WO2024038918A1 - Single-stranded antibody-binding aptamer - Google Patents

Single-stranded antibody-binding aptamer Download PDF

Info

Publication number
WO2024038918A1
WO2024038918A1 PCT/JP2023/030053 JP2023030053W WO2024038918A1 WO 2024038918 A1 WO2024038918 A1 WO 2024038918A1 JP 2023030053 W JP2023030053 W JP 2023030053W WO 2024038918 A1 WO2024038918 A1 WO 2024038918A1
Authority
WO
WIPO (PCT)
Prior art keywords
scfv
aptamer
seq
ggggs
peptide linker
Prior art date
Application number
PCT/JP2023/030053
Other languages
French (fr)
Japanese (ja)
Inventor
竜太郎 浅野
一典 池袋
Original Assignee
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学 filed Critical 国立大学法人東京農工大学
Publication of WO2024038918A1 publication Critical patent/WO2024038918A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to an aptamer that specifically binds to a single chain antibody.
  • scFv also called single-chain Fv or single-chain antibody
  • scFvs are stabilized with peptide linkers, can be prepared using microorganisms, and are advantageously used as pharmaceuticals and sensing elements.
  • blinatumomab a bispecific antibody whose constituent unit is scFv, has already been approved in Japan.
  • scFv is a small molecule, it has a short half-life in the body, and pharmacokinetic analysis is difficult because there is no method to specifically detect the administered scFv. Additionally, there are concerns about antigenicity with the histidine tags often used for purification in scFvs. Therefore, only a few pharmaceutical products using scFv have been approved in Japan.
  • scFv can be used as a molecular target drug by being modified with a medical drug such as an anticancer drug, or as a detection element by being modified (labeled) with a labeling substance such as a fluorescent substance.
  • Modification of proteins such as scFv usually requires the use of amino coupling via lysine residues or thioether bonding via cysteine residues. In the former case, many lysine residues are commonly present on the protein surface, so there is concern that protein function may be reduced due to modification, and the amino group at the N-terminus is also modified, resulting in Application to scFvs with an antigen-binding site is less suitable.
  • Non-patent Document 1 discloses an aptamer that binds to the Fc region of an IgG antibody, such an aptamer cannot be used to detect scFv that does not have an Fc region.
  • An object of the present invention is to provide an aptamer that specifically binds to a single chain antibody scFv.
  • scFv single-chain Fv
  • GGGGS peptide linker
  • the present invention includes the following.
  • scFv single chain Fv
  • GGGGS peptide linker
  • the oligonucleotide is at least selected from the group consisting of biotin, a thiol group, polyethylene glycol, a fluorescent substance, a redox probe, a radioisotope, an enzyme, a carrier, an electron carrier, a cytotoxic substance, and a medical drug.
  • [6] The aptamer according to any one of [1] to [5] above, wherein the oligonucleotide is DNA or RNA.
  • GGGGS peptide linker
  • [10] Contacting the aptamer according to any one of [1] to [6] above with a sample containing scFv to generate an scFv-aptamer complex, and separating the scFv-aptamer complex from the sample.
  • a method for purifying scFv having a peptide linker (GGGGS) 3 comprising: [11] A peptide linker ( A method for detecting scFv having GGGGS) 3 (SEQ ID NO: 3). [12] Introducing nucleotide mutations into the aptamer described in [2] above, measuring the binding ability of the resulting mutant to scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), and 1.
  • a method for screening an aptamer comprising an oligonucleotide that specifically binds to an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), the method comprising selecting as an aptamer a mutant that specifically binds to the scFv. [13] Contacting the aptamer according to any one of [1] to [6] above with an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) to generate an scFv-aptamer complex, How to qualify scFv.
  • scFv-aptamer complex comprising an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) bound to the aptamer according to any one of [1] to [6] above.
  • scFv single chain Fv having peptide linker
  • FIG. 1 schematically shows vector maps of pRA-528 scFv (A) and pRA-528 Fv (B).
  • Figure 2 shows the protein coding sequence in pRA-528 scFv (SEQ ID NO: 1) and the amino acid sequence encoded thereby (SEQ ID NO: 2). Each region from pelB to the His tag shown in the vector map of FIG. 1A is shown relative to the sequence in FIG. 2.
  • Figure 3 is a photograph showing the results of Ni-NTA (nickel-nitrilotriacetic acid) affinity chromatography (column chromatography) of a 528 scFv sample at different stages of purification.
  • Ni-NTA nickel-nitrilotriacetic acid
  • the samples applied to each lane are ordered from left to right: molecular weight marker, 1: before filtration, 2: before column chromatography, 3: column chromatography flow-through solution, 4: washing solution, 5: 50 mM imidazole. /PBS, 6: 150mM imidazole/PBS, 7: 300mM imidazole/PBS-1, 8: 300mM imidazole/PBS-2, and 9: 500mM imidazole/PBS.
  • the samples applied to each lane were, in order from left to right, molecular weight marker, 1: before filtration, 2: before column chromatography, 3: column chromatography flow-through solution, 4: washing solution, 5: 50 mM imidazole. /PBS, 6: 150mM imidazole/PBS, 7: 300mM imidazole/PBS-1, 8: 300mM imidazole/PBS-2, and 9: 500mM imidazole/PBS.
  • Figure 6 shows a chromatogram obtained by gel filtration chromatography of purified 528 Fv.
  • FIG. 7 is a graph showing the results of an evaluation test of the binding ability of aptamer candidate sequences to scFv by ELONA.
  • FIG. 8 shows the results of an evaluation test of the binding ability of aptamer candidate sequences P2-63 and P1-12 to scFv by dot blot analysis.
  • A shows binding to 20 pmol of antibody protein scFv, Fv, and bevacizumab;
  • B shows binding to 20 pmol, 10 pmol, and 5 pmol of antibody protein scFv and Fv.
  • FIG. 9 is a sensorgram showing the results of an evaluation test of the binding ability of aptamer candidate sequences P2-63 and P1-12 to scFv by BLI.
  • A shows changes in the binding and dissociation states of P2-63 and P1-12 to scFv and Fv.
  • Figure 10 shows the results of evaluating the binding ability of aptamers to 528 scFv, 528 Fv, and anti-Hb scFv-SpyTag. From left to right, 528 scFv, anti-Hb scFv-SpyTag, 528 Fv, and frozen-thawed 528 Fv spots are shown.
  • FIG. 11 shows the results of measuring the antigen-binding activity of scFv bound to an aptamer by ELISA using an HRP-modified anti-c-Myc antibody.
  • Figure 12 shows concentration-dependent binding of aptamer (P1-12) to 528 scFv bound to sEGFR on the plate.
  • FIG. 13 shows the results of CD spectrum measurement of the aptamer.
  • A shows the results of P1-12
  • B shows the results of P2-63.
  • Figure 14 schematically shows vector maps of scFv expression vectors pRA-anti-Hb scFv-SpyTag (A), pRA-anti-Hb scFv-SnT (B), and pRA-HB125 scFv (C).
  • Figure 15 shows the protein coding sequence (SEQ ID NO: 29) and the amino acid sequence encoded thereby (SEQ ID NO: 30) in pRA-anti-Hb scFv-SpyTag. Each region from pelB to the His tag shown in the vector map of FIG. 14A is shown relative to the sequence in FIG. 15.
  • Figure 16 shows the protein coding sequence (SEQ ID NO: 31) and the amino acid sequence encoded thereby (SEQ ID NO: 32) in pRA-anti-Hb scFv-SnT. Each region from pelB to the His tag shown in the vector map of FIG. 14B is shown relative to the sequence in FIG. 16.
  • Figure 17 shows the protein coding sequence (SEQ ID NO: 33) and the amino acid sequence encoded thereby (SEQ ID NO: 34) in pRA-HB125 scFv. Each region from pelB to the His tag shown in the vector map of FIG. 14C is shown relative to the sequence in FIG. 17.
  • FIG. 18 shows the results of measuring the antigen binding activity of anti-Hb scFv-SnT antibody in the aptamer-anti-Hb scFv-SnT antibody conjugate by ELISA.
  • the vertical axis shows chemiluminescence intensity, and the horizontal axis shows aptamer concentration.
  • Figure 19 shows the results of SWV measurements on the binding of different concentrations of svFv to aptamers on electrodes with immobilized aptamers P1-12 or P2-63.
  • FIG. 20 shows changes in peak current values measured by SWV with respect to scFv concentration.
  • FIG. 21 shows the results of SWV measurements using 10-fold dilutions for binding of different concentrations of svFv to aptamers on electrodes with immobilized aptamers P1-12 or P2-63.
  • FIG. 22 shows changes in peak current values measured by SWV using a 10-fold diluted solution with respect to scFv concentration.
  • the present invention relates to aptamers and their uses for single chain Fv (scFv), in particular for scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  • an "aptamer” refers to a single-stranded nucleic acid that specifically binds to a target substance, or a ligand containing the single-stranded nucleic acid.
  • the nucleic acids that make up aptamers can be produced relatively inexpensively through chemical synthesis, can be stored and transported at room temperature in a dry state, and can be easily chemically modified, which are advantages that antibodies, which are proteins, do not have. .
  • the invention relates to an aptamer comprising an oligonucleotide that specifically binds to a single chain Fv (scFv) with a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  • Natural antibodies usually have a Y-shaped structure in which two heavy chains and two light chains are linked by disulfide bonds as a basic unit, and 1 to 5 of these structures are assembled to form a single molecule (immunoglobulin molecule). ) and is characterized by having a unique antigen-binding activity.
  • the heavy chain (H chain) and light chain (L chain) of antibodies each have a variable region (heavy chain variable domain, light chain variable domain) at their N-terminus, and the heavy chain variable domain and light chain variable domain Together they form the antigen binding site.
  • Each heavy and light chain variable domain contains three complementarity determining regions (CDRs) (CDR1-CDR3) and four framework regions (FR1-FR4), with six sets of CDRs each It determines the specificity of an antibody to its antigen.
  • CDRs are also called hypervariable regions and have large sequence diversity, but framework region sequences are highly conserved.
  • Framework regions FR1 to FR4 are located alternately with CDR1 to CDR3 in order from the N-terminal side of each heavy chain and light chain variable domain, and FR4 is present at the C-terminus of each.
  • a constant region (CH1 to CH3, CL) with high sequence conservation exists adjacent to the C-terminus of the heavy chain and light chain variable domains.
  • a single chain Fv is a single chain polypeptide made by linking the heavy chain variable domain and light chain variable domain with a peptide linker, and is also called a single chain antibody (single chain antibody fragment). ing.
  • Peptide linker (GGGGS) 3 (SEQ ID NO: 3), also called GS linker, is widely used as a peptide linker for scFv.
  • An scFv with (GGGGS) 3 as a peptide linker typically has a heavy chain variable domain and a light chain variable domain with a peptide linker at their termini (usually the C-terminus of the heavy chain variable domain and the N-terminus of the light chain variable domain).
  • (GGGGS) 3 Peptide linker (GGGGS) 3 is a peptide consisting of the amino acid sequence shown by SEQ ID NO: 3.
  • a polypeptide sequence in which a heavy chain variable domain and a light chain variable domain are linked via a peptide linker (GGGGS) 3 at their ends means that the heavy chain variable domain and the light chain variable domain are linked at their ends. Not only are the polypeptide sequences linked directly to the amino acid sequence (GGGGS) 3 at their termini, but also the heavy and light chain variable domains are linked at their termini via the amino acid sequence (GGGGS) 3 .
  • scFv having a peptide linker (GGGGS) 3 refers to an scFv having a peptide linker consisting of the amino acid sequence (GGGGS) 3 , as well as a peptide linker having an additional amino acid sequence in addition to the amino acid sequence (GGGGS) 3 .
  • scFvs with any peptide linker comprising the amino acid sequence (GGGGS) 3 , such as scFvs.
  • peptide linkers include, but are not limited to, at least 15 amino acids, preferably 15-50 amino acids, such as 15-40 amino acids, 15-35 amino acids, 15-30 amino acids, 15-20 amino acids, or It may consist of 15 amino acids.
  • the present invention relates to an aptamer using an oligonucleotide capable of specifically recognizing and binding to an scFv having (GGGGS) 3 as a peptide linker.
  • the scFv to which the aptamer of the present invention binds may be derived from a mammalian antibody or a recombinant antibody having a framework region thereof.
  • the scFv to which the aptamer of the present invention binds is preferably, but not limited to, one derived from a human antibody or a humanized antibody.
  • the scFv to which the aptamer of the invention binds can be derived from IgG, IgA, IgE, IgD, or IgM, but is typically derived from IgG.
  • the scFv to which the aptamer of the present invention binds is an scFv having a peptide linker (GGGGS) 3. Specifically, the heavy chain variable domain and light chain variable domain of an antibody are linked via a peptide linker (GGGGS) 3 .
  • the scFv to which the aptamer of the present invention binds is a mammalian antibody (e.g., a primate antibody such as a human antibody, a rodent antibody such as a mouse antibody) or a recombinant antibody having a framework region thereof (e.g., a humanized antibody).
  • a mammalian antibody e.g., a primate antibody such as a human antibody, a rodent antibody such as a mouse antibody
  • a recombinant antibody having a framework region thereof e.g., a humanized antibody
  • the derived heavy chain variable domain and light chain variable domain may comprise polypeptide sequences linked via a peptide linker (GGGGS) 3 .
  • the scFv to which the aptamer of the invention binds contains or is conjugated to other polypeptides such as tag sequences (including, but not limited to, Spy tag, C-myc tag, His tag, and/or Snoop tag). It's okay.
  • tag sequences including, but not limited to, Spy tag, C-myc tag, His tag, and/or Snoop tag. It's okay.
  • Examples of scFv having a peptide linker (GGGGS) 3 to which the aptamer of the present invention binds include polypeptides (scFv) comprising the amino acid sequence shown in SEQ ID NO: 2, 30, 32, or 34, and SEQ ID NO: 2, 30.
  • scFv amino acid sequence at positions 1 to 22
  • tag sequences Spy tag, C-myc Examples include, but are not limited to, polypeptides (scFv) that include an amino acid sequence excluding the amino acid sequence (scFv), His tag, and/or Snoop tag.
  • aptamer of the present invention “specifically binds" to a target (an scFv having a peptide linker (GGGGS) 3 , particularly a peptide linker (GGGGS) 3 region in an scFv having a peptide linker (GGGGS) 3 ). It means having the ability to bind selectively and with sufficiently high affinity to maintain stable binding.
  • the aptamers of the invention are able to bind selectively (with higher affinity) to scFv with a peptide linker (GGGGS) 3 compared to Fv.
  • the aptamer of the present invention comprises an oligonucleotide that specifically binds to a single-stranded Fv (scFv) having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), preferably as a single-stranded nucleic acid component (typically the only one). (as a nucleic acid component).
  • oligonucleotide refers to a nucleotide polymer (polynucleotide) of 80 bases or less in length.
  • the oligonucleotide constituting the aptamer of the present invention has a length of 80 bases or less, preferably 50 bases or less, preferably 20 bases or more, more preferably 30 to 40 bases, still more preferably 30 to 37 bases, e.g.
  • the oligonucleotide can be 30-35 bases long, 30-33 bases long, or 33-35 bases long.
  • the oligonucleotide that specifically binds to the above-mentioned single-stranded Fv (scFv) constituting the aptamer of the present invention has a base sequence represented by SEQ ID NO: 14 or 24 (in particular, the entire base sequence). It may contain a base sequence having a sequence identity of 60% or more, preferably 70% or more, more preferably 80% or more, even more preferably 90% or more, for example 95% or more.
  • the oligonucleotide constituting the aptamer of the present invention includes or consists of the base sequence shown in SEQ ID NO: 14 or 24.
  • oligonucleotides may be included at the 5' end (half of the 5' end) and/or at the 3' end (half of the 3' end), for example, at or near the 5' end (1 or 2 of the 5' end). may be included in Such oligonucleotides further preferably contain 60% or more, preferably 70% or more, more preferably 80% or more, even more preferably It may contain a base sequence having sequence identity of 90% or more, for example 95% or more.
  • the above oligonucleotide constituting the aptamer of the present invention may be DNA, RNA, or a hybrid thereof.
  • sequence of SEQ ID NO: 14 or 24 is described as a DNA sequence, but if the oligonucleotide constituting the aptamer of the present invention is RNA or a hybrid of DNA and RNA, the RNA or RNA Regarding the part, "t" (thymine) in the base sequence shown by SEQ ID NO: 14 or 24 in the sequence listing shall be read as "u" (uracil).
  • the oligonucleotide constituting the aptamer of the present invention contains a base sequence in which "t" (thymine) in the base sequence shown by SEQ ID NO: 14 or 24 in the sequence listing is replaced with "u” (uracil).
  • t thymine
  • u uracil
  • the oligonucleotide may be chemically modified. However, the chemical modification does not eliminate the ability of the oligonucleotide to specifically bind to the scFv with the peptide linker (GGGGS) 3 .
  • the oligonucleotide may be labeled, typically with a labeling substance that allows detection, and such a label is also included in chemical modification.
  • the oligonucleotide may be bound to other substances (eg, non-nucleic acid substances), and such cases are also included in chemical modification.
  • the oligonucleotides constituting the aptamer of the present invention include, for example, low-molecular label molecules such as biotin, desthiobiotin, avidin, streptavidin, and neutravidin, phosphate groups, phosphorothioate groups, thiol groups, amino groups, aminoallyl groups, etc.
  • biocompatible polymers such as polyethylene glycol (PEG) and its derivatives, fluorescein (FAM) and its derivatives, various Alexa Fluor (R) dyes, rhodamine derivatives such as carboxytetramethylrhodamine (TAMRA), Cy3 and Cy5 fluorescent substances including fluorescent dyes such as cyanine dyes, quenchers used in combination with fluorescent substances, redox probes such as methylene blue and chlorogenic acid, radioactive isotopes such as yttrium -90 , indium -111 , and iodine -131 , and hoses.
  • PEG polyethylene glycol
  • FAM fluorescein
  • R Alexa Fluor
  • Cy3 and Cy5 fluorescent substances including fluorescent dyes such as cyanine dyes, quenchers used in combination with fluorescent substances, redox probes such as methylene blue and chlorogenic
  • Enzymes including labeled enzymes such as radish peroxidase (HRP), carriers such as magnetic beads, gold particles, latex particles, nanofibers, electron carriers such as phenazine methosulfate (PMS), or drugs (e.g. anticancer with one or more arbitrary substances or chemical structural moieties (atoms or atomic groups such as functional groups, etc.) It may be chemically modified by being bonded or introduced.
  • Substances that enable detection such as the above-mentioned low-molecular labeling molecules, fluorescent substances, quenchers, labeled enzymes, and radioactive isotopes, can be used as labeling substances to label oligonucleotides.
  • the oligonucleotide constituting the aptamer of the present invention may contain at least one of a modified nucleotide and an artificial base, and in that case, it is chemically modified by containing it.
  • a "modified nucleotide” is a nucleotide in which the sugar moiety, phosphate moiety, and/or base moiety of a natural nucleotide is chemically modified.
  • a modified nucleotide may be a nucleotide containing a modified nucleoside.
  • modified nucleotides include halogenated bases such as 2'-fluorinated pyrimidine, methylated bases such as 2'-O-methylated bases, modified nucleosides such as deoxyuridine, inosine, and 2-amino-deoxyadenosine. These include, but are not limited to, nucleotides containing nucleotides. When the oligonucleotide constituting the aptamer of the present invention contains a modified nucleotide, the modified nucleotide may be present in place of a corresponding natural (ie, unmodified) nucleotide.
  • the oligonucleotide in the aptamer of the present invention includes the base sequence shown by SEQ ID NO: 14 or 24 and also includes a modified nucleotide
  • the modified nucleotide corresponds to the base sequence shown by SEQ ID NO: 14 or 24.
  • the oligonucleotide comprising the base sequence shown by SEQ ID NO: 14 or 24.
  • the oligonucleotide comprising the base sequence shown by SEQ ID NO: 14 or 24.
  • the term "artificial base” refers to a nucleobase that is neither a natural base nor a chemically modified natural base, such as 7-(2-thienyl), which can be used in combination as an artificial base pair.
  • the oligonucleotide constituting the aptamer of the present invention contains an artificial base
  • the artificial base may be present at any position in the oligonucleotide.
  • the oligonucleotide constituting the aptamer of the present invention contains the base sequence shown by SEQ ID NO: 14 or 24 and also contains an artificial base
  • the artificial base may be any one of the base sequences shown by SEQ ID NO: 14 or 24.
  • the oligonucleotide may be inserted at the position shown in SEQ ID NO: 14 or 24.
  • biomolecules such as "chemically modified” or “modified” oligonucleotides, nucleotides, nucleosides, etc. are not limited to those obtained by modifying biomolecules after production, but are in a modified state. It also includes biomolecules produced in
  • the oligonucleotide constituting the aptamer of the present invention is preferably guanine-rich and capable of forming a guanine quadruplex (G4) structure, and is capable of forming a parallel guanine quadruplex (G4) structure. is even more preferable.
  • oligonucleotides that have formed a parallel G4 structure generally exhibit a positive peak near 260 to 270 nm (e.g., 265 nm), which is characteristic of a parallel G4 structure, and a positive peak at 235 to 245 nm (e.g., 240 nm). A negative peak is shown nearby.
  • the aptamer of the invention is capable of binding to an scFv with a peptide linker (GGGGS) 3 while forming a guanine quadruplex (G4) structure, in particular a parallel guanine quadruplex (G4) structure. .
  • oligonucleotides constituting the aptamer of the present invention can be synthesized by those skilled in the art using conventional methods, for example, using an automatic nucleic acid synthesizer.
  • the aptamer of the present invention can specifically bind to an scFv having a peptide linker (GGGGS) 3 through the oligonucleotide constituting it, and preferably specifically binds to a structure containing a peptide linker (GGGGS) 3 of an scFv. Can be combined.
  • the aptamer of the present invention can also bind to scFvs having different antigen binding properties, and preferably has a more general binding ability to scFvs.
  • the aptamer of the present invention can specifically bind to various scFvs having a peptide linker (GGGGS) 3 without inhibiting their antigen binding activity.
  • the aptamer of the present invention can modify an scFv having a peptide linker (GGGGS) by specifically binding to the scFv.
  • the aptamer of the present invention can bind to an scFv having a peptide linker (GGGGS) 3 to generate (form) an scFv-aptamer complex (scFv-aptamer conjugate).
  • the present invention also provides a kit for the detection, modification or purification of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), which includes the aptamer of the present invention.
  • the scFv detection, modification, or purification kit of the present invention may contain, in addition to the aptamer of the present invention, instructions for use (for scFv detection, modification, or purification) indicating the scFv detection, modification, or purification method.
  • the kit for scFv detection, modification or purification of the present invention may also contain other reagents such as buffers for use during scFv detection, modification or purification.
  • the present invention also provides a device for detection or purification of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), which comprises the aptamer of the present invention and a support to which the aptamer is bound (e.g., immobilized).
  • the support may be, but is not limited to, a substrate, an electrode, a column carrier, etc. used as a carrier for a nucleic acid array such as a microarray.
  • the scFv detection or purification device of the present invention can be, for example, a nucleic acid array, an electrochemical sensor, a chromatography column, etc.
  • the present invention also provides a method for detecting or purifying scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) using the aptamer of the present invention.
  • the invention also provides the use of the aptamer of the invention in the detection or purification of scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  • the scFv detection method of the present invention can be carried out using, for example, the scFv detection kit or device of the present invention.
  • the scFv purification method of the present invention can be carried out using, for example, the scFv purification kit or device of the present invention.
  • the scFv detection method of the present invention can also be used for pharmacokinetic analysis of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) as an antibody drug.
  • the aptamer of the present invention can also be used for pharmacokinetic analysis of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  • the scFv detection method of the present invention comprises contacting (e.g., mixing) an aptamer of the present invention containing a labeled oligonucleotide with a sample (e.g., sample solution) containing the scFv-
  • the method includes generating an aptamer complex and detecting a label signal derived from the scFv-aptamer complex.
  • an aptamer of the invention comprising a labeled oligonucleotide is incubated in solution with a sample comprising an scFv, thereby incubating the aptamer with a peptide linker (GGGGS) 3 (sequence number 3) to generate an scFv-aptamer complex, and a label signal derived from the scFv-aptamer complex, more specifically, a label derived from the labeling of the aptamer in the scFv-aptamer complex.
  • GGGGS peptide linker
  • the label signal to be detected can be easily recognized by those skilled in the art based on the label of the aptamer used and the measurement system.
  • the labeling signal when using an aptamer labeled with a fluorescent substance, the labeling signal is typically the fluorescence from the fluorescent substance, and when using an aptamer labeled with a radioisotope, the labeling signal is typically the fluorescence from the fluorescent substance. is the radioactivity from its radioactive isotope.
  • the labeling signal when using a biotin-labeled aptamer, is typically chemiluminescence in a chemiluminescent measurement system using HRP-labeled avidin or an avidin derivative (streptavidin, etc.) and a chemiluminescent substrate.
  • the labeling signal when using a biotin-labeled aptamer is obtained by combining HRP-labeled avidin or an avidin derivative (streptavidin, etc.) with a chromogenic substrate such as 3,3',5,5'-tetramethylbenzidine (TMB).
  • TMB 3,3',5,5'-tetramethylbenzidine
  • the scFv detection method of the present invention comprises, for example, a nucleic acid array or a chromatography column comprising a support to which an aptamer of the present invention containing a labeled oligonucleotide is bound (e.g., immobilized). It can be carried out using In one embodiment, the scFv detection method of the invention uses an aptamer of the invention that is bound (e.g., immobilized) to a carrier, such as a magnetic bead, and comprises a labeled oligonucleotide; The method may include separating the generated scFv-aptamer complex from free components in solution using the method.
  • a carrier such as a magnetic bead
  • the scFv detection method of the present invention may also include a further step of detecting the scFv-aptamer complex or scFv.
  • the scFv detection method of the present invention can also be used for the quantification of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  • the scFv detection method of the present invention includes an electrode immobilized with an aptamer of the present invention containing an oligonucleotide modified by binding to an electron mediator, and a sample containing the scFv (for example, a sample solution). contacting (e.g., mixing) to form an scFv-aptamer complex on the electrode and detecting a change in current, etc. at the electrode due to the formation of the scFv-aptamer complex; Changes in current, etc. at the electrode indicate the presence of the scFv with the peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  • GGGGS peptide linker
  • the scFv detection method of the present invention can also be used for the quantification of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  • the scFv detection method of the invention can be carried out using a device such as an electrochemical sensor comprising an electrode to which an aptamer of the invention is bound (e.g., immobilized). .
  • a method of purifying an scFv of the invention comprises contacting (e.g., mixing) an aptamer of the invention with a sample (e.g., a sample solution) containing an scFv to produce an scFv-aptamer complex; The method comprises isolating the scFv-aptamer complex from the sample.
  • an aptamer of the invention is coupled to an scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3) by incubating the aptamer of the invention in solution with a sample containing the scFv.
  • the scFv purification method of the present invention can be carried out using, for example, a nucleic acid array, a chromatography column, etc. provided with a support to which the aptamer of the present invention is bound (e.g., immobilized). can.
  • the scFv purification method of the present invention uses an aptamer of the present invention bound (e.g., immobilized) to a carrier such as, for example, magnetic beads, and utilizes the carrier to produce scFv.
  • the method may involve separating the aptamer complex from free components in solution.
  • the separated scFv-aptamer complex may be further subjected to a purification step.
  • the scFv may be separated from the scFv-aptamer complex by cleaving or decomposing the aptamer, and the scFv may be further extracted and purified.
  • the scFv purification method of the present invention may further include a step of detecting the scFv-aptamer complex or scFv.
  • enzyme-linked oligonucleotide assay ELONA
  • enzyme-linked immunosorbent assay Enzyme-linked immunosorbent assay; ELISA
  • biolayer interferometry BBI
  • immunoblot immunoprecipitation
  • immunocapture flow cytometry
  • protein array technology spectroscopy
  • mass spectrometry mass spectrometry
  • chromatography surface plasmon resonance (SPR)
  • fluorescence Any nucleic acid or protein detection technique can be used, such as fluorescence extinction and fluorescence energy transfer (FRET).
  • the present invention also provides a method for screening an aptamer comprising an oligonucleotide that specifically binds to an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) using the aptamer of the present invention. More specifically, the screening method of the present invention involves introducing a nucleotide mutation into the aptamer of the present invention (more specifically, the above-mentioned oligonucleotide constituting the aptamer of the present invention), and introducing a peptide linker of the resulting mutant.
  • GGGGS peptide linker
  • GGGGS 3 (SEQ ID NO: 3) is measured, and a variant that specifically binds to that scFv is specifically bound to the scFv that has a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  • the aptamer of the present invention for example, 60% or more of the base sequence (especially the entire base sequence) shown in SEQ ID NO: 14 or 24 of the aptamer of the present invention, preferably contains a nucleotide sequence having a sequence identity of 70% or more, more preferably 80% or more, still more preferably 90% or more, for example 95% or more, for example, the nucleotide sequence shown in SEQ ID NO: 14 or 24, or the nucleotide sequence thereof It is preferable to introduce nucleotide mutations into an oligonucleotide consisting of
  • nucleotide mutations into the aptamer of the present invention can be carried out by synthesizing nucleic acids using an automatic nucleic acid synthesizer based on the base sequence into which mutations have been introduced, or by mutagenesis techniques using nucleic acid amplification techniques such as PCR. You can also do that.
  • nucleotide mutations may be introduced into the aptamer of the present invention using in silico maturation (Savory et al., Biosens. Bioelectron., 26, (2010) 1386-1391).
  • Determination of the binding ability of aptamer variants to scFv may be performed, for example, by ELONA, dot blot analysis, or biolayer interferometry (BLI), as described in the Examples below, or by other methods. It may be performed by a biomolecular interaction measurement assay. Depending on the measurement method used, it is also preferable, for example, to label the oligonucleotide of the aptamer or to bind it to a purification carrier.
  • the screening method of the present invention efficiently selects and obtains aptamers with superior binding properties to scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) by performing sequence evolution based on the aptamer of the present invention. We can provide a method for doing so.
  • the aptamer obtained using the screening method of the invention can be used as a further aptamer of the invention.
  • the reaction of the aptamer of the present invention with the scFv in the present invention is performed under any potassium concentration.
  • it may be carried out at a potassium concentration of 0 to 100 mM or 10 to 100 mM.
  • scFv can also be modified using the aptamer of the present invention.
  • the invention comprises contacting (e.g., mixing) an aptamer of the invention with an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) to generate an scFv-aptamer complex. It also provides a method for modifying. According to this method, scFv can be modified by adding an aptamer.
  • aptamers of the invention comprising oligonucleotides that are not chemically modified may be used to modify scFvs.
  • an aptamer of the invention comprising a chemically modified oligonucleotide (chemically modified aptamer of the invention) is contacted with an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  • An scFv with that chemical modification can be made by (eg, mixing) to generate an scFv-aptamer complex.
  • the present invention involves contacting ( e.g. , mixed Also provided are methods of chemically modifying scFvs or producing scFvs having chemical modifications, including generating scFv-aptamer conjugates. Chemical modification is as described above.
  • the aptamer of the invention comprising a chemically modified oligonucleotide
  • the aptamer of the invention comprising a labeled oligonucleotide (labeled aptamer of the invention) is linked to a peptide linker (GGGGS). ) 3 (SEQ ID NO: 3) to generate an scFv-aptamer complex.
  • an aptamer of the invention comprising an oligonucleotide conjugated to a drug, such as a cytotoxic substance or a medical drug (an aptamer of the invention conjugated to a drug), is linked to a peptide linker (GGGGS) 3 (SEQ ID NO: A drug can be bound to an scFv by contacting it with an scFv having 3) to generate an scFv-aptamer complex.
  • a drug such as a cytotoxic substance or a medical drug
  • an aptamer of the invention comprising an oligonucleotide conjugated to a carrier or a biocompatible polymer or the like (an aptamer of the invention conjugated to a carrier or a biocompatible polymer or the like) is linked to a peptide linker (GGGGS) 3 ( By contacting the scFv having SEQ ID NO: 3) to generate an scFv-aptamer complex, a carrier, a biocompatible polymer, or the like can be bound to the scFv.
  • the invention also provides the use of an aptamer of the invention for modifying, eg chemically modifying, an scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  • any composition containing the aptamer of the present invention can be used.
  • the present invention also provides compositions for the detection, modification or purification of scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3), comprising the aptamer of the invention.
  • a composition comprising an aptamer of the invention may be a reagent composition.
  • Compositions containing aptamers of the invention may further contain additives such as carriers, excipients, or mediums such as buffers, and other additives such as pH adjusters, stabilizers, etc. It may further contain additives.
  • the present invention also provides scFv-aptamer complexes (scFv-aptamer conjugates) comprising an scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3) linked (i.e., conjugated) with an aptamer of the invention. do.
  • the invention comprises an scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3) conjugated to an aptamer of the invention comprising a chemically modified oligonucleotide (e.g. a labeled oligonucleotide).
  • scFv-aptamer conjugates having chemical modifications (eg, labeled).
  • the invention provides a peptide linker (GGGGS) conjugated to an aptamer of the invention comprising an oligonucleotide conjugated to a drug, such as a cytotoxic substance or a medical drug (aptamer of the invention conjugated to a drug).
  • a drug such as a cytotoxic substance or a medical drug
  • an scFv-aptamer conjugate with a drug comprising an scFv having the following: 3 SEQ ID NO: 3
  • the drug's efficacy can be imparted to scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  • the scFv-aptamer complex of the present invention having a drug bound to the aptamer of the present invention can be used as an active ingredient of a medicament (eg, a pharmaceutical composition) based on the drug's efficacy.
  • a medicament eg, a pharmaceutical composition
  • Such a medicament may contain, in addition to the scFv-aptamer conjugate of the invention, pharmaceutically acceptable additives.
  • pharmaceutically acceptable additives include pharmaceutical carriers, excipients, surfactants, binders, disintegrants, lubricants, solubilizing agents, suspending agents, coating agents, coloring agents, and flavoring agents. Examples include, but are not limited to, flavoring agents, preservatives, buffers, pH adjusters, diluents, stabilizers, propellants, antioxidants, thickeners, and the like.
  • Example 1 Preparation of single chain antibody 528 scFv
  • the anti-human epidermal growth factor receptor (EGFR) was derived from the humanized monoclonal antibody 528, which has a proven track record of use as a pharmaceutical and sensing element.
  • Single chain antibody 528 scFv was produced by recombinant methods and purified by Ni-NTA affinity chromatography.
  • the 528 scFv expression vector, pRA-528 scFv was provided by Mr. Hayato Kimura (Tokyo University of Agriculture and Technology, Japan).
  • the vector map of pRA-528 scFv is shown in FIG. 1A, and the protein coding sequence (SEQ ID NO: 1) in pRA-528 scFv and the amino acid sequence encoded thereby (SEQ ID NO: 2) are shown in FIG.
  • SEQ ID NO: 1A and 2 528 scFv includes a polypeptide sequence in which a heavy chain variable region (VH) and a light chain variable region (VL) are linked via a peptide linker (GGGGS) 3 .
  • Escherichia coli BL21 (DE3) strain was transformed with pRA-528 scFv and cultured on LB agar medium (Merck) at 37°C for 18 hours.
  • the obtained colonies were inoculated into an LB liquid medium containing ampicillin at a final concentration of 100 ⁇ g/mL, and precultured at 28° C. and 170 rpm for 18 hours.
  • the resulting culture solution was centrifuged at 4500 xg and 4°C for 15 minutes to remove bacterial cells.
  • the obtained culture supernatant was filtered through a nitrocellulose membrane.
  • the obtained filtrate was added to a Ni-Sepharose column (CV: 1 mL), and Ni-NTA affinity chromatography was performed using elution buffers of various concentrations.
  • the purity of the flow-through liquid and each elution fraction obtained by Ni-NTA affinity chromatography was confirmed by SDS-PAGE analysis.
  • Figure 3 shows the results of SDS-PAGE analysis after Ni-NTA affinity chromatography. In the 300 mM imidazole/PBS (pH 7.4) fraction, a dark band was observed near the theoretical molecular weight (30 ⁇ 10 3 ) of 528 scFv.
  • Fv fragment antibody 528 Fv corresponding to 528 scFv was recombinantly produced using a 528 Fv expression vector in a manner similar to that described above for 528 scFv, followed by Ni-NTA affinity chromatography followed by gel filtration chromatography.
  • the vector map of pRA-528 Fv, which is a 528 Fv expression vector, is shown in Figure 1B.
  • Figure 5 shows the SDS-PAGE analysis results of 528 Fv after Ni-NTA affinity chromatography.
  • the results of gel filtration chromatography of 528 Fv are shown in Figure 6.
  • 528 Fv has the same heavy and light chain variable domains as scFv, but unlike scFv, it does not have a peptide linker (GGGGS) 3 (SEQ ID NO: 3) connecting the variable domains. In the Examples described below, 528 Fv was used for competitive selection and comparison with 528 scFv.
  • aptamer candidate sequences that recognize 528 scFv were screened by the SELEX method from a random DNA library containing a 30 base long random region.
  • the SELEX method selects sequences that bind to a ligand from a nucleic acid library with random sequences, and then exponentially amplifies them using PCR to obtain a next-generation nucleic acid library that collects only sequences with high binding affinity to the ligand. This is a technique in which this operation is repeated (multiple rounds) to identify a nucleic acid sequence that specifically binds to a ligand.
  • each DNA library, as well as 5' block DNA and Rv primer having sequences complementary to the priming sequence were added with 100 mM NaCl. It was added to 100 mM potassium phosphate buffer (hereinafter referred to as PPB(Na+); sometimes referred to as SPPB) and mixed. The resulting mixture was heated at 95°C for 10 minutes on a heat block and then slowly cooled to 25°C over 30 minutes to fold the nucleic acid and generate folded DNA.
  • PPB(Na+) 100 mM potassium phosphate buffer
  • 528 scFv prepared in Example 1 1 ⁇ L of 528 scFv prepared in Example 1 was dropped onto a nitrocellulose membrane (Amersham TM Protran (R) Premium 0.45 NC Nitrocellulose Western Blotting Membrane, GE Healthcare) and fixed by adsorption. Furthermore, 528 Fv prepared in Example 1 was dropped as a competitive protein for competitive selection next to the position where 528 scFv was dropped on the nitrocellulose membrane.
  • the nitrocellulose membrane was coated with PPB(Na+)-T (PPB(Na+) containing 2% (w/v) bovine serum albumin (BSA) and 0.05% (v/v) Tween. 20; sometimes referred to as SPPB-T) for 1 hour, and blocking was performed (in addition, from the third round onwards, blocking was performed using human serum instead of BSA).
  • PPB(Na+)-T PPB(Na+)-T
  • the nitrocellulose membrane was shaken for 1 hour in a solution in which the folded DNA generated as described above was diluted with PPB(Na+) to 1 mL.
  • the scFv adsorption region of the nitrocellulose membrane was cut out, followed by phenol-chloroform extraction, followed by ethanol precipitation to recover single-stranded DNA.
  • the recovered single-stranded DNA was dissolved in buffer TE (Tris-EDTA) to prepare a recovered DNA library.
  • the amount of recovered DNA was calculated by performing quantitative PCR (real-time PCR) on the recovered DNA library.
  • Table 2 shows the composition of the PCR reaction solution used.
  • a reaction solution (Table 2) was prepared using serially diluted DNA (standard material) of known concentration as template DNA, and incubated at 98°C for 1 minute, then at 98°C for 10 seconds, at 50°C for 30 seconds, and at 72°C. Perform 40 cycles of 20 seconds at 4°C, and then perform nucleic acid amplification by PCR under the PCR reaction conditions of holding at 4°C. From the Cq (quantification cycle) value (sometimes called the Ct (threshold cycle) value), a standard curve is generated. It was created. Furthermore, prepare a reaction solution (Table 2) using the recovered DNA library of unknown concentration as template DNA, perform nucleic acid amplification by PCR under the same reaction conditions as above, and apply the obtained Cq value to the prepared standard curve. The amount of recovered DNA in the recovered DNA library was calculated.
  • the single-stranded DNA constituting the recovered DNA library was amplified by PCR.
  • Table 3 shows the composition of the PCR reaction solution used.
  • Primers Fw primer and Bio-Rv primer
  • the 3' primer complementary to the 3' priming sequence is biotinylated.
  • the biotinylated DNA library obtained by nucleic acid amplification was incubated with avidin beads, and the DNA (single strand) bound to the collected beads was eluted with 0.15M sodium hydroxide (NaOH). After making the solution neutral using 2M hydrogen chloride (HCl), DNA was precipitated by adding 100% isopropanol, an aqueous sodium acetate solution, and Perin Mate (Nippon Gene), a coprecipitant for alcohol precipitation, and centrifuging it. After washing with % ethanol and centrifugation, the supernatant was discarded and air-dried. A DNA library to be used in the next round (second round) was prepared by dissolving the obtained DNA in TE.
  • HCl 2M hydrogen chloride
  • PCR amplification was set to 25 cycles, and in the SELEX method using the library having library sequence 2, PCR amplification was set to 28 cycles, and the same SELEX method as above was performed. was carried out until the fourth round.
  • the amount of recovered DNA was measured at the end of each round, and the recovery rate was calculated as the ratio (%) of the amount of recovered DNA (number of moles) to the number of moles of the DNA library used.
  • the amount of reagents used in the first to fourth rounds, the amount of recovered DNA, and the recovery rate are summarized in Tables 4 and 5. The success of the SELEX method was demonstrated by the increase in recovery rate as the number of rounds increased.
  • single-stranded DNA in the DNA library was PCR amplified using the Fw primer and Rv primer shown in Table 1 to obtain double-stranded DNA.
  • the purified double-stranded DNA and vector were mixed at a molar ratio of 1:1 using pGEM (R) -T Easy Vector Systems (Promega), and the two were ligated by reacting overnight at 16°C. .
  • Add the obtained ligation product (derived from library sequence 1: 2.5 ⁇ L, derived from library sequence 2: 7.5 ⁇ L) to 50 ⁇ L of E. coli Jet Competent Cell (DH5 ⁇ ) (ByoDynamics Laboratory Inc.) and leave it on ice for 5 minutes. Transformation was performed by.
  • reaction buffer and enzyme mix of the kit were added and the mixture was reacted at 30°C for 12 hours, followed by rolling cycle amplification by reacting at 65°C for 10 minutes to prepare template DNA for sequencing.
  • sequencing was performed using this template DNA, it was possible to obtain 16 single-stranded DNA sequences from the library having library sequence 1 and 79 from the library having library sequence 2, for a total of 95 single-stranded DNA sequences. Sequence analysis was performed by aligning the random sequence portions sandwiched between the priming sequences of these single-stranded DNA sequences.
  • Example 3 Evaluation of binding ability of aptamer candidate sequence to scFv and Fv
  • the binding ability of the aptamer candidate sequence obtained in Example 2 to scFv and Fv was evaluated.
  • 528 scFv and 528 Fv were added to the plate by adding 100 ⁇ L of 100 nM 528 scFv and 100 nM 528 Fv (prepared in Example 1) to separate wells of a 96-well plate and incubating for 90 minutes at 37°C. Fixed by adsorption. After washing with PPB(Na+)-T, 2% (w/v) skim milk dissolved in PPB(Na+)-T was added to the plate and incubated at room temperature for 1 hour with shaking at 800 rpm. was blocked.
  • Example 2 20 pmol each of 528 scFv and 528 Fv prepared in Example 1 were placed on a nitrocellulose membrane (Amersham TM Protran (R) Premium 0.45 NC Nitrocellulose Western Blotting Membrane, GE Healthcare), and as a negative control, bevacizumab (anti-VEGF human 1 pmol of monoclonal antibody) was added dropwise and fixed by adsorption. The nitrocellulose membrane was then shaken for 1 hour in 2% (w/v) skim milk dissolved in PPB(Na+)-T for blocking.
  • a nitrocellulose membrane Amersham TM Protran (R) Premium 0.45 NC Nitrocellulose Western Blotting Membrane, GE Healthcare
  • bevacizumab anti-VEGF human 1 pmol of monoclonal antibody
  • the nitrocellulose membrane was shaken for 1 hour in an aptamer solution (final concentration 2 ⁇ M) diluted with PPB(Na+) to 1 mL. After washing with PPB(Na+)-T, the nitrocellulose membrane was shaken for 1 hour in neutravidin-HRP conjugate (Thermo Fisher Scientific) diluted to 0.2 ng/ ⁇ L. After washing with PPB(Na+)-T in the same manner as above, Immobilon Western chemiluminescent HRP substrate (Millipore) was added dropwise to the above adsorption/immobilization site and incubated for 5 minutes at room temperature and shielded from light. Chemiluminescence was measured with an image analyzer ImageQuant TM LAS 4000 mini (GE Healthcare).
  • streptavidin sensor chip A biosensor chip having streptavidin as a surface modification molecule (streptavidin sensor chip) was immersed in PPB(Na+)-T for 10 minutes. After making it hydrophilic, biotinylated aptamer candidate sequences (biotinylated P1-12 and biotinylated P2-63) were immobilized on a streptavidin sensor chip via biotin-avidin interaction.
  • biotinylated aptamer candidate sequences immobilized on a streptavidin sensor chip and biotinylated aptamer candidate sequences in solution were The binding and dissociation signals between 528 scFv and 528 Fv (prepared in Example 1) were measured. The results showed that for both P2-63 and P1-12, the level of binding to scFv was much higher compared to the level of binding to Fv ( Figure 9).
  • P2-63 and P1-12 are aptamers selected from different DNA libraries, but both are G-rich sequences consisting of consecutive G sequences, and under physiological conditions, guanine quadruplex (G-quadruplex; ) structure, which is thought to form a stable higher-order structure.
  • G-quadruplex guanine quadruplex
  • Example 4 Evaluation of the binding ability of aptamer to other scFv
  • anti-Hb scFv-SpyTag was further used as an scFv with binding ability to a different antigen to create aptamer P2.
  • the binding ability of -63 and P1-12 to scFv was evaluated.
  • the anti-Hb scFv-SpyTag used was an scFv derived from an anti-hemoglobin (Hb) mouse monoclonal antibody, and was produced as follows.
  • Escherichia coli BL21 (DE3) was transformed with the Spy tag (or SpyTag)-added anti-Hb scFv expression vector pRA-anti Hb scFv-ST (hereinafter also referred to as "pRA-anti-Hb scFv-SpyTag”), and ampicillin (final concentration 100 ⁇ g/mL) on an LB agar medium plate and incubated overnight at 28°C.
  • the obtained colonies were normalized and precultured in 3 mL of LB medium (ampicillin was added at a final concentration of 100 ⁇ g/mL).
  • the culture solution after preculture was inoculated into a total of 600 mL of LB medium, and cultured for 40 hours.
  • the culture supernatant was subjected to ammonium sulfate precipitation using 60% (w/v) ammonium sulfate.
  • the precipitate obtained by centrifugation was condensed, dialyzed, and purified using a histidine (His) tag by Ni-NTA affinity chromatography.
  • the eluted fraction in which a band was observed near the theoretical molecular weight on SDS-PAGE was concentrated and subjected to gel filtration chromatography.
  • the anti-Hb scFv-SpyTag thus obtained was used below.
  • the vector map of pRA-anti-Hb scFv-SpyTag is shown in Figure 14A, and the protein coding sequence (SEQ ID NO: 29) and the amino acid sequence encoded thereby (SEQ ID NO: 30) in pRA-anti-Hb scFv-SpyTag are shown in Figure 15. .
  • the anti-Hb scFv-SpyTag contains a polypeptide sequence in which a heavy chain variable region (VH) and a light chain variable region (VL) are linked via a peptide linker (GGGGS) 3 . .
  • 528 scFv and 528 Fv prepared in Example 1, frozen and thawed 528 Fv, and anti-Hb scFv-SpyTag were placed on a nitrocellulose membrane (Amersham TM Protran (R) Premium 0.45 NC Nitrocellulose Western Blotting Membrane, GE Healthcare). was added dropwise in 10 pmol portions and fixed by adsorption. The nitrocellulose membrane was then blocked in 2% (w/v) skim milk dissolved in PPB(Na+)-T by shaking for 1 hour. After washing with PPB(Na+)-T, it was shaken for 1 hour in an aptamer solution (P2-63 or P1-12) diluted with PPB(Na+) to a final concentration of 1 ⁇ M.
  • P2-63 or P1-12 aptamer solution
  • Aptamers P2-63 and P1-12 were able to bind to multiple types of scFv with different complementarity-determining regions (CDRs). It was thought to specifically recognize the conserved structure of the linker (GGGGS) 3 region.
  • Example 5 Evaluation of the influence of aptamer binding on 528 scFv activity Using soluble EGFR (sEGFR), it was determined whether the binding of aptamers P2-63 and P1-12 affects the binding activity of 528 scFv to sEGFR. This was investigated using enzyme-linked immunosorbent assay (ELISA).
  • sEGFR soluble EGFR
  • CHO cells with high sEGFR-His expression carrying a His-tagged sEGFR expression vector were incubated in a CO 2 incubator in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin (PC) + streptomycin (SM). (Serum medium) Using 15 mL, the cells were grown in a 75 cm 2 culture flask until reaching confluence. Proliferating cells (stable producing strain) were suspended in 10 mL of the above serum medium, and then added to a roller bottle containing 90 mL of the above serum medium. Culture was carried out at 37°C and 5% CO2 while rotating the roller bottle.
  • FBS fetal bovine serum
  • PC penicillin + streptomycin
  • the supernatant was removed by suction.
  • the cells were washed with 50 mL of phosphate buffer (PBS), and 250 mL of CHO cell serum-free medium CHO-S-SFM/PC/SM was added. After culturing for 4 days, the culture solution was collected and centrifuged at 300 ⁇ g for 5 minutes to obtain a culture supernatant. The culture supernatant was centrifuged at 10,000 ⁇ g for 20 minutes to remove floating cells. The supernatant after centrifugation was collected, and 1M Tris-HCl (pH 8.0) was added to the final concentration of 50mM.
  • PBS phosphate buffer
  • CHO-S-SFM/PC/SM CHO cell serum-free medium
  • the 3' end of the aptamer was modified with biotin via a complementary strand and diluted to different concentrations with PPB(Na+). Equal volumes of the 200 nM 528 scFv solution were mixed at 1.5 Aptamer-scFv antibody conjugates were prepared by mixing in a mL tube and reacting at room temperature for 1 hour with shaking at 600 rpm.
  • BM chemiluminescent ELISA substrate 100 ⁇ L was added to the plate, incubated for 10 minutes at room temperature and protected from light, and chemiluminescence was measured using a plate reader Varioskan (R) Flash (Thermo Fisher Scientific).
  • Figure 11 shows the measurement results based on 528 scFv detection via the c-myc tag using the HRP-modified anti-c-Myc antibody.
  • aptamer concentrations 0. nM, 1 nM, 10 nM, 100 nM, and 1000 nM
  • little change was observed in chemiluminescence levels, which indicate the amount of 528 scFv bound to sEGFR on the plate.
  • the chemiluminescence level was higher and significantly different compared to when sEGFR was not immobilized on the plate (negative control; aptamer concentration 100 nM).
  • 528 scFv was able to bind to sEGFR regardless of aptamer concentration. That is, the aptamer was able to bind to 528 scFv without inhibiting the binding of 528 scFv to sEGFR.
  • aptamers P2-63 and P1-12 can bind to scFv without inhibiting the antigen-binding activity of scFv. It was also shown that scFv bound to an antigen (here, sEGFR) can be detected based on the binding (complexation) of aptamers P2-63 and P1-12 to scFv.
  • Aptamers P1-12 and P2-63 were diluted to 2 ⁇ M with buffer, heated to 95°C for 10 minutes, and then gradually cooled to 25°C over 30 minutes to fold the nucleic acids.
  • CD spectra were measured at wavelengths of 220 nm to 300 nm using a circular dichroism spectrophotometer. The results are shown in FIG.
  • Example 7 Evaluation of the influence of aptamer binding to other scFvs on scFv antigen binding activity Using anti-Hb scFv-SnT as an additional scFv, the binding ability of aptamers P2-63 and P1-12 to scFv was evaluated. .
  • the anti-Hb scFv-SnT used was an scFv derived from the same anti-hemoglobin (Hb) mouse monoclonal antibody clone used in Example 4 to which a tag such as a Snoop tag (SnoopTag or SnT) was added.
  • Anti-Hb scFv-SnT was prepared by recombinant production using E.
  • anti-Hb scFv-SnT contains a polypeptide sequence in which a heavy chain variable region (VH) and a light chain variable region (VL) are linked via a peptide linker (GGGGS) 3 . .
  • Hb hemoglobin
  • Thermo Fisher Scientific 100 ⁇ L of 100 nM hemoglobin (Hb) (Thermo Fisher Scientific) was added to a 96-well plate and incubated overnight at 4°C to adsorb and immobilize Hb onto the plate. After washing with PPB(Na+)-T, 2% (w/v) skim milk dissolved in PPB(Na+)-T was added to the plate and incubated at room temperature for 1 hour with shaking at 600 rpm. , the plate was blocked.
  • Hb hemoglobin
  • An aptamer-anti-Hb scFv-SnT antibody conjugate was prepared by mixing equal volumes of anti-Hb scFv-SnT solutions in a 1.5 mL tube and reacting at room temperature for 1 hour while shaking at 600 rpm.
  • BM chemiluminescent ELISA substrate 100 ⁇ L was added to the plate, incubated for 10 minutes at room temperature and protected from light, and chemiluminescence was measured using a plate reader Varioskan (R) Flash (Thermo Fisher Scientific).
  • Figure 18 shows the measurement results based on anti-Hb scFv-SnT detection via the c-myc tag using the HRP-modified anti-c-Myc antibody. Regardless of the final aptamer concentrations used (0 nM, 1 nM, 10 nM, 100 nM, and 500 nM), little change was observed in chemiluminescence levels, which indicate the amount of BH5 scFv-SnT bound to Hb on the plate. Ta. The chemiluminescence level was significantly higher than when no Hb was immobilized on the plate ("No Hb" in Figure 18; negative control; aptamer final concentration 100 nM), and a significant difference was observed.
  • anti-Hb scFv-SnT was able to bind to Hb regardless of the aptamer concentration. That is, the aptamer was able to bind to anti-Hb scFv-SnT without inhibiting the binding of anti-Hb scFv-SnT to antigen Hb.
  • Example 8 Electrochemical detection of scFv using an aptamer-immobilized electrode by square wave voltammetry Using HB125 scFv as an additional scFv, electrochemical detection of scFv using an aptamer-immobilized electrode was performed.
  • the HB125 scFv used was an anti-insulin antibody-derived scFv with a C-myc tag and a His tag added.
  • HB125 scFv was prepared by recombinant production using E. coli transformed with the HB125 scFv expression vector pRA-HB125 scFv.
  • the vector map of pRA-HB125 scFv is shown in FIG.
  • HB125 scFv includes a polypeptide sequence in which a heavy chain variable region (VH) and a light chain variable region (VL) are linked via a peptide linker (GGGGS) 3 .
  • the gold disk electrode was polished 50 times on each side in a figure-eight pattern using an alumina polishing pad onto which 0.05 ⁇ m polishing alumina was dropped. After polishing, it was washed with ultrapure water (Milli-Q (R) water), and then the gold disk electrode was immersed in ultrapure water and ultrasonically cleaned for 10 minutes. After ultrasonic cleaning, a mixed solution of potassium hydroxide (KOH) with a final concentration of 50 mM and hydrogen peroxide (H 2 O 2 ) with a final concentration of 25% was dropped onto the surface of the gold disk electrode. After standing for 10 minutes, the gold disk electrode surface was further cleaned by sweeping the potential in the range of -0.35 V to -1.35 V in 0.5 M NaOH.
  • KOH potassium hydroxide
  • H 2 O 2 hydrogen peroxide
  • Aptamers P1-12 and P2-63 were each heated at 95°C for 10 minutes, and then slowly cooled to 25°C over 30 minutes to cause folding, thereby preparing a folded aptamer solution.
  • Gold rinsed with ultrapure water was placed in a 1 ⁇ M fold aptamer solution containing an equimolar amount of tris(2-carboxyethyl)phosphine (TCEP; Fujifilm Wako Pure Chemical Industries, Ltd.) dissolved in Tris-HCl.
  • TCEP tris(2-carboxyethyl)phosphine
  • the aptamer-immobilized electrode was blocked by immersing it in a 1 mM 6-mercaptohexanol (6-MCH)/20 mM Tris-HCl solution for 2 hours.
  • the blocked gold disk electrodes were rinsed with ultrapure water and then stored in PPB(Na+) at 4°C until use.
  • HB125 scFv (anti-insulin) was added to the reaction solution (PPB(Na+) containing 10 mM potassium ferricyanide) to a final concentration of 10, 50, 100, 500, or 1000 nM, and after incubation for 30 minutes with stirring.
  • Square wave voltammetry (SWV) measurements were performed.
  • SWV measurement 2 mL of PPB(Na+)/10mM potassium ferricyanide solution was used as the reaction solution, and the aptamer-immobilized electrode prepared above, platinum wire, and Ag/AgCl reference electrode were used as the working electrode, counter electrode, and reference electrode, respectively.
  • a three-electrode method was used.
  • the potentiostat was VSP-150 (Bio-Logic Science Instruments), and SWV measurements were made in the range 0 to 0.4 V (vs. Ag/AgCl) with an amplitude of 150 mV, steps of 10 mV, and measurements at 20 Hz. carried out.
  • SWV measurement was performed in the same manner as above using a 10-fold dilution of LB medium with PPB(Na) as a reaction solution instead.
  • the composition of the LB medium used was as follows: 10 g of soy peptone (Gibco Phytone TM pepton), 5 g of yeast extract (Gibco Bacto TM Yeast Extract), 5.844 g of NaCl (1 L of ultrapure water). During).
  • the present invention can be used to specifically detect scFv. Since natural scFv does not exist in vivo, a versatile aptamer that specifically binds to scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3) is useful for general detection of scFv antibody drugs (e.g., pharmacokinetics). It is also considered useful for analysis). Furthermore, the aptamer of the present invention can be used as a detection element for scFv or as a capture means for scFv purification by subjecting the oligonucleotide to various chemical modifications.
  • GGGGS peptide linker
  • the aptamer of the present invention can be used as a general-purpose tool for performing various chemical modifications on scFv.
  • the aptamer of the present invention can also be used in a drug delivery system by binding an oligonucleotide to a medical drug or the like and using it in combination with an scFv that binds to a target site.

Abstract

The present invention pertains to: an aptamer which contains an oligonucleotide (for example, an oligonucleotide containing a base sequence which has at least 90% of the sequence identity of the base sequence represented by SEQ ID NO 14 or 24) which specifically binds to a single-chain Fv (scFv) which has a peptide linker (GGGGS)3 (SEQ ID NO 3); a composition containing the same; a kit and device; a scFv-aptamer complex which contains scFv bonded to the aptamer; and an scFv detection or refinement method or a method for modifying the scFv which uses said aptamer.

Description

一本鎖抗体結合アプタマーSingle chain antibody binding aptamer
 本発明は、一本鎖抗体に特異的に結合するアプタマーに関する。 The present invention relates to an aptamer that specifically binds to a single chain antibody.
 従来の抗体医薬品では、確かな治療効果は認められてはいるものの、特にがん治療においては、容易には根治に至らず、その治療効果は限定的である。このため、より高機能な完全非天然型の人工抗体の開発が世界的な潮流となっている。 Although conventional antibody drugs have been shown to have certain therapeutic effects, they do not easily lead to a complete cure, especially in cancer treatment, and their therapeutic effects are limited. For this reason, the development of completely non-natural artificial antibodies with higher functionality has become a global trend.
 抗体の抗原結合ドメインであるFvの重鎖可変ドメインと軽鎖可変ドメインをペプチドリンカーで連結させたscFv(一本鎖Fv又は一本鎖抗体とも称される)は最も汎用されている人工抗体の一つである。scFvは、ペプチドリンカーで安定化されており、微生物を用いた調製も可能であり、医薬品やセンシング素子として有利に利用されている。医薬品としては、scFvを構成単位とする二重特異性抗体であるブリナツモマブが、日本でも既に認可されている。一方で、scFvは低分子故に体内半減期が短く、また、投与したscFvを特異的に検出する手法がないため薬物動態解析が困難である。さらに、scFvに使用されることが多い精製用ヒスチジンタグには抗原性についての懸念もある。そのため、scFvを用いた医薬品の認可は、日本では未だ数件に留まっている。 scFv (also called single-chain Fv or single-chain antibody), which is the antigen-binding domain of an antibody, the heavy chain variable domain and light chain variable domain of Fv, are linked by a peptide linker, and is the most commonly used artificial antibody. There is one. scFvs are stabilized with peptide linkers, can be prepared using microorganisms, and are advantageously used as pharmaceuticals and sensing elements. As a pharmaceutical, blinatumomab, a bispecific antibody whose constituent unit is scFv, has already been approved in Japan. On the other hand, since scFv is a small molecule, it has a short half-life in the body, and pharmacokinetic analysis is difficult because there is no method to specifically detect the administered scFv. Additionally, there are concerns about antigenicity with the histidine tags often used for purification in scFvs. Therefore, only a few pharmaceutical products using scFv have been approved in Japan.
 scFvは、例えば、抗がん剤などの医療用薬剤で修飾することにより分子標的薬として、あるいは蛍光物質などの標識物質で修飾(標識)することにより検出素子として、利用され得る。scFvなどのタンパク質を修飾するには、通常、リジン残基を介したアミノカップリング、又は、システイン残基を介したチオエーテル結合を利用する必要がある。前者の場合、リジン残基はタンパク質表面に多数存在することが一般的であるため修飾によるタンパク質機能の低下が懸念されることに加えて、N末端のアミノ基も修飾されるために、N末端に抗原結合部位を有するscFvへの適用はより適さない。後者の場合、scFvを構成する重鎖可変ドメイン及び軽鎖可変ドメイン内には通常、一対のジスルフィド結合が存在するため、新たなシステイン残基の導入を伴う修飾は、ジスルフィド結合形成に影響を及ぼし、掛け違い等により目的のscFvの収量や機能を大きく低下させる可能性がある。したがって従来のタンパク質修飾技術はscFvの修飾には適していない。 For example, scFv can be used as a molecular target drug by being modified with a medical drug such as an anticancer drug, or as a detection element by being modified (labeled) with a labeling substance such as a fluorescent substance. Modification of proteins such as scFv usually requires the use of amino coupling via lysine residues or thioether bonding via cysteine residues. In the former case, many lysine residues are commonly present on the protein surface, so there is concern that protein function may be reduced due to modification, and the amino group at the N-terminus is also modified, resulting in Application to scFvs with an antigen-binding site is less suitable. In the latter case, since a pair of disulfide bonds usually exists in the heavy chain variable domain and light chain variable domain that constitute the scFv, modifications that involve the introduction of new cysteine residues may affect disulfide bond formation. , mismultiplication, etc. may significantly reduce the yield and function of the desired scFv. Therefore, conventional protein modification techniques are not suitable for scFv modification.
 また、scFvを特異的に検出する汎用技術は報告されていない。特定の抗体医薬を生体に内在する抗体と区別して検出するために、例えば、抗体の抗原結合部位を認識する抗イディオタイプ抗体(非特許文献1)や抗イディオタイプ核酸アプタマー(非特許文献2)などが用いられているが、抗イディオタイプ抗体や抗イディオタイプ核酸アプタマーは取得が容易ではなく、また特定の抗体しか検出できず汎用性がない。特許文献1は、IgG抗体のFc領域に結合するアプタマーを開示しているが、そのようなアプタマーはFc領域を有していないscFvの検出には利用できない。 Furthermore, no general-purpose technology for specifically detecting scFv has been reported. In order to detect a specific antibody drug separately from antibodies endogenous to a living body, for example, anti-idiotype antibodies that recognize the antigen-binding site of antibodies (Non-patent Document 1) and anti-idiotype nucleic acid aptamers (Non-Patent Document 2) are used. However, anti-idiotype antibodies and anti-idiotype nucleic acid aptamers are not easy to obtain, and they are not versatile because they can only detect specific antibodies. Although Patent Document 1 discloses an aptamer that binds to the Fc region of an IgG antibody, such an aptamer cannot be used to detect scFv that does not have an Fc region.
 このため、scFvを特異的に修飾又は検出できるツールの開発が望まれている。 Therefore, it is desired to develop tools that can specifically modify or detect scFv.
国際公開WO2020/081510International publication WO2020/081510
 本発明は一本鎖抗体scFvに特異的に結合するアプタマーを提供することを課題とする。 An object of the present invention is to provide an aptamer that specifically binds to a single chain antibody scFv.
 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、ペプチドリンカー(GGGGS)3(配列番号3)を有する一本鎖Fv(scFv)に特異的に結合できるオリゴヌクレオチドを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors discovered an oligonucleotide that can specifically bind to a single-chain Fv (scFv) having a peptide linker (GGGGS) 3 (SEQ ID NO: 3). The present invention has now been completed.
 すなわち、本発明は以下を包含する。
[1] ペプチドリンカー(GGGGS)3(配列番号3)を有する一本鎖Fv(scFv)に特異的に結合するオリゴヌクレオチドを含むアプタマー。
[2] 前記オリゴヌクレオチドが配列番号14又は24で示される塩基配列に対して90%以上の配列同一性を有する塩基配列を含む、上記[1]に記載のアプタマー。
[3] 前記オリゴヌクレオチドが化学修飾されている、上記[1]又は[2]に記載のアプタマー。
[4] 前記オリゴヌクレオチドが標識されている、上記[1]~[3]のいずれかに記載のアプタマー。
[5] 前記オリゴヌクレオチドが、ビオチン、チオール基、ポリエチレングリコール、蛍光物質、レドックスプローブ、放射性同位元素、酵素、担体、電子伝達物質、細胞毒性物質、及び医療用薬剤からなる群から選択される少なくとも1つの結合又は導入により化学修飾されているか、並びに/又は修飾ヌクレオチド及び人工塩基の少なくとも一方を含むことにより化学修飾されている、上記[3]に記載のアプタマー。
[6] 前記オリゴヌクレオチドがDNA又はRNAである、上記[1]~[5]のいずれかに記載のアプタマー。
[7] 上記[1]~[6]のいずれかに記載のアプタマーを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出、修飾又は精製用の組成物。
[8] 上記[1]~[6]のいずれかに記載のアプタマーを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出、修飾又は精製用キット。
[9] 上記[1]~[6]のいずれかに記載のアプタマーとそれが結合した支持体とを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出又は精製用デバイス。
[10] 上記[1]~[6]のいずれかに記載のアプタマーを、scFvを含む試料と接触させてscFv-アプタマー複合体を生成し、scFv-アプタマー複合体を前記試料から分離することを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの精製方法。
[11] 上記[4]に記載のアプタマーを、scFvを含む試料と接触させてscFv-アプタマー複合体を生成し、scFv-アプタマー複合体に由来する標識シグナルを検出することを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出方法。
[12] 上記[2]に記載のアプタマーにヌクレオチド変異を導入し、得られた変異体の、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに対する結合能を測定し、そのscFvに特異的に結合する変異体をアプタマーとして選択することを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに特異的に結合するオリゴヌクレオチドを含むアプタマーのスクリーニング方法。
[13] 上記[1]~[6]のいずれかに記載のアプタマーを、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvと接触させてscFv-アプタマー複合体を生成することを含む、scFvを修飾する方法。
[14] 前記アプタマーが化学修飾されている前記オリゴヌクレオチドを含み、前記方法がscFvを化学修飾する方法である、上記[13]に記載の方法。
[15] 上記[1]~[6]のいずれかに記載のアプタマーと結合した、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvを含む、scFv-アプタマー複合体。
That is, the present invention includes the following.
[1] An aptamer containing an oligonucleotide that specifically binds to a single chain Fv (scFv) having a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
[2] The aptamer according to [1] above, wherein the oligonucleotide includes a base sequence having 90% or more sequence identity to the base sequence shown by SEQ ID NO: 14 or 24.
[3] The aptamer according to [1] or [2] above, wherein the oligonucleotide is chemically modified.
[4] The aptamer according to any one of [1] to [3] above, wherein the oligonucleotide is labeled.
[5] The oligonucleotide is at least selected from the group consisting of biotin, a thiol group, polyethylene glycol, a fluorescent substance, a redox probe, a radioisotope, an enzyme, a carrier, an electron carrier, a cytotoxic substance, and a medical drug. The aptamer according to [3] above, which is chemically modified by one bond or introduction, and/or by containing at least one of a modified nucleotide and an artificial base.
[6] The aptamer according to any one of [1] to [5] above, wherein the oligonucleotide is DNA or RNA.
[7] A composition for detecting, modifying, or purifying scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), which includes the aptamer according to any one of [1] to [6] above.
[8] A kit for detecting, modifying or purifying scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), which includes the aptamer according to any one of [1] to [6] above.
[9] A device for detecting or purifying scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), comprising the aptamer according to any one of [1] to [6] above and a support to which it is bound.
[10] Contacting the aptamer according to any one of [1] to [6] above with a sample containing scFv to generate an scFv-aptamer complex, and separating the scFv-aptamer complex from the sample. A method for purifying scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), comprising:
[11] A peptide linker ( A method for detecting scFv having GGGGS) 3 (SEQ ID NO: 3).
[12] Introducing nucleotide mutations into the aptamer described in [2] above, measuring the binding ability of the resulting mutant to scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), and 1. A method for screening an aptamer comprising an oligonucleotide that specifically binds to an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), the method comprising selecting as an aptamer a mutant that specifically binds to the scFv.
[13] Contacting the aptamer according to any one of [1] to [6] above with an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) to generate an scFv-aptamer complex, How to qualify scFv.
[14] The method according to [13] above, wherein the aptamer includes the oligonucleotide that has been chemically modified, and the method is a method of chemically modifying scFv.
[15] An scFv-aptamer complex comprising an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) bound to the aptamer according to any one of [1] to [6] above.
 本明細書は本願の優先権の基礎となる日本国特許出願番号2022-131326号の開示内容を包含する。 This specification includes the disclosure content of Japanese Patent Application No. 2022-131326, which is the basis of the priority of this application.
 本発明によれば、ペプチドリンカー(GGGGS)3を有する一本鎖Fv(scFv)中のペプチドリンカー(GGGGS)3領域に特異的に結合でき、それにより広範なscFvの修飾、検出等に利用可能なアプタマーを提供することができる。 According to the present invention, it is possible to specifically bind to the peptide linker (GGGGS) 3 region in a single chain Fv (scFv) having peptide linker (GGGGS) 3 , and thereby it can be used for a wide range of scFv modification, detection, etc. aptamer.
図1は、pRA-528 scFv(A)及びpRA-528 Fv(B)のベクターマップを模式的に示す。FIG. 1 schematically shows vector maps of pRA-528 scFv (A) and pRA-528 Fv (B). 図2は、pRA-528 scFv中のタンパク質コード配列(配列番号1)及びそれによりコードされるアミノ酸配列(配列番号2)を示す。図1Aのベクターマップに示したpelBからHisタグまでの各領域を、図2中の配列に対して示した。Figure 2 shows the protein coding sequence in pRA-528 scFv (SEQ ID NO: 1) and the amino acid sequence encoded thereby (SEQ ID NO: 2). Each region from pelB to the His tag shown in the vector map of FIG. 1A is shown relative to the sequence in FIG. 2. 図3は、異なる精製段階の528 scFv試料のNi-NTA(ニッケル-ニトリロ三酢酸)アフィニティークロマトグラフィー(カラムクロマトグラフィー)の結果を示す写真である。各レーンにアプライされた試料は、左から右に順番に、分子量マーカー、1:ろ過前、2:カラムクロマトグラフィー前、3:カラムクロマトグラフィーのフロースルー液、4:洗浄液、5:50 mM イミダゾール/PBS、6:150 mM イミダゾール/PBS、7:300 mM イミダゾール/PBS-1、8:300 mM イミダゾール/PBS-2、9:500 mM イミダゾール/PBSである。ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動(SDS-PAGE)では、ポリアクリルアミドゲル(SuperSepTMAce, 10-20% 17ウェル)に試料をアプライして電気泳動を行い、電気泳動後のゲルをCBB(クーマシーブリリアントブルー)により染色した。矢印及び四角枠が528 scFvのバンドを示す。Figure 3 is a photograph showing the results of Ni-NTA (nickel-nitrilotriacetic acid) affinity chromatography (column chromatography) of a 528 scFv sample at different stages of purification. The samples applied to each lane are ordered from left to right: molecular weight marker, 1: before filtration, 2: before column chromatography, 3: column chromatography flow-through solution, 4: washing solution, 5: 50 mM imidazole. /PBS, 6: 150mM imidazole/PBS, 7: 300mM imidazole/PBS-1, 8: 300mM imidazole/PBS-2, and 9: 500mM imidazole/PBS. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), a sample is applied to a polyacrylamide gel (SuperSep TM Ace, 10-20% 17 wells), electrophoresis is performed, and the gel after electrophoresis is transferred to CBB ( Coomassie brilliant blue). The arrow and square frame indicate the band of 528 scFv. 図4は、精製528 scFvのゲル濾過クロマトグラフィーで得られたクロマトグラムを示す。Figure 4 shows a chromatogram obtained by gel filtration chromatography of purified 528 scFv. 図5は、異なる精製段階の528 Fv試料のNi-NTAアフィニティークロマトグラフィー(カラムクロマトグラフィー)の結果を示す写真である。各レーンにアプライされた試料は、左から右に順番に、分子量マーカー、1:ろ過前、2:カラムクロマトグラフィー前、3:カラムクロマトグラフィーのフロースルー液、4:洗浄液、5:50 mM イミダゾール/PBS、6:150 mM イミダゾール/PBS、7:300 mM イミダゾール/PBS-1、8:300 mM イミダゾール/PBS-2、9:500 mM イミダゾール/PBSである。Figure 5 is a photograph showing the results of Ni-NTA affinity chromatography (column chromatography) of a 528 Fv sample at different purification stages. The samples applied to each lane were, in order from left to right, molecular weight marker, 1: before filtration, 2: before column chromatography, 3: column chromatography flow-through solution, 4: washing solution, 5: 50 mM imidazole. /PBS, 6: 150mM imidazole/PBS, 7: 300mM imidazole/PBS-1, 8: 300mM imidazole/PBS-2, and 9: 500mM imidazole/PBS. 図6は、精製528 Fvのゲル濾過クロマトグラフィーで得られたクロマトグラムを示す。Figure 6 shows a chromatogram obtained by gel filtration chromatography of purified 528 Fv. 図7は、ELONAによる、アプタマー候補配列のscFvに対する結合能の評価試験の結果を示すグラフである。縦軸は化学発光レベル、横軸はアプタマー候補配列を示す。黒塗りバー:scFv、網掛けバー:Fv。タンパク質(抗体):100 nM、アプタマー候補配列: 100nM。FIG. 7 is a graph showing the results of an evaluation test of the binding ability of aptamer candidate sequences to scFv by ELONA. The vertical axis shows the chemiluminescence level, and the horizontal axis shows the aptamer candidate sequence. Filled bar: scFv, shaded bar: Fv. Protein (antibody): 100 nM, aptamer candidate sequence: 100 nM. 図8は、ドットブロット解析による、アプタマー候補配列P2-63及びP1-12のscFvに対する結合能の評価試験の結果を示す。Aは20 pmolの抗体タンパク質scFv、Fv、及びベバシズマブに対する結合、Bは20 pmol、10 pmol、及び5 pmolの抗体タンパク質scFv及びFvに対する結合を示す。FIG. 8 shows the results of an evaluation test of the binding ability of aptamer candidate sequences P2-63 and P1-12 to scFv by dot blot analysis. A shows binding to 20 pmol of antibody protein scFv, Fv, and bevacizumab; B shows binding to 20 pmol, 10 pmol, and 5 pmol of antibody protein scFv and Fv. 図9は、BLIによる、アプタマー候補配列P2-63及びP1-12のscFvに対する結合能の評価試験の結果を示すセンサーグラムである。AはP2-63、BはP1-12の、scFv及びFvに対する結合解離状態の変化を示している。FIG. 9 is a sensorgram showing the results of an evaluation test of the binding ability of aptamer candidate sequences P2-63 and P1-12 to scFv by BLI. A shows changes in the binding and dissociation states of P2-63 and P1-12 to scFv and Fv. 図10は、528 scFv、528 Fv及び抗Hb scFv-SpyTagに対するアプタマーの結合能を評価した結果を示す。左から順に、528 scFv、抗Hb scFv-SpyTag、528 Fv、及び凍結解凍した528 Fvのスポットを示す。Figure 10 shows the results of evaluating the binding ability of aptamers to 528 scFv, 528 Fv, and anti-Hb scFv-SpyTag. From left to right, 528 scFv, anti-Hb scFv-SpyTag, 528 Fv, and frozen-thawed 528 Fv spots are shown. 図11は、アプタマーと結合したscFvの抗原結合活性を、HRP修飾抗c-Myc抗体を用いたELISAにより測定した結果を示す。A:P2-63、B:P1-12。FIG. 11 shows the results of measuring the antigen-binding activity of scFv bound to an aptamer by ELISA using an HRP-modified anti-c-Myc antibody. A: P2-63, B: P1-12. 図12は、プレート上のsEGFRに結合した528 scFvに対するアプタマー(P1-12)の濃度依存的な結合を示す。Figure 12 shows concentration-dependent binding of aptamer (P1-12) to 528 scFv bound to sEGFR on the plate. 図13は、アプタマーのCDスペクトル測定の結果を示す。AはP1-12、BはP2-63の結果を示す。FIG. 13 shows the results of CD spectrum measurement of the aptamer. A shows the results of P1-12, B shows the results of P2-63. 図14は、scFv発現ベクターpRA-抗Hb scFv-SpyTag(A)、pRA-抗Hb scFv-SnT(B)、及びpRA-HB125 scFv(C)のベクターマップを模式的に示す。Figure 14 schematically shows vector maps of scFv expression vectors pRA-anti-Hb scFv-SpyTag (A), pRA-anti-Hb scFv-SnT (B), and pRA-HB125 scFv (C). 図15は、pRA-抗Hb scFv-SpyTag中のタンパク質コード配列(配列番号29)及びそれによりコードされるアミノ酸配列(配列番号30)を示す。図14Aのベクターマップに示したpelBからHisタグまでの各領域を、図15中の配列に対して示した。Figure 15 shows the protein coding sequence (SEQ ID NO: 29) and the amino acid sequence encoded thereby (SEQ ID NO: 30) in pRA-anti-Hb scFv-SpyTag. Each region from pelB to the His tag shown in the vector map of FIG. 14A is shown relative to the sequence in FIG. 15. 図16は、pRA-抗Hb scFv-SnT中のタンパク質コード配列(配列番号31)及びそれによりコードされるアミノ酸配列(配列番号32)を示す。図14Bのベクターマップに示したpelBからHisタグまでの各領域を、図16中の配列に対して示した。Figure 16 shows the protein coding sequence (SEQ ID NO: 31) and the amino acid sequence encoded thereby (SEQ ID NO: 32) in pRA-anti-Hb scFv-SnT. Each region from pelB to the His tag shown in the vector map of FIG. 14B is shown relative to the sequence in FIG. 16. 図17は、pRA-HB125 scFv中のタンパク質コード配列(配列番号33)及びそれによりコードされるアミノ酸配列(配列番号34)を示す。図14Cのベクターマップに示したpelBからHisタグまでの各領域を、図17中の配列に対して示した。Figure 17 shows the protein coding sequence (SEQ ID NO: 33) and the amino acid sequence encoded thereby (SEQ ID NO: 34) in pRA-HB125 scFv. Each region from pelB to the His tag shown in the vector map of FIG. 14C is shown relative to the sequence in FIG. 17. 図18は、アプタマー-抗Hb scFv-SnT抗体コンジュゲートにおける抗Hb scFv-SnT抗体の抗原結合活性を、ELISAにより測定した結果を示す。A:P2-63、B:P1-12。縦軸は化学発光強度、横軸はアプタマー濃度を示す。FIG. 18 shows the results of measuring the antigen binding activity of anti-Hb scFv-SnT antibody in the aptamer-anti-Hb scFv-SnT antibody conjugate by ELISA. A: P2-63, B: P1-12. The vertical axis shows chemiluminescence intensity, and the horizontal axis shows aptamer concentration. 図19は、アプタマーP1-12又はP2-63を固定化した電極上のアプタマーへの異なる濃度のsvFvの結合に関するSWV測定の結果を示す。A:P2-63、B:P1-12。Figure 19 shows the results of SWV measurements on the binding of different concentrations of svFv to aptamers on electrodes with immobilized aptamers P1-12 or P2-63. A: P2-63, B: P1-12. 図20は、scFv濃度に対する、SWV測定によるピーク電流値の変化を示す。A:P2-63、B:P1-12。FIG. 20 shows changes in peak current values measured by SWV with respect to scFv concentration. A: P2-63, B: P1-12. 図21は、アプタマーP1-12又はP2-63を固定化した電極上のアプタマーへの異なる濃度のsvFvの結合に関する、10倍希釈液を用いたSWV測定の結果を示す。A:P2-63、B:P1-12。FIG. 21 shows the results of SWV measurements using 10-fold dilutions for binding of different concentrations of svFv to aptamers on electrodes with immobilized aptamers P1-12 or P2-63. A: P2-63, B: P1-12. 図22は、scFv濃度に対する、10倍希釈液を用いたSWV測定によるピーク電流値の変化を示す。A:P2-63、B:P1-12。FIG. 22 shows changes in peak current values measured by SWV using a 10-fold diluted solution with respect to scFv concentration. A: P2-63, B: P1-12.
 以下、本発明を詳細に説明する。
 本発明は、一本鎖Fv(scFv)、特に、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに対する、アプタマーとその用途に関する。
The present invention will be explained in detail below.
The present invention relates to aptamers and their uses for single chain Fv (scFv), in particular for scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
 本発明において「アプタマー」(核酸アプタマーと称することもある)とは、標的物質に特異的に結合する一本鎖核酸であるか又はそれを含むリガンドを指す。アプタマーを構成する核酸は、化学合成によって比較的安価に製造でき、乾燥状態では室温での保存や輸送も可能であり、また化学修飾が容易であるなど、タンパク質である抗体にはない利点がある。 In the present invention, an "aptamer" (sometimes referred to as a nucleic acid aptamer) refers to a single-stranded nucleic acid that specifically binds to a target substance, or a ligand containing the single-stranded nucleic acid. The nucleic acids that make up aptamers can be produced relatively inexpensively through chemical synthesis, can be stored and transported at room temperature in a dry state, and can be easily chemically modified, which are advantages that antibodies, which are proteins, do not have. .
 より具体的には、本発明は、ペプチドリンカー(GGGGS)3(配列番号3)を有する一本鎖Fv(scFv)に特異的に結合するオリゴヌクレオチドを含むアプタマーに関する。 More specifically, the invention relates to an aptamer comprising an oligonucleotide that specifically binds to a single chain Fv (scFv) with a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
 天然の抗体は、通常、2本の重鎖と2本の軽鎖がジスルフィド結合によって結合したY字型の構造体を基本単位とし、それが1~5個集まって1つの分子(免疫グロブリン分子)を構成しており、特有の抗原結合活性を有することを特徴としている。抗体の重鎖(H鎖)と軽鎖(L鎖)はそれぞれのN末端に可変領域(重鎖可変ドメイン、軽鎖可変ドメイン)を有しており、重鎖可変ドメインと軽鎖可変ドメインが一緒になって抗原結合部位を構成している。それぞれの重鎖可変ドメインと軽鎖可変ドメインは相補性決定領域(CDR)を3つ(CDR1~CDR3)と4つのフレームワーク領域(FR1~FR4)を含んでおり、CDRの6つのセットが各抗体の抗原に対する特異性を定めている。CDRは超可変領域とも呼ばれ配列多様性が大きいが、フレームワーク領域の配列は高度に保存されている。フレームワーク領域FR1~FR4は、重鎖及び軽鎖可変ドメインのそれぞれのN末端側から順番にCDR1~CDR3と交互に位置しており、それぞれのC末端にFR4が存在する。重鎖及び軽鎖可変ドメインのC末端に隣接して配列保存性の高い定常領域(CH1~CH3、CL)が存在する。 Natural antibodies usually have a Y-shaped structure in which two heavy chains and two light chains are linked by disulfide bonds as a basic unit, and 1 to 5 of these structures are assembled to form a single molecule (immunoglobulin molecule). ) and is characterized by having a unique antigen-binding activity. The heavy chain (H chain) and light chain (L chain) of antibodies each have a variable region (heavy chain variable domain, light chain variable domain) at their N-terminus, and the heavy chain variable domain and light chain variable domain Together they form the antigen binding site. Each heavy and light chain variable domain contains three complementarity determining regions (CDRs) (CDR1-CDR3) and four framework regions (FR1-FR4), with six sets of CDRs each It determines the specificity of an antibody to its antigen. CDRs are also called hypervariable regions and have large sequence diversity, but framework region sequences are highly conserved. Framework regions FR1 to FR4 are located alternately with CDR1 to CDR3 in order from the N-terminal side of each heavy chain and light chain variable domain, and FR4 is present at the C-terminus of each. A constant region (CH1 to CH3, CL) with high sequence conservation exists adjacent to the C-terminus of the heavy chain and light chain variable domains.
 抗体をタンパク質分解酵素のパパインで分解すると、H鎖とH鎖を連結するジスルフィド結合(ヒンジ部位)が切断され、抗体のY字型構造体は3つの断片に分かれる。N末端側の2つの抗体断片はFabと呼ばれ、C末端側の1つの抗体断片はFcと呼ばれている。一方、抗原結合部位を構成する1つの重鎖可変ドメインと1つの軽鎖可変ドメインのセットはFvと呼ばれている。この重鎖可変ドメインと軽鎖可変ドメインをペプチドリンカーで連結して1本鎖ポリペプチドとしたものが一本鎖Fv(scFv)であり、一本鎖抗体(一本鎖抗体断片)とも呼ばれている。GSリンカーとも呼ばれる、ペプチドリンカー(GGGGS)3(配列番号3)は、scFvのペプチドリンカーとして広く利用されている。ペプチドリンカーとして(GGGGS)3を有するscFvは、通常、重鎖可変ドメインと軽鎖可変ドメインがそれらの末端(通常は、重鎖可変ドメインのC末端と軽鎖可変ドメインのN末端)においてペプチドリンカー(GGGGS)3を介して連結されたポリペプチド配列を含むものである。ペプチドリンカー(GGGGS)3は配列番号3で示されるアミノ酸配列からなるペプチドである。なお、本発明において「重鎖可変ドメインと軽鎖可変ドメインがそれらの末端においてペプチドリンカー(GGGGS)3を介して連結されたポリペプチド配列」は、重鎖可変ドメインと軽鎖可変ドメインがそれらの末端においてアミノ酸配列(GGGGS)3と直接的に結合しているポリペプチド配列だけでなく、重鎖可変ドメインと軽鎖可変ドメインがそれらの末端でアミノ酸配列(GGGGS)3を介してつながっているが重鎖可変ドメイン末端及び/又は軽鎖可変ドメイン末端とアミノ酸配列(GGGGS)3との間にさらなるアミノ酸配列(以下に限定するものではないが、例えば、1~20、1~15、又は1~5アミノ酸の配列)が存在しているポリペプチド配列も包含する。そのようなさらなるアミノ酸配列は、アミノ酸配列(GGGGS)3と共にペプチドリンカーの一部を構成していてもよい。本発明における「ペプチドリンカー(GGGGS)3を有するscFv」は、アミノ酸配列(GGGGS)3からなるペプチドリンカーを有するscFvの他、アミノ酸配列(GGGGS)3に加えてさらなるアミノ酸配列を含むペプチドリンカーを有するscFvなどの、アミノ酸配列(GGGGS)3を含む任意のペプチドリンカーを有するscFvも包含する。そのようなペプチドリンカーは、以下に限定するものではないが、少なくとも15アミノ酸、好ましくは15~50アミノ酸、例えば、15~40アミノ酸、15~35アミノ酸、15~30アミノ酸、15~20アミノ酸、又は15アミノ酸からなるものであり得る。 When an antibody is digested with the proteolytic enzyme papain, the disulfide bond (hinge site) that connects the H chains is cleaved, and the Y-shaped structure of the antibody is divided into three fragments. The two antibody fragments at the N-terminus are called Fab, and the one antibody fragment at the C-terminus is called Fc. On the other hand, the set of one heavy chain variable domain and one light chain variable domain that constitutes the antigen-binding site is called Fv. A single chain Fv (scFv) is a single chain polypeptide made by linking the heavy chain variable domain and light chain variable domain with a peptide linker, and is also called a single chain antibody (single chain antibody fragment). ing. Peptide linker (GGGGS) 3 (SEQ ID NO: 3), also called GS linker, is widely used as a peptide linker for scFv. An scFv with (GGGGS) 3 as a peptide linker typically has a heavy chain variable domain and a light chain variable domain with a peptide linker at their termini (usually the C-terminus of the heavy chain variable domain and the N-terminus of the light chain variable domain). (GGGGS) 3 . Peptide linker (GGGGS) 3 is a peptide consisting of the amino acid sequence shown by SEQ ID NO: 3. In addition, in the present invention, "a polypeptide sequence in which a heavy chain variable domain and a light chain variable domain are linked via a peptide linker (GGGGS) 3 at their ends" means that the heavy chain variable domain and the light chain variable domain are linked at their ends. Not only are the polypeptide sequences linked directly to the amino acid sequence (GGGGS) 3 at their termini, but also the heavy and light chain variable domains are linked at their termini via the amino acid sequence (GGGGS) 3 . Additional amino acid sequences (for example, but not limited to, 1-20, 1-15, or 1-20) between the heavy chain variable domain terminus and/or the light chain variable domain terminus and the amino acid sequence (GGGGS) 3 Also included are polypeptide sequences in which a sequence of 5 amino acids) is present. Such further amino acid sequences may form part of the peptide linker together with the amino acid sequence (GGGGS) 3 . In the present invention, "scFv having a peptide linker (GGGGS) 3 " refers to an scFv having a peptide linker consisting of the amino acid sequence (GGGGS) 3 , as well as a peptide linker having an additional amino acid sequence in addition to the amino acid sequence (GGGGS) 3 . Also included are scFvs with any peptide linker comprising the amino acid sequence (GGGGS) 3 , such as scFvs. Such peptide linkers include, but are not limited to, at least 15 amino acids, preferably 15-50 amino acids, such as 15-40 amino acids, 15-35 amino acids, 15-30 amino acids, 15-20 amino acids, or It may consist of 15 amino acids.
 本発明は、ペプチドリンカーとして(GGGGS)3を有するscFvを特異的に認識し結合できるオリゴヌクレオチドを用いたアプタマーに関する。本発明のアプタマーが結合するscFvは、哺乳動物抗体又はそのフレームワーク領域を有する組換え抗体に由来するものであってよい。本発明のアプタマーが結合するscFvは、以下に限定するものではないが、好ましくはヒト抗体又はヒト化抗体に由来するものであってよい。本発明のアプタマーが結合するscFvは、IgG、IgA、IgE、IgD、又はIgMに由来するものであり得るが、典型的にはIgG由来である。本発明のアプタマーが結合するscFvは、ペプチドリンカー(GGGGS)3を有するscFvであり、具体的には、抗体の重鎖可変ドメインと軽鎖可変ドメインがペプチドリンカー(GGGGS)3を介して連結されたポリペプチド配列(典型的には、重鎖可変ドメインと軽鎖可変ドメインを含み、かつ重鎖可変ドメインのC末端と軽鎖可変ドメインのN末端がペプチドリンカー(GGGGS)3を介して連結されたポリペプチド配列)を含む。本発明のアプタマーが結合するscFvは、哺乳動物抗体(例えば、ヒト抗体等の霊長類抗体、マウス抗体等のげっ歯類抗体)又はそのフレームワーク領域を有する組換え抗体(例えば、ヒト化抗体)由来の重鎖可変ドメインと軽鎖可変ドメインが、ペプチドリンカー(GGGGS)3を介して連結されたポリペプチド配列を含むものであり得る。本発明のアプタマーが結合するscFvは、タグ配列(以下に限定されないが、Spyタグ、C-mycタグ、Hisタグ、及び/又はSnoopタグ)等の他のポリペプチドを含むか又はそれと結合していてもよい。本発明のアプタマーが結合するペプチドリンカー(GGGGS)3を有するscFvの例としては、配列番号2、30、32、若しくは34で示されるアミノ酸配列を含むポリペプチド(scFv)、及び配列番号2、30、32、若しくは34のアミノ酸配列から1位~22位のアミノ酸配列(pelBシグナル配列)を除いたアミノ酸配列を含むポリペプチド(scFv)、並びにそれらのアミノ酸配列からタグ配列(Spyタグ、C-mycタグ、Hisタグ、及び/又はSnoopタグ)を除いたアミノ酸配列を含むポリペプチド(scFv)が挙げられるが、これらに限定されるものではない。 The present invention relates to an aptamer using an oligonucleotide capable of specifically recognizing and binding to an scFv having (GGGGS) 3 as a peptide linker. The scFv to which the aptamer of the present invention binds may be derived from a mammalian antibody or a recombinant antibody having a framework region thereof. The scFv to which the aptamer of the present invention binds is preferably, but not limited to, one derived from a human antibody or a humanized antibody. The scFv to which the aptamer of the invention binds can be derived from IgG, IgA, IgE, IgD, or IgM, but is typically derived from IgG. The scFv to which the aptamer of the present invention binds is an scFv having a peptide linker (GGGGS) 3. Specifically, the heavy chain variable domain and light chain variable domain of an antibody are linked via a peptide linker (GGGGS) 3 . a polypeptide sequence (typically comprising a heavy chain variable domain and a light chain variable domain, and the C-terminus of the heavy chain variable domain and the N-terminus of the light chain variable domain are linked via a peptide linker (GGGGS) 3) . polypeptide sequence). The scFv to which the aptamer of the present invention binds is a mammalian antibody (e.g., a primate antibody such as a human antibody, a rodent antibody such as a mouse antibody) or a recombinant antibody having a framework region thereof (e.g., a humanized antibody). The derived heavy chain variable domain and light chain variable domain may comprise polypeptide sequences linked via a peptide linker (GGGGS) 3 . The scFv to which the aptamer of the invention binds contains or is conjugated to other polypeptides such as tag sequences (including, but not limited to, Spy tag, C-myc tag, His tag, and/or Snoop tag). It's okay. Examples of scFv having a peptide linker (GGGGS) 3 to which the aptamer of the present invention binds include polypeptides (scFv) comprising the amino acid sequence shown in SEQ ID NO: 2, 30, 32, or 34, and SEQ ID NO: 2, 30. , 32, or 34, excluding the amino acid sequence at positions 1 to 22 (pelB signal sequence) (scFv), as well as tag sequences (Spy tag, C-myc Examples include, but are not limited to, polypeptides (scFv) that include an amino acid sequence excluding the amino acid sequence (scFv), His tag, and/or Snoop tag.
 本発明のアプタマーに関して「特異的に結合する」とは、標的(ペプチドリンカー(GGGGS)3を有するscFv、特に、ペプチドリンカー(GGGGS)3を有するscFv中のペプチドリンカー(GGGGS)3領域)に対して選択的に、かつ、安定した結合を維持するのに十分な程度に高い親和性で結合できる能力を有することを意味する。本発明のアプタマーは、Fvと比較して、ペプチドリンカー(GGGGS)3を有するscFvに対し選択的に(より高い親和性で)結合することができる。 With respect to the aptamer of the present invention, "specifically binds" to a target (an scFv having a peptide linker (GGGGS) 3 , particularly a peptide linker (GGGGS) 3 region in an scFv having a peptide linker (GGGGS) 3 ). It means having the ability to bind selectively and with sufficiently high affinity to maintain stable binding. The aptamers of the invention are able to bind selectively (with higher affinity) to scFv with a peptide linker (GGGGS) 3 compared to Fv.
 本発明のアプタマーは、ペプチドリンカー(GGGGS)3(配列番号3)を有する一本鎖Fv(scFv)に特異的に結合するオリゴヌクレオチドを、好ましくは一本鎖核酸成分として(典型的には唯一の核酸成分として)含む。本発明のアプタマーに関して、「オリゴヌクレオチド」とは、80塩基長以下のヌクレオチドポリマー(ポリヌクレオチド)を指す。本発明のアプタマーを構成するオリゴヌクレオチドは、80塩基長以下、好ましくは50塩基長以下、また好ましくは20塩基長以上、より好ましくは30~40塩基長、さらに好ましくは30~37塩基長、例えば30~35塩基長、30~33塩基長、又は33~35塩基長のオリゴヌクレオチドであり得る。 The aptamer of the present invention comprises an oligonucleotide that specifically binds to a single-stranded Fv (scFv) having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), preferably as a single-stranded nucleic acid component (typically the only one). (as a nucleic acid component). Regarding the aptamer of the present invention, "oligonucleotide" refers to a nucleotide polymer (polynucleotide) of 80 bases or less in length. The oligonucleotide constituting the aptamer of the present invention has a length of 80 bases or less, preferably 50 bases or less, preferably 20 bases or more, more preferably 30 to 40 bases, still more preferably 30 to 37 bases, e.g. The oligonucleotide can be 30-35 bases long, 30-33 bases long, or 33-35 bases long.
 一実施形態では、本発明のアプタマーを構成する上記の一本鎖Fv(scFv)に特異的に結合するオリゴヌクレオチドは、配列番号14又は24で示される塩基配列(特に、その塩基配列全体)に対して60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、例えば95%以上の配列同一性を有する塩基配列を含むものであり得る。好ましい実施形態では、本発明のアプタマーを構成する上記オリゴヌクレオチドは、配列番号14又は24で示される塩基配列を含むか、又はその塩基配列からなる。 In one embodiment, the oligonucleotide that specifically binds to the above-mentioned single-stranded Fv (scFv) constituting the aptamer of the present invention has a base sequence represented by SEQ ID NO: 14 or 24 (in particular, the entire base sequence). It may contain a base sequence having a sequence identity of 60% or more, preferably 70% or more, more preferably 80% or more, even more preferably 90% or more, for example 95% or more. In a preferred embodiment, the oligonucleotide constituting the aptamer of the present invention includes or consists of the base sequence shown in SEQ ID NO: 14 or 24.
 一実施形態では、本発明のアプタマーを構成する上記オリゴヌクレオチドは、塩基配列CGn(n=5~7)、具体的には塩基配列CGGGGGGG、CGGGGGG、及びCGGGGGのうち少なくとも1つ、好ましくは塩基配列CGGGGGGG及びCGGGGGの少なくとも一方を含み得る。本発明のアプタマーを構成する上記オリゴヌクレオチドは、塩基配列CGn(n=5~7)、具体的には塩基配列CGGGGGGG、CGGGGGG、及びCGGGGGのうち少なくとも1つ、好ましくはCGGGGGGG及びCGGGGGの少なくとも一方を、5'末端側(5'末端側の半分)及び/又は3'末端側(3'末端側の半分)に含んでもよいし、例えば5'末端又はその近傍(5'末端の1又は2位)に含んでもよい。このようなオリゴヌクレオチドは、さらに、配列番号14又は24で示される塩基配列(特に、その塩基配列全体)に対して60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、例えば95%以上の配列同一性を有する塩基配列を含むものであってもよい。 In one embodiment, the oligonucleotide constituting the aptamer of the present invention has a base sequence CG n (n=5 to 7), specifically at least one base sequence CGGGGGGG, CGGGGGG, and CGGGGG, preferably a base sequence It may include at least one of the sequences CGGGGGGG and CGGGGG. The oligonucleotide constituting the aptamer of the present invention has a base sequence CG n (n=5 to 7), specifically at least one of the base sequences CGGGGGGG, CGGGGGG, and CGGGGG, preferably at least one of CGGGGGGG and CGGGGG. may be included at the 5' end (half of the 5' end) and/or at the 3' end (half of the 3' end), for example, at or near the 5' end (1 or 2 of the 5' end). may be included in Such oligonucleotides further preferably contain 60% or more, preferably 70% or more, more preferably 80% or more, even more preferably It may contain a base sequence having sequence identity of 90% or more, for example 95% or more.
 本発明のアプタマーを構成する上記オリゴヌクレオチドは、DNA、RNA、又はそれらのハイブリッドであってもよい。配列表には配列番号14又は24の配列はDNA配列として記載されているが、本発明のアプタマーを構成する上記オリゴヌクレオチドが、RNA、又はDNAとRNAのハイブリッドである場合は、そのRNA又はRNA部分について、配列表において配列番号14又は24で示される塩基配列中の「t」(チミン)は、「u」(ウラシル)に読み替えられるものとする。すなわち、本発明のアプタマーを構成する上記オリゴヌクレオチドが、配列表において配列番号14又は24で示される塩基配列中の「t」(チミン)が「u」(ウラシル)に読み替えられた塩基配列を含む場合も、「配列番号14又は24で示される塩基配列を含むオリゴヌクレオチド」の範囲に含まれるものとする。「配列番号14又は24で示される塩基配列からなるオリゴヌクレオチド」及び「配列番号14又は24で示される塩基配列に対して60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、例えば95%以上の配列同一性を有する塩基配列を含むオリゴヌクレオチド」についても同様に解釈される。 The above oligonucleotide constituting the aptamer of the present invention may be DNA, RNA, or a hybrid thereof. In the sequence listing, the sequence of SEQ ID NO: 14 or 24 is described as a DNA sequence, but if the oligonucleotide constituting the aptamer of the present invention is RNA or a hybrid of DNA and RNA, the RNA or RNA Regarding the part, "t" (thymine) in the base sequence shown by SEQ ID NO: 14 or 24 in the sequence listing shall be read as "u" (uracil). That is, the oligonucleotide constituting the aptamer of the present invention contains a base sequence in which "t" (thymine) in the base sequence shown by SEQ ID NO: 14 or 24 in the sequence listing is replaced with "u" (uracil). In this case, the term "oligonucleotide containing the base sequence shown by SEQ ID NO: 14 or 24" is also included. "Oligonucleotide consisting of the base sequence shown by SEQ ID NO: 14 or 24" and "60% or more, preferably 70% or more, more preferably 80% or more, even more preferably, the base sequence shown by SEQ ID NO: 14 or 24 is similarly interpreted as "an oligonucleotide containing a base sequence having a sequence identity of 90% or more, for example 95% or more."
 本発明のアプタマーにおいて、上記オリゴヌクレオチドは化学修飾されていてもよい。但しその化学修飾は、ペプチドリンカー(GGGGS)3を有するscFvに特異的に結合する上記オリゴヌクレオチドの能力を喪失させないものである。一実施形態では、上記オリゴヌクレオチドは、典型的には検出を可能にする標識物質により、標識されていてもよく、そのような標識も化学修飾に含まれる。一実施形態では、上記オリゴヌクレオチドは、他の物質(例えば、非核酸物質)と結合していてもよく、そのような場合も化学修飾に含まれる。本発明のアプタマーを構成する上記オリゴヌクレオチドは、例えば、ビオチン、デスチオビオチン、アビジン、ストレプトアビジン、ニュートラアビジンなどの低分子標識分子、リン酸基、ホスホロチオエート基、チオール基、アミノ基、アミノアリル基などの官能基、ポリエチレングリコール(PEG)やその誘導体などの生体適合性ポリマー、フルオレセイン(FAM)及びその誘導体、各種Alexa Fluor(R)色素、カルボキシテトラメチルローダミン(TAMRA)などのローダミン誘導体、Cy3やCy5などのシアニン色素等の蛍光色素をはじめとする蛍光物質、蛍光物質と組み合わせて使用されるクエンチャー、メチレンブルー、クロロゲン酸などのレドックスプローブ、イットリウム90、インジウム111、ヨウ素131などの放射性同位元素、ホースラディッシュペルオキシダーゼ(HRP)などの標識酵素をはじめとする酵素、磁性ビーズ、金粒子、ラテックス粒子、ナノファイバーなどの担体、フェナジンメトサルフェート(PMS)などの電子伝達物質、又は薬物(例えば、抗がん剤や毒素タンパク質などの細胞毒性物質、又は各種疾患治療薬などの医療用薬剤)等の、1つ又は2つ以上の任意の物質又は化学構造部分(官能基等の原子若しくは原子団など)と結合されるか又はそれが導入されることにより化学修飾されているものであってよい。上記の低分子標識分子、蛍光物質、クエンチャー、標識酵素、放射性同位元素などの、検出を可能にする物質を、標識物質としてオリゴヌクレオチドの標識に用いることができる。 In the aptamer of the present invention, the oligonucleotide may be chemically modified. However, the chemical modification does not eliminate the ability of the oligonucleotide to specifically bind to the scFv with the peptide linker (GGGGS) 3 . In one embodiment, the oligonucleotide may be labeled, typically with a labeling substance that allows detection, and such a label is also included in chemical modification. In one embodiment, the oligonucleotide may be bound to other substances (eg, non-nucleic acid substances), and such cases are also included in chemical modification. The oligonucleotides constituting the aptamer of the present invention include, for example, low-molecular label molecules such as biotin, desthiobiotin, avidin, streptavidin, and neutravidin, phosphate groups, phosphorothioate groups, thiol groups, amino groups, aminoallyl groups, etc. functional groups, biocompatible polymers such as polyethylene glycol (PEG) and its derivatives, fluorescein (FAM) and its derivatives, various Alexa Fluor (R) dyes, rhodamine derivatives such as carboxytetramethylrhodamine (TAMRA), Cy3 and Cy5 fluorescent substances including fluorescent dyes such as cyanine dyes, quenchers used in combination with fluorescent substances, redox probes such as methylene blue and chlorogenic acid, radioactive isotopes such as yttrium -90 , indium -111 , and iodine -131 , and hoses. Enzymes including labeled enzymes such as radish peroxidase (HRP), carriers such as magnetic beads, gold particles, latex particles, nanofibers, electron carriers such as phenazine methosulfate (PMS), or drugs (e.g. anticancer with one or more arbitrary substances or chemical structural moieties (atoms or atomic groups such as functional groups, etc.) It may be chemically modified by being bonded or introduced. Substances that enable detection, such as the above-mentioned low-molecular labeling molecules, fluorescent substances, quenchers, labeled enzymes, and radioactive isotopes, can be used as labeling substances to label oligonucleotides.
 また、本発明のアプタマーを構成する上記オリゴヌクレオチドは、修飾ヌクレオチド及び人工塩基の少なくとも一方を含んでいてもよく、その場合、それを含むことにより化学修飾されている。本発明において「修飾ヌクレオチド」とは、天然ヌクレオチドの糖部分、リン酸部分、及び/又は塩基部分が化学修飾されたヌクレオチドである。修飾ヌクレオチドは、修飾ヌクレオシドを含むヌクレオチドであってもよい。修飾ヌクレオチドとしては、例えば、2'-フッ化ピリミジンなどのハロゲン化塩基、2'-O-メチル化塩基などのメチル化塩基、デオキシウリジン、イノシン、2-アミノ-デオキシアデノシン等の修飾ヌクレオシドなどを含むヌクレオチドが挙げられるが、これらに限定されない。本発明のアプタマーを構成する上記オリゴヌクレオチドが修飾ヌクレオチドを含む場合、その修飾ヌクレオチドは、対応する天然型(すなわち、未修飾)ヌクレオチドに置換されて存在し得る。すなわち、例えば、本発明のアプタマーにおけるオリゴヌクレオチドが配列番号14又は24で示される塩基配列を含み、かつ修飾ヌクレオチドを含む場合、修飾ヌクレオチドは、配列番号14又は24で示される塩基配列中の対応する天然型ヌクレオチドの少なくとも1つと置換されて存在していてもよく、その場合も「配列番号14又は24で示される塩基配列を含むオリゴヌクレオチド」の範囲に含まれるものとする。「配列番号14又は24で示される塩基配列からなるオリゴヌクレオチド」及び「配列番号14又は24で示される塩基配列に対して60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、例えば95%以上の配列同一性を有する塩基配列を含むオリゴヌクレオチド」についても同様に解釈される。本発明において「人工塩基」とは、天然型塩基でも、天然型塩基が化学修飾されたものでもない核酸塩基を指し、例えば、人工塩基対として組み合わせて使用可能な、7-(2-チエニル)イミダゾ[4,5-b]ピリジン(Ds)と2-ニトロ-4-プロピニルピロール(Px)や、5SICSとNaMなどが挙げられるが、これらに限定されない。本発明のアプタマーを構成する上記オリゴヌクレオチドが人工塩基を含む場合、その人工塩基は、オリゴヌクレオチド中の任意の位置に存在してもよい。例えば、本発明のアプタマーを構成する上記オリゴヌクレオチドが配列番号14又は24で示される塩基配列を含み、かつ人工塩基を含む場合、人工塩基は、配列番号14又は24で示される塩基配列中の任意の位置に挿入されていてもよく、その場合も「配列番号14又は24で示される塩基配列を含むオリゴヌクレオチド」の範囲に含まれるものとする。一実施形態では、塩基配列CGn(n=5~7)、具体的には塩基配列CGGGGGGG、CGGGGGG、及びCGGGGGのうち少なくとも1つを含む本発明のアプタマーを構成するオリゴヌクレオチドが、人工塩基を含む場合、それぞれの塩基配列CGnを中断しない位置に人工塩基が挿入され得る。本発明に関して、「化学修飾(された)」又は「修飾(された)」オリゴヌクレオチド、ヌクレオチド、ヌクレオシド等の生体分子は、生成後の生体分子を修飾したものに限定されず、修飾された状態で生成された生体分子も包含する。 Further, the oligonucleotide constituting the aptamer of the present invention may contain at least one of a modified nucleotide and an artificial base, and in that case, it is chemically modified by containing it. In the present invention, a "modified nucleotide" is a nucleotide in which the sugar moiety, phosphate moiety, and/or base moiety of a natural nucleotide is chemically modified. A modified nucleotide may be a nucleotide containing a modified nucleoside. Examples of modified nucleotides include halogenated bases such as 2'-fluorinated pyrimidine, methylated bases such as 2'-O-methylated bases, modified nucleosides such as deoxyuridine, inosine, and 2-amino-deoxyadenosine. These include, but are not limited to, nucleotides containing nucleotides. When the oligonucleotide constituting the aptamer of the present invention contains a modified nucleotide, the modified nucleotide may be present in place of a corresponding natural (ie, unmodified) nucleotide. That is, for example, when the oligonucleotide in the aptamer of the present invention includes the base sequence shown by SEQ ID NO: 14 or 24 and also includes a modified nucleotide, the modified nucleotide corresponds to the base sequence shown by SEQ ID NO: 14 or 24. It may be present as a substitute for at least one of the natural nucleotides, and in that case, it is also included in the scope of "the oligonucleotide comprising the base sequence shown by SEQ ID NO: 14 or 24.""Oligonucleotide consisting of the base sequence shown by SEQ ID NO: 14 or 24" and "60% or more, preferably 70% or more, more preferably 80% or more, even more preferably, the base sequence shown by SEQ ID NO: 14 or 24 is similarly interpreted as "an oligonucleotide containing a base sequence having a sequence identity of 90% or more, for example 95% or more." In the present invention, the term "artificial base" refers to a nucleobase that is neither a natural base nor a chemically modified natural base, such as 7-(2-thienyl), which can be used in combination as an artificial base pair. Examples include, but are not limited to, imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px), 5SICS and NaM, and the like. When the oligonucleotide constituting the aptamer of the present invention contains an artificial base, the artificial base may be present at any position in the oligonucleotide. For example, when the oligonucleotide constituting the aptamer of the present invention contains the base sequence shown by SEQ ID NO: 14 or 24 and also contains an artificial base, the artificial base may be any one of the base sequences shown by SEQ ID NO: 14 or 24. The oligonucleotide may be inserted at the position shown in SEQ ID NO: 14 or 24. In one embodiment, the oligonucleotide constituting the aptamer of the present invention, which includes the base sequence CG n (n=5 to 7), specifically, at least one of the base sequences CGGGGGGG, CGGGGGG, and CGGGGG, comprises an artificial base. If so, the artificial base can be inserted at a position that does not interrupt the respective base sequence CG n . Regarding the present invention, biomolecules such as "chemically modified" or "modified" oligonucleotides, nucleotides, nucleosides, etc. are not limited to those obtained by modifying biomolecules after production, but are in a modified state. It also includes biomolecules produced in
 本発明のアプタマーを構成する上記オリゴヌクレオチドは、グアニンリッチであり、グアニン四重鎖(G4)構造を形成可能であることが好ましく、パラレル型グアニン四重鎖(G4)構造を形成可能であることがさらに好ましい。パラレル型G4構造を形成したオリゴヌクレオチドは、CDスペクトル解析において、一般的に、パラレル型G4構造の特徴である260~270nm(例えば、265nm)付近に正のピーク、235~245nm(例えば、240nm)付近に負のピークを示す。好ましい実施形態では、本発明のアプタマーは、グアニン四重鎖(G4)構造、特に、パラレル型グアニン四重鎖(G4)構造を形成した状態で、ペプチドリンカー(GGGGS)3を有するscFvに結合できる。 The oligonucleotide constituting the aptamer of the present invention is preferably guanine-rich and capable of forming a guanine quadruplex (G4) structure, and is capable of forming a parallel guanine quadruplex (G4) structure. is even more preferable. In CD spectrum analysis, oligonucleotides that have formed a parallel G4 structure generally exhibit a positive peak near 260 to 270 nm (e.g., 265 nm), which is characteristic of a parallel G4 structure, and a positive peak at 235 to 245 nm (e.g., 240 nm). A negative peak is shown nearby. In a preferred embodiment, the aptamer of the invention is capable of binding to an scFv with a peptide linker (GGGGS) 3 while forming a guanine quadruplex (G4) structure, in particular a parallel guanine quadruplex (G4) structure. .
 本発明のアプタマーを構成する上記オリゴヌクレオチドは、当業者であれば、常法により、例えば、自動核酸合成機などを使用して合成することができる。 The oligonucleotides constituting the aptamer of the present invention can be synthesized by those skilled in the art using conventional methods, for example, using an automatic nucleic acid synthesizer.
 本発明のアプタマーは、それを構成するオリゴヌクレオチドを介して、ペプチドリンカー(GGGGS)3を有するscFvに特異的に結合でき、好ましくは、scFvのペプチドリンカー(GGGGS)3を含む構造に特異的に結合できる。本発明のアプタマーは、異なる抗原結合性を有するscFvにも結合でき、好ましくは、scFvに対してより汎用的な結合能を有する。好ましい実施形態では、本発明のアプタマーは、ペプチドリンカー(GGGGS)3を有する様々なscFvに対し、その抗原結合活性を阻害することなしに、特異的に結合することができる。本発明のアプタマーは、ペプチドリンカー(GGGGS)を有するscFvに特異的に結合することにより、当該scFvを修飾することができる。本発明のアプタマーはペプチドリンカー(GGGGS)3を有するscFvと結合し、scFv-アプタマー複合体(scFv-アプタマーコンジュゲート)を生成(形成)することができる。 The aptamer of the present invention can specifically bind to an scFv having a peptide linker (GGGGS) 3 through the oligonucleotide constituting it, and preferably specifically binds to a structure containing a peptide linker (GGGGS) 3 of an scFv. Can be combined. The aptamer of the present invention can also bind to scFvs having different antigen binding properties, and preferably has a more general binding ability to scFvs. In a preferred embodiment, the aptamer of the present invention can specifically bind to various scFvs having a peptide linker (GGGGS) 3 without inhibiting their antigen binding activity. The aptamer of the present invention can modify an scFv having a peptide linker (GGGGS) by specifically binding to the scFv. The aptamer of the present invention can bind to an scFv having a peptide linker (GGGGS) 3 to generate (form) an scFv-aptamer complex (scFv-aptamer conjugate).
 本発明は、本発明のアプタマーを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出、修飾又は精製用キットも提供する。本発明のscFv検出、修飾又は精製用キットは、本発明のアプタマーに加えて、scFv検出、修飾又は精製方法を示す(scFvの検出、修飾又は精製のための)使用説明書を含んでもよい。本発明のscFv検出、修飾又は精製用キットはまた、scFv検出、修飾又は精製の際に使用するための、バッファーなどの他の試薬を含んでもよい。 The present invention also provides a kit for the detection, modification or purification of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), which includes the aptamer of the present invention. The scFv detection, modification, or purification kit of the present invention may contain, in addition to the aptamer of the present invention, instructions for use (for scFv detection, modification, or purification) indicating the scFv detection, modification, or purification method. The kit for scFv detection, modification or purification of the present invention may also contain other reagents such as buffers for use during scFv detection, modification or purification.
 本発明は、本発明のアプタマーと、そのアプタマーが結合した(例えば、固定化された)支持体とを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出又は精製用デバイスも提供する。支持体は、マイクロアレイなどの核酸アレイの担体などに使用される基板、電極、カラム担体等であり得るが、それに限定されない。本発明のscFv検出又は精製用デバイスは、例えば、核酸アレイ、電気化学センサ、クロマトグラフィーカラム等であり得る。 The present invention also provides a device for detection or purification of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), which comprises the aptamer of the present invention and a support to which the aptamer is bound (e.g., immobilized). provide. The support may be, but is not limited to, a substrate, an electrode, a column carrier, etc. used as a carrier for a nucleic acid array such as a microarray. The scFv detection or purification device of the present invention can be, for example, a nucleic acid array, an electrochemical sensor, a chromatography column, etc.
 本発明はまた、本発明のアプタマーを使用した、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出又は精製方法も提供する。本発明は、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出又は精製における、本発明のアプタマーの使用も提供する。本発明のscFv検出方法は、例えば、本発明のscFv検出用キット又はデバイスを使用して実施することができる。本発明のscFv精製方法は、例えば、本発明のscFv精製用キット又はデバイスを使用して実施することができる。本発明のscFvの検出方法は、抗体医薬としての、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの薬物動態解析にも使用することができる。本発明では、本発明のアプタマーを、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの薬物動態解析にも使用することができる。 The present invention also provides a method for detecting or purifying scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) using the aptamer of the present invention. The invention also provides the use of the aptamer of the invention in the detection or purification of scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3). The scFv detection method of the present invention can be carried out using, for example, the scFv detection kit or device of the present invention. The scFv purification method of the present invention can be carried out using, for example, the scFv purification kit or device of the present invention. The scFv detection method of the present invention can also be used for pharmacokinetic analysis of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) as an antibody drug. In the present invention, the aptamer of the present invention can also be used for pharmacokinetic analysis of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
 一実施形態では、本発明のscFvの検出方法は、標識されたオリゴヌクレオチドを含む本発明のアプタマーを、scFvを含む試料(例えば、試料溶液)と接触させて(例えば、混合して)scFv-アプタマー複合体を生成し、scFv-アプタマー複合体に由来する標識シグナルを検出することを含む方法である。典型的な実施形態では、より具体的には、標識されたオリゴヌクレオチドを含む本発明のアプタマーを、scFvを含む試料と共に溶液中でインキュベートすることにより、アプタマーを、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに結合させてscFv-アプタマー複合体を生成し、そのscFv-アプタマー複合体に由来する標識シグナル、より具体的には、scFv-アプタマー複合体におけるアプタマーの標識に由来する標識シグナルを検出することによって、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvを検出することができる。生成したscFv-アプタマー複合体は、洗浄等により溶液中の遊離成分から分離した後に、標識シグナルの検出を行うことが好ましい。検出すべき標識シグナルは、使用するアプタマーの標識や測定系に基づいて当業者であれば容易に認識できる。例えば、蛍光物質で標識したアプタマーを使用した場合の標識シグナルは、典型的にはその蛍光物質からの蛍光であり、また、放射性同位元素で標識したアプタマーを使用した場合の標識シグナルは、典型的にはその放射性同位元素からの放射活性である。例えば、ビオチンで標識したアプタマーを使用した場合の標識シグナルは、HRP標識したアビジン又はアビジン誘導体(ストレプトアビジン等)と化学発光基質を用いた化学発光測定系においては、典型的には化学発光である。例えば、ビオチンで標識したアプタマーを使用した場合の標識シグナルは、HRP標識したアビジン又はアビジン誘導体(ストレプトアビジン等)と3,3',5,5'-テトラメチルベンジジン(TMB)などの発色基質を用いた発色反応測定系においては、典型的には発色強度である。一実施形態では、本発明のscFvの検出方法は、例えば、標識されたオリゴヌクレオチドを含む本発明のアプタマーが結合した(例えば、固定化された)支持体を備えた核酸アレイやクロマトグラフィーカラム等を用いて実施することができる。一実施形態では、本発明のscFvの検出方法は、例えば、磁性ビーズなどの担体に結合し(例えば、固定化され)、かつ標識されたオリゴヌクレオチドを含む本発明のアプタマーを使用し、当該担体を利用して、生成したscFv-アプタマー複合体を溶液中の遊離成分から分離することを含む方法であり得る。本発明のscFvの検出方法はまた、scFv-アプタマー複合体、又はscFvのさらなる検出工程を含んでもよい。本発明のscFvの検出方法は、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの定量のために用いることもできる。 In one embodiment, the scFv detection method of the present invention comprises contacting (e.g., mixing) an aptamer of the present invention containing a labeled oligonucleotide with a sample (e.g., sample solution) containing the scFv- The method includes generating an aptamer complex and detecting a label signal derived from the scFv-aptamer complex. In a typical embodiment, more specifically, an aptamer of the invention comprising a labeled oligonucleotide is incubated in solution with a sample comprising an scFv, thereby incubating the aptamer with a peptide linker (GGGGS) 3 (sequence number 3) to generate an scFv-aptamer complex, and a label signal derived from the scFv-aptamer complex, more specifically, a label derived from the labeling of the aptamer in the scFv-aptamer complex. By detecting the signal, the scFv with the peptide linker (GGGGS) 3 (SEQ ID NO: 3) can be detected. It is preferable to detect the label signal after the generated scFv-aptamer complex is separated from free components in the solution by washing or the like. The label signal to be detected can be easily recognized by those skilled in the art based on the label of the aptamer used and the measurement system. For example, when using an aptamer labeled with a fluorescent substance, the labeling signal is typically the fluorescence from the fluorescent substance, and when using an aptamer labeled with a radioisotope, the labeling signal is typically the fluorescence from the fluorescent substance. is the radioactivity from its radioactive isotope. For example, when using a biotin-labeled aptamer, the labeling signal is typically chemiluminescence in a chemiluminescent measurement system using HRP-labeled avidin or an avidin derivative (streptavidin, etc.) and a chemiluminescent substrate. . For example, the labeling signal when using a biotin-labeled aptamer is obtained by combining HRP-labeled avidin or an avidin derivative (streptavidin, etc.) with a chromogenic substrate such as 3,3',5,5'-tetramethylbenzidine (TMB). In the color reaction measurement system used, the color development intensity is typically measured. In one embodiment, the scFv detection method of the present invention comprises, for example, a nucleic acid array or a chromatography column comprising a support to which an aptamer of the present invention containing a labeled oligonucleotide is bound (e.g., immobilized). It can be carried out using In one embodiment, the scFv detection method of the invention uses an aptamer of the invention that is bound (e.g., immobilized) to a carrier, such as a magnetic bead, and comprises a labeled oligonucleotide; The method may include separating the generated scFv-aptamer complex from free components in solution using the method. The scFv detection method of the present invention may also include a further step of detecting the scFv-aptamer complex or scFv. The scFv detection method of the present invention can also be used for the quantification of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
 一実施形態では、本発明のscFvの検出方法は、電子伝達物質との結合により修飾されたオリゴヌクレオチドを含む本発明のアプタマーを固定化した電極を、scFvを含む試料(例えば、試料溶液)と接触させて(例えば、混合して)、電極上でscFv-アプタマー複合体を生成し、scFv-アプタマー複合体の生成による電極における電流等の変化を検出することを含むものであってよく、その電極における電流等の変化が、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの存在を示す。本発明のscFvの検出方法は、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの定量のために用いることもできる。一実施形態では、本発明のscFvの検出方法は、例えば、本発明のアプタマーが結合した(例えば、固定化された)電極を備えた電気化学センサ等のデバイスを用いて、実施することができる。 In one embodiment, the scFv detection method of the present invention includes an electrode immobilized with an aptamer of the present invention containing an oligonucleotide modified by binding to an electron mediator, and a sample containing the scFv (for example, a sample solution). contacting (e.g., mixing) to form an scFv-aptamer complex on the electrode and detecting a change in current, etc. at the electrode due to the formation of the scFv-aptamer complex; Changes in current, etc. at the electrode indicate the presence of the scFv with the peptide linker (GGGGS) 3 (SEQ ID NO: 3). The scFv detection method of the present invention can also be used for the quantification of scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3). In one embodiment, the scFv detection method of the invention can be carried out using a device such as an electrochemical sensor comprising an electrode to which an aptamer of the invention is bound (e.g., immobilized). .
 一実施形態では、本発明のscFvの精製方法は、本発明のアプタマーを、scFvを含む試料(例えば、試料溶液)と接触させて(例えば、混合して)scFv-アプタマー複合体を生成し、scFv-アプタマー複合体を前記試料から分離することを含む方法である。典型的な実施形態では、より具体的には、本発明のアプタマーを、scFvを含む試料と共に溶液中でインキュベートすることにより、アプタマーをペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに結合させてscFv-アプタマー複合体を生成し、そのscFv-アプタマー複合体を、洗浄等により溶液中の遊離成分から分離することによって、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvを精製することができる。一実施形態では、本発明のscFvの精製方法は、例えば、本発明のアプタマーが結合した(例えば、固定化された)支持体を備えた核酸アレイやクロマトグラフィーカラム等を用いて実施することができる。一実施形態では、本発明のscFvの精製方法は、例えば、磁性ビーズなどの担体と結合した(例えば、固定化された)本発明のアプタマーを使用し、当該担体を利用して、生成したscFv-アプタマー複合体を溶液中の遊離成分から分離することを含む方法であり得る。分離したscFv-アプタマー複合体は、さらに精製工程に供してもよい。アプタマーを切断又は分解することにより、scFv-アプタマー複合体からscFvを分離してもよく、そのscFvをさらに抽出精製してもよい。本発明のscFvの精製方法は、scFv-アプタマー複合体、又はscFvの検出工程をさらに含んでもよい。 In one embodiment, a method of purifying an scFv of the invention comprises contacting (e.g., mixing) an aptamer of the invention with a sample (e.g., a sample solution) containing an scFv to produce an scFv-aptamer complex; The method comprises isolating the scFv-aptamer complex from the sample. In an exemplary embodiment, more specifically, an aptamer of the invention is coupled to an scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3) by incubating the aptamer of the invention in solution with a sample containing the scFv. to generate an scFv-aptamer complex, and the scFv-aptamer complex is separated from free components in the solution by washing etc., thereby purifying the scFv having the peptide linker (GGGGS) 3 (SEQ ID NO: 3). be able to. In one embodiment, the scFv purification method of the present invention can be carried out using, for example, a nucleic acid array, a chromatography column, etc. provided with a support to which the aptamer of the present invention is bound (e.g., immobilized). can. In one embodiment, the scFv purification method of the present invention uses an aptamer of the present invention bound (e.g., immobilized) to a carrier such as, for example, magnetic beads, and utilizes the carrier to produce scFv. - The method may involve separating the aptamer complex from free components in solution. The separated scFv-aptamer complex may be further subjected to a purification step. The scFv may be separated from the scFv-aptamer complex by cleaving or decomposing the aptamer, and the scFv may be further extracted and purified. The scFv purification method of the present invention may further include a step of detecting the scFv-aptamer complex or scFv.
 本発明のscFvの検出又は精製方法では、scFv-アプタマー複合体、又はscFvの検出のために、酵素結合オリゴヌクレチドアッセイ(Enzyme-linked oligonucleotide assay; ELONA)、酵素結合免疫吸着アッセイ(Enzyme-linked immunosorbent assay; ELISA)、バイオレイヤー干渉法(BLI)、イムノブロット、免疫沈降法、イムノキャプチャー法、フローサイトメトリー、プロテインアレイ技術、分光法、質量分析、クロマトグラフィー、表面プラズモン共鳴(SPR)、蛍光消光(fluorescence extinction)及び蛍光エネルギー移動(FRET)などの任意の核酸又はタンパク質検出技術を使用することができる。 In the scFv detection or purification method of the present invention, enzyme-linked oligonucleotide assay (ELONA), enzyme-linked immunosorbent assay (Enzyme-linked immunosorbent assay; ELISA), biolayer interferometry (BLI), immunoblot, immunoprecipitation, immunocapture, flow cytometry, protein array technology, spectroscopy, mass spectrometry, chromatography, surface plasmon resonance (SPR), fluorescence Any nucleic acid or protein detection technique can be used, such as fluorescence extinction and fluorescence energy transfer (FRET).
 さらに本発明は、本発明のアプタマーを用いた、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに特異的に結合するオリゴヌクレオチドを含むアプタマーのスクリーニング方法も提供する。より具体的には、本発明のスクリーニング方法は、本発明のアプタマー(より具体的には本発明のアプタマーを構成する上記オリゴヌクレオチド)にヌクレオチド変異を導入し、得られた変異体の、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに対する結合能を測定し、そのscFvに特異的に結合する変異体を、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに特異的に結合するオリゴヌクレオチドを含むアプタマー(又はアプタマー候補)として選択することを含む。一実施形態では、本発明のスクリーニング方法では、本発明のアプタマー、例えば、本発明のアプタマーの配列番号14又は24で示される塩基配列(特に、その塩基配列全体)に対して60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、例えば95%以上の配列同一性を有する塩基配列、例えば配列番号14又は24で示される塩基配列を含むか又はその塩基配列からなるオリゴヌクレオチドにヌクレオチド変異を導入することが好ましい。 Furthermore, the present invention also provides a method for screening an aptamer comprising an oligonucleotide that specifically binds to an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) using the aptamer of the present invention. More specifically, the screening method of the present invention involves introducing a nucleotide mutation into the aptamer of the present invention (more specifically, the above-mentioned oligonucleotide constituting the aptamer of the present invention), and introducing a peptide linker of the resulting mutant. (GGGGS) 3 (SEQ ID NO: 3) is measured, and a variant that specifically binds to that scFv is specifically bound to the scFv that has a peptide linker (GGGGS) 3 (SEQ ID NO: 3). This includes selecting an aptamer (or aptamer candidate) containing an oligonucleotide that In one embodiment, in the screening method of the present invention, the aptamer of the present invention, for example, 60% or more of the base sequence (especially the entire base sequence) shown in SEQ ID NO: 14 or 24 of the aptamer of the present invention, preferably contains a nucleotide sequence having a sequence identity of 70% or more, more preferably 80% or more, still more preferably 90% or more, for example 95% or more, for example, the nucleotide sequence shown in SEQ ID NO: 14 or 24, or the nucleotide sequence thereof It is preferable to introduce nucleotide mutations into an oligonucleotide consisting of
 本発明のアプタマーへのヌクレオチド変異の導入は、変異を導入した塩基配列に基づいて自動核酸合成機により核酸合成することにより実施できる他、PCRなどの核酸増幅技術を用いた変異導入技術により実施することもできる。あるいは、本発明のアプタマーへのヌクレオチド変異の導入は、in silico maturation(Savory et al., Biosens. Bioelectron., 26, (2010) 1386-1391)を利用して行ってもよい。アプタマー変異体のscFvに対する結合能の測定は、例えば、後述の実施例に記載されているようにして、ELONA、ドットブロット解析、又はバイオレイヤー干渉法(BLI)によって行ってもよいし、他の生体分子相互作用測定アッセイにより行ってもよい。使用する測定方法に応じて、例えば、アプタマーのオリゴヌクレオチドを標識したり精製担体と結合したりすることも好ましい。本発明のスクリーニング方法は、本発明のアプタマーをベースとして配列進化を行うことにより、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに対するより優れた結合特性を有するアプタマーを効率良く選別し取得するための手法を提供することができる。好ましい実施形態では、本発明のスクリーニング方法を用いて得られたアプタマーは、さらなる本発明のアプタマーとして使用され得る。 Introducing nucleotide mutations into the aptamer of the present invention can be carried out by synthesizing nucleic acids using an automatic nucleic acid synthesizer based on the base sequence into which mutations have been introduced, or by mutagenesis techniques using nucleic acid amplification techniques such as PCR. You can also do that. Alternatively, nucleotide mutations may be introduced into the aptamer of the present invention using in silico maturation (Savory et al., Biosens. Bioelectron., 26, (2010) 1386-1391). Determination of the binding ability of aptamer variants to scFv may be performed, for example, by ELONA, dot blot analysis, or biolayer interferometry (BLI), as described in the Examples below, or by other methods. It may be performed by a biomolecular interaction measurement assay. Depending on the measurement method used, it is also preferable, for example, to label the oligonucleotide of the aptamer or to bind it to a purification carrier. The screening method of the present invention efficiently selects and obtains aptamers with superior binding properties to scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) by performing sequence evolution based on the aptamer of the present invention. We can provide a method for doing so. In a preferred embodiment, the aptamer obtained using the screening method of the invention can be used as a further aptamer of the invention.
 一実施形態において、本発明における本発明のアプタマーとscFvとの反応(例えば、scFv-アプタマー複合体を生成するための、本発明のアプタマーとscFvとの接触工程)は、任意のカリウム濃度下で行えばよいが、例えば0~100mMのカリウム濃度、又は10~100mMのカリウム濃度下で行ってもよい。 In one embodiment, the reaction of the aptamer of the present invention with the scFv in the present invention (e.g., the step of contacting the aptamer of the present invention with the scFv to generate an scFv-aptamer complex) is performed under any potassium concentration. For example, it may be carried out at a potassium concentration of 0 to 100 mM or 10 to 100 mM.
 本発明では、本発明のアプタマーを用いてscFvを修飾することもできる。本発明は、本発明のアプタマーを、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvと接触させて(例えば、混合して)、scFv-アプタマー複合体を生成することを含む、scFvを修飾する方法も提供する。この方法によれば、scFvを、アプタマーの付加により修飾することができる。一実施形態では、scFvを修飾するために、化学修飾されていないオリゴヌクレオチドを含む本発明のアプタマーを用いてもよい。別の実施形態では、例えば、化学修飾されたオリゴヌクレオチドを含む本発明のアプタマー(化学修飾された本発明のアプタマー)を、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvと接触させて(例えば、混合して)、scFv-アプタマー複合体を生成することにより、その化学修飾を有するscFvを作製することができる。本発明は、化学修飾されたオリゴヌクレオチドを含む本発明のアプタマー(化学修飾された本発明のアプタマー)を、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvと接触させて(例えば、混合して)scFv-アプタマー複合体を生成することを含む、scFvを化学修飾する方法、又は、化学修飾を有するscFvを作製する方法も提供する。化学修飾については上述のとおりである。化学修飾されたオリゴヌクレオチドを含む本発明のアプタマーを用いる本方法の一実施形態では、例えば、標識されたオリゴヌクレオチドを含む本発明のアプタマー(標識された本発明のアプタマー)を、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvと接触させてscFv-アプタマー複合体を生成することにより、scFvを標識することができる。一実施形態では、例えば、細胞毒性物質又は医療用薬剤のような薬物と結合したオリゴヌクレオチドを含む本発明のアプタマー(薬物と結合した本発明のアプタマー)を、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvと接触させてscFv-アプタマー複合体を生成することにより、scFvに薬物を結合することができる。一実施形態では、例えば、担体又は生体適合性ポリマー等と結合したオリゴヌクレオチドを含む本発明のアプタマー(担体又は生体適合性ポリマー等と結合した本発明のアプタマー)を、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvと接触させてscFv-アプタマー複合体を生成することにより、scFvに担体又は生体適合性ポリマー等を結合することができる。本発明は、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvを修飾、例えば化学修飾するための本発明のアプタマーの使用も提供する。 In the present invention, scFv can also be modified using the aptamer of the present invention. The invention comprises contacting (e.g., mixing) an aptamer of the invention with an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) to generate an scFv-aptamer complex. It also provides a method for modifying. According to this method, scFv can be modified by adding an aptamer. In one embodiment, aptamers of the invention comprising oligonucleotides that are not chemically modified may be used to modify scFvs. In another embodiment, for example, an aptamer of the invention comprising a chemically modified oligonucleotide (chemically modified aptamer of the invention) is contacted with an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3). An scFv with that chemical modification can be made by (eg, mixing) to generate an scFv-aptamer complex. The present invention involves contacting ( e.g. , mixed Also provided are methods of chemically modifying scFvs or producing scFvs having chemical modifications, including generating scFv-aptamer conjugates. Chemical modification is as described above. In one embodiment of the method using the aptamer of the invention comprising a chemically modified oligonucleotide, for example, the aptamer of the invention comprising a labeled oligonucleotide (labeled aptamer of the invention) is linked to a peptide linker (GGGGS). ) 3 (SEQ ID NO: 3) to generate an scFv-aptamer complex. In one embodiment, an aptamer of the invention comprising an oligonucleotide conjugated to a drug, such as a cytotoxic substance or a medical drug (an aptamer of the invention conjugated to a drug), is linked to a peptide linker (GGGGS) 3 (SEQ ID NO: A drug can be bound to an scFv by contacting it with an scFv having 3) to generate an scFv-aptamer complex. In one embodiment, for example, an aptamer of the invention comprising an oligonucleotide conjugated to a carrier or a biocompatible polymer or the like (an aptamer of the invention conjugated to a carrier or a biocompatible polymer or the like) is linked to a peptide linker (GGGGS) 3 ( By contacting the scFv having SEQ ID NO: 3) to generate an scFv-aptamer complex, a carrier, a biocompatible polymer, or the like can be bound to the scFv. The invention also provides the use of an aptamer of the invention for modifying, eg chemically modifying, an scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
 本発明の上記方法においては、本発明のアプタマーを含む任意の組成物を用いることができる。本発明は、本発明のアプタマーを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出、修飾又は精製用の組成物も提供する。本発明のアプタマーを含む組成物は、試薬組成物であってよい。本発明のアプタマーを含む組成物は、例えば担体、賦形剤、又は緩衝液等の媒体(medium)のような添加剤をさらに含んでもよく、また、pH調整剤、安定化剤などの他の添加剤をさらに含んでもよい。 In the above method of the present invention, any composition containing the aptamer of the present invention can be used. The present invention also provides compositions for the detection, modification or purification of scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3), comprising the aptamer of the invention. A composition comprising an aptamer of the invention may be a reagent composition. Compositions containing aptamers of the invention may further contain additives such as carriers, excipients, or mediums such as buffers, and other additives such as pH adjusters, stabilizers, etc. It may further contain additives.
 本発明はまた、本発明のアプタマーと結合(すなわち、コンジュゲート)した、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvを含む、scFv-アプタマー複合体(scFv-アプタマーコンジュゲート)も提供する。一実施形態では、本発明は、化学修飾されたオリゴヌクレオチド(例えば、標識されたオリゴヌクレオチド)を含む本発明のアプタマーと結合した、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvを含む、化学修飾を有する(例えば、標識された)、scFv-アプタマー複合体も提供する。化学修飾については上述のとおりである。一実施形態では、本発明は、細胞毒性物質又は医療用薬剤のような薬物と結合したオリゴヌクレオチドを含む本発明のアプタマー(薬物と結合した本発明のアプタマー)と結合した、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvを含む、薬物を有するscFv-アプタマー複合体も提供する。薬物と結合した本発明のアプタマーを用いることにより、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに対して当該薬物の薬効を付与することができる。本発明のアプタマーに結合した薬物を有する本発明のscFv-アプタマー複合体は、その薬物の薬効に基づいて医薬(例えば、医薬組成物)の有効成分として利用することができる。そのような医薬、例えば、医薬組成物は、本発明のscFv-アプタマー複合体に加えて、製薬上許容される添加剤を含んでもよい。製薬上許容される添加剤としては、例えば、製剤用担体、賦形剤、界面活性剤、結合剤、崩壊剤、滑沢剤、溶解補助剤、懸濁化剤、コーティング剤、着色剤、矯味矯臭剤、保存剤、緩衝剤、pH調整剤、希釈剤、安定化剤、噴射剤、酸化防止剤、増粘剤等が挙げられるが、これらに限定されない。 The present invention also provides scFv-aptamer complexes (scFv-aptamer conjugates) comprising an scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3) linked (i.e., conjugated) with an aptamer of the invention. do. In one embodiment, the invention comprises an scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3) conjugated to an aptamer of the invention comprising a chemically modified oligonucleotide (e.g. a labeled oligonucleotide). Also provided are scFv-aptamer conjugates having chemical modifications (eg, labeled). Chemical modification is as described above. In one embodiment, the invention provides a peptide linker (GGGGS) conjugated to an aptamer of the invention comprising an oligonucleotide conjugated to a drug, such as a cytotoxic substance or a medical drug (aptamer of the invention conjugated to a drug). Also provided is an scFv-aptamer conjugate with a drug comprising an scFv having the following: 3 (SEQ ID NO: 3). By using the aptamer of the present invention bound to a drug, the drug's efficacy can be imparted to scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3). The scFv-aptamer complex of the present invention having a drug bound to the aptamer of the present invention can be used as an active ingredient of a medicament (eg, a pharmaceutical composition) based on the drug's efficacy. Such a medicament, eg, a pharmaceutical composition, may contain, in addition to the scFv-aptamer conjugate of the invention, pharmaceutically acceptable additives. Examples of pharmaceutically acceptable additives include pharmaceutical carriers, excipients, surfactants, binders, disintegrants, lubricants, solubilizing agents, suspending agents, coating agents, coloring agents, and flavoring agents. Examples include, but are not limited to, flavoring agents, preservatives, buffers, pH adjusters, diluents, stabilizers, propellants, antioxidants, thickeners, and the like.
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail using Examples. However, the technical scope of the present invention is not limited to these Examples.
[実施例1]一本鎖抗体528 scFvの調製
 本実施例では、抗ヒト上皮増殖因子受容体(EGFR)ヒト化モノクローナル抗体528に由来し、医薬品やセンシング素子としての利用実績のある抗ヒトEGFR一本鎖抗体528 scFvを、組換え法によって生産し、Ni-NTAアフィニティークロマトグラフィーにより精製した。
[Example 1] Preparation of single chain antibody 528 scFv In this example, the anti-human epidermal growth factor receptor (EGFR) was derived from the humanized monoclonal antibody 528, which has a proven track record of use as a pharmaceutical and sensing element. Single chain antibody 528 scFv was produced by recombinant methods and purified by Ni-NTA affinity chromatography.
 528 scFv発現ベクターであるpRA-528 scFvは木村勇斗氏(東京農工大学、日本)より供与された。pRA-528 scFvのベクターマップを図1Aに、pRA-528 scFv中のタンパク質コード配列(配列番号1)及びそれによりコードされるアミノ酸配列(配列番号2)を図2に示す。図1A及び図2に示されるように、528 scFvは重鎖可変領域(VH)と軽鎖可変領域(VL)がペプチドリンカー(GGGGS)3を介して連結されたポリペプチド配列を含む。 The 528 scFv expression vector, pRA-528 scFv, was provided by Mr. Hayato Kimura (Tokyo University of Agriculture and Technology, Japan). The vector map of pRA-528 scFv is shown in FIG. 1A, and the protein coding sequence (SEQ ID NO: 1) in pRA-528 scFv and the amino acid sequence encoded thereby (SEQ ID NO: 2) are shown in FIG. As shown in FIGS. 1A and 2, 528 scFv includes a polypeptide sequence in which a heavy chain variable region (VH) and a light chain variable region (VL) are linked via a peptide linker (GGGGS) 3 .
 pRA-528 scFvで大腸菌BL21(DE3)株を形質転換し、LB寒天培地(Merck)上で37℃で18時間培養した。得られたコロニーから、終濃度100 μg/mLのアンピシリンを含むLB液体培地に植菌し、28℃、170 rpmで18時間にわたり前培養した。前培養液1 mLをAuto induction培地(アンピシリン100 μg/mL、0.5%グリセロール、0.05%グルコース、0.2% β-ラクトース、50 mM KH2PO4、25 mM (NH4)2SO4、50 mM Na2HPO4、1 mM MgSO4)100 mLに添加し、バッフル付フラスコで20℃、170 rpmで40時間振盪培養した。 Escherichia coli BL21 (DE3) strain was transformed with pRA-528 scFv and cultured on LB agar medium (Merck) at 37°C for 18 hours. The obtained colonies were inoculated into an LB liquid medium containing ampicillin at a final concentration of 100 μg/mL, and precultured at 28° C. and 170 rpm for 18 hours. Add 1 mL of the preculture solution to Auto induction medium (ampicillin 100 μg/mL, 0.5% glycerol, 0.05% glucose, 0.2% β-lactose, 50 mM KH 2 PO 4 , 25 mM (NH 4 ) 2 SO 4 , 50 mM Na 2 HPO 4 , 1 mM MgSO 4 ) and cultured with shaking at 20° C. and 170 rpm for 40 hours in a baffled flask.
 得られた培養液を4500×g、4℃で15分間遠心分離し、菌体を除去した。得られた培養上清をニトロセルロース膜でろ過した。得られたろ液をNi-セファロースカラム(CV: 1 mL)に添加し、種々の濃度の溶出バッファーを用いてNi-NTAアフィニティークロマトグラフィーを行った。Ni-NTAアフィニティークロマトグラフィーで得られたフロースルー液及び各溶出フラクションについてSDS-PAGE解析により精製度を確認した。Ni-NTAアフィニティークロマトグラフィー後のSDS-PAGE解析結果を図3に示す。300 mM イミダゾール/PBS(pH7.4)のフラクションにおいて528 scFvの理論分子量(30×103)付近に濃いバンドが確認された。 The resulting culture solution was centrifuged at 4500 xg and 4°C for 15 minutes to remove bacterial cells. The obtained culture supernatant was filtered through a nitrocellulose membrane. The obtained filtrate was added to a Ni-Sepharose column (CV: 1 mL), and Ni-NTA affinity chromatography was performed using elution buffers of various concentrations. The purity of the flow-through liquid and each elution fraction obtained by Ni-NTA affinity chromatography was confirmed by SDS-PAGE analysis. Figure 3 shows the results of SDS-PAGE analysis after Ni-NTA affinity chromatography. In the 300 mM imidazole/PBS (pH 7.4) fraction, a dark band was observed near the theoretical molecular weight (30×10 3 ) of 528 scFv.
 300 mM イミダゾール/PBS(pH7.4)のフラクションを回収し、ゲルろ過クロマトグラフィーを行い単量体のみを回収した。溶出バッファーとしては20 mMリン酸カリウムバッファー(PPB)+ 200 mM塩化ナトリウム(NaCl)を用いた。ゲルろ過クロマトグラフィーの結果を図4に示す。得られたクロマトグラムにおいて理論分子量付近にシングルピークが確認された。さらに、クロマトグラムでピークの見られたフラクションについて、濃縮してSDS-PAGE解析を行った結果、528 scFvの理論分子量付近に単一バンドが確認された。これらの結果から、528 scFvの均一な調製に成功したことが示された。このようにして調製された一本鎖抗体528 scFvを、以下の実施例で用いた。 A fraction of 300 mM imidazole/PBS (pH 7.4) was collected and subjected to gel filtration chromatography to collect only the monomer. The elution buffer used was 20 mM potassium phosphate buffer (PPB) + 200 mM sodium chloride (NaCl). The results of gel filtration chromatography are shown in FIG. In the obtained chromatogram, a single peak was observed near the theoretical molecular weight. Furthermore, the fractions that showed peaks in the chromatogram were concentrated and subjected to SDS-PAGE analysis, and a single band was confirmed near the theoretical molecular weight of 528 scFv. These results indicated that 528 scFv was successfully prepared uniformly. The single chain antibody 528 scFv thus prepared was used in the following examples.
 528 scFvに対応するFvフラグメント抗体528 Fvを、528 scFvについて上述したのと同様の方法で、528 Fv発現ベクターを用いた組換え生産を行った後、Ni-NTAアフィニティークロマトグラフィー、次いでゲルろ過クロマトグラフィーにより精製し、528 Fvの均一な調製に成功した。528 Fv発現ベクターであるpRA-528 Fvのベクターマップを図1Bに示す。528 FvのNi-NTAアフィニティークロマトグラフィー後のSDS-PAGE解析結果を図5に示す。528 Fvのゲルろ過クロマトグラフィーの結果を図6に示す。 Fv fragment antibody 528 Fv corresponding to 528 scFv was recombinantly produced using a 528 Fv expression vector in a manner similar to that described above for 528 scFv, followed by Ni-NTA affinity chromatography followed by gel filtration chromatography. We succeeded in homogeneous preparation of 528 Fv by purification by graphography. The vector map of pRA-528 Fv, which is a 528 Fv expression vector, is shown in Figure 1B. Figure 5 shows the SDS-PAGE analysis results of 528 Fv after Ni-NTA affinity chromatography. The results of gel filtration chromatography of 528 Fv are shown in Figure 6.
 528 Fvは、scFvと同じ重鎖可変ドメイン及び軽鎖可変ドメインを有するが、scFvとは異なり、それらの可変ドメインを連結するペプチドリンカー(GGGGS)3(配列番号3)を有していない。後述の実施例において、528 scFvとの競合選択や比較のために528 Fvを用いた。 528 Fv has the same heavy and light chain variable domains as scFv, but unlike scFv, it does not have a peptide linker (GGGGS) 3 (SEQ ID NO: 3) connecting the variable domains. In the Examples described below, 528 Fv was used for competitive selection and comparison with 528 scFv.
[実施例2]アプタマーのスクリーニング
 本実施例では、30塩基長のランダム領域を含むランダムDNAのライブラリから、SELEX法により528 scFvを認識するアプタマー候補配列のスクリーニングを行った。SELEX法は、ランダム配列を有する核酸ライブラリからリガンドに結合する配列を選別し、PCRで指数関数的に増幅することによってリガンドへの結合親和性が高い配列だけを集めた次世代の核酸ライブラリを得るという操作を繰り返し(複数ラウンド)行い、それによってリガンドに特異的に結合する核酸配列を特定するという技術である。
[Example 2] Aptamer Screening In this example, aptamer candidate sequences that recognize 528 scFv were screened by the SELEX method from a random DNA library containing a 30 base long random region. The SELEX method selects sequences that bind to a ligand from a nucleic acid library with random sequences, and then exponentially amplifies them using PCR to obtain a next-generation nucleic acid library that collects only sequences with high binding affinity to the ligand. This is a technique in which this operation is repeated (multiple rounds) to identify a nucleic acid sequence that specifically binds to a ligand.
 プライミング配列(核酸増幅用プライマー結合配列)を両端に有し、その間に30 merのランダムな配列を有する一本鎖DNAの2種のDNAライブラリ(ライブラリ配列1を有するライブラリ1、ライブラリ配列2を有するライブラリ2)をスクリーニングに用いた。表1に、2種のDNAライブラリのそれぞれを構成する一本鎖DNA配列及び各DNAライブラリと組み合わせて以下のとおりSELEX法に用いたオリゴDNAを示す。 Two types of DNA libraries (library 1 with library sequence 1 and library sequence 2 with library sequence 2) have priming sequences (primer binding sequences for nucleic acid amplification) at both ends and single-stranded DNA with 30 mer random sequences between them. Library 2) was used for screening. Table 1 shows the single-stranded DNA sequences constituting each of the two types of DNA libraries and the oligo DNA used in the SELEX method in combination with each DNA library as described below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 SELEX法の第1ラウンドでは、まず、528 scFvに結合するDNAを選択するため、各DNAライブラリ、並びにプライミング配列と相補的な配列を有する5'ブロックDNA及びRvプライマーを、100 mM NaClを添加した100 mMリン酸カリウムバッファー(以下、PPB(Na+)と表記; SPPBと称されることもある)に加えて混合した。得られた混合物をヒートブロック上で95℃で10分間加熱した後、30分間かけて25℃に徐冷することにより、核酸をフォールディングさせ、フォールドDNAを生成した。 In the first round of the SELEX method, in order to select DNA that binds to 528 scFv, each DNA library, as well as 5' block DNA and Rv primer having sequences complementary to the priming sequence, were added with 100 mM NaCl. It was added to 100 mM potassium phosphate buffer (hereinafter referred to as PPB(Na+); sometimes referred to as SPPB) and mixed. The resulting mixture was heated at 95°C for 10 minutes on a heat block and then slowly cooled to 25°C over 30 minutes to fold the nucleic acid and generate folded DNA.
 ニトロセルロース膜(AmershamTM Protran(R) Premium 0.45 NC ニトロセルロースウェスタンブロッティング膜、GE Healthcare)上に、実施例1で調製した528 scFvを1 μL滴下し、吸着固定した。さらに、ニトロセルロース膜上の528 scFvの滴下位置の隣に、競合選択(Competitive Selection)のための競合タンパク質として実施例1で調製した528 Fvを滴下した。 1 μL of 528 scFv prepared in Example 1 was dropped onto a nitrocellulose membrane (Amersham TM Protran (R) Premium 0.45 NC Nitrocellulose Western Blotting Membrane, GE Healthcare) and fixed by adsorption. Furthermore, 528 Fv prepared in Example 1 was dropped as a competitive protein for competitive selection next to the position where 528 scFv was dropped on the nitrocellulose membrane.
 次に、そのニトロセルロース膜を、2%(w/v)ウシ血清アルブミン(Bovine Serum Albumin; BSA)を溶解したPPB(Na+)-T(PPB(Na+)中、0.05%(v/v)Tween 20; SPPB-Tと称されることもある)中で1時間振とうし、ブロッキングを行った(なお、第3ラウンド以降ではBSAの代わりにヒト血清を用いてブロッキングを行った)。PPB(Na+)-Tで洗浄した後、ニトロセルロース膜を、上記のとおり生成したフォールドDNAをPPB(Na+)で希釈して1 mLとした溶液中で、1時間振とうした。さらにPPB(Na+)-Tで洗浄した後、ニトロセルロース膜のscFv吸着領域を切り出し、フェノールクロロホルム抽出、続いてエタノール沈殿を行い、一本鎖DNAを回収した。回収した一本鎖DNAをバッファーTE(Tris-EDTA)に溶解して回収DNAライブラリとした。 Next, the nitrocellulose membrane was coated with PPB(Na+)-T (PPB(Na+) containing 2% (w/v) bovine serum albumin (BSA) and 0.05% (v/v) Tween. 20; sometimes referred to as SPPB-T) for 1 hour, and blocking was performed (in addition, from the third round onwards, blocking was performed using human serum instead of BSA). After washing with PPB(Na+)-T, the nitrocellulose membrane was shaken for 1 hour in a solution in which the folded DNA generated as described above was diluted with PPB(Na+) to 1 mL. After further washing with PPB(Na+)-T, the scFv adsorption region of the nitrocellulose membrane was cut out, followed by phenol-chloroform extraction, followed by ethanol precipitation to recover single-stranded DNA. The recovered single-stranded DNA was dissolved in buffer TE (Tris-EDTA) to prepare a recovered DNA library.
 回収DNAライブラリについて、定量PCR(リアルタイムPCR)を行うことにより回収DNA量を算出した。用いたPCR反応液の組成を表2に示す。 The amount of recovered DNA was calculated by performing quantitative PCR (real-time PCR) on the recovered DNA library. Table 2 shows the composition of the PCR reaction solution used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 濃度既知のDNA(標準物質)を段階希釈したものを鋳型DNAとして用いて反応液(表2)を調製し、98℃で1分、次いで98℃で10秒、50℃で30秒、72℃で20秒を40サイクル行い、その後は4℃で保持するPCR反応条件でのPCRにより核酸増幅を行い、そのCq(quantification cycle)値(Ct(threshold cycle)値と呼ばれることもある)から検量線を作成した。さらに、濃度未知の回収DNAライブラリを鋳型DNAとして反応液(表2)を調製し、上記と同じ反応条件でのPCRにより核酸増幅を行い、得られたCq値を、作成した検量線に当てはめることにより、回収DNAライブラリ中の回収DNA量を算出した。 A reaction solution (Table 2) was prepared using serially diluted DNA (standard material) of known concentration as template DNA, and incubated at 98°C for 1 minute, then at 98°C for 10 seconds, at 50°C for 30 seconds, and at 72°C. Perform 40 cycles of 20 seconds at 4°C, and then perform nucleic acid amplification by PCR under the PCR reaction conditions of holding at 4°C. From the Cq (quantification cycle) value (sometimes called the Ct (threshold cycle) value), a standard curve is generated. It was created. Furthermore, prepare a reaction solution (Table 2) using the recovered DNA library of unknown concentration as template DNA, perform nucleic acid amplification by PCR under the same reaction conditions as above, and apply the obtained Cq value to the prepared standard curve. The amount of recovered DNA in the recovered DNA library was calculated.
 次いで、回収DNAライブラリを構成する一本鎖DNAをPCRにより増幅した。用いたPCR反応液の組成を表3に示す。回収DNAライブラリ中の一本鎖DNAの5'側及び3'側のそれぞれのプライミング配列と相補的な配列を有するプライマー(Fwプライマー及びBio-Rvプライマー)をPCRに用いた。3'側のプライミング配列に相補的な3'側プライマー(Bio-Rvプライマー)はビオチン化されている。 Next, the single-stranded DNA constituting the recovered DNA library was amplified by PCR. Table 3 shows the composition of the PCR reaction solution used. Primers (Fw primer and Bio-Rv primer) having sequences complementary to the respective priming sequences on the 5' and 3' sides of the single-stranded DNA in the recovered DNA library were used for PCR. The 3' primer (Bio-Rv primer) complementary to the 3' priming sequence is biotinylated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 反応液(表3)を調製し、98℃で1分、次いで98℃で15秒、50℃で30秒、72℃で20秒を25サイクル行い、その後は4℃で保持するPCR反応条件でのPCRにより核酸増幅を行った。 Prepare the reaction solution (Table 3) and perform the PCR reaction at 98°C for 1 minute, then at 98°C for 15 seconds, at 50°C for 30 seconds, at 72°C for 20 seconds for 25 cycles, and then hold at 4°C. Nucleic acid amplification was performed by PCR.
 核酸増幅により得られたビオチン化DNAライブラリをアビジンビーズとともにインキュベートし、回収したビーズに結合したDNA(一本鎖)を0.15M水酸化ナトリウム(NaOH)で溶出した。2M塩化水素(HCl)を用いて溶液を中性にした後、100%イソプロパノール、酢酸ナトリウム水溶液、アルコール沈殿用共沈剤であるエタチンメイト(ニッポンジーン)を加えて遠心することによりDNAを沈殿させ、70%エタノールで洗浄し遠心した後、上清を捨てて風乾させた。得られたDNAをTEに溶解させることにより、次のラウンド(第2ラウンド)に用いるDNAライブラリを調製した。 The biotinylated DNA library obtained by nucleic acid amplification was incubated with avidin beads, and the DNA (single strand) bound to the collected beads was eluted with 0.15M sodium hydroxide (NaOH). After making the solution neutral using 2M hydrogen chloride (HCl), DNA was precipitated by adding 100% isopropanol, an aqueous sodium acetate solution, and Etatin Mate (Nippon Gene), a coprecipitant for alcohol precipitation, and centrifuging it. After washing with % ethanol and centrifugation, the supernatant was discarded and air-dried. A DNA library to be used in the next round (second round) was prepared by dissolving the obtained DNA in TE.
 得られたDNAライブラリを使用して、第1ラウンドと同様に、528 scFv結合DNAの選択、続いて回収DNAの抽出、PCRによる増幅、及びアビジンビーズによる回収・精製を第2ラウンドとして実施し、さらに同様に繰り返してSELEX法を第4ラウンドまで実施した。 Using the obtained DNA library, in the same way as the first round, selection of 528 scFv-binding DNA was performed, followed by extraction of recovered DNA, amplification by PCR, and recovery and purification using avidin beads as a second round. Furthermore, the SELEX method was repeated in the same manner until the fourth round.
 SELEX法の各ラウンドにおいて28サイクルのPCR増幅後に採取したDNA試料を電気泳動した。その結果、ライブラリ配列1を有するライブラリを用いたSELEXでは、PCRによる非特異的増幅と考えられるスメアなバンドが認められ、ラウンド数の増加とともに非特異的増幅が増加していく様子が観察された。一方、ライブラリ配列2を有するライブラリを用いたSELEXでは、全てのラウンドで目的の塩基長付近にシングルバンドが得られ、非特異的増幅が少ないことが確認された。また、ライブラリ配列2を有するライブラリを用いたSELEX法では、ライブラリ配列1を有するライブラリを用いたSELEX法と比較して、同じサイクル数のPCRによる増幅効率が増加していた。 DNA samples collected after 28 cycles of PCR amplification in each round of the SELEX method were electrophoresed. As a result, in SELEX using the library with library sequence 1, a smeared band was observed that was considered to be nonspecific amplification due to PCR, and it was observed that nonspecific amplification increased as the number of rounds increased. . On the other hand, in SELEX using the library having library sequence 2, a single band was obtained near the target base length in all rounds, confirming that non-specific amplification was low. Furthermore, in the SELEX method using the library having library sequence 2, the amplification efficiency by PCR using the same number of cycles was increased compared to the SELEX method using the library having library sequence 1.
 これらの結果を踏まえ、ライブラリ配列1を有するライブラリを用いたSELEX法ではPCR増幅を25サイクルとし、ライブラリ配列2を有するライブラリを用いたSELEX法ではPCR増幅を28サイクルとして、上記と同様のSELEX法を第4ラウンドまで実施した。各ラウンドの終了時に回収DNA量を測定し、使用したDNAライブラリのモル数に対する回収DNA量(モル数)の割合(%)として回収率を算出した。第1~第4ラウンドで使用した試薬量、回収DNA量、回収率を表4及び表5にまとめた。ラウンド数の増加に伴い回収率の増加が認められたことにより、SELEX法が成功したことが示された。 Based on these results, in the SELEX method using the library having library sequence 1, PCR amplification was set to 25 cycles, and in the SELEX method using the library having library sequence 2, PCR amplification was set to 28 cycles, and the same SELEX method as above was performed. was carried out until the fourth round. The amount of recovered DNA was measured at the end of each round, and the recovery rate was calculated as the ratio (%) of the amount of recovered DNA (number of moles) to the number of moles of the DNA library used. The amount of reagents used in the first to fourth rounds, the amount of recovered DNA, and the recovery rate are summarized in Tables 4 and 5. The success of the SELEX method was demonstrated by the increase in recovery rate as the number of rounds increased.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 次に、ライブラリ配列1を有するライブラリ及びライブラリ配列2を有するライブラリを用いたSELEX法の第4ラウンドで得られたDNAライブラリについて、それぞれ94本の一本鎖DNAの配列解析を行った。 Next, 94 single-stranded DNAs were sequenced for each of the DNA libraries obtained in the fourth round of the SELEX method using the library having library sequence 1 and the library having library sequence 2.
 具体的には、DNAライブラリ中の一本鎖DNAを、表1に示すFwプライマー及びRvプライマーを用いてPCR増幅して二本鎖DNAとした。その精製後、pGEM(R)-T Easy Vector Systems(Promega)を使用し、精製二本鎖DNAとベクターを1:1のモル比で混合し、16℃で一晩反応させて両者をライゲーションした。得られたライゲーション産物(ライブラリ配列1由来:2.5μL、ライブラリ配列2由来: 7.5 μL)を、大腸菌Jet Competent Cell(DH5α)(ByoDynamics Laboratory Inc.)50 μLに加え、氷上で5分静置することにより、形質転換を行った。大腸菌にSOC培地を900 μL加えて30分間培養した。アンピシリン含有寒天プレート培地上に、SOC培地で4倍希釈したX-gal(終濃度5 ng/μL)を100 μL塗布し、30分間室温で静置した。その後プレート上に形質転換した大腸菌コンピテントセルを塗布し、37℃で16時間培養した。白色コロニーを合計94個選んで96穴プレートに個別に分取し、illustra TempliPhi DNA Amplification Kit(Cytiva)のサンプルバッファーを加えて95℃で3分間熱処理した。さらに当該キットのリアクションバッファーと酵素ミックスを加えて30℃で12時間反応させた後、65℃で10分間反応させることによりローリングサイクル増幅を行い、シークエンス用鋳型DNAを調製した。この鋳型DNAを用いてシークエンスを行ったところ、ライブラリ配列1を有するライブラリから16本、ライブラリ配列2を有するライブラリから79本、合計で95本の一本鎖DNA配列を取得することができた。それら一本鎖DNA配列のプライミング配列に挟まれたランダム配列部分をアラインメントして、配列解析を実施した。 Specifically, single-stranded DNA in the DNA library was PCR amplified using the Fw primer and Rv primer shown in Table 1 to obtain double-stranded DNA. After purification, the purified double-stranded DNA and vector were mixed at a molar ratio of 1:1 using pGEM (R) -T Easy Vector Systems (Promega), and the two were ligated by reacting overnight at 16°C. . Add the obtained ligation product (derived from library sequence 1: 2.5 μL, derived from library sequence 2: 7.5 μL) to 50 μL of E. coli Jet Competent Cell (DH5α) (ByoDynamics Laboratory Inc.) and leave it on ice for 5 minutes. Transformation was performed by. 900 μL of SOC medium was added to E. coli and cultured for 30 minutes. 100 μL of X-gal diluted 4 times with SOC medium (final concentration 5 ng/μL) was applied onto an ampicillin-containing agar plate medium, and the mixture was allowed to stand at room temperature for 30 minutes. Thereafter, the transformed E. coli competent cells were spread on the plate and cultured at 37°C for 16 hours. A total of 94 white colonies were selected and aliquoted into a 96-well plate, sample buffer from illustra TempliPhi DNA Amplification Kit (Cytiva) was added, and heat treated at 95°C for 3 minutes. Further, the reaction buffer and enzyme mix of the kit were added and the mixture was reacted at 30°C for 12 hours, followed by rolling cycle amplification by reacting at 65°C for 10 minutes to prepare template DNA for sequencing. When sequencing was performed using this template DNA, it was possible to obtain 16 single-stranded DNA sequences from the library having library sequence 1 and 79 from the library having library sequence 2, for a total of 95 single-stranded DNA sequences. Sequence analysis was performed by aligning the random sequence portions sandwiched between the priming sequences of these single-stranded DNA sequences.
 その結果、重複又は共通モチーフを有する13本の配列が見出された(表6)。これらの配列をアプタマー候補配列とした。 As a result, 13 sequences with overlapping or common motifs were found (Table 6). These sequences were designated as aptamer candidate sequences.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[実施例3]アプタマー候補配列のscFv及びFvに対する結合能の評価
 本実施例では、実施例2で獲得したアプタマー候補配列の、scFv及びFvに対する結合能を評価した。
[Example 3] Evaluation of binding ability of aptamer candidate sequence to scFv and Fv In this example, the binding ability of the aptamer candidate sequence obtained in Example 2 to scFv and Fv was evaluated.
i) 酵素結合オリゴヌクレチドアッセイ(ELONA)による、アプタマー候補配列のscFvに対する結合能の評価
 実施例2で獲得した13本のアプタマー候補配列について、表1中のライブラリ配列2(配列番号9)中に示す両端のプライミング配列(CTATCTATGGTGAGTCCT[配列番号27]及びCTAAGTACACACGCATCA[配列番号28])をそれぞれ5'及び3'末端に付加したオリゴヌクレオチドと、5'ブロックDNA-2(配列番号10)、及びBio-Rvプライマー2(配列番号13)を混合することにより、ビオチン修飾した。
i) Evaluation of the binding ability of aptamer candidate sequences to scFv by enzyme-linked oligonucleotide assay (ELONA) Regarding the 13 aptamer candidate sequences obtained in Example 2, library sequence 2 (SEQ ID NO: 9) in Table 1 was used. Oligonucleotides with priming sequences shown at both ends (CTATCTATGGTGAGTCCT [SEQ ID NO: 27] and CTAAGTACACACGCATCA [SEQ ID NO: 28]) added to the 5' and 3' ends, respectively, 5' block DNA-2 (SEQ ID NO: 10), and Bio Biotin modification was performed by mixing -Rv primer 2 (SEQ ID NO: 13).
 100 nM 528 scFv及び100 nM 528 Fv(実施例1で調製)を100 μLずつ96穴プレートの別個のウェルに添加し、37℃で90分インキュベートすることにより、528 scFv及び528 Fvをプレート上に吸着固定した。PPB(Na+)-Tで洗浄後、PPB(Na+)-T中に溶解した2%(w/v)スキムミルクをそのプレートに添加し、800 rpmで振とうしながら1時間室温でインキュベートしてプレートをブロッキングした。PPB(Na+)-Tで洗浄した後、PPB(Na+)で100 nMに希釈したビオチン修飾アプタマー候補配列を100 μLずつウェルに添加して800 rpmで振とうしながら1時間室温でインキュベートした。PPB(Na+)-Tで洗浄後、1000倍希釈したストレプトアビジン-アルカリホスファターゼ(Promega)を100 μL添加し、800 rpmで振とうしながら1時間室温でインキュベートし、上記と同様にPPB(Na+)-Tで洗浄した。アルカリホスファターゼ基質であるCDP-StarTMSubstrate (0.25 mM Ready-To-Use) with Nitro-Block-ITM Enhancer(Thermo Fisher Scientific)を100 μLずつ各ウェルに添加し、室温及び遮光条件で10分間インキュベートした。その後の化学発光をプレートリーダーVarioskan(R)Flash(Thermo Fisher Scientific)で測定した。 528 scFv and 528 Fv were added to the plate by adding 100 μL of 100 nM 528 scFv and 100 nM 528 Fv (prepared in Example 1) to separate wells of a 96-well plate and incubating for 90 minutes at 37°C. Fixed by adsorption. After washing with PPB(Na+)-T, 2% (w/v) skim milk dissolved in PPB(Na+)-T was added to the plate and incubated at room temperature for 1 hour with shaking at 800 rpm. was blocked. After washing with PPB(Na+)-T, 100 μL of a biotin-modified aptamer candidate sequence diluted to 100 nM with PPB(Na+) was added to each well and incubated at room temperature for 1 hour while shaking at 800 rpm. After washing with PPB(Na+)-T, 100 μL of streptavidin-alkaline phosphatase (Promega) diluted 1:1000 was added, incubated at room temperature for 1 hour while shaking at 800 rpm, and treated with PPB(Na+) in the same manner as above. - Washed with T. Add 100 μL of alkaline phosphatase substrate CDP-Star TM Substrate (0.25 mM Ready-To-Use) with Nitro-Block-I TM Enhancer (Thermo Fisher Scientific) to each well and incubate for 10 minutes at room temperature and protected from light. did. Subsequent chemiluminescence was measured with a plate reader Varioskan (R) Flash (Thermo Fisher Scientific).
 その結果を図7に示す。2種類のアプタマー候補配列P2-63及びP1-12において、528 scFvに対する化学結合強度が、528 Fvに対する化学結合強度を大幅に上回っていた。P2-63及びP1-12が、scFv選択的な結合を示すことが観察された。 The results are shown in Figure 7. In the two aptamer candidate sequences P2-63 and P1-12, the chemical bond strength to 528 scFv was significantly higher than that to 528 Fv. P2-63 and P1-12 were observed to exhibit scFv selective binding.
ii) ドットブロット解析による、アプタマー候補配列のscFvに対する結合能の評価
 scFv選択的な結合を示したアプタマー候補配列P2-63及びP1-12について、ドットブロット解析によりscFvに対する結合能をさらに評価した。
ii) Evaluation of scFv-binding ability of aptamer candidate sequences by dot blot analysis Aptamer candidate sequences P2-63 and P1-12, which showed scFv-selective binding, were further evaluated for their scFv-binding ability by dot blot analysis.
 ニトロセルロース膜(AmershamTM Protran(R) Premium 0.45 NC ニトロセルロースウェスタンブロッティング膜、GE Healthcare)上に、実施例1で調製した528 scFv及び528 Fvを20 pmolずつ、またネガティブコントロールとしてベバシズマブ(抗VEGFヒト化モノクローナル抗体)を1 pmol滴下し、吸着固定した。次にそのニトロセルロース膜を、PPB(Na+)-T中に溶解した2%(w/v)スキムミルク中で1時間振とうし、ブロッキングを行った。PPB(Na+)-Tで洗浄した後、PPB(Na+)で希釈して1 mLとしたアプタマー溶液(終濃度2 μM)中で、ニトロセルロース膜を1時間振とうした。PPB(Na+)-Tで洗浄後、0.2 ng/μLに希釈したニュートラアビジン-HRPコンジュゲート(Thermo Fisher Scientific)中で、ニトロセルロース膜を1時間振とうした。上記と同様にPPB(Na+)-Tで洗浄した後、上記の吸着固定部位にImmobilonウェスタン化学発光HRP基質(Millipore)を滴下し、室温及び遮光条件で5分間インキュベートした。化学発光をイメージアナライザーImageQuantTM LAS 4000 mini(GE Healthcare)で測定した。 20 pmol each of 528 scFv and 528 Fv prepared in Example 1 were placed on a nitrocellulose membrane (Amersham TM Protran (R) Premium 0.45 NC Nitrocellulose Western Blotting Membrane, GE Healthcare), and as a negative control, bevacizumab (anti-VEGF human 1 pmol of monoclonal antibody) was added dropwise and fixed by adsorption. The nitrocellulose membrane was then shaken for 1 hour in 2% (w/v) skim milk dissolved in PPB(Na+)-T for blocking. After washing with PPB(Na+)-T, the nitrocellulose membrane was shaken for 1 hour in an aptamer solution (final concentration 2 μM) diluted with PPB(Na+) to 1 mL. After washing with PPB(Na+)-T, the nitrocellulose membrane was shaken for 1 hour in neutravidin-HRP conjugate (Thermo Fisher Scientific) diluted to 0.2 ng/μL. After washing with PPB(Na+)-T in the same manner as above, Immobilon Western chemiluminescent HRP substrate (Millipore) was added dropwise to the above adsorption/immobilization site and incubated for 5 minutes at room temperature and shielded from light. Chemiluminescence was measured with an image analyzer ImageQuant LAS 4000 mini (GE Healthcare).
 その結果を図8Aに示す。ニトロセルロース膜上の化学発光強度を比較すると、P2-63、及びP1-12の両方について、scFvを固定したスポットにのみ強い化学発光が観察され、scFv選択的な結合が示された(図8A)。ネガティブコントロールとして固定したベバシズマブのスポットには化学発光が見られなかった(図8A)。 The results are shown in Figure 8A. Comparing the chemiluminescence intensities on the nitrocellulose membrane, strong chemiluminescence was observed only in the scFv-immobilized spots for both P2-63 and P1-12, indicating scFv-selective binding (Figure 8A ). No chemiluminescence was observed in the immobilized bevacizumab spots as a negative control (FIG. 8A).
 さらに、528 scFv及び528 Fvのそれぞれを、20 pmol、10 pmol、及び5 pmolずつ、ニトロセルロース膜上に吸着固定し、上記と同様にドットブロット解析を行った。その結果、P2-63及びP1-12の両方で、scFv濃度依存的にスポットにおける化学発光強度が増大した(図8B)。P2-63及びP1-12は、scFv濃度依存的にscFvに対して特異的に結合することが示された。 Furthermore, 20 pmol, 10 pmol, and 5 pmol of each of 528 scFv and 528 Fv were adsorbed and immobilized on the nitrocellulose membrane, and dot blot analysis was performed in the same manner as above. As a result, the chemiluminescence intensity at the spot increased in a scFv concentration-dependent manner for both P2-63 and P1-12 (FIG. 8B). P2-63 and P1-12 were shown to specifically bind to scFv in a scFv concentration-dependent manner.
iii) バイオレイヤー干渉法(BLI)による、アプタマー候補配列のscFvに対する結合能の評価
 ストレプトアビジンを表面修飾分子として有するバイオセンサーチップ(ストレプトアビジンセンサーチップ)をPPB(Na+)-T中に10分間浸漬して親水化を行った後、ビオチン-アビジン相互作用を介してストレプトアビジンセンサーチップ上にビオチン化アプタマー候補配列(ビオチン化P1-12、及びビオチン化P2-63)を固定化した。生体分子間相互作用解析システムPersonal Assay Octet(R) N1 System(SARTORIUS)を使用して、バイオレイヤー干渉法(BLI)により、ストレプトアビジンセンサーチップ上に固定化したビオチン化アプタマー候補配列と、溶液中の528 scFv及び528 Fv(実施例1で調製)との結合解離シグナルを測定した。その結果、P2-63及びP1-12の両方について、Fvとの結合レベルと比較して、scFvとの結合レベルがはるかに高いことが示された(図9)。
iii) Evaluation of the binding ability of aptamer candidate sequences to scFv by biolayer interferometry (BLI) A biosensor chip having streptavidin as a surface modification molecule (streptavidin sensor chip) was immersed in PPB(Na+)-T for 10 minutes. After making it hydrophilic, biotinylated aptamer candidate sequences (biotinylated P1-12 and biotinylated P2-63) were immobilized on a streptavidin sensor chip via biotin-avidin interaction. Using the biomolecular interaction analysis system Personal Assay Octet (R) N1 System (SARTORIUS), biotinylated aptamer candidate sequences immobilized on a streptavidin sensor chip and biotinylated aptamer candidate sequences in solution were The binding and dissociation signals between 528 scFv and 528 Fv (prepared in Example 1) were measured. The results showed that for both P2-63 and P1-12, the level of binding to scFv was much higher compared to the level of binding to Fv (Figure 9).
 上記のi)及びii)の評価試験では、プレート又はニトロセルロース膜上に固定化したscFv又はFvに対して溶液中のアプタマー候補配列を結合させることにより結合能評価を行った。一方、iii)の評価試験では、固定化したアプタマー候補配列に対する、溶液中のscFv又はFvとの結合能を評価した。上記のとおり、i)~iii)のいずれの評価試験においてもP2-63及びP1-12のscFvに対する選択的結合が確認されたことから、P2-63及びP1-12は、ニトロセルロース膜等の支持体に固定化されたscFvに対してだけでなく、溶液中の遊離(可溶性)のscFvにも特異的に結合できることが示された。この結果は、P2-63及びP1-12が、固定化により生じたscFvの立体構造変化を認識するものではないこと、したがってペプチドリンカー(GGGGS)3を有するscFvに対するアプタマーとして幅広く使用可能であることを示す。 In the above evaluation tests i) and ii), binding ability was evaluated by binding an aptamer candidate sequence in solution to scFv or Fv immobilized on a plate or nitrocellulose membrane. On the other hand, in the evaluation test iii), the binding ability of the immobilized aptamer candidate sequence with scFv or Fv in solution was evaluated. As mentioned above, selective binding of P2-63 and P1-12 to scFv was confirmed in all evaluation tests i) to iii), so P2-63 and P1-12 were It was shown that it can specifically bind not only to scFv immobilized on a support but also to free (soluble) scFv in solution. This result indicates that P2-63 and P1-12 do not recognize conformational changes in scFv caused by immobilization, and therefore can be widely used as aptamers for scFv with peptide linker (GGGGS) 3 . shows.
 P2-63とP1-12は異なるDNAライブラリから選抜されたアプタマーであるが、いずれもGが連続した配列が連なるGリッチ配列であり、生理学的条件下でグアニン四重鎖(G-quadruplex; G4)構造と呼ばれる安定な高次構造を形成すると考えられる。 P2-63 and P1-12 are aptamers selected from different DNA libraries, but both are G-rich sequences consisting of consecutive G sequences, and under physiological conditions, guanine quadruplex (G-quadruplex; ) structure, which is thought to form a stable higher-order structure.
[実施例4]アプタマーの他のscFvに対する結合能の評価
 実施例1で調製した528 scFvに加えて、異なる抗原への結合性を有するscFvとして抗Hb scFv-SpyTagをさらに使用して、アプタマーP2-63及びP1-12のscFvに対する結合能を評価した。使用した抗Hb scFv-SpyTagは抗ヘモグロビン(Hb)マウスモノクローナル抗体由来のscFvであり、以下のようにして作製した。まず大腸菌BL21(DE3)を、スパイタグ(Spyタグ、又はSpyTag)付加抗Hb scFv発現ベクターpRA-anti Hb scFv-ST(以下、「pRA-抗Hb scFv-SpyTag」とも称する)により形質転換し、アンピシリン(終濃度100 μg/mL)含有LB寒天培地プレートに播種し、28℃で一晩インキュベートした。得られたコロニーをノーマライズ後に3 mLのLB培地(アンピシリンを終濃度100 μg/mLで添加)で前培養を行った。前培養後の培養液を合計600 mLのLB培地に植菌し、40時間の培養を行った。培養上清に対して、60%(w/v)の硫酸アンモニウムによる硫安沈殿を行った。遠心して得られた沈殿を復水し、透析後、Ni-NTAアフィニティークロマトグラフィーによりヒスチジン(His)タグを用いた精製を行った。洗浄、溶出バッファーとしては、0、50、150、200、300、又は500mM濃度のイミダゾールを含む20 mMリン酸カリウムバッファー(PPB)+ 0.5 M NaCl(pH 7.4)を、それぞれ40、40、5、5、5、5 CV(1 CV=1 mL)ずつ用いた。SDS-PAGEにおいて理論分子量付近にバンドが確認された溶出フラクションを濃縮し、ゲル濾過クロマトグラフィーを行った。このようにして得られた抗Hb scFv-SpyTagを以下で用いた。
[Example 4] Evaluation of the binding ability of aptamer to other scFv In addition to the 528 scFv prepared in Example 1, anti-Hb scFv-SpyTag was further used as an scFv with binding ability to a different antigen to create aptamer P2. The binding ability of -63 and P1-12 to scFv was evaluated. The anti-Hb scFv-SpyTag used was an scFv derived from an anti-hemoglobin (Hb) mouse monoclonal antibody, and was produced as follows. First, Escherichia coli BL21 (DE3) was transformed with the Spy tag (or SpyTag)-added anti-Hb scFv expression vector pRA-anti Hb scFv-ST (hereinafter also referred to as "pRA-anti-Hb scFv-SpyTag"), and ampicillin (final concentration 100 μg/mL) on an LB agar medium plate and incubated overnight at 28°C. The obtained colonies were normalized and precultured in 3 mL of LB medium (ampicillin was added at a final concentration of 100 μg/mL). The culture solution after preculture was inoculated into a total of 600 mL of LB medium, and cultured for 40 hours. The culture supernatant was subjected to ammonium sulfate precipitation using 60% (w/v) ammonium sulfate. The precipitate obtained by centrifugation was condensed, dialyzed, and purified using a histidine (His) tag by Ni-NTA affinity chromatography. Washing and elution buffers were 20 mM potassium phosphate buffer (PPB) + 0.5 M NaCl (pH 7.4) containing imidazole at concentrations of 0, 50, 150, 200, 300, or 500 mM, respectively. 5, 5, and 5 CV (1 CV=1 mL) were used. The eluted fraction in which a band was observed near the theoretical molecular weight on SDS-PAGE was concentrated and subjected to gel filtration chromatography. The anti-Hb scFv-SpyTag thus obtained was used below.
 pRA-抗Hb scFv-SpyTagのベクターマップを図14Aに、pRA-抗Hb scFv-SpyTag中のタンパク質コード配列(配列番号29)及びそれによりコードされるアミノ酸配列(配列番号30)を図15に示す。図14A及び図15に示されるように、抗Hb scFv-SpyTagは重鎖可変領域(VH)と軽鎖可変領域(VL)がペプチドリンカー(GGGGS)3を介して連結されたポリペプチド配列を含む。 The vector map of pRA-anti-Hb scFv-SpyTag is shown in Figure 14A, and the protein coding sequence (SEQ ID NO: 29) and the amino acid sequence encoded thereby (SEQ ID NO: 30) in pRA-anti-Hb scFv-SpyTag are shown in Figure 15. . As shown in Figures 14A and 15, the anti-Hb scFv-SpyTag contains a polypeptide sequence in which a heavy chain variable region (VH) and a light chain variable region (VL) are linked via a peptide linker (GGGGS) 3 . .
 ニトロセルロース膜(AmershamTM Protran(R) Premium 0.45 NC ニトロセルロースウェスタンブロッティング膜、GE Healthcare)上に、実施例1で調製した528 scFv及び528 Fv、凍結解凍された528 Fv、並びに抗Hb scFv-SpyTagを、10 pmolずつ滴下して吸着固定した。次にニトロセルロース膜を、PPB(Na+)-T中に溶解した2%(w/v)スキムミルク中で1時間振とうし、ブロッキングを行った。PPB(Na+)-Tで洗浄した後、PPB(Na+)で終濃度1 μMに希釈したアプタマー溶液(P2-63又はP1-12)中で1時間振とうした。PPB(Na+)-Tで洗浄後、0.2 ng/μLに希釈したニュートラアビジン-HRPコンジュゲート(Thermo Fisher Scientific)中で1時間振とうした。上記と同様にPPB(Na+)-Tで洗浄した後、上記の吸着固定部位にImmobilonウェスタン化学発光HRP基質(Millipore)を滴下し、室温及び遮光条件で5分間インキュベートした。化学発光をイメージアナライザーImageQuantTMLAS 4000 mini(GE Healthcare)で測定した。 528 scFv and 528 Fv prepared in Example 1, frozen and thawed 528 Fv, and anti-Hb scFv-SpyTag were placed on a nitrocellulose membrane (Amersham TM Protran (R) Premium 0.45 NC Nitrocellulose Western Blotting Membrane, GE Healthcare). was added dropwise in 10 pmol portions and fixed by adsorption. The nitrocellulose membrane was then blocked in 2% (w/v) skim milk dissolved in PPB(Na+)-T by shaking for 1 hour. After washing with PPB(Na+)-T, it was shaken for 1 hour in an aptamer solution (P2-63 or P1-12) diluted with PPB(Na+) to a final concentration of 1 μM. After washing with PPB(Na+)-T, it was shaken for 1 hour in neutravidin-HRP conjugate (Thermo Fisher Scientific) diluted to 0.2 ng/μL. After washing with PPB(Na+)-T in the same manner as above, Immobilon Western chemiluminescent HRP substrate (Millipore) was added dropwise to the above adsorption/immobilization site and incubated for 5 minutes at room temperature and shielded from light. Chemiluminescence was measured with an image analyzer ImageQuant LAS 4000 mini (GE Healthcare).
 その結果を図10に示す。P2-63、及びP1-12の両方について、528 scFv、及び抗Hb scFv-SpyTagをそれぞれ固定したスポットで化学発光が観察された。528 Fv、及び凍結解凍された528 Fvを固定したスポットでは化学発光は観察されなかった。この結果から、アプタマーP2-63及びP1-12は、528 scFvだけでなく、別のscFvにも結合できることが示された。 The results are shown in Figure 10. For both P2-63 and P1-12, chemiluminescence was observed in the spots where 528 scFv and anti-Hb scFv-SpyTag were immobilized, respectively. No chemiluminescence was observed in spots fixed with 528 Fv or frozen and thawed 528 Fv. This result showed that aptamers P2-63 and P1-12 can bind not only to 528 scFv but also to another scFv.
 このようにアプタマーP2-63及びP1-12は、異なる相補性決定領域(CDRs)を有する複数の種類のscFvに結合できたことから、scFvにおける重鎖可変ドメインと軽鎖可変ドメインを連結するペプチドリンカー(GGGGS)3領域の保存された構造を特異的に認識すると考えられた。 Aptamers P2-63 and P1-12 were able to bind to multiple types of scFv with different complementarity-determining regions (CDRs). It was thought to specifically recognize the conserved structure of the linker (GGGGS) 3 region.
[実施例5]アプタマー結合の528 scFv活性への影響の評価
 可溶性EGFR(sEGFR)を使用して、アプタマーP2-63及びP1-12の結合が、sEGFRに対する528 scFvの結合活性に影響を及ぼすかどうかを酵素結合免疫吸着アッセイ(ELISA)で調べた。
[Example 5] Evaluation of the influence of aptamer binding on 528 scFv activity Using soluble EGFR (sEGFR), it was determined whether the binding of aptamers P2-63 and P1-12 affects the binding activity of 528 scFv to sEGFR. This was investigated using enzyme-linked immunosorbent assay (ELISA).
 Hisタグ付加sEGFR発現ベクターを有するsEGFR-His高発現CHO細胞を、CO2恒温培養装置で、10%ウシ胎児血清(FBS)及び1%ペニシリン(PC)+ストレプトマイシン(SM)を加えたRPMI 1640培地(血清培地) 15 mLを用いて75 cm2培養フラスコにてコンフルエントになるまで増殖を行った。増殖細胞(安定生産株)を10 mLの上記血清培地で懸濁した後、90 mLの上記血清培地が入ったローラーボトルに加えた。ローラーボトルを回転させながら、37℃、5% CO2で培養した。ローラーボトルの側面がコンフルエントになったのを確認後、上清を吸引除去した。50 mLリン酸緩衝液(PBS)で細胞を洗浄し、CHO細胞用無血清培地CHO-S-SFM/PC/SM 250 mLを添加した。4日間培養後、培養液を回収し、300×g、5分間の遠心分離により培養上清を得た。培養上清を10000×g、20分間遠心し、浮遊細胞を除去した。遠心後の上清を回収し、1M Tris-HCl(pH 8.0)を終濃度50mMとなるように添加した。Ni-NTAアフィニティークロマトグラフィーによりHisタグを用いた精製を行ったのち、SDS-PAGEにおいて理論分子量付近にバンドが確認された溶出フラクションを濃縮し、ゲル濾過クロマトグラフィーを行った。このようにして得られたsEGFRを以下で用いた。 CHO cells with high sEGFR-His expression carrying a His-tagged sEGFR expression vector were incubated in a CO 2 incubator in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin (PC) + streptomycin (SM). (Serum medium) Using 15 mL, the cells were grown in a 75 cm 2 culture flask until reaching confluence. Proliferating cells (stable producing strain) were suspended in 10 mL of the above serum medium, and then added to a roller bottle containing 90 mL of the above serum medium. Culture was carried out at 37°C and 5% CO2 while rotating the roller bottle. After confirming that the sides of the roller bottle were confluent, the supernatant was removed by suction. The cells were washed with 50 mL of phosphate buffer (PBS), and 250 mL of CHO cell serum-free medium CHO-S-SFM/PC/SM was added. After culturing for 4 days, the culture solution was collected and centrifuged at 300×g for 5 minutes to obtain a culture supernatant. The culture supernatant was centrifuged at 10,000×g for 20 minutes to remove floating cells. The supernatant after centrifugation was collected, and 1M Tris-HCl (pH 8.0) was added to the final concentration of 50mM. After purification using a His tag by Ni-NTA affinity chromatography, the eluted fraction in which a band was observed near the theoretical molecular weight in SDS-PAGE was concentrated and subjected to gel filtration chromatography. The sEGFR thus obtained was used below.
 100 nM sEGFRを100 μLずつ96穴プレートに添加し、37℃で90分インキュベートすることによりプレート上に吸着固定した。PPB(Na+)-Tで洗浄後、PPB(Na+)-T中に溶解した2%(w/v)スキムミルクをプレートに添加し、600 rpmで振とうしながら1時間室温でインキュベートすることより、プレートをブロッキングした。 100 μL of 100 nM sEGFR was added to a 96-well plate and fixed by adsorption onto the plate by incubating at 37°C for 90 minutes. After washing with PPB(Na+)-T, 2% (w/v) skim milk dissolved in PPB(Na+)-T was added to the plate and incubated at room temperature for 1 hour with shaking at 600 rpm. The plate was blocked.
 実施例3に記載の方法により、アプタマーの3'末端を相補鎖を介してビオチン修飾しPPB(Na+)で異なる濃度に希釈したアプタマー希釈液と、200 nMの528 scFv溶液を等量ずつ、1.5 mLチューブ内で混合し、600 rpmで振とうしながら1時間室温で反応させることにより、アプタマー-scFv抗体コンジュゲートを作製した。 By the method described in Example 3, the 3' end of the aptamer was modified with biotin via a complementary strand and diluted to different concentrations with PPB(Na+). Equal volumes of the 200 nM 528 scFv solution were mixed at 1.5 Aptamer-scFv antibody conjugates were prepared by mixing in a mL tube and reacting at room temperature for 1 hour with shaking at 600 rpm.
 上記プレートをPPB(Na+)-Tで洗浄後、アプタマー-scFv抗体コンジュゲートを100 μLずつ添加し600 rpmで振とうしながら1時間室温で反応させた。1000倍希釈したHRP修飾抗c-Myc抗体(コスモ・バイオ株式会社)を100 μL、又は0.2 ng/μLに希釈したニュートラアビジン-HRPコンジュゲート(Thermo Fisher Scientific)を100 μL添加し、600 rpmで振とうしながらプレートを1時間室温でインキュベートした後、上記と同様にPPB(Na+)-Tで洗浄した。プレートにBM化学発光ELISA基質(Thermo Fisher Scientific)を100 μLずつ添加し、室温及び遮光条件で10分間インキュベートした後、化学発光をプレートリーダーVarioskan(R)Flash(Thermo Fisher Scientific)で測定した。 After washing the plate with PPB(Na+)-T, 100 μL each of the aptamer-scFv antibody conjugate was added and allowed to react at room temperature for 1 hour while shaking at 600 rpm. Add 100 μL of HRP-modified anti-c-Myc antibody (Cosmo Bio Inc.) diluted 1000 times or 100 μL of neutravidin-HRP conjugate (Thermo Fisher Scientific) diluted to 0.2 ng/μL, and incubate at 600 rpm. Plates were incubated for 1 hour at room temperature with shaking and then washed with PPB(Na+)-T as above. 100 μL of BM chemiluminescent ELISA substrate (Thermo Fisher Scientific) was added to the plate, incubated for 10 minutes at room temperature and protected from light, and chemiluminescence was measured using a plate reader Varioskan (R) Flash (Thermo Fisher Scientific).
 HRP修飾抗c-Myc抗体を用いた、c-mycタグを介した528 scFv検出に基づく測定結果を、図11に示す。使用したアプタマー濃度(0 nM、1 nM、10nM、100 nM、及び1000 nM)にかかわらず、プレート上のsEGFRに結合した528 scFvの量を示す化学発光レベルに変化はほとんど見られなかった。その化学発光レベルは、プレート上にsEGFRを固定していない場合(陰性対照; アプタマー濃度100 nM)と比較して高く、有意な差が見られた。このように528 scFvは、アプタマー濃度にかかわらずsEGFRに結合することができた。すなわちアプタマーは、528 scFvのsEGFRへの結合を阻害することなく528 scFvに結合できた。 Figure 11 shows the measurement results based on 528 scFv detection via the c-myc tag using the HRP-modified anti-c-Myc antibody. Regardless of the aptamer concentrations used (0 nM, 1 nM, 10 nM, 100 nM, and 1000 nM), little change was observed in chemiluminescence levels, which indicate the amount of 528 scFv bound to sEGFR on the plate. The chemiluminescence level was higher and significantly different compared to when sEGFR was not immobilized on the plate (negative control; aptamer concentration 100 nM). Thus, 528 scFv was able to bind to sEGFR regardless of aptamer concentration. That is, the aptamer was able to bind to 528 scFv without inhibiting the binding of 528 scFv to sEGFR.
 ニュートラアビジン-HRPコンジュゲートを用いた、アビジン-ビオチン相互作用を介したビオチン修飾アプタマーの検出に基づく測定では、化学発光レベルがアプタマー濃度依存的に増加することが示された(図12)。このことから、アプタマーが、プレート上のsEGFRに結合した528 scFvと結合して複合体(コンジュゲート)を形成していることが確認された。 Measurements based on detection of biotin-modified aptamers via avidin-biotin interaction using neutravidin-HRP conjugates showed that chemiluminescence levels increased in an aptamer concentration-dependent manner (Figure 12). This confirmed that the aptamer bound to 528 scFv bound to sEGFR on the plate to form a complex (conjugate).
 以上の結果から、アプタマーP2-63及びP1-12は、scFvの抗原結合活性を阻害することなくscFvに結合できることが示された。またアプタマーP2-63及びP1-12のscFvへの結合(複合体化)に基づいて、抗原(ここでは、sEGFR)に結合したscFvを検出できることが示された。 The above results showed that aptamers P2-63 and P1-12 can bind to scFv without inhibiting the antigen-binding activity of scFv. It was also shown that scFv bound to an antigen (here, sEGFR) can be detected based on the binding (complexation) of aptamers P2-63 and P1-12 to scFv.
[実施例6]CDスペクトル測定によるアプタマーの二次構造解析
 アプタマーP1-12及びP2-63について、種々のカリウム濃度条件での二次構造を調べるため、CDスペクトル測定を行った。
[Example 6] Analysis of secondary structure of aptamer by CD spectrum measurement CD spectrum measurement was performed to investigate the secondary structure of aptamers P1-12 and P2-63 under various potassium concentration conditions.
 0 mM、10 mM、又は100 mMのカリウムを含む100 mM 4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸(HEPES)バッファー(pH7.4)を調製した。アプタマーP1-12及びP2-63をバッファーで2 μMに希釈し、95℃に10分間加熱した後、30分間かけて25℃に徐冷することにより、核酸をフォールディングさせた。円二色性分光光度計を用いて波長220 nm~300 nmでのCDスペクトルを測定した。その結果を図13に示す。 A 100 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (pH 7.4) containing 0 mM, 10 mM, or 100 mM potassium was prepared. Aptamers P1-12 and P2-63 were diluted to 2 μM with buffer, heated to 95°C for 10 minutes, and then gradually cooled to 25°C over 30 minutes to fold the nucleic acids. CD spectra were measured at wavelengths of 220 nm to 300 nm using a circular dichroism spectrophotometer. The results are shown in FIG.
 P1-12のCDスペクトルでは、カリウム濃度10 mM、及び100 mMにおいて、パラレル型G4構造の特徴である265nm付近に正のピーク、240nm付近に負のピークが見られ、パラレル型G4構造の形成が示された(図13A)。一方でカリウム濃度0 mMでは明らかなピークは観察されず、二次構造を形成していなかった(図13A)。この結果から、P1-12はカリウムイオン存在下でパラレル型G4構造を形成することが示された。 In the CD spectrum of P1-12, at potassium concentrations of 10 mM and 100 mM, a positive peak around 265 nm and a negative peak around 240 nm, which are characteristics of a parallel G4 structure, are seen, indicating the formation of a parallel G4 structure. (Fig. 13A). On the other hand, no obvious peak was observed at a potassium concentration of 0 mM, and no secondary structure was formed (FIG. 13A). This result showed that P1-12 forms a parallel G4 structure in the presence of potassium ions.
 P2-63のCDスペクトルでは、いずれのカリウム濃度においても265 nm付近に正のピーク、240 nm付近に負のピークが見られ、パラレル型G4構造の形成が示された(図13B)。また、カリウム濃度依存的にモル楕円率が増大していた(図13B)。このことから、P2-63はカリウムの有無にかかわらずパラレル型G4構造を形成する一方で、カリウム濃度依存的にパラレル型G4構造を形成しやすくなることが示された。 In the CD spectrum of P2-63, a positive peak was observed near 265 nm and a negative peak was observed near 240 nm at any potassium concentration, indicating the formation of a parallel G4 structure (Figure 13B). Furthermore, the molar ellipticity increased in a potassium concentration-dependent manner (FIG. 13B). This indicates that while P2-63 forms a parallel G4 structure regardless of the presence or absence of potassium, it becomes easier to form a parallel G4 structure depending on the potassium concentration.
[実施例7]他のscFvに対するアプタマー結合のscFv抗原結合活性への影響の評価
 さらなるscFvとして抗Hb scFv-SnTを使用して、アプタマーP2-63及びP1-12のscFvに対する結合能を評価した。使用した抗Hb scFv-SnTは、実施例4で使用したものと同じ抗ヘモグロビン(Hb)マウスモノクローナル抗体クローン由来のscFvにSnoopタグ(SnoopTag、又はSnT)等のタグを付加したものである。抗Hb scFv-SnTは、発現ベクターpRA-抗Hb scFv-SnTで形質転換した大腸菌を用いた組換え生産により調製した。pRA-抗Hb scFv-SnTのベクターマップを図14Bに、pRA-抗Hb scFv-SnT中のタンパク質コード配列(配列番号31)及びそれによりコードされるアミノ酸配列(配列番号32)を図16に示す。図14B及び図16に示されるように、抗Hb scFv-SnTは重鎖可変領域(VH)と軽鎖可変領域(VL)がペプチドリンカー(GGGGS)3を介して連結されたポリペプチド配列を含む。
[Example 7] Evaluation of the influence of aptamer binding to other scFvs on scFv antigen binding activity Using anti-Hb scFv-SnT as an additional scFv, the binding ability of aptamers P2-63 and P1-12 to scFv was evaluated. . The anti-Hb scFv-SnT used was an scFv derived from the same anti-hemoglobin (Hb) mouse monoclonal antibody clone used in Example 4 to which a tag such as a Snoop tag (SnoopTag or SnT) was added. Anti-Hb scFv-SnT was prepared by recombinant production using E. coli transformed with the expression vector pRA-anti-Hb scFv-SnT. The vector map of pRA-anti-Hb scFv-SnT is shown in FIG. 14B, and the protein coding sequence (SEQ ID NO: 31) and the amino acid sequence encoded by it (SEQ ID NO: 32) in pRA-anti-Hb scFv-SnT are shown in FIG. 16. . As shown in Figure 14B and Figure 16, anti-Hb scFv-SnT contains a polypeptide sequence in which a heavy chain variable region (VH) and a light chain variable region (VL) are linked via a peptide linker (GGGGS) 3 . .
 100 nM ヘモグロビン(Hb)(Thermo Fisher Scientific)を100 μLずつ96穴プレートに添加し、4℃でオーバーナイトインキュベートすることにより、Hbをプレート上に吸着固定した。PPB(Na+)-Tで洗浄後、PPB(Na+)-T中に溶解した2%(w/v)スキムミルクをそのプレートに添加し、600 rpmで振とうしながら1時間室温でインキュベートすることより、プレートをブロッキングした。 100 μL of 100 nM hemoglobin (Hb) (Thermo Fisher Scientific) was added to a 96-well plate and incubated overnight at 4°C to adsorb and immobilize Hb onto the plate. After washing with PPB(Na+)-T, 2% (w/v) skim milk dissolved in PPB(Na+)-T was added to the plate and incubated at room temperature for 1 hour with shaking at 600 rpm. , the plate was blocked.
 アプタマー(P1-12、P2-63)の3'末端を、実施例3に記載の方法により、相補鎖を介してビオチン修飾しPPB(Na+)で異なる濃度に希釈したアプタマー希釈液と、200 nMの抗Hb scFv-SnT溶液を等量ずつ、1.5 mLチューブ内で混合し、600 rpmで振とうしながら1時間室温で反応させることにより、アプタマー-抗Hb scFv-SnT抗体コンジュゲートを作製した。 Aptamer dilution solutions in which the 3' ends of aptamers (P1-12, P2-63) were modified with biotin via complementary strands by the method described in Example 3 and diluted to different concentrations with PPB (Na+), and 200 nM An aptamer-anti-Hb scFv-SnT antibody conjugate was prepared by mixing equal volumes of anti-Hb scFv-SnT solutions in a 1.5 mL tube and reacting at room temperature for 1 hour while shaking at 600 rpm.
 上記プレートをPPB(Na+)-Tで洗浄後、アプタマー-抗Hb scFv-SnT抗体コンジュゲートを100 μLずつ添加し600 rpmで振とうしながら1時間室温で反応させた。1000倍希釈したHRP修飾抗c-Myc抗体(コスモ・バイオ株式会社)を100 μL、又は0.2 ng/μLに希釈したニュートラアビジン-HRPコンジュゲート(Thermo Fisher Scientific)を100 μL添加し、600 rpmで振とうしながらプレートを1時間室温でインキュベートした後、上記と同様にPPB(Na+)-Tで洗浄した。プレートにBM化学発光ELISA基質(Thermo Fisher Scientific)を100 μLずつ添加し、室温及び遮光条件で10分間インキュベートした後、化学発光をプレートリーダーVarioskan(R)Flash(Thermo Fisher Scientific)で測定した。 After washing the plate with PPB(Na+)-T, 100 μL each of the aptamer-anti-Hb scFv-SnT antibody conjugate was added and allowed to react at room temperature for 1 hour while shaking at 600 rpm. Add 100 μL of HRP-modified anti-c-Myc antibody (Cosmo Bio Inc.) diluted 1000 times or 100 μL of neutravidin-HRP conjugate (Thermo Fisher Scientific) diluted to 0.2 ng/μL, and incubate at 600 rpm. Plates were incubated for 1 hour at room temperature with shaking and then washed with PPB(Na+)-T as above. 100 μL of BM chemiluminescent ELISA substrate (Thermo Fisher Scientific) was added to the plate, incubated for 10 minutes at room temperature and protected from light, and chemiluminescence was measured using a plate reader Varioskan (R) Flash (Thermo Fisher Scientific).
 HRP修飾抗c-Myc抗体を用いた、c-mycタグを介した抗Hb scFv-SnT検出に基づく測定結果を、図18に示す。使用したアプタマー終濃度(0 nM、1 nM、10nM、100 nM、及び500 nM)にかかわらず、プレート上のHbに結合したBH5 scFv-SnTの量を示す化学発光レベルに変化はほとんど見られなかった。その化学発光レベルは、プレート上にHbを固定していない場合(図18中の「Hbなし」; 陰性対照; アプタマー終濃度100 nM)と比較して著しく高く、有意な差が見られた。このように抗Hb scFv-SnTは、アプタマー濃度にかかわらずHbに結合することができた。すなわちアプタマーは、抗Hb scFv-SnTの抗原Hbへの結合を阻害しない状態で、抗Hb scFv-SnTに結合できた。 Figure 18 shows the measurement results based on anti-Hb scFv-SnT detection via the c-myc tag using the HRP-modified anti-c-Myc antibody. Regardless of the final aptamer concentrations used (0 nM, 1 nM, 10 nM, 100 nM, and 500 nM), little change was observed in chemiluminescence levels, which indicate the amount of BH5 scFv-SnT bound to Hb on the plate. Ta. The chemiluminescence level was significantly higher than when no Hb was immobilized on the plate ("No Hb" in Figure 18; negative control; aptamer final concentration 100 nM), and a significant difference was observed. Thus, anti-Hb scFv-SnT was able to bind to Hb regardless of the aptamer concentration. That is, the aptamer was able to bind to anti-Hb scFv-SnT without inhibiting the binding of anti-Hb scFv-SnT to antigen Hb.
 以上の結果から、アプタマーP2-63及びP1-12は、scFvの抗原結合活性を阻害することなくscFvに結合できることがさらに裏付けられた。 The above results further supported that aptamers P2-63 and P1-12 can bind to scFv without inhibiting the antigen-binding activity of scFv.
[実施例8]矩形波ボルタンメトリーによるアプタマー固定化電極を用いたscFvの電気化学検出
 さらなるscFvとしてHB125 scFvを使用して、アプタマー固定化電極を用いたscFvの電気化学検出を行った。使用したHB125 scFvは、抗インスリン抗体由来のscFvにC-mycタグ及びHisタグを付加したものである。HB125 scFvは、HB125 scFv発現ベクターpRA-HB125 scFvで形質転換した大腸菌を用いた組換え生産により調製した。pRA-HB125 scFvのベクターマップを図14Cに、pRA-HB125 scFv中のタンパク質コード配列(配列番号33)及びそれによりコードされるアミノ酸配列(配列番号34)を図17に示す。図10C及び図17に示されるように、HB125 scFvは重鎖可変領域(VH)と軽鎖可変領域(VL)がペプチドリンカー(GGGGS)3を介して連結されたポリペプチド配列を含む。
[Example 8] Electrochemical detection of scFv using an aptamer-immobilized electrode by square wave voltammetry Using HB125 scFv as an additional scFv, electrochemical detection of scFv using an aptamer-immobilized electrode was performed. The HB125 scFv used was an anti-insulin antibody-derived scFv with a C-myc tag and a His tag added. HB125 scFv was prepared by recombinant production using E. coli transformed with the HB125 scFv expression vector pRA-HB125 scFv. The vector map of pRA-HB125 scFv is shown in FIG. 14C, and the protein coding sequence (SEQ ID NO: 33) and the amino acid sequence encoded thereby (SEQ ID NO: 34) in pRA-HB125 scFv are shown in FIG. 17. As shown in FIG. 10C and FIG. 17, HB125 scFv includes a polypeptide sequence in which a heavy chain variable region (VH) and a light chain variable region (VL) are linked via a peptide linker (GGGGS) 3 .
 金ディスク電極を、0.05 μm研磨用アルミナを滴下したアルミナ研磨用パッドで左右各50回、八の字を描くように研磨した。研磨後、超純水(Milli-Q(R)水)で洗浄し、次いで金ディスク電極を超純水に浸漬させ、10分間超音波洗浄した。超音波洗浄後、終濃度50 mMの水酸化カリウム(KOH)と終濃度25%の過酸化水素(H2O2)の混合溶液を、金ディスク電極表面上に滴下した。10分静置後、0.5 M NaOH中で-0.35 V~-1.35 Vの範囲で電位を掃引して、金ディスク電極表面のさらなる洗浄を行った。アプタマーP1-12、P2-63を、それぞれ95℃で10分間加熱した後、30分間かけて25℃に徐冷することによりフォールディングさせて、フォールドアプタマー溶液を調製した。Tris-HClに溶解した、アプタマーと等モル量のトリス(2-カルボキシエチル)ホスフィン(TCEP; 富士フイルム和光純薬株式会社)を加えた1 μM フォールドアプタマー溶液中に、超純水でリンスした金ディスク電極を25℃で一晩浸漬させることにより、アプタマーを金ディスク電極に固定化した。アプタマー固定化電極を、1 mM 6-メルカプトヘキサノール(6-MCH)/ 20mM Tris-HCl溶液中に2時間浸漬することにより、ブロッキングした。ブロッキングした金ディスク電極は、超純水でリンスした後、使用するまでPPB(Na+)中で4℃にて保存した。 The gold disk electrode was polished 50 times on each side in a figure-eight pattern using an alumina polishing pad onto which 0.05 μm polishing alumina was dropped. After polishing, it was washed with ultrapure water (Milli-Q (R) water), and then the gold disk electrode was immersed in ultrapure water and ultrasonically cleaned for 10 minutes. After ultrasonic cleaning, a mixed solution of potassium hydroxide (KOH) with a final concentration of 50 mM and hydrogen peroxide (H 2 O 2 ) with a final concentration of 25% was dropped onto the surface of the gold disk electrode. After standing for 10 minutes, the gold disk electrode surface was further cleaned by sweeping the potential in the range of -0.35 V to -1.35 V in 0.5 M NaOH. Aptamers P1-12 and P2-63 were each heated at 95°C for 10 minutes, and then slowly cooled to 25°C over 30 minutes to cause folding, thereby preparing a folded aptamer solution. Gold rinsed with ultrapure water was placed in a 1 μM fold aptamer solution containing an equimolar amount of tris(2-carboxyethyl)phosphine (TCEP; Fujifilm Wako Pure Chemical Industries, Ltd.) dissolved in Tris-HCl. The aptamer was immobilized on the gold disk electrode by soaking the disk electrode overnight at 25°C. The aptamer-immobilized electrode was blocked by immersing it in a 1 mM 6-mercaptohexanol (6-MCH)/20 mM Tris-HCl solution for 2 hours. The blocked gold disk electrodes were rinsed with ultrapure water and then stored in PPB(Na+) at 4°C until use.
 HB125 scFv(抗インスリン)を、反応溶液(10mMフェリシアン化カリウム含有PPB(Na+))中に終濃度が10、50、100、500、又は1000 nMになるよう添加し、攪拌しながら30分インキュベートした後に矩形波ボルタンメトリー(Square wave voltammetry: SWV)測定を行った。SWV測定は、2 mLのPPB(Na+)/10mM フェリシアン化カリウム溶液を反応溶液とし、作用極、対極、参照極としてそれぞれ、上記で作製したアプタマー固定化電極、白金線、Ag/AgCl参照電極を用いた三電極方式で行った。ポテンショスタットはVSP-150(Bio-Logic Science Instruments)を用い、SWV測定は、0~0.4 V(対Ag/AgCl)の範囲で、150 mVの振幅、10 mVのステップ、20 Hzでの測定により実施した。 HB125 scFv (anti-insulin) was added to the reaction solution (PPB(Na+) containing 10 mM potassium ferricyanide) to a final concentration of 10, 50, 100, 500, or 1000 nM, and after incubation for 30 minutes with stirring. Square wave voltammetry (SWV) measurements were performed. For SWV measurement, 2 mL of PPB(Na+)/10mM potassium ferricyanide solution was used as the reaction solution, and the aptamer-immobilized electrode prepared above, platinum wire, and Ag/AgCl reference electrode were used as the working electrode, counter electrode, and reference electrode, respectively. A three-electrode method was used. The potentiostat was VSP-150 (Bio-Logic Science Instruments), and SWV measurements were made in the range 0 to 0.4 V (vs. Ag/AgCl) with an amplitude of 150 mV, steps of 10 mV, and measurements at 20 Hz. carried out.
 SWV測定の結果、アプタマーP1-12又はP2-63を固定化した両電極において、0.2V付近に見られるフェリシアン化カリウム由来のピーク電流値が、HB125 scFv濃度の増加とともに減少した(図19)。その結果から、アプタマーへのscFvの結合に伴い遊離のフェリシアンのフラックスが変化していることが示された。また、10 nM~1 μMの範囲でピーク電流値変化に高い直線性が得られた(図20)。図19及び20から、本発明のアプタマーを用いてscFvの電気化学的検出が可能であることが示された。 As a result of SWV measurement, in both electrodes immobilized with aptamer P1-12 or P2-63, the peak current value derived from potassium ferricyanide, which was observed around 0.2 V, decreased as the HB125 scFv concentration increased (Figure 19). The results showed that the flux of free ferricyanine changed with scFv binding to the aptamer. Furthermore, high linearity in peak current value changes was obtained in the range of 10 nM to 1 μM (Figure 20). 19 and 20 show that scFv can be electrochemically detected using the aptamer of the present invention.
 さらに、反応溶液として、LB培地をPPB(Na)で10倍希釈したものを代わりに使用して、上記と同様にSWV測定を行った。使用したLB培地の組成は以下のとおりである:大豆ペプトン(soy peptone; Gibco PhytoneTM pepton)10 g、酵母エキス(yeast extract; Gibco BactoTMYeast Extract)5 g、NaCl 5.844g(超純水1L中)。 Furthermore, SWV measurement was performed in the same manner as above using a 10-fold dilution of LB medium with PPB(Na) as a reaction solution instead. The composition of the LB medium used was as follows: 10 g of soy peptone (Gibco Phytone TM pepton), 5 g of yeast extract (Gibco Bacto TM Yeast Extract), 5.844 g of NaCl (1 L of ultrapure water). During).
 その結果、アプタマーP1-12又はP2-63を固定化した両電極において、0.2V付近に見られるフェリシアン化カリウム由来のピーク電流値がHB125 scFv濃度の増加とともに減少した(図21)。さらに10 nM~1 μMの範囲でピーク電流値変化に高い直線性が得られた(図22)。図21及び22から、細胞培養培地中でも、本発明のアプタマーを用いてscFvの電気化学的検出が可能であることが示された。そのことは、本発明のアプタマーが、scFv産生細胞の培養によるscFv生産プロセスにおける生産プロセスモニタリングにも有用であることを示している。 As a result, in both electrodes immobilized with aptamer P1-12 or P2-63, the peak current value derived from potassium ferricyanide, which was observed around 0.2 V, decreased as the HB125 scFv concentration increased (Figure 21). Furthermore, high linearity in peak current value changes was obtained in the range of 10 nM to 1 μM (Figure 22). 21 and 22 show that scFv can be electrochemically detected using the aptamer of the present invention even in a cell culture medium. This indicates that the aptamer of the present invention is also useful for monitoring the production process in the scFv production process by culturing scFv-producing cells.
 本発明は、scFvを特異的に検出するために使用できる。生体内に天然のscFvは存在しないため、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに特異的に結合する汎用性のアプタマーは、scFv抗体医薬の汎用的な検出(例えば、薬物動態解析)にも有用と考えられる。また本発明のアプタマーは、オリゴヌクレオチドに様々な化学修飾を施すことにより、scFvに対する検出素子として又はscFv精製用の捕捉手段として利用できる。あるいは本発明のアプタマーは、scFvに様々な化学修飾を施すための汎用的なツールとして使用することができる。本発明のアプタマーは、オリゴヌクレオチドを医療用薬剤等と結合し、標的部位に結合するscFvと組み合わせて用いることにより、ドラッグデリバリーシステムに利用することもできる。 The present invention can be used to specifically detect scFv. Since natural scFv does not exist in vivo, a versatile aptamer that specifically binds to scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3) is useful for general detection of scFv antibody drugs (e.g., pharmacokinetics). It is also considered useful for analysis). Furthermore, the aptamer of the present invention can be used as a detection element for scFv or as a capture means for scFv purification by subjecting the oligonucleotide to various chemical modifications. Alternatively, the aptamer of the present invention can be used as a general-purpose tool for performing various chemical modifications on scFv. The aptamer of the present invention can also be used in a drug delivery system by binding an oligonucleotide to a medical drug or the like and using it in combination with an scFv that binds to a target site.
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents, and patent applications cited herein are incorporated by reference in their entirety.

Claims (15)

  1.  ペプチドリンカー(GGGGS)3(配列番号3)を有する一本鎖Fv(scFv)に特異的に結合するオリゴヌクレオチドを含むアプタマー。 An aptamer comprising an oligonucleotide that specifically binds to a single chain Fv (scFv) having a peptide linker (GGGGS) 3 (SEQ ID NO: 3).
  2.  前記オリゴヌクレオチドが配列番号14又は24で示される塩基配列に対して90%以上の配列同一性を有する塩基配列を含む、請求項1に記載のアプタマー。 The aptamer according to claim 1, wherein the oligonucleotide includes a base sequence having 90% or more sequence identity to the base sequence shown in SEQ ID NO: 14 or 24.
  3.  前記オリゴヌクレオチドが化学修飾されている、請求項2に記載のアプタマー。 The aptamer according to claim 2, wherein the oligonucleotide is chemically modified.
  4.  前記オリゴヌクレオチドが標識されている、請求項3に記載のアプタマー。 The aptamer according to claim 3, wherein the oligonucleotide is labeled.
  5.  前記オリゴヌクレオチドが、ビオチン、チオール基、ポリエチレングリコール、蛍光物質、レドックスプローブ、放射性同位元素、酵素、担体、電子伝達物質、細胞毒性物質、及び医療用薬剤からなる群から選択される少なくとも1つの結合又は導入により化学修飾されているか、並びに/又は修飾ヌクレオチド及び人工塩基の少なくとも一方を含むことにより化学修飾されている、請求項3に記載のアプタマー。 The oligonucleotide has at least one bond selected from the group consisting of biotin, a thiol group, polyethylene glycol, a fluorescent substance, a redox probe, a radioisotope, an enzyme, a carrier, an electron carrier, a cytotoxic substance, and a medical drug. The aptamer according to claim 3, wherein the aptamer has been chemically modified by or by introduction, and/or by containing at least one of a modified nucleotide and an artificial base.
  6.  前記オリゴヌクレオチドがDNA又はRNAである、請求項1又は2に記載のアプタマー。 The aptamer according to claim 1 or 2, wherein the oligonucleotide is DNA or RNA.
  7.  請求項1~5のいずれか1項に記載のアプタマーを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出、修飾又は精製用の組成物。 A composition for detecting, modifying or purifying scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), comprising the aptamer according to any one of claims 1 to 5.
  8.  請求項1~5のいずれか1項に記載のアプタマーを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出、修飾又は精製用キット。 A kit for detecting, modifying or purifying scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), comprising the aptamer according to any one of claims 1 to 5.
  9.  請求項1~5のいずれか1項に記載のアプタマーとそれが結合した支持体とを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出又は精製用デバイス。 A device for detecting or purifying scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), comprising the aptamer according to any one of claims 1 to 5 and a support to which it is bound.
  10.  請求項1~5のいずれか1項に記載のアプタマーを、scFvを含む試料と接触させてscFv-アプタマー複合体を生成し、scFv-アプタマー複合体を前記試料から分離することを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの精製方法。 A peptide linker comprising contacting an aptamer according to any one of claims 1 to 5 with a sample containing an scFv to produce an scFv-aptamer complex, and separating the scFv-aptamer complex from the sample. A method for purifying scFv having (GGGGS) 3 (SEQ ID NO: 3).
  11.  請求項4に記載のアプタマーを、scFvを含む試料と接触させてscFv-アプタマー複合体を生成し、scFv-アプタマー複合体に由来する標識シグナルを検出することを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvの検出方法。 A peptide linker (GGGGS) 3 (GGGGS) comprising contacting the aptamer according to claim 4 with a sample containing an scFv to produce an scFv-aptamer complex, and detecting a labeling signal derived from the scFv-aptamer complex. Method for detecting scFv having SEQ ID NO: 3).
  12.  請求項2に記載のアプタマーにヌクレオチド変異を導入し、得られた変異体の、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに対する結合能を測定し、そのscFvに特異的に結合する変異体をアプタマーとして選択することを含む、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvに特異的に結合するオリゴヌクレオチドを含むアプタマーのスクリーニング方法。 A nucleotide mutation is introduced into the aptamer according to claim 2, and the binding ability of the resulting mutant to an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) is measured, and the aptamer specifically binds to the scFv. A method for screening an aptamer comprising an oligonucleotide that specifically binds to an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3), the method comprising selecting a variant as an aptamer.
  13.  請求項1~5のいずれか1項に記載のアプタマーを、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvと接触させてscFv-アプタマー複合体を生成することを含む、scFvを修飾する方法。 Modifying an scFv comprising contacting an aptamer according to any one of claims 1 to 5 with an scFv having a peptide linker (GGGGS) 3 (SEQ ID NO: 3) to generate an scFv-aptamer complex. Method.
  14.  前記アプタマーが化学修飾されている前記オリゴヌクレオチドを含み、前記方法がscFvを化学修飾する方法である、請求項13に記載の方法。 14. The method according to claim 13, wherein the aptamer comprises the oligonucleotide that has been chemically modified, and the method is a method of chemically modifying scFv.
  15.  請求項1~5のいずれか1項に記載のアプタマーと結合した、ペプチドリンカー(GGGGS)3(配列番号3)を有するscFvを含む、scFv-アプタマー複合体。 An scFv-aptamer complex comprising an scFv with a peptide linker (GGGGS) 3 (SEQ ID NO: 3) coupled to an aptamer according to any one of claims 1 to 5.
PCT/JP2023/030053 2022-08-19 2023-08-21 Single-stranded antibody-binding aptamer WO2024038918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022131326 2022-08-19
JP2022-131326 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024038918A1 true WO2024038918A1 (en) 2024-02-22

Family

ID=89941897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030053 WO2024038918A1 (en) 2022-08-19 2023-08-21 Single-stranded antibody-binding aptamer

Country Status (1)

Country Link
WO (1) WO2024038918A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509849A (en) * 2011-03-07 2014-04-24 シャリテ−ウニヴェルジテーツメディツィン・ベルリン Use of aptamers in the treatment and / or diagnosis of autoimmune diseases
JP2017529872A (en) * 2014-08-04 2017-10-12 ベルリン キュアーズ ホールディング アクチェンゲゼルシャフト Aptamers for use against autoantibody-related diseases
JP2018027024A (en) * 2016-08-15 2018-02-22 国立大学法人東京農工大学 Detection method of aptamer and antibody

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509849A (en) * 2011-03-07 2014-04-24 シャリテ−ウニヴェルジテーツメディツィン・ベルリン Use of aptamers in the treatment and / or diagnosis of autoimmune diseases
JP2017529872A (en) * 2014-08-04 2017-10-12 ベルリン キュアーズ ホールディング アクチェンゲゼルシャフト Aptamers for use against autoantibody-related diseases
JP2018027024A (en) * 2016-08-15 2018-02-22 国立大学法人東京農工大学 Detection method of aptamer and antibody

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IKEBUKURO KAZUNORI, RYUTARO ASANO, DAIMEI MIURA, WAKANA HAYASHI : "Development of the technology to visualize viruses by luminescence using antibody and aptamer", PROCEEDINGS OF THE SPRING ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN, vol. 103, 22 March 2023 (2023-03-22), pages K402 - 3am, XP093140232 *

Similar Documents

Publication Publication Date Title
Tang et al. The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods
JP5647113B2 (en) Multi-ligand capture agents and related compositions, methods and systems
ES2656969T3 (en) Detection of a polypeptide dimer by a bivalent binding agent
JP4111984B2 (en) Target substance detection method
US7741128B2 (en) Cooperative reporter systems, components, and methods for analyte detection
Miller et al. based diagnostics in the antigen-depletion regime: High-density immobilization of rcSso7d-cellulose-binding domain fusion proteins for efficient target capture
US20220162684A1 (en) Affinity reagents having enhanced binding and detection characteristics
US9982022B2 (en) Binding polypeptides having a mutated scaffold
CN107163104B (en) Aptamer-polypeptide complex probe and preparation method and application thereof
JP7248693B2 (en) Bioluminescent biosensors that detect and quantify biomolecules or ligands in solution
JPH06502526A (en) binding domain
US10233442B2 (en) Method for affinity purification
US8846869B2 (en) Mutant protein capable of binding specifically and quickly to troponin I derived from human myocardium
WO2024038918A1 (en) Single-stranded antibody-binding aptamer
US11236386B2 (en) Method for labeling of aldehyde containing target molecules
WO2020173822A1 (en) Detection and quantification of small molecules
JP6793917B2 (en) Aptamer and antibody detection method
JP2007040834A (en) Immunoassay reagent
US20130178606A1 (en) Recombinant protein capable of binding specifically and quickly to troponin i derived from human myocardium
Pokhrel et al. Single-molecule displacement assay reveals strong binding of polyvalent dendrimer ligands to telomeric G-quadruplex
US8663933B2 (en) Recombinant protein capable of binding specifically and quickly to troponin I derived from human myocardium
US8603759B2 (en) Recombinant protein capable of binding specifically and quickly to troponin I derived from human myocardium
Rizi et al. Generation of an scFv-type Quenchbody Against HER2 for Sensitive Detection of Human Breast Cancer
KR20180024989A (en) Endotoxin biosensing kit using fluorescent magnetic nanoparticles
EP4296672A1 (en) Labeled polypeptide, modified polypeptide, production method for these polypeptides, reagent containing these polypeptides, and measurement method for target substance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854951

Country of ref document: EP

Kind code of ref document: A1