WO2024040431A1 - 基于逆向设计的非对称合解波芯片 - Google Patents

基于逆向设计的非对称合解波芯片 Download PDF

Info

Publication number
WO2024040431A1
WO2024040431A1 PCT/CN2022/114224 CN2022114224W WO2024040431A1 WO 2024040431 A1 WO2024040431 A1 WO 2024040431A1 CN 2022114224 W CN2022114224 W CN 2022114224W WO 2024040431 A1 WO2024040431 A1 WO 2024040431A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
stage
wave
asymmetric
output
Prior art date
Application number
PCT/CN2022/114224
Other languages
English (en)
French (fr)
Inventor
蒋卫锋
孙小菡
单雪康
桂桑
迟荣华
王雷
李现勤
Original Assignee
南京曦光信息科技研究院有限公司
无锡市德科立光电子技术股份有限公司
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京曦光信息科技研究院有限公司, 无锡市德科立光电子技术股份有限公司, 东南大学 filed Critical 南京曦光信息科技研究院有限公司
Publication of WO2024040431A1 publication Critical patent/WO2024040431A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12085Integrated
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12164Multiplexing; Demultiplexing

Definitions

  • the invention discloses an asymmetric combined wave decoding chip based on reverse design, relates to optical communication and integrated optoelectronic device technology, and belongs to the technical field of optical components, systems or instruments.
  • CMOS complementary Metal Oxide Semiconductor
  • the purpose of the present invention is to provide an asymmetric wave combining and decoding chip based on reverse design in view of the shortcomings of the above background technology, and to achieve an asymmetric wave combining and decoding chip with ultra-high integration and stable performance through reverse design and silicon-based photonic integration technology.
  • to achieve the purpose of the invention of full-band transmittance or non-uniform wavelength spacing output improve signal transmission density, increase fiber utilization, extend transmission distance, and solve the problems of large size, poor stability, and poor wavelength expansion of thin-film asymmetric combined wave decoding chips. technical problem.
  • An asymmetric wave combining and decoding chip based on reverse design including: a first-stage asymmetric wave combining and decoding unit, and at least N second-stage symmetric wave combining and decoding units; the first asymmetric wave combining and decoding unit has an input waveguide and at least N +M output waveguides, a set of optical signals with different wavelengths are input from the input waveguide of the first-stage asymmetric combined wave decoding unit, and the N output waveguides of the first-stage asymmetric combined wave decoding unit respectively output a set of different but transparent wavelengths.
  • the optical signals with the same transmission rate are transmitted to a second symmetric wave combining and decoding unit.
  • the M output waveguides of the first-stage asymmetric wave combining and decoding unit respectively output one of the M optical signals with different transmittances, N and M. All are integers greater than or equal to 1.
  • one of the M output waveguides of the first-stage asymmetric wave combining and decoding unit is connected to the N+1 second-stage symmetric wave combining and decoding unit, and the M optical signals with different transmittances are At least two optical signals are transmitted through one of the M output waveguides of the first-stage asymmetric combined wave-decoding unit to the N+1-th input waveguide of the second-stage symmetric combined wave-decoding unit, and the N+1-th
  • the output waveguide of the two-level symmetric wave decomposition unit outputs at least two optical signals among the M optical signals with different transmittances.
  • At least one output waveguide among the N output waveguides of the first-stage asymmetric combined wave-decoding unit is connected to the input waveguide of the third-stage symmetric combined wave-decoding unit, and the N output waveguides of the first-stage asymmetric combined wave-decoding unit Part of the optical signals in a set of optical signals with different wavelengths but the same transmittance output by one of the output waveguides is transmitted to a third-stage symmetric wave combining and decoding unit, and the third-stage symmetric wave combining and decoding unit outputs wavelength division Part of a set of optical signals with different wavelengths but the same transmittance.
  • the functional areas inside the first-level asymmetric combined wave unit, the second-level symmetric combined wave unit and the third-level symmetric combined wave unit are designed based on the reverse design algorithm and are composed of sub-micron or nanometer-scale sub-units.
  • each sub-wavelength unit can be silicon dioxide or silicon, or silicon dioxide or doped silicon dioxide, corresponding to silicon on insulator (Silicon).
  • SOI silicon on insulator
  • SoS Silica-On-Silicon
  • FOM FOM(O 1 )+...+FOM(O m+p )+...+FOM(O m+p+q+1 )+FOM(O m+p+q+2 )+...FOM(O m+ p +q+r )+FOM(O m+p+q+s+1 )+...+FOM(O m+p+q+s+w ),
  • the FOM function is a MAX function established based on the minimum difference between the actual output light loss of each output waveguide of the combined wave unit and the target output light loss.
  • the actual output light loss of the output waveguide of the combined wave unit is the same as the output waveguide and input waveguide pair.
  • the ratio of the transmittance of the wavelength light signal is the same as the output waveguide and input waveguide pair.
  • each sub-wavelength unit is traversed, the size change of the FOM is calculated and compared, and the material type with a larger FOM is selectively retained; all sub-wavelength units are traversed through multiple iterations to give the optimal structure of the functional area.
  • the first-stage asymmetric wave combining and decoding unit can realize multi-wavelength asymmetric wave splitting with different losses.
  • the second-level symmetric wave combining and decoding unit and the third-level symmetric wave combining and decoding unit are both symmetric wave combining and decoding units, which can achieve uniform multi-wavelength and equal-loss wave splitting.
  • the sizes of the first-level asymmetric combined wave unit functional area, the second-level symmetric combined wave unit functional area and the third-level symmetric combined wave unit functional area are square micrometers or square millimeters. class.
  • the asymmetric combined wave decoding chip can realize multi-wavelength demultiplexing within the O+E+S+C+L band, and the number of wavelengths can be 6, 7, 8, 9, 10, 12, 16, 18 , 32, 48, 55, 64, 128, etc., the wavelength output characteristics are adjustable; the internal working mode of the chip can be the transverse electric mode or the transverse magnetic mode; the mode order can be the fundamental mode or the high-order mode.
  • the first-stage asymmetric combined wave unit and the second-stage symmetric combined wave unit are connected through an S-shaped curved waveguide, which can pass multiple wavelengths with low loss inside.
  • the input waveguides of the first-stage asymmetric wave combining unit, the second-stage symmetric wave combining unit and the third-stage symmetric wave combining unit are all arranged at the center position, and the output waveguides are evenly arranged.
  • the asymmetric combined wave decoding chip can be based on any one of the silicon-on-insulator, silicon-on-silicon, InP, GaAs, polymer, lithium niobate, diamond, and chalcogenide material platforms, using Semiconductor processes are used to batch-prepare asymmetric combined wave-decoding chips.
  • the asymmetric combined wave solution chip can be based on the reverse design of DBS algorithm, semi-constrained algorithm, particle swarm algorithm, level set method, density topology optimization, basic gradient algorithm, gradient descent algorithm and genetic algorithm, and deep learning.
  • the algorithm optimizes the structure of each combined wave unit functional area, which can achieve higher efficiency, smaller size and higher device performance design.
  • the asymmetric combined wave decoding chip of the present invention can cover the entire band (O+E+S+C+L band) in the optical communication system and realize energy non-balanced wavelength division in the entire band. Based on reverse design, the chip structure can be made Ultra-compact, adjustable output wavelength spacing, non-uniform transmittance of each wavelength, small channel spacing crosstalk, stable performance, and simple design.
  • the asymmetric combined wave decoding chip of the present invention has strong scalability and can realize arbitrary selection of two wavelengths to multiple wavelengths.
  • the simple evaluation function can realize the efficient optimal design of ultra-compact chip.
  • the cascade structure can realize the function of multi-channel and multi-wavelength asymmetric wave synthesis.
  • the asymmetric combined wave and decomposition chip of the present invention uses silicon material to prepare the combined wave unit functional area, and the proposed chip can be mass-produced based on mature semiconductor technology.
  • Figure 1 is a schematic diagram of the topological structure of the asymmetric combined wave decoding chip of the present invention.
  • Figure 2 is a schematic structural diagram of the asymmetric combined wave decoding chip in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of the first-stage asymmetric wave combining and decoding unit in Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of the second-stage symmetric wave combining and decoding unit 002 in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of the second-stage symmetric wave combining and decoding unit 006 in Embodiment 1 of the present invention.
  • Figure 6 is an output spectrum diagram of the asymmetric combined wave decoding chip in Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of the asymmetric combined wave decoding chip in Embodiment 2 of the present invention.
  • Figure 8 is an output spectrum diagram of the asymmetric combined wave decoding chip in Embodiment 2 of the present invention.
  • 001 is the first-level asymmetric combined wave unit
  • 002, 004, 005, 006, and 007 are the second-level symmetric combined wave units
  • 003 and 008 are the third-level symmetric combined wave unit
  • 101 It is the input waveguide of the first-level asymmetric combined wave unit
  • 102 is the functional area of the first-level asymmetric combined wave unit
  • 103 ⁇ 106 is the output waveguide of the first-stage asymmetric combined wave unit
  • 201 is the second-level symmetric combined wave unit.
  • the input waveguide of the demultiplexing unit 002, 202 is the functional area of the second-stage symmetrical decomposition unit 202
  • 203 ⁇ 206 are the output waveguides of the second-stage symmetrical decomposition unit 002
  • 601 is the second-stage symmetrical decomposition unit.
  • 006 is the input waveguide
  • 602 is the functional area of the second-stage symmetrical wave decomposition unit 006
  • 603 to 608 are the output waveguides of the second-stage symmetrical wave decomposition unit 006.
  • the n wavelength optical signals from ⁇ 1 to ⁇ n are divided into several groups of optical signals with uniform transmittance through the asymmetric wave decompression unit.
  • several groups of optical signals with uniform transmittance are output through a symmetric wave combining and decoding unit, and optical signals that are significantly different from the uniform transmittance are output from the asymmetric wave combining and decoding unit.
  • the output waveguides are output separately or the wavelengths are output after passing through the symmetric wave combining and decoding unit.
  • FIG. 1 The general topology of the asymmetric wave combining and decoding chip involved in the present invention is shown in Figure 1, including: the first-stage asymmetric wave combining and decoding unit 001, The second-level symmetric wave combining and decoding unit 002, the second-level symmetric wave combining and decoding unit 004, the second-level symmetric wave combining and decoding unit 005, the second-level symmetric wave combining and decoding unit 006, the second-level symmetric wave combining and decoding unit 007, The third-level symmetrical combined wave unit 003 and the third-level symmetrical combined wave unit 008.
  • Optical signals with n wavelengths from ⁇ 1 to ⁇ n are input from the input waveguide of the first-stage asymmetric wave combining unit 001, the second-stage symmetric wave combining unit 002, the second-stage symmetric wave combining unit 004, and the second-stage symmetric wave combining unit 004.
  • the input waveguides of the first-stage symmetric wave combining unit 006 and the second-stage symmetric wave combining unit 007 are respectively connected to one output waveguide of the first-stage asymmetric wave combining unit 001.
  • the second-stage symmetric wave combining unit 002 and the second-stage symmetric wave combining unit 001 respectively output a set of optical signals with different wavelengths but the same transmittance, for example, the wavelengths are ⁇ 1 , ⁇ 2.
  • a set of optical signals of... ⁇ m is transmitted to the second-stage symmetric combined wave decomposition unit 002 through the first output waveguide O 1 of the first-stage asymmetric combined wave decomposition unit 001, with the wavelengths ⁇ m+p , ⁇ m+
  • a set of optical signals p+1 ,... ⁇ m+p+q is transmitted to the second-stage symmetrical combined wave decoding unit 004 through the m+p-th output waveguide O m+p of the first-stage asymmetric combined wave-decoding unit 001.
  • a set of optical signals with wavelengths ⁇ m+p+q+s+1 , ⁇ m+p+q+s+2 ,... ⁇ m+p+q+s+t passes through the first-stage asymmetric combined wave decoding unit
  • the m+p+q+s+1 output waveguide O m+p+q+s+1 of 001 is transmitted to the second-stage symmetrical combined wave decoding unit 006, with a wavelength of ⁇ m+p+q+s+t+w , ⁇ m+p+q+s+t+w+1 ,... ⁇ nv , ⁇ n-v+1 ,... ⁇ n
  • a set of optical signals passes through the m+ of the first-stage asymmetric wave decomposition unit 001 p+q+s+w output waveguide O m+p+q+s+w is transmitted to the second-stage symmetric wave combining and decoding unit 007; the optical signals of other wavelengths pass through other paths of the first-stage asymmetric
  • the optical signal with a wavelength of ⁇ m+p+q+1 is processed by the first-stage asymmetric wave decomposition unit 001.
  • the m+p+q+1 output waveguide O m+p+q+1 directly outputs, and the optical signal with wavelength ⁇ m+p+q+2 passes through the m+p of the first-stage asymmetric combined wave decoding unit 001.
  • a fourth-level symmetric wave combining unit is connected after the third-level symmetric wave combining unit.
  • the asymmetric wave combining unit and the symmetric wave combining unit Through the cascade structure of the asymmetric wave combining unit and the symmetric wave combining unit, multi-channel and multi-wavelength asymmetry can be realized. Combined solution wave.
  • each functional area has a rectangular structure and multiple sub-wavelength units are introduced inside.
  • the material of each sub-wavelength unit can be silicon dioxide or silicon, or silicon dioxide or doped silicon dioxide, corresponding to silicon on insulator (Silicon on Insulator). -On-Insulator (SOI) platform and Silica-On-Silicon (SoS) platform.
  • the material types of each sub-wavelength unit in the first-level asymmetric combined wave unit are randomly set; then, the evaluation function FOM of the first-level asymmetric combined wave unit is given; then, with the goal of maximizing FOM, the first-level asymmetric combined wave unit is traversed
  • the sub-wavelength unit of the first-level asymmetric combined wave unit select the material type of each sub-wavelength unit when the FOM is maximized.
  • the design of the functional areas of the second-stage symmetric wave combining and decoding unit and the third-stage symmetric wave combining and decoding unit is the same as the design idea of the first-stage asymmetric wave combining and decoding unit, and will not be described in detail in the present invention.
  • FOM(O 1 ) is the transmittance of the first output waveguide O 1 of the first-stage asymmetric wave decomposition unit to a set of optical signals with wavelengths ⁇ 1 , ⁇ 2 ,... ⁇ m
  • the evaluation function of is the transmittance of the input waveguide of the first-stage asymmetric combined wave unit to a set of optical signals with wavelengths ⁇ 1 , ⁇ 2 ,... ⁇ m
  • FOM (O m+p ) is the m+p output waveguide O m+ of the first-stage asymmetric combined wave unit
  • the evaluation function of is the transmittance of the input waveguide of the first-stage asymmetric combined wave unit to a set of optical signals with wavelengths ⁇ m
  • the transmittance of m+p+q+1 output waveguide O m+p+q+1 to the optical signal with wavelength ⁇ m+p+q+1 is the target output optical loss of the m+p+q+1th output waveguide O m+p+q+1 of the first-stage asymmetric combined wave unit;
  • FOM(O m+p+q+2 ) is the first-stage
  • the evaluation function of is the transmittance of the input waveguide of the first-stage asymmetric combined wave unit to the optical signal with wavelength ⁇ m+p+q+2 , is the target output optical loss of the m+p+q+2 output waveguide O m+
  • Embodiment 1 Asymmetric combined wave decoding chip that realizes non-uniform output of signal transmittance of 12 wavelengths in the O+E+S+C+L band
  • this embodiment provides an asymmetric combined wave decoding chip, which realizes a total of 12 wavelengths from ⁇ 1 to ⁇ 12 in the O+E+S+C+L band.
  • the output spectrum of a set of optical signals with wavelengths ⁇ 1 , ⁇ 2 , ... ⁇ 12 is shown in Figure 6. From Figure 6, it can be seen that there are a total of 4 wavelength optical signals with wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4
  • the output losses of the optical signals with wavelengths of ⁇ 7 , ⁇ 8 , ⁇ 9 , ⁇ 10 , ⁇ 11 , and ⁇ 12 are all 2.5dB.
  • the output losses of the optical signals with wavelengths of ⁇ 5 and ⁇ 6 are all 2.5dB.
  • the output losses are 0.9dB and 0.6dB respectively.
  • the first-stage asymmetric wave decoding unit is used to divide a group of optical signal waves with wavelengths ⁇ 1 , ⁇ 2 ,... ⁇ 12 into four groups of signals and output them.
  • For the wavelength ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 optical signals, and optical signals with wavelengths ⁇ 7 , ⁇ 8 , ⁇ 9 , ⁇ 10 , ⁇ 11 , ⁇ 12 are processed separately using two second-stage symmetric wave decomposition units.
  • the optical signals with wavelengths of ⁇ 5 and ⁇ 6 are directly output through an output waveguide of the first-stage asymmetric wave decomposition unit, realizing an optical signal with wavelengths of ⁇ 1 , ⁇ 2 ,... ⁇ 12
  • the specific structure of the asymmetric wave decoding chip that combines non-uniform optical signal transmittance output is shown in Figure 2.
  • the asymmetric combined wave decoding chip that realizes the non-uniform output of a set of optical signal transmittances with wavelengths ⁇ 1 , ⁇ 2 , ... ⁇ 12 includes: the first-stage asymmetric combined wave decoding unit 001, The second-level symmetrical combined wave unit 002, the second-level symmetrical combined wave unit 006, the first-level asymmetric combined wave unit 001 and the second-level symmetric combined wave unit 002 are connected through an S-shaped waveguide.
  • the symmetric wave combining and decoding unit 001 and the second-stage symmetric wave combining and decoding unit 006 are connected through an S-shaped waveguide;
  • the proposed asymmetric wave combining and decoding chip is constructed by silicon-based photonic integration technology and includes silicon substrates stacked sequentially from bottom to top. , silicon dioxide lower cladding, silicon core layer and silicon dioxide upper cladding layer.
  • the first-stage asymmetric wave combining unit and the second-stage symmetric wave combining unit are located in the core layer.
  • the input waveguide 101 of the first-stage asymmetric combined wave-decoding unit is located at the left center position of the functional area 102 of the first-stage asymmetric combined wave-decoding unit, and the output waveguides 103, 104, 105, and 106 are evenly arranged on the right side of the first-level asymmetric combined wave unit functional area 102.
  • the input waveguide 101 of the first-stage asymmetric wave decomposition unit inputs optical signals of a total of 12 wavelengths from ⁇ 1 to ⁇ 12
  • the output waveguide 103 of the first-stage asymmetric wave decomposition unit outputs a total of 4 wavelengths of ⁇ 1 to ⁇ 4 .
  • the output waveguide 104 of the first-stage asymmetric combined wave unit outputs an optical signal with a wavelength of ⁇ 5
  • the output waveguide 105 of the first-stage asymmetric combined wave unit outputs an optical signal with a wavelength of ⁇ 6.
  • the first-stage asymmetric unit outputs an optical signal with a wavelength of ⁇ 5
  • the output waveguide 106 of the combined wave unit outputs a total of 6 wavelengths of optical signals from ⁇ 7 to ⁇ 12.
  • the output optical losses of the first-stage asymmetric combined wave unit output waveguides 103, 104, 105 and 106 are different.
  • the first-stage asymmetric wave combining and decomposing unit functional area 102 is optimized and designed based on the DBS algorithm.
  • FOM is defined as the difference between the actual output light loss and the target output light loss of the output waveguides 103, 104, 105 and 106 of the first-stage asymmetric wave combining and decomposing unit.
  • the minimum value of the MAX function; the material of each sub-wavelength unit in the first-level asymmetric combined wave unit functional area 102 is silicon dioxide or silicon, corresponding to the silicon-on-insulator platform.
  • the optimal structure of the first-level asymmetric combined wave unit functional area 102 is given, with a size of 2 ⁇ 4 ⁇ m 2 .
  • the input waveguide 201 of the second-stage symmetrical combined wave decoding unit is located at the left center position of the functional area 202 of the second-stage symmetrical combined wave-decoding unit, and the output waveguides 203, 204, and 205 of the second-stage symmetrical combined wave-decoding unit , 206 are evenly arranged on the right side of the functional area 202 of the second-stage symmetrical combined wave decoding unit.
  • the input waveguide 201 of the second-stage symmetric wave decomposition unit inputs optical signals with a total of four wavelengths from ⁇ 1 to ⁇ 4.
  • the output waveguide 203 of the second-stage symmetric wave decomposition unit outputs an optical signal with a wavelength of ⁇ 1 .
  • the output waveguide 204 of the wave decoding unit outputs an optical signal with a wavelength of ⁇ 2
  • the output waveguide 205 of the second-stage symmetric wave decoding unit outputs an optical signal with a wavelength of ⁇ 3
  • the output waveguide 206 of the second-stage symmetric wave decoding unit outputs a wavelength of ⁇ . 4 optical signal
  • the output optical losses of the second-stage symmetric wave decomposition unit output waveguides 203, 204, 205 and 206 are the same.
  • the functional area 202 of the second-stage symmetric wave combining and decoding unit is optimized and designed based on the DBS algorithm.
  • the FOM is defined as the difference between the actual output light loss and the target output light loss of the output waveguides 203, 204, 205 and 206 of the second-stage symmetric wave combining and decoding unit.
  • the MAX function with the smallest value, the material of each sub-wavelength unit in the second-level symmetrical combined wave unit functional area 202 is silicon dioxide or silicon, corresponding to the silicon-on-insulator platform.
  • the material type of the unit gives the optimal structure of the functional area of the second-level symmetrical decomposition unit 002, with a size of 1.5 ⁇ 4 ⁇ m 2 .
  • the input waveguide 601 of the second-stage symmetric wave combining and decoding unit is located at the left center of the functional area 602 of the second-stage symmetric wave combining and decoding unit 006, and the output waveguide 603 of the second-stage symmetric wave combining and decoding unit 006 , 604, 605, 606, 607, and 608 are evenly arranged on the right side of the functional area 602 of the second-stage symmetric wave combining and decoding unit 006.
  • the input waveguide 601 of the second-stage symmetric wave decomposition unit 006 inputs optical signals with a total of 6 wavelengths from ⁇ 7 to ⁇ 12 , and the output waveguide 603 of the second-stage symmetric wave decomposition unit 006 outputs an optical signal with a wavelength of ⁇ 7 .
  • the output waveguide 604 of the second-stage symmetric wave decomposition unit outputs an optical signal with a wavelength of ⁇ 8
  • the output waveguide 605 of the second-stage symmetric wave decomposition unit 006 outputs an optical signal with a wavelength of ⁇ 9.
  • the second-stage symmetric wave decomposition unit outputs an optical signal with a wavelength of ⁇ 9 .
  • the output waveguide 606 of 006 outputs an optical signal with a wavelength of ⁇ 10
  • the output waveguide 607 of the second-stage symmetric wave decomposition unit 006 outputs an optical signal with a wavelength of ⁇ 11
  • the output waveguide 608 of the second-stage symmetric wave decomposition unit 006 outputs
  • the output optical losses of the output waveguides 603 to 608 of the second-stage symmetric wave decomposition unit 006 are the same.
  • the functional area 602 of the second-stage symmetrical synthesis unit 006 is optimized and designed based on the DBS algorithm; FOM is defined as the MAX function that minimizes the difference between the actual output light loss and the target output light loss of the output waveguides 603 to 608; the second-stage symmetrical synthesis
  • the material of each sub-wavelength unit in the functional area 602 of the dewavelength unit 006 is silicon dioxide or silicon, corresponding to a silicon-on-insulator platform.
  • the material type of the unit gives the optimal structure of the functional area of the second-level symmetrical decomposition unit 006, with a size of 2 ⁇ 5 ⁇ m 2 .
  • Embodiment 2 Asymmetric combined wave decoding chip that realizes non-uniform output of signal transmittance of 6 wavelengths in the O+E band
  • this embodiment provides an asymmetric combined wave decoding chip based on reverse design to achieve asymmetric combined wave decoding with transmittance of a total of 6 wavelengths from ⁇ 1 to ⁇ 6 .
  • the wavelengths corresponding to ⁇ 1 to ⁇ 6 are 1271nm, 1291nm, 1311nm, 1331nm, 1351nm and 1371nm respectively.
  • the output spectrum of a set of optical signals with wavelengths ⁇ 1 , ⁇ 2 , ... ⁇ 6 is shown in Figure 8. From Figure 8, it can be seen that the output loss of a total of 4 wavelengths ⁇ 1 to ⁇ 4 is 1.5dB, ⁇ 5 and The output losses at ⁇ 6 wavelengths are 0.6dB and 0.3dB respectively.
  • the first-stage asymmetric wave decomposition unit is used to divide a group of optical signal waves with wavelengths ⁇ 1 , ⁇ 2 , ... ⁇ 6 into three groups of signals and then output them.
  • the optical signals of wavelengths ⁇ 5 and ⁇ 6 are output directly through an output waveguide of the first-stage asymmetric wave decomposition unit.
  • the specific structure of the asymmetric combined wave-decoding chip that realizes non-uniform output of a set of optical signal transmittances with wavelengths ⁇ 1 , ⁇ 2 ,... ⁇ 6 is shown in Figure 7 .
  • the same reverse design as in Embodiment 1 is used to optimize the first-stage asymmetric wave combining and decoding unit.
  • the optimized size of the first-level asymmetric wave combining unit 001 is 2 ⁇ 3 ⁇ m 2
  • the optimized size of the second-level symmetric wave combining unit 002 is 1.5 ⁇ 4 ⁇ m 2 .
  • the present invention provides an asymmetric combined wave decoding chip based on reverse design, which can realize non-uniform power in the whole band and non-equidistant wavelength interval output.
  • the chip structure size is ultra-small, the performance is stable, and crosstalk is low; the wavelength and channel scalability are strong, and multiple wavelength multiplexing can be achieved.
  • the preparation materials of the asymmetric combined wave chip can be expanded to other materials (including but not limited to silicon on insulator, silicon dioxide on silicon, InP, GaAs, polymer, lithium niobate, diamond, chalcogenide and other materials). What the present invention demonstrates is the wave decomposition function of 12 wavelengths. Based on this structure, the wave combining function can also be realized.
  • the reverse design algorithm shown in the present invention is only the DBS algorithm, and can be extended according to the present invention to reverse design based on semi-constrained algorithm, particle swarm algorithm, level set method, density topology optimization, basic gradient algorithm, gradient descent algorithm and genetic algorithm, and deep learning. Design algorithms, etc.
  • the present invention only shows the chip structure of 12 and 6 wavelength levels. According to the present invention, the chip structure can be expanded from 12 wavelengths to more wavelength levels to achieve richer asymmetric wave decomposition effects.
  • the invention has simple design, mature manufacturing process, and is compatible with the CMOS manufacturing process, and has broad application prospects in optical communication wavelength division multiplexing systems.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

基于逆向设计的非对称合解波芯片,属于光学元件、系统或仪器技术领域。芯片包括第一级非对称合解波单元(001)、第二级对称合解波单元(002、004、005、006、007);非对称合解波芯片由硅基光子集成技术构建,包含由下至上依次层叠的衬底、下包层、芯层及上包层;第一级非对称合解波单元(001)、第二级对称合解波单元(002、004、005、006、007)内部的功能区基于逆向设计算法设计,由亚微米或纳米量级的亚单元构成。非对称合解波芯片可以覆盖光通信系统中的全波段,实现全波段能量非均匀波分;非对称合解波芯片结构超紧凑,波长间隔可调,每个波长的透过率非均匀,信道间隔串扰小,性能稳定,设计简单,可基于成熟半导体工艺大规模批量化制备。

Description

基于逆向设计的非对称合解波芯片 技术领域
本发明公开基于逆向设计的非对称合解波芯片,涉及光通信和集成光电子器件技术,属于光学元件、系统或仪器技术领域。
背景技术
随着互联网高清数据流的剧增,用户终端对通信容量的需求呈现极大的增长趋势。过去几十年,光通信系统为通信容量的提高做出重要贡献。波分复用(Wavelength Division Multiplexing,WDM)技术的发明和广泛商用满足了人们对数据流量的需求。传统WDM系统所用的波段集中在C波段,难以满足未来通信需求。为进一步增加系统容量,光通信系统必将可用波段拓展至O+E+S+C+L波段,实现全波段波分复用技术方案。
为构建全波段波分复用系统,需要研究对应的全波段合解波芯片。传统的合解波芯片一般局限于C波段,难以覆盖O+E+S+L波段。由于光纤内部“水峰”的存在,光纤传输损耗在O+E+S+C+L波段不均匀且非线性,尤其在E波段存在高传输损耗“水峰”。为实现输出波导透过率非均匀的合解波功能,需要提出全波段非对称合解波技术,针对每个波长精细调节其输出特性,实现全波段非均匀输出。
目前,非对称合解波技术绝大部分基于薄膜型器件,体积较大、稳定性差、波长拓展性较差。为进一步提高非对称合解波性能,基于光子集成技术的非对称合解波芯片成为新选择。硅基光子集成芯片具有高光电性能且尺寸紧凑、成本低,并且与互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)制造工艺相兼容。但是硅基光子集成技术存在的色散问题,限制了高性能非对称合解波芯片的实现。传统基于正向设计的硅基光子集成技术受制于其结构原理,无法实现超小型大规模光电子器件。
近几年,基于逆向设计的光子集成器件相继被提出,可以实现更高集成度的波分复用器件、超紧凑谐振腔、模式复用器件。但是目前逆向设计的光子集成器件通道数目一般较少,无法实现多通道非对称合解波功能。因此,确有必要提出新型基于逆向设计的非对称合解波芯片以解决上述问题。
发明内容
本发明的发明目的是针对上述背景技术的不足,提供基于逆向设计的非对称 合解波芯片,通过逆向设计和硅基光子集成技术,实现超高集成度和性能稳定的非对称合解波芯片,实现全波段透过率或波长间隔非均匀输出的发明目的,提高信号传输密度,增加光纤利用率,延长传输距离,解决薄膜型非对称合解波芯片体积大、稳定性差、波长拓展性差的技术问题。
本发明为实现上述发明目的采用如下技术方案:
基于逆向设计的非对称合解波芯片,包括:第一级非对称合解波单元、至少N个第二级对称合解波单元;第一非对称合解波单元具有一个输入波导和至少N+M个输出波导,不同波长的一组光信号从第一级非对称合解波单元的输入波导输入,第一级非对称合解波单元的N个输出波导分别输出一组波长不同但透过率相同的光信号至一个第二对称合解波单元,第一级非对称合解波单元的M个输出波导分别输出透过率不同的M个光信号中的一个光信号,N和M均为大于或等于1的整数。
可选地,第一级非对称合解波单元的M个输出波导中的一个输出波导接有第N+1个第二级对称合解波单元,透过率不同的M个光信号中的至少两个光信号经第一级非对称合解波单元的M个输出波导中的一个输出波导传输至第N+1个第二级对称合解波单元的输入波导,第N+1个第二级对称合解波单元的输出波导波分输出透过率不同的M个光信号中的至少两个光信号。
可选地,第一级非对称合解波单元的N个输出波导中的至少一个输出波导与第三级对称合解波单元的输入波导连接,第一级非对称合解波单元的N个输出波导中一个输出波导输出的一组波长不同但透过率相同的光信号中的部分光信号传输至一个第三级对称合解波单元,所述第三级对称合解波单元波分输出一组波长不同但透过率相同的光信号中的部分光信号。
第一级非对称合解波单元、第二级对称合解波单元和第三级对称合解波单元内部的功能区基于逆向设计算法设计,由亚微米或纳米量级的亚单元构成。
利用逆向设计算法,如直接二进制算法(Direct Binary Search,DBS)对第一级非对称合解波单元功能区、第二级对称合解波单元功能区、第三级对称合解波单元功能区优化设计。三个功能区为矩形且内部引入多个亚波长单元,每个亚波长单元的材料可以是二氧化硅或硅,也可以是二氧化硅或掺杂二氧化硅,分别对应绝缘体上硅(Silicon-On-Insulator,SOI)平台和硅上二氧化硅(Silica-On-Silicon,SoS)平台。首先,随机设置亚波长单元材料种类;然后给 出其FOM,如下:
FOM=FOM(O 1)+…+FOM(O m+p)+…+FOM(O m+p+q+1)+FOM(O m+p+q+2)+…FOM(O m+p +q+r)+FOM(O m+p+q+s+1)+…+FOM(O m+p+q+s+w),
其中:
Figure PCTCN2022114224-appb-000001
Figure PCTCN2022114224-appb-000002
Figure PCTCN2022114224-appb-000003
Figure PCTCN2022114224-appb-000004
Figure PCTCN2022114224-appb-000005
Figure PCTCN2022114224-appb-000006
Figure PCTCN2022114224-appb-000007
FOM函数是根据合解波单元各输出波导的实际输出光损耗与目标输出光损耗差值最小为目标建立的MAX函数,合解波单元输出波导实际输出光损耗通过为输出波导、输入波导对相同波长光信号的透光率之比。
接着,进而遍历每一个亚波长单元,计算并比较FOM的大小变化,选择性保留FOM较大的材料类型;通过多次迭代遍历全部亚波长单元,给出功能区最佳结构。
作为本发明的进一步改进,第一级非对称合解波单元可实现多波长非对称、不同损耗分波。第二级对称合解波单元和第三级对称合解波单元均为对称合解波单元,可实现多波长均匀、等损耗分波。
作为本发明的进一步改进,第一级非对称合解波单元功能区、第二级对称合解波单元功能区和第三级对称合解波单元功能区的尺寸均为平方微米或平方毫米量级。
作为本发明的进一步改进,非对称合解波芯片可实现O+E+S+C+L波段内部多波长分波,波长数目可以为6、7、8、9、10、12、16、18、32、48、55、64、128等,波长输出特性可调;该芯片内部工作模式可以为横电模,也可以为横磁模;模阶数可以为基模,也可以为高阶模。
作为本发明的进一步改进,第一级非对称合解波单元与第二级对称合解波单元通过S型弯曲波导连接,其内部可低损耗通过多种波长。
作为本发明的进一步改进,第一级非对称合解波单元、第二级对称合解波单元和第三级对称合解波单元的输入波导均设置于中心位置,输出波导均匀排布。
作为本发明的进一步改进,非对称合解波芯片可基于绝缘体上硅、硅上二氧化硅、InP、GaAs、聚合物、铌酸锂、金刚石、硫系材料平台中的任意一种平台, 采用半导体工艺批量制备非对称合解波芯片。
作为本发明的进一步改进,非对称合解波芯片可基于DBS算法、半约束算法、粒子群算法、水平集方法、密度拓扑优化、基本梯度算法、梯度下降算法与遗传算法、深度学习的逆向设计算法优化各合解波单元功能区的结构,可实现更高效率、更小尺寸和更高器件性能的设计。
本发明采用上述技术方案,具有以下有益效果:
(1)本发明的非对称合解波芯片可以覆盖光通信系统中的全波段(O+E+S+C+L波段),实现全波段能量非均衡波分,基于逆向设计可使得芯片结构超紧凑,输出波长间隔可调,每个波长的透过率非均匀,信道间隔串扰小,性能稳定,设计简单。
(2)本发明的非对称合解波芯片扩展性强,可实现两波长至多波长的任意选择,设计简单的评价函数能够实现超紧凑芯片的高效优化设计,通过非对称和对称合解波单元级联结构可实现多通道多波长非对称合解波的功能。
(3)本发明的非对称合解波芯片采用硅材料制备合解波单元功能区,能够基于成熟的半导体工艺大规模批量化制备所提出的芯片。
附图说明
图1是本发明非对称合解波芯片的拓扑结构示意图。
图2是本发明实施例1中非对称合解波芯片的具体结构示意图。
图3是本发明实施例1中第一级非对称合解波单元的结构示意图。
图4是本发明实施例1中第二级对称合解波单元002的结构示意图。
图5是本发明实施例1中第二级对称合解波单元006的结构示意图。
图6是本发明实施例1中非对称合解波芯片的输出波谱图。
图7是本发明实施例2中非对称合解波芯片的具体结构示意图。
图8是本发明实施例2中非对称合解波芯片的输出波谱图。
图中标号说明:001为第一级非对称合解波单元,002、004、005、006、007为第二级对称合解波单元,003、008为第三级对称合解波单元,101为第一级非对称合解波单元输入波导,102为第一级非对称合解波单元功能区,103~106为第一级非对称合解波单元输出波导,201为第二级对称合解波单元002的输入波导,202为第二级对称合解波单元202的功能区,203~206为第二级对称合解波单元002的输出波导,601为第二级对称合解波单元006的输入波导,602为第 二级对称合解波单元006的功能区,603~608为第二级对称合解波单元006的输出波导。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
根据输出波导对λ 1至λ n共n个波长光信号的透过率,通过非对称合解波单元将λ 1至λ n共n个波长光信号分为透过率均匀的若干组光信号以及与均匀透过率差别较大的光信号,透过率均匀的若干组光信号分别经一个对称合解波单元输出,与均匀透过率差别较大的光信号从非对称合解波单元的输出波导分别输出或经对称合解波单元后波分输出,则本发明涉及的非对称合解波芯片的通用拓扑如图1所示,包括:第一级非对称合解波单元001、第二级对称合解波单元002、第二级对称合解波单元004、第二级对称合解波单元005、第二级对称合解波单元006、第二级对称合解波单元007、第三级对称合解波单元003、第三级对称合解波单元008。λ 1至λ n共n个波长的光信号从第一级非对称合解波单元001的输入波导输入,第二级对称合解波单元002、第二级对称合解波单元004、第二级对称合解波单元006、第二级对称合解波单元007的输入波导分别与第一级非对称合解波单元001的一路输出波导连接,第二级对称合解波单元002、第二级对称合解波单元004、第二级对称合解波单元006、第二级对称合解波单元007分别输出一组波长不同但透光率相同的光信号,例如,波长为λ 1、λ 2、…λ m的一组光信号经第一级非对称合解波单元001的第1输出波导O 1传输至第二级对称合解波单元002,波长为λ m+p、λ m+p+1、…λ m+p+q的一组光信号经第一级非对称合解波单元001的第m+p输出波导O m+p传输至第二级对称合解波单元004,波长为λ m+p+q+s+1、λ m+p+q+s+2、…λ m+p+q+s+t的一组光信号经第一级非对称合解波单元001的第m+p+q+s+1输出波导O m+p+q+s+1传输至第二级对称合解波单元006,波长为λ m+p+q+s+t+w、λ m+p+q+s+t+w+1、…λ n-v、λ n-v+1、…λ n的一组光信号经第一级非对称合解波单元001的第m+p+q+s+w输出波导O m+p+q+s+w传输至第二级对称合解波单元007;其余波长的光信号经第一级非对称合解波单元001的其它路输出波导分别输出或送入第二级对称合解波单元005波分处理后分别输出,例如,波长为λ m+p+q+1的光信号经第一级非对称合解波单元001的第m+p+q+1输出波导O m+p+q+1直接输出,波长为λ m+p+q+2的光信号经第一级非对称合解波单元001的第m+p+q+2 输出波导O m+p+q+2直接输出,波长为λ m+p+q+r、λ m+p+q+r+1、…λ m+p+q+s的一组光信号经第一级非对称合解波单元001的第m+p+q+r输出波导O m+p+q+r传输至第二级对称合解波单元005;第二级对称合解波单元002和第二级对称合解波单元007之后分别接有第三级合解波单元003、第三级合解波单元008,波长为λ 1、λ 2、…λ c的一组光信号经第三级合解波单元003波分输出,波长为λ n-v、λ n-v+1、…λ n的一组光信号经第三级合解波单元008波分输出。可选地,在第三级对称合解波单元之后接有第四级对称合解波单元,通过非对称合解波单元和对称合解波单元级联的结构可实现多通道多波长非对称合解波。
在确定如图1所示的非对称合解波芯片通用拓扑后,需要通过直接二进制算法(Direct Binary Search,DBS)等逆向设计算法对第一级非对称合解波单元功能区、第二级对称合解波单元功能区、第三级对称合解波单元功能区优化设计。各功能区为矩形结构且内部引入多个亚波长单元,每个亚波长单元的材料可以是二氧化硅或硅,也可以是二氧化硅或掺杂二氧化硅,分别对应绝缘体上硅(Silicon-On-Insulator,SOI)平台和硅上二氧化硅(Silica-On-Silicon,SoS)平台。
首先,随机设置第一级非对称合解波单元中各亚波长单元的材料种类;然后,给出第一级非对称合解波单元的评价函数FOM;接着以FOM最大化为目标,遍历第一级非对称合解波单元的亚波长单元,选择FOM最大化时各亚波长单元的材料类型。第二级对称合解波单元以及第三级对称合解波单元功能区的设计与第一级非对称合解波单元的设计思路相同,本发明不再赘述。
第一级非对称合解波单元的评价函数FOM为:FOM=FOM(O 1)+…+FOM(O m+p)+…+FOM(O m+p+q+1)+FOM(O m+p+q+2)+…FOM(O m+p +q+r)+FOM(O m+p+q+s+1)+…+FOM(O m+p+q+s+w),
Figure PCTCN2022114224-appb-000008
Figure PCTCN2022114224-appb-000009
Figure PCTCN2022114224-appb-000010
Figure PCTCN2022114224-appb-000011
Figure PCTCN2022114224-appb-000012
Figure PCTCN2022114224-appb-000013
Figure PCTCN2022114224-appb-000014
其中,FOM(O 1)为第一级非对称合解波单元的第1输出波导O 1对波长为λ 1、λ 2、…λ m的一组光信号的透过率
Figure PCTCN2022114224-appb-000015
的评价函数,
Figure PCTCN2022114224-appb-000016
Figure PCTCN2022114224-appb-000017
为第一级非对称合解波单元的输入波导对波长为λ 1、λ 2、…λ m的一组光信号的透过率,
Figure PCTCN2022114224-appb-000018
为第一级非对称合解波单元的第1输出波导O 1的目标输 出光损耗;FOM(O m+p)为第一级非对称合解波单元的第m+p输出波导O m+p对波长为λ m+p、λ m+p+1、…λ m+p+q的一组光信号的透过率
Figure PCTCN2022114224-appb-000019
的评价函数,
Figure PCTCN2022114224-appb-000020
为第一级非对称合解波单元的输入波导对波长为λ m+p、λ m+p+1、…λ m+p+q的一组光信号的透过率,
Figure PCTCN2022114224-appb-000021
为第一级非对称合解波单元的第m+p输出波导O m+p的目标输出光损耗;FOM(O m+p+q+1)为第一级非对称合解波单元的第m+p+q+1输出波导O m+p+q+1对波长为λ m+p+q+1的光信号的透过率
Figure PCTCN2022114224-appb-000022
的评价函数,
Figure PCTCN2022114224-appb-000023
为第一级非对称合解波单元的输入波导对波长为λ m+p+q+1的光信号的透过率,
Figure PCTCN2022114224-appb-000024
为第一级非对称合解波单元的第m+p+q+1输出波导O m+p+q+1的目标输出光损耗;FOM(O m+p+q+2)为第一级非对称合解波单元的第m+p+q+2输出波导O m+p+q+2对波长为λ m+p+q+2的光信号的透过率
Figure PCTCN2022114224-appb-000025
的评价函数,
Figure PCTCN2022114224-appb-000026
为第一级非对称合解波单元的输入波导对波长为λ m+p+q+2的光信号的透过率,
Figure PCTCN2022114224-appb-000027
为第一级非对称合解波单元的第m+p+q+2输出波导O m+p+q+2的目标输出光损耗;FOM(O m+p+q+r)为第一级非对称合解波单元的第m+p+q+r输出波导O m+p+q+r对波长为λ m+p+q+r、λ m+p+q+r+1、…λ m+p+q+s的一组光信号的透过率
Figure PCTCN2022114224-appb-000028
的评价函数,
Figure PCTCN2022114224-appb-000029
Figure PCTCN2022114224-appb-000030
为第一级非对称合解波单元的输入波导对波长为λ m+p+q+r、λ m+p+q+r+1、…λ m+p+q+s的一组光信号的透过率,
Figure PCTCN2022114224-appb-000031
为第一级非对称合解波单元的第m+p+q+r输出波导O m+p+q+r的目标输出光损耗;FOM(O m+p+q+s+1)为第一级非对称合解波单元的第m+p+q+s+1输出波导O m+p+q+s+1对波长为λ m+p+q+s+1、λ m+p+q+s+2、…λ m+p+q+s+t的一组光信号的透过率
Figure PCTCN2022114224-appb-000032
Figure PCTCN2022114224-appb-000033
的评价函数,
Figure PCTCN2022114224-appb-000034
为第一级非对称合解波单元的输入波导对波长为λ m+p+q+s+1、λ m+p+q+s+2、…λ m+p+q+s+t的一组光信号的透过率,IL Om+p+q+s+1为第一级非对称合解波单元的第m+p+q+s+1输出波导O m+p+q+s+1的目标输出光损耗;FOM(O m+p+q+s+w)为第一级非对称合解波单元的第m+p+q+s+w输出波导O m+p+q+s+w对波长为λ m+p+q+s+t+w、λ m+p+q+s+t+w+1、…λ n-v、λ n-v+1、…λ n的一组光信号的透过率
Figure PCTCN2022114224-appb-000035
Figure PCTCN2022114224-appb-000036
的评价函数,
Figure PCTCN2022114224-appb-000037
Figure PCTCN2022114224-appb-000038
为第一级非对称合解波单元的输入波导对波长为λ m+p+q+s+t+w、λ m+p+q+s+t+w+1、…λ n-v、λ n-v+1、…λ n的一组光信号的透过率,
Figure PCTCN2022114224-appb-000039
为第一级非对称合解波单元的第m+p+q+s+w输出波导O m+p+q+s+w的目标输出光损耗。通过设置依次增大的正整数c、m、p、q、r、s、t、w、n的取值,可以实现输出波长功率和间隔的非均匀调节。
具体实施例1:实现O+E+S+C+L波段内12个波长信号透过率非均匀输出的非对称合解波芯片
如图2、图3、图4以及图5所示,本实施例提供一种非对称合解波芯片,即实现O+E+S+C+L波段内λ 1至λ 12共12个波长透过率非均匀输出,λ 1至λ 12分别对应于λ 1=1271nm、λ 2=1291nm、λ 3=1311nm、λ 4=1331nm、λ 5=1351nm、λ 6=1371nm、λ 7=1471nm、λ 8=1491nm、λ 9=1511nm、λ 10=1531nm、λ 11=1551nm、λ 12=1571nm;其中,λ 1至λ 5位于O波段、λ 6位于E波段、λ 7至λ 9位于S波段、λ 10至λ 11位于C波段、λ 12位于L波段。该非对称合解波芯片为无源器件,并且具有超小尺寸和超高稳定性。
波长为λ 1、λ 2、…λ 12的一组光信号的输出波谱图如图6所示,由图6可知,波长为λ 1、λ 2、λ 3、λ 4共4个波长光信号的输出损耗均为2.5dB,λ 7、λ 8、λ 9、λ 10、λ 11、λ 12共6个波长光信号的输出损耗为均为2dB,波长为λ 5、λ 6的光信号的输出损耗分别为0.9dB和0.6dB,采用第一级非对称合解波单元将波长为λ 1、λ 2、…λ 12的一组光信号波分为四组信号后输出,对于波长为λ 1、λ 2、λ 3、λ 4的光信号、波长为λ 7、λ 8、λ 9、λ 10、λ 11、λ 12的光信号则采用两个第二级对称合解波单元分别进行波分处理后输出,对于波长为λ 5、λ 6的光信号则分别通过第一级非对称合解波单元的一个输出波导直接输出,实现波长为λ 1、λ 2、…λ 12的一组光信号透过率非均匀输出的非对称合解波芯片的具体结构如图2所示。
如图2所示,实现波长为λ 1、λ 2、…λ 12的一组光信号透过率非均匀输出的非对称合解波芯片包括:第一级非对称合解波单元001、第二级对称合解波单元002、第二级对称合解波单元006,第一级非对称合解波单元001与第二级对称合解波单元002通过一个S型波导连接,第一级非对称合解波单元001与第二级对称合解波单元006通过一个S型波导连接;所提出的非对称合解波芯片由硅基光子集 成技术构建,包含由下至上依次层叠的硅衬底、二氧化硅下包层、硅芯层及二氧化硅上包层,第一级非对称合解波单元、第二级对称合解波单元位于芯层。
如图3所示,第一级非对称合解波单元输入波导101位于第一级非对称合解波单元功能区102的左侧中心位置,第一级非对称合解波单元输出波导103、104、105、106位于第一级非对称合解波单元功能区102的右侧均匀排布。第一级非对称合解波单元的输入波导101输入λ 1至λ 12共12个波长的光信号,第一级非对称合解波单元输出波导103输出λ 1至λ 4共4个波长的光信号,第一级非对称合解波单元输出波导104输出波长为λ 5的光信号,第一级非对称合解波单元输出波导105输出波长为λ 6的光信号,第一级非对称合解波单元输出波导106输出λ 7至λ 12共6个波长的光信号,第一级非对称合解波单元输出波导103、104、105和106的输出光损耗各不相同。第一级非对称合解波单元功能区102基于DBS算法优化设计,FOM定义为第一级非对称合解波单元输出波导103、104、105和106的实际输出光损耗和目标输出光损耗差值最小MAX函数;第一级非对称合解波单元功能区102每个亚波长单元的材料为二氧化硅或硅,对应绝缘体上硅平台。首先,随机设置亚波长单元材料种类;然后遍历每一个亚波长单元,计算并比较FOM的大小变化,选择性保留FOM较大的材料类型;通过多次迭代遍历全部亚波长单元,确定各亚波长单元的材料类型后,给出第一级非对称合解波单元功能区102的最佳结构,尺寸为2×4μm 2
如图4所示,第二级对称合解波单元输入波导201位于第二级对称合解波单元功能区202的左侧中心位置,第二级对称合解波单元输出波导203、204、205、206位于第二级对称合解波单元功能区202的右侧均匀排布。第二级对称合解波单元输入波导201输入λ 1至λ 4共4个波长的光信号,第二级对称合解波单元输出波导203输出波长为λ 1的光信号,第二级对称合解波单元输出波导204输出波长为λ 2的光信号,第二级对称合解波单元输出波导205输出波长为λ 3的光信号,第二级对称合解波单元输出波导206输出波长为λ 4的光信号,第二级对称合解波单元输出波导203、204、205和206的输出光损耗相同。第二级对称合解波单元功能区202基于DBS算法优化设计,FOM定义为第二级对称合解波单元的输出波导203、204、205和206的实际输出光损耗和目标输出光损耗的差值最小的MAX函数,;第二级对称合解波单元功能区202每个亚波长单元的材料为二氧化硅或硅,对应绝缘体上硅平台。首先,随机设置亚波长单元材料种类;然后遍历每一 个亚波长单元,计算并比较FOM的大小变化,选择性保留FOM较大的材料类型;通过多次迭代遍历全部亚波长单元,确定各亚波长单元的材料类型,给出第二级对称合解波单元002的功能区的最佳结构,尺寸为1.5×4μm 2
如图5所示,第二级对称合解波单元输入波导601位于第二级对称合解波单元006的功能区602的左侧中心位置,第二级对称合解波单元006的输出波导603、604、605、606、607、608位于第二级对称合解波单元006的功能区602的右侧均匀排布。第二级对称合解波单元006的输入波导601输入λ 7至λ 12共6个波长的光信号,第二级对称合解波单元006的输出波导603输出波长为λ 7的光信号,第二级对称合解波单元的输出波导604输出波长为λ 8的光信号,第二级对称合解波单元006的输出波导605输出波长为λ 9的光信号,第二级对称合解波单元006的输出波导606输出波长为λ 10的光信号,第二级对称合解波单元006的输出波导607输出波长为λ 11的光信号,第二级对称合解波单元006的输出波导608输出波长为λ 12的光信号,第二级对称合解波单元006的输出波导603至608的输出光损耗相同。第二级对称合解波单元006的功能区602基于DBS算法优化设计;FOM定义为输出波导603至608的实际输出光损耗和目标输出光损耗的差值最小的MAX函数;第二级对称合解波单元006的功能区602的每个亚波长单元的材料为二氧化硅或硅,对应绝缘体上硅平台。首先,随机设置亚波长单元材料种类;然后遍历每一个亚波长单元,计算并比较FOM的大小变化,选择性保留FOM较大的材料类型;通过多次迭代遍历全部亚波长单元,确定各亚波长单元的材料类型,给出第二级对称合解波单元006的功能区的最佳结构,尺寸为2×5μm 2
具体实施例2:实现O+E波段内6个波长信号透过率非均匀输出的非对称合解波芯片
如图7、图8所示,作为本发明的拓展,本实施例提供一种基于逆向设计的非对称合解波芯片实现λ 1至λ 6共6个波长的透过率非对称合解波功能,λ 1至λ 6对应的波长分别为1271nm、1291nm、1311nm、1331nm、1351nm和1371nm。
波长为λ 1、λ 2、…λ 6的一组光信号的输出波谱图如图8所示,由图8可知,λ 1至λ 4共4个波长的输出损耗为1.5dB,λ 5和λ 6波长的输出损耗分别为0.6dB和0.3dB。采用第一级非对称合解波单元将波长为λ 1、λ 2、…λ 6的一组光信号波分为三组信号后输出,对于波长为λ 1、λ 2、λ 3、λ 4的光信号则采用第二级对称合解波 单元进行波分处理后输出,对于波长为λ 5、λ 6的光信号则分别通过第一级非对称合解波单元的一个输出波导直接输出,实现波长为λ 1、λ 2、…λ 6的一组光信号透过率非均匀输出的非对称合解波芯片的具体结构如图7所示。
实现波长为λ 1、λ 2、…λ 6的一组光信号透过率非均匀输出的非对称合解波芯片,采用与实施例1相同的逆向设计优化第一级非对称合解波单元001、第二级对称合解波单元002的功能区,第一级非对称合解波单元001优化后尺寸为2×3μm 2,第二级对称合解波单元002优化后的尺寸为1.5×4μm 2
综上所述,本发明提供了基于逆向设计的非对称合解波芯片,可实现全波段功率非均匀、波长间隔非等距输出。芯片结构尺寸超小,性能稳定,串扰较低;波长和通道扩展性强,可实现多种波长复用。非对称合解波芯片的制备材料可拓展为其它材料(包括但不限于绝缘体上硅、硅上二氧化硅、InP、GaAs、聚合物、铌酸锂、金刚石、硫系等材料)。本发明展示的是12个波长的解波功能,基于该结构同样可实现合波功能。本发明展示的逆向设计算法仅是DBS算法,可根据本发明扩展至基于半约束算法、粒子群算法、水平集方法、密度拓扑优化、基本梯度算法、梯度下降算法与遗传算法、深度学习的逆向设计算法等。本发明展示的仅是12和6个波长层面的芯片结构,可根据本发明由12个波长扩展至更多波长层面,实现更丰富的非对称合解波效果。同时,本发明设计简单,制作工艺成熟,并且与CMOS制造工艺相兼容,在光通信波分复用系统中具有广泛的应用前景。
以上实施例仅用以说明本发明的技术方案而非对本发明的限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (8)

  1. 基于逆向设计的非对称合解波芯片,其特征在于,包括:
    第一级非对称合解波单元,其输入波导接入不同波长的一组光信号,其N个输出波导分别输出一组波长不同但透过率相同的光信号,其M个输出波导分别输出透过率不同的M个光信号中的一个光信号,N和M均为大于或等于1的整数,及,
    N个第二级对称合解波单元,每个第二级对称合解波单元的输入波导分别接收一组波长不同但透过率相同的光信号,各第二级对称合解波单元的输出波导分别输出一组波长不同但透过相同的光信号;
    所述第一级非对称合解波单元以及N个第二级对称合解波单元的功能区均采用逆向设计优化,具体为:根据合解波单元各输出波导的实际输出光损耗与目标输出光损耗差值最小为目标建立FOM函数,遍历功能区的每一个亚波长单元,选择使得FOM函数值最大的亚波长单元材料类型,所述合解波单元输出波导实际输出光损耗通过计算输出波导、输入波导对相同波长光信号的透光率之比获得。
  2. 根据权利要求1所述基于逆向设计的非对称合解波芯片,其特征在于,所述第一级非对称合解波单元的M个输出波导中的一个输出波导接有第N+1个第二级对称合解波单元,透过率不同的M个光信号中的至少两个光信号经第一级非对称合解波单元的M个输出波导中的一个输出波导传输至第N+1个第二级对称合解波单元的输入波导,第N+1个第二级对称合解波单元的输出波导波分输出透过率不同的M个光信号中的至少两个光信号。
  3. 根据权利要求2所述基于逆向设计的非对称合解波芯片,其特征在于,所述第一级非对称合解波单元的N个输出波导中的至少一个输出波导与第三级对称合解波单元的输入波导连接,第一级非对称合解波单元的N个输出波导中一个输出波导输出的一组波长不同但透过率相同的光信号中的部分光信号传输至一个第三级对称合解波单元,所述第三级对称合解波单元波分输出一组波长不同但透过率相同的光信号中的部分光信号。
  4. 根据权利要求2所述基于逆向设计的非对称合解波芯片,其特征在于,根据第一级非对称合解波单元各输出波导的实际输出光损耗与目标输出光损耗 差值最小为目标建立FOM函数为:
    FOM=FOM(O 1)+FOM(O m+p)+FOM(O m+p+q+1)+FOM(O m+p+q+2)+FOM(O m+p+q+r)+FOM(O m+p+q+s+1)+FOM(O m+p+q+s+w),
    Figure PCTCN2022114224-appb-100001
    Figure PCTCN2022114224-appb-100002
    Figure PCTCN2022114224-appb-100003
    Figure PCTCN2022114224-appb-100004
    Figure PCTCN2022114224-appb-100005
    Figure PCTCN2022114224-appb-100006
    Figure PCTCN2022114224-appb-100007
    其中,FOM(O 1)为第一级非对称合解波单元的第1输出波导O 1对波长为λ 1、λ 2、…λ m的一组光信号的透过率
    Figure PCTCN2022114224-appb-100008
    的评价函数,
    Figure PCTCN2022114224-appb-100009
    Figure PCTCN2022114224-appb-100010
    为第一级非对称合解波单元的输入波导对波长为λ 1、λ 2、…λ m的一组光信号的透过率,
    Figure PCTCN2022114224-appb-100011
    为第一级非对称合解波单元的第1输出波导O 1的目标输出光损耗;FOM(O m+p)为第一级非对称合解波单元的第m+p输出波导O m+p对波长为λ m+p、λ m+p+1、…λ m+p+q的一组光信号的透过率
    Figure PCTCN2022114224-appb-100012
    的评价函数,
    Figure PCTCN2022114224-appb-100013
    为第一级非对称合解波单元的输入波导对波长为λ m+p、λ m+p+1、…λ m+p+q的一组光信号的透过率,
    Figure PCTCN2022114224-appb-100014
    为第一级非对称合解波单元的第m+p输出波导O m+p的目标输出光损耗;FOM(O m+p+q+1)为第一级非对称合解波单元的第m+p+q+1输出波导O m+p+q+1对波长为λ m+p+q+1的光信号的透过率
    Figure PCTCN2022114224-appb-100015
    的评价函数,
    Figure PCTCN2022114224-appb-100016
    为第一级非对称合解波单元的输入波导对波长为λ m+p+q+1的光信号的透过率,
    Figure PCTCN2022114224-appb-100017
    为第一级非对称合解波单元的第m+p+q+1输出波导O m+p+q+1的目标输出光损耗;FOM(O m+p+q+2)为第一级非对称合解波单元的第m+p+q+2输出波导O m+p+q+2对波长为λ m+p+q+2的光信号的透过率
    Figure PCTCN2022114224-appb-100018
    的评价函数,
    Figure PCTCN2022114224-appb-100019
    为第一级非对称合解波单元的输入波导对波长为λ m+p+q+2的光信号的透过率,
    Figure PCTCN2022114224-appb-100020
    为第一级非对称合解波单元的第m+p+q+2输出波导O m+p+q+2的目标输出光损耗;FOM(O m+p+q+r)为第一级非对称合解波单元的第m+p+q+r输出波导O m+p+q+r对波长为λ m+p+q+r、λ m+p+q+r+1、…λ m+p+q+s的一组光信号的透过率
    Figure PCTCN2022114224-appb-100021
    的评价函数,
    Figure PCTCN2022114224-appb-100022
    Figure PCTCN2022114224-appb-100023
    为第一级非对称合解波单元的输入波导对波长为λ m+p+q+r、λ m+p+q+r+1、…λ m+p+q+s的一组光信号的透过率,
    Figure PCTCN2022114224-appb-100024
    为第一级非对称合解波单元的第m+p+q+r输出波导O m+p+q+r的目标输出光损耗;FOM(O m+p+q+s+1)为第一级非对称合解波单元的第m+p+q+s+1输出波导O m+p+q+s+1对波长为λ m+p+q+s+1、λ m+p+q+s+2、…λ m+p+q+s+t的一组光信号的透过率
    Figure PCTCN2022114224-appb-100025
    Figure PCTCN2022114224-appb-100026
    的评价函数,
    Figure PCTCN2022114224-appb-100027
    为第一级非对称合解波单元的输入波导对波长为λ m+p+q+s+1、λ m+p+q+s+2、…λ m+p+q+s+t的一组光信号的透过率,
    Figure PCTCN2022114224-appb-100028
    为第一级非对称合解波单元的第m+p+q+s+1输出波导O m+p+q+s+1的目标输出光损耗;FOM(O m+p+q+s+w)为第一级非对称合解波单元的第m+p+q+s+w输出波导O m+p+q+s+w对波长为λ m+p+q+s+t+w、λ m+p+q+s+t+w+1、…λ n-v、λ n-v+1、…λ n的一组光信号的透过率
    Figure PCTCN2022114224-appb-100029
    Figure PCTCN2022114224-appb-100030
    的评价函数,
    Figure PCTCN2022114224-appb-100031
    Figure PCTCN2022114224-appb-100032
    为第一级非对称合解波单元的输入波导对波长为λ m+p+q+s+t+w、λ m+p+q+s+t+w+1、…λ n-v、λ n-v+1、…λ n的一组光信号的透过率,
    Figure PCTCN2022114224-appb-100033
    为第一级非对称合解波单元的第m+p+q+s+w输出波导O m+p+q+s+w的目标输出光损耗,c、m、p、q、r、s、t、w、n为依次增大的正整数。
  5. 根据权利要求4所述基于逆向设计的非对称合解波芯片,其特征在于,依据所述非对称合解波芯片输出波长的间隔,调整c、m、p、q、r、s、t、w、n的取值。
  6. 根据权利要求1至5中任意一项所述基于逆向设计的非对称合解波芯片,其特征在于,所述第一级非对称合解波单元通过S型弯曲波导与第二级对称合解波单元的输入波导连接。
  7. 根据权利要求1至5中任意一项所述基于逆向设计的非对称合解波芯片,其特征在于,所述第一级非对称合解波单元的输入波导均设置于功能区一侧的中心位置,第一级非对称合解波单元的输出波导均匀分布与功能区的另一侧;所述 第二级对称合解波单元的输入波导均设置于功能区一侧的中心位置,第二级对称合解波单元的输出波导均匀分布与功能区的另一侧。
  8. 根据权利要求1至5中任意一项所述基于逆向设计的非对称合解波芯片,其特征在于,基于绝缘体上硅、硅上二氧化硅、InP、GaAs、聚合物、铌酸锂、金刚石、硫系平台中的任意一种平台,采用半导体工艺制备所述非对称合解波芯片。
PCT/CN2022/114224 2022-08-22 2022-08-23 基于逆向设计的非对称合解波芯片 WO2024040431A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211006611.8 2022-08-22
CN202211006611.8A CN115407454A (zh) 2022-08-22 2022-08-22 基于逆向设计的非对称合解波芯片

Publications (1)

Publication Number Publication Date
WO2024040431A1 true WO2024040431A1 (zh) 2024-02-29

Family

ID=84161028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114224 WO2024040431A1 (zh) 2022-08-22 2022-08-23 基于逆向设计的非对称合解波芯片

Country Status (2)

Country Link
CN (1) CN115407454A (zh)
WO (1) WO2024040431A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110012024A (ko) * 2009-07-29 2011-02-09 우리로광통신주식회사 광 분배기
CN109856724A (zh) * 2019-02-26 2019-06-07 浙江大学 一种基于亚波长光栅的平面光波导波分复用器
CN114019604A (zh) * 2022-01-06 2022-02-08 浙江大学 一种小型波分解复用-复用器件
CN114114680A (zh) * 2021-12-08 2022-03-01 上海交通大学 超紧凑谐振腔的逆向设计实现方法
CN114779398A (zh) * 2022-06-20 2022-07-22 之江实验室 一种基于逆向设计的粗波分复用硅光发射芯片
CN114879305A (zh) * 2022-05-17 2022-08-09 南京邮电大学 一种硅基分模器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110012024A (ko) * 2009-07-29 2011-02-09 우리로광통신주식회사 광 분배기
CN109856724A (zh) * 2019-02-26 2019-06-07 浙江大学 一种基于亚波长光栅的平面光波导波分复用器
CN114114680A (zh) * 2021-12-08 2022-03-01 上海交通大学 超紧凑谐振腔的逆向设计实现方法
CN114019604A (zh) * 2022-01-06 2022-02-08 浙江大学 一种小型波分解复用-复用器件
CN114879305A (zh) * 2022-05-17 2022-08-09 南京邮电大学 一种硅基分模器及其制备方法
CN114779398A (zh) * 2022-06-20 2022-07-22 之江实验室 一种基于逆向设计的粗波分复用硅光发射芯片

Also Published As

Publication number Publication date
CN115407454A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
Harris et al. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems
CN110320663B (zh) 基于直接二元搜索算法设计的超小尺寸大带宽模式滤波器
US20200363693A1 (en) Silicon-based lithium niobate film electro-optic modulator array and integration method thereof
WO2015096070A1 (zh) 波导偏振分离和偏振转换器
CN101872039A (zh) 一种基于有源微环谐振器的4×4无阻塞光路由器
CN108693602B (zh) 一种氮化硅三维集成多微腔谐振滤波器件及其制备方法
CN113484952B (zh) 一种硅基片上的三维混合复用信号全光波长转换装置
CN112327410B (zh) 基于非对称耦合的两级亚波长光栅硅基光偏振分束旋转器
Yuan et al. An ultra-compact dual-channel multimode wavelength demultiplexer based on inverse design
CN114137664B (zh) 一种用于提高全光波长转换效率的双谐振腔双波导耦合结构
WO2024040431A1 (zh) 基于逆向设计的非对称合解波芯片
CN114280873B (zh) 一种用于提高谐振腔内非线性效应强度的方法
Zhang et al. Ultra‐high bandwidth density and power efficiency chip‐to‐chip multimode transmission through a rectangular core few‐mode fiber
Ma et al. Inverse design of an air-cladding and fully-etched silicon polarization rotator based on a taper-based mode hybridization
Lu et al. Wavelength routers with low crosstalk using photonic crystal point defect micro-cavities
Shen et al. A design method for high fabrication tolerance integrated optical mode multiplexer
CN116560004A (zh) 一种基于薄膜铌酸锂的多维复用调制一体光子集成回路
CN112415663B (zh) 一种基于多级微盘耦合的马赫曾德尔宽带低功耗光开关
CN214586094U (zh) 一种基于亚波长光栅的硅基偏振分束芯片
CN110068892B (zh) 一种基于硅基波导光子轨道角动量的产生及复用集成器
CN108663748B (zh) 基于单个线缺陷谐振腔的双信道下路滤波器
Zezhi The research progress in on-chip mode (de) multiplexer
CN117040680A (zh) 输出功率可调型波分复用芯片
Oshima et al. Low Loss Fan-Out Structure for Multimode Waveguide-Based Reservoir Computing
CN114637072B (zh) 一种浅刻蚀多模干涉耦合的多通道平顶型波分复用接收器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955980

Country of ref document: EP

Kind code of ref document: A1