时,负载供电依旧可以由外部电源供电,但为了确保负载特别是大功率负载供电电压的稳定,此时电池包同样需要有稳定的对外放电能力,也即电池侧电容的电压需要保持稳定。
若直接将第一电池包的放电开关管和充电开关管关闭后,再导通第二电池包的放电开关管和充电开关管,由于开关管的导通关断均有一定的延时,在第一电池包的放电开关管和充电开关管关闭后到第二电池包的放电开关管和充电开关管导通前,两个电池包均无法对外放电,电池侧电容的电压无法保持稳定。
在响应充电切换指令进行充电切换时,向第二电池包的放电开关管发送第一导通信号,以导通第二电池包的放电开关管,此时,若负载侧需要第二电池包放电,则第二电池包可以通过导通的放电开关管以及充电开关管中的体二极管形成放电回路。
S820,当检测到第二电池包的放电开关管处于导通状态时,向第一电池包的充电开关管和放电开关管发送关断信号,关断信号用于指示第一电池包的充电开关管和放电开关管关断。
如前所述,第二电池包的放电开关管导通后,第二电池包对外放电的回路导通,可以确保负载在需要放电时提供相应的供电能力,此时,即便切断第一电池包的充放电回路,也可以由第二电池包代替第一电池包进行放电,确保负载电压稳定。由此,当检测到第二电池包的放电开关管处于导通状态时,向第一电池包的充电开关管和放电开关管发送关断信号,切断第一电池包的充放电回路,能够实现充电时的无缝切换,确保负载的稳定供电。
S830,当检测到第一电池包的充电开关管和放电开关管均处于关断状态时,向第二电池包的充电开关管发送第二导通信号,第二导通信号用于指示第二电池包的充电开关管导通。
在确定第一电池包的充电开关管和放电开关管均关断后,说明第一电池包的充放电回路已经被完全切断,此时,向第二电池包的充电开关管发送第二导通信号以导通第二电池包的充电回路,外部电源能够通过充电回路对第二电池包进行充电,由此,完成了边充边放过程中的电池包的无缝切换。
图8所示的实施例中提供的多电池包切换控制方法的具体细节已经在对上述多电池包切换控制方法的具体实施例中进行了详细的描述,此处不再赘述。
本申请实施方式还提供一种储能设备。储能设备包括并机端口、控制器以及电池包。 并机端口用于与其他储能设备或独立电池包连接。控制器用于执行如上任一实施方式的多电池包切换控制方法。
图9示意性地示出了本申请实施例提供的储能设备的结构框图。如图9所示,储能设备900包括控制器910、电池包920和并机端口930。并机端口930与电池包920的输出端并联(图中未示出),例如,并机端口第一端与电池包920的正极输出端连接,并机端口的第二端与电池包920的负极输出端连接。在储能设备通过并机端口930与其他储能设备或独立电池包连接后,电池包920与储能设备中的另一个电池包,或与独立电池包并联形成多电池包,当需要在多个电池包之间进行放电切换或充电切换时,控制器910执行多电池包切换控制方法,以在多个电池包之间实现切换。
可以理解,如图1所示,储能设备中还可包括电池侧电容,并联于电池包的输出端。
本申请中提供的储能设备的控制器实现多个电池包的充放电切换的具体细节已经在对应的多电池包切换控制方法的实施例中进行了详细的描述,此处不再赘述。
本申请还提供一种储能系统,该储能系统包括控制器以及至少两个电池包,控制器用于执行上述实施例所述的多电池包切换控制方法。
控制器可以是任一电池包中的控制器,该控制器用于对电池包实现电池管理的同时,还用于执行上述实施例所示的多电池包切换控制方法。例如,该控制器可以为其中一个电池包的电池管理系统中的控制器,在实现电池管理的同时执行上述方法。可以理解,该控制器也可以是独立控制器。储能系统中,每个电池包上集成有一个控制器,为电池管理系统中的控制器。除此之外,储能系统中还包括一个独立控制器,用于执行上述多电池包切换控制方法。
本申请实施方式还提供一种多电池包切换控制装置。图10示意性地示出了本申请实施例提供的多电池包切换控制装置的结构框图。如图10所示,多电池包切换控制装置1000包括:
第一关断模块1010,被配置为响应于放电切换指令,向第一电池包的充电开关管发送第一关断信号,放电指令用于指示将负载的供电电源从第一电池包切换为第二电池包。第一关断信号用于指示第一电池包的充电开关管关断。
第一导通模块1020,被配置为当检测到第一电池包的充电开关管处于关断状态时,向第二电池包的充电开关管和放电开关管发送第一导通信号。
第二关断模块1030,被配置为当检测到第二电池包的充电开关管和放电开关管均处于导通状态时,向第一电池包的放电开关管发送第二关断信号,第二关断信号用于指示所述第一电池包的放电开关管关断。
本申请各实施例中提供的多电池包切换控制装置实现多电池包切换控制方法的具体细节已经在对应的多电池包切换控制方法的实施例中进行了详细的描述,此处不再赘述。
本申请实施方式还提供一种计算机可读介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如以上技术方案中的多电池包切换控制方法。计算机可读介质可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本发明的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
上述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本发明操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
此外,上述附图仅是根据本发明示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
应当理解,以上仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种多电池包切换控制方法,所述方法包括:
    响应于放电切换指令,向第一电池包的充电开关管发送第一关断信号,所述放电指令用于指示将负载的供电电源从所述第一电池包切换为第二电池包;所述第一关断信号用于指示所述第一电池包的充电开关管关断,所述第二电池包为向负载供电的备选电池包中的一个;
    当检测到所述第一电池包的充电开关管处于关断状态时,向所述第二电池包的充电开关管和放电开关管发送第一导通信号,所述第一导通信号用于指示所述第二电池包的充电开关管和放电开关管导通;
    当检测到所述第二电池包的充电开关管和放电开关管均处于导通状态时,向所述第一电池包的放电开关管发送第二关断信号,所述第二关断信号用于指示所述第一电池包的放电开关管关断。
  2. 根据权利要求1所述的方法,其中,在向所述第二电池包的充电开关管和放电开关管发送第一导通信号之后,所述多电池包切换控制方法还包括:
    若检测到所述第二电池包的充电开关管和放电开关管均处于关断状态,且所述第一电池包的充电开关管的关断时长达到预设关断时长,则向所述第一电池包的充电开关管发送第二导通信号,所述第二导通信号用于指示以所述第一电池包的充电开关管导通;
    将放电切换失败次数增加一,所述放电切换失败次数记录从所述第一电池包切换为第二电池包的失败次数;
    若所述放电切换失败次数未达到预设次数,等待预设时长后再次响应所述放电切换指令;
    若所述放电切换失败次数达到所述预设次数,则禁止响应所述放电切换指令。
  3. 根据权利要求1所述的方法,其中,在检测到所述第一电池包的充电开关管处于关断状态之后,所述多电池包切换控制方法还包括:
    获取所述第一电池包的充电开关管的第一温度;
    当所述第一温度达到第一预设温度时,向所述第一电池包的充电开关管发送第二导通信号;所述第二导通信号用于指示以所述第一电池包的充电开关管导通;
    将放电切换失败次数增加一,所述放电切换失败次数记录从所述第一电池包切换为第二电池包的失败次数;
    若所述放电切换失败次数未达到预设次数,等待预设时长后再次响应所述放电切换指令;
    若所述放电切换失败次数达到所述预设次数,则禁止响应所述放电切换指令。
  4. 根据权利要求2或3所述的方法,其中,在禁止响应所述放电切换指令之后,所述多电池包切换控制方法还包括:
    若检测到电池包接入操作或电池包拔出操作,重置放电切换失败次数并恢复响应放电切换指令。
  5. 根据权利要求1所述的方法,其中,所述多电池包切换控制方法还包括:
    响应于充电切换指令,向第三电池包的放电开关管发送第三导通信号,所述第三导通信号用于指示所述第三电池包的放电开关管导通;所述充电切换指令用于指示将充电对象从当前的所述第四电池包切换为所述第三电池包所述第三电池包为待充电的备选电池包中的一个;
    当检测到所述第三电池包的放电开关管处于导通状态时,向所述第四电池包的充电开关管和放电开关管发送第三关断信号,所述第三关断信号用于指示所述第四电池包的充电开关管和放电开关管关断;
    当检测到所述第四电池包的充电开关管和放电开关管均处于关断状态时,向所述第三电池包的充电开关管发送第四导通信号,所述第四导通信号用于指示所述第三电池包的充电开关管导通。
  6. 根据权利要求5所述的方法,其中,在向所述第四电池包的充电开关管和放电开关管发送第三关断信号之后,所述方法还包括:
    若检测到第四电池包的充电开关管和放电开关管均处于导通状态,且所述第三电池包的放电开关管的导通时长达到预设导通时长,向所述第三电池包的放电开关管发送第四关断控制信号,所述第四关断控制信号用于指示所述第二电池包的放电开关管关断;
    将充电切换失败次数增加一,所述充电切换失败次数记录将充电对象从所述第四电池包切换为第三电池包的失败次数;
    若所述充电切换失败次数未达到预设次数,等待预设时长后再次响应所述充电切换指令;
    若所述充电切换失败次数达到所述预设次数时,则禁止响应所述充电切换指令。
  7. 根据权利要求5所述的方法,其中,在检测到所述第三电池包的放电开关管处于导通状态之后,所述方法还包括:
    获取所述第三电池包的充电开关管的第二温度;
    当所述第二温度达到第二预设温度时,向所述第三电池包的放电开关管发送第四关断控制信号,所述第四关断控制信号用于指示所述第二电池包的放电开关管关断;
    将充电切换失败次数增加一,所述充电切换失败次数记录将充电对象从所述第四电池包切换为第三电池包的失败次数;
    若所述充电切换失败次数未达到预设次数,等待预设时长后再次响应所述充电切换指令;
    若所述充电切换失败次数达到所述预设次数时,则禁止响应所述充电切换指令。
  8. 根据权利要求1所述的方法,其中,在响应于放电切换指令之前,所述方法还包括:
    若所述第二电池包的输出电压高于所述第一电池包的输出电压且所述第一电池包和所述第二电池包的输出电压差值高于第一预设电压差,生成放电切换指令。
  9. 一种多电池包切换控制方法,所述方法包括:
    响应于充电切换指令,向第二电池包的放电开关管发送第一导通信号,所述第一导通信号用于指示所述第二电池包的放电开关管导通;所述充电切换指令用于指示将充电对象从所述第一电池包切换为所述第二电池包,所述第二电池包为待充电的备选电池包中的一个;
    当检测到所述第二电池包的放电开关管处于导通状态时,向所述第一电池包的充电开关管和放电开关管发送关断信号,所述关断信号用于指示所述第一电池包的充电开关管和放电开关管关断;
    当检测到所述第一电池包的充电开关管和放电开关管均处于关断状态时,向所述第二电池包的充电开关管发送第二导通信号,所述第二导通信号用于指示所述第二电池包的充电开关管导通。
  10. 一种储能设备,所述储能设备包括并机端口、控制器以及电池包,所述并机端口用于与其他储能设备或者独立电池包连接;所述控制器用于执行上述权利要求1-9任意一项所述的多电池包切换控制方法。
PCT/CN2022/132142 2022-08-23 2022-11-16 多电池包切换控制方法以及储能设备 WO2024040757A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211016915.2 2022-08-23
CN202211016915.2A CN115276210A (zh) 2022-08-23 2022-08-23 多电池包切换控制方法、储能设备以及储能系统

Publications (1)

Publication Number Publication Date
WO2024040757A1 true WO2024040757A1 (zh) 2024-02-29

Family

ID=83751851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132142 WO2024040757A1 (zh) 2022-08-23 2022-11-16 多电池包切换控制方法以及储能设备

Country Status (2)

Country Link
CN (1) CN115276210A (zh)
WO (1) WO2024040757A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276210A (zh) * 2022-08-23 2022-11-01 深圳市正浩创新科技股份有限公司 多电池包切换控制方法、储能设备以及储能系统
CN115498747B (zh) * 2022-11-22 2023-03-24 广州疆海科技有限公司 储能并机设备和储能并机方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206932057U (zh) * 2017-04-17 2018-01-26 北京凌云智能科技有限公司 供电电路的切换系统
CN107947330A (zh) * 2017-12-28 2018-04-20 杭州创乐电子科技有限公司 多组电池供电自动切换装置及控制方法
CN108736562A (zh) * 2017-04-17 2018-11-02 北京凌云智能科技有限公司 电池切换的方法和装置以及供电电路的切换系统和方法
CN216121913U (zh) * 2021-10-09 2022-03-22 希姆通信息技术(上海)有限公司 双电池切换系统
CN114844172A (zh) * 2022-06-02 2022-08-02 新石器慧通(北京)科技有限公司 用于无人车的电池切换系统
CN115276210A (zh) * 2022-08-23 2022-11-01 深圳市正浩创新科技股份有限公司 多电池包切换控制方法、储能设备以及储能系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206932057U (zh) * 2017-04-17 2018-01-26 北京凌云智能科技有限公司 供电电路的切换系统
CN108736562A (zh) * 2017-04-17 2018-11-02 北京凌云智能科技有限公司 电池切换的方法和装置以及供电电路的切换系统和方法
CN107947330A (zh) * 2017-12-28 2018-04-20 杭州创乐电子科技有限公司 多组电池供电自动切换装置及控制方法
CN216121913U (zh) * 2021-10-09 2022-03-22 希姆通信息技术(上海)有限公司 双电池切换系统
CN114844172A (zh) * 2022-06-02 2022-08-02 新石器慧通(北京)科技有限公司 用于无人车的电池切换系统
CN115276210A (zh) * 2022-08-23 2022-11-01 深圳市正浩创新科技股份有限公司 多电池包切换控制方法、储能设备以及储能系统

Also Published As

Publication number Publication date
CN115276210A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024040757A1 (zh) 多电池包切换控制方法以及储能设备
US7932636B2 (en) Automatic start-up circuit and uninterruptible power supply apparatus having such automatic start-up circuit
EP3800760A1 (en) Power supply circuit of terminal device, terminal device and power supply method
JP6068366B2 (ja) 蓄電システム及び二次電池パックの制御方法
US8008807B2 (en) Uninterruptible power supply with low power loss
US20160118909A1 (en) Parallel inverter system, and shutdown control method and shutdown control device for parallel inverter system
JP5169186B2 (ja) 電源装置
EP2790292B1 (en) Temporary back-up power system and temporary back-up power method
EP4145669A1 (en) Charging/discharging circuit and electronic device
WO2020224467A1 (zh) 一种充电控制电路及电子设备
CN115347276A (zh) 电池模块加热控制方法及电子设备、存储介质
JP2008211860A (ja) 無停電電源装置及び無停電電源装置の制御方法
CN116345622A (zh) 开关管保护方法、电池包及储能系统
CN114649859B (zh) 一种可扩展的储能系统及其扩展方法
EP4075627A1 (en) Direct current distribution-based charging/discharging system for battery activation
JP2022526703A (ja) 逆極性保護電池モジュール
CN112731846B (zh) 一种锂电池激活控制装置
JP2015097444A (ja) 電圧制御装置、電圧制御方法、及び電圧制御システム
CN210867180U (zh) 一种bms电流保护信号锁存与复位电路
WO2024032368A1 (zh) 备电装置及其控制方法、存储介质
CN114204664B (zh) 电压源型变换器双电源自动转换电路及其转换控制方法
CN115498747B (zh) 储能并机设备和储能并机方法
Huang An innovative hybrid battery management system for telecom
CN218102615U (zh) 供电单元及智能锁
CN214850435U (zh) 断路器控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956292

Country of ref document: EP

Kind code of ref document: A1