WO2024040313A1 - Dispositivo para comparação de padrão de materiais dielétricos a partir de antena vivaldi antipodal com borda exponencial - Google Patents

Dispositivo para comparação de padrão de materiais dielétricos a partir de antena vivaldi antipodal com borda exponencial Download PDF

Info

Publication number
WO2024040313A1
WO2024040313A1 PCT/BR2022/050330 BR2022050330W WO2024040313A1 WO 2024040313 A1 WO2024040313 A1 WO 2024040313A1 BR 2022050330 W BR2022050330 W BR 2022050330W WO 2024040313 A1 WO2024040313 A1 WO 2024040313A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
vivaldi
antenna
comparing
dielectric materials
Prior art date
Application number
PCT/BR2022/050330
Other languages
English (en)
French (fr)
Inventor
Alexandre Maniçoba De OLIVEIRA
Antonio Mendes De OLIVEIRA NETO
Antonio Rebouças De FRANÇA FILHO
Original Assignee
Meta - Soluções Em Segurança Ltda
Instituto Federal De Educação, Ciência E Tecnologia De São Paulo - Ifsp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meta - Soluções Em Segurança Ltda, Instituto Federal De Educação, Ciência E Tecnologia De São Paulo - Ifsp filed Critical Meta - Soluções Em Segurança Ltda
Priority to PCT/BR2022/050330 priority Critical patent/WO2024040313A1/pt
Publication of WO2024040313A1 publication Critical patent/WO2024040313A1/pt

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • This patent application refers to an unprecedented DEVICE FOR COMPARING THE PATTERN OF DIELECTRIC MATERIALS FROM A VIVALDI ANTIPODAL ANTENNA WITH EXPONENTIAL EDGE, which uses an ultra-wideband (UWB) antenna, 1500-2500 MHz, Vivaldi Palm Tree in radiant near-field microwaves to identify dielectric characteristics through reflection of the signal applied in a liquid in fluid, solid or colloidal dielectric material.
  • UWB ultra-wideband
  • the field of application of the invention is in quality control in industries in the oil and gas, pharmaceutical, cosmetic, paint and food sectors, by identifying the dielectric characteristics of dielectric materials.
  • the spatial region, just in front of the antenna, near field region, is divided into two specific regions.
  • the first is the reactive near-field region, which goes from the phase center of the antenna to a distance of ⁇ / (2TT).
  • the electric fields are still under the influence of electric charges and their energy decreases exponentially with the distance from the antenna's phase center, thus, this region does not suffer significant influences from the dielectric medium to the point of being used as a sensor.
  • Document US8524445 B2 entitled “DETECT AND IDENTIFY VIRUS BY THE MICROWAVE ABSORPTION SPECTROSCOPY’ - describes a virus identification process, through the analysis of the Sn and S21 curves to characterize the resonance frequencies of certain groups of viruses. The characterization of the resonance frequencies of certain groups of viruses is done manually. By knowing these frequencies, it is possible to quickly determine which types of viruses are present in the sample.
  • a resonance frequency is a frequency where the material analyzed absorbs the electromagnetic wave, so that the parameter S21 presents an abrupt drop, indicating the absorption of the electromagnetic signal.
  • Document W02006031155 A2 entitled “METHOD OF EXPLOSIVES DETECTION AND IDENTIFICATION' - describes a technique for detecting explosives, which uses signals at frequencies from 300MHz to 150GHz. The reflected signal is analyzed by checking its amplitude and phase change. Materials have different absorptions. Knowing the absorption frequencies of certain explosives, it is possible to indicate their presence. This technique depends on human interference to recognize the frequencies, which are not described in the document, requiring a researcher to identify the frequencies of the explosives that will be analyzed. The main difference between this patent and the one proposed in this document is 0 automated reading process, which does not depend on the presence of a researcher to recognize certain frequencies.
  • the equipment in the document above operates by acquiring the reflection and phase change coefficient, used only in dangerous liquids, allowing recognition in a generic way. Due to the sensitivity of the Vivaldi Palm antenna in the application now claimed, optimized to collect data in the radiant near field, the sensitivity of the acquired Sn parameter (reflection coefficient x frequency), after collected and processed, produces a pattern, which is unique to the batch of material produced, if a similar material, but from another batch, is analyzed, due to the sensitivity of the antenna, it will generate another slightly different Sn parameter. This is enough to identify that the two materials were not produced together, treating them as different products (although similar). Only materials from the same batch will generate similar Sn parameter curves. Any change produced will be identified, which is different from what is found in patent CN103630555A, which identifies the material in a generic way.
  • the equipment uses a VNA and two Horn-type antennas, which are placed one on each side at a certain distance from the tires in the order of centimeters.
  • the signal is transmitted and analyzed in a graph and, through the researcher's recording, it is identified which values present in the graph determine a tire with air or a tire with foreign bodies inside.
  • the objective of the present invention is to propose a device for comparing the pattern of dielectric materials obtained from the processing of signals reflected from the interaction of electromagnetic waves using the Vivaldi antipodal Palm Tree antenna with exponential edge, in the frequency range of 1500 to 2500 MHz for determining dielectric characteristics.
  • the objective of the present invention is to propose a device for comparing the pattern of dielectric materials using an antipodal Vivaldi antenna with an edge exponential capable of identifying and recording the dielectric characteristics of non-metallic materials, such as: a gas, liquid, solid or colloidal dielectric, for example: beverages, petroleum derivatives, oxygenated functions (e.g.: alcohols), edible oils (e.g.: olive oils), non-edible oils (e.g.: castor oil, lubricants), powders of different types (such as talc, flour), colloidal materials such as greases, waxes, emulsions, pastes, etc.
  • a gas, liquid, solid or colloidal dielectric for example: beverages, petroleum derivatives, oxygenated functions (e.g.: alcohols), edible oils (e.g.: olive oils), non-edible oils (e.g.: castor oil, lubricants), powders of different types (such as talc, flour), colloidal materials such as greases, waxes, emul
  • the objective of the present invention is to propose a device for comparing the pattern of dielectric materials using a Vivaldi antipodal antenna with a high sensitivity exponential edge, of the Vivaldi Palm Tree type, in which the dielectric pattern collected and stored is unique and is only reproduced in readings of material belonging to the same production batch, which were produced using the same materials. Being a device capable of identifying whether the material or product produced has undergone variations, which made them different from the version that left the production line.
  • the objective of the present invention is to propose a device for comparing the pattern of dielectric materials using an antipodal Vivaldi antenna, of the Vivaldi Palm Tree type, with an exponential edge that works with a larger frequency range and does not depend on a researcher to identify which frequencies are responsible for identification, and a pattern is collected by the device, which can be stored and used at another time to compare and identify differences in the liquid.
  • the objective of the present invention is to propose a device for comparing the pattern of dielectric materials using an antipodal Vivaldi antenna, of the Vivaldi Palm Tree type, with an exponential edge that operates by performing an automated scan, collecting various reflection coefficients at the indicated frequencies, which are part of the Sn parameter.
  • a standard is obtained that can be stored by an external program and used in comparison processes.
  • the objective of the present invention is to propose a device for comparing the pattern of dielectric materials using an antipodal Vivaldi antenna, of the Vivaldi Palm Tree type, with an exponential edge whose pattern can be stored by an external program and used in comparison processes, identifying whether it is the same liquid or whether it differs from the collected standard.
  • the objective of the present invention is to propose a device for comparing the pattern of dielectric materials using an antipodal Vivaldi antenna, of the Vivaldi Palm Tree type, with an exponential edge that operates with a single antenna positioned a few millimeters from the liquid under analysis. , collecting its reflection coefficient in a sequential set of frequencies, which, after processed, forms a pattern that can be stored and used to determine divergence with a subsequent reading of the liquid under analysis.
  • the objective of the present invention is to propose a device for comparing the pattern of dielectric materials using a Vivaldi antipodal antenna, of the Vivaldi Palm Tree type, with a portable exponential edge, dispensing with direct power supply from the electrical network (battery power supply), as well as It can be produced in a less complex industrial process, as it has smaller dimensions, weight and number of components.
  • the objective of the present invention is to propose a device for comparing the pattern of dielectric materials using an antipodal Vivaldi antenna, of the Vivaldi Palm Tree type, with an exponential edge with an excellent cost-benefit ratio.
  • THE DEVICE FOR COMPARING THE PATTERN OF DIELECTRIC MATERIALS FROM VIVALDI ANTIPODAL ANTENNA WITH EXPONENTIAL EDGE uses only a Vivaldi Palm Tree type antenna optimized to work with radiant near-field electromagnetic signals, which ranges from 1500 to 2500 MHz with a power of 1dBm, offering greater sensitivity, collecting their reflection coefficients which enhances a greater number of possibilities in detecting patterns, autonomously, which can be used to identify solid, colloidal or fluidic material, as a single pattern that allows checking the difference between batches of the same material and not just generic recognition.
  • the device with a lower power level (1 dBm) avoids possible changes in the characteristics of the material under analysis, being a non-destructive analysis, enabling reuse of material post-analysis, and even directly coupled line in continuous flow processes
  • Figure 1 Perspective view of the device for comparing the pattern of dielectric materials using a Vivaldi antipodal antenna with exponential edge, with the test tube exploded;
  • Figure 2 Inverted perspective view of a device for comparing the pattern of dielectric materials using an antipodal Vivaldi antenna with an exponential edge;
  • Figure 3 Sectional side view of device for comparing the pattern of dielectric materials using a Vivaldi antipodal antenna with exponential edge;
  • Figure 4 Top sectional view of the device for comparing the pattern of dielectric materials using a Vivaldi antipodal antenna with exponential edge;
  • Figure 5 Schematic diagram of the device operation for comparing the pattern of dielectric materials using a Vivaldi antipodal antenna with exponential edge
  • Figure 6a Graphical representation of the Sn parameter of a sample read by the device for comparing the pattern of dielectric materials from an antipodal Vivaldi antenna with exponential edge;
  • Figure 6b Representation of numerical computer simulation of electromagnetic waves transmitted by the Palm Tree class Vivaldi antenna for comparing the pattern of dielectric materials from an antipodal Vivaldi antenna with exponential edge;
  • Figure 7 Representation of transmitted and reflected waves in the device for comparing the pattern of dielectric materials from an antipodal Vivaldi antenna with exponential edge
  • Figure 8 Representation of the device for comparing the pattern of dielectric materials using a Vivaldi antipodal antenna with exponential edge coupled directly in line of continuous flow processes.
  • THE DEVICE FOR COMPARING THE PATTERN OF DIELECTRIC MATERIALS FROM A VIVALDI ANTIPODAL ANTENNA WITH EXPONENTIAL EDGE object of this patent application, consists of a Palm Tree class Vivaldi antenna (4) connected to port 1 (8) of a vector network analyzer (5) by a coaxial cable (9) and that in front of the Vivaldi antenna (4) of the Palm Tree class, a test tube (10) containing dielectric material (liquid under analysis) is inserted, which is identified by its dielectric characteristics through the analysis of the reflection coefficient of an ultra-wideband (UWB) signal that ranges from 1500 to 2500 MHz with a power of 1dBm.
  • UWB ultra-wideband
  • the claimed invention deals with a device (1) composed of a completely flat lower surface (2), to guarantee greater stability and support during its operation, and an upper part (3), both removable, to allow access to internal components, with emphasis on a Palm Tree class Vivaldi antenna (4), made of FR-4 and measuring 150 x 150 x 1.6 mm 3 in volume, connected to a VNA (5) basically composed of a generator radio frequency signal (6) operating in the range of 1500 - 2500 MHz and connected to the input of a coupler (7), which can be passive in the form of a planar micro line coupler or active in the form of a mixer, which is connected through port 1 (8) of the aforementioned VNA (5), which feeds, via the coaxial cable (9), the Palm Tree class Vivaldi antenna (4), which is directed to the non-metallic test tube (10) inserted in the cavity ( 11 ) of the device (1), the medium under test, which contains the liquid under analysis and at the output of the coupler (7) the RF receiver (12) of
  • the liquid under analysis is a dielectric material and can be applied to solid, colloidal and gaseous state materials.
  • Dielectric material liquid is any type of liquid that has organic molecules or any other mineral material dissolved in it, such as oils, fuels, drinks in general, common water, etc.
  • the liquid is identified by its electromagnetic interaction characteristics through analysis of the reflection coefficient of a radiant near-field ultra-wideband (UWB) signal ranging from 1500 to 2500 MHz with a power of 1dBm.
  • UWB radiant near-field ultra-wideband
  • the device (1) is controlled by the external computer program, which compares the previously stored pattern of the authentic liquid with the pattern collected by the device (1) of the liquid under analysis and determines the percentage of similarity between both standards and returning three possible states as a response to this comparison: State 1: PASSED - When the percentage goes from “A%” to 100% equivalence; State 2: ALERT - When the percentage goes from “B%” to “A%” of equivalence; and finally State 3: FAILED - When the percentage of comparison between the previously stored standard of the authentic liquid and that of the liquid under analysis is below “B%”. In this case the A% and B% values can be defined by the external computer program.
  • the transmitted signal will be equivalent to the sum of the incident and reflected signals, but as the reflected signal is traveling in -z, the transmitted signal will be the difference between the incident and reflected signals.
  • the Polarization Vector (P) can be determined as the dipole moment per unit volume:
  • This Polarization Vector ( ) being associated with the electric dipoles, is related to the charges of the liquid under analysis in the region
  • the device obtains the necessary information to identify the liquid under analysis.
  • the formula of the liquid under analysis is changed, in such a way that the electrical susceptibility of the liquid is changed, the results of the analysis process will be sufficient to demonstrate the probability that the liquid under analysis has been altered.
  • the scattering matrix allows the analysis to be carried out through a two-port network, studying the voltage and current levels at its inputs and outputs, making it possible to calculate the normalized signals (“acken” and “b household”) that represent the complex amplitude of normalized electromagnetic signals.
  • the normalized signals (“acken” and “b household”) that represent the complex amplitude of normalized electromagnetic signals.
  • a n and b n the incident and reflected powers in each channel are calculated, squaring each term and extracting its modulus.
  • the S parameters which for a network represented by two ports, are known as:
  • the device (1) employs an electromagnetic absorbing material (15) to coat its entire interior to minimize external electromagnetic interference and that the waves radiated within the device (1) when interacting with this material are absorbed, therefore creating an environment internal controlled and interference-free, which improves reading robustness, avoiding erroneous readings due to external interference.
  • the absorber material (15) preferably of the AEP type with flat laminar geometry of thickness 1.9 cm with operating conditions of 21 S C with the possibility of variation to plus or minus 3 S C and relative air humidity of 55% and may also vary to +/- 15% and has an absorption capacity greater than -20 dB at frequencies greater than 3 GHz up to 40 GHz.
  • the device (1) is capable of carrying out reference and comparison readings in the production line (16), in which the processes are continuous, whether the product is solid, fluid or colloid that is passing through the duct (17) , as long as it is covered with sheets of electromagnetic absorbing material (15) to minimize external electromagnetic noise and radiation from the Vivaldi Palm Tree antenna (4) to the external environment, despite the device's power being very low.
  • the sheets of electromagnetic absorbing material (15) can wrap around product packaging, be they of any nature, for the purpose of fulfilling the same objective mentioned previously, which is to shield the device (1) from external electromagnetic noise to carry out reference reading and standard comparison, expanding the application of the device (1) for readings directly on product packaging, whatever its form.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL. Consiste em uma antena (4) Vivaldi da classe Palm Tree conectada à porta 1 (8) de um analisador vetorial de redes (5) por um cabo coaxial (9) e que na frente da antena (4) Vivaldi da classe Palm Tree é inserido um tubo de ensaio (10) contendo material dielétrico (líquido em análise), que é identificado por suas características dielétricas através da análise do coeficiente de reflexão de um sinal de banda ultra larga (UWB) que vai de 1500 a 2500 MHz com uma potência de 1 dBm.

Description

DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL
Introdução
[0001] Refere-se o presente pedido de patente de invenção a um inédito DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL, o qual utiliza uma antena de banda ultra larga (UWB), 1500- 2500 MHz, Vivaldi Palm Tree em micro-ondas de campo próximo radiante para identificar as características dielétricas através da reflexão do sinal aplicado em um líquido em material dielétrico fluido, sólido ou coloidal.
Campo de aplicação
[0002] O campo de aplicação, da invenção, é no controle de qualidade em indústrias do setor de petróleo e gás, farmacêutico, cosmético, de tintas e alimentício, pela identificação por meio das características dielétricas de materiais dielétricos.
Convencimento
[0003] É de conhecimento dos técnicos no assunto que para o entendimento do fator diferencial entre o uso da antena Vivaldi Palm Tree e as demais antenas, como, por exemplo, Horn e as Vivaldi padrões, é necessário clarificar o conceito de campos irradiados, cuja potência é atenuada diretamente proporcional ao incremento exponencial da distância do ponto de análise e o centro de fase da antena, ou seja, quanto mais longe, maior será a perda de potência do sinal, em uma ordem exponencial. Por sua vez, para o conceito de campo eletromagnético de uma antena diretiva, como é o caso da Vivaldi Palm Tree, existem três regiões de naturezas diferentes, que devem ser consideradas: campo próximo reativo, campo próximo radiante, e regiões de campo distante [1 - 4],
[0004] A região espacial, logo a frente da antena, região de campo próximo, é dividida em duas regiões específicas. A primeira, é a região de campo próximo reativo, que vai do centro de fase da antena até a distância de À / (2TT). Nesta região, os campos elétricos ainda estão sob a influência das cargas elétricas e sua energia diminui exponencialmente com a distância do centro de fase da antena, desta forma, essa região não sofre influências significativas do meio dielétrico a ponto de ser utilizada como um sensor. Além desta região, até a distância (2D2) / À, onde D é a maior dimensão da antena, que no caso das antenas Vivaldi da Classe Palm Tree, chega a ser três vezes menor que das antenas Vivaldi convencionais, existe a região de campo próximo reativo, onde os campos elétricos já são de natureza radiante e a influência das cargas elétricas, provenientes das correntes superficiais na antena, é parcial, sendo assim, a distribuição angular da energia irradiada ainda depende da distância da antena, porém, torna-se uma região ideal para o sensoriamento não invasivo pelas interações do sinal com o meio dielétrico em teste [5]. A partir desta região, tem-se a região do campo distante, onde a distribuição angular da energia irradiada é predominantemente independente da distância até a antena, ou seja, não é mais influenciada por ela [6].
[0005] Neste contexto, novas tecnologias que possibilitam utilizar a antena Vivaldi Palm Tree para operar como sensor são bem-vindas no segmento em questão.
Estado da técnica
[0006] O atual estado da técnica antecipa alguns documentos de patentes que versam sobre dispositivos para medições não invasivas, como o CN105298489 A intitulado “CONTINUOUS MEASUREMENT METHOD OF DIELECTRIC CONSTANT FREQUENCY DISPERSION CHARACTERISTIC AT WIDE SPECTRUM OF WELLCLOSE STRATUM” - apresenta uma técnica para identificação da constante dielétrica em espectro UWB de estratos. A técnica visa a identificação de saturação de água e óleo em estratos. Através de diferenças nos resultados é possível estimar a quantidade de água e óleo presentes. A técnica foca na identificação de água e óleo, onde um pesquisador faz a análise e identifica as frequências associadas a água e óleo.
[0007] A técnica foca na identificação de água e óleo enquanto o equipamento ora proposto identifica as diferenças entre um padrão de referência, adquirido de forma automatizada, com o padrão adquirido, permitindo identificar adulteração ou confirmação de que se o produto confere com a referência produzida. [0008] O documento US5448501 A intitulado “ELECTRONIC LIFE DETECTION SYSTEM” - descreve uma técnica para identificação de pessoas ou animais em um ambiente. As frequências adequadas, segundo a patente, estão na faixa de 1 ,3GHz a 1 ,6GHz. Aplicando-se a transformada rápida de Fourier (FFT), obtém-se um espectro eletromagnético de retorno e compara-se com um padrão armazenado, sendo possível, identificar se existe a presença de um humano ou animal no ambiente.
[0009] A solução do documento acima é atrelada a um VNA e a uma antena que coleta coeficientes de reflexão em campo distante, oriundos de interações com os animais e pessoas dispostos em uma região distante da antena.
[0010] O documento US8524445 B2 intitulado “DETECT AND IDENTIFY VIRUS BY THE MICROWAVE ABSORPTION SPECTROSCOPY’ - descreve um processo de identificação de vírus, através da análise das curvas Sn e S21 para caracterização das frequências de ressonância de determinados grupos de vírus. A caracterização das frequências de ressonância de certos grupos de vírus é feita de forma manual. Conhecendo-se estas frequências, é possível determinar rapidamente, quais tipos de vírus estão presentes na amostra.
[0011] As diferenças entre esta patente e 0 dispositivo proposto está na forma como 0 sinal é coletado e processado. Uma frequência de ressonância, é uma frequência onde 0 material analisado absorve a onda eletromagnética, de forma que 0 parâmetro S21 apresente uma queda abrupta, indicando a absorção do sinal eletromagnético.
[0012] O documento W02006031155 A2 intitulado “METHOD OF EXPLOSIVES DETECTION AND IDENTIFICATION’ - descreve uma técnica para detectar explosivos, que utiliza sinais em frequências de 300MHz a 150GHz. O sinal refletido é analisado verificando-se sua amplitude e mudança de fase. Materiais possuem absorções diferentes. Sabendo-se as frequências de absorção de certos explosivos, é possível indicar sua presença. Esta técnica depende de interferência humana para reconhecimento das frequências, que não são descritas no documento, sendo necessário que um pesquisador identifique as frequências dos explosivos que serão analisados. A principal diferença entre esta patente e a proposta neste documento é 0 processo automatizado de leitura, que não depende da presença de um pesquisador para reconhecimento de determinadas frequências.
[0013] Não há como formar e armazenar um padrão em programa externo para posterior utilização em processos de comparação.
[0014] O documento CN103630555 A intitulado “METHOD FOR DETECTING LIQUID HAZARDOUS SUBSTANCES BY ADOPTING MICROWAVE MULTI- FREQUENCY-POINT VECTOR DETECTION" - descreve um processo para identificação de substâncias perigosas, através da coleta do coeficiente de reflexão em frequências distribuídas nas bandas S, C e X.
[0015] O equipamento do documento acima opera adquirindo o coeficiente de reflexão e mudança de fase, utilizado apenas em líquidos perigosos, permitindo o reconhecimento de forma genérica. Devido a sensibilidade da antena Vivaldi Palm do pedido ora reivindicado, otimizada para coletar dados em campo próximo radiante, a sensibilidade do parâmetro Sn adquirido (coeficiente de reflexão x frequência), após coletado e processado, produz um padrão, que é único do lote do material produzido, se um material semelhante, porém de outro lote, for analisado, devido a sensibilidade da antena, gerará outro parâmetro Sn ligeiramente diferente. Isso é o suficiente para identificar que os dois materiais não foram produzidos juntos, tratando-os como produtos diferentes (apesar de semelhantes). Apenas materiais do mesmo lote, vão gerar curvas do parâmetro Sn semelhantes. Qualquer alteração produzida será identificada, o que é diferente do encontrado na patente CN103630555A, que identifica o material de forma genérica.
[0016] O documento US8882670 B2 intitulado “APPARATUS AND METHOD FOR MEASURING CONSTITUENT CONCENTRATIONS WITHIN A BIOLOGICAL TISSUE STRUCTURE” - apresenta um equipamento que é constituído de um VNA e duas antenas do tipo Horn acopladas, o tecido biológico é inserido entre as duas antenas. O sinal é adquirido e as frequências de ressonâncias são determinadas. Por meio de um processamento do sinal, é possível estimar a concentração dos constituintes do tecido analisado. [0017] O documento US6480141 B1 intitulado “DETECTION OF CONTRABAND USING MICROWAVE RADIATION” - descreve um processo de identificação de contrabando em pneus de veículos. O equipamento utiliza um VNA e duas antenas do tipo Horn, que são colocadas uma de cada lado a uma certa distância dos pneus na ordem de centímetros. O sinal é transmitido e é analisado em um gráfico e por registro do pesquisador, identifica-se quais valores presentes no gráfico determinam um pneu com ar ou um pneu com corpos estranhos eu seu interior.
[0018] Na solução acima é obrigatória a intervenção humana e é aplicável somente ao pneu de um veículo.
[0019] Em complemento aos documentos de anterioridades US6480141 B1 , US8882670B2, US8524445B2, utilizam duas antenas para aquisição das leituras de reflexão e transmissão. O dispositivo, por utilizar duas antenas, apresenta um processo de fabricação mais complexo, maior peso e tamanho. Além disso, dispositivos com duas antenas, necessitam de um processo de calibração mais complexo e operação dificultosa, pois quanto maior o número de antenas, maior é a possibilidade de recepção de interferências.
[0020] Os documentos de anterioridades W02006031155A2, CN103630555A, CN105298489A e US5448501A operam com apenas uma antena em cada uma delas adquirindo sinais de reflexão e fase, utilizando antenas não otimizadas para campo próximo radiante, o que reduz consideravelmente sua sensibilidade. Determinados objetos ou materiais são reconhecidos através de frequências específicas, definidos pelo pesquisador e de forma genérica.
Objetivos da invenção
[0021] É objetivo da presente invenção propor um dispositivo para comparação de padrão de materiais dielétricos obtidos do processamento dos sinais refletidos a partir da interação das ondas eletromagnéticas utilizando a antena Vivaldi antipodal Palm Tree com borda exponencial, no intervalo de frequência de 1500 a 2500 MHz para a determinação das características dielétricas.
[0022] É objetivo da presente invenção propor um dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal com borda exponencial capaz de realizar a identificação e o registro das características dielétricas de materiais não metálicos, tais como: um gás, líquido, sólido ou coloidal dielétrico, por exemplo: bebidas, derivados de petróleo, funções oxigenadas (ex.: álcoois), óleos comestíveis (ex.: azeites), óleos não comestíveis (ex.: óleo de mamona, lubrificantes), pós de diversos tipos (como talco, farinha), materiais coloidais como graxas, ceras, emulsões, pastas etc..
[0023] É objetivo da presente invenção propor um dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal com borda exponencial de alta sensibilidade, do tipo Vivaldi Palm Tree, em que o padrão dielétrico coletado, e armazenado, é único e só é reproduzido em leituras do material pertencente ao mesmo lote de produção, que foram produzidos utilizando-se os mesmos materiais. Sendo um dispositivo capaz de identificar se o material ou produto produzidos sofreram variações, que os tornaram divergentes da versão que saiu da linha de produção.
[0024] É objetivo da presente invenção propor um dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal, do tipo Vivaldi Palm Tree, com borda exponencial que trabalha com uma faixa de frequência maior e não depende de um pesquisador para identificar quais frequências são responsáveis pela identificação, sendo que um padrão é coletado pelo dispositivo, que pode ser armazenado e em outro momento, utilizado para comparação e identificação de divergências no líquido.
[0025] É objetivo da presente invenção propor um dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal, do tipo Vivaldi Palm Tree, com borda exponencial que opera fazendo uma varredura automatizada, coletando vários coeficientes de reflexão nas frequências indicadas, que são parte do parâmetro Sn. Ao se processar este conjunto de frequências, é obtido o padrão que pode ser armazenado por programa externo e utilizado em processos de comparação.
[0026] É objetivo da presente invenção propor um dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal, do tipo Vivaldi Palm Tree, com borda exponencial cujo padrão pode ser armazenado por programa externo e utilizado em processos de comparação, identificando se é o mesmo líquido ou se é divergente do padrão coletado.
[0027] É objetivo da presente invenção propor um dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal, do tipo Vivaldi Palm Tree, com borda exponencial que opera com uma única antena é que posicionada a alguns milímetros do líquido em análise, coletando seu coeficiente de reflexão em um conjunto sequencial de frequências, que após processado, forma um padrão que pode ser armazenado e utilizado para determinar divergência com uma leitura posterior do líquido em análise.
[0028] É objetivo da presente invenção propor um dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal, do tipo Vivaldi Palm Tree, com borda exponencial portátil, dispensando alimentação direta na rede elétrica (alimentação por bateria), assim como podendo ser produzido em processo industrial de menor complexidade, pois tem menores dimensão, peso e número de componentes. [0029] É objetivo da presente invenção propor um dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal, do tipo Vivaldi Palm Tree, com borda exponencial de ótima relação custo x benefício.
Sumário da invenção
[0030] O DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL utiliza apenas uma antena do tipo Vivaldi Palm Tree otimizada para trabalhar com sinais eletromagnéticos de campo próximo radiante, que vai de 1500 à 2500 MHz com uma potência de 1dBm, oferecendo maior sensibilidade, coletando seus coeficientes de reflexão que potencializa um número maior possibilidades na detecção de padrões, de forma autônoma, que podem ser utilizados para identificar material sólido, coloidal ou fluídico, como um padrão único que permite verificar a diferença entre lotes do mesmo material e não apenas o reconhecimento de forma genérica. O dispositivo com nível de potência mais baixo (1 dBm) evita eventuais mudanças nas características do material em análise, sendo uma análise não destrutiva, possibilitando reutilização do material pós-análise, e mesmo acoplado diretamente linha em processos de fluxo contínuo
Descrição das figuras
[0031] Na sequência são apresentadas as figuras para melhor explicar o pedido de patente de forma ilustrativa e não limitativa:
Figura 1 : Vista em perspectiva do dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal com borda exponencial, com o tubo de ensaio explodido;
Figura 2: Vista em perspectiva invertida dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal com borda exponencial;
Figura 3: Vista lateral em corte dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal com borda exponencial;
Figura 4: Vista superior em corte do dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal com borda exponencial;
Figura 5: Diagrama esquemático do funcionamento dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal com borda exponencial;
Figura 6a: Representação gráfica do parâmetro Sn de uma amostra lida pelo dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal com borda exponencial;
Figura 6b: Representação de simulação numérica computacional das ondas eletromagnéticas transmitidas pela antena Vivaldi classe Palm Tree para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal com borda exponencial;
Figura 7: Representação das ondas transmitidas e refletidas no dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal com borda exponencial; Figura 8: Representação do dispositivo para comparação de padrão de materiais dielétricos a partir de antena Vivaldi antipodal com borda exponencial acoplado diretamente em linha de processos de fluxo contínuo.
Descrição detalhada da invenção
[0032] O DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL, objeto desta solicitação de patente de invenção consiste em uma antena (4) Vivaldi da classe Palm Tree conectada à porta 1 (8) de um analisador vetorial de redes (5) por um cabo coaxial (9) e que na frente da antena (4) Vivaldi da classe Palm Tree é inserido um tubo de ensaio (10) contendo material dielétrico (líquido em análise), que é identificado por suas características dielétricas através da análise do coeficiente de reflexão de um sinal de banda ultra larga (UWB) que vai de 1500 à 2500 MHz com uma potência de 1dBm.
[0033] Mais particularmente, a invenção reivindicada trata de um dispositivo (1 ) composto por uma superfície inferior (2) totalmente plana, para garantir maior estabilidade e apoio durante sua operação, e uma parte superior (3), ambas removíveis, para permitir acesso aos componentes internos, com destaque para uma antena (4) Vivaldi da classe Palm Tree, feita de FR-4 e medindo 150 x 150 x 1 ,6 mm3 de volume, conectada a um VNA (5) composto basicamente por um gerador de sinal de rádio frequência (6) operando na faixa de 1500 - 2500 MHz e conectado a entrada de um acoplador (7), que pode ser passivo na forma de acoplador de micro linha planar ou ativo na forma de um mixer, que está ligado através da porta 1 (8) do VNA (5) supracitado que alimenta por meio do cabo coaxial (9) a antena (4) Vivaldi da classe Palm Tree que está direcionada para o tubo de ensaio (10) não metálico inserido na cavidade (11 ) do dispositivo (1 ), meio em teste, que contêm o líquido em análise e na saída do acoplador (7) está ligado o receptor de RF (12) do VNA (5) que processa o sinal retornando o coeficiente de reflexão, que é obtido através da porta USB (13) pelo programa de computador (14) externo. O conjunto de frequências com seus respectivos coeficientes de reflexão medidos, quando processados, formam um padrão, que pode ser armazenado e utilizado como referência para futura leitura e comparação.
[0034] O líquido em análise é um material dielétrico, podendo ser aplicado em materiais do estado sólido, coloidal e gasoso. Entende-se por líquido de material dielétrico, qualquer tipo de líquido que possua moléculas orgânicas ou qualquer outro material mineral dissolvido nele, como óleos, combustíveis, bebidas em geral, água comum etc. O líquido é identificado por suas características de interação eletromagnéticas através da análise do coeficiente de reflexão de um sinal de banda ultra larga (UWB) de campo próximo radiante que vai de 1500 a 2500 MHz com uma potência de 1dBm.
[0035] O dispositivo (1 ) é controlado pelo programa de computador externo, que compara o padrão previamente armazenado, do líquido autêntico, com o padrão coletado pelo dispositivo (1 ), do líquido em análise e determina o percentual de semelhança entre ambos os padrões e retornando como resposta desta comparação, três possíveis estados: Estado 1 : PASSOU - Quando o percentual vai de “A%” até 100% de equivalência; Estado 2: ALERTA - Quando o percentual vai de “B%” até “A%” de equivalência; e por fim o Estado 3: FALHOU - Quando o percentual de comparação entre o padrão previamente armazenado do líquido autêntico e o do líquido em análise, fica abaixo de “B%”. Neste caso os valores A% e B% podem ser definidos pelo programa de computador externo.
[0036] Operacionalmente, o dispositivo (1 ) gera uma onda eletromagnética (sinal), através da antena (4) Vivaldi Palm Tree, que produz um feixe diretivo que incide na fronteira entre o ar livre (meio de propagação
Figure imgf000012_0001
e o tubo de ensaio (10) do líquido em análise (meio de propagação 2(£2, Í2)), onde z = 0, de forma perpendicular à interface entre estes dois meios e sendo z o eixo de propagação do sinal.
[0037] Considerando que entre a permissividade elétrica (e) e a permeabilidade magnética ( ), a primeira, propriedade do líquido em análise, afetará em maior ordem de grandeza a onda eletromagnética (sinal), desta forma, ao se considerar apenas o domínio elétrico da intensidade de campo, do sinal e definir a região 1( ) como o meio de propagação no qual z < 0 e a região 2(e2), como o meio de propagação no qual z > 0, sendo que a antena (4) Vivaldi Palm Tree se encontra na região 1( ) e o sinal viaja na direção +z, com polarização linear ao longo de , tem-se fasorialmente que:
Figure imgf000013_0001
[0038] Em que
Figure imgf000013_0002
é real e cujo sinal viaja progressivamente (+) na direção da interface (superfície) em z = 0, denominado sinal incidente e é normal a esta superfície. Uma parcela deste sinal incidente pode ser transmitida (sinal transmitido) através da interface no limite z = 0, para a região 2(e2), gerando um sinal, que também viaja na direção +z na região 2(e2):
Figure imgf000013_0003
[0039] Outro sinal surge, da interação entre o sinal incidente e a interface (z = 0), viajando em I G x ), na direção -z, conhecido como sinal refletido:
Figure imgf000013_0004
[0040] Desta forma, a intensidade de campo elétrico total, considerada contínua em z = 0 será:
Figure imgf000013_0005
[0041] Ou seja, o sinal transmitido será equivalente a soma dos sinais incidente e refletido, mas como o sinal refletido está viajando em -z, o sinal transmitido será a diferença dos sinais incidente e o refletido.
Ao se relacionar a amplitude do campo elétrico do sinal refletido, com a do campo elétrico do sinal incidente, temos o conceito de coeficiente de reflexão (T): _ .ys 1
[0042] Esta relação está diretamente ligada à polarização elétrica do líquido em análise na região 2(e2), em que as moléculas deste líquido, sofrerão, cada uma, um momento de dipolo:
Figure imgf000013_0006
[0043] Equivalente ao produto da carga elétrica (Ç) e a distância (<í) entre o centro de massa das regiões polarizadas da molécula em questão. Como são ‘n’ moléculas por unidade de volume (dipolos elétricos ou Av), pode-se determinar o Vetor Polarização (P) como sendo o momento de dipolo por unidade de volume:
Figure imgf000014_0001
[0044] Este Vetor Polarização ( ), estando associado aos dipolos elétricos, relaciona-se com as cargas do líquido em análise na região
Figure imgf000014_0002
Figure imgf000014_0003
[0045] Em que é uma constante relacionada às características dielétricas do líquido em análise, chamada de susceptibilidade elétrica, logo o sinal transmitido será:
Figure imgf000014_0004
[0046] E por meio destas relações constitutivas entre o sinal eletromagnético e o meio na região 2(62), o dispositivo obtém as informações necessárias para identificar o líquido em análise. Neste caso, ao ser alterada a fórmula do líquido em análise, de tal modo que a susceptibilidade elétrica do líquido seja alterada, os resultados do processo de análise serão suficientes para evidenciar a probabilidade de que o líquido em análise tenha sido alterado.
[0047] Há diversas outras interfaces, sendo elas, entre o conector do VNA (5) e o cabo coaxial (5), entre o cabo coaxial (5) e o conector da antena (4) Vivaldi Palm Tree, entre a antena (4) Vivaldi Palm Tree e o ar livre, entre o ar livre e a estrutura do dispositivo (1 ), uma série de interações eletromagnéticas irão ocorrer (diversas outras reflexões), por isso, e por serem todas consideradas constantes, adota-se um procedimento de calibração para que sejam normalizadas, magnificando-se apenas a análise proveniente do sinal refletido da interface entre o ar e o líquido em análise.
[0048] Como o padrão coletado é feito através do coeficiente de reflexão, matematicamente é possível avaliar o comportamento do espalhamento da radiação eletromagnética do dispositivo, por meio de parâmetros S (Scattering parameters), como visto na Matriz de espelhamento abaixo (DE OLIVEIRA, 2019).
Figure imgf000015_0001
[0049] Com a matriz de espalhamento pode-se realizar a análise do dispositivo (1 ) e seu sinal de alta frequência. A matriz S permite realizar a análise por meio de uma rede de duas portas, estudando os níveis de tensões e correntes em suas entradas e saídas, sendo possível assim calcular os sinais normalizados (“a„” e “b„”) que representam a amplitude complexa dos sinais eletromagnéticos normalizados. Por meio destes parâmetros, an e bn, se calcula as potências incidentes e refletidas em cada canal, elevando cada termo ao quadrado e extraindo seu módulo. Além disso, por meio da razão dos sinais normalizados, é possível calcular os parâmetros S, em que para uma rede representada por duas portas, são conhecidos como:
• S1;i coeficiente de reflexão na porta de entrada (porta 1 ) com a porta de saída
(porta 2) terminada por uma carga casada;
• s12 coeficiente de reflexão na porta de saída com a porta de entrada terminada por uma carga casada;
• S2i ganho de transmissão direto (ou perda por inserção) com a porta de saída terminada por uma carga casada;
• s22 ganho de transmissão reverso (ou perda por inserção) com a porta de entrada terminada por uma carga casada. [0050] Estes parâmetros são descritos no formato
Figure imgf000016_0001
onde o “S" vem do termo Scaterring (espalhamento), onde “n” é associado ao índice do sinal normalizado do canal bn e “m” é associado ao índice do sinal normalizado do canal
Figure imgf000016_0002
Pela razão dos parâmetros de saída (h„) e de entrada («„), pode-se calcular os parâmetros de espalhamento. Observa-se que a matriz de espalhamento pode ter o número de linhas e colunas igual ao número de portas do dispositivo sobre teste (DUT). Não obstante, é possível converter os parâmetros S da sua forma padrão para a escala Decibel, que é amplamente usada para análise deste tipo de dispositivo. Para exemplificar, a conversão 5n é realizada pela fórmula abaixo:
Figure imgf000016_0003
[0051] Também é possível por meio dos parâmetros
Figure imgf000016_0004
e da impedância característica (Zo) usada como referência para as medições, calcular as impedâncias de entrada (z ) por meio da fórmula abaixo:
Z — ZQ S11 ~ z + zo
[0052] Portanto, como foi visto, por meio dos parâmetros S é possível extrair diversas informações e funcionamento de dispositivos sob teste. De fato, ao se obter um conjunto de leituras dos coeficientes de reflexão em função da frequência, com a sensibilidade disponível na antena da classe Vivaldi Palm Tree, ao se posicionar o material de análise dentro do limite do campo próximo radiante, que ocorre imediatamente após a saída da antena, conforme região vermelha da figura 6b, é possível coletar de forma muito mais detalhada o parâmetro Sn conforme ilustrado na figura 6a. A sensibilidade da antena Vivaldi Palm Tree é tão grande, que esta curva apresentada, só será reproduzida com outro material proveniente do mesmo lote de produção. Se for utilizado o mesmo material, mas de outro lote, pequenas alterações na curva serão detectadas, permitindo identificar o produto lote a lote. Com isso é possível coletar, processar e armazenar este padrão em programa externo e utilizá-lo para comparações dizendo se o material analisado pertence a determinado lote do material produzido e ainda identificar através de comparação do padrão gerado (a curva), se o produto sofreu qualquer tipo de alteração, seja por alterações lícitas ou ilícitas.
[0053] O dispositivo (1 ) emprega um material absorvedor (15) eletromagnético para revestir todo o seu interior para minimizar interferências eletromagnéticas externas e que as ondas radiadas dentro do dispositivo (1 ) ao interagir com esse material são absorvidas, portanto criando um ambiente interno controlado e livre de interferências o que melhora a robustez na leitura evitando leituras erradas devido às interferências externas. O material absorvedor (15) preferencialmente do tipo AEP com geometria laminar plana de espessura 1 ,9 cm com condições de operação de 21 SC com possibilidade de variação para mais ou menos 3SC e umidade relativa do ar 55% podendo também variar para +/- 15% e possui capacidade de absorção maior que -20 dB em frequências maiores que 3 GHz até 40 GHz.
[0054] O dispositivo (1 ) é capaz de realizar leitura de referência e de comparação na linha de produção (16) produção, em que os processos são contínuos, seja esse produto sólido, fluído ou coloide que esteja passando no duto (17), desde que revestido com lâminas em material absorvedor (15) eletromagnético para minimizar ruídos eletromagnéticos externos e a radiação da antena (4) Vivaldi Palm Tree para o meio externo, apesar que a potência do dispositivo é muito baixa.
[0055] As lâminas em material absorvedor (15) eletromagnético podem envolver as embalagens dos produtos, sejam elas de qualquer natureza, para fins de cumprir o mesmo objetivo citado anteriormente, que é de blindar o dispositivo (1 ) dos ruídos eletromagnéticos externos para realizar a leitura de referência e comparação de padrão, expandido a aplicação do dispositivo (1 ) para leituras diretamente na embalagem dos produtos, seja qual for sua forma. Referências:
[1]- R. K. Amineh, A. Trehan, and N. K. Nikolova, “TEM horn antenna for ultra-wide band microwave breast imaging,” Progress In Electromag. Res., vol. 13, pp. 59-74, Jan 2009.
[2]- R. K. Amineh, et al., “Near-field microwave imaging based on aperture raster scanning with TEM horn antennas,” IEEE Trans, on Anten. and Propag., vol. 59, no. 3, pp. 928-940, Mar. 2011.
[3]- R. C. Johnson, H. A. Ecker, and J. S. Hollis, "Determination of far-field antenna patterns from near-field measurements,” Proceedings of the IEEE, vol. 61 , no. 12, pp. 1668-1694, Dec. 1973.
[4]- D. Comite et al. "The role of the antenna radiation pattern in the performance of a microwave tomographic approach for GPR imaging." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing vol .10. no. 10, 4337-4347, 2017.
[5]- A. M. De Oliveira et al. “A Fern Antipodal Vivaldi Antenna for Near-Field Microwave Imaging Medical Applications.” IEEE Transactions on Antennas and Propagation, vol. 69, no. 12, p. 8816-8829, 2021.
[6]- DE OLIVEIRA, Alexandre Maniçoba e JUSTO, João Francisco. Eletromagnetismo Aplicado: Antena Vivaldi para Imagens Médicas por Micro-ondas. São Paulo: CDA, 2019. ISBN 978-85-471 -0320-0.

Claims

REIVINDICAÇÕES
1) DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL, a superfície inferior (2) totalmente plana, para garantir maior estabilidade e apoio durante sua operação e a parte superior (3), ambas removíveis para permitir acesso aos componentes internos, caracterizado por uma antena (4) Vivaldi da classe Palm Tree conectada a um VNA (5) composto por um gerador de sinal de rádio frequência (6) operando na faixa de 1500 - 2500 MHz com uma potência de 1 dBm e conectado a entrada de um acoplador (7), que pode ser passivo na forma de acoplador de micro linha planar ou ativo na forma de um mixer, que está ligado através da porta 1 (8) do VNA (5) que alimenta por meio do cabo coaxial (9) a antena (4) Vivaldi da classe Palm Tree que está direcionada para o tubo de ensaio (10) não metálico inserido na cavidade (11 ) do dispositivo (1 ), meio em teste, que contêm o líquido em análise e na saída do acoplador (7) está ligado o receptor de RF (12) do VNA (5) que processa o sinal retornando o coeficiente de reflexão, no campo próximo radiante, que é obtido através da porta USB (13) pelo programa de computador (14); o dispositivo (1 ) emprega um material absorvedor (15) eletromagnético para revestir todo o seu interior.
2) DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL CIAL, de acordo com a reivindicação 1 , caracterizado pelo conjunto de frequências com seus respectivos coeficientes de reflexão medidos, quando processados formam um padrão, que pode ser armazenado e utilizado como referência para futura leitura e comparação.
3) DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL, de acordo com a reivindicação 1 , caracterizado pelo líquido em análise ser um material dielétrico que possua moléculas orgânicas ou qualquer outro material mineral dissolvido nele, como óleos, combustíveis, bebidas em geral, água comum entre outros.
4) DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL, de acordo com a reivindicação 1 , caracterizado por um programa de computador externo comparar o padrão previamente armazenado, do líquido autêntico, com o padrão coletado pelo dispositivo (1 ), do líquido em análise e determinar o percentual de semelhança entre ambos os padrões.
5) DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL, de acordo com a reivindicação 1 , caracterizado pelas relações constitutivas entre o sinal eletromagnético e o meio na região onde o eixo de propagação do sinal é maior do que zero, capacitar o dispositivo para obter as informações necessárias para identificar o líquido em análise.
6) DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL, de acordo com a reivindicação 5, caracterizado por ao ser modificada a fórmula do líquido em análise, de tal modo que a susceptibilidade elétrica do líquido seja mudada, os resultados do processo de análise serão suficientes para evidenciar a probabilidade de que o líquido em análise tenha sido alterado.
7) DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL, de acordo com a reivindicação 1 , caracterizado por avaliar o comportamento do espalhamento da radiação eletromagnética do dispositivo, por meio de parâmetros S na Matriz de espelhamento.
8) DISPOSITIVO PARA COMPARAÇÃO DE PADRÃO DE MATERIAIS DIELÉTRICOS A PARTIR DE ANTENA VIVALDI ANTIPODAL COM BORDA EXPONENCIAL, de acordo com a reivindicação 1 , caracterizado por realizar leitura de referência e de comparação na linha de produção (16) produção, em que os processos são contínuos, seja esse produto sólido, fluído ou coloide que esteja passando no duto (17), desde que revestido com lâminas em material absorvedor (15).
PCT/BR2022/050330 2022-08-23 2022-08-23 Dispositivo para comparação de padrão de materiais dielétricos a partir de antena vivaldi antipodal com borda exponencial WO2024040313A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/BR2022/050330 WO2024040313A1 (pt) 2022-08-23 2022-08-23 Dispositivo para comparação de padrão de materiais dielétricos a partir de antena vivaldi antipodal com borda exponencial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2022/050330 WO2024040313A1 (pt) 2022-08-23 2022-08-23 Dispositivo para comparação de padrão de materiais dielétricos a partir de antena vivaldi antipodal com borda exponencial

Publications (1)

Publication Number Publication Date
WO2024040313A1 true WO2024040313A1 (pt) 2024-02-29

Family

ID=90011952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2022/050330 WO2024040313A1 (pt) 2022-08-23 2022-08-23 Dispositivo para comparação de padrão de materiais dielétricos a partir de antena vivaldi antipodal com borda exponencial

Country Status (1)

Country Link
WO (1) WO2024040313A1 (pt)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477474B2 (en) * 1999-01-21 2002-11-05 Rosemount Inc. Measurement of process product dielectric constant using a low power radar level transmitter
WO2006031155A2 (en) * 2004-09-09 2006-03-23 Zakrytoe Aktsionernoe Obschestvo 'intellektualnye Skaniruyuschie Sistemy' Identification of explosives by frequency domain microwave spectroscopy in reflection mode
CN109470720A (zh) * 2018-09-29 2019-03-15 深圳市华讯方舟太赫兹科技有限公司 液体识别方法、向量提取方法、液体识别装置及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477474B2 (en) * 1999-01-21 2002-11-05 Rosemount Inc. Measurement of process product dielectric constant using a low power radar level transmitter
WO2006031155A2 (en) * 2004-09-09 2006-03-23 Zakrytoe Aktsionernoe Obschestvo 'intellektualnye Skaniruyuschie Sistemy' Identification of explosives by frequency domain microwave spectroscopy in reflection mode
CN109470720A (zh) * 2018-09-29 2019-03-15 深圳市华讯方舟太赫兹科技有限公司 液体识别方法、向量提取方法、液体识别装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NURHAYATI N., DE OLIVEIRA ALEXANDRE M., JUSTO JOÃO F., SETIJADI EKO, SUKOCO BAGUS E., ENDRYANSYAH E.: "Palm tree coplanar Vivaldi antenna for near field radar application", MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, JOHN WILEY & SONS, INC., US, vol. 62, no. 2, 1 February 2020 (2020-02-01), US , pages 964 - 974, XP093139718, ISSN: 0895-2477, DOI: 10.1002/mop.32127 *

Similar Documents

Publication Publication Date Title
US10197508B2 (en) Imaging using reconfigurable antennas
Fear et al. Experimental feasibility study of confocal microwave imaging for breast tumor detection
Amineh et al. Microwave holography using point-spread functions measured with calibration objects
Mirza et al. An active microwave sensor for near field imaging
Asefi et al. Surface-current measurements as data for electromagnetic imaging within metallic enclosures
Yousefnia et al. A time-reversal imaging system for breast screening: Theory and initial phantom results
Guo et al. Calibrated frequency-division distorted born iterative tomography for real-life head imaging
Saeidi et al. Ultra-wideband elliptical patch antenna for microwave imaging of wood
US20110169507A1 (en) Methods and apparatus for the determination of moisture content
Akıncı et al. Experimental assessment of linear sampling and factorization methods for microwave imaging of concealed targets
WO2024040313A1 (pt) Dispositivo para comparação de padrão de materiais dielétricos a partir de antena vivaldi antipodal com borda exponencial
Wang et al. Investigation of antenna array configurations using far-field holographic microwave imaging technique
Fear et al. Microwave system for breast tumor detection: Experimental concept evaluation
Thompson et al. Quantitative imaging of dielectric objects based on holographic reconstruction
Hilmi et al. Parametric Evaluation of Edible Oils using Microwave Non-Destructive Testing (MNDT) in XBand Frequency
Sagnard et al. In-situ characterization of soil moisture content using a monopole probe
Govind et al. Microwave imaging using 8-element microstrip patch antenna array
Gundewar et al. Design of a microstrip patch antenna as a moisture sensor
Conceição et al. Initial study for the investigation of breast tumour response with classification algorithms using a microwave radar prototype
Alidoustaghdam et al. Flow monitoring by microwave imaging inside a cuboid cavity: Theory and numerical feasibility analysis
Adnan et al. Simulation and experimental measurements for near field imaging
Sabouni et al. Experimental results for microwave tomography imaging based on fdtd and ga
Dong et al. A broadband dielectric measurement technique: Theory, experimental verification, and application
Shivamurthy On the Design and Analysis of Micro-metric Resolution Arrays in Integrated Technology for Near-Field Dielectric Spectroscopy
Hasar et al. Dielectric Constant Measurement Using Time-Domain Shifted Metal-Backing Measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955905

Country of ref document: EP

Kind code of ref document: A1