WO2024040364A1 - Event triggered reporting of radio access network visible quality of experience reporting - Google Patents

Event triggered reporting of radio access network visible quality of experience reporting Download PDF

Info

Publication number
WO2024040364A1
WO2024040364A1 PCT/CN2022/113790 CN2022113790W WO2024040364A1 WO 2024040364 A1 WO2024040364 A1 WO 2024040364A1 CN 2022113790 W CN2022113790 W CN 2022113790W WO 2024040364 A1 WO2024040364 A1 WO 2024040364A1
Authority
WO
WIPO (PCT)
Prior art keywords
qoe
event trigger
application layer
measurements
value
Prior art date
Application number
PCT/CN2022/113790
Other languages
French (fr)
Inventor
Jianhua Liu
Ozcan Ozturk
Shankar Krishnan
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/113790 priority Critical patent/WO2024040364A1/en
Publication of WO2024040364A1 publication Critical patent/WO2024040364A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the following relates to wireless communications, including event triggered reporting of radio access network (RAN) visible quality of experience (QoE) reporting.
  • RAN radio access network
  • QoE visible quality of experience
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations, each supporting wireless communication for communication devices, which may be known as user equipment (UE) .
  • UE user equipment
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support event triggered reporting of radio access network (RAN) visible quality of experience (QoE) reporting.
  • RAN radio access network
  • QoE radio access network
  • the described techniques provide for a network entity to configure an event trigger for a user equipment (UE) to report a set of application layer QoE measurements to the network entity, which may be referred to as RAN visible QoE reporting.
  • the network entity may send a control message to the UE indicating an event trigger for RAN visible QoE reporting.
  • the UE may generate a QoE report based on detecting the event trigger, where the QoE report includes the set of application layer QoE measurements.
  • the UE may transmit at least a portion of the QoE reporting message to the network entity, such as upon detecting an entering condition is satisfied, a leaving condition is satisfied, or both.
  • the network entity may signal instructions or configuration information for the UE to transmit the entirety of the QoE report, or to transmit the QoE report granularly.
  • a method for wireless communications at a UE may include receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by the UE to a network entity of a RAN, generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements, and transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by the UE to a network entity of a RAN, generate, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements, and transmit at least a first portion of the QoE reporting message to the network entity of the RAN.
  • the apparatus may include means for receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by the UE to a network entity of a RAN, means for generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements, and means for transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to receive a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by the UE to a network entity of a RAN, generate, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements, and transmit at least a first portion of the QoE reporting message to the network entity of the RAN.
  • the control message indicates an event trigger value of an application layer QoE measurement within the set of application layer QoE measurements and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for determining an entering condition associated with the event trigger may be satisfied based on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value, where detecting the event trigger may be based on a measured value of the application layer QoE measurement relative to the event trigger value.
  • transmitting at least the first portion of the QoE reporting message may include operations, features, means, or instructions for transmitting, based on determining the entering condition associated with the event trigger may be satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a leaving condition associated with the event trigger may be satisfied based on a difference between the sum of the set of application layer QoE measurements and the offset relative to a second threshold value and transmitting a second portion of the QoE reporting message to the network entity of the RAN based on determining the leaving condition associated with the event trigger may be satisfied.
  • the first threshold value may be the same as the second threshold value.
  • the first threshold value may be different than the second threshold value.
  • the determining the entering condition associated with the event trigger may be satisfied may be executed at an application layer of the UE and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based on forwarding an indication including an event name of the event trigger to the application layer of the UE.
  • the determining the entering condition associated with the event trigger may be satisfied may be executed at a radio resource control layer of the UE and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for receiving, at the radio resource control layer of the UE, an indication of the sum of the set of application layer QoE measurements and determining, at the radio resource control layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
  • the determining the entering condition associated with the event trigger may be satisfied may be executed at a radio resource control layer of the UE and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for receiving, at the radio resource control layer of the UE, an indication of one or more application layer QoE measurements of the set of application layer QoE measurements and determining, at the radio resource control layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining an entering condition associated with the event trigger may be satisfied based on a sum of a buffer level and an offset relative to a first threshold buffer level value, a difference between an initial playout and the offset relative to a first threshold initial playout value, or both, where detecting the event trigger may be based on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value.
  • transmitting at least the first portion of the QoE reporting message may include operations, features, means, or instructions for transmitting, based on determining the entering condition associated with the event trigger may be satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a leaving condition associated with the event trigger may be satisfied based on a difference between the buffer level and the offset relative to a second threshold buffer level value, a sum of an initial playout value and the offset relative to a second threshold initial playout value, or both, where detecting the event trigger may be based on determining the leaving condition associated with the event trigger may be satisfied.
  • the first threshold buffer level value may be the same as the second threshold buffer level value
  • the first threshold initial playout value may be the same as the second threshold initial playout value, or both.
  • the first threshold buffer level value may be different than the second threshold buffer level value
  • the first threshold initial playout value may be different than the second threshold initial playout value, or both.
  • the determining the entering condition associated with the event trigger may be satisfied may be executed at an application layer of the UE and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based on forwarding an indication including an event name of the event trigger to the application layer of the UE.
  • the determining the entering condition associated with the event trigger may be satisfied may be executed at a radio resource control layer of the UE and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for receiving, at the radio resource control layer of the UE, one or more application layer QoE measurements of the set of application layer QoE measurements based on forwarding an indication of a measurement periodicity, a reporting periodicity, or both associated with transmitting at least the first portion of the QoE reporting message to the application layer of the UE, where the determining the entering condition associated with the event trigger may be satisfied may be based on the one or more application layer QoE measurements.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for filtering the one or more application layer QoE measurements prior to the determining the entering condition associated with the event trigger may be satisfied.
  • the set of application layer QoE measurements include a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, a reference signal receive power, a reference signal receive quality, or any combination thereof.
  • a method for wireless communications at a network entity of a RAN may include transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by a UE to the network entity of the RAN and receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by a UE to the network entity of the RAN and receive at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
  • the apparatus may include means for transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by a UE to the network entity of the RAN and means for receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
  • a non-transitory computer-readable medium storing code for wireless communications at a network entity of a RAN is described.
  • the code may include instructions executable by a processor to transmit a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by a UE to the network entity of the RAN and receive at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
  • receiving at least the first portion of the QoE reporting message may include operations, features, means, or instructions for receiving, based on an entering condition associated with the event trigger being satisfied at the UE, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, based on a leaving condition associated with the event trigger being satisfied at the UE, a second portion of the QoE reporting message.
  • the set of application layer QoE measurements include a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, a reference signal receive power, a reference signal receive quality, or any combination thereof.
  • FIGs. 1 and 2 illustrate examples of wireless communications systems that support event triggered reporting of radio access network (RAN) visible quality of experience (QoE) reporting in accordance with one or more aspects of the present disclosure.
  • RAN radio access network
  • QoE visible quality of experience
  • FIG. 3 illustrates an example of a process flow that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • FIGs. 4 and 5 show block diagrams of devices that support event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • FIG. 6 shows a block diagram of a communications manager that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • FIGs. 8 and 9 show block diagrams of devices that support event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • FIG. 10 shows a block diagram of a communications manager that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • FIG. 11 shows a diagram of a system including a device that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • FIGs. 12 through 16 show flowcharts illustrating methods that support event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • Wireless cellular networks may support quality of service (QoS) as well as quality of experience (QoE) feedback configuration and support.
  • QoS quality of service
  • QoE quality of experience
  • a QoS may define a performance of the wireless network using measurements derived, or otherwise determined, from measurable physical channel performance metrics, while a QoE may be based on a subjective experience and may be reported by the end-user when interacting with a service, application, process, etc., being performed over the wireless network.
  • a QoE may include one or more parameters provided by and/or for a measurement collection entity (MCE) .
  • MCE measurement collection entity
  • a user equipment (UE) operating in a radio resource control (RRC) connected state may be configured with a QoE measurement activation for or from a MCE via the radio access network (RAN) that triggers QoE measurements according to the QoE parameters.
  • RRC radio resource control
  • RAN radio access network
  • Such RAN signaling is received at an access layer of the UE, which provides QoE signaling to the application layer of the UE.
  • the application layer of the UE may track and manage the QoE measurements.
  • the RAN may be unaware of the QoE information at the application layer of the UE, which may cause scheduling inefficiencies, load balancing inefficiencies, or other inefficiencies.
  • a network entity may configure or signal instructions to a UE to transmit a QoE reporting message to a network entity of a RAN in accordance with an event trigger, such that one or more QoE measurements may be visible to the RAN.
  • the network entity may send a control message indicating an event trigger to the UE, where the event trigger may be metric based or value based.
  • the UE may generate a QoE reporting message after detecting the event trigger and may transmit at least a portion of the QoE reporting message to the network entity of the RAN.
  • the network entity may configure the UE to transmit the entirety of the QoE reporting message upon detecting a set of conditions are met (e.g., detecting the event trigger) . In some other cases, the network entity may configure or instruct the UE to granularly report the QoE reporting message (e.g., upon detecting different event triggers) .
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are additionally described in the context of process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to event triggered reporting of RAN visible QoE reporting.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 100 may include one or more network entities 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, a New Radio (NR) network, or a network operating in accordance with other systems and radio technologies, including future systems and radio technologies not explicitly mentioned herein.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the network entities 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may include devices in different forms or having different capabilities.
  • a network entity 105 may be referred to as a network element, a mobility element, a RAN node, or network equipment, among other nomenclature.
  • network entities 105 and UEs 115 may wirelessly communicate via one or more communication links 125 (e.g., a radio frequency (RF) access link) .
  • a network entity 105 may support a coverage area 110 (e.g., a geographic coverage area) over which the UEs 115 and the network entity 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a network entity 105 and a UE 115 may support the communication of signals according to one or more radio access technologies (RATs) .
  • RATs radio access technologies
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be capable of supporting communications with various types of devices, such as other UEs 115 or network entities 105, as shown in FIG. 1.
  • a node of the wireless communications system 100 which may be referred to as a network node, or a wireless node, may be a network entity 105 (e.g., any network entity described herein) , a UE 115 (e.g., any UE described herein) , a network controller, an apparatus, a device, a computing system, one or more components, or another suitable processing entity configured to perform any of the techniques described herein.
  • a node may be a UE 115.
  • a node may be a network entity 105.
  • a first node may be configured to communicate with a second node or a third node.
  • the first node may be a UE 115
  • the second node may be a network entity 105
  • the third node may be a UE 115.
  • the first node may be a UE 115
  • the second node may be a network entity 105
  • the third node may be a network entity 105.
  • the first, second, and third nodes may be different relative to these examples.
  • reference to a UE 115, network entity 105, apparatus, device, computing system, or the like may include disclosure of the UE 115, network entity 105, apparatus, device, computing system, or the like being a node.
  • disclosure that a UE 115 is configured to receive information from a network entity 105 also discloses that a first node is configured to receive information from a second node.
  • network entities 105 may communicate with the core network 130, or with one another, or both.
  • network entities 105 may communicate with the core network 130 via one or more backhaul communication links 120 (e.g., in accordance with an S1, N2, N3, or other interface protocol) .
  • network entities 105 may communicate with one another via a backhaul communication link 120 (e.g., in accordance with an X2, Xn, or other interface protocol) either directly (e.g., directly between network entities 105) or indirectly (e.g., via a core network 130) .
  • network entities 105 may communicate with one another via a midhaul communication link 162 (e.g., in accordance with a midhaul interface protocol) or a fronthaul communication link 168 (e.g., in accordance with a fronthaul interface protocol) , or any combination thereof.
  • the backhaul communication links 120, midhaul communication links 162, or fronthaul communication links 168 may be or include one or more wired links (e.g., an electrical link, an optical fiber link) , one or more wireless links (e.g., a radio link, a wireless optical link) , among other examples or various combinations thereof.
  • a UE 115 may communicate with the core network 130 via a communication link 155.
  • One or more of the network entities 105 described herein may include or may be referred to as a base station 140 (e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a 5G NB, a next-generation eNB (ng-eNB) , a Home NodeB, a Home eNodeB, or other suitable terminology) .
  • a base station 140 e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be
  • a network entity 105 may be implemented in an aggregated (e.g., monolithic, standalone) base station architecture, which may be configured to utilize a protocol stack that is physically or logically integrated within a single network entity 105 (e.g., a single RAN node, such as a base station 140) .
  • a network entity 105 may be implemented in a disaggregated architecture (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) , which may be configured to utilize a protocol stack that is physically or logically distributed among two or more network entities 105, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) .
  • IAB integrated access backhaul
  • O-RAN open RAN
  • vRAN virtualized RAN
  • C-RAN cloud RAN
  • a network entity 105 may include one or more of a central unit (CU) 160, a distributed unit (DU) 165, a radio unit (RU) 170, a RAN Intelligent Controller (RIC) 175 (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration (SMO) 180 system, or any combination thereof.
  • An RU 170 may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a transmission reception point (TRP) .
  • One or more components of the network entities 105 in a disaggregated RAN architecture may be co-located, or one or more components of the network entities 105 may be located in distributed locations (e.g., separate physical locations) .
  • one or more network entities 105 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
  • VCU virtual CU
  • VDU virtual DU
  • VRU virtual RU
  • the split of functionality between a CU 160, a DU 165, and an RU 170 is flexible and may support different functionalities depending on which functions (e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof) are performed at a CU 160, a DU 165, or an RU 170.
  • functions e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof
  • a functional split of a protocol stack may be employed between a CU 160 and a DU 165 such that the CU 160 may support one or more layers of the protocol stack and the DU 165 may support one or more different layers of the protocol stack.
  • the CU 160 may host upper protocol layer (e.g., layer 3 (L3) , layer 2 (L2) ) functionality and signaling (e.g., RRC, service data adaption protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) .
  • the CU 160 may be connected to one or more DUs 165 or RUs 170, and the one or more DUs 165 or RUs 170 may host lower protocol layers, such as layer 1 (L1) (e.g., physical (PHY) layer) or L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160.
  • L1 e.g., physical (PHY) layer
  • L2 e.g., radio link control (RLC) layer, medium access control (MAC) layer
  • RLC radio link control
  • MAC medium access control
  • a functional split of the protocol stack may be employed between a DU 165 and an RU 170 such that the DU 165 may support one or more layers of the protocol stack and the RU 170 may support one or more different layers of the protocol stack.
  • the DU 165 may support one or multiple different cells (e.g., via one or more RUs 170) .
  • a functional split between a CU 160 and a DU 165, or between a DU 165 and an RU 170 may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU 160, a DU 165, or an RU 170, while other functions of the protocol layer are performed by a different one of the CU 160, the DU 165, or the RU 170) .
  • a CU 160 may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions.
  • CU-CP CU control plane
  • CU-UP CU user plane
  • a CU 160 may be connected to one or more DUs 165 via a midhaul communication link 162 (e.g., F1, F1-c, F1-u) , and a DU 165 may be connected to one or more RUs 170 via a fronthaul communication link 168 (e.g., open fronthaul (FH) interface) .
  • a midhaul communication link 162 or a fronthaul communication link 168 may be implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 105 that are in communication via such communication links.
  • infrastructure and spectral resources for radio access may support wireless backhaul link capabilities to supplement wired backhaul connections, providing an IAB network architecture (e.g., to a core network 130) .
  • IAB network one or more network entities 105 (e.g., IAB nodes 104) may be partially controlled by each other.
  • One or more IAB nodes 104 may be referred to as a donor entity or an IAB donor.
  • One or more DUs 165 or one or more RUs 170 may be partially controlled by one or more CUs 160 associated with a donor network entity 105 (e.g., a donor base station 140) .
  • the one or more donor network entities 105 may be in communication with one or more additional network entities 105 (e.g., IAB nodes 104) via supported access and backhaul links (e.g., backhaul communication links 120) .
  • IAB nodes 104 may include an IAB mobile termination (IAB-MT) controlled (e.g., scheduled) by DUs 165 of a coupled IAB donor.
  • IAB-MT IAB mobile termination
  • An IAB-MT may include an independent set of antennas for relay of communications with UEs 115, or may share the same antennas (e.g., of an RU 170) of an IAB node 104 used for access via the DU 165 of the IAB node 104 (e.g., referred to as virtual IAB-MT (vIAB-MT) ) .
  • the IAB nodes 104 may include DUs 165 that support communication links with additional entities (e.g., IAB nodes 104, UEs 115) within the relay chain or configuration of the access network (e.g., downstream) .
  • one or more components of the disaggregated RAN architecture e.g., one or more IAB nodes 104 or components of IAB nodes 104) may be configured to operate according to the techniques described herein.
  • an access network (AN) or RAN may include communications between access nodes (e.g., an IAB donor) , IAB nodes 104, and one or more UEs 115.
  • the IAB donor may facilitate connection between the core network 130 and the AN (e.g., via a wired or wireless connection to the core network 130) . That is, an IAB donor may refer to a RAN node with a wired or wireless connection to core network 130.
  • the IAB donor may include a CU 160 and at least one DU 165 (e.g., and RU 170) , in which case the CU 160 may communicate with the core network 130 via an interface (e.g., a backhaul link) .
  • IAB donor and IAB nodes 104 may communicate via an F1 interface according to a protocol that defines signaling messages (e.g., an F1 AP protocol) .
  • the CU 160 may communicate with the core network via an interface, which may be an example of a portion of backhaul link, and may communicate with other CUs 160 (e.g., a CU 160 associated with an alternative IAB donor) via an Xn-C interface, which may be an example of a portion of a backhaul link.
  • An IAB node 104 may refer to a RAN node that provides IAB functionality (e.g., access for UEs 115, wireless self-backhauling capabilities) .
  • a DU 165 may act as a distributed scheduling node towards child nodes associated with the IAB node 104, and the IAB-MT may act as a scheduled node towards parent nodes associated with the IAB node 104. That is, an IAB donor may be referred to as a parent node in communication with one or more child nodes (e.g., an IAB donor may relay transmissions for UEs through one or more other IAB nodes 104) .
  • an IAB node 104 may also be referred to as a parent node or a child node to other IAB nodes 104, depending on the relay chain or configuration of the AN. Therefore, the IAB-MT entity of IAB nodes 104 may provide a Uu interface for a child IAB node 104 to receive signaling from a parent IAB node 104, and the DU interface (e.g., DUs 165) may provide a Uu interface for a parent IAB node 104 to signal to a child IAB node 104 or UE 115.
  • the DU interface e.g., DUs 165
  • IAB node 104 may be referred to as a parent node that supports communications for a child IAB node, or referred to as a child IAB node associated with an IAB donor, or both.
  • the IAB donor may include a CU 160 with a wired or wireless connection (e.g., a backhaul communication link 120) to the core network 130 and may act as parent node to IAB nodes 104.
  • the DU 165 of IAB donor may relay transmissions to UEs 115 through IAB nodes 104, or may directly signal transmissions to a UE 115, or both.
  • the CU 160 of IAB donor may signal communication link establishment via an F1 interface to IAB nodes 104, and the IAB nodes 104 may schedule transmissions (e.g., transmissions to the UEs 115 relayed from the IAB donor) through the DUs 165. That is, data may be relayed to and from IAB nodes 104 via signaling via an NR Uu interface to MT of the IAB node 104. Communications with IAB node 104 may be scheduled by a DU 165 of IAB donor and communications with IAB node 104 may be scheduled by DU 165 of IAB node 104.
  • one or more components of the disaggregated RAN architecture may be configured to support event triggered reporting of RAN visible QoE reporting as described herein.
  • some operations described as being performed by a UE 115 or a network entity 105 may additionally, or alternatively, be performed by one or more components of the disaggregated RAN architecture (e.g., IAB nodes 104, DUs 165, CUs 160, RUs 170, RIC 175, SMO 180) .
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the network entities 105 may wirelessly communicate with one another via one or more communication links 125 (e.g., an access link) using resources associated with one or more carriers.
  • the term “carrier” may refer to a set of RF spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a RF spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • Communication between a network entity 105 and other devices may refer to communication between the devices and any portion (e.g., entity, sub-entity) of a network entity 105.
  • the terms “transmitting, ” “receiving, ” or “communicating, ” when referring to a network entity 105 may refer to any portion of a network entity 105 (e.g., a base station 140, a CU 160, a DU 165, a RU 170) of a RAN communicating with another device (e.g., directly or via one or more other network entities 105) .
  • a network entity 105 e.g., a base station 140, a CU 160, a DU 165, a RU 170
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute RF channel number (EARFCN) ) and may be identified according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode, in which case initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode, in which case a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include downlink transmissions (e.g., forward link transmissions) from a network entity 105 to a UE 115, uplink transmissions (e.g., return link transmissions) from a UE 115 to a network entity 105, or both, among other configurations of transmissions.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the RF spectrum and, in some examples, the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a set of bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the network entities 105, the UEs 115, or both
  • the wireless communications system 100 may include network entities 105 or UEs 115 that support concurrent communications using carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating using portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted via a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may refer to resources of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, in which case the symbol period and subcarrier spacing may be inversely related.
  • the quantity of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) , such that a relatively higher quantity of resource elements (e.g., in a transmission duration) and a relatively higher order of a modulation scheme may correspond to a relatively higher rate of communication.
  • a wireless communications resource may refer to a combination of an RF spectrum resource, a time resource, and a spatial resource (e.g., a spatial layer, a beam) , and the use of multiple spatial resources may increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, and a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively-numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a quantity of slots.
  • each frame may include a variable quantity of slots, and the quantity of slots may depend on subcarrier spacing.
  • Each slot may include a quantity of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots associated with one or more symbols. Excluding the cyclic prefix, each symbol period may be associated with one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., a quantity of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed for communication using a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed for signaling via a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • One or more control regions may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to an amount of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a network entity 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a network entity 105 (e.g., using a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell also may refer to a coverage area 110 or a portion of a coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the network entity 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered network entity 105 (e.g., a lower-powered base station 140) , as compared with a macro cell, and a small cell may operate using the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a network entity 105 may support one or multiple cells and may also support communications via the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a network entity 105 may be movable and therefore provide communication coverage for a moving coverage area 110.
  • different coverage areas 110 associated with different technologies may overlap, but the different coverage areas 110 may be supported by the same network entity 105.
  • the overlapping coverage areas 110 associated with different technologies may be supported by different network entities 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network entities 105 provide coverage for various coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • network entities 105 e.g., base stations 140
  • network entities 105 may have different frame timings, and transmissions from different network entities 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a network entity 105 (e.g., a base station 140) without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that uses the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception concurrently) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating using a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) .
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions.
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data.
  • Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may be configured to support communicating directly with other UEs 115 via a device-to-device (D2D) communication link 135 (e.g., in accordance with a peer-to-peer (P2P) , D2D, or sidelink protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • one or more UEs 115 of a group that are performing D2D communications may be within the coverage area 110 of a network entity 105 (e.g., a base station 140, an RU 170) , which may support aspects of such D2D communications being configured by (e.g., scheduled by) the network entity 105.
  • one or more UEs 115 of such a group may be outside the coverage area 110 of a network entity 105 or may be otherwise unable to or not configured to receive transmissions from a network entity 105.
  • groups of the UEs 115 communicating via D2D communications may support a one-to-many (1: M) system in which each UE 115 transmits to each of the other UEs 115 in the group.
  • a network entity 105 may facilitate the scheduling of resources for D2D communications.
  • D2D communications may be carried out between the UEs 115 without an involvement of a network entity 105.
  • a D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., network entities 105, base stations 140, RUs 170) using vehicle-to-network (V2N) communications, or with both.
  • roadside infrastructure such as roadside units
  • network nodes e.g., network entities 105, base stations 140, RUs 170
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the network entities 105 (e.g., base stations 140) associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • IMS IP Multimedia Subsystem
  • the wireless communications system 100 may operate using one or more frequency bands, which may be in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, which may be referred to as clusters, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. Communications using UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to communications using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate using a super high frequency (SHF) region, which may be in the range of 3 GHz to 30 GHz, also known as the centimeter band, or using an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the network entities 105 (e.g., base stations 140, RUs 170) , and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas.
  • mmW millimeter wave
  • such techniques may facilitate using antenna arrays within a device.
  • EHF transmissions may be subject to even greater attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed RF spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology using an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the network entities 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations using unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating using a licensed band (e.g., LAA) .
  • Operations using unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a network entity 105 e.g., a base station 140, an RU 170
  • a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a network entity 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a network entity 105 may be located at diverse geographic locations.
  • a network entity 105 may include an antenna array with a set of rows and columns of antenna ports that the network entity 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may include one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support RF beamforming for a signal transmitted via an antenna port.
  • the network entities 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase spectral efficiency by transmitting or receiving multiple signals via different spatial layers.
  • Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry information associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , for which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , for which multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a network entity 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating along particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a network entity 105 or a UE 115 may use beam sweeping techniques as part of beamforming operations.
  • a network entity 105 e.g., a base station 140, an RU 170
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the network entity 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions along different beam directions may be used to identify (e.g., by a transmitting device, such as a network entity 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the network entity 105.
  • a transmitting device such as a network entity 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by transmitting device (e.g., a transmitting network entity 105, a transmitting UE 115) along a single beam direction (e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115) .
  • a single beam direction e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted along one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the network entity 105 along different directions and may report to the network entity 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or beamforming to generate a combined beam for transmission (e.g., from a network entity 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured set of beams across a system bandwidth or one or more sub-bands.
  • the network entity 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • these techniques are described with reference to signals transmitted along one or more directions by a network entity 105 (e.g., a base station 140, an RU 170)
  • a UE 115 may employ similar techniques for transmitting signals multiple times along different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal along a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may perform reception operations in accordance with multiple receive configurations (e.g., directional listening) when receiving various signals from a receiving device (e.g., a network entity 105) , such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device e.g., a network entity 105
  • signals such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may perform reception in accordance with multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned along a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • receive configuration directions e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or PDCP layer may be IP-based.
  • An RLC layer may perform packet segmentation and reassembly to communicate via logical channels.
  • a MAC layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer also may implement error detection techniques, error correction techniques, or both to support retransmissions to improve link efficiency.
  • an RRC layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network entity 105 or a core network 130 supporting radio bearers for user plane data.
  • a PHY layer may map transport channels to physical channels.
  • the UEs 115 and the network entities 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly via a communication link (e.g., a communication link 125, a D2D communication link 135) .
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, in which case the device may provide HARQ feedback in a specific slot for data received via a previous symbol in the slot. In some other examples, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a network entity 105 may configure or instruct a UE 115 to transmit a QoE reporting message to the network entity 105 of a RAN in accordance with an event trigger, such that one or more QoE measurements may be visible to the RAN.
  • the network entity 105 may send a control message indicating an event trigger to the UE 115, where the event trigger may be metric based or value based.
  • the UE 115 may generate a QoE reporting message after detecting the event trigger and may transmit at least a portion of the QoE reporting message to the network entity 105 of the RAN.
  • the network entity 105 may configure or instruct the UE 115 to transmit the entirety of the QoE reporting message upon detecting a set of conditions are met (e.g., detecting the event trigger) .
  • the network entity 105 may configure or instruct the UE 115 to granularly report the QoE reporting message (e.g., upon detecting different event triggers) .
  • the event trigger may be related to an entering condition and a leaving condition being satisfied, where the entering condition may trigger a periodic RAN visible QoE metric report until the leaving condition is satisfied.
  • the entering condition may trigger just one part of the report, or the entering condition may trigger the entire report.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 200 may implement, or be implemented by, aspects of the wireless communications system 100.
  • the wireless communications system 200 may include a network entity 105-a with a coverage area 110-a and a UE-115-a, which may represent examples of the network entities 105 with coverage areas 110 and the UEs 115 described with reference to FIG. 1.
  • the network entity 105-a may transmit control information, data, or both to the UE 115-a using a downlink communication link 205.
  • the UE 115-a may transmit control information, data, or both to the network entity 105-a using an uplink communication link 210.
  • the UE 115-a and the network entity 105-a may communicate signaling that activates a QoE measurement, a QoS measurement, or both for quality reporting.
  • the wireless communications system 200 may support QoE measurement configuration and collection.
  • the UE 115-a may be in an idle or inactive state, such as an RRC idle or inactive state.
  • the RRC idle or inactive state the UE 115-a may perform measurements of neighboring cells to perform reselection (e.g., switch from a current serving cell to a new serving cell) , but may not actively communicate.
  • the network entity 105-a may activate one or more QoE measurements at the UE 115-a via signaling in a QoE activation procedure.
  • the UE 115-a may receive an application layer measurement configuration for performing QoE measurements at the application layer from an operation, administration, and maintenance (OAM) function or CN (e.g., via a RAN, such as via the network entity 105-a) .
  • the OAM function or CN may encapsulate the measurement configuration in a transparent container, which may be forwarded to the UE 115-a in a downlink RRC message. That is, the OAM may configure or signal the QOE measurements with the QoE measurement configuration by forwarding the configuration to the CN. The CN may then activate the QoE measurements by forwarding the configuration to the RAN. Subsequently, the OAM may send a management-based QoE measurement activation message to the RAN.
  • OAM operation, administration, and maintenance
  • the RAN may send the downlink RRC message to the UE 115-a, such as to an access layer of the UE 115-a.
  • the UE 115-a may indicate a capability to perform the signaling based QoE measurement procedure.
  • the OAM may activate multiple simultaneous QoE measurements at the UE 115-a.
  • the access layer of the UE 115-a may send a command to perform application layer QoE measurements according to the QoE measurement configuration to the application layer of the UE 115-a.
  • the application layer may perform the application layer QoE measurements, and may send a command to report the measurements to the access layer of the UE 115-a.
  • the UE 115-a may encapsulate the application layer measurements in a transparent container and send them to the network in an uplink RRC message.
  • the UE 115-a may send QoE reports via a separate signaling radio bearer (SRB) (e.g., separate from a current SRBs) in wireless communication networks (e.g., as this reporting is considered lower priority than other SRB transmissions) .
  • SRB signaling radio bearer
  • the network entity 105-a may use RRC signaling to indicate to the UE 115-a to pause or resume the QoE measurement and reporting.
  • the details of pause or resume mechanism may vary (e.g., is the pause or resume for all QoE reports or on a per-QoE configuration, how long can the UE store the reports, limit for stored reports size, and so forth) .
  • the OAM may initiate the QoE measurement activation for a specific UE via the CN in the signaling based QoE activation procedure (e.g., via a RAN node, such as the network entity 105-a) .
  • Other techniques may include a management based QoE activation procedure in which the OAM may send one or more QoE measurement configurations to the RAN node. That is, for signaling based QoE measurements the OAM may initiate the QoE measurement activation for a specific UE via the CN and the RAN node, while for management based QoE measurement activation, the OAM may send one or more the QoE measurement configurations to the RAN node.
  • the RAN node may receive or otherwise obtain one or more QoE measurement configurations from the OAM (e.g., in management based QoE measurement) or CN (e.g., in signaling based QoE measurement) .
  • each QoE configuration may include a QoE measurement configuration container, a QoE reference, a service type, an MCE Internet Protocol (IP) address, an area scope, a slice scope, minimization of drive test (MDT) alignment information, and available RAN visible QoE metrics.
  • IP Internet Protocol
  • MDT minimization of drive test
  • the RAN node may send the QoE configuration to the UE 115-a via a control message (e.g., an RRCReconfiguration message) that includes the QoE measurement configuration container, an application layer identifier (e.g., measConfigAppLayerID) , and the service type.
  • a control message e.g., an RRCReconfiguration message
  • an application layer identifier e.g., measConfigAppLayerID
  • service type e.g., measConfigAppLayerID
  • the network entity 105-a may derive the application layer identifier from or otherwise based on the UE 115-a operating in an RRC idle state (e.g., an RRC identifier) .
  • an RRC idle state e.g., an RRC identifier
  • this may include using the QoE reference to identify each QoE measurement configuration job.
  • the QoE reference may be globally unique and composed based on a mobile country code (MCC) , a mobile network code (MNC) , and a QoE measurement configuration identifier.
  • MCC mobile country code
  • MNC mobile network code
  • the QoE reference is included in application layer configuration container and the QoE report container.
  • the RRC layer e.g., at the access layer, which may include one or more layers involved in the access stratum (AS) , such as the RRC layer, the physical layer, etc.
  • this may include using the application layer identifier to identify one QoE configuration.
  • the application layer identifier may be allocated by the RAN using a parameter (e.g., a 4-bit length parameter) .
  • a parameter e.g., a 4-bit length parameter
  • an RRC layer of the UE 115-a may forward the measConfigAppLayerID together with the QoE configuration container to the application layer.
  • the application layer may deliver, signal, or otherwise include the measConfigAppLayerID together with QoE report container.
  • the RRC layer of the UE 115-a (e.g., the application layer) may not maintain, or may be otherwise not aware of, the mapping between the measConfigAppLayerID and the QoE reference.
  • the RAN may determine the MCE address based on the received measConfigAppLayerID included in RRC report message. Accordingly, the mapping between measConfigAppLayerID and QoE Reference may be maintained in the RAN.
  • Wireless communications system 200 may also support aspects of QoE measurement configuration deactivation and release. For example, conditions may be established or otherwise configured to deactivate or release the QoE measurement configuration.
  • OAM may trigger deactivation of a list of QoE measurement collection job (s) (e.g., different QoE measurement configurations) .
  • the deactivation of a QoE measurement collection may be achieved by providing a list of QoE references corresponding to each QoE configuration.
  • the network entity 105-a may release one or multiple application layer measurement configurations from the UE 115-a in one RRCReconfiguration message at any time.
  • the UE 115-a may release one or more (e.g., all) of the QoE measurement configurations.
  • the UE 115-a may, when one QoE measurement configuration is released, include the RRC layer informing the upper layer (e.g., the application layer) to release the QoE measurement configuration.
  • Some QoE reporting techniques may also be supported by wireless communications system 200.
  • the QoE measurement collection may be handled at the application layer.
  • the QoE report container may be received from the application layer at the RRC layer (e.g., the access layer, or AS layer) .
  • the application layer QoE measurement reports may be encapsulated in a transparent container in carried or otherwise conveyed in a QoE measurement report message (e.g., MeasurementReportAppLayer RRC message) to the OAM or MCE via the NG-RAN (e.g., over SRB4) .
  • a QoE measurement report message e.g., MeasurementReportAppLayer RRC message
  • the application layer identifier (e.g., measConfigAppLayerId) may be used to identify one application layer measurement configuration and report (e.g., the corresponding QoE configuration or QoE measurement configuration) within the NG-RAN (e.g., between the UE 115-a and the network entity 105-a) .
  • the application layer measurement report is forwarded to OAM together with the QoE Reference based on the mapping between the application layer identifier and the MCE reference or other information used to identify or otherwise distinguish the OAM or MCE associated with the QoE configuration.
  • segmentation of the MeasurementReportAppLayer message may be enabled to allow the transmission of application layer measurement reports that exceed the maximum packet data convergence protocol (PDCP) service data unit (SDU) size limit, where RRC segmentation mechanisms may be applied.
  • PDCP packet data convergence protocol
  • SDU service data unit
  • the UE 115-a may provide QoE measurements to the network entity 105-a in files transparent to the RAN.
  • parsing, decoding, and analysing such measurements may be a cumbersome task for the RAN nodes.
  • the QoE information should be visible to the RAN.
  • the QoE measurements that are visible to the RAN may be referred to as RAN visible QoE measurements.
  • the RAN visible QoE measurements may enable the RAN to make timely and proper decisions in conjunction with radio measurements and information for QoE aware scheduling, QoE aware load balancing, link adaptation, and mobility decision evaluation after a handover.
  • a RAN node may configure or signal the RAN visible QoE measurement reporting at the UE 115-a.
  • the RAN node may configure or signal a subset of QoE metrics to be reported by the UE 115-a as explicit information elements (IEs) readable by the RAN node.
  • IEs explicit information elements
  • a list of available RAN visible QoE metrics may be forwarded from the OAM or the CN to the RAN node (e.g., including streaming and virtual reality (VR) service related QoE measurements) .
  • VR virtual reality
  • the RAN visible QoE metrics may include one or more values related to a buffer level, a playout delay for media startup, or both.
  • the buffer level may indicate a playout duration for which media data of active media components is available starting from a current playout time.
  • the one or more values for the buffer level may include a maximum value, a granularity, a maximum number of buffer level entries, or any combination thereof.
  • the maximum value may be 5 minutes
  • the granularity may be 10 milliseconds (ms)
  • the maximum number of buffer level entries may be 8.
  • the buffer level metrics may include a maximum number of buffer level entries for each buffer level metric report in one reporting message, where the UE 115-a may report latest buffer level entries up to the maximum number.
  • a playout delay for media startup may be measured as the time in ms from the time instant a player receives trigger (e.g., a play back start trigger) to the instant of media playout. This metric may indicate the waiting time that the user experiences for media start up.
  • the playout delay for media startup metrics may include a maximum value (e.g., 30 seconds) and a granularity (e.g., 1 ms) .
  • the RAN may select a handover type between a legacy handover, a dual active protocol stack (DAPS) handover, or conditional handover using the buffer level metrics, which may improve mobility decisions at the RAN, leading to seamless connectivity and a lower risk of video stalling.
  • the UE 115-a reporting the buffer level metrics may provide for the RAN to adjust the resource allocation for the UE 115-a in accordance with the buffer level metrics.
  • the network entity 105-a e.g., a base station
  • the RAN node may leverage the playout delay for media startup metrics as a time budget to deliver requested content without video stalling, while at the same time, not over-allocating radio resources to a service.
  • the CU of the network entity may generate the RAN visible QoE configuration.
  • the RAN visible QoE measurements and other QoE measurements may be configured together or separately by the CU.
  • the CU may configure or signal an indication of the non-RAN visible QoE measurements prior to the RAN visible QoE measurements.
  • a RAN node may release a list of RAN visible QoE configurations, but may refrain from releasing the non-RAN visible QoE configurations. If the RAN releases a non-RAN visible QoE configuration, the RAN may also release a corresponding RAN visible QoE configuration.
  • the RAN visible QoE configuration may include at least an indication of one or more RAN visible QoE metrics to be reported, a service type, an RRC Identifier (e.g., measConfigAppLayerID) , or any combination thereof.
  • an RRC layer of the UE 115-a e.g., an access layer, or AS layer
  • the RRC layer may indicate the service type and the RRC identifier to the application layer.
  • the network entity 105-a may configure or otherwise signal multiple simultaneous RAN visible QoE measurements at the UE 115-a.
  • the UE 115-a may report one or more RAN visible QoE measurements in a RAN visible QoE report at a different periodicity than the non-RAN visible QoE measurements. In some other examples, if there is no reporting periodicity defined in the RAN visible QoE configuration, the UE 115-a may send the RAN visible QoE reports together with the non-RAN visible QoE reports. In some cases, the UE 115-a may report one or more protocol data unit (PDU) session IDs for the service that is subject to QoE measurements together with the RAN visible QoE measurement results (e.g., in the RAN visible QoE report) . The RAN visible QoE reporting occurs periodically, which may occur too frequently causing over reporting of data and high signaling overhead.
  • PDU protocol data unit
  • a network entity 105-a may configure or signal event triggered RAN visible QoE reporting to reduce signaling overhead related to periodical RAN visible QoE reporting.
  • the network entity 105-a may indicate an event trigger 215 to the UE 115-a.
  • the event trigger 215 may be metric based or value based.
  • the indication of the event trigger 215 may define an event condition for measured metric evaluation.
  • the indication of the event trigger 215 may define an event condition for a derived value score evaluation.
  • the event evaluation may be executed at the RRC layer or the application layer of the UE 115-a.
  • the network entity 105-a may configure or signal the UE 115-a to generate and transmit a QoE reporting message 220, which may include RAN visible QoE metrics.
  • the network entity 105-a may configure or signal the event trigger 215 for RAN visible QoE metrics, where the configuration includes an event trigger quantity for buffer level, initial playout, or both.
  • an entering condition for the event trigger 215 may trigger a periodic RAN visible QoE metric report until a leaving condition is satisfied.
  • an entering condition for an event trigger 215 may be satisfied based on one or more comparisons relative to threshold values.
  • the network entity 105-a configures a metric-based event trigger 215, when a sum of a buffer level and an offset is less than a threshold buffer level (e.g., buffer level + offset ⁇ Threshold 1 for buffer level) or a difference between an initial playout and an offset is greater than a threshold initial playout (e.g., initial playout -offset > Threshold 1 for initial playout) , the entering condition may be satisfied.
  • the application layer may measure the buffer level as a metric, and the offset may be a hysteresis parameter for the event trigger 215, which may be set to 0.
  • the leaving condition for the event trigger 215 may be satisfied based on one or more comparisons relative to threshold values. That is, when a difference between a buffer level and an offset is greater than another threshold buffer level (e.g., buffer level -offset > Threshold 2 for buffer level) , or when a sum of an initial playout and an offset is less than an additional initial playout threshold (e.g., initial playout +offset ⁇ Threshold 2 for initial playout) , the leaving condition may be satisfied.
  • the threshold buffer level for the entering condition and the leaving condition may be the same or different. Additionally, or alternatively, the threshold initial playout for the entering condition and the leaving condition may be the same or different (e.g., threshold 1 and threshold 2 may be the same or different) .
  • the UE 115-a may transmit a QoE reporting message 220 to the network entity 105-a including RAN visible metrics.
  • the QoE reporting message may include a single measurement result or multiple measurement results.
  • the granularity of the reporting (e.g., whether the report includes a single or multiple measurement results) may be configured by the network entity 105-a.
  • the network entity 105-a may configure or signal the UE 115-a to transmit a portion of the QoE reporting message if the entering condition is satisfied, and another portion of the QoE reporting message if the leaving condition is satisfied.
  • the QoE reporting message may include radio measurement results, such as an RSRP or RSRQ.
  • the UE 115-a may generate the QoE reporting message based on detecting the event trigger 215 (e.g., based on the entering condition being satisfied, the leaving condition being satisfied, or both) .
  • the event evaluation may be executed at an application layer or an RRC layer of the UE 115-a. If executed at an application layer, the UE 115-a may forward the configuration of the event trigger 215 from the RRC layer to the application layer. Then, the UE 115-a may forward a measurement report to the RRC layer from the application layer. When the UE 115-a forwards the measurement report from the application layer to the RRC layer, the application layer may indicate an event name to the RRC layer.
  • the UE 115-a may configure or signal a measurement or reporting periodicity at the application layer.
  • the UE 115-a may forward the measured results for a reporting metric (e.g., buffer level, initial playout, or both) from the application layer to the RRC layer based on the configured periodicity.
  • the UE 115-a may evaluate at the RRC layer whether the corresponding event is fulfilled.
  • the UE 115-a may apply filtering at the RRC layer (e.g., layer 3 (L3) filtering) for the measured results.
  • the UE 115-a may filter the measured result before using the measured results for evaluation of reporting criteria or for measurement reporting, according to Equation 1:
  • M n is the latest received measurement result from the application layer
  • F n is the updated filtered metric measurement result that is used for evaluation of reporting criteria or for measurement reporting
  • a is a filter coefficient, which may be configured by the network entity 105-a or otherwise determined by the UE 115-a
  • F n-1 is the old filtered measurement result.
  • the UE 115-a may forward the buffer level metric measurement results from the application layer to the RRC layer in one measurement report or in different measurement reports.
  • the application layer may forward the RRC layer 8 buffer level values in one measurement report, and the RRC layer may perform filtering for each measurement result in the report. If the application layer forward different measurement reports to the RRC layer, the RRC layer may perform filtering for each measurement result in each measurement report.
  • the network entity 105-a may configure or signal the event trigger 215 for a RAN visible QoE value, where the configuration includes an event trigger quantity for the RAN visible QoE value.
  • an entering condition for the event trigger 215 may trigger a QoE reporting message based on comparing the value to one or more thresholds. For example, the entering condition for the event trigger 215 may be satisfied when the sum of a value score and an offset is less than a threshold (e.g., value score + offset ⁇ Threshold 1) . In some examples, a leaving condition for the event trigger 215 may be satisfied when the difference between the value score and the offset is greater than a threshold value (e.g., value score -offset > Threshold 2) .
  • the UE 115-a may derive the value score at the application layer using measured metrics. In some other cases, the UE 115-a may derive the value score at the RRC layer using measurement metric results. In some examples, the value score may be directly proportional to the measured metric (e.g., the value score is smaller if the measured metric is worse) .
  • the entering condition for the event trigger 215 may be satisfied based on a difference between a value score and an offset being less than a threshold value (e.g., value score -offset ⁇ Threshold 1 for event entering condition)
  • the leaving condition for the event trigger 215 may be satisfied based on a sum of a value score and an offset being greater than a threshold value (e.g., value score + offset > Threshold 2 for event leaving condition) .
  • the UE 115-a may transmit the QoE reporting message 220 to the network entity 105-a from the RRC layer.
  • the UE 115-a may include the measurement result or multiple measurement results in the QoE reporting message 220, where the network entity 105-a may configure or signal the granularity.
  • the UE 115-a may execute the event evaluation at an application layer of at an RRC layer of the UE 115. For example, if the UE 115-a executes the event evaluation at the application layer, the RRC layer may forward the event configuration to the application layer. The application layer may subsequently forward the measurement report to the RRC layer. When the application layer forwards the measurement report to the RRC layer, the application layer may indicate the event name to the RRC layer.
  • the application layer may derive a value score according to the measured metrics results, and may forward the value score to the RRC layer.
  • the RRC layer may evaluate whether the received value score fulfills the event condition. Additionally, or alternatively, the application layer may forward the measured metrics results to the RRC layer, and the RRC layer may derive the value score.
  • the RRC layer may evaluate whether the derived value score fulfills (e.g., satisfies) the event condition.
  • the application layer and the RRC layer may be referred to as performing the steps of forwarding, evaluating, measuring, deriving, or the like, the UE 115-a may be performing the steps at the application layer, the RRC layer, or both.
  • the UE 115-a may generate a QoE reporting message based on the entering condition being satisfied, the leaving condition being satisfied, or both.
  • the UE 115-a may transmit the QoE reporting message to the network entity 105-a via the uplink communication link 210.
  • the QoE reporting message may include the RAN visible QoE metrics.
  • FIG. 3 illustrates an example of a process flow 300 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the process flow 300 may be implemented by aspects of the wireless communications system 100 or the wireless communications system 200.
  • the process flow 300 may illustrate a network entity 105-b configuring a UE 115-b with an event trigger for RAN visible QoE reporting, where the UE 115-b and the network entity 105-b may be examples of corresponding devices described herein, including with reference to FIGs. 1 and 2.
  • the operations may be performed in a different order than the order shown. Specific operations also may be left out of the process flow 300, or other operations may be added to the process flow 300. Further, although some operations or signaling may be shown to occur at different times for discussion purposes, these operations may actually occur at the same time.
  • the network entity 105-b may transmit a control message (e.g., a DCI message, a MAC-CE, RRC signaling, a broadcast message, or the like) that indicates an event trigger for reporting a set of application layer QoE measurements by the UE 115-b to the network entity 105-b of a RAN.
  • a control message e.g., a DCI message, a MAC-CE, RRC signaling, a broadcast message, or the like
  • the UE 115-b may determine the event trigger is satisfied based on one or more metrics or one or more values. For example, the UE 115-b may determine an entering condition is satisfied based on comparing one or more thresholds to the metrics or the values.
  • control message may indicate an event trigger value of a QoE measurement within a set of application layer QoE measurements.
  • the UE 115-b may determine an entering condition for the event trigger is satisfied based on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value (e.g., value score + offset ⁇ Threshold 1) .
  • the UE 115-b may detect the event trigger based on a measured value of the QoE measurement relative to the event trigger value.
  • the control message may indicate an event trigger is based on metrics.
  • the UE 115-b may determine an entering condition for the event trigger is satisfied based on a sum of a buffer level and an offset relative to a first threshold buffer level value, a difference between an initial playout and the offset relative to a first threshold initial playout value, or both (e.g., buffer level + offset ⁇ Threshold 1 for buffer level, or initial playout -offset > Threshold 1 for initial playout) .
  • the UE 115-b may detect the event trigger based on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value.
  • the UE 115-b may determine the entering condition for the event trigger is satisfied by executing the evaluation at an application layer of the UE 115-b. For example, the UE 115-b may receive an indication of the first portion of the QoE reporting message at the RRC layer based on forwarding an indication including an event name of the event trigger to the application layer of the UE 115-b.
  • the UE 115-b may determine the entering condition for the event trigger is satisfied by executing the evaluation at an RRC layer of the UE 115-b. For example, the UE 115-b may receive an indication of the sum of the set of application layer QoE measurements at the RRC layer of the UE 115-b and may determine whether the received sum of the set of application layer QoE measurements satisfies the event trigger at the RRC layer of the UE 115-b.
  • the UE 115-b may receive an indication of one or more application layer QoE measurements at the RRC layer of the UE 115-b and may determine whether the received sum of the set of application layer QoE measurements satisfies the event trigger at the RRC layer of the UE 115-b. In some other examples, the UE 115-b may receive one or more application layer QoE measurements at the RRC layer of the UE 115-b based on forwarding an indication of a measurement periodicity, a reporting periodicity, or both for transmitting the first portion of the QoE reporting message to the application layer of the UE 115-b.
  • the UE 115-b may determine the entering condition for the event trigger is satisfied based on the one or more application layer QoE measurements. In some examples, the UE 115-b may filter the one or more application layer QoE measurements prior to the determining the entering condition for the event trigger is satisfied.
  • the UE 115-b may generate a QoE reporting message with RAN visible QoE measurements based on detecting the event trigger in accordance with the control message.
  • the U E115-b may generate a QoE reporting message including an indication of the set of application layer QoE measurements.
  • the UE 115-b may
  • the UE 115-b may transmit at least a first portion of the QoE reporting message to the network entity 105-b of the RAN.
  • the UE 115-b may transmit the first portion of the QoE reporting message or the entirety of the QoE reporting message based on determining the entering condition for the event trigger is satisfied.
  • the network entity 105-b may configure or signal to the UE 115-b a reporting granularity, such that the UE 115-b transmits a portion of the message at a time or the entirety of the message upon detecting the entering condition is satisfied.
  • the UE 115-b may determine a leaving condition is satisfied based on comparing one or more metrics or one or more values to thresholds. For example, the UE 115-b may determine a leaving condition for the event trigger is satisfied based on a difference between the sum of the set of application layer QoE measurements and the offset relative to a second threshold value (e.g., Value score -offset > Threshold 2) .
  • a second threshold value e.g., Value score -offset > Threshold 2
  • the UE 115-b may determine a leaving condition for the event trigger is satisfied based on a difference between the buffer level and the offset relative to a second threshold buffer level value, a sum of an initial playout value and the offset relative to a second threshold initial playout value, or both (e.g., buffer level -offset >Threshold 2 for buffer level, or initial playout + offset ⁇ Threshold 2 for initial playout) .
  • the UE 115-b may detect the event trigger based on determining the leaving condition for the event trigger is satisfied.
  • the first threshold value may be the same as the second threshold value. In some other cases, the first threshold value may be different than the second threshold value.
  • the first threshold buffer level value may be the same as the second threshold buffer level value, the first threshold initial playout value may be the same as the second threshold initial playout value, or both. In some other examples, the first threshold buffer level value may be different than the second threshold buffer level value, the first threshold initial playout value may be different than the second threshold initial playout value, or both.
  • the UE 115-b may transmit a second portion of the QoE reporting message based on determining the leaving condition is satisfied.
  • the set of application layer QoE measurements may include a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay for media startup, a granularity for playout delay associated with the media startup, an RSRP, an RSRQ, or any combination thereof.
  • the event trigger may additionally or alternatively be referred to as a trigger event.
  • FIG. 4 shows a block diagram 400 of a device 405 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the device 405 may be an example of aspects of a UE 115 as described herein.
  • the device 405 may include a receiver 410, a transmitter 415, and a communications manager 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to event triggered reporting of RAN visible QoE reporting) . Information may be passed on to other components of the device 405.
  • the receiver 410 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 415 may provide a means for transmitting signals generated by other components of the device 405.
  • the transmitter 415 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to event triggered reporting of RAN visible QoE reporting) .
  • the transmitter 415 may be co-located with a receiver 410 in a transceiver module.
  • the transmitter 415 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or various components thereof may be examples of means for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein.
  • the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a digital signal processor (DSP) , a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • DSP digital signal processor
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a
  • the communications manager 420 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 410, the transmitter 415, or both.
  • the communications manager 420 may receive information from the receiver 410, send information to the transmitter 415, or be integrated in combination with the receiver 410, the transmitter 415, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 420 may support wireless communications at a UE in accordance with examples as disclosed herein.
  • the communications manager 420 may be configured as or otherwise support a means for receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN.
  • the communications manager 420 may be configured as or otherwise support a means for generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements.
  • the communications manager 420 may be configured as or otherwise support a means for transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
  • the device 405 may support techniques for a network entity 105 to configure a UE 115 with an event trigger for RAN visible QoE reporting, which may provide for reduced processing, reduced power consumption, more efficient utilization of communication resources, and the like.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405 or a UE 115 as described herein.
  • the device 505 may include a receiver 510, a transmitter 515, and a communications manager 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to event triggered reporting of RAN visible QoE reporting) . Information may be passed on to other components of the device 505.
  • the receiver 510 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 515 may provide a means for transmitting signals generated by other components of the device 505.
  • the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to event triggered reporting of RAN visible QoE reporting) .
  • the transmitter 515 may be co-located with a receiver 510 in a transceiver module.
  • the transmitter 515 may utilize a single antenna or a set of multiple antennas.
  • the device 505, or various components thereof may be an example of means for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein.
  • the communications manager 520 may include an event trigger component 525, a QoE measurement component 530, a QoE report component 535, or any combination thereof.
  • the communications manager 520 may be an example of aspects of a communications manager 420 as described herein.
  • the communications manager 520, or various components thereof may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both.
  • the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 520 may support wireless communications at a UE in accordance with examples as disclosed herein.
  • the event trigger component 525 may be configured as or otherwise support a means for receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN.
  • the QoE measurement component 530 may be configured as or otherwise support a means for generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements.
  • the QoE report component 535 may be configured as or otherwise support a means for transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
  • FIG. 6 shows a block diagram 600 of a communications manager 620 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the communications manager 620 may be an example of aspects of a communications manager 420, a communications manager 520, or both, as described herein.
  • the communications manager 620, or various components thereof, may be an example of means for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein.
  • the communications manager 620 may include an event trigger component 625, a QoE measurement component 630, a QoE report component 635, an entering condition component 640, a leaving condition component 645, or any combination thereof.
  • Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 620 may support wireless communications at a UE in accordance with examples as disclosed herein.
  • the event trigger component 625 may be configured as or otherwise support a means for receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN.
  • the QoE measurement component 630 may be configured as or otherwise support a means for generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements.
  • the QoE report component 635 may be configured as or otherwise support a means for transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
  • control message indicates an event trigger value of a QoE measurement within the set of application layer QoE measurements
  • the entering condition component 640 may be configured as or otherwise support a means for determining an entering condition associated with the event trigger is satisfied based on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value, where detecting the event trigger is based on a measured value of the QoE measurement relative to the event trigger value.
  • the QoE report component 635 may be configured as or otherwise support a means for transmitting, based on determining the entering condition associated with the event trigger is satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  • the leaving condition component 645 may be configured as or otherwise support a means for determining a leaving condition associated with the event trigger is satisfied based on a difference between the sum of the set of application layer QoE measurements and the offset relative to a second threshold value.
  • the QoE report component 635 may be configured as or otherwise support a means for transmitting a second portion of the QoE reporting message to the network entity of the RAN based on determining the leaving condition associated with the event trigger is satisfied.
  • the first threshold value is the same as the second threshold value.
  • the first threshold value is different than the second threshold value.
  • the determining the entering condition associated with the event trigger is satisfied is executed at an application layer of the UE, and the QoE report component 635 may be configured as or otherwise support a means for receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based on forwarding an indication including an event name of the event trigger to the application layer of the UE.
  • the determining the entering condition associated with the event trigger is satisfied is executed at a RRC layer of the UE, and the QoE measurement component 630 may be configured as or otherwise support a means for receiving, at the RRC layer of the UE, an indication of the sum of the set of application layer QoE measurements. In some examples, the determining the entering condition associated with the event trigger is satisfied is executed at a RRC layer of the UE, and the QoE measurement component 630 may be configured as or otherwise support a means for determining, at the RRC layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
  • the determining the entering condition associated with the event trigger is satisfied is executed at a RRC layer of the UE, and the QoE measurement component 630 may be configured as or otherwise support a means for receiving, at the RRC layer of the UE, an indication of one or more application layer QoE measurements of the set of application layer QoE measurements.
  • the determining the entering condition associated with the event trigger is satisfied is executed at a RRC layer of the UE, and the QoE measurement component 630 may be configured as or otherwise support a means for determining, at the RRC layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
  • the entering condition component 640 may be configured as or otherwise support a means for determining an entering condition associated with the event trigger is satisfied based on a sum of a buffer level and an offset relative to a first threshold buffer level value, a difference between an initial playout and the offset relative to a first threshold initial playout value, or both, where detecting the event trigger is based on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value.
  • the QoE report component 635 may be configured as or otherwise support a means for transmitting, based on determining the entering condition associated with the event trigger is satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  • the leaving condition component 645 may be configured as or otherwise support a means for determining a leaving condition associated with the event trigger is satisfied based on a difference between the buffer level and the offset relative to a second threshold buffer level value, a sum of an initial playout value and the offset relative to a second threshold initial playout value, or both, where detecting the event trigger is based on determining the leaving condition associated with the event trigger is satisfied.
  • the first threshold buffer level value is the same as the second threshold buffer level value
  • the first threshold initial playout value is the same as the second threshold initial playout value, or both.
  • the first threshold buffer level value is different than the second threshold buffer level value
  • the first threshold initial playout value is different than the second threshold initial playout value, or both.
  • the determining the entering condition associated with the event trigger is satisfied is executed at an application layer of the UE, and the QoE report component 635 may be configured as or otherwise support a means for receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based on forwarding an indication including an event name of the event trigger to the application layer of the UE.
  • the determining the entering condition associated with the event trigger is satisfied is executed at a RRC layer of the UE, and the QoE measurement component 630 may be configured as or otherwise support a means for receiving, at the RRC layer of the UE, one or more application layer QoE measurements of the set of application layer QoE measurements based on forwarding an indication of a measurement periodicity, a reporting periodicity, or both associated with transmitting at least the first portion of the QoE reporting message to the application layer of the UE, where the determining the entering condition associated with the event trigger is satisfied is based on the one or more application layer QoE measurements.
  • the QoE measurement component 630 may be configured as or otherwise support a means for filtering the one or more application layer QoE measurements prior to the determining the entering condition associated with the event trigger is satisfied.
  • the set of application layer QoE measurements include a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, an RSRP, an RSRQ, or any combination thereof.
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the device 705 may be an example of or include the components of a device 405, a device 505, or a UE 115 as described herein.
  • the device 705 may communicate (e.g., wirelessly) with one or more network entities 105, one or more UEs 115, or any combination thereof.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 720, an input/output (I/O) controller 710, a transceiver 715, an antenna 725, a memory 730, code 735, and a processor 740. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 745) .
  • a bus 745 e.g., a bus 745
  • the I/O controller 710 may manage input and output signals for the device 705.
  • the I/O controller 710 may also manage peripherals not integrated into the device 705.
  • the I/O controller 710 may represent a physical connection or port to an external peripheral.
  • the I/O controller 710 may utilize an operating system such as or another known operating system.
  • the I/O controller 710 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 710 may be implemented as part of a processor, such as the processor 740.
  • a user may interact with the device 705 via the I/O controller 710 or via hardware components controlled by the I/O controller 710.
  • the device 705 may include a single antenna 725. However, in some other cases, the device 705 may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 715 may communicate bi-directionally, via the one or more antennas 725, wired, or wireless links as described herein.
  • the transceiver 715 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 715 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 725 for transmission, and to demodulate packets received from the one or more antennas 725.
  • the transceiver 715 may be an example of a transmitter 415, a transmitter 515, a receiver 410, a receiver 510, or any combination thereof or component thereof, as described herein.
  • the memory 730 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed by the processor 740, cause the device 705 to perform various functions described herein.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 730 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 740 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting event triggered reporting of RAN visible QoE reporting) .
  • the device 705 or a component of the device 705 may include a processor 740 and memory 730 coupled with or to the processor 740, the processor 740 and memory 730 configured to perform various functions described herein.
  • the communications manager 720 may support wireless communications at a UE in accordance with examples as disclosed herein.
  • the communications manager 720 may be configured as or otherwise support a means for receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN.
  • the communications manager 720 may be configured as or otherwise support a means for generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements.
  • the communications manager 720 may be configured as or otherwise support a means for transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
  • the device 705 may support techniques for a network entity 105 to configure a UE 115 with an event trigger for RAN visible QoE reporting, which may provide for improved communication reliability, reduced latency, improved user experience related to reduced processing, reduced power consumption, more efficient utilization of communication resources, improved coordination between devices, longer battery life, improved utilization of processing capability, and the like.
  • the communications manager 720 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 715, the one or more antennas 725, or any combination thereof.
  • the communications manager 720 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 720 may be supported by or performed by the processor 740, the memory 730, the code 735, or any combination thereof.
  • the code 735 may include instructions executable by the processor 740 to cause the device 705 to perform various aspects of event triggered reporting of RAN visible QoE reporting as described herein, or the processor 740 and the memory 730 may be otherwise configured to perform or support such operations.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the device 805 may be an example of aspects of a network entity 105 as described herein.
  • the device 805 may include a receiver 810, a transmitter 815, and a communications manager 820.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • Information may be passed on to other components of the device 805.
  • the receiver 810 may support obtaining information by receiving signals via one or more antennas. Additionally, or alternatively, the receiver 810 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 815 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 805.
  • the transmitter 815 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • the transmitter 815 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the transmitter 815 may support outputting information by transmitting signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 815 and the receiver 810 may be co-located in a transceiver, which may include or be coupled with a modem.
  • the communications manager 820, the receiver 810, the transmitter 815, or various combinations thereof or various components thereof may be examples of means for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein.
  • the communications manager 820, the receiver 810, the transmitter 815, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 820, the receiver 810, the transmitter 815, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a DSP, a CPU, an ASIC, an FPGA or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 820, the receiver 810, the transmitter 815, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 820, the receiver 810, the transmitter 815, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 820, the receiver 810, the transmitter 815, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a
  • the communications manager 820 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 810, the transmitter 815, or both.
  • the communications manager 820 may receive information from the receiver 810, send information to the transmitter 815, or be integrated in combination with the receiver 810, the transmitter 815, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 820 may support wireless communications at a network entity of a RAN in accordance with examples as disclosed herein.
  • the communications manager 820 may be configured as or otherwise support a means for transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN.
  • the communications manager 820 may be configured as or otherwise support a means for receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
  • the device 805 may support techniques for a network entity 105 to configure a UE 115 with an event trigger for RAN visible QoE reporting, which may provide for reduced processing, reduced power consumption, more efficient utilization of communication resources, and the like.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the device 905 may be an example of aspects of a device 805 or a network entity 105 as described herein.
  • the device 905 may include a receiver 910, a transmitter 915, and a communications manager 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • Information may be passed on to other components of the device 905.
  • the receiver 910 may support obtaining information by receiving signals via one or more antennas. Additionally, or alternatively, the receiver 910 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 915 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 905.
  • the transmitter 915 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) .
  • the transmitter 915 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the transmitter 915 may support outputting information by transmitting signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
  • the transmitter 915 and the receiver 910 may be co-located in a transceiver, which may include or be coupled with a modem.
  • the device 905, or various components thereof may be an example of means for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein.
  • the communications manager 920 may include an event trigger manager 925 a QoE report manager 930, or any combination thereof.
  • the communications manager 920 may be an example of aspects of a communications manager 820 as described herein.
  • the communications manager 920, or various components thereof may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 910, the transmitter 915, or both.
  • the communications manager 920 may receive information from the receiver 910, send information to the transmitter 915, or be integrated in combination with the receiver 910, the transmitter 915, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 920 may support wireless communications at a network entity of a RAN in accordance with examples as disclosed herein.
  • the event trigger manager 925 may be configured as or otherwise support a means for transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN.
  • the QoE report manager 930 may be configured as or otherwise support a means for receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
  • FIG. 10 shows a block diagram 1000 of a communications manager 1020 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the communications manager 1020 may be an example of aspects of a communications manager 820, a communications manager 920, or both, as described herein.
  • the communications manager 1020, or various components thereof, may be an example of means for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein.
  • the communications manager 1020 may include an event trigger manager 1025 a QoE report manager 1030, or any combination thereof.
  • Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) which may include communications within a protocol layer of a protocol stack, communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack, within a device, component, or virtualized component associated with a network entity 105, between devices, components, or virtualized components associated with a network entity 105) , or any combination thereof.
  • the communications manager 1020 may support wireless communications at a network entity of a RAN in accordance with examples as disclosed herein.
  • the event trigger manager 1025 may be configured as or otherwise support a means for transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN.
  • the QoE report manager 1030 may be configured as or otherwise support a means for receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
  • the QoE report manager 1030 may be configured as or otherwise support a means for receiving, based on an entering condition associated with the event trigger being satisfied at the UE, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  • the QoE report manager 1030 may be configured as or otherwise support a means for receiving, based on a leaving condition associated with the event trigger being satisfied at the UE, a second portion of the QoE reporting message.
  • the set of application layer QoE measurements include a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, an RSRP, an RSRQ, or any combination thereof.
  • FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the device 1105 may be an example of or include the components of a device 805, a device 905, or a network entity 105 as described herein.
  • the device 1105 may communicate with one or more network entities 105, one or more UEs 115, or any combination thereof, which may include communications over one or more wired interfaces, over one or more wireless interfaces, or any combination thereof.
  • the device 1105 may include components that support outputting and obtaining communications, such as a communications manager 1120, a transceiver 1110, an antenna 1115, a memory 1125, code 1130, and a processor 1135. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1140) .
  • a communications manager 1120 e.g., operatively, communicatively, functionally, electronically, electrically
  • buses e.g., a bus 1140
  • the transceiver 1110 may support bi-directional communications via wired links, wireless links, or both as described herein.
  • the transceiver 1110 may include a wired transceiver and may communicate bi-directionally with another wired transceiver. Additionally, or alternatively, in some examples, the transceiver 1110 may include a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the device 1105 may include one or more antennas 1115, which may be capable of transmitting or receiving wireless transmissions (e.g., concurrently) .
  • the transceiver 1110 may also include a modem to modulate signals, to provide the modulated signals for transmission (e.g., by one or more antennas 1115, by a wired transmitter) , to receive modulated signals (e.g., from one or more antennas 1115, from a wired receiver) , and to demodulate signals.
  • the transceiver 1110 may include one or more interfaces, such as one or more interfaces coupled with the one or more antennas 1115 that are configured to support various receiving or obtaining operations, or one or more interfaces coupled with the one or more antennas 1115 that are configured to support various transmitting or outputting operations, or a combination thereof.
  • the transceiver 1110 may include or be configured for coupling with one or more processors or memory components that are operable to perform or support operations based on received or obtained information or signals, or to generate information or other signals for transmission or other outputting, or any combination thereof.
  • the transceiver 1110, or the transceiver 1110 and the one or more antennas 1115, or the transceiver 1110 and the one or more antennas 1115 and one or more processors or memory components may be included in a chip or chip assembly that is installed in the device 1105.
  • the transceiver may be operable to support communications via one or more communications links (e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168) .
  • one or more communications links e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168 .
  • the memory 1125 may include RAM and ROM.
  • the memory 1125 may store computer-readable, computer-executable code 1130 including instructions that, when executed by the processor 1135, cause the device 1105 to perform various functions described herein.
  • the code 1130 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 1130 may not be directly executable by the processor 1135 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1125 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1135 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA, a microcontroller, a programmable logic device, discrete gate or transistor logic, a discrete hardware component, or any combination thereof) .
  • the processor 1135 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1135.
  • the processor 1135 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1125) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting event triggered reporting of RAN visible QoE reporting) .
  • the device 1105 or a component of the device 1105 may include a processor 1135 and memory 1125 coupled with the processor 1135, the processor 1135 and memory 1125 configured to perform various functions described herein.
  • the processor 1135 may be an example of a cloud-computing platform (e.g., one or more physical nodes and supporting software such as operating systems, virtual machines, or container instances) that may host the functions (e.g., by executing code 1130) to perform the functions of the device 1105.
  • the processor 1135 may be any one or more suitable processors capable of executing scripts or instructions of one or more software programs stored in the device 1105 (such as within the memory 1125) .
  • the processor 1135 may be a component of a processing system.
  • a processing system may generally refer to a system or series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the device 1105) .
  • a processing system of the device 1105 may refer to a system including the various other components or subcomponents of the device 1105, such as the processor 1135, or the transceiver 1110, or the communications manager 1120, or other components or combinations of components of the device 1105.
  • the processing system of the device 1105 may interface with other components of the device 1105, and may process information received from other components (such as inputs or signals) or output information to other components.
  • a chip or modem of the device 1105 may include a processing system and one or more interfaces to output information, or to obtain information, or both.
  • the one or more interfaces may be implemented as or otherwise include a first interface configured to output information and a second interface configured to obtain information, or a same interface configured to output information and to obtain information, among other implementations.
  • the one or more interfaces may refer to an interface between the processing system of the chip or modem and a transmitter, such that the device 1105 may transmit information output from the chip or modem.
  • the one or more interfaces may refer to an interface between the processing system of the chip or modem and a receiver, such that the device 1105 may obtain information or signal inputs, and the information may be passed to the processing system.
  • a first interface also may obtain information or signal inputs
  • a second interface also may output information or signal outputs.
  • a bus 1140 may support communications of (e.g., within) a protocol layer of a protocol stack. In some examples, a bus 1140 may support communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack) , which may include communications performed within a component of the device 1105, or between different components of the device 1105 that may be co-located or located in different locations (e.g., where the device 1105 may refer to a system in which one or more of the communications manager 1120, the transceiver 1110, the memory 1125, the code 1130, and the processor 1135 may be located in one of the different components or divided between different components) .
  • a logical channel of a protocol stack e.g., between protocol layers of a protocol stack
  • the device 1105 may refer to a system in which one or more of the communications manager 1120, the transceiver 1110, the memory 1125, the code 1130, and the processor 1135 may be located in one of the different
  • the communications manager 1120 may manage aspects of communications with a core network 130 (e.g., via one or more wired or wireless backhaul links) .
  • the communications manager 1120 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the communications manager 1120 may manage communications with other network entities 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network entities 105.
  • the communications manager 1120 may support an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between network entities 105.
  • the communications manager 1120 may support wireless communications at a network entity of a RAN in accordance with examples as disclosed herein.
  • the communications manager 1120 may be configured as or otherwise support a means for transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN.
  • the communications manager 1120 may be configured as or otherwise support a means for receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
  • the device 1105 may support techniques for a network entity 105 to configure a UE 115 with an event trigger for RAN visible QoE reporting, which may provide for improved communication reliability, reduced latency, improved user experience related to reduced processing, reduced power consumption, more efficient utilization of communication resources, improved coordination between devices, longer battery life, improved utilization of processing capability, and the like.
  • the communications manager 1120 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the transceiver 1110, the one or more antennas 1115 (e.g., where applicable) , or any combination thereof.
  • the communications manager 1120 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1120 may be supported by or performed by the transceiver 1110, the processor 1135, the memory 1125, the code 1130, or any combination thereof.
  • the code 1130 may include instructions executable by the processor 1135 to cause the device 1105 to perform various aspects of event triggered reporting of RAN visible QoE reporting as described herein, or the processor 1135 and the memory 1125 may be otherwise configured to perform or support such operations.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1200 may be implemented by a UE or its components as described herein.
  • the operations of the method 1200 may be performed by a UE 115 as described with reference to FIGs. 1 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN.
  • QoE application layer QoE
  • the operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by an event trigger component 625 as described with reference to FIG. 6.
  • the method may include generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements.
  • the operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a QoE measurement component 630 as described with reference to FIG. 6.
  • the method may include transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
  • the operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by a QoE report component 635 as described with reference to FIG. 6.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1300 may be implemented by a UE or its components as described herein.
  • the operations of the method 1300 may be performed by a UE 115 as described with reference to FIGs. 1 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN.
  • QoE application layer QoE
  • the operations of 1305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1305 may be performed by an event trigger component 625 as described with reference to FIG. 6.
  • the method may include determining an entering condition associated with the event trigger is satisfied based on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value, where detecting the event trigger is based on a measured value of the QoE measurement relative to the event trigger value.
  • the operations of 1310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1310 may be performed by an entering condition component 640 as described with reference to FIG. 6.
  • the method may include generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements.
  • the operations of 1315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1315 may be performed by a QoE measurement component 630 as described with reference to FIG. 6.
  • the method may include transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
  • the operations of 1320 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1320 may be performed by a QoE report component 635 as described with reference to FIG. 6.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1400 may be implemented by a UE or its components as described herein.
  • the operations of the method 1400 may be performed by a UE 115 as described with reference to FIGs. 1 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN.
  • QoE application layer QoE
  • the operations of 1405 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1405 may be performed by an event trigger component 625 as described with reference to FIG. 6.
  • the method may include determining an entering condition associated with the event trigger is satisfied based on a sum of a buffer level and an offset relative to a first threshold buffer level value, a difference between an initial playout and the offset relative to a first threshold initial playout value, or both, where detecting the event trigger is based on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value.
  • the operations of 1410 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1410 may be performed by an entering condition component 640 as described with reference to FIG. 6.
  • the method may include generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements.
  • the operations of 1415 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1415 may be performed by a QoE measurement component 630 as described with reference to FIG. 6.
  • the method may include transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
  • the operations of 1420 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1420 may be performed by a QoE report component 635 as described with reference to FIG. 6.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1500 may be implemented by a network entity or its components as described herein.
  • the operations of the method 1500 may be performed by a network entity as described with reference to FIGs. 1 through 3 and 8 through 11.
  • a network entity may execute a set of instructions to control the functional elements of the network entity to perform the described functions. Additionally, or alternatively, the network entity may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN.
  • QoE application layer QoE
  • the operations of 1505 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1505 may be performed by an event trigger manager 1025 as described with reference to FIG. 10.
  • the method may include receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
  • the operations of 1510 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1510 may be performed by a QoE report manager 1030 as described with reference to FIG. 10.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1600 may be implemented by a network entity or its components as described herein.
  • the operations of the method 1600 may be performed by a network entity as described with reference to FIGs. 1 through 3 and 8 through 11.
  • a network entity may execute a set of instructions to control the functional elements of the network entity to perform the described functions. Additionally, or alternatively, the network entity may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN.
  • QoE application layer QoE
  • the operations of 1605 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1605 may be performed by an event trigger manager 1025 as described with reference to FIG. 10.
  • the method may include receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
  • the operations of 1610 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1610 may be performed by a QoE report manager 1030 as described with reference to FIG. 10.
  • the method may include receiving, based on an entering condition associated with the event trigger being satisfied at the UE, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  • the operations of 1615 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1615 may be performed by a QoE report manager 1030 as described with reference to FIG. 10.
  • a method for wireless communications at a UE comprising: receiving a control message indicating an event trigger associated with reporting of a set of application layer quality of experience (QoE) measurements by the UE to a network entity of a radio access network; generating, based at least in part on detecting the event trigger in accordance with the control message, a QoE reporting message comprising an indication of the set of application layer QoE measurements; and transmitting at least a first portion of the QoE reporting message to the network entity of the radio access network.
  • QoE application layer quality of experience
  • Aspect 2 The method of aspect 1, wherein the control message indicates an event trigger value of an application layer QoE measurement within the set of application layer QoE measurements, the method further comprising: determining an entering condition associated with the event trigger is satisfied based at least in part on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value, wherein detecting the event trigger is based at least in part on a measured value of the application layer QoE measurement relative to the event trigger value.
  • Aspect 3 The method of aspect 2, wherein transmitting at least the first portion of the QoE reporting message comprises: transmitting, based at least in part on determining the entering condition associated with the event trigger is satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  • Aspect 4 The method of any of aspects 2 through 3, further comprising: determining a leaving condition associated with the event trigger is satisfied based at least in part on a difference between the sum of the set of application layer QoE measurements and the offset relative to a second threshold value; and transmitting a second portion of the QoE reporting message to the network entity of the radio access network based at least in part on determining the leaving condition associated with the event trigger is satisfied.
  • Aspect 5 The method of aspect 4, wherein the first threshold value is the same as the second threshold value.
  • Aspect 6 The method of aspect 4, wherein the first threshold value is different than the second threshold value.
  • Aspect 7 The method of any of aspects 2 through 6, wherein the determining the entering condition associated with the event trigger is satisfied is executed at an application layer of the UE, the method further comprising: receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based at least in part on forwarding an indication comprising an event name of the event trigger to the application layer of the UE.
  • Aspect 8 The method of any of aspects 2 through 6, wherein the determining the entering condition associated with the event trigger is satisfied is executed at a radio resource control layer of the UE, the method further comprising: receiving, at the radio resource control layer of the UE, an indication of the sum of the set of application layer QoE measurements; and determining, at the radio resource control layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
  • Aspect 9 The method of any of aspects 2 through 6, wherein the determining the entering condition associated with the event trigger is satisfied is executed at a radio resource control layer of the UE, the method further comprising: receiving, at the radio resource control layer of the UE, an indication of one or more application layer QoE measurements of the set of application layer QoE measurements; and determining, at the radio resource control layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
  • Aspect 10 The method of aspect 1, further comprising: determining an entering condition associated with the event trigger is satisfied based at least in part on a sum of a buffer level and an offset relative to a first threshold buffer level value, a difference between an initial playout and the offset relative to a first threshold initial playout value, or both, wherein detecting the event trigger is based at least in part on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value.
  • Aspect 11 The method of aspect 10, wherein transmitting at least the first portion of the QoE reporting message comprises: transmitting, based at least in part on determining the entering condition associated with the event trigger is satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  • Aspect 12 The method of any of aspects 10 through 11, further comprising: determining a leaving condition associated with the event trigger is satisfied based at least in part on a difference between the buffer level and the offset relative to a second threshold buffer level value, a sum of an initial playout value and the offset relative to a second threshold initial playout value, or both, wherein detecting the event trigger is based at least in part on determining the leaving condition associated with the event trigger is satisfied.
  • Aspect 13 The method of aspect 12, wherein the first threshold buffer level value is the same as the second threshold buffer level value, the first threshold initial playout value is the same as the second threshold initial playout value, or both.
  • Aspect 14 The method of aspect 12, wherein the first threshold buffer level value is different than the second threshold buffer level value, the first threshold initial playout value is different than the second threshold initial playout value, or both.
  • Aspect 15 The method of any of aspects 10 through 14, wherein the determining the entering condition associated with the event trigger is satisfied is executed at an application layer of the UE, the method further comprising: receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based at least in part on forwarding an indication comprising an event name of the event trigger to the application layer of the UE.
  • Aspect 16 The method of any of aspects 10 through 14, wherein the determining the entering condition associated with the event trigger is satisfied is executed at a radio resource control layer of the UE, the method further comprising: receiving, at the radio resource control layer of the UE, one or more application layer QoE measurements of the set of application layer QoE measurements based at least in part on forwarding an indication of a measurement periodicity, a reporting periodicity, or both associated with transmitting at least the first portion of the QoE reporting message to the application layer of the UE, wherein the determining the entering condition associated with the event trigger is satisfied is based at least in part on the one or more application layer QoE measurements.
  • Aspect 17 The method of aspect 16, further comprising: filtering the one or more application layer QoE measurements prior to the determining the entering condition associated with the event trigger is satisfied.
  • Aspect 18 The method of any of aspects 1 through 17, wherein the set of application layer QoE measurements comprise a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, a reference signal receive power, a reference signal receive quality, or any combination thereof.
  • a method for wireless communications at a network entity of a radio access network comprising: transmitting a control message indicating an event trigger associated with reporting of a set of application layer quality of experience (QoE) measurements by a UE to the network entity of the radio access network; and receiving at least a first portion of a QoE reporting message comprising an indication of the set of application layer QoE measurements based at least in part on the event trigger.
  • QoE application layer quality of experience
  • Aspect 20 The method of aspect 19, wherein receiving at least the first portion of the QoE reporting message comprises: receiving, based at least in part on an entering condition associated with the event trigger being satisfied at the UE, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  • Aspect 21 The method of aspect 20, further comprising: receiving, based at least in part on a leaving condition associated with the event trigger being satisfied at the UE, a second portion of the QoE reporting message.
  • Aspect 22 The method of any of aspects 19 through 21, wherein the set of application layer QoE measurements comprise a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, a reference signal receive power, a reference signal receive quality, or any combination thereof.
  • Aspect 23 An apparatus for wireless communications at a UE, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 18.
  • Aspect 24 An apparatus for wireless communications at a UE, comprising at least one means for performing a method of any of aspects 1 through 18.
  • Aspect 25 A non-transitory computer-readable medium storing code for wireless communications at a UE, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 18.
  • Aspect 26 An apparatus for wireless communications at a network entity of a radio access network, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 19 through 22.
  • Aspect 27 An apparatus for wireless communications at a network entity of a radio access network, comprising at least one means for performing a method of any of aspects 19 through 22.
  • Aspect 28 A non-transitory computer-readable medium storing code for wireless communications at a network entity of a radio access network, the code comprising instructions executable by a processor to perform a method of any of aspects 19 through 22.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor but, in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented using hardware, software executed by a processor, firmware, or any combination thereof. If implemented using software executed by a processor, the functions may be stored as or transmitted using one or more instructions or code of a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc. Disks may reproduce data magnetically, and discs may reproduce data optically using lasers. Combinations of the above are also included within the scope of computer-readable media.
  • determining encompasses a variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information) , accessing (e.g., accessing data stored in memory) and the like. Also, “determining” can include resolving, obtaining, selecting, choosing, establishing, and other such similar actions. Also, as used herein, the phrase “a set” shall be construed as including the possibility of a set with one member. That is, the phrase “a set” shall be construed in the same manner as “one or more. ”

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a control message indicating an event trigger for reporting a set of application layer quality of experience (QoE) measurements to a network entity of a radio access network (RAN). The UE may generate a QoE reporting message based on detecting the event trigger. In some cases, the event trigger may be metric-based. In some other cases, the event trigger may be value-based. The QoE reporting message may include the set of application layer QoE measurements. The UE may granularly, or non-granularly, transmit the QoE reporting message to the network entity of the RAN.

Description

EVENT TRIGGERED REPORTING OF RADIO ACCESS NETWORK VISIBLE QUALITY OF EXPERIENCE REPORTING
FIELD OF TECHNOLOGY
The following relates to wireless communications, including event triggered reporting of radio access network (RAN) visible quality of experience (QoE) reporting.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations, each supporting wireless communication for communication devices, which may be known as user equipment (UE) .
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support event triggered reporting of radio access network (RAN) visible quality of experience (QoE) reporting. For example, the described techniques provide for a network entity to configure an event trigger for a user equipment (UE) to report a set of application layer QoE measurements to the network entity, which may be referred to as RAN visible QoE reporting. For example, the network entity may send a control message to the UE indicating an event trigger for RAN visible QoE reporting. The UE may generate a QoE report based on detecting the event trigger, where the QoE report includes the set of application layer QoE measurements. In some examples, the  UE may transmit at least a portion of the QoE reporting message to the network entity, such as upon detecting an entering condition is satisfied, a leaving condition is satisfied, or both. The network entity may signal instructions or configuration information for the UE to transmit the entirety of the QoE report, or to transmit the QoE report granularly.
A method for wireless communications at a UE is described. The method may include receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by the UE to a network entity of a RAN, generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements, and transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by the UE to a network entity of a RAN, generate, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements, and transmit at least a first portion of the QoE reporting message to the network entity of the RAN.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by the UE to a network entity of a RAN, means for generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements, and means for transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to receive a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by the UE to a network entity  of a RAN, generate, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements, and transmit at least a first portion of the QoE reporting message to the network entity of the RAN.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the control message indicates an event trigger value of an application layer QoE measurement within the set of application layer QoE measurements and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for determining an entering condition associated with the event trigger may be satisfied based on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value, where detecting the event trigger may be based on a measured value of the application layer QoE measurement relative to the event trigger value.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting at least the first portion of the QoE reporting message may include operations, features, means, or instructions for transmitting, based on determining the entering condition associated with the event trigger may be satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a leaving condition associated with the event trigger may be satisfied based on a difference between the sum of the set of application layer QoE measurements and the offset relative to a second threshold value and transmitting a second portion of the QoE reporting message to the network entity of the RAN based on determining the leaving condition associated with the event trigger may be satisfied.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first threshold value may be the same as the second threshold value.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first threshold value may be different than the second threshold value.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the determining the entering condition associated with the event trigger may be satisfied may be executed at an application layer of the UE and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based on forwarding an indication including an event name of the event trigger to the application layer of the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the determining the entering condition associated with the event trigger may be satisfied may be executed at a radio resource control layer of the UE and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for receiving, at the radio resource control layer of the UE, an indication of the sum of the set of application layer QoE measurements and determining, at the radio resource control layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the determining the entering condition associated with the event trigger may be satisfied may be executed at a radio resource control layer of the UE and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for receiving, at the radio resource control layer of the UE, an indication of one or more application layer QoE measurements of the set of application layer QoE measurements and determining, at the radio resource control layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or  instructions for determining an entering condition associated with the event trigger may be satisfied based on a sum of a buffer level and an offset relative to a first threshold buffer level value, a difference between an initial playout and the offset relative to a first threshold initial playout value, or both, where detecting the event trigger may be based on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting at least the first portion of the QoE reporting message may include operations, features, means, or instructions for transmitting, based on determining the entering condition associated with the event trigger may be satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a leaving condition associated with the event trigger may be satisfied based on a difference between the buffer level and the offset relative to a second threshold buffer level value, a sum of an initial playout value and the offset relative to a second threshold initial playout value, or both, where detecting the event trigger may be based on determining the leaving condition associated with the event trigger may be satisfied.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first threshold buffer level value may be the same as the second threshold buffer level value, the first threshold initial playout value may be the same as the second threshold initial playout value, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first threshold buffer level value may be different than the second threshold buffer level value, the first threshold initial playout value may be different than the second threshold initial playout value, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the determining the entering condition associated with the event trigger may be satisfied may be executed at an application layer of the  UE and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based on forwarding an indication including an event name of the event trigger to the application layer of the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the determining the entering condition associated with the event trigger may be satisfied may be executed at a radio resource control layer of the UE and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for receiving, at the radio resource control layer of the UE, one or more application layer QoE measurements of the set of application layer QoE measurements based on forwarding an indication of a measurement periodicity, a reporting periodicity, or both associated with transmitting at least the first portion of the QoE reporting message to the application layer of the UE, where the determining the entering condition associated with the event trigger may be satisfied may be based on the one or more application layer QoE measurements.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for filtering the one or more application layer QoE measurements prior to the determining the entering condition associated with the event trigger may be satisfied.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of application layer QoE measurements include a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, a reference signal receive power, a reference signal receive quality, or any combination thereof.
A method for wireless communications at a network entity of a RAN is described. The method may include transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by a UE to the network entity of the RAN and receiving at least a first portion of a QoE  reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
An apparatus for wireless communications at a network entity of a RAN is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by a UE to the network entity of the RAN and receive at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
Another apparatus for wireless communications at a network entity of a RAN is described. The apparatus may include means for transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by a UE to the network entity of the RAN and means for receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
A non-transitory computer-readable medium storing code for wireless communications at a network entity of a RAN is described. The code may include instructions executable by a processor to transmit a control message indicating an event trigger associated with reporting of a set of application layer QoE measurements by a UE to the network entity of the RAN and receive at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving at least the first portion of the QoE reporting message may include operations, features, means, or instructions for receiving, based on an entering condition associated with the event trigger being satisfied at the UE, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or  instructions for receiving, based on a leaving condition associated with the event trigger being satisfied at the UE, a second portion of the QoE reporting message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of application layer QoE measurements include a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, a reference signal receive power, a reference signal receive quality, or any combination thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGs. 1 and 2 illustrate examples of wireless communications systems that support event triggered reporting of radio access network (RAN) visible quality of experience (QoE) reporting in accordance with one or more aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
FIGs. 4 and 5 show block diagrams of devices that support event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
FIG. 6 shows a block diagram of a communications manager that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
FIG. 7 shows a diagram of a system including a device that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
FIGs. 8 and 9 show block diagrams of devices that support event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
FIG. 10 shows a block diagram of a communications manager that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
FIG. 11 shows a diagram of a system including a device that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
FIGs. 12 through 16 show flowcharts illustrating methods that support event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure.
DETAILED DESCRIPTION
Wireless cellular networks may support quality of service (QoS) as well as quality of experience (QoE) feedback configuration and support. In some examples, a QoS may define a performance of the wireless network using measurements derived, or otherwise determined, from measurable physical channel performance metrics, while a QoE may be based on a subjective experience and may be reported by the end-user when interacting with a service, application, process, etc., being performed over the wireless network. A QoE may include one or more parameters provided by and/or for a measurement collection entity (MCE) . For example, a user equipment (UE) operating in a radio resource control (RRC) connected state may be configured with a QoE measurement activation for or from a MCE via the radio access network (RAN) that triggers QoE measurements according to the QoE parameters. Such RAN signaling is received at an access layer of the UE, which provides QoE signaling to the application layer of the UE. Thus, the application layer of the UE may track and manage the QoE measurements. However, the RAN may be unaware of the QoE information at the application layer of the UE, which may cause scheduling inefficiencies, load balancing inefficiencies, or other inefficiencies.
As described herein, to reduce or eliminate scheduling and load balancing inefficiencies, a network entity may configure or signal instructions to a UE to transmit a QoE reporting message to a network entity of a RAN in accordance with an event trigger, such that one or more QoE measurements may be visible to the RAN. For example, the network entity may send a control message indicating an event trigger to  the UE, where the event trigger may be metric based or value based. The UE may generate a QoE reporting message after detecting the event trigger and may transmit at least a portion of the QoE reporting message to the network entity of the RAN. In some cases, the network entity may configure the UE to transmit the entirety of the QoE reporting message upon detecting a set of conditions are met (e.g., detecting the event trigger) . In some other cases, the network entity may configure or instruct the UE to granularly report the QoE reporting message (e.g., upon detecting different event triggers) .
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are additionally described in the context of process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to event triggered reporting of RAN visible QoE reporting.
FIG. 1 illustrates an example of a wireless communications system 100 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The wireless communications system 100 may include one or more network entities 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, a New Radio (NR) network, or a network operating in accordance with other systems and radio technologies, including future systems and radio technologies not explicitly mentioned herein.
The network entities 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may include devices in different forms or having different capabilities. In various examples, a network entity 105 may be referred to as a network element, a mobility element, a RAN node, or network equipment, among other nomenclature. In some examples, network entities 105 and UEs 115 may wirelessly communicate via one or more communication links 125 (e.g., a radio frequency (RF) access link) . For example, a network entity 105 may support a coverage area 110 (e.g., a geographic coverage area) over which the UEs 115 and the network entity 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a network entity 105 and a  UE 115 may support the communication of signals according to one or more radio access technologies (RATs) .
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be capable of supporting communications with various types of devices, such as other UEs 115 or network entities 105, as shown in FIG. 1.
As described herein, a node of the wireless communications system 100, which may be referred to as a network node, or a wireless node, may be a network entity 105 (e.g., any network entity described herein) , a UE 115 (e.g., any UE described herein) , a network controller, an apparatus, a device, a computing system, one or more components, or another suitable processing entity configured to perform any of the techniques described herein. For example, a node may be a UE 115. As another example, a node may be a network entity 105. As another example, a first node may be configured to communicate with a second node or a third node. In one aspect of this example, the first node may be a UE 115, the second node may be a network entity 105, and the third node may be a UE 115. In another aspect of this example, the first node may be a UE 115, the second node may be a network entity 105, and the third node may be a network entity 105. In yet other aspects of this example, the first, second, and third nodes may be different relative to these examples. Similarly, reference to a UE 115, network entity 105, apparatus, device, computing system, or the like may include disclosure of the UE 115, network entity 105, apparatus, device, computing system, or the like being a node. For example, disclosure that a UE 115 is configured to receive information from a network entity 105 also discloses that a first node is configured to receive information from a second node.
In some examples, network entities 105 may communicate with the core network 130, or with one another, or both. For example, network entities 105 may communicate with the core network 130 via one or more backhaul communication links 120 (e.g., in accordance with an S1, N2, N3, or other interface protocol) . In some examples, network entities 105 may communicate with one another via a backhaul communication link 120 (e.g., in accordance with an X2, Xn, or other interface protocol)  either directly (e.g., directly between network entities 105) or indirectly (e.g., via a core network 130) . In some examples, network entities 105 may communicate with one another via a midhaul communication link 162 (e.g., in accordance with a midhaul interface protocol) or a fronthaul communication link 168 (e.g., in accordance with a fronthaul interface protocol) , or any combination thereof. The backhaul communication links 120, midhaul communication links 162, or fronthaul communication links 168 may be or include one or more wired links (e.g., an electrical link, an optical fiber link) , one or more wireless links (e.g., a radio link, a wireless optical link) , among other examples or various combinations thereof. A UE 115 may communicate with the core network 130 via a communication link 155.
One or more of the network entities 105 described herein may include or may be referred to as a base station 140 (e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a 5G NB, a next-generation eNB (ng-eNB) , a Home NodeB, a Home eNodeB, or other suitable terminology) . In some examples, a network entity 105 (e.g., a base station 140) may be implemented in an aggregated (e.g., monolithic, standalone) base station architecture, which may be configured to utilize a protocol stack that is physically or logically integrated within a single network entity 105 (e.g., a single RAN node, such as a base station 140) .
In some examples, a network entity 105 may be implemented in a disaggregated architecture (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) , which may be configured to utilize a protocol stack that is physically or logically distributed among two or more network entities 105, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) . For example, a network entity 105 may include one or more of a central unit (CU) 160, a distributed unit (DU) 165, a radio unit (RU) 170, a RAN Intelligent Controller (RIC) 175 (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration (SMO) 180 system, or any combination thereof. An RU 170 may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a  transmission reception point (TRP) . One or more components of the network entities 105 in a disaggregated RAN architecture may be co-located, or one or more components of the network entities 105 may be located in distributed locations (e.g., separate physical locations) . In some examples, one or more network entities 105 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
The split of functionality between a CU 160, a DU 165, and an RU 170 is flexible and may support different functionalities depending on which functions (e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof) are performed at a CU 160, a DU 165, or an RU 170. For example, a functional split of a protocol stack may be employed between a CU 160 and a DU 165 such that the CU 160 may support one or more layers of the protocol stack and the DU 165 may support one or more different layers of the protocol stack. In some examples, the CU 160 may host upper protocol layer (e.g., layer 3 (L3) , layer 2 (L2) ) functionality and signaling (e.g., RRC, service data adaption protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) . The CU 160 may be connected to one or more DUs 165 or RUs 170, and the one or more DUs 165 or RUs 170 may host lower protocol layers, such as layer 1 (L1) (e.g., physical (PHY) layer) or L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160. Additionally, or alternatively, a functional split of the protocol stack may be employed between a DU 165 and an RU 170 such that the DU 165 may support one or more layers of the protocol stack and the RU 170 may support one or more different layers of the protocol stack. The DU 165 may support one or multiple different cells (e.g., via one or more RUs 170) . In some cases, a functional split between a CU 160 and a DU 165, or between a DU 165 and an RU 170 may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU 160, a DU 165, or an RU 170, while other functions of the protocol layer are performed by a different one of the CU 160, the DU 165, or the RU 170) . A CU 160 may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions. A CU 160 may be connected to one or more DUs 165 via a midhaul communication link 162 (e.g., F1, F1-c, F1-u) , and a DU 165 may be connected to one or more RUs 170 via a fronthaul  communication link 168 (e.g., open fronthaul (FH) interface) . In some examples, a midhaul communication link 162 or a fronthaul communication link 168 may be implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 105 that are in communication via such communication links.
In wireless communications systems (e.g., wireless communications system 100) , infrastructure and spectral resources for radio access may support wireless backhaul link capabilities to supplement wired backhaul connections, providing an IAB network architecture (e.g., to a core network 130) . In some cases, in an IAB network, one or more network entities 105 (e.g., IAB nodes 104) may be partially controlled by each other. One or more IAB nodes 104 may be referred to as a donor entity or an IAB donor. One or more DUs 165 or one or more RUs 170 may be partially controlled by one or more CUs 160 associated with a donor network entity 105 (e.g., a donor base station 140) . The one or more donor network entities 105 (e.g., IAB donors) may be in communication with one or more additional network entities 105 (e.g., IAB nodes 104) via supported access and backhaul links (e.g., backhaul communication links 120) . IAB nodes 104 may include an IAB mobile termination (IAB-MT) controlled (e.g., scheduled) by DUs 165 of a coupled IAB donor. An IAB-MT may include an independent set of antennas for relay of communications with UEs 115, or may share the same antennas (e.g., of an RU 170) of an IAB node 104 used for access via the DU 165 of the IAB node 104 (e.g., referred to as virtual IAB-MT (vIAB-MT) ) . In some examples, the IAB nodes 104 may include DUs 165 that support communication links with additional entities (e.g., IAB nodes 104, UEs 115) within the relay chain or configuration of the access network (e.g., downstream) . In such cases, one or more components of the disaggregated RAN architecture (e.g., one or more IAB nodes 104 or components of IAB nodes 104) may be configured to operate according to the techniques described herein.
For instance, an access network (AN) or RAN may include communications between access nodes (e.g., an IAB donor) , IAB nodes 104, and one or more UEs 115. The IAB donor may facilitate connection between the core network 130 and the AN (e.g., via a wired or wireless connection to the core network 130) . That is, an IAB donor may refer to a RAN node with a wired or wireless connection to core network 130. The  IAB donor may include a CU 160 and at least one DU 165 (e.g., and RU 170) , in which case the CU 160 may communicate with the core network 130 via an interface (e.g., a backhaul link) . IAB donor and IAB nodes 104 may communicate via an F1 interface according to a protocol that defines signaling messages (e.g., an F1 AP protocol) . Additionally, or alternatively, the CU 160 may communicate with the core network via an interface, which may be an example of a portion of backhaul link, and may communicate with other CUs 160 (e.g., a CU 160 associated with an alternative IAB donor) via an Xn-C interface, which may be an example of a portion of a backhaul link.
An IAB node 104 may refer to a RAN node that provides IAB functionality (e.g., access for UEs 115, wireless self-backhauling capabilities) . A DU 165 may act as a distributed scheduling node towards child nodes associated with the IAB node 104, and the IAB-MT may act as a scheduled node towards parent nodes associated with the IAB node 104. That is, an IAB donor may be referred to as a parent node in communication with one or more child nodes (e.g., an IAB donor may relay transmissions for UEs through one or more other IAB nodes 104) . Additionally, or alternatively, an IAB node 104 may also be referred to as a parent node or a child node to other IAB nodes 104, depending on the relay chain or configuration of the AN. Therefore, the IAB-MT entity of IAB nodes 104 may provide a Uu interface for a child IAB node 104 to receive signaling from a parent IAB node 104, and the DU interface (e.g., DUs 165) may provide a Uu interface for a parent IAB node 104 to signal to a child IAB node 104 or UE 115.
For example, IAB node 104 may be referred to as a parent node that supports communications for a child IAB node, or referred to as a child IAB node associated with an IAB donor, or both. The IAB donor may include a CU 160 with a wired or wireless connection (e.g., a backhaul communication link 120) to the core network 130 and may act as parent node to IAB nodes 104. For example, the DU 165 of IAB donor may relay transmissions to UEs 115 through IAB nodes 104, or may directly signal transmissions to a UE 115, or both. The CU 160 of IAB donor may signal communication link establishment via an F1 interface to IAB nodes 104, and the IAB nodes 104 may schedule transmissions (e.g., transmissions to the UEs 115 relayed from the IAB donor) through the DUs 165. That is, data may be relayed to and from IAB nodes 104 via signaling via an NR Uu interface to MT of the IAB node 104.  Communications with IAB node 104 may be scheduled by a DU 165 of IAB donor and communications with IAB node 104 may be scheduled by DU 165 of IAB node 104.
In the case of the techniques described herein applied in the context of a disaggregated RAN architecture, one or more components of the disaggregated RAN architecture may be configured to support event triggered reporting of RAN visible QoE reporting as described herein. For example, some operations described as being performed by a UE 115 or a network entity 105 (e.g., a base station 140) may additionally, or alternatively, be performed by one or more components of the disaggregated RAN architecture (e.g., IAB nodes 104, DUs 165, CUs 160, RUs 170, RIC 175, SMO 180) .
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the network entities 105 may wirelessly communicate with one another via one or more communication links 125 (e.g., an access link) using resources associated with one or more carriers. The term “carrier” may refer to a set of RF spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a RF spectrum band (e.g., a bandwidth part (BWP) ) that is  operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers. Communication between a network entity 105 and other devices may refer to communication between the devices and any portion (e.g., entity, sub-entity) of a network entity 105. For example, the terms “transmitting, ” “receiving, ” or “communicating, ” when referring to a network entity 105, may refer to any portion of a network entity 105 (e.g., a base station 140, a CU 160, a DU 165, a RU 170) of a RAN communicating with another device (e.g., directly or via one or more other network entities 105) .
In some examples, such as in a carrier aggregation configuration, a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute RF channel number (EARFCN) ) and may be identified according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode, in which case initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode, in which case a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include downlink transmissions (e.g., forward link transmissions) from a network entity 105 to a UE 115, uplink transmissions (e.g., return link transmissions) from a UE 115 to a network entity 105, or both, among other configurations of transmissions. Carriers may carry downlink or uplink communications (e.g., in an FDD  mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the RF spectrum and, in some examples, the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a set of bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the network entities 105, the UEs 115, or both) may have hardware configurations that support communications using a particular carrier bandwidth or may be configurable to support communications using one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include network entities 105 or UEs 115 that support concurrent communications using carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating using portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted via a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may refer to resources of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, in which case the symbol period and subcarrier spacing may be inversely related. The quantity of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) , such that a relatively higher quantity of resource elements (e.g., in a transmission duration) and a relatively higher order of a modulation scheme may correspond to a relatively higher rate of communication. A wireless communications resource may refer to a combination of an RF spectrum resource, a time resource, and a spatial resource (e.g., a spatial layer, a beam) , and the use of multiple spatial resources may increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, and a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into  one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the network entities 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, for which Δf max may represent a supported subcarrier spacing, and N f may represent a supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively-numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a quantity of slots. Alternatively, each frame may include a variable quantity of slots, and the quantity of slots may depend on subcarrier spacing. Each slot may include a quantity of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots associated with one or more symbols. Excluding the cyclic prefix, each symbol period may be associated with one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., a quantity of symbol periods in a TTI) may be variable. Additionally, or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed for communication using a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed for signaling via a downlink carrier, for example, using one or more  of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a set of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to an amount of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
network entity 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a network entity 105 (e.g., using a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell also may refer to a coverage area 110 or a portion of a coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the network entity 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered network entity 105 (e.g., a lower-powered base station 140) , as compared with a macro cell, and a small cell may operate using the same or  different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A network entity 105 may support one or multiple cells and may also support communications via the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a network entity 105 (e.g., a base station 140, an RU 170) may be movable and therefore provide communication coverage for a moving coverage area 110. In some examples, different coverage areas 110 associated with different technologies may overlap, but the different coverage areas 110 may be supported by the same network entity 105. In some other examples, the overlapping coverage areas 110 associated with different technologies may be supported by different network entities 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network entities 105 provide coverage for various coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, network entities 105 (e.g., base stations 140) may have similar frame timings, and transmissions from different network entities 105 may be approximately aligned in time. For asynchronous operation, network entities 105 may have different frame timings, and transmissions from different network entities 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC  may refer to data communication technologies that allow devices to communicate with one another or a network entity 105 (e.g., a base station 140) without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that uses the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception concurrently) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating using a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) . The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions. Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data. Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications. The terms  ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may be configured to support communicating directly with other UEs 115 via a device-to-device (D2D) communication link 135 (e.g., in accordance with a peer-to-peer (P2P) , D2D, or sidelink protocol) . In some examples, one or more UEs 115 of a group that are performing D2D communications may be within the coverage area 110 of a network entity 105 (e.g., a base station 140, an RU 170) , which may support aspects of such D2D communications being configured by (e.g., scheduled by) the network entity 105. In some examples, one or more UEs 115 of such a group may be outside the coverage area 110 of a network entity 105 or may be otherwise unable to or not configured to receive transmissions from a network entity 105. In some examples, groups of the UEs 115 communicating via D2D communications may support a one-to-many (1: M) system in which each UE 115 transmits to each of the other UEs 115 in the group. In some examples, a network entity 105 may facilitate the scheduling of resources for D2D communications. In some other examples, D2D communications may be carried out between the UEs 115 without an involvement of a network entity 105.
In some systems, a D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., network entities 105, base stations 140, RUs 170) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility  management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the network entities 105 (e.g., base stations 140) associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
The wireless communications system 100 may operate using one or more frequency bands, which may be in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features, which may be referred to as clusters, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. Communications using UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to communications using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate using a super high frequency (SHF) region, which may be in the range of 3 GHz to 30 GHz, also known as the centimeter band, or using an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the network entities 105 (e.g., base stations 140, RUs 170) , and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, such techniques may facilitate using antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions  that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed RF spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology using an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. While operating using unlicensed RF spectrum bands, devices such as the network entities 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations using unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating using a licensed band (e.g., LAA) . Operations using unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
A network entity 105 (e.g., a base station 140, an RU 170) or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a network entity 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a network entity 105 may be located at diverse geographic locations. A network entity 105 may include an antenna array with a set of rows and columns of antenna ports that the network entity 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may include one or more antenna arrays that may support various MIMO or beamforming operations. Additionally, or alternatively, an antenna panel may support RF beamforming for a signal transmitted via an antenna port.
The network entities 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas.  Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry information associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , for which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , for which multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a network entity 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating along particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
network entity 105 or a UE 115 may use beam sweeping techniques as part of beamforming operations. For example, a network entity 105 (e.g., a base station 140, an RU 170) may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a network entity 105 multiple times along different directions. For example, the network entity 105 may transmit a signal according to different beamforming weight sets associated with different directions of  transmission. Transmissions along different beam directions may be used to identify (e.g., by a transmitting device, such as a network entity 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the network entity 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by transmitting device (e.g., a transmitting network entity 105, a transmitting UE 115) along a single beam direction (e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted along one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the network entity 105 along different directions and may report to the network entity 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a network entity 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or beamforming to generate a combined beam for transmission (e.g., from a network entity 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured set of beams across a system bandwidth or one or more sub-bands. The network entity 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted along one or more directions by a network entity 105 (e.g., a base station 140, an RU 170) , a UE 115 may employ similar techniques for transmitting signals multiple times along different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal along a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may perform reception operations in accordance with multiple receive configurations (e.g., directional listening) when receiving various signals from a receiving device (e.g., a network entity 105) , such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may perform reception in accordance with multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned along a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or PDCP layer may be IP-based. An RLC layer may perform packet segmentation and reassembly to communicate via logical channels. A MAC layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer also may implement error detection techniques, error correction techniques, or both to support retransmissions to improve link efficiency. In the control plane, an RRC layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network entity 105 or a core network 130 supporting radio bearers for user plane data. A PHY layer may map transport channels to physical channels.
The UEs 115 and the network entities 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic  repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly via a communication link (e.g., a communication link 125, a D2D communication link 135) . HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, in which case the device may provide HARQ feedback in a specific slot for data received via a previous symbol in the slot. In some other examples, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
As described herein, to reduce or eliminate scheduling and load balancing inefficiencies, a network entity 105 may configure or instruct a UE 115 to transmit a QoE reporting message to the network entity 105 of a RAN in accordance with an event trigger, such that one or more QoE measurements may be visible to the RAN. For example, the network entity 105 may send a control message indicating an event trigger to the UE 115, where the event trigger may be metric based or value based. The UE 115 may generate a QoE reporting message after detecting the event trigger and may transmit at least a portion of the QoE reporting message to the network entity 105 of the RAN. In some cases, the network entity 105 may configure or instruct the UE 115 to transmit the entirety of the QoE reporting message upon detecting a set of conditions are met (e.g., detecting the event trigger) . In some other cases, the network entity 105 may configure or instruct the UE 115 to granularly report the QoE reporting message (e.g., upon detecting different event triggers) . For example, the event trigger may be related to an entering condition and a leaving condition being satisfied, where the entering condition may trigger a periodic RAN visible QoE metric report until the leaving condition is satisfied. The entering condition may trigger just one part of the report, or the entering condition may trigger the entire report.
FIG. 2 illustrates an example of a wireless communications system 200 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. In some examples, the wireless communications system 200 may implement, or be implemented by, aspects of the wireless communications system 100. The wireless communications system 200 may  include a network entity 105-a with a coverage area 110-a and a UE-115-a, which may represent examples of the network entities 105 with coverage areas 110 and the UEs 115 described with reference to FIG. 1. In some examples, the network entity 105-a may transmit control information, data, or both to the UE 115-a using a downlink communication link 205. Similarly, the UE 115-a may transmit control information, data, or both to the network entity 105-a using an uplink communication link 210. For example, the UE 115-a and the network entity 105-a may communicate signaling that activates a QoE measurement, a QoS measurement, or both for quality reporting.
In some examples, the wireless communications system 200 may support QoE measurement configuration and collection. For example, the UE 115-a may be in an idle or inactive state, such as an RRC idle or inactive state. The RRC idle or inactive state, the UE 115-a may perform measurements of neighboring cells to perform reselection (e.g., switch from a current serving cell to a new serving cell) , but may not actively communicate. In some cases, the network entity 105-a may activate one or more QoE measurements at the UE 115-a via signaling in a QoE activation procedure. For example, the UE 115-a may receive an application layer measurement configuration for performing QoE measurements at the application layer from an operation, administration, and maintenance (OAM) function or CN (e.g., via a RAN, such as via the network entity 105-a) . The OAM function or CN may encapsulate the measurement configuration in a transparent container, which may be forwarded to the UE 115-a in a downlink RRC message. That is, the OAM may configure or signal the QOE measurements with the QoE measurement configuration by forwarding the configuration to the CN. The CN may then activate the QoE measurements by forwarding the configuration to the RAN. Subsequently, the OAM may send a management-based QoE measurement activation message to the RAN. The RAN may send the downlink RRC message to the UE 115-a, such as to an access layer of the UE 115-a. In some cases, the UE 115-a may indicate a capability to perform the signaling based QoE measurement procedure. The OAM may activate multiple simultaneous QoE measurements at the UE 115-a.
The access layer of the UE 115-a may send a command to perform application layer QoE measurements according to the QoE measurement configuration to the application layer of the UE 115-a. The application layer may perform the  application layer QoE measurements, and may send a command to report the measurements to the access layer of the UE 115-a. The UE 115-a may encapsulate the application layer measurements in a transparent container and send them to the network in an uplink RRC message. In some cases, the UE 115-a may send QoE reports via a separate signaling radio bearer (SRB) (e.g., separate from a current SRBs) in wireless communication networks (e.g., as this reporting is considered lower priority than other SRB transmissions) . The network entity 105-a may use RRC signaling to indicate to the UE 115-a to pause or resume the QoE measurement and reporting. The details of pause or resume mechanism may vary (e.g., is the pause or resume for all QoE reports or on a per-QoE configuration, how long can the UE store the reports, limit for stored reports size, and so forth) .
In some examples, the OAM may initiate the QoE measurement activation for a specific UE via the CN in the signaling based QoE activation procedure (e.g., via a RAN node, such as the network entity 105-a) . Other techniques may include a management based QoE activation procedure in which the OAM may send one or more QoE measurement configurations to the RAN node. That is, for signaling based QoE measurements the OAM may initiate the QoE measurement activation for a specific UE via the CN and the RAN node, while for management based QoE measurement activation, the OAM may send one or more the QoE measurement configurations to the RAN node.
Broadly, the RAN node (e.g., the network entity 105-a) may receive or otherwise obtain one or more QoE measurement configurations from the OAM (e.g., in management based QoE measurement) or CN (e.g., in signaling based QoE measurement) . In some examples, each QoE configuration may include a QoE measurement configuration container, a QoE reference, a service type, an MCE Internet Protocol (IP) address, an area scope, a slice scope, minimization of drive test (MDT) alignment information, and available RAN visible QoE metrics. The RAN node (e.g., the network entity 105-a) may send the QoE configuration to the UE 115-a via a control message (e.g., an RRCReconfiguration message) that includes the QoE measurement configuration container, an application layer identifier (e.g., measConfigAppLayerID) , and the service type.
The network entity 105-a may derive the application layer identifier from or otherwise based on the UE 115-a operating in an RRC idle state (e.g., an RRC identifier) . In some cases, for each QoE measurement configuration, there may be one identifier. In the application layer or at the MCE (e.g., OAM server) , this may include using the QoE reference to identify each QoE measurement configuration job. The QoE reference may be globally unique and composed based on a mobile country code (MCC) , a mobile network code (MNC) , and a QoE measurement configuration identifier. The QoE reference is included in application layer configuration container and the QoE report container.
At the RRC layer (e.g., at the access layer, which may include one or more layers involved in the access stratum (AS) , such as the RRC layer, the physical layer, etc. ) , this may include using the application layer identifier to identify one QoE configuration. In some examples, the application layer identifier may be allocated by the RAN using a parameter (e.g., a 4-bit length parameter) . For each UE, there may be a one-to-one mapping between the measConfigAppLayerID and the QoE reference, and the mapping may be maintained at the RAN.
In some cases, an RRC layer of the UE 115-a may forward the measConfigAppLayerID together with the QoE configuration container to the application layer. The application layer may deliver, signal, or otherwise include the measConfigAppLayerID together with QoE report container. The RRC layer of the UE 115-a (e.g., the application layer) may not maintain, or may be otherwise not aware of, the mapping between the measConfigAppLayerID and the QoE reference. The RAN may determine the MCE address based on the received measConfigAppLayerID included in RRC report message. Accordingly, the mapping between measConfigAppLayerID and QoE Reference may be maintained in the RAN.
Wireless communications system 200 may also support aspects of QoE measurement configuration deactivation and release. For example, conditions may be established or otherwise configured to deactivate or release the QoE measurement configuration. OAM may trigger deactivation of a list of QoE measurement collection job (s) (e.g., different QoE measurement configurations) . The deactivation of a QoE measurement collection may be achieved by providing a list of QoE references corresponding to each QoE configuration. The network entity 105-a may release one or  multiple application layer measurement configurations from the UE 115-a in one RRCReconfiguration message at any time. If the UE 115-a enters an RRC idle or inactive state, the UE 115-a may release one or more (e.g., all) of the QoE measurement configurations. Upon reception of a release command, the UE 115-a may, when one QoE measurement configuration is released, include the RRC layer informing the upper layer (e.g., the application layer) to release the QoE measurement configuration.
Some QoE reporting techniques (e.g., where the UE 115-a transmits a report of the QoE measurement results to the OAM or MCE via the RAN) may also be supported by wireless communications system 200. As discussed, the QoE measurement collection may be handled at the application layer. The QoE report container may be received from the application layer at the RRC layer (e.g., the access layer, or AS layer) . For example, the application layer QoE measurement reports may be encapsulated in a transparent container in carried or otherwise conveyed in a QoE measurement report message (e.g., MeasurementReportAppLayer RRC message) to the OAM or MCE via the NG-RAN (e.g., over SRB4) . The application layer identifier (e.g., measConfigAppLayerId) may be used to identify one application layer measurement configuration and report (e.g., the corresponding QoE configuration or QoE measurement configuration) within the NG-RAN (e.g., between the UE 115-a and the network entity 105-a) . The application layer measurement report is forwarded to OAM together with the QoE Reference based on the mapping between the application layer identifier and the MCE reference or other information used to identify or otherwise distinguish the OAM or MCE associated with the QoE configuration. In some examples, segmentation of the MeasurementReportAppLayer message may be enabled to allow the transmission of application layer measurement reports that exceed the maximum packet data convergence protocol (PDCP) service data unit (SDU) size limit, where RRC segmentation mechanisms may be applied.
In some examples, the UE 115-a may provide QoE measurements to the network entity 105-a in files transparent to the RAN. However, parsing, decoding, and analysing such measurements may be a cumbersome task for the RAN nodes. Thus, to increase efficiency, if the RAN is to make use of the QoE, the QoE information should be visible to the RAN. The QoE measurements that are visible to the RAN may be referred to as RAN visible QoE measurements. The RAN visible QoE measurements  may enable the RAN to make timely and proper decisions in conjunction with radio measurements and information for QoE aware scheduling, QoE aware load balancing, link adaptation, and mobility decision evaluation after a handover. In some examples, a RAN node (e.g., at the network entity 105-a) may configure or signal the RAN visible QoE measurement reporting at the UE 115-a. For example, the RAN node may configure or signal a subset of QoE metrics to be reported by the UE 115-a as explicit information elements (IEs) readable by the RAN node. In some cases, a list of available RAN visible QoE metrics may be forwarded from the OAM or the CN to the RAN node (e.g., including streaming and virtual reality (VR) service related QoE measurements) .
In some examples, the RAN visible QoE metrics may include one or more values related to a buffer level, a playout delay for media startup, or both. The buffer level may indicate a playout duration for which media data of active media components is available starting from a current playout time. The one or more values for the buffer level may include a maximum value, a granularity, a maximum number of buffer level entries, or any combination thereof. For example, the maximum value may be 5 minutes, the granularity may be 10 milliseconds (ms) , and the maximum number of buffer level entries may be 8. In some cases, the buffer level metrics may include a maximum number of buffer level entries for each buffer level metric report in one reporting message, where the UE 115-a may report latest buffer level entries up to the maximum number. In some examples, a playout delay for media startup may be measured as the time in ms from the time instant a player receives trigger (e.g., a play back start trigger) to the instant of media playout. This metric may indicate the waiting time that the user experiences for media start up. In some examples, the playout delay for media startup metrics may include a maximum value (e.g., 30 seconds) and a granularity (e.g., 1 ms) .
In some examples, if the UE 115-a reports the buffer level metrics to the network entity 105-a, the RAN may select a handover type between a legacy handover, a dual active protocol stack (DAPS) handover, or conditional handover using the buffer level metrics, which may improve mobility decisions at the RAN, leading to seamless connectivity and a lower risk of video stalling. Additionally, or alternatively, the UE 115-a reporting the buffer level metrics may provide for the RAN to adjust the resource allocation for the UE 115-a in accordance with the buffer level metrics. For example, the network entity 105-a (e.g., a base station) may consider scheduling additional radio  resources for UEs 115-a with relatively high buffer level, so as to improve processing of a data stream. In some other examples, if the UE 115-a reports a playout delay for media startup metrics, the RAN node may leverage the playout delay for media startup metrics as a time budget to deliver requested content without video stalling, while at the same time, not over-allocating radio resources to a service.
For split network entity architecture, the CU of the network entity may generate the RAN visible QoE configuration. The RAN visible QoE measurements and other QoE measurements (e.g., non-RAN visible) may be configured together or separately by the CU. When the CU configures the RAN visible QoE measurements separately from the non-RAN visible QoE measurements, the CU may configure or signal an indication of the non-RAN visible QoE measurements prior to the RAN visible QoE measurements. In some cases, a RAN node may release a list of RAN visible QoE configurations, but may refrain from releasing the non-RAN visible QoE configurations. If the RAN releases a non-RAN visible QoE configuration, the RAN may also release a corresponding RAN visible QoE configuration. The RAN visible QoE configuration may include at least an indication of one or more RAN visible QoE metrics to be reported, a service type, an RRC Identifier (e.g., measConfigAppLayerID) , or any combination thereof. After receiving the RAN visible QoE measurement configuration, an RRC layer of the UE 115-a (e.g., an access layer, or AS layer) may forward the configuration to an application layer of the UE 115-a. For example, the RRC layer may indicate the service type and the RRC identifier to the application layer. In some examples, the network entity 105-a may configure or otherwise signal multiple simultaneous RAN visible QoE measurements at the UE 115-a.
In some examples, the UE 115-a may report one or more RAN visible QoE measurements in a RAN visible QoE report at a different periodicity than the non-RAN visible QoE measurements. In some other examples, if there is no reporting periodicity defined in the RAN visible QoE configuration, the UE 115-a may send the RAN visible QoE reports together with the non-RAN visible QoE reports. In some cases, the UE 115-a may report one or more protocol data unit (PDU) session IDs for the service that is subject to QoE measurements together with the RAN visible QoE measurement results (e.g., in the RAN visible QoE report) . The RAN visible QoE reporting occurs  periodically, which may occur too frequently causing over reporting of data and high signaling overhead.
As described herein, a network entity 105-a may configure or signal event triggered RAN visible QoE reporting to reduce signaling overhead related to periodical RAN visible QoE reporting. For example, the network entity 105-a may indicate an event trigger 215 to the UE 115-a. The event trigger 215 may be metric based or value based. In some cases, for a metric-based event trigger, the indication of the event trigger 215 may define an event condition for measured metric evaluation. In some other cases, for a value-based event trigger, the indication of the event trigger 215 may define an event condition for a derived value score evaluation. For value-based and metric-based event triggers, the event evaluation may be executed at the RRC layer or the application layer of the UE 115-a.
In some examples, the network entity 105-a may configure or signal the UE 115-a to generate and transmit a QoE reporting message 220, which may include RAN visible QoE metrics. For example, the network entity 105-a may configure or signal the event trigger 215 for RAN visible QoE metrics, where the configuration includes an event trigger quantity for buffer level, initial playout, or both. In some examples, an entering condition for the event trigger 215 may trigger a periodic RAN visible QoE metric report until a leaving condition is satisfied. For example, an entering condition for an event trigger 215 may be satisfied based on one or more comparisons relative to threshold values. That is, if the network entity 105-a configures a metric-based event trigger 215, when a sum of a buffer level and an offset is less than a threshold buffer level (e.g., buffer level + offset < Threshold 1 for buffer level) or a difference between an initial playout and an offset is greater than a threshold initial playout (e.g., initial playout -offset > Threshold 1 for initial playout) , the entering condition may be satisfied. The application layer may measure the buffer level as a metric, and the offset may be a hysteresis parameter for the event trigger 215, which may be set to 0. In some examples, for the metric-based event trigger 215, the leaving condition for the event trigger 215 may be satisfied based on one or more comparisons relative to threshold values. That is, when a difference between a buffer level and an offset is greater than another threshold buffer level (e.g., buffer level -offset > Threshold 2 for buffer level) , or when a sum of an initial playout and an offset is less than an additional initial playout  threshold (e.g., initial playout +offset < Threshold 2 for initial playout) , the leaving condition may be satisfied. In some examples, the threshold buffer level for the entering condition and the leaving condition may be the same or different. Additionally, or alternatively, the threshold initial playout for the entering condition and the leaving condition may be the same or different (e.g., threshold 1 and threshold 2 may be the same or different) .
In some examples, if there is at least one measurement results in one report from an application layer that fulfills (e.g., satisfies) the entering condition, the UE 115-a may transmit a QoE reporting message 220 to the network entity 105-a including RAN visible metrics. For example, the QoE reporting message may include a single measurement result or multiple measurement results. The granularity of the reporting (e.g., whether the report includes a single or multiple measurement results) may be configured by the network entity 105-a. For example, the network entity 105-a may configure or signal the UE 115-a to transmit a portion of the QoE reporting message if the entering condition is satisfied, and another portion of the QoE reporting message if the leaving condition is satisfied. In some examples, the QoE reporting message may include radio measurement results, such as an RSRP or RSRQ.
In some examples, the UE 115-a may generate the QoE reporting message based on detecting the event trigger 215 (e.g., based on the entering condition being satisfied, the leaving condition being satisfied, or both) . The event evaluation may be executed at an application layer or an RRC layer of the UE 115-a. If executed at an application layer, the UE 115-a may forward the configuration of the event trigger 215 from the RRC layer to the application layer. Then, the UE 115-a may forward a measurement report to the RRC layer from the application layer. When the UE 115-a forwards the measurement report from the application layer to the RRC layer, the application layer may indicate an event name to the RRC layer. Additionally, or alternatively, if executed at the RRC layer, the UE 115-a may configure or signal a measurement or reporting periodicity at the application layer. The UE 115-a may forward the measured results for a reporting metric (e.g., buffer level, initial playout, or both) from the application layer to the RRC layer based on the configured periodicity. Then, the UE 115-a may evaluate at the RRC layer whether the corresponding event is fulfilled. In some cases, the UE 115-a may apply filtering at the RRC layer (e.g., layer 3  (L3) filtering) for the measured results. For example, the UE 115-a may filter the measured result before using the measured results for evaluation of reporting criteria or for measurement reporting, according to Equation 1:
F n= (1-a) *F n-1+a*M n,          (1)
where M n is the latest received measurement result from the application layer, F n is the updated filtered metric measurement result that is used for evaluation of reporting criteria or for measurement reporting, a is a filter coefficient, which may be configured by the network entity 105-a or otherwise determined by the UE 115-a, and F n-1 is the old filtered measurement result.
For a buffer level metric, the UE 115-a may forward the buffer level metric measurement results from the application layer to the RRC layer in one measurement report or in different measurement reports. For example, the application layer may forward the RRC layer 8 buffer level values in one measurement report, and the RRC layer may perform filtering for each measurement result in the report. If the application layer forward different measurement reports to the RRC layer, the RRC layer may perform filtering for each measurement result in each measurement report.
In some other examples, the network entity 105-a may configure or signal the event trigger 215 for a RAN visible QoE value, where the configuration includes an event trigger quantity for the RAN visible QoE value. In some examples, an entering condition for the event trigger 215 may trigger a QoE reporting message based on comparing the value to one or more thresholds. For example, the entering condition for the event trigger 215 may be satisfied when the sum of a value score and an offset is less than a threshold (e.g., value score + offset < Threshold 1) . In some examples, a leaving condition for the event trigger 215 may be satisfied when the difference between the value score and the offset is greater than a threshold value (e.g., value score -offset > Threshold 2) . In some cases, the UE 115-a may derive the value score at the application layer using measured metrics. In some other cases, the UE 115-a may derive the value score at the RRC layer using measurement metric results. In some examples, the value score may be directly proportional to the measured metric (e.g., the value score is smaller if the measured metric is worse) . In some cases, such as when the value score is greater if the measured metric is less (e.g., inversely proportional) , the entering  condition for the event trigger 215 may be satisfied based on a difference between a value score and an offset being less than a threshold value (e.g., value score -offset <Threshold 1 for event entering condition) , and the leaving condition for the event trigger 215 may be satisfied based on a sum of a value score and an offset being greater than a threshold value (e.g., value score + offset > Threshold 2 for event leaving condition) .
In some cases, if there is at least one measurement result in one report from the application layer that fulfills the entering condition, the UE 115-a may transmit the QoE reporting message 220 to the network entity 105-a from the RRC layer. As described with reference to metric-based reporting, the UE 115-a may include the measurement result or multiple measurement results in the QoE reporting message 220, where the network entity 105-a may configure or signal the granularity. In some cases, the UE 115-a may execute the event evaluation at an application layer of at an RRC layer of the UE 115. For example, if the UE 115-a executes the event evaluation at the application layer, the RRC layer may forward the event configuration to the application layer. The application layer may subsequently forward the measurement report to the RRC layer. When the application layer forwards the measurement report to the RRC layer, the application layer may indicate the event name to the RRC layer.
In some other examples, if the UE 115-a executes the event evaluation at the RRC layer, the application layer may derive a value score according to the measured metrics results, and may forward the value score to the RRC layer. The RRC layer may evaluate whether the received value score fulfills the event condition. Additionally, or alternatively, the application layer may forward the measured metrics results to the RRC layer, and the RRC layer may derive the value score. The RRC layer may evaluate whether the derived value score fulfills (e.g., satisfies) the event condition. Although the application layer and the RRC layer may be referred to as performing the steps of forwarding, evaluating, measuring, deriving, or the like, the UE 115-a may be performing the steps at the application layer, the RRC layer, or both.
In some examples, at 225, the UE 115-a may generate a QoE reporting message based on the entering condition being satisfied, the leaving condition being satisfied, or both. The UE 115-a may transmit the QoE reporting message to the network entity 105-a via the uplink communication link 210. The QoE reporting message may include the RAN visible QoE metrics.
FIG. 3 illustrates an example of a process flow 300 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The process flow 300 may be implemented by aspects of the wireless communications system 100 or the wireless communications system 200. For example, the process flow 300 may illustrate a network entity 105-b configuring a UE 115-b with an event trigger for RAN visible QoE reporting, where the UE 115-b and the network entity 105-b may be examples of corresponding devices described herein, including with reference to FIGs. 1 and 2.
In the following description of the process flow 300, the operations may be performed in a different order than the order shown. Specific operations also may be left out of the process flow 300, or other operations may be added to the process flow 300. Further, although some operations or signaling may be shown to occur at different times for discussion purposes, these operations may actually occur at the same time.
At 305, the network entity 105-b may transmit a control message (e.g., a DCI message, a MAC-CE, RRC signaling, a broadcast message, or the like) that indicates an event trigger for reporting a set of application layer QoE measurements by the UE 115-b to the network entity 105-b of a RAN.
At 310, the UE 115-b may determine the event trigger is satisfied based on one or more metrics or one or more values. For example, the UE 115-b may determine an entering condition is satisfied based on comparing one or more thresholds to the metrics or the values.
In some cases, the control message may indicate an event trigger value of a QoE measurement within a set of application layer QoE measurements. The UE 115-b may determine an entering condition for the event trigger is satisfied based on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value (e.g., value score + offset < Threshold 1) . In some cases, the UE 115-b may detect the event trigger based on a measured value of the QoE measurement relative to the event trigger value.
In some other cases, the control message may indicate an event trigger is based on metrics. For example, the UE 115-b may determine an entering condition for the event trigger is satisfied based on a sum of a buffer level and an offset relative to a  first threshold buffer level value, a difference between an initial playout and the offset relative to a first threshold initial playout value, or both (e.g., buffer level + offset < Threshold 1 for buffer level, or initial playout -offset > Threshold 1 for initial playout) . The UE 115-b may detect the event trigger based on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value.
In some cases, the UE 115-b may determine the entering condition for the event trigger is satisfied by executing the evaluation at an application layer of the UE 115-b. For example, the UE 115-b may receive an indication of the first portion of the QoE reporting message at the RRC layer based on forwarding an indication including an event name of the event trigger to the application layer of the UE 115-b.
In some other cases, the UE 115-b may determine the entering condition for the event trigger is satisfied by executing the evaluation at an RRC layer of the UE 115-b. For example, the UE 115-b may receive an indication of the sum of the set of application layer QoE measurements at the RRC layer of the UE 115-b and may determine whether the received sum of the set of application layer QoE measurements satisfies the event trigger at the RRC layer of the UE 115-b. Additionally, or alternatively, the UE 115-b may receive an indication of one or more application layer QoE measurements at the RRC layer of the UE 115-b and may determine whether the received sum of the set of application layer QoE measurements satisfies the event trigger at the RRC layer of the UE 115-b. In some other examples, the UE 115-b may receive one or more application layer QoE measurements at the RRC layer of the UE 115-b based on forwarding an indication of a measurement periodicity, a reporting periodicity, or both for transmitting the first portion of the QoE reporting message to the application layer of the UE 115-b.
In some cases, the UE 115-b may determine the entering condition for the event trigger is satisfied based on the one or more application layer QoE measurements. In some examples, the UE 115-b may filter the one or more application layer QoE measurements prior to the determining the entering condition for the event trigger is satisfied.
At 315, the UE 115-b may generate a QoE reporting message with RAN visible QoE measurements based on detecting the event trigger in accordance with the control message. For example, the U E115-b may generate a QoE reporting message including an indication of the set of application layer QoE measurements. The UE 115-b may
At 320, the UE 115-b may transmit at least a first portion of the QoE reporting message to the network entity 105-b of the RAN. For example, the UE 115-b may transmit the first portion of the QoE reporting message or the entirety of the QoE reporting message based on determining the entering condition for the event trigger is satisfied. The network entity 105-b may configure or signal to the UE 115-b a reporting granularity, such that the UE 115-b transmits a portion of the message at a time or the entirety of the message upon detecting the entering condition is satisfied.
At 325, the UE 115-b may determine a leaving condition is satisfied based on comparing one or more metrics or one or more values to thresholds. For example, the UE 115-b may determine a leaving condition for the event trigger is satisfied based on a difference between the sum of the set of application layer QoE measurements and the offset relative to a second threshold value (e.g., Value score -offset > Threshold 2) . In some other examples, the UE 115-b may determine a leaving condition for the event trigger is satisfied based on a difference between the buffer level and the offset relative to a second threshold buffer level value, a sum of an initial playout value and the offset relative to a second threshold initial playout value, or both (e.g., buffer level -offset >Threshold 2 for buffer level, or initial playout + offset < Threshold 2 for initial playout) . In some cases, the UE 115-b may detect the event trigger based on determining the leaving condition for the event trigger is satisfied. In some cases, the first threshold value may be the same as the second threshold value. In some other cases, the first threshold value may be different than the second threshold value. Similarly, in some examples, the first threshold buffer level value may be the same as the second threshold buffer level value, the first threshold initial playout value may be the same as the second threshold initial playout value, or both. In some other examples, the first threshold buffer level value may be different than the second threshold buffer level value, the first threshold initial playout value may be different than the second threshold initial playout value, or both.
At 330, the UE 115-b may transmit a second portion of the QoE reporting message based on determining the leaving condition is satisfied.
In some cases, the set of application layer QoE measurements may include a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay for media startup, a granularity for playout delay associated with the media startup, an RSRP, an RSRQ, or any combination thereof. In some cases, the event trigger may additionally or alternatively be referred to as a trigger event.
FIG. 4 shows a block diagram 400 of a device 405 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The device 405 may be an example of aspects of a UE 115 as described herein. The device 405 may include a receiver 410, a transmitter 415, and a communications manager 420. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to event triggered reporting of RAN visible QoE reporting) . Information may be passed on to other components of the device 405. The receiver 410 may utilize a single antenna or a set of multiple antennas.
The transmitter 415 may provide a means for transmitting signals generated by other components of the device 405. For example, the transmitter 415 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to event triggered reporting of RAN visible QoE reporting) . In some examples, the transmitter 415 may be co-located with a receiver 410 in a transceiver module. The transmitter 415 may utilize a single antenna or a set of multiple antennas.
The communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or various components thereof may be examples of means  for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein. For example, the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a digital signal processor (DSP) , a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally, or alternatively, in some examples, the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 420, the receiver 410, the transmitter 415, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 420 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 410, the transmitter 415, or both. For example, the communications manager 420 may receive information from the receiver 410, send information to the transmitter 415, or be integrated in combination with the receiver 410, the transmitter 415, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 420 may support wireless communications at a UE in accordance with examples as disclosed herein. For example, the communications manager 420 may be configured as or otherwise support a means for receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN. The communications manager 420 may be configured as or otherwise support a means for generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements. The communications manager 420 may be configured as or otherwise support a means for transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
By including or configuring the communications manager 420 in accordance with examples as described herein, the device 405 (e.g., a processor controlling or otherwise coupled with the receiver 410, the transmitter 415, the communications manager 420, or a combination thereof) may support techniques for a network entity 105 to configure a UE 115 with an event trigger for RAN visible QoE reporting, which may provide for reduced processing, reduced power consumption, more efficient utilization of communication resources, and the like.
FIG. 5 shows a block diagram 500 of a device 505 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The device 505 may be an example of aspects of a device 405 or a UE 115 as described herein. The device 505 may include a receiver 510, a transmitter 515, and a communications manager 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to event triggered reporting of RAN visible QoE reporting) . Information may be passed on to other components of the device 505. The receiver 510 may utilize a single antenna or a set of multiple antennas.
The transmitter 515 may provide a means for transmitting signals generated by other components of the device 505. For example, the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to event triggered reporting of RAN visible QoE reporting) . In some examples, the transmitter 515 may be co-located with a receiver 510 in a transceiver module. The transmitter 515 may utilize a single antenna or a set of multiple antennas.
The device 505, or various components thereof, may be an example of means for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein. For example, the communications manager 520 may include an event trigger component 525, a QoE measurement component 530, a QoE report component 535, or any combination thereof. The communications manager 520 may be an example of aspects of a communications manager 420 as described herein. In some examples, the communications manager 520, or various components thereof, may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both. For example, the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 520 may support wireless communications at a UE in accordance with examples as disclosed herein. The event trigger component 525 may be configured as or otherwise support a means for receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN. The QoE measurement component 530 may be configured as or otherwise support a means for generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements. The QoE report component 535 may be configured as or otherwise support a means for transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
FIG. 6 shows a block diagram 600 of a communications manager 620 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The communications manager 620 may be an example of aspects of a communications manager 420, a communications manager 520, or both, as described herein. The communications manager 620, or various components thereof, may be an example of means for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein. For example, the communications manager 620 may include an event trigger component 625, a QoE measurement component 630, a QoE report component 635, an entering condition component 640, a leaving condition component 645, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 620 may support wireless communications at a UE in accordance with examples as disclosed herein. The event trigger component 625 may be configured as or otherwise support a means for receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN. The QoE measurement component 630 may be configured as or otherwise support a means for generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements. The QoE report component 635 may be configured as or otherwise support a means for transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
In some examples, the control message indicates an event trigger value of a QoE measurement within the set of application layer QoE measurements, and the entering condition component 640 may be configured as or otherwise support a means for determining an entering condition associated with the event trigger is satisfied based on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value, where detecting the event trigger is based on a measured value of the QoE measurement relative to the event trigger value.
In some examples, to support transmitting at least the first portion of the QoE reporting message, the QoE report component 635 may be configured as or  otherwise support a means for transmitting, based on determining the entering condition associated with the event trigger is satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
In some examples, the leaving condition component 645 may be configured as or otherwise support a means for determining a leaving condition associated with the event trigger is satisfied based on a difference between the sum of the set of application layer QoE measurements and the offset relative to a second threshold value. In some examples, the QoE report component 635 may be configured as or otherwise support a means for transmitting a second portion of the QoE reporting message to the network entity of the RAN based on determining the leaving condition associated with the event trigger is satisfied.
In some examples, the first threshold value is the same as the second threshold value.
In some examples, the first threshold value is different than the second threshold value.
In some examples, the determining the entering condition associated with the event trigger is satisfied is executed at an application layer of the UE, and the QoE report component 635 may be configured as or otherwise support a means for receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based on forwarding an indication including an event name of the event trigger to the application layer of the UE.
In some examples, the determining the entering condition associated with the event trigger is satisfied is executed at a RRC layer of the UE, and the QoE measurement component 630 may be configured as or otherwise support a means for receiving, at the RRC layer of the UE, an indication of the sum of the set of application layer QoE measurements. In some examples, the determining the entering condition associated with the event trigger is satisfied is executed at a RRC layer of the UE, and the QoE measurement component 630 may be configured as or otherwise support a means for determining, at the RRC layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
In some examples, the determining the entering condition associated with the event trigger is satisfied is executed at a RRC layer of the UE, and the QoE measurement component 630 may be configured as or otherwise support a means for receiving, at the RRC layer of the UE, an indication of one or more application layer QoE measurements of the set of application layer QoE measurements. In some examples, the determining the entering condition associated with the event trigger is satisfied is executed at a RRC layer of the UE, and the QoE measurement component 630 may be configured as or otherwise support a means for determining, at the RRC layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
In some examples, the entering condition component 640 may be configured as or otherwise support a means for determining an entering condition associated with the event trigger is satisfied based on a sum of a buffer level and an offset relative to a first threshold buffer level value, a difference between an initial playout and the offset relative to a first threshold initial playout value, or both, where detecting the event trigger is based on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value.
In some examples, to support transmitting at least the first portion of the QoE reporting message, the QoE report component 635 may be configured as or otherwise support a means for transmitting, based on determining the entering condition associated with the event trigger is satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
In some examples, the leaving condition component 645 may be configured as or otherwise support a means for determining a leaving condition associated with the event trigger is satisfied based on a difference between the buffer level and the offset relative to a second threshold buffer level value, a sum of an initial playout value and the offset relative to a second threshold initial playout value, or both, where detecting the event trigger is based on determining the leaving condition associated with the event trigger is satisfied.
In some examples, the first threshold buffer level value is the same as the second threshold buffer level value, the first threshold initial playout value is the same as the second threshold initial playout value, or both.
In some examples, the first threshold buffer level value is different than the second threshold buffer level value, the first threshold initial playout value is different than the second threshold initial playout value, or both.
In some examples, the determining the entering condition associated with the event trigger is satisfied is executed at an application layer of the UE, and the QoE report component 635 may be configured as or otherwise support a means for receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based on forwarding an indication including an event name of the event trigger to the application layer of the UE.
In some examples, the determining the entering condition associated with the event trigger is satisfied is executed at a RRC layer of the UE, and the QoE measurement component 630 may be configured as or otherwise support a means for receiving, at the RRC layer of the UE, one or more application layer QoE measurements of the set of application layer QoE measurements based on forwarding an indication of a measurement periodicity, a reporting periodicity, or both associated with transmitting at least the first portion of the QoE reporting message to the application layer of the UE, where the determining the entering condition associated with the event trigger is satisfied is based on the one or more application layer QoE measurements.
In some examples, the QoE measurement component 630 may be configured as or otherwise support a means for filtering the one or more application layer QoE measurements prior to the determining the entering condition associated with the event trigger is satisfied.
In some examples, the set of application layer QoE measurements include a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, an RSRP, an RSRQ, or any combination thereof.
FIG. 7 shows a diagram of a system 700 including a device 705 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The device 705 may be an example of or include the components of a device 405, a device 505, or a UE 115 as described herein. The device 705 may communicate (e.g., wirelessly) with one or more network entities 105, one or more UEs 115, or any combination thereof. The device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 720, an input/output (I/O) controller 710, a transceiver 715, an antenna 725, a memory 730, code 735, and a processor 740. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 745) .
The I/O controller 710 may manage input and output signals for the device 705. The I/O controller 710 may also manage peripherals not integrated into the device 705. In some cases, the I/O controller 710 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 710 may utilize an operating system such as
Figure PCTCN2022113790-appb-000001
Figure PCTCN2022113790-appb-000002
or another known operating system. Additionally or alternatively, the I/O controller 710 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 710 may be implemented as part of a processor, such as the processor 740. In some cases, a user may interact with the device 705 via the I/O controller 710 or via hardware components controlled by the I/O controller 710.
In some cases, the device 705 may include a single antenna 725. However, in some other cases, the device 705 may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 715 may communicate bi-directionally, via the one or more antennas 725, wired, or wireless links as described herein. For example, the transceiver 715 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 715 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 725 for transmission, and to demodulate packets received from the one or more antennas 725. The transceiver  715, or the transceiver 715 and one or more antennas 725, may be an example of a transmitter 415, a transmitter 515, a receiver 410, a receiver 510, or any combination thereof or component thereof, as described herein.
The memory 730 may include random access memory (RAM) and read-only memory (ROM) . The memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed by the processor 740, cause the device 705 to perform various functions described herein. The code 735 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 730 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 740 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 740 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 740. The processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting event triggered reporting of RAN visible QoE reporting) . For example, the device 705 or a component of the device 705 may include a processor 740 and memory 730 coupled with or to the processor 740, the processor 740 and memory 730 configured to perform various functions described herein.
The communications manager 720 may support wireless communications at a UE in accordance with examples as disclosed herein. For example, the communications manager 720 may be configured as or otherwise support a means for receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN. The communications manager 720 may be configured as or otherwise support a means for generating, based on detecting the event trigger in accordance with the control  message, a QoE reporting message including an indication of the set of application layer QoE measurements. The communications manager 720 may be configured as or otherwise support a means for transmitting at least a first portion of the QoE reporting message to the network entity of the RAN.
By including or configuring the communications manager 720 in accordance with examples as described herein, the device 705 may support techniques for a network entity 105 to configure a UE 115 with an event trigger for RAN visible QoE reporting, which may provide for improved communication reliability, reduced latency, improved user experience related to reduced processing, reduced power consumption, more efficient utilization of communication resources, improved coordination between devices, longer battery life, improved utilization of processing capability, and the like.
In some examples, the communications manager 720 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 715, the one or more antennas 725, or any combination thereof. Although the communications manager 720 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 720 may be supported by or performed by the processor 740, the memory 730, the code 735, or any combination thereof. For example, the code 735 may include instructions executable by the processor 740 to cause the device 705 to perform various aspects of event triggered reporting of RAN visible QoE reporting as described herein, or the processor 740 and the memory 730 may be otherwise configured to perform or support such operations.
FIG. 8 shows a block diagram 800 of a device 805 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The device 805 may be an example of aspects of a network entity 105 as described herein. The device 805 may include a receiver 810, a transmitter 815, and a communications manager 820. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any  combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . Information may be passed on to other components of the device 805. In some examples, the receiver 810 may support obtaining information by receiving signals via one or more antennas. Additionally, or alternatively, the receiver 810 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
The transmitter 815 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 805. For example, the transmitter 815 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . In some examples, the transmitter 815 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the transmitter 815 may support outputting information by transmitting signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof. In some examples, the transmitter 815 and the receiver 810 may be co-located in a transceiver, which may include or be coupled with a modem.
The communications manager 820, the receiver 810, the transmitter 815, or various combinations thereof or various components thereof may be examples of means for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein. For example, the communications manager 820, the receiver 810, the transmitter 815, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 820, the receiver 810, the transmitter 815, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a DSP, a CPU, an ASIC, an FPGA or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the  functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally, or alternatively, in some examples, the communications manager 820, the receiver 810, the transmitter 815, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 820, the receiver 810, the transmitter 815, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 820 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 810, the transmitter 815, or both. For example, the communications manager 820 may receive information from the receiver 810, send information to the transmitter 815, or be integrated in combination with the receiver 810, the transmitter 815, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 820 may support wireless communications at a network entity of a RAN in accordance with examples as disclosed herein. For example, the communications manager 820 may be configured as or otherwise support a means for transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN. The communications manager 820 may be configured as or otherwise support a means for receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
By including or configuring the communications manager 820 in accordance with examples as described herein, the device 805 (e.g., a processor controlling or otherwise coupled with the receiver 810, the transmitter 815, the communications manager 820, or a combination thereof) may support techniques for a network entity 105 to configure a UE 115 with an event trigger for RAN visible QoE reporting, which may provide for reduced processing, reduced power consumption, more efficient utilization of communication resources, and the like.
FIG. 9 shows a block diagram 900 of a device 905 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The device 905 may be an example of aspects of a device 805 or a network entity 105 as described herein. The device 905 may include a receiver 910, a transmitter 915, and a communications manager 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may provide a means for obtaining (e.g., receiving, determining, identifying) information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . Information may be passed on to other components of the device 905. In some examples, the receiver 910 may support obtaining information by receiving signals via one or more antennas. Additionally, or alternatively, the receiver 910 may support obtaining information by receiving signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof.
The transmitter 915 may provide a means for outputting (e.g., transmitting, providing, conveying, sending) information generated by other components of the device 905. For example, the transmitter 915 may output information such as user data, control information, or any combination thereof (e.g., I/Q samples, symbols, packets, protocol data units, service data units) associated with various channels (e.g., control channels, data channels, information channels, channels associated with a protocol stack) . In some examples, the transmitter 915 may support outputting information by transmitting signals via one or more antennas. Additionally, or alternatively, the  transmitter 915 may support outputting information by transmitting signals via one or more wired (e.g., electrical, fiber optic) interfaces, wireless interfaces, or any combination thereof. In some examples, the transmitter 915 and the receiver 910 may be co-located in a transceiver, which may include or be coupled with a modem.
The device 905, or various components thereof, may be an example of means for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein. For example, the communications manager 920 may include an event trigger manager 925 a QoE report manager 930, or any combination thereof. The communications manager 920 may be an example of aspects of a communications manager 820 as described herein. In some examples, the communications manager 920, or various components thereof, may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 910, the transmitter 915, or both. For example, the communications manager 920 may receive information from the receiver 910, send information to the transmitter 915, or be integrated in combination with the receiver 910, the transmitter 915, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 920 may support wireless communications at a network entity of a RAN in accordance with examples as disclosed herein. The event trigger manager 925 may be configured as or otherwise support a means for transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN. The QoE report manager 930 may be configured as or otherwise support a means for receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
FIG. 10 shows a block diagram 1000 of a communications manager 1020 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The communications manager 1020 may be an example of aspects of a communications manager 820, a communications manager 920, or both, as described herein. The communications manager 1020, or various components thereof, may be an example of means for performing various aspects of event triggered reporting of RAN visible QoE reporting as described herein.  For example, the communications manager 1020 may include an event trigger manager 1025 a QoE report manager 1030, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) which may include communications within a protocol layer of a protocol stack, communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack, within a device, component, or virtualized component associated with a network entity 105, between devices, components, or virtualized components associated with a network entity 105) , or any combination thereof.
The communications manager 1020 may support wireless communications at a network entity of a RAN in accordance with examples as disclosed herein. The event trigger manager 1025 may be configured as or otherwise support a means for transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN. The QoE report manager 1030 may be configured as or otherwise support a means for receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
In some examples, to support receiving at least the first portion of the QoE reporting message, the QoE report manager 1030 may be configured as or otherwise support a means for receiving, based on an entering condition associated with the event trigger being satisfied at the UE, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
In some examples, the QoE report manager 1030 may be configured as or otherwise support a means for receiving, based on a leaving condition associated with the event trigger being satisfied at the UE, a second portion of the QoE reporting message.
In some examples, the set of application layer QoE measurements include a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity  associated with playout delay associated with the media startup, an RSRP, an RSRQ, or any combination thereof.
FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The device 1105 may be an example of or include the components of a device 805, a device 905, or a network entity 105 as described herein. The device 1105 may communicate with one or more network entities 105, one or more UEs 115, or any combination thereof, which may include communications over one or more wired interfaces, over one or more wireless interfaces, or any combination thereof. The device 1105 may include components that support outputting and obtaining communications, such as a communications manager 1120, a transceiver 1110, an antenna 1115, a memory 1125, code 1130, and a processor 1135. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1140) .
The transceiver 1110 may support bi-directional communications via wired links, wireless links, or both as described herein. In some examples, the transceiver 1110 may include a wired transceiver and may communicate bi-directionally with another wired transceiver. Additionally, or alternatively, in some examples, the transceiver 1110 may include a wireless transceiver and may communicate bi-directionally with another wireless transceiver. In some examples, the device 1105 may include one or more antennas 1115, which may be capable of transmitting or receiving wireless transmissions (e.g., concurrently) . The transceiver 1110 may also include a modem to modulate signals, to provide the modulated signals for transmission (e.g., by one or more antennas 1115, by a wired transmitter) , to receive modulated signals (e.g., from one or more antennas 1115, from a wired receiver) , and to demodulate signals. In some implementations, the transceiver 1110 may include one or more interfaces, such as one or more interfaces coupled with the one or more antennas 1115 that are configured to support various receiving or obtaining operations, or one or more interfaces coupled with the one or more antennas 1115 that are configured to support various transmitting or outputting operations, or a combination thereof. In some implementations, the transceiver 1110 may include or be configured for coupling with one or more processors  or memory components that are operable to perform or support operations based on received or obtained information or signals, or to generate information or other signals for transmission or other outputting, or any combination thereof. In some implementations, the transceiver 1110, or the transceiver 1110 and the one or more antennas 1115, or the transceiver 1110 and the one or more antennas 1115 and one or more processors or memory components (for example, the processor 1135, or the memory 1125, or both) , may be included in a chip or chip assembly that is installed in the device 1105. In some examples, the transceiver may be operable to support communications via one or more communications links (e.g., a communication link 125, a backhaul communication link 120, a midhaul communication link 162, a fronthaul communication link 168) .
The memory 1125 may include RAM and ROM. The memory 1125 may store computer-readable, computer-executable code 1130 including instructions that, when executed by the processor 1135, cause the device 1105 to perform various functions described herein. The code 1130 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 1130 may not be directly executable by the processor 1135 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 1125 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1135 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA, a microcontroller, a programmable logic device, discrete gate or transistor logic, a discrete hardware component, or any combination thereof) . In some cases, the processor 1135 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 1135. The processor 1135 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1125) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting event triggered reporting of RAN visible QoE reporting) . For example, the device 1105 or a component of the device 1105 may include a processor 1135 and memory 1125 coupled with the processor 1135, the processor 1135 and memory 1125  configured to perform various functions described herein. The processor 1135 may be an example of a cloud-computing platform (e.g., one or more physical nodes and supporting software such as operating systems, virtual machines, or container instances) that may host the functions (e.g., by executing code 1130) to perform the functions of the device 1105. The processor 1135 may be any one or more suitable processors capable of executing scripts or instructions of one or more software programs stored in the device 1105 (such as within the memory 1125) . In some implementations, the processor 1135 may be a component of a processing system. A processing system may generally refer to a system or series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the device 1105) . For example, a processing system of the device 1105 may refer to a system including the various other components or subcomponents of the device 1105, such as the processor 1135, or the transceiver 1110, or the communications manager 1120, or other components or combinations of components of the device 1105. The processing system of the device 1105 may interface with other components of the device 1105, and may process information received from other components (such as inputs or signals) or output information to other components. For example, a chip or modem of the device 1105 may include a processing system and one or more interfaces to output information, or to obtain information, or both. The one or more interfaces may be implemented as or otherwise include a first interface configured to output information and a second interface configured to obtain information, or a same interface configured to output information and to obtain information, among other implementations. In some implementations, the one or more interfaces may refer to an interface between the processing system of the chip or modem and a transmitter, such that the device 1105 may transmit information output from the chip or modem. Additionally, or alternatively, in some implementations, the one or more interfaces may refer to an interface between the processing system of the chip or modem and a receiver, such that the device 1105 may obtain information or signal inputs, and the information may be passed to the processing system. A person having ordinary skill in the art will readily recognize that a first interface also may obtain information or signal inputs, and a second interface also may output information or signal outputs.
In some examples, a bus 1140 may support communications of (e.g., within) a protocol layer of a protocol stack. In some examples, a bus 1140 may support communications associated with a logical channel of a protocol stack (e.g., between protocol layers of a protocol stack) , which may include communications performed within a component of the device 1105, or between different components of the device 1105 that may be co-located or located in different locations (e.g., where the device 1105 may refer to a system in which one or more of the communications manager 1120, the transceiver 1110, the memory 1125, the code 1130, and the processor 1135 may be located in one of the different components or divided between different components) .
In some examples, the communications manager 1120 may manage aspects of communications with a core network 130 (e.g., via one or more wired or wireless backhaul links) . For example, the communications manager 1120 may manage the transfer of data communications for client devices, such as one or more UEs 115. In some examples, the communications manager 1120 may manage communications with other network entities 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network entities 105. In some examples, the communications manager 1120 may support an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between network entities 105.
The communications manager 1120 may support wireless communications at a network entity of a RAN in accordance with examples as disclosed herein. For example, the communications manager 1120 may be configured as or otherwise support a means for transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN. The communications manager 1120 may be configured as or otherwise support a means for receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger.
By including or configuring the communications manager 1120 in accordance with examples as described herein, the device 1105 may support techniques for a network entity 105 to configure a UE 115 with an event trigger for RAN visible QoE reporting, which may provide for improved communication reliability, reduced  latency, improved user experience related to reduced processing, reduced power consumption, more efficient utilization of communication resources, improved coordination between devices, longer battery life, improved utilization of processing capability, and the like.
In some examples, the communications manager 1120 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the transceiver 1110, the one or more antennas 1115 (e.g., where applicable) , or any combination thereof. Although the communications manager 1120 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1120 may be supported by or performed by the transceiver 1110, the processor 1135, the memory 1125, the code 1130, or any combination thereof. For example, the code 1130 may include instructions executable by the processor 1135 to cause the device 1105 to perform various aspects of event triggered reporting of RAN visible QoE reporting as described herein, or the processor 1135 and the memory 1125 may be otherwise configured to perform or support such operations.
FIG. 12 shows a flowchart illustrating a method 1200 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The operations of the method 1200 may be implemented by a UE or its components as described herein. For example, the operations of the method 1200 may be performed by a UE 115 as described with reference to FIGs. 1 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1205, the method may include receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN. The operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by an event trigger component 625 as described with reference to FIG. 6.
At 1210, the method may include generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements. The operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a QoE measurement component 630 as described with reference to FIG. 6.
At 1215, the method may include transmitting at least a first portion of the QoE reporting message to the network entity of the RAN. The operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by a QoE report component 635 as described with reference to FIG. 6.
FIG. 13 shows a flowchart illustrating a method 1300 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The operations of the method 1300 may be implemented by a UE or its components as described herein. For example, the operations of the method 1300 may be performed by a UE 115 as described with reference to FIGs. 1 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1305, the method may include receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN. The operations of 1305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1305 may be performed by an event trigger component 625 as described with reference to FIG. 6.
At 1310, the method may include determining an entering condition associated with the event trigger is satisfied based on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value, where detecting the event trigger is based on a measured value of the QoE measurement relative to the event trigger value. The operations of 1310 may be performed in  accordance with examples as disclosed herein. In some examples, aspects of the operations of 1310 may be performed by an entering condition component 640 as described with reference to FIG. 6.
At 1315, the method may include generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements. The operations of 1315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1315 may be performed by a QoE measurement component 630 as described with reference to FIG. 6.
At 1320, the method may include transmitting at least a first portion of the QoE reporting message to the network entity of the RAN. The operations of 1320 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1320 may be performed by a QoE report component 635 as described with reference to FIG. 6.
FIG. 14 shows a flowchart illustrating a method 1400 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The operations of the method 1400 may be implemented by a UE or its components as described herein. For example, the operations of the method 1400 may be performed by a UE 115 as described with reference to FIGs. 1 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1405, the method may include receiving a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by the UE to a network entity of a RAN. The operations of 1405 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1405 may be performed by an event trigger component 625 as described with reference to FIG. 6.
At 1410, the method may include determining an entering condition associated with the event trigger is satisfied based on a sum of a buffer level and an  offset relative to a first threshold buffer level value, a difference between an initial playout and the offset relative to a first threshold initial playout value, or both, where detecting the event trigger is based on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value. The operations of 1410 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1410 may be performed by an entering condition component 640 as described with reference to FIG. 6.
At 1415, the method may include generating, based on detecting the event trigger in accordance with the control message, a QoE reporting message including an indication of the set of application layer QoE measurements. The operations of 1415 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1415 may be performed by a QoE measurement component 630 as described with reference to FIG. 6.
At 1420, the method may include transmitting at least a first portion of the QoE reporting message to the network entity of the RAN. The operations of 1420 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1420 may be performed by a QoE report component 635 as described with reference to FIG. 6.
FIG. 15 shows a flowchart illustrating a method 1500 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The operations of the method 1500 may be implemented by a network entity or its components as described herein. For example, the operations of the method 1500 may be performed by a network entity as described with reference to FIGs. 1 through 3 and 8 through 11. In some examples, a network entity may execute a set of instructions to control the functional elements of the network entity to perform the described functions. Additionally, or alternatively, the network entity may perform aspects of the described functions using special-purpose hardware.
At 1505, the method may include transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN. The operations of 1505 may be performed in accordance with examples as disclosed herein. In some examples,  aspects of the operations of 1505 may be performed by an event trigger manager 1025 as described with reference to FIG. 10.
At 1510, the method may include receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger. The operations of 1510 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1510 may be performed by a QoE report manager 1030 as described with reference to FIG. 10.
FIG. 16 shows a flowchart illustrating a method 1600 that supports event triggered reporting of RAN visible QoE reporting in accordance with one or more aspects of the present disclosure. The operations of the method 1600 may be implemented by a network entity or its components as described herein. For example, the operations of the method 1600 may be performed by a network entity as described with reference to FIGs. 1 through 3 and 8 through 11. In some examples, a network entity may execute a set of instructions to control the functional elements of the network entity to perform the described functions. Additionally, or alternatively, the network entity may perform aspects of the described functions using special-purpose hardware.
At 1605, the method may include transmitting a control message indicating an event trigger associated with reporting of a set of application layer QoE (QoE) measurements by a UE to the network entity of the RAN. The operations of 1605 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1605 may be performed by an event trigger manager 1025 as described with reference to FIG. 10.
At 1610, the method may include receiving at least a first portion of a QoE reporting message including an indication of the set of application layer QoE measurements based on the event trigger. The operations of 1610 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1610 may be performed by a QoE report manager 1030 as described with reference to FIG. 10.
At 1615, the method may include receiving, based on an entering condition associated with the event trigger being satisfied at the UE, the first portion of the QoE  reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message. The operations of 1615 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1615 may be performed by a QoE report manager 1030 as described with reference to FIG. 10.
The following provides an overview of aspects of the present disclosure:
Aspect 1: A method for wireless communications at a UE, comprising: receiving a control message indicating an event trigger associated with reporting of a set of application layer quality of experience (QoE) measurements by the UE to a network entity of a radio access network; generating, based at least in part on detecting the event trigger in accordance with the control message, a QoE reporting message comprising an indication of the set of application layer QoE measurements; and transmitting at least a first portion of the QoE reporting message to the network entity of the radio access network.
Aspect 2: The method of aspect 1, wherein the control message indicates an event trigger value of an application layer QoE measurement within the set of application layer QoE measurements, the method further comprising: determining an entering condition associated with the event trigger is satisfied based at least in part on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value, wherein detecting the event trigger is based at least in part on a measured value of the application layer QoE measurement relative to the event trigger value.
Aspect 3: The method of aspect 2, wherein transmitting at least the first portion of the QoE reporting message comprises: transmitting, based at least in part on determining the entering condition associated with the event trigger is satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
Aspect 4: The method of any of aspects 2 through 3, further comprising: determining a leaving condition associated with the event trigger is satisfied based at least in part on a difference between the sum of the set of application layer QoE measurements and the offset relative to a second threshold value; and transmitting a  second portion of the QoE reporting message to the network entity of the radio access network based at least in part on determining the leaving condition associated with the event trigger is satisfied.
Aspect 5: The method of aspect 4, wherein the first threshold value is the same as the second threshold value.
Aspect 6: The method of aspect 4, wherein the first threshold value is different than the second threshold value.
Aspect 7: The method of any of aspects 2 through 6, wherein the determining the entering condition associated with the event trigger is satisfied is executed at an application layer of the UE, the method further comprising: receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based at least in part on forwarding an indication comprising an event name of the event trigger to the application layer of the UE.
Aspect 8: The method of any of aspects 2 through 6, wherein the determining the entering condition associated with the event trigger is satisfied is executed at a radio resource control layer of the UE, the method further comprising: receiving, at the radio resource control layer of the UE, an indication of the sum of the set of application layer QoE measurements; and determining, at the radio resource control layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
Aspect 9: The method of any of aspects 2 through 6, wherein the determining the entering condition associated with the event trigger is satisfied is executed at a radio resource control layer of the UE, the method further comprising: receiving, at the radio resource control layer of the UE, an indication of one or more application layer QoE measurements of the set of application layer QoE measurements; and determining, at the radio resource control layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
Aspect 10: The method of aspect 1, further comprising: determining an entering condition associated with the event trigger is satisfied based at least in part on a sum of a buffer level and an offset relative to a first threshold buffer level value, a  difference between an initial playout and the offset relative to a first threshold initial playout value, or both, wherein detecting the event trigger is based at least in part on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value.
Aspect 11: The method of aspect 10, wherein transmitting at least the first portion of the QoE reporting message comprises: transmitting, based at least in part on determining the entering condition associated with the event trigger is satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
Aspect 12: The method of any of aspects 10 through 11, further comprising: determining a leaving condition associated with the event trigger is satisfied based at least in part on a difference between the buffer level and the offset relative to a second threshold buffer level value, a sum of an initial playout value and the offset relative to a second threshold initial playout value, or both, wherein detecting the event trigger is based at least in part on determining the leaving condition associated with the event trigger is satisfied.
Aspect 13: The method of aspect 12, wherein the first threshold buffer level value is the same as the second threshold buffer level value, the first threshold initial playout value is the same as the second threshold initial playout value, or both.
Aspect 14: The method of aspect 12, wherein the first threshold buffer level value is different than the second threshold buffer level value, the first threshold initial playout value is different than the second threshold initial playout value, or both.
Aspect 15: The method of any of aspects 10 through 14, wherein the determining the entering condition associated with the event trigger is satisfied is executed at an application layer of the UE, the method further comprising: receiving, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based at least in part on forwarding an indication comprising an event name of the event trigger to the application layer of the UE.
Aspect 16: The method of any of aspects 10 through 14, wherein the determining the entering condition associated with the event trigger is satisfied is  executed at a radio resource control layer of the UE, the method further comprising: receiving, at the radio resource control layer of the UE, one or more application layer QoE measurements of the set of application layer QoE measurements based at least in part on forwarding an indication of a measurement periodicity, a reporting periodicity, or both associated with transmitting at least the first portion of the QoE reporting message to the application layer of the UE, wherein the determining the entering condition associated with the event trigger is satisfied is based at least in part on the one or more application layer QoE measurements.
Aspect 17: The method of aspect 16, further comprising: filtering the one or more application layer QoE measurements prior to the determining the entering condition associated with the event trigger is satisfied.
Aspect 18: The method of any of aspects 1 through 17, wherein the set of application layer QoE measurements comprise a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, a reference signal receive power, a reference signal receive quality, or any combination thereof.
Aspect 19: A method for wireless communications at a network entity of a radio access network, comprising: transmitting a control message indicating an event trigger associated with reporting of a set of application layer quality of experience (QoE) measurements by a UE to the network entity of the radio access network; and receiving at least a first portion of a QoE reporting message comprising an indication of the set of application layer QoE measurements based at least in part on the event trigger.
Aspect 20: The method of aspect 19, wherein receiving at least the first portion of the QoE reporting message comprises: receiving, based at least in part on an entering condition associated with the event trigger being satisfied at the UE, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
Aspect 21: The method of aspect 20, further comprising: receiving, based at least in part on a leaving condition associated with the event trigger being satisfied at the UE, a second portion of the QoE reporting message.
Aspect 22: The method of any of aspects 19 through 21, wherein the set of application layer QoE measurements comprise a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, a reference signal receive power, a reference signal receive quality, or any combination thereof.
Aspect 23: An apparatus for wireless communications at a UE, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 18.
Aspect 24: An apparatus for wireless communications at a UE, comprising at least one means for performing a method of any of aspects 1 through 18.
Aspect 25: A non-transitory computer-readable medium storing code for wireless communications at a UE, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 18.
Aspect 26: An apparatus for wireless communications at a network entity of a radio access network, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 19 through 22.
Aspect 27: An apparatus for wireless communications at a network entity of a radio access network, comprising at least one means for performing a method of any of aspects 19 through 22.
Aspect 28: A non-transitory computer-readable medium storing code for wireless communications at a network entity of a radio access network, the code comprising instructions executable by a processor to perform a method of any of aspects 19 through 22.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed using a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor but, in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented using hardware, software executed by a processor, firmware, or any combination thereof. If implemented using software executed by a processor, the functions may be stored as or transmitted using one or more instructions or code of a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically  located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc. Disks may reproduce data magnetically, and discs may reproduce data optically using lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
The term “determine” or “determining” encompasses a variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information) , accessing (e.g., accessing data stored in memory) and the like. Also, “determining” can include resolving, obtaining, selecting, choosing, establishing, and other such similar actions. Also, as used herein, the phrase “a set” shall be construed as including the possibility of a set with one member. That is, the phrase “a set” shall be construed in the same manner as “one or more. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive a control message indicating an event trigger associated with reporting of a set of application layer quality of experience (QoE) measurements by the UE to a network entity of a radio access network;
    generate, based at least in part on detecting the event trigger in accordance with the control message, a QoE reporting message comprising an indication of the set of application layer QoE measurements; and
    transmit at least a first portion of the QoE reporting message to the network entity of the radio access network.
  2. The apparatus of claim 1, wherein the control message indicates an event trigger value of an application layer QoE measurement within the set of application layer QoE measurements, and the instructions are further executable by the processor to cause the apparatus to:
    determine an entering condition associated with the event trigger is satisfied based at least in part on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value, wherein detecting the event trigger is based at least in part on a measured value of the application layer QoE measurement relative to the event trigger value.
  3. The apparatus of claim 2, wherein the instructions to transmit at least the first portion of the QoE reporting message are executable by the processor to cause the apparatus to:
    transmit, based at least in part on determining the entering condition associated with the event trigger is satisfied, the first portion of the QoE reporting  message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  4. The apparatus of claim 2, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a leaving condition associated with the event trigger is satisfied based at least in part on a difference between the sum of the set of application layer QoE measurements and the offset relative to a second threshold value; and
    transmit a second portion of the QoE reporting message to the network entity of the radio access network based at least in part on determining the leaving condition associated with the event trigger is satisfied.
  5. The apparatus of claim 4, wherein the first threshold value is the same as the second threshold value.
  6. The apparatus of claim 4, wherein the first threshold value is different than the second threshold value.
  7. The apparatus of claim 2, wherein the determining the entering condition associated with the event trigger is satisfied is executed at an application layer of the UE, and the instructions are further executable by the processor to cause the apparatus to:
    receive, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based at least in part on forwarding an indication comprising an event name of the event trigger to the application layer of the UE.
  8. The apparatus of claim 2, wherein the determining the entering condition associated with the event trigger is satisfied is executed at a radio resource control layer of the UE, and the instructions are further executable by the processor to cause the apparatus to:
    receive, at the radio resource control layer of the UE, an indication of the sum of the set of application layer QoE measurements; and
    determine, at the radio resource control layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
  9. The apparatus of claim 2, wherein the determining the entering condition associated with the event trigger is satisfied is executed at a radio resource control layer of the UE, and the instructions are further executable by the processor to cause the apparatus to:
    receive, at the radio resource control layer of the UE, an indication of one or more application layer QoE measurements of the set of application layer QoE measurements; and
    determine, at the radio resource control layer of the UE, whether the received sum of the set of application layer QoE measurements satisfies the event trigger.
  10. The apparatus of claim 1, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine an entering condition associated with the event trigger is satisfied based at least in part on a sum of a buffer level and an offset relative to a first threshold buffer level value, a difference between an initial playout and the offset relative to a first threshold initial playout value, or both, wherein detecting the event trigger is based at least in part on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value.
  11. The apparatus of claim 10, wherein the instructions to transmit at least the first portion of the QoE reporting message are executable by the processor to cause the apparatus to:
    transmit, based at least in part on determining the entering condition associated with the event trigger is satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  12. The apparatus of claim 10, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a leaving condition associated with the event trigger is satisfied based at least in part on a difference between the buffer level and the offset relative to a second threshold buffer level value, a sum of an initial playout value and the offset relative to a second threshold initial playout value, or both, wherein detecting the event trigger is based at least in part on determining the leaving condition associated with the event trigger is satisfied.
  13. The apparatus of claim 12, wherein the first threshold buffer level value is the same as the second threshold buffer level value, the first threshold initial playout value is the same as the second threshold initial playout value, or both.
  14. The apparatus of claim 12, wherein the first threshold buffer level value is different than the second threshold buffer level value, the first threshold initial playout value is different than the second threshold initial playout value, or both.
  15. The apparatus of claim 10, wherein the determining the entering condition associated with the event trigger is satisfied is executed at an application layer of the UE, and the instructions are further executable by the processor to cause the apparatus to:
    receive, at a radio resources control layer of the UE, an indication of at least the first portion of the QoE reporting message based at least in part on forwarding an indication comprising an event name of the event trigger to the application layer of the UE.
  16. The apparatus of claim 10, wherein the determining the entering condition associated with the event trigger is satisfied is executed at a radio resource control layer of the UE, and the instructions are further executable by the processor to cause the apparatus to:
    receive, at the radio resource control layer of the UE, one or more application layer QoE measurements of the set of application layer QoE measurements based at least in part on forwarding an indication of a measurement periodicity, a reporting periodicity, or both associated with transmitting at least the first portion of the QoE reporting message to the application layer of the UE, wherein the determining the  entering condition associated with the event trigger is satisfied is based at least in part on the one or more application layer QoE measurements.
  17. The apparatus of claim 16, wherein the instructions are further executable by the processor to cause the apparatus to:
    filter the one or more application layer QoE measurements prior to the determining the entering condition associated with the event trigger is satisfied.
  18. The apparatus of claim 1, wherein the set of application layer QoE measurements comprise a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, a reference signal receive power, a reference signal receive quality, or any combination thereof.
  19. An apparatus for wireless communications at a network entity of a radio access network, comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit a control message indicating an event trigger associated with reporting of a set of application layer quality of experience (QoE) measurements by a user equipment (UE) to the network entity of the radio access network; and
    receive at least a first portion of a QoE reporting message comprising an indication of the set of application layer QoE measurements based at least in part on the event trigger.
  20. The apparatus of claim 19, wherein the instructions to receive at least the first portion of the QoE reporting message are executable by the processor to cause the apparatus to:
    receive, based at least in part on an entering condition associated with the event trigger being satisfied at the UE, the first portion of the QoE reporting message or  an entirety of the QoE reporting message in accordance with an indication in the control message.
  21. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, based at least in part on a leaving condition associated with the event trigger being satisfied at the UE, a second portion of the QoE reporting message.
  22. The apparatus of claim 19, wherein the set of application layer QoE measurements comprise a maximum buffer level value, a buffer level granularity, a maximum number of buffer level entries, a maximum playout delay associated with media startup, a granularity associated with playout delay associated with the media startup, a reference signal receive power, a reference signal receive quality, or any combination thereof.
  23. A method for wireless communications at a user equipment (UE) , comprising:
    receiving a control message indicating an event trigger associated with reporting of a set of application layer quality of experience (QoE) measurements by the UE to a network entity of a radio access network;
    generating, based at least in part on detecting the event trigger in accordance with the control message, a QoE reporting message comprising an indication of the set of application layer QoE measurements; and
    transmitting at least a first portion of the QoE reporting message to the network entity of the radio access network.
  24. The method of claim 23, wherein the control message indicates an event trigger value of a QoE measurement within the set of application layer QoE measurements, the method further comprising:
    determining an entering condition associated with the event trigger is satisfied based at least in part on a sum of the set of application layer QoE measurements and an offset relative to a first threshold value, wherein detecting the event trigger is based at least in part on a measured value of the QoE measurement relative to the event trigger value.
  25. The method of claim 24, wherein transmitting at least the first portion of the QoE reporting message comprises:
    transmitting, based at least in part on determining the entering condition associated with the event trigger is satisfied, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
  26. The method of claim 24, further comprising:
    determining a leaving condition associated with the event trigger is satisfied based at least in part on a difference between the sum of the set of application layer QoE measurements and the offset relative to a second threshold value; and
    transmitting a second portion of the QoE reporting message to the network entity of the radio access network based at least in part on determining the leaving condition associated with the event trigger is satisfied.
  27. The method of claim 23, further comprising:
    determining an entering condition associated with the event trigger is satisfied based at least in part on a sum of a buffer level and an offset relative to a first threshold buffer level value, a difference between an initial playout and the offset relative to a first threshold initial playout value, or both, wherein detecting the event trigger is based at least in part on a measured value of QoE measurement within the set of application layer QoE measurements relative to an event trigger value.
  28. The method of claim 27, further comprising:
    determining a leaving condition associated with the event trigger is satisfied based at least in part on a difference between the buffer level and the offset relative to a second threshold buffer level value, a sum of an initial playout value and the offset relative to a second threshold initial playout value, or both, wherein detecting the event trigger is based at least in part on determining the leaving condition associated with the event trigger is satisfied.
  29. A method for wireless communications at a network entity of a radio access network, comprising:
    transmitting a control message indicating an event trigger associated with reporting of a set of application layer quality of experience (QoE) measurements by a user equipment (UE) to the network entity of the radio access network; and
    receiving at least a first portion of a QoE reporting message comprising an indication of the set of application layer QoE measurements based at least in part on the event trigger.
  30. The method of claim 29, wherein receiving at least the first portion of the QoE reporting message comprises:
    receiving, based at least in part on an entering condition associated with the event trigger being satisfied at the UE, the first portion of the QoE reporting message or an entirety of the QoE reporting message in accordance with an indication in the control message.
PCT/CN2022/113790 2022-08-20 2022-08-20 Event triggered reporting of radio access network visible quality of experience reporting WO2024040364A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113790 WO2024040364A1 (en) 2022-08-20 2022-08-20 Event triggered reporting of radio access network visible quality of experience reporting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113790 WO2024040364A1 (en) 2022-08-20 2022-08-20 Event triggered reporting of radio access network visible quality of experience reporting

Publications (1)

Publication Number Publication Date
WO2024040364A1 true WO2024040364A1 (en) 2024-02-29

Family

ID=90012056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113790 WO2024040364A1 (en) 2022-08-20 2022-08-20 Event triggered reporting of radio access network visible quality of experience reporting

Country Status (1)

Country Link
WO (1) WO2024040364A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215886A1 (en) * 2020-04-23 2021-10-28 Samsung Electronics Co., Ltd. Method and apparatus for performing quality of experience measurement collection
CN113676930A (en) * 2020-05-15 2021-11-19 华为技术有限公司 Communication method and communication device
WO2022005361A1 (en) * 2020-06-30 2022-01-06 Telefonaktiebolaget Lm Ericsson (Publ) Quality-of-experience (qoe) reporting for ran-based qoe management
US20220038934A1 (en) * 2020-07-30 2022-02-03 Qualcomm Incorporated Quality of experience measurements for mobility robustness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215886A1 (en) * 2020-04-23 2021-10-28 Samsung Electronics Co., Ltd. Method and apparatus for performing quality of experience measurement collection
CN113676930A (en) * 2020-05-15 2021-11-19 华为技术有限公司 Communication method and communication device
WO2022005361A1 (en) * 2020-06-30 2022-01-06 Telefonaktiebolaget Lm Ericsson (Publ) Quality-of-experience (qoe) reporting for ran-based qoe management
US20220038934A1 (en) * 2020-07-30 2022-02-03 Qualcomm Incorporated Quality of experience measurements for mobility robustness

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHINA UNICOM: "Further discussion on NR QoE solutions", 3GPP DRAFT; R3-206492, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. 20201102 - 20201112, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051945911 *
HUAWEI - MODERATOR: "Summary of Offline Discussion on QoE Configuration and reporting", 3GPP DRAFT; R3-206897, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20201102 - 20201112, 17 November 2020 (2020-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052255839 *

Similar Documents

Publication Publication Date Title
US20230139197A1 (en) Sidelink assisted cross link interference determination
WO2024040364A1 (en) Event triggered reporting of radio access network visible quality of experience reporting
WO2024026603A1 (en) Idle state quality of experience activation and reporting
US20230362715A1 (en) Load reporting in backhaul communications
US20240015556A1 (en) Channel measurements and reporting procedures associated with bandwidth part switching
US20230337132A1 (en) Discontinuous reception for configured grant/semi-persistent scheduling
US20240098759A1 (en) Common time resources for multicasting
WO2023184062A1 (en) Channel state information resource configurations for beam prediction
WO2024059960A1 (en) Uplink and downlink beam reporting
US20240089975A1 (en) Techniques for dynamic transmission parameter adaptation
US11929811B2 (en) Channel state information report cancellation
WO2024026663A1 (en) Dynamic switching for semi-persistent scheduling and configured grant
WO2024026617A1 (en) Default power parameters per transmission and reception point
US20230262500A1 (en) Relaying beam failure detection reports
US20240147468A1 (en) Carrier switching with uplink carrier aggregation capability
WO2023178646A1 (en) Techniques for configuring multiple supplemental uplink frequency bands per serving cell
US20240129924A1 (en) Deactivation of semi-persistent scheduling and configured grant resources during temporary bandwidth part switching
WO2023221033A1 (en) Performing cross-link interference measurements in a full-duplex communication mode
US20230345386A1 (en) Aperiodic tracking reference signal triggering mechanism to update tracking reference signal power
WO2024031517A1 (en) Unified transmission configuration indication determination for single frequency network
WO2024045108A1 (en) User equipment scheduling assistance for mode 1 sidelink communications
US20230328565A1 (en) Transmission and reception beam management for cross link interference measurement
US20240040446A1 (en) Measurement type transition configurations
WO2024065373A1 (en) Techniques for dynamically triggered csi reports carrying time-domain beam predictions
US20220150904A1 (en) Techniques for enhanced handling of network measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955915

Country of ref document: EP

Kind code of ref document: A1