WO2024038810A1 - Positive-type photosensitive composition, cured film, organic el display device, and colorant - Google Patents

Positive-type photosensitive composition, cured film, organic el display device, and colorant Download PDF

Info

Publication number
WO2024038810A1
WO2024038810A1 PCT/JP2023/029066 JP2023029066W WO2024038810A1 WO 2024038810 A1 WO2024038810 A1 WO 2024038810A1 JP 2023029066 W JP2023029066 W JP 2023029066W WO 2024038810 A1 WO2024038810 A1 WO 2024038810A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
compound represented
carbon atoms
component
Prior art date
Application number
PCT/JP2023/029066
Other languages
French (fr)
Japanese (ja)
Inventor
暁宏 石川
充 杉原
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024038810A1 publication Critical patent/WO2024038810A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/12Perinones, i.e. naphthoylene-aryl-imidazoles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Definitions

  • the present invention relates to a positive photosensitive composition, a cured film, an organic EL display device, and a dye.
  • the black pixel dividing layer is arranged to separate the light emitting pixels of each color, such as red, green, and blue, arranged in the opening.
  • the flattening layer serves as a base layer that allows the electrodes and the black pixel dividing layer to be formed smoothly, and is arranged so as to cover the convex steps formed by TFTs (Thin Film Transistors).
  • Photosensitive compositions have been proposed.
  • C.I. a black dye consisting of an azo chromium complex
  • Patent Documents 1, 2 and 3 A positive photosensitive composition containing a salt-forming compound consisting of an acidic dye and a basic dye is disclosed in Patent Document 4.
  • Patent Document 5 A negative photosensitive composition containing a benzodifuranone black pigment is disclosed in Patent Document 5.
  • Patent Document 6 discloses a negative photosensitive composition containing a phthalocyanine compound having a basic functional group, an organic blue pigment, an organic purple pigment, and an organic yellow pigment.
  • the positive photosensitive compositions disclosed in Patent Documents 1, 2, and 3 it is easy to obtain a pixel dividing layer and/or a flattening layer that has light-shielding properties and high thermal stability. .. I. It is generally known that black dyes made of azo chromium complexes, such as Solvent Black 27, 29, or 34, are likely to generate highly toxic hexavalent chromium when subjected to high-temperature treatment. Therefore, there were problems from the viewpoints of human safety and environmental conservation. Further, the positive photosensitive composition disclosed in Patent Document 4 has a problem in that the thermal stability of light-shielding properties is insufficient. The negative photosensitive composition disclosed in Patent Document 5 had a problem of insufficient resolution. The negative photosensitive composition disclosed in Patent Document 6 has a problem in that protruding foreign matter defects are generated on the surface of the opening due to the high temperature treatment normally performed when forming the pixel division layer.
  • the pixel dividing layer contains a coloring material that does not have chromium atoms in its molecules, suppresses the occurrence of protruding foreign matter defects on the surface of the opening, has high light-shielding thermal stability, and has high resolution.
  • a photosensitive composition capable of forming a flattening layer and/or a flattening layer has been desired.
  • the positive photosensitive composition of the present invention has the following configuration. That is, A positive material containing (a) a compound represented by formula (1) and/or a compound represented by formula (2), (b) a resin, (c) a photoacid generator, and (d) an organic solvent. It is a type photosensitive composition.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, the total number of -SO 3 H and -SO 3 - in R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 is 1 to 4.
  • R 9 , R 10 , R 11 and R 12 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 9 and R 10 and R 11 and R 12 may each independently be bonded to each other to form a linking group -X 1 -. -X 1 - represents -O- or -SO 2 -.
  • R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, the total number of -SO 3 H and -SO 3 - in R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 is 1 to 4.
  • R 21 , R 22 , R 23 and R 24 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 21 and R 22 and R 23 and R 24 may each independently be bonded to each other to form a linking group -X 2 -. -X 2 - represents -O- or -SO 2 -.
  • the present invention it is possible to suppress the occurrence of foreign matter defects on the surface of the opening, and form a pixel division layer and/or a planarization layer with high light-shielding properties, high thermal stability, and high resolution.
  • FIG. 1 is a cross-sectional view of a TFT substrate in an organic EL display device including a pixel dividing layer and a planarization layer as a specific example of an embodiment of the present invention.
  • FIG. 2 is a scanning electron microscope (SEM) image of a protruding foreign particle defect observed in Comparative Example 4.
  • FIG. 3 shows a manufacturing process of an organic EL display device including a process of forming a pixel dividing layer in all Examples.
  • FIG. 4 is a graph comparing the transmittance (%) of the prebaked film obtained in Reference Example 1 (broken line) and the prebaked film obtained in Reference Example 2 (solid line) at a wavelength of 350 to 650 nm.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as lower and upper limits.
  • the pixel dividing layer means a pixel dividing layer included in an organic EL display device, and does not include the black matrix of a liquid crystal display device.
  • Visible light means light with a wavelength of 380 nm or more and less than 780 nm
  • near ultraviolet rays means light with a wavelength of 200 nm or more and less than 380 nm.
  • Near-infrared rays mean light in a wavelength range of 780 nm or more and 1300 nm or less.
  • Light-shielding refers to the function of reducing the intensity of transmitted light relative to the intensity of light incident perpendicularly to the cured film, and light-shielding property refers to the extent to which visible light is blocked.
  • Transmittance means light transmittance.
  • the weight average molecular weight (Mw) is a value analyzed by gel permeation chromatography (GPC) using tetrahydrofuran as a carrier and converted using a standard polystyrene calibration curve.
  • Color Index Generic Name used in the name of some coloring materials is an abbreviation for Color Index Generic Name, and is based on the color index published by The Society of Dyers and Colorists, and is based on the coloring materials registered in the color index.
  • Color Index Generic Name represents the chemical structure and crystal form of the pigment or dye. Solid content means the proportion (mass %) of components excluding organic solvent and water in a positive photosensitive composition.
  • the positive photosensitive composition of the present invention comprises (a) a compound represented by formula (1) and/or a compound represented by formula (2), (b) a resin, and (c) a photoacid. It is a positive photosensitive composition containing a generator and (d) an organic solvent.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, the total number of -SO 3 H and -SO 3 - in R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 is 1 to 4.
  • R 9 , R 10 , R 11 and R 12 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 9 and R 10 and R 11 and R 12 may each independently be bonded to each other to form a linking group -X 1 -. -X 1 - represents -O- or -SO 2 -.
  • R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, the total number of -SO 3 H and -SO 3 - in R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 is 1 to 4.
  • R 21 , R 22 , R 23 and R 24 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 21 and R 22 and R 23 and R 24 may each independently be bonded to each other to form a linking group -X 2 -. -X 2 - represents -O- or -SO 2 -.
  • the positive photosensitive composition of the present invention contains (a) a compound represented by formula (1) and/or a compound represented by formula (2) (hereinafter sometimes referred to as component (a)). do.
  • Component (a) has the effect of imparting light-shielding properties to the finally obtained pixel division layer and/or planarization layer.
  • Component (a) has a perylene-3,4,9,10-tetracarboxylic acid bisbenzimidazole (hereinafter sometimes referred to as PTCBI) skeleton, and the carbon atoms constituting the benzene ring in the two benzimidazole structures. It is a condensed polycyclic aromatic sulfonic acid in which an atom is substituted with one to four sulfo groups.
  • the sulfo group herein includes -SO 3 H and -SO 3 - in which protons have been dissociated (ie, sulfonate group).
  • the PTCBI skeleton includes the cis skeleton represented by the formula (3) and the trans skeleton represented by the formula (4), and has two benzimidazole skeletons in the molecule. Light-shielding properties are developed. In order to help understand the synthesis method for obtaining component (a) described later, the position numbers of some of the carbon atoms constituting the perylene ring are shown in formula (3) and formula (4). Also listed in
  • component (a) present in the positive photosensitive composition, pixel dividing layer, and flattening layer is not particularly limited, and may be dispersed as insoluble particles or dissolved. good. That is, component (a) may be a pigment or a dye, or a mixture of them may be used.
  • component (a) may be a pigment or a dye, or a mixture of them may be used.
  • the existing form of the component is generally adjusted by the number of carbon atoms of the alkyl group having 1 to 5 carbon atoms and/or the alkoxy group having 1 to 5 carbon atoms and the number of substituents in the molecule (d) solubility in organic solvents. It can be controlled by Moreover, it can be controlled by selecting (b) resin and (d) organic solvent depending on the chemical structure of component (a).
  • Component (a) may form a salt derived from -SO 3 - , and by forming a salt, the solubility in the organic solvent (d) may be improved.
  • the salt form include salts with monovalent metal cations such as Na + , K + , and Li + , and polyvalent salts such as Ca 2+ , Mn 2+ , Sr 2+ , Ba 2+ , Zn 2+ , and Al 3+ . Salts with metal cations, C. I. Examples include salts with cation moieties of cationic dyes such as Basic Blue 3 and 22, and salts with organic cations such as trialkylbenzylammonium cations and tetraalkylammonium cations.
  • component (a) which is an anionic compound, forms a salt with component (f), which is a cationic compound, which will be described later.
  • component (f) which is a cationic compound, which will be described later.
  • component (a) has a sulfo group introduced into the PTCBI skeleton, irrespective of the above-mentioned existence form, but becomes protrusive under high temperature treatment (for example, 250 to 270°C) in the curing process described below. It is possible to suppress the occurrence of foreign matter defects such as, and obtain excellent light-shielding thermal stability. When a protruding foreign particle defect occurs on the surface of the opening of the pixel dividing layer or the planarizing layer, it becomes difficult to light up the light emitting pixel. Therefore, it is desirable to suppress the occurrence of protruding foreign matter defects.
  • component (a) is sterically bulky and has the effect of alleviating the strong stacking property between molecules derived from the PTCBI skeleton. Therefore, compared to PTCBI derivatives substituted with substituents other than sulfo groups (hereinafter sometimes referred to as PTCBI derivatives) and unsubstituted PTCBI, component (a) has rather increased near-ultraviolet transmittance, equivalent to It also has light blocking properties. Therefore, the component (a) can preferably improve the reaction rate of the photoacid generator (c) in the exposure step described below, thereby increasing the amount of acid generated in the film.
  • the component (a) since the component (a) has a sulfo group, it is preferably provided with self-dispersibility and/or high solubility in an alkaline developer in the development step described below, and the generation of development residues can be preferably suppressed.
  • a pixel dividing layer and/or a flattening layer that has high light-shielding properties, high thermal stability, and high resolution due to the characteristic chemical structure of component (a).
  • High thermal stability of the light-shielding property means that the light-shielding property changes little with respect to changes in heating temperature in the curing process, and that the resulting pixel dividing layer and/or planarization layer is heated again. This means that the change in light shielding properties is small.
  • high resolution means that the aperture width of the aperture is narrow.
  • the size of a light-emitting pixel in the display area of an organic EL display device is determined by the aperture width of the aperture of the pixel dividing layer, and the smaller the light-emitting pixel size, the higher the resolution and display quality can be obtained, so the resolution of the pixel dividing layer is higher. The more desirable. Further, due to the panel configuration, if the pixel division layer has a high resolution, the flattening layer also needs to have a high resolution. Therefore, it is desirable that the resolution of the planarization layer is also higher.
  • Component (a) is a pigment that has a maximum absorption wavelength in the wavelength range of 550 to 650 nm and exhibits a dark blue color, and PTCBI and PTCBI derivatives that have a maximum absorption wavelength in the wavelength range of 480 to 540 nm and are pigments that exhibit a dark purple color. It has different optical properties.
  • the pre-baked film of the positive photosensitive composition of the present invention containing component (a) has a maximum transmittance of 800 to 1 , the maximum transmittance at 200 nm is high.
  • near-infrared alignment which automatically aligns the exposure mask to the electrode-forming substrate using a near-infrared camera, and it is possible to obtain high positional accuracy and high productivity while having high light-shielding properties. Can be done.
  • the component (a) is a compound represented by the formula (5) and/or a compound represented by the formula (6) in improving the thermal stability and resolution of the light-shielding property. It is preferable to contain a compound.
  • R 25 and R 26 each independently represent -SO 3 H or -SO 3 - .
  • n 1 and n 2 are integers and each independently represents 0 to 2. However, the total number of n 1 and n 2 is 1 to 4.
  • R 27 and R 28 each independently represent -SO 3 H or -SO 3 - .
  • n 3 and n 4 are integers and each independently represents 0 to 2. However, the total number of n 3 and n 4 is 1 to 4.
  • component (a) contained in the positive photosensitive composition of the present invention include a compound represented by formula (7), a compound represented by formula (8), and a compound represented by formula (9).
  • Examples include a group of compounds represented by formula (15), compounds represented by formula (16), and cis-compounds corresponding to isomers of these compounds.
  • Examples of the synthesis method for obtaining component (a) include the first method and the second method described below.
  • the first method is perylene-3,4,9,10-tetracarboxylic dianhydride (hereinafter sometimes abbreviated as PTCDA) or a carbon atom in which a substituent other than a sulfo group constitutes a perylene ring.
  • PTCDA perylene-3,4,9,10-tetracarboxylic dianhydride derivative
  • PTCDA derivative substituted with 1,2-diaminobenzene and/or a substituent other than the sulfo group.
  • a method for obtaining component (a) is to sulfonate a product obtained by reacting a 1,2-diaminobenzene derivative in which is substituted with a carbon atom constituting a benzene ring to introduce a sulfo group.
  • PTCDA derivatives include 1,12-dihydroxyperylene-3,4,9,10-tetracarboxylic dianhydride, 1,7-dihydroxyperylene-3,4,9,10-tetracarboxylic dianhydride , 1-bromoperylene-3,4,9,10-tetracarboxylic dianhydride, 1,7-dibromoperylene-3,4,9,10-tetracarboxylic dianhydride, 1,7-difluoroperylene- 3,4,9,10-tetracarboxylic dianhydride, 1,6-difluoroperylene-3,4,9,10-tetracarboxylic dianhydride, 1,6,7,12-tetrafluoroperylene-3 , 4,9,10-tetracarboxylic dianhydride, 1,6,7,12-tetracyanoperylene-3,4,9,10-tetracarboxylic dianhydride, 1,12-methoxyperylene
  • PTCDA derivatives may be commercially available from Henan Tianfu Chemical Co., Ltd., for example. Further, for the method of obtaining the PTCDA derivative, refer to the synthesis methods disclosed in, for example, WO 97/22607, JP 2018-165257, WO 2007/554787, and WO 2007/093643. can.
  • 1,2-diaminobenzene derivatives include 4,5-dimethyl-1,2-phenylenediamine, 2,3-diaminotoluene, 4,5-diethyl-1,2-phenylenediamine, 4,5-dipropyl -1,2-phenylenediamine, 1,2-diamino-4-fluorobenzene, 1,2-diamino-4-bromobenzene, 4-methoxy-1,2-phenylenediamine, 4-ethoxy-1,2-phenylene Diamine, 4-propoxy-1,2-phenylenediamine, 4-butoxy-1,2-phenylenediamine, 1,2-diamino-4,5-methoxybenzene, 1,2-diamino-4,5-ethoxybenzene, 1,2-diamino-4,5-propoxybenzene, 1,2-diamino-4,5-butoxybenzene, 3,5-bis(trifluoromethyl)-1,2-phenylenediamine (all of the above
  • component (a) may be obtained by sulfonating a cis/trans mixture of PTCBI and introducing a sulfo group.
  • a commercially available product may be used as the cis/trans isomer mixture of PTCBI.
  • Commercially available products include, for example, “Spectrasense (registered trademark)” Black K0087 (manufactured by Color & Effect), perylene-3,4,9,10-tetracarboxylic acid bisbenzimidazole (manufactured by Tokyo Kasei Kogyo Co., Ltd.), and PTCBI (manufactured by Tokyo Chemical Industry Co., Ltd.). (manufactured by Luminescence Technology Corporation).
  • the second method includes a method in which component (a) is obtained by reacting PTCDA (or a PTCDA derivative) with a 1,2-diaminobenzene derivative substituted with a sulfo group.
  • component (a) is obtained by reacting PTCDA (or a PTCDA derivative) with a 1,2-diaminobenzene derivative substituted with a sulfo group.
  • Examples of the 1,2-diaminobenzene derivatives substituted with a sulfo group include 1,2-diamino-4-sulfonic acid and 1,2-diamino-3-sulfonic acid.
  • the method for obtaining component (a) will be explained in more detail by taking the above-mentioned first method as an example.
  • the starting material PTCDA (or PTCDA derivative) and 1,2-diaminobenzene (or 1,2-diaminobenzene derivative) were mixed in a ratio of 1:2 to 1:1, respectively.
  • a basic catalyst such as piperazine was stirred for 6 to 10 hours at a liquid temperature of 140 to 200°C to allow the reaction to proceed sufficiently, and then The resulting water is separated by distillation as an azeotrope with phenol.
  • Pyridine may be used in place of the solvent and basic catalyst.
  • PTCBI or PTCBI derivative
  • PTCBI or PTCBI derivative
  • PTCBI is obtained as a mixture containing 30 to 70% by mass of the trans isomer based on the total of 100% by mass of the cis and trans isomers. If necessary, either the cis form or the trans form may be isolated by chromatography.
  • a sulfonation reaction is performed.
  • a mixture of PTCBI (or PTCBI derivative) dissolved in 10 to 70% by mass of oleum is heated, the liquid temperature is adjusted to a range of 40 to 150°C, and the mixture is stirred for 3 to 15 hours.
  • the starting material is poured into water of 100 times or more mass, preferably ice water, to obtain a slurry containing precipitates, which is filtered.
  • it is washed repeatedly with a mixture of ethanol and water until the residual amount of sulfate ions determined by ion chromatography is less than 100 mass ppm, then washed with water, and further dried at 60 to 80° C. under reduced pressure.
  • the dry agglomerates are loosened by dry pulverization using a hammer mill or jet mill to obtain powdered component (a).
  • the distribution of the number of sulfo groups introduced per molecule of the target product can be controlled by the liquid temperature and reaction time depending on the concentration of fuming sulfuric acid, and the reaction may be carried out in multiple stages if necessary.
  • after washing the obtained product it may be purified by silica gel chromatography if necessary to increase the purity of component (a) into which a specific range of numbers of sulfo groups have been introduced.
  • the molecular weight corresponding to the chemical structure and its purity can be conveniently monitored by liquid chromatography mass spectrometry (LC-MS).
  • a salt of component (a) and a metal cation for example, after adding component (a) to water, it is dissolved under alkaline conditions while stirring, and a Na + source such as sodium hydroxide, Add a K + source such as potassium hydroxide, an Al 3+ source such as aluminum chloride, a Ba 2+ source such as barium chloride, or a Ca 2+ source such as calcium chloride, and stir at 30 to 60°C for 1 to 5 hours. Examples include a method in which salt formation is performed, followed by separation, purification, drying, and dry pulverization.
  • a salt of component (a) and component (f) for example, after adding component (a) to water and an organic solvent, while stirring, the salt is A secondary amine, a tertiary amine, a quaternary ammonium salt and/or a phosphonium salt corresponding to the structure of the salt is added and stirred at 30 to 90°C for 1 to 6 hours to form a salt, and then separated. , purification, drying and dry pulverization.
  • a salt of component (a) and a metal cation may be used as a raw material instead of component (a), and the salt may be obtained by cation exchange with the source of component (f).
  • common means such as decantation, distillation under reduced pressure, filter press, and silica gel chromatography can be preferably applied.
  • the average primary particle diameter of the component (a) in the form of a pigment is determined to improve resolution. It is preferably 10 nm or more, more preferably 30 nm or more. From the same point of view, the thickness is preferably 300 nm or less, more preferably 150 nm or less.
  • the average primary particle diameter herein refers to the number average value of primary particle diameters calculated by a particle size measurement method using an image analysis type particle size distribution measuring device. A transmission electron microscope (TEM) can be used to take the image, and 50 primary particles of component (a) are randomly selected from images taken of 100 or more primary particles at a magnification of 50,000 times.
  • TEM transmission electron microscope
  • the average primary particle diameter can be calculated by analyzing the primary particles.
  • component (a) is not perfectly spherical, the average value of its major axis and minor axis is taken as the primary particle diameter.
  • Image analysis type particle size distribution software Mac-View manufactured by Mountec, compliant with JIS 8827-1; particle size analysis - image analysis method
  • Mac-View manufactured by Mountec, compliant with JIS 8827-1; particle size analysis - image analysis method
  • component (a) was determined using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and time-of-flight secondary ion mass spectrometry using the positive photosensitive composition of the present invention as a sample.
  • MALDI-TOF MS matrix-assisted laser desorption ionization-time-of-flight mass spectrometry
  • TOF-SIMS time-of-flight mass spectrometry
  • LC-FT-MS liquid chromatography/electric field Fourier transform mass spectrometry
  • NMR nuclear magnetic resonance spectrometry
  • the analysis can be performed by appropriately combining known techniques such as analytical methods (LC-MS), infrared absorption spectroscopy, and X-ray diffraction.
  • component (a) When component (a) is present in the form of a pigment, its presence can be detected with a particle size distribution measuring device based on dynamic light scattering.
  • the accuracy of analysis may be improved by using as a sample a concentrate obtained by centrifuging a positive photosensitive composition, or a sample dissolved in an amide solvent described below.
  • the content of component (a) is preferably 5% by mass or more, more preferably 10% by mass or more based on 100% by mass of the solid content of the positive photosensitive composition. In order to improve resolution, the content is preferably 40% by mass or less, more preferably 30% by mass or less.
  • the positive photosensitive composition of the present invention improves resolution while obtaining high light-shielding properties, and further includes (f) a compound represented by formula (70) (hereinafter sometimes referred to as component (f)). ) is preferably contained.
  • component (f) a compound represented by formula (70) (hereinafter sometimes referred to as component (f)).
  • component (f) a compound represented by formula (70)
  • the form of the component (f) present in the positive photosensitive composition, the pixel dividing layer and the flattening layer is not particularly limited, but at least a part of the component (f) is a salt of the component (a). It is preferable that the
  • R 81 represents N + or P + .
  • R 82 , R 83 , R 84 and R 85 each independently represent an alkyl group having 1 to 20 carbon atoms, a phenyl group, or a hydrogen atom which may be substituted with -OH or a phenyl group.
  • R 81 is N +
  • the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 to 2
  • R 81 is P + , R 82 , R 83 , R 84 and R 85
  • the total number of hydrogen atoms is 0.
  • R 81 is N + , it means that the (f) component has an ammonium cation, and when it is P + , it means that the (f) component has a phosphonium cation.
  • R 81 when R 81 is N + , the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 to 2 means that R 82 , R 83 , This means that one or two of R 84 and R 85 are hydrogen atoms bonded to R 81 , or not all are hydrogen atoms bonded to R 81 , and the hydrogen atom here does not mean an alkyl group having 1 to 20 carbon atoms which may be substituted with --OH or a phenyl group, or a hydrogen atom contained in a phenyl group.
  • the alkyl group having 1 to 20 carbon atoms which may be substituted with -OH or a phenyl group includes, for example, an unsubstituted methyl group (-CH 3 ), - Included are a methyl group substituted with one OH (-CH 2 OH), a methyl group substituted with one phenyl group (ie, benzyl group), and the like.
  • the number of substitutions in the alkyl group having 1 to 20 carbon atoms is preferably one.
  • the component (f) has an alkyl group having 1 to 15 carbon atoms which may be substituted with -OH or a phenyl group, and an unsubstituted alkyl group having 1 to 15 carbon atoms. It is preferable to have at least one. That is, in the positive photosensitive composition of the present invention, the component (f) more preferably contains a compound represented by formula (71).
  • R 86 represents N + or P + .
  • R 87 , R 88 , R 89 and R 90 each independently represent an alkyl group having 1 to 15 carbon atoms which may be substituted with -OH or a phenyl group. However, at least one of R 87 , R 88 , R 89 and R 90 is an unsubstituted alkyl group having 1 to 15 carbon atoms.
  • R 86 is N + , it means that the (f) component has an ammonium cation, and when it is P + , it means that the (f) component has a phosphonium cation.
  • R 86 is N + and R 87 , R 88 , R 89 and R 90 are unsubstituted alkyl groups having 1 to 15 carbon atoms.
  • R 81 is N + and the total number of hydrogen atoms bonded to R 81 in R 82 , R 83 , R 84 and R 85 is 1 or 2.
  • Examples include the compound represented by formula (72) derived from 2-(dodecylamino)ethanol etc., the compound represented by formula (73) derived from bis(2-ethylhexyl)amine etc., tri-n- A compound represented by formula (74) derived from octylamine etc., a compound represented by formula (75) derived from stearyldiethanolamine etc., a compound represented by formula (76) derived from 2-diethylaminoethanol etc. Can be mentioned.
  • R 81 is N + and the total number of hydrogen atoms bonded to R 81 in R 82 , R 83 , R 84 and R 85 is 0.
  • R 81 is N + and the total number of hydrogen atoms bonded to R 81 in R 82 , R 83 , R 84 and R 85 is 0.
  • a compound represented by formula (78) derived from tetraethylammonium bromide etc.
  • Examples include a compound represented by the formula (80) derived from tetrabutylammonium bromide and the like, and a compound represented by the formula (81) derived from tridodecylmethylammonium chloride and the like.
  • component (f) in which R 81 is P + in formula (70) include compounds represented by formula (82) derived from tetrabutylphosphonium bromide and the like, and formulas derived from tributylhexylphosphonium bromide and the like. Examples include a compound represented by formula (83) and a compound represented by formula (84) derived from tetrakis(hydroxymethyl)phosphonium sulfate.
  • component (f) may be contained alone or in combination.
  • the content of component (f) should be 10 mol% or more in order to improve resolution, when the total of -SO 3 H and -SO 3 - contained in component (a) is 100 mol% in the positive photosensitive composition. It is preferably present, and more preferably 20 mol% or more. In order to improve the thermal stability of light-shielding properties, the content is preferably 100 mol% or less, more preferably 80 mol% or less.
  • the positive photosensitive composition of the present invention contains (b) a resin.
  • the resin here means a compound having a polymer chain having 5 or more repeating units and a weight average molecular weight (Mw) of 1,000 or more.
  • Component (b), along with component (c) described below, is a component that provides positive photosensitivity, and also serves to fix component (a) in the finally obtained pixel dividing layer and/or flattening layer. It has a function as a binder component.
  • (b) Resin is not particularly limited, but (b-1) phenolic hydroxyl group-containing resin (hereinafter sometimes referred to as component (b-1)) is preferred in order to improve resolution. That is, the positive photosensitive composition of the present invention preferably contains (b-1) a phenolic hydroxyl group-containing resin.
  • Component (b-1) includes, for example, polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, novolak resin, resin having a repeating unit derived from a radically polymerizable monofunctional monomer having a phenolic hydroxyl group, and polyamide. Examples include siloxane. One or more types of these resins may be contained. Among these, it is preferable to contain at least one resin selected from the group consisting of polyimide, polyimide precursor, polybenzoxazole precursor, and copolymers thereof.
  • the copolymer referred to herein may be a random copolymer or a block copolymer.
  • Polyimide, polyimide precursors, polybenzoxazole precursors, and their copolymers are all difficult to thermally decompose, and the volumetric shrinkage of the film is small, so after high-temperature treatment, the one with higher light-shielding property per 1.0 ⁇ m film thickness It has the effect of suppressing changes in Therefore, the thermal stability of the light-shielding property of the pixel division layer and/or the planarization layer can be further improved.
  • the (b) resin contains (b-1) a phenolic hydroxyl group-containing resin, and the (b-1) phenolic hydroxyl group-containing resin is a polyimide or a polyimide precursor. It is preferable to contain at least one resin selected from the group consisting of polybenzoxazole precursors, polybenzoxazole precursors, and copolymers thereof.
  • the weight average molecular weight (Mw) of the resin belonging to component (b-1) is preferably 5,000 to 50,000 in order to achieve both thermal stability of light-shielding property and resolution. More preferably 10,000 to 30,000.
  • the (b) resin contains (b-1) a phenolic hydroxyl group-containing resin, and the (b-1) component is represented by formula (17). It is more preferable to contain a resin having a structural unit and/or a resin having a structural unit represented by formula (18).
  • R 37 represents a 4- to 10-valent organic group.
  • R 38 represents a divalent to octavalent organic group.
  • R 39 and R 40 each independently represent a phenolic hydroxyl group or a carboxyl group, and each may be a single group or a mixture of different groups. However, at least one of R 39 and R 40 contains a phenolic hydroxyl group.
  • p and q are integers and each independently represents 0 to 6. However, p+q>0 is satisfied. * represents a binding site.
  • R 41 and R 42 represent a divalent to octavalent organic group.
  • R 43 and R 44 each independently represent a phenolic hydroxyl group, a carboxyl group, or -COOA, and each may be a single group or different groups may be mixed. However, at least one of R 43 and R 44 contains a phenolic hydroxyl group.
  • A represents a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • r and s are integers and each independently represents 0 to 6. However, r+s>0 is satisfied.
  • * represents a binding site.
  • the resin having a structural unit represented by formula (18) preferably has a group represented by -COOA in order to improve resolution, and in formula (18), a monovalent carbonized group having 1 to 10 carbon atoms
  • the hydrogen group A include a methyl group, an ethyl group, a propyl group, a phenyl group, and a benzyl group.
  • R 37 -(R 39 )p represents a residue of an acid dianhydride.
  • R 37 is preferably an organic group containing an aromatic ring or a cycloaliphatic group and having 5 to 40 carbon atoms.
  • Examples of the acid dianhydride residue include pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, and 2,3,3',4'-biphenyltetracarboxylic dianhydride.
  • R 45 represents a single bond, -O-, -C(CF 3 ) 2 -, -C(CH 3 ) 2 - or -SO 2 -.
  • R 46 and R 47 each independently represent a hydrogen atom or -OH.
  • R 41 -(R 43 )r represents an acid residue.
  • R 41 is preferably an organic group containing an aromatic ring or a cycloaliphatic group and having 5 to 40 carbon atoms.
  • Examples of acid residues include dicarboxylic acid residues, tricarboxylic acid residues, and tetracarboxylic acid residues.
  • Examples of dicarboxylic acids include terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, bis(carboxyphenyl)hexafluoropropane, biphenyl dicarboxylic acid, benzophenone dicarboxylic acid, and triphenyl dicarboxylic acid.
  • Examples of tricarboxylic acids include residues of trimellitic acid, trimesic acid, diphenyl ethertricarboxylic acid, and biphenyltricarboxylic acid.
  • tetracarboxylic acid residues include pyromellitic acid, 3,3',4,4'-biphenyltetracarboxylic acid, 2,3,3',4'-biphenyltetracarboxylic acid, 2,2',3, 3'-biphenyltetracarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, 2,2',3,3'-benzophenonetetracarboxylic acid, 2,2-bis(3,4-dicarboxylic acid) phenyl)hexafluoropropane, 2,2-bis(2,3-dicarboxyphenyl)hexafluoropropane, 1,1-bis(3,4-dicarboxyphenyl)ethane, 1,1-bis(2,3- dicarboxyphenyl)ethane, bis(3,4-dicarboxyphenyl)methane, bis(2,3-dicarboxyphenyl)me
  • R 38 -(R 40 )q in formula (17) and R 42 -(R 44 )s in formula (18) represent a diamine residue.
  • R 38 and R 42 are preferably organic groups containing an aromatic ring or a cycloaliphatic group and having 5 to 40 carbon atoms.
  • diamine residues examples include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, and 1,4-bis(4-aminodiphenylmethane).
  • phenoxy)benzene m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 1,6-naphthalenediamine, bis(4-aminophenoxy)biphenyl, 1,4-bis(4-aminophenoxy)benzene, of diamines such as 2-bis(3-amino-4-hydroxyphenyl)propane, 1,3-bis(4-aminophenoxy)benzene, and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane. Examples thereof include a residue, a residue of a compound represented by formula (20), and a residue of a compound represented by formula (21).
  • R 48 represents a single bond, -O-, -C(CF 3 ) 2 -, -C(CH 3 ) 2 - or -SO 2 -.
  • R 49 and R 50 each independently represent a hydrogen atom or -OH.
  • R 51 represents a single bond, -O-, -C(CF 3 ) 2 -, -C(CH 3 ) 2 - or -SO 2 -.
  • R 52 and R 53 each independently represent a hydrogen atom or -OH.
  • Examples of monoamines include 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, and 1-carboxy-7-aminonaphthalene.
  • 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-aminophenol, 3-aminophenol, 4-amino Examples include phenol.
  • the group represented by COOA can be obtained by converting a carboxyl group with an esterifying agent.
  • esterifying agent include N,N-dimethylformamide dimethyl acetal and N,N-dimethylformamide diethyl acetal.
  • a resin having a structural unit represented by formula (17) and/or a structural unit represented by formula (18) can be obtained by a known method, for example, Japanese Patent No. 4341293, International Publication No. 2014/ It can be synthesized by the method disclosed in No. 097992 and International Publication No. 2019/181782.
  • Novolak resin can be obtained by a known method, in which an aldehyde compound such as formaldehyde or benzaldehyde is added to a compound having a phenol skeleton such as phenol, o-cresol, m-cresol, p-cresol, or xyresol in the coexistence of an acidic catalyst. It can be synthesized by condensation with Commercially available novolak resins include, for example, TRR5030G, TRR5010G, TR4020G, TR4080G, TR4000B, TRM30B20G, and EP23F10G (all manufactured by Asahi Yokuzai Co., Ltd.).
  • resins having repeating units derived from radically polymerizable monofunctional monomers having a phenolic hydroxyl group include radically polymerizable monomers having a phenolic hydroxyl group such as hydroxystyrene, hydroxyphenyl (meth)acrylate, and hydroxyphenyl (meth)acrylamide. Examples include resins obtained by polymerizing one type or a combination of two or more functional monomers. Furthermore, a radically polymerizable monofunctional monomer having a thermally crosslinkable group such as glycidyl (meth)acrylate, 3,4-epoxycyclohexyl (meth)acrylate, or allylglycidyl (meth)acrylate may be copolymerized.
  • the content of the resin is preferably 30% by mass or more, more preferably 50% by mass or more based on 100% by mass of the solid content of the positive photosensitive composition, in order to improve resolution.
  • the content is preferably 80% by mass or less, more preferably 60% by mass or less.
  • the positive photosensitive composition of the present invention contains (c) a photoacid generator (hereinafter sometimes referred to as component (c)).
  • component (c) is not particularly limited as long as it is a compound that decomposes and generates acid when irradiated with light containing at least a wavelength of 200 to 450 nm.
  • the generated acid is preferably a carboxylic acid and/or a sulfonic acid.
  • the generated acid has the effect of making the solubility of the film in the exposed area relatively higher in the alkaline developer compared to the solubility of the film in the unexposed area in the alkaline developer. .
  • the solubility of the film in the exposed area in an alkaline developer that has been exposed with a small amount of light through an exposure mask that has multiple types of openings and light shielding areas with different transmittances in its plane, that is, a halftone exposure mask is determined by By making the solubility in an alkaline developer relatively low compared to the solubility of the film in the exposed area exposed to a large amount of light, it is possible to form a pattern with steps through positive halftone processing.
  • Component (c) is preferably a compound that has absorption in the i-line (wavelength 365 nm), h-line (wavelength 405 nm) and g-line (wavelength 436 nm) regions of a mercury lamp and generates an acid, such as a quinonediazide compound.
  • a quinonediazide compound examples include oxime sulfonate compounds and naphthalimide sulfonate compounds.
  • quinonediazide compounds are preferred because they exhibit an excellent dissolution inhibiting effect on the unexposed area of the film, can increase the difference in dissolution rate between the exposed area and the unexposed area, and have excellent resolution.
  • quinonediazide compounds include (c-1) a compound having two or more groups represented by formula (22) in the molecule and a phenolic hydroxyl group, and a compound represented by formula (23).
  • component (c-1) In order to improve the resolution, it is more preferable to contain a compound having at least a group represented by formula (22) in the molecule and a phenolic hydroxyl group.
  • the photoacid generator has two or more groups represented by formula (22) (c-1) in the molecule, and a phenolic hydroxyl group.
  • a compound having two or more groups represented by formula (23) in the molecule and having a phenolic hydroxyl group, and a group represented by formula (22) and a compound represented by formula (23) It is preferable to contain at least one compound selected from the group consisting of a compound having a phenolic hydroxyl group and a phenolic hydroxyl group.
  • R 54 , R 55 , R 56 and R 57 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. * represents a binding site.
  • R 58 , R 59 and R 60 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. * represents a binding site.
  • R 54 , R 55 , R 56 and R 57 are preferably hydrogen atoms in order to improve resolution.
  • R 58 , R 59 and R 60 are preferably hydrogen atoms in order to improve resolution.
  • Compounds having two or more groups represented by formula (22) in the molecule and phenolic hydroxyl groups include, for example, compounds having three or more phenolic hydroxyl groups in the molecule, and 1,2-naphthoquinone- It can be synthesized by a partial esterification reaction of 2-diazide-4-sulfonyl chloride.
  • Compounds having two or more groups represented by formula (23) in the molecule and phenolic hydroxyl groups include, for example, compounds having three or more phenolic hydroxyl groups in the molecule, and 1,2-naphthoquinone- It can be synthesized by a partial esterification reaction of 2-diazide-5-sulfonyl chloride.
  • a compound having a group represented by formula (22) and a group represented by formula (23) and having a phenolic hydroxyl group is, for example, a compound having three or more phenolic hydroxyl groups in the molecule, 1, It can be synthesized by a partial esterification reaction of 2-naphthoquinone-2-diazido-4-sulfonyl chloride and 1,2-naphthoquinone-2-diazido-5-sulfonyl chloride.
  • Examples of compounds having three or more phenolic hydroxyl groups in the molecule include TrisP-HAP, TrisP-PA, TekP-4HBPA, TrisP-SA, TrisOCR-PA, Bis P-AP, Bis P-NO, Bis P- Examples include PR, BisP-B, BisP-DE, BisP-DP, Bis P-DP, Bis RS-2P, Bis RS-3P, and Bis P-DEK (all manufactured by Honshu Kagaku Kogyo Co., Ltd.).
  • component (c-1) for example, a compound represented by formula (24), a compound represented by formula (25), a compound represented by formula (27), a compound represented by formula (28) can be mentioned.
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represent a hydrogen atom or a group represented by formula (26). However, among Q 1 , Q 2 , Q 3 and Q 4 , the total number of groups represented by formula (26) is 2 or 3.
  • Q 5 , Q 6 and Q 7 each independently represent a hydrogen atom or a group represented by formula (26). However, the total number of groups represented by formula (26) in Q 5 , Q 6 and Q 7 is 2.
  • Q 8 , Q 9 and Q 10 each independently represent a hydrogen atom or a group represented by formula (29). However, among Q 8 , Q 9 and Q 10 , the total number of groups represented by formula (29) is 2.
  • Q 11 , Q 12 , Q 13 and Q 14 each independently represent a hydrogen atom or a group represented by formula (29). However, among Q 11 , Q 12 , Q 13 and Q 14 , the total number of groups represented by formula (29) is 2 or 3.
  • component (c) which generates acid upon exposure to i-rays
  • PA-28 manufactured by Daito Chemix Co., Ltd.
  • PAG103 and PAG203 which are oxime sulfonate compounds (both manufactured by BASF).
  • NP-TM2 and NP-SE10 both manufactured by San-Apro Co., Ltd.
  • the above component (c) may be used alone or in combination.
  • a quinone diazide compound in addition to a quinone diazide compound, a compound in which -O-SO 2 -CF 3 groups are bonded to the nitrogen atom constituting the imide bond is used.
  • a phthalimide sulfonate compound may also be included.
  • the content of component (c) is preferably 3% by mass or more based on 100% by mass of the solid content of the positive photosensitive composition, in order to generate a necessary and sufficient amount of acid in the film and improve resolution. More preferably, the content is 5% by mass or more. In order to suppress excessive absorption of exposure light on the film surface and improve resolution, the content is preferably 30% by mass or less, more preferably 20% by mass or less.
  • the positive photosensitive composition of the present invention contains (d) an organic solvent (hereinafter sometimes referred to as component (d)).
  • component (d) an organic solvent
  • the organic solvent functions as a dispersion medium or solvent for component (a), and not only improves the storage stability of the positive photosensitive composition but also improves the coating properties of the positive photosensitive composition. This has the effect of increasing the smoothness of the pre-baked film, which will be described later.
  • component (d-1) an organic solvent having a hydroxyl group (hereinafter sometimes referred to as component (d-1)) is preferred. That is, the positive photosensitive composition of the present invention preferably contains (d-1) an organic solvent having a hydroxyl group.
  • Component (d-1) has a high affinity with component (a) and has the effect of improving resolution.
  • Component (d-1) includes, for example, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether (hereinafter referred to as "PGME”) ), propylene glycol monobutyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, methyl lactate, ethyl lactate, ethanol, isopropyl alcohol, and butanol.
  • PGME propylene glycol monomethyl ether
  • the positive photosensitive composition of the present invention may contain (d-2) an organic solvent having no hydroxyl group (hereinafter sometimes referred to as component (d-2)).
  • component (d-2) may be used to adjust the solubility of components other than component (a) and the viscosity of the positive photosensitive composition.
  • Component (d-2) includes, for example, acetate solvents such as ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate (hereinafter referred to as "PGMEA”), and 3-methoxybutyl acetate (hereinafter referred to as "MBA”); - Lactone solvents such as butyrolactone (hereinafter referred to as “GBL”) and ⁇ -valerolactone, amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone (hereinafter referred to as "NMP”) can be mentioned.
  • acetate solvents such as ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate (hereinafter referred to as "PGMEA”), and 3-methoxybutyl acetate (hereinafter referred to as “MBA”
  • GBL butyrolactone
  • the content of component (d) is preferably 40% by mass or more, more preferably 60% by mass or more, based on 100% by mass of the positive photosensitive composition. In order to improve the smoothness of the prebaked film, the content is preferably 99% by mass or less, more preferably 95% by mass or less. Further, the content of component (d-1) is preferably 50% by mass or more, more preferably 80% by mass or more, based on 100% by mass of component (d), in order to improve resolution.
  • component (d) contains (d-1) an organic solvent having a hydroxyl group, and the content of component (d-1) is 100% by mass of component (d). Among them, it is preferably 50% by mass or more.
  • the positive photosensitive composition of the present invention improves the thermal stability of light-shielding properties, and further includes (e) a compound represented by the formula (30), a compound represented by the formula (31), and a triphendi It is preferable to contain at least one compound selected from the group consisting of compounds having an oxazine skeleton (hereinafter sometimes referred to as component (e)).
  • component (e) oxazine skeleton
  • the triphendioxazine skeleton herein is synonymous with the triphenodioxazine skeleton.
  • the compound represented by formula (30) and the compound represented by formula (31) have the aforementioned PTCBI skeleton, but do not have a sulfo group and do not belong to component (a).
  • R 61 , R 62 , R 63 , R 64 , R 65 , R 66 , R 67 and R 68 are each independently a hydrogen atom, -F, or a carbon number of 1 to 3 alkyl group or an alkoxy group having 1 to 3 carbon atoms.
  • R 61 , R 62 , R 63 , R 64 , R 65 , R 66 , R 67 and R 68 are preferably hydrogen atoms in order to improve the thermal stability of light-shielding properties.
  • Examples of the compound having a triphendioxazine skeleton include a compound represented by formula (32), a compound represented by formula (33), a C.I. I. Pigment Violet 23, C. I. Direct Violet 54, C. I. Examples include Direct Blue 106, 107, 108, and 190.
  • R 69 , R 70 , R 71 and R 72 each independently represent an alkyl group having 1 to 3 carbon atoms.
  • R 73 and R 74 each independently represent -NH- or -O-.
  • R 75 and R 76 each independently represent a hydrogen atom or a halogen atom.
  • R 77 , R 78 , R 79 and R 80 each independently represent a hydrogen atom, a phenyl group or an alkyl group having 1 to 5 carbon atoms.
  • the compound represented by formula (30), the compound represented by formula (31), and the compound represented by formula (32) are preferred.
  • the content of component (e) is preferably 10% by mass or more based on the total 100% by mass of components (a) and (e) in order to improve the thermal stability of light-shielding properties. In order to improve resolution, it is preferably 60% by mass or less.
  • the positive photosensitive composition of the present invention may contain other components such as a thermal crosslinking agent, a leveling agent, and an adhesion improver to the substrate surface, if necessary.
  • the component (a) and the resin (b) are treated by wet media dispersion treatment.
  • a pigment dispersion containing component (d) and, if necessary, component (e) is prepared in advance, and then components (c) and (d), and other components as necessary, are mixed with the pigment dispersion. , stirring, and filtering if necessary. If component (a) has a solubility distribution with respect to resin (b) and component (d), and a small amount of component (a) remains undissolved, pulverization using a wet media dispersion process will completely dissolve the component.
  • component (a) when all of component (a) is present as a dye in dissolved form, instead of wet media dispersion treatment, component (a) is dissolved in component (b) and component (d) under heating at 40 to 70°C. All you have to do is perform the process of When component (f) is included, a salt is formed between component (a) and component (f) simply by mixing, but in order to promote salt formation and improve resolution, it is necessary to A positive photosensitive composition is prepared using the source of the component (a) and the mixture obtained by forming a salt in advance by heating the component (a) in the presence of a solvent, and further refining and drying the resulting mixture into a powder. It is preferable to do so.
  • a bead mill filled with ceramic beads can be preferably used as a dispersing machine for performing wet media dispersion treatment.
  • ceramic beads include "Treceram (registered trademark)” (manufactured by Toray Industries, Inc.).
  • the cured film of the present invention which is the second aspect of the present invention, is a cured film containing a cured product of the positive photosensitive composition of the present invention.
  • cured product as used herein means a product obtained through a step of heating a positive photosensitive composition at a temperature of 200° C. to 400° C. for 10 minutes or more under atmospheric pressure.
  • the cured film of the present invention has excellent technical effects such as high light-shielding and thermal stability, and can be preferably used, for example, as a pixel dividing layer or a TFT flattening layer of an organic EL display device.
  • the optical density/ ⁇ m (hereinafter sometimes referred to as OD/ ⁇ m) per 1.00 ⁇ m thickness of the pixel dividing layer and the planarization layer is important for suppressing reflection of external light and increasing the value of the display device. and is preferably 0.50 or more, more preferably 0.70 or more. In order to improve resolution, it is preferably 1.30 or less, more preferably 1.10 or less.
  • the thickness of each of the pixel division layer and the planarization layer is preferably 1.00 ⁇ m or more in order to suppress reflection of external light and increase the value of the display device. In order to obtain high resolution, it is preferably 5.00 ⁇ m or less.
  • OD/ ⁇ m is measured using an optical densitometer X-Rite 361T (manufactured by X-Rite) by measuring a pixel dividing layer and/or flattening layer formed to a thickness of 1.50 ⁇ m on a transparent substrate with incident light. It means the value obtained by measuring the intensity and transmitted light intensity and dividing the value calculated from the following formula by 1.50, which is the value of the film thickness. The higher the OD/ ⁇ m, the higher the light shielding property.
  • a transparent glass substrate "Tempax (manufactured by AGC Techno Glass Co., Ltd.)" having an OD/ ⁇ m of 0.00 can be preferably used.
  • Optical density log 10 (I 0 /I) In the above formula, I0 : incident light intensity, I: transmitted light intensity.
  • the cross-sectional taper angle of the inclined portion located at the end of the pixel dividing layer is preferably 50° or less, more preferably 40° or less, in order to suppress electrode disconnection and avoid the occurrence of non-lighted pixels.
  • the angle is preferably 15° or more, more preferably 20° or more in order to suppress a decrease in light shielding properties at the end portions.
  • the methods for forming the pixel division layer include a coating process in which a positive-working photosensitive composition is applied to obtain a coating film, a pre-bake process in which the coating film is heated to obtain a pre-baked film, and an activation process is performed through a positive-working exposure mask.
  • a method including, in order, a curing step of thermally curing to obtain a pixel dividing layer is preferred.
  • the planarization layer can be formed by the same method as the pixel division layer.
  • a spin coater or a slit coater can be preferably used since they have excellent thin film coating properties.
  • the prebake temperature in the prebake step is preferably 50 to 150°C, and the prebake time is preferably 30 seconds to 5 minutes.
  • the thickness of the prebaked film is preferably 3.0 to 6.0 ⁇ m.
  • Examples of the exposure apparatus used in the exposure process include a stepper, a mirror projection mask aligner (MPA), and a parallel light mask aligner (PLA).
  • the actinic rays irradiated during exposure include J-line (wavelength 313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) from an ultra-high pressure mercury lamp.
  • the exposed portion of the exposure film refers to a portion that is pattern-exposed through the transparent portion of the exposure mask, and the unexposed portion refers to a portion that is not exposed to light due to the shielding portion of the exposure mask.
  • the value obtained by subtracting the opening width of the patterned opening from the opening width of the exposure mask that is, the exposure It is preferable to perform exposure by adjusting the exposure amount so that the mask bias is within the range of ⁇ 0.2 ⁇ m.
  • Examples of the development method in the development step include shower, dipping, and paddle methods, including a method in which the exposed film is immersed for 10 seconds to 3 minutes.
  • the paddle method is preferable in terms of improving in-plane uniformity of resolution.
  • TMAH tetramethylammonium hydroxide aqueous solution
  • TMAH tetramethylammonium hydroxide aqueous solution
  • the development time is determined by subtracting the thickness of the developed film (unexposed area) from the thickness of the pre-baked film, that is, the film reduction ( ⁇ m) during the development process, in order to improve the in-plane uniformity of the thickness of the developed film. , is preferably set to 1.00 ⁇ m or less. In order to improve resolution, it is preferable to set the thickness to 0.50 ⁇ m or more. Furthermore, the obtained developed film may be irradiated with exposure light again in a second exposure step to control the fluidity of the film in the curing step.
  • Examples of the heating device used in the curing step include a hot air oven and an IR oven, and the heating atmosphere includes nitrogen or air.
  • the heating temperature is preferably 250 to 270° C. under atmospheric pressure, and the heating time may be 1 to 3 hours.
  • the conditions of the curing step may be set so that at least a part of the (f) component disappears from the pixel division layer or the planarization layer.
  • the organic EL display device of the present invention which is a third aspect of the present invention, is an organic EL display device comprising a pixel dividing layer and a flattening layer, wherein the pixel dividing layer and/or the flattening layer are cured according to the present invention. It is an organic EL display device containing a film. Since the pixel dividing layer and/or the flattening layer contain the cured film of the present invention which has high light-shielding properties, high in-plane uniformity, and excellent resolution, the organic EL display device of the present invention has a desirable high visibility. This has the technical effect of
  • FIG. 1 shows a cross-sectional view of a TFT substrate in an organic EL display device including a pixel dividing layer and a planarization layer as a specific example of an embodiment of the present invention.
  • TFT1 Bottom-gate or top-gate thin film transistors 1 (hereinafter abbreviated as TFT1) are provided in a matrix on the surface of the substrate 6, and the TFTs cover the TFT1 and the wiring 2 connected to the TFT1.
  • An insulating layer 3 is arranged.
  • a planarization layer 4 is patterned on the surface of the TFT insulating layer 3, and the planarization layer 4 has a contact hole 7, which is an opening for connecting the wiring 2 and the first electrode 5.
  • a first electrode 5 is patterned on the surface of the planarization layer 4 and connected to the wiring 2 .
  • a pixel dividing layer 8 having a step and may have a spacer function is formed so as to surround the pattern periphery of the first electrode 5.
  • the pixel dividing layer 8 has an opening, and a light emitting pixel 9 containing an organic EL light emitting material is formed in the opening, and the second electrode 10 covers the pixel dividing layer 8 and the light emitting pixel 9. A film has been formed. If a voltage is applied to the light emitting pixel portion after the TFT substrate having the above laminated structure is sealed under vacuum, it can be made to emit light as an organic EL display device.
  • the organic EL display device including the pixel dividing layer and the planarization layer of the present invention is a bottom emission type organic EL display device that extracts light emitted from the light emitting pixels 9 to the substrate side via the substrate 6. Alternatively, it may be a top emission type organic EL display device in which emitted light is extracted to the opposite side of the substrate 6 via the second electrode 10.
  • the planarization layer 4 having a light blocking property may function as a light blocking layer for protecting the TFT 1.
  • Examples of the TFT 1 include TFTs made of oxide semiconductors such as In-Ga-Zn-O (IGZO) and Ga-Zn-Sn, and low-temperature polysilicon (LTPS).
  • the shapes of the openings in the pixel dividing layer 8 and the flattening layer 4 are not particularly limited, and may be square, rectangular, circular, or elliptical.
  • the size and shape of the light emitting pixel 9 are determined by the width and shape of the opening in the pixel dividing layer 8, and may be circular with a diameter of 3 to 30 ⁇ m, for example.
  • the contact hole 7, which is an opening in the planarization layer 4, may have a circular shape with a diameter of 3 to 7 ⁇ m, for example.
  • the light emission peak wavelength of the light emitting pixel 9 is not particularly limited, for example, a structure in which different types of pixels having emission peak wavelengths for each of the three primary colors of light, blue, red, and green, are arranged is formed on the entire surface. can be mentioned.
  • the peak wavelength of the red region may be 560 to 700 nm
  • the peak wavelength of the blue region may be 420 to 480 nm
  • the peak wavelength of the green region may be 500 to 550 nm.
  • a color filter substrate on which blue, red, and green color filters and a black matrix separating them may be arranged as a separate laminated member in front of the display section.
  • the organic EL light-emitting material constituting the light-emitting pixel 9 a material in which a hole transport layer and/or an electron transport layer are further combined in addition to a light emitting layer can be suitably used.
  • the light-emitting pixel 9 is formed, for example, by a mask vapor deposition method disclosed in Japanese Patent Application Publication No. 2019-163543.
  • the first electrode 5 for example, a transparent conductive metal oxide such as indium tin oxide (ITO) or indium zinc oxide (IZO) can be used.
  • the method for patterning ITO is to form a film of ITO on the entire surface by sputtering, then pattern a positive resist material for etching by photolithography to obtain a resist pattern on the ITO film, and then remove the resist pattern. Only the ITO film in the formed portion is removed using an acidic etching solution. Next, there is a method of removing the resist pattern using a resist stripping solution.
  • a positive resist material for etching a positive photosensitive composition containing an alkali-soluble novolak resin can be used.
  • the first electrode 5 may be a laminate of ITO/silver alloy/ITO in order to improve light extraction efficiency.
  • the second electrode 10 may be made of any material as long as it is a layer that functions as an electrode.
  • a layer made of aluminum can be preferably used because it has excellent light reflectivity.
  • a silver alloy consisting of silver and magnesium can be preferably used because it has excellent light transmittance.
  • the second electrode 10 can be formed over the entire surface by sputtering.
  • the substrate 8 is a flexible substrate obtained by coating the surface of a temporary support with a polyamic acid solution and then laser-peeling the temporary support from a polyimide-formed substrate produced after heat treatment at 250 to 400°C. Can be used.
  • the dye of the present invention which is the fourth aspect of the present invention, includes (a) a compound represented by formula (85) and/or a compound represented by formula (86) in addition to (f) a compound represented by formula (70).
  • a dye containing a compound represented by hereinafter sometimes referred to as the dye of the present invention).
  • the dye of the present invention can be preferably used as a coloring material for imparting light-shielding properties to a pixel dividing layer and/or a flattening layer included in an organic EL display device, and can particularly be incorporated into a positive photosensitive composition. Not only does it have excellent light-shielding properties and thermal stability, but it also has a particularly remarkable technical effect in that a cured film with high resolution can be obtained while having high light-shielding properties.
  • R 81 represents N + or P + .
  • R 82 , R 83 , R 84 and R 85 each independently represent an alkyl group having 1 to 20 carbon atoms, a phenyl group, or a hydrogen atom which may be substituted with -OH or a phenyl group.
  • R 81 is N +
  • the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 to 2
  • R 81 is P + , R 82 , R 83 , R 84 and R 85 , the total number of hydrogen atoms is 0.
  • R 91 , R 92 , R 93 , R 94 , R 95 , R 96 , R 97 and R 98 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN.
  • the total number of -SO 3 H and -SO 3 - is 1 to 4, and at least one -SO 3 - .
  • R 99 , R 100 , R 101 and R 102 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 99 and R 100 and R 101 and R 102 may each independently be bonded to each other to form a linking group -X 3 -. -X 3 - represents -O- or -SO 2 -.
  • R 103 , R 104 , R 105 , R 106 , R 107 , R 108 , R 109 and R 110 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN.
  • the total number of -SO 3 H and -SO 3 - is 1 to 4, and at least one -SO 3 - .
  • R 111 , R 112 , R 113 and R 114 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 111 and R 112 and R 113 and R 114 may each independently be bonded to each other to form a linking group -X 4 -. -X 4 - represents -O- or -SO 2 -.
  • R 81 when R 81 is N + , the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 to 2 means that R 82 , R 83 , This means that one or two of R 84 and R 85 are hydrogen atoms bonded to R 81 or none of them are hydrogen atoms bonded to R 81 .
  • the hydrogen atom here does not mean an alkyl group having 1 to 20 carbon atoms which may be substituted with -OH or a phenyl group, or a hydrogen atom contained in a phenyl group.
  • R 81 is P +
  • the expression that the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 also applies to R 82 , R 83 , R 84 and R This means that none of 85 is a hydrogen atom bonded to R 81 .
  • the dye of the present invention more preferably contains (f) a compound represented by formula (71) in order to improve resolution.
  • R 86 represents N + or P + .
  • R 87 , R 88 , R 89 and R 90 each independently represent an alkyl group having 1 to 15 carbon atoms which may be substituted with -OH or a phenyl group. However, at least one of R 87 , R 88 , R 89 and R 90 is an unsubstituted alkyl group having 1 to 15 carbon atoms.
  • R 86 is N + , it means that the (f) component has an ammonium cation, and when it is P + , it means that the (f) component has a phosphonium cation.
  • R 86 is N + and R 87 , R 88 , R 89 and R 90 are unsubstituted alkyl groups having 1 to 15 carbon atoms.
  • the dye of the present invention may contain (a) a compound represented by formula (87) and/or a compound represented by formula (88) in order to improve the thermal stability of light-shielding property and resolution. More preferred.
  • R 115 and R 116 each independently represent -SO 3 H or -SO 3 - .
  • n 5 and n 6 are integers and each independently represents 0 to 2. However, the total number of n 5 and n 6 is 1 to 4, and at least one of (R 115 ) n 5 and (R 116 ) n 6 is -SO 3 - .
  • R 117 and R 118 each independently represent -SO 3 H or -SO 3 - .
  • n 7 and n 8 are integers and each independently represents 0 to 2. However, the total number of n 7 and n 8 is 1 to 4, and at least one of (R 117 ) n 7 and (R 118 ) n 8 is -SO 3 - .
  • Examples of the dye of the present invention include, but are not limited to, the compound represented by formula (89), the compound represented by formula (90), and the compound represented by formula (91). isn't it.
  • R 81 is N + and the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is Contains a compound that is 2.
  • R 81 is N + in formula (70) as the component (f)
  • the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is Contains compounds that are 0.
  • R 81 is P + in formula (70) as the component (f)
  • the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is Contains compounds that are 0.
  • the content of component (f) should be 10 mol% or more in order to improve resolution, when the sum of -SO 3 H and -SO 3 - contained in component (a) contained in the dye of the present invention is 100 mol%. is preferable, and 20 mol% or more is more preferable. In order to improve the thermal stability of light-shielding properties, the content is preferably 100 mol% or less, and more preferably 80 mol%.
  • the method for obtaining the salts of the above-mentioned components (a) and (f) is preferably applied.
  • a silver alloy (an alloy consisting of 99% by mass of silver and 1% by mass of copper) was deposited on the entire surface of an alkali-free glass substrate measuring 150 mm in length and 150 mm in width by sputtering. Furthermore, an ITO film was deposited on the entire surface by sputtering to obtain a glass substrate having a silver alloy film/ITO film on the entire surface of the alkali-free glass substrate.
  • the coated film was prebaked for 120 seconds at 110°C under atmospheric pressure using a hot plate to obtain a prebaked film, and a positive exposure mask (200 perfectly circular transparent parts with a diameter of 10.0 ⁇ m was arranged)
  • a positive exposure mask 200 perfectly circular transparent parts with a diameter of 10.0 ⁇ m was arranged
  • the exposure amount was changed stepwise in steps of 10 mJ within the range of 50 to 200 (mJ/cm 2 : i-line equivalent value) using an ultra-high pressure mercury lamp.
  • the prebaked film was pattern-exposed to the mixed lines g, h, and i of , to obtain an exposed film having an exposed portion and an unexposed portion within the plane. Note that pattern exposure was performed by bringing a positive exposure mask into contact with the surface of the prebaked film.
  • the paddle method here refers to a method in which an alkaline developer is shower coated on the surface of the exposed film for 10 seconds and then left to stand until a predetermined development time is reached for development. Furthermore, after rinsing with deionized water in a shower for 30 seconds, the substrate was dried by drying at 200 rpm for 30 seconds to obtain a developed film-forming substrate having a developed film.
  • the development time is set within the range of 40 to 90 seconds, and the value obtained by subtracting the film thickness of the developed film (unexposed area) from the film thickness of the pre-baked film, that is, the film reduction ( ⁇ m) in the development process is 0.80 ⁇ m. It was set as the time.
  • the developed film is heated at 250°C for 1 hour in a nitrogen atmosphere using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.) to form a cured film with hole-shaped openings.
  • a substrate for evaluating the optimum exposure amount provided with a film was obtained.
  • the central part of the cured film was observed using an FPD inspection microscope (MX-61L; manufactured by Olympus Corporation), and the average opening width of 10 openings in the cured film in each exposure area was 10.0 ⁇ m.
  • the shape of the opening was a perfect circle, its diameter was taken as the opening width, and when it was an ellipse, its short axis was taken as the opening width.
  • the film thickness in each process is measured at three locations within the surface using a stylus-type film thickness measuring device (Tokyo Seimitsu Co., Ltd.; Surfcom), and the average value is rounded to the second decimal place. The numbers up to second place were calculated.
  • a stylus-type film thickness measuring device Tokyo Seimitsu Co., Ltd.; Surfcom
  • negative photosensitive compositions 1 to 3 obtained in Comparative Examples 3 to 5 a negative exposure mask with an inverted mask design (a perfect circle with a diameter of 10.0 ⁇ m) was used instead of the above-mentioned positive exposure mask.
  • a hole pattern mask (with 200 shaped shielding parts arranged) was used, and the development time was the time required for the film in the unexposed area of the solid area to dissolve and the substrate to be visually observed, multiplied by 1.5.
  • the optimum exposure amount was measured in the same manner except for the following.
  • the cured film was excellent and was evaluated using the following criteria, with AA and A to C being passed and D being failing.
  • the smallest opening width was defined as the resolution ( ⁇ m).
  • B Resolution is 4.0 ⁇ 0.2 ⁇ m or 5.0 ⁇ 0.2 ⁇ m.
  • C Resolution is 6.0 ⁇ 0.2 ⁇ m or 7.0 ⁇ 0.2 ⁇ m.
  • D Resolution is 7.8 ⁇ m or more.
  • E Protrusion-like foreign particle defects are observed on the surface of one or more openings.
  • F There are no openings where no development residue is observed, making it impossible to evaluate the resolution.
  • polyimide precursor B was a resin belonging to component (b-1), had a structural unit represented by formula (18), and had a weight average molecular weight (Mw) of 25,000.
  • Polybenzoxazole precursor D was a resin belonging to component (b-1), had a structural unit represented by formula (18), and had a weight average molecular weight (Mw) of 26,000.
  • Mw weight average molecular weight
  • a quinonediazide compound E represented by formula (37) was obtained.
  • the compound represented by formula (38) is the component (c-1), and has a group represented by formula (22) and a group represented by formula (23), and has a phenolic hydroxyl group. Equivalent to.
  • the compound represented by formula (38) was identified by LC-MS and MALDI-TOF MS.
  • * represents a bonding site with an oxygen atom.
  • the triethylamine salt is separated by filtration, the filtrate is poured into water, the generated precipitate is collected, washed three times with deionized water, filtered and dried under reduced pressure to obtain a mixture containing at least the compound represented by formula (40).
  • a quinonediazide compound F represented by formula (39) was obtained.
  • the compound represented by formula (40) is the component (c-1) and corresponds to a compound having two groups represented by formula (23) in the molecule and a phenolic hydroxyl group.
  • the compound represented by formula (40) was identified by LC-MS and MALDI-TOF MS.
  • * represents a bonding site with an oxygen atom.
  • perylene blue dye 1 was component (a), and was a compound represented by formula (41), formula ( 42), a compound represented by formula (43), a compound represented by formula (44), a compound represented by formula (45), a compound represented by formula (46), a compound represented by formula ( It was a mixture of the compound represented by formula (47) and the compound represented by formula (48).
  • the compound represented by formula (45), the compound represented by formula (46), and the compound represented by formula (47) were The total content of the compound represented by the above formula and the compound represented by formula (48) was 12% by mass in 100% by mass of perylene blue dye 1.
  • perylene blue dye 2 was the component (a), and was found to be a compound represented by formula (49), a compound represented by formula (50), and a compound represented by formula (51). ) and the compound represented by formula (52).
  • the total content of the compound represented by formula (51) and the compound represented by formula (52) was 74% by mass in 100% by mass of perylene blue dye 2.
  • perylene blue dye 3 was component (a), and was a mixture of the compound represented by formula (53) and the compound represented by formula (54). Ta.
  • perylene blue dye 4 was component (a), and was a mixture of the compound represented by formula (55) and the compound represented by formula (56).
  • reaction product was dissolved in 500.00 g of 30% by mass oleum, and the solution temperature was raised to 80° C. with stirring. The mixture was stirred at a liquid temperature of 80° C. for 8 hours to advance the sulfonation reaction.
  • perylene blue dye 5 was the component (a), and was found to be a compound represented by formula (57), a compound represented by formula (58), and a compound represented by formula (59). ) and the compound represented by formula (60).
  • sodium salt A is a sodium salt of perylene blue dye.
  • sodium salt A is a mixture of component (a) and Na + , and is a compound represented by formula (92) and formula ( It was a dye consisting of a compound represented by 93).
  • perylene blue dye 6 is a compound represented by formula (94) and formula (95) containing component (a) and (f). It was a mixture of compounds.
  • sodium salt B is a sodium salt of perylene blue dye.
  • sodium salt B is a mixture of component (a) and Na + , and is a mixture of the compound represented by formula (106) and the compound represented by formula (107). It was a pigment consisting of
  • perylene blue dye 9 is a compound represented by formula (108) and formula (109) containing component (a) and (f). It was a mixture of compounds.
  • This kneaded material was poured into 5 L of warm water, stirred for 1 hour while maintaining the temperature at 70°C to form a slurry, and filtered and washed with water repeatedly until the chlorine ions determined by ion chromatography became 50 mass ppm or less.
  • the crushed wood and dipropylene glycol were removed.
  • the dried agglomerates were loosened using a ball mill, and fine particles consisting of a mixture of the compound represented by formula (61) and the compound represented by formula (62) were prepared.
  • Perylene pigment A was obtained.
  • the finely divided perylene pigment A is the component (e) and corresponds to the compound represented by the above-mentioned formula (30) and the compound represented by the formula (31).
  • Finely divided dioxazine pigment B is component (e) and corresponds to the above-mentioned compound having the triphendioxazine skeleton.
  • Synthesis Example 15 Synthesis of methacrylic resin solution G
  • a resin solution synthesized by the same method as that disclosed in Synthesis Example 14 (tertiary amino group and ethylenically unsaturated group-containing resin (F-1)) described in Patent Document 5 was used as methacrylic resin solution G.
  • a mixed solution of 2.0 g of azobisisobutyronitrile and 3.0 g of n-dodecyl mercaptan was added dropwise over 3 hours to cause copolymerization.
  • the inside of the reaction vessel was purged with air, and 10.00 g of glycidyl methacrylate was added dropwise over 1 hour to advance the addition reaction, and the mixture was further stirred for 2 hours to form a methacrylic resin with a weight average molecular weight (Mw) of 7000.
  • Mw weight average molecular weight
  • a containing resin solution was obtained.
  • a resin solution prepared using PGMEA to have a solid content of 20.00% by mass was designated as methacrylic resin solution G.
  • 800.00 g of cyclohexanone was placed in a reaction vessel and heated to 80°C while nitrogen gas was injected into the vessel. Then, 60.00 g of styrene, 60.00 g of methacrylic acid, 65.00 g of methyl methacrylate, 65.00 g of butyl methacrylate, and 10.00 g of azobisisobutyronitrile as a polymerization initiator were mixed. The solution was added dropwise into the reaction vessel over 1 hour.
  • Synthesis Example 17 Synthesis of methacrylic resin solution I
  • Synthesis Example 3 described in Patent Document 5 A resin solution synthesized in the same manner as alkali-soluble resin A-3 was designated as methacrylic resin solution I.
  • methacrylic resin solution I A resin solution obtained by preparing this with PGMEA to have a solid content of 20.00% by mass was designated as methacrylic resin solution I.
  • Preparation Example 11 Preparation of dye dispersion liquid 11
  • a wet media dispersion treatment and filtration were carried out in the same manner as in Preparation Example 1, except that finely divided perylene pigment A was used in place of perylene blue dye 1, and the amounts of each raw material were as shown in Table 3. Obtained.
  • the thickness of the cured film after heating the positive photosensitive composition 1 at 250 ° C. for 1 hour in a nitrogen atmosphere described below on the surface of Tempax is as follows.
  • a coating film was obtained by performing a coating process using a spin coater while adjusting the rotation speed so that the coating thickness was 1.50 ⁇ m.
  • a prebaking process was performed in which the coated film was heated at 110° C. for 2 minutes under atmospheric pressure using a hot plate to obtain a prebaked film.
  • a development process was performed in the same manner as in the measurement of the optimum exposure amount described above without performing an exposure process, to obtain a solid developed film.
  • a first curing process under nitrogen atmosphere, 250°C for 1 hour was performed in which the developed film was heated using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.), and the film thickness was 1 hour.
  • a developed film was formed on Tempax using the same method, a first curing process was performed (under nitrogen atmosphere, 270°C for 1 hour), and after being naturally cooled to 30°C, it was placed in a high-temperature inert oven again, and then The substrate subjected to the second curing process (270°C for 1 hour in a nitrogen atmosphere) was used as substrate B for evaluating light shielding properties, and the light shielding properties (OD/ ⁇ m) were evaluated, and the thermal stability of the light shielding properties ( ⁇ OD / ⁇ m) was evaluated. The results are shown in Table 5.
  • a positive exposure mask (a hole pattern mask in which 200 perfectly circular transparent parts with a diameter of 10.0 ⁇ m are arranged)
  • a positive exposure mask (diameters of 10.0 ⁇ m, 9.0 ⁇ m, 8.0 ⁇ m, 7
  • the optimum exposure amount described above was used, except that a hole pattern mask (hole pattern mask in which 50 perfectly circular transparent parts of 0 ⁇ m, 6.0 ⁇ m, 5.0 ⁇ m, 4.0 ⁇ m, 3.0 ⁇ m, and 2.0 ⁇ m were arranged) was used.
  • the coating process, pre-baking process, exposure process, development process, and curing process were performed in the same manner as in the measurement of 1 to 100 ml, and the ITO surface of the glass substrate having the silver alloy film/ITO film was coated with a film thickness of 1.
  • a substrate for resolution evaluation having a cured film of .50 ⁇ m was obtained, and the resolution was evaluated by the method described above. The evaluation results are shown in Table 5.
  • Examples 2 to 5 Positive photosensitive compositions 2 to 5 were prepared in the amounts shown in Table 4, and in addition to the light-shielding evaluation substrates A and B, a resolution evaluation substrate was prepared in the same manner as in Example 1. Table 5 shows the results of evaluating the thermal stability and resolution of light shielding properties using the method.
  • Example 6 Positive photosensitive compositions 6 to 10 were each prepared in the amounts shown in Table 6, and in addition to substrates A and B for light-shielding evaluation were prepared in the same manner as in Example 1, a substrate for resolution evaluation was prepared, and the same method was used as described above.
  • Table 7 shows the results of evaluating the thermal stability and resolution of light shielding properties.
  • crosslinking agent solution Y manufactured by Honshu Chemical Industry Co., Ltd.; the compound represented by formula (65) and the compound represented by formula (66) were mixed with PGMEA: A solution prepared by dissolving ethyl lactate:GBL using a mixed solvent with a mass ratio of 50:30:20 to give a solid content of 10.00% by mass was used.
  • Table 8 shows the blended mass of each raw material.
  • a resolution evaluation substrate was prepared in addition to the light-shielding evaluation substrates A and B in the same manner as in Example 1, and the thermal stability of the light-shielding property and the The resolution was evaluated. The results are shown in Table 9.
  • Comparative example 2 A positive photosensitive composition 12 was prepared with the amount shown in Table 8, and in addition to the light-shielding evaluation substrates A and B in the same manner as in Example 1, a resolution evaluation substrate was prepared. The thermal stability and resolution were evaluated. The results are shown in Table 9.
  • Negative photosensitive composition 1 was applied to the surface of Tempax using a spin coater with the rotation speed adjusted so that the thickness of the cured film after heating at 250° C. for 1 hour in a nitrogen atmosphere (described later) would be 1.50 ⁇ m.
  • a coating film was obtained by performing a coating process.
  • a prebaking process was performed in which the coated film was heated at 110° C. for 2 minutes under atmospheric pressure using a hot plate to obtain a prebaked film.
  • An exposure step was carried out using the optimum exposure amount measured by the method described above, and a developing step was carried out in the same manner as in the measurement of the optimum exposure amount described above, to obtain a solid developed film.
  • substrates A and B for evaluating light-shielding properties were obtained in the same manner as in Example 1, and the thermal stability of the light-shielding properties was evaluated by the method described above. The evaluation results are shown in Table 11.
  • a negative exposure mask complete circular shielding portions with diameters of 10.0 ⁇ m, 9.0 ⁇ m, 8.0 ⁇ m, 7.0 ⁇ m, 6.0 ⁇ m, 5.0 ⁇ m, 4.0 ⁇ m, 3.0 ⁇ m, and 2.0 ⁇ m
  • the coating process, pre-bake process, exposure process, development process and curing process were carried out in the same manner as in the measurement of the optimum exposure dose described above, except that a hole pattern mask (with 50 hole pattern masks arranged each) was used, and the silver alloy film/ITO
  • a resolution evaluation substrate having a cured film having a thickness of 1.50 ⁇ m and having hole-shaped openings on the ITO surface of a glass substrate having the film was obtained, and the resolution was evaluated using the method described above.
  • the evaluation results are shown in Table 11.
  • Negative photosensitive composition 3 was prepared with the amount shown in Table 10, and in addition to the light-shielding evaluation substrates A and B in the same manner as in Example 1, a resolution evaluation substrate was prepared. Table 11 shows the results of evaluating the thermal stability and resolution of .
  • the pre-stirred liquid contained a small amount of insoluble perylene blue dye 6, 0.05 mm diameter zirconia beads "Treceram (registered trademark)” (manufactured by Toray Industries, Inc.) were added to the vessel at a filling rate of 75% by volume.
  • the pre-stirred liquid was sent to the vertical bead mill “Ultra Apex Mill (registered trademark)” (manufactured by Hiroshima Metal & Machinery Co., Ltd.) filled in the interior, and wet-processed for 30 minutes at a circumferential speed of 8 m/s using a circulation method. Performed media distribution processing. Filtration was performed using a filter with an opening diameter of 0.5 ⁇ m to obtain a dye dispersion liquid 13 with a solid content of 10.00% by mass. Table 12 shows the blended mass of each raw material.
  • Dye dispersions 14 to 16 were obtained in the same manner as in Preparation Example 13, except that Perylene Blue Dye 7, Perylene Blue Dye 8, and Perylene Blue Dye 9 were used in place of Perylene Blue Dye 6. Table 12 shows the blended mass of each raw material.
  • Example 11 to 13 and Example 27 Positive photosensitive compositions 13 to 16 were prepared in the amounts shown in Table 13, and in addition to the light-shielding evaluation substrates A and B, a resolution evaluation substrate was prepared in the same manner as in Example 1. The thermal stability and resolution of light shielding properties were evaluated using the method. The results are shown in Table 14.
  • FIG. 3 shows a manufacturing process of an organic EL display device including a process of forming a pixel division layer.
  • a silver alloy an alloy consisting of 99.00% by weight of silver and 1.00% by weight of copper
  • etching was performed by immersing it in a silver alloy etching solution at a liquid temperature of 30° C.
  • an ITO film indium-tin oxide was formed on the entire surface by sputtering. Using an alkali-soluble novolak positive resist, it was immersed in a 5% by weight oxalic acid aqueous solution at a temperature of 50°C for 5 minutes, washed with deionized water for 2 minutes, and then dried with air blow to form the same pattern with a film thickness of 10 nm. An ITO film 14 was obtained. Through the above steps, a first electrode-forming substrate having a first electrode formed of a laminated pattern of a silver alloy film/ITO film on the surface of an alkali-free glass substrate was obtained.
  • Positive photosensitive composition 1 is coated on the surface of the first electrode forming substrate using a spin coater, adjusting the rotation speed so that the thickness of the final pixel dividing layer is 1.50 ⁇ m. A coating film was obtained. Furthermore, the coated film was prebaked for 120 seconds at 110° C. under atmospheric pressure using a hot plate to obtain a prebaked film. The prebaked film was pattern-exposed to light through a positive exposure mask (a hole pattern mask having 200 perfectly circular transparent portions arranged) at the optimum exposure amount determined by the method described above to obtain an exposed film.
  • a positive exposure mask a hole pattern mask having 200 perfectly circular transparent portions arranged
  • the opening width of the transparent part of the positive exposure mask is the same as the opening width when the resolution of various positive photosensitive compositions is obtained in the above-mentioned (2) resolution of cured film and evaluation of protruding foreign matter defects. I made sure that they were the same. That is, in the case of positive photosensitive composition 1, a hole pattern mask having a perfectly circular transparent portion having a diameter of 4.0 ⁇ m was used. Note that pattern exposure was performed by bringing a positive exposure mask into contact with the surface of the prebaked film. Next, development, rinsing and drying were performed in the same manner as in the evaluation of the optimum exposure amount to obtain a patterned developed film. The developed film was heated at 270° C.
  • a pixel division layer forming substrate was obtained.
  • the pixel is The split layer forming substrate was rotated, and first, as a hole injection layer, a compound (HT-1) represented by formula (100) was added to a thickness of 10 nm, and as a hole transport layer, a compound (HT-1) represented by formula (101) was added to a thickness of 10 nm. -2) was formed into a film with a thickness of 50 nm.
  • a compound (HT-1) represented by formula (100) was added to a thickness of 10 nm
  • a compound (HT-1) represented by formula (101) was added to a thickness of 10 nm.
  • -2) was formed into a film with a thickness of 50 nm.
  • a compound (GH-1) represented by formula (102) as a host material and a compound (GD-1) represented by formula (103) as a dopant material are placed on the light emitting layer to a thickness of 40 nm.
  • a compound (ET-1) represented by formula (104) and a compound (LiQ) represented by formula (105) were laminated as electron transport materials at a volume ratio of 1:1 to a thickness of 40 nm.
  • Example 15 to 26 and Example 28 An organic EL display device was produced in the same manner as in Example 14 using positive photosensitive compositions 2 to 10 and 13 to 16 instead of positive photosensitive composition 1, and the resolution of the organic EL display device was Table 15 shows the results evaluated by the method described above.
  • Reference composition 1 is a composition that does not contain component (c) and does not have either negative or positive photosensitivity. Table 16 shows the blending amounts.
  • a coating process was performed in which Reference Composition 1 was coated on the surface of Tempax by adjusting the rotation speed so that the prebaked film obtained after the prebaking process had a transmittance of 10% at a wavelength of 560 nm using a spin coater.
  • a membrane was obtained.
  • a prebaking process was performed in which the coated film was heated at 110° C. for 2 minutes under atmospheric pressure using a hot plate to obtain a prebaked film.
  • the transmittance of the obtained prebaked film at a wavelength of 350 to 650 nm was measured using a spectrophotometer U-4100 (manufactured by Hitachi, Ltd.). The measurement results are shown by broken lines in the graph of FIG.
  • Reference Composition 1 was measured using a particle size distribution analyzer SZ-100 (manufactured by Horiba, Ltd.) based on the dynamic light scattering method, the particle size distribution was output. It was thought that it existed as a pigment in substance 1.
  • Reference Composition 2 was prepared using Dye Dispersion 16 in place of Dye Dispersion 11 in the amounts shown in Table 16.
  • Reference composition 2 is a composition that does not contain component (c) and does not have either negative or positive photosensitivity. A prebaked film was obtained using Reference Composition 2 in the same manner as in Reference Example 1, and the transmittance at a wavelength of 350 to 650 nm was measured. The measurement results are shown as a solid line in the graph of FIG.
  • Comparison of Reference Example 1 and Reference Example 2 shows that Perylene Blue Pigment 9 has a relatively higher transmittance in the near ultraviolet region than Fine Perylene Pigment A when the transmittance at a wavelength of 560 nm is the same. It was considered to be a suitable coloring material for obtaining resolution.
  • Reference Composition 2 was measured using SZ-100 in the same manner as Reference Example 1, no particle components were detected, indicating that perylene blue dye 9 was completely dissolved in Reference Composition 2. It was thought to exist as a dye.
  • the positive photosensitive compositions in Examples 1 to 13 and Example 27 are the same as the positive photosensitive compositions in Comparative Examples 1 to 2 and the negative photosensitive compositions in Comparative Examples 3 to 5. It can be seen that it is possible to form a cured film that has both high light-shielding thermal stability and high resolution while suppressing the occurrence of protruding foreign particle defects. Furthermore, it can be seen that the organic EL display device including the pixel dividing layer containing the cured film of the present invention has excellent resolution.
  • the positive photosensitive composition, cured film, organic EL display device, and dye of the present invention are useful.
  • the positive photosensitive composition of the present invention is useful for applications requiring high light-shielding thermal stability and high resolution, and is useful in applications such as pixel dividing layers and TFT flattening layers of organic EL display devices, as well as micro LED displays. It can be preferably used as a material for forming a flattening layer for liquid crystal display devices, a black matrix for liquid crystal display devices, a black column spacer for liquid crystal display devices, a near-infrared transparent visible light shielding film for solid-state imaging devices, and the like. Among these, it can be particularly preferably used as a material for forming a pixel dividing layer and a TFT flattening layer included in an organic EL display device.
  • TFT 2 Wiring 3: TFT insulating layer 4: Flattening layer 5: First electrode 6: Substrate 7: Contact hole 8: Pixel division layer 9: Light-emitting pixel 10: Second electrode 11: Protruding foreign matter defect 12: Alkali-free glass Substrate 13: Silver alloy film 14: ITO film 15: Pixel division layer 16: Organic EL layer 17: Second electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a positive-type photosensitive composition capable of suppressing generation of foreign matter defects on a surface of an opening part and forming a pixel division layer and/or planarized layer with high thermal stability of light blocking effect and with high resolution. The present invention is a positive-type photosensitive composition containing: (a) a compound represented by formula (1) and/or a compound represented by formula (2); (b) a resin; (c) a photo-acid generator; and (d) an organic solvent.

Description

ポジ型感光性組成物、硬化膜、有機EL表示装置、および色素Positive photosensitive composition, cured film, organic EL display device, and dye
 本発明は、ポジ型感光性組成物、硬化膜、有機EL表示装置、および色素に関する。 The present invention relates to a positive photosensitive composition, a cured film, an organic EL display device, and a dye.
 フレキシブルタイプの有機エレクトロルミネッセンス(EL)ディスプレイが搭載された表示装置のさらなる高機能化が検討されている。従来はディスプレイの前面部に配置されていた偏光板を具備しない構成とすることで輝度のロスを無くし、消費電力の低減が期待されている。偏光板の機能を代替するためには、太陽光などの外光反射を抑制する機能を追加することが必要であり、絶縁層としての機能を有する画素分割層および/または平坦化層に遮光性を付与し、フォトリソグラフィ法によりパターン形成する技術が注目されている。遮光性が付与された画素分割層としては、例えば、黒色画素分割層が挙げられ、黒色画素定義膜またはブラックバンクとも呼ばれている。黒色画素分割層は開口部に配置されたレッド、グリーン、ブルーなど各色の発光画素を隔てるために配置される。一方、平坦化層は、電極および黒色画素分割層を平滑に形成できるようにする下地層として、TFT(Thin Film Transistor)による凸状段差を覆うように配置される。 Further enhancement of the functionality of display devices equipped with flexible type organic electroluminescence (EL) displays is being considered. By eliminating the polarizing plate that was conventionally placed on the front of the display, it is expected that loss of brightness will be eliminated and power consumption will be reduced. In order to replace the function of a polarizing plate, it is necessary to add a function to suppress the reflection of external light such as sunlight, and it is necessary to add a function to suppress the reflection of external light such as sunlight. A technique for forming a pattern using a photolithography method is attracting attention. An example of the pixel dividing layer imparted with light-shielding properties is a black pixel dividing layer, which is also called a black pixel defining film or black bank. The black pixel dividing layer is arranged to separate the light emitting pixels of each color, such as red, green, and blue, arranged in the opening. On the other hand, the flattening layer serves as a base layer that allows the electrodes and the black pixel dividing layer to be formed smoothly, and is arranged so as to cover the convex steps formed by TFTs (Thin Film Transistors).
 近年、有機ELディスプレイの表示品位の向上を目的として、腕時計型表示装置など小型ディスプレイにおいて発光画素を小さく形成して高精細化する上で、黒色画素分割層の解像度の向上が求められている。また、キュア工程においてオーブン内で局所的に高い温度となる部位があったとしても面内の均一性が高い遮光性が得られるようにするため、黒色画素分割層の遮光性の熱安定性の向上が求められている。一方、平坦化層を黒色化する場合においても同様の観点で、解像度の向上と、遮光性の熱安定性の向上が求められている。 In recent years, with the aim of improving the display quality of organic EL displays, there has been a need to improve the resolution of black pixel dividing layers in order to make light-emitting pixels smaller and higher definition in small displays such as wristwatch-type display devices. In addition, in order to obtain a highly uniform light-shielding property even if there are parts of the oven that experience high temperatures locally during the curing process, we have also improved the thermal stability of the light-shielding property of the black pixel dividing layer. Improvement is required. On the other hand, in the case of blackening the planarization layer, improvement in resolution and improvement in thermal stability of light-shielding properties are required from the same viewpoint.
 黒色の画素分割層を形成するための材料としては、絶縁性が低く誘電率が高いという電気特性上の致命的な欠点があるカーボンブラックに替えて、非カーボンブラック系の色材を含有する多様な感光性組成物が提案されている。例えば、アゾ系クロム錯体からなる黒色染料であるC.I.ソルベントブラック27、29または34を含有するポジ型感光性組成物が特許文献1、2および3で開示されている。酸性染料と塩基性染料からなる造塩化合物を含有するポジ型感光性組成物が特許文献4で開示されている。ベンゾジフラノン系黒色顔料を含有するネガ型感光性組成物が特許文献5で開示されている。塩基性官能基を有するフタロシアニン化合物、有機青色顔料、有機紫色顔料および有機黄色顔料を含有するネガ型感光性組成物が特許文献6で開示されている。 As a material for forming the black pixel dividing layer, instead of carbon black, which has a fatal defect in electrical properties such as low insulation and high dielectric constant, various materials containing non-carbon black coloring materials are used. Photosensitive compositions have been proposed. For example, C.I., a black dye consisting of an azo chromium complex, I. Positive-working photosensitive compositions containing Solvent Black 27, 29 or 34 are disclosed in Patent Documents 1, 2 and 3. A positive photosensitive composition containing a salt-forming compound consisting of an acidic dye and a basic dye is disclosed in Patent Document 4. A negative photosensitive composition containing a benzodifuranone black pigment is disclosed in Patent Document 5. Patent Document 6 discloses a negative photosensitive composition containing a phthalocyanine compound having a basic functional group, an organic blue pigment, an organic purple pigment, and an organic yellow pigment.
国際公開第2017/069172号International Publication No. 2017/069172 国際公開第2021/246448号International Publication No. 2021/246448 国際公開第2021/246444号International Publication No. 2021/246444 国際公開第2022/039034号International Publication No. 2022/039034 特開2022-38599号公報JP 2022-38599 Publication 特開2019-207306号公報JP2019-207306A
 しかしながら、特許文献1、2および3で開示されたポジ型感光性組成物を用いると、遮光性の熱安定性の高い画素分割層および/または平坦化層を得ることが容易である反面、C.I.ソルベントブラック27、29または34などのアゾ系クロム錯体からなる黒色染料は、高温処理により毒性の高い6価クロムが生成する懸念があることが一般的に知られている。そのため、人体に対する安全性と環境保全の観点から問題があった。また、特許文献4で開示されたポジ型感光性組成物は遮光性の熱安定性が不十分であるという課題があった。特許文献5で開示されたネガ型感光性組成物は解像度が不十分であるという課題があった。特許文献6で開示されたネガ型感光性組成物は画素分割層を形成する際に通常行われる高温処理により、開口部の表面に突起状の異物欠陥が生じるという課題があった。 However, when using the positive photosensitive compositions disclosed in Patent Documents 1, 2, and 3, it is easy to obtain a pixel dividing layer and/or a flattening layer that has light-shielding properties and high thermal stability. .. I. It is generally known that black dyes made of azo chromium complexes, such as Solvent Black 27, 29, or 34, are likely to generate highly toxic hexavalent chromium when subjected to high-temperature treatment. Therefore, there were problems from the viewpoints of human safety and environmental conservation. Further, the positive photosensitive composition disclosed in Patent Document 4 has a problem in that the thermal stability of light-shielding properties is insufficient. The negative photosensitive composition disclosed in Patent Document 5 had a problem of insufficient resolution. The negative photosensitive composition disclosed in Patent Document 6 has a problem in that protruding foreign matter defects are generated on the surface of the opening due to the high temperature treatment normally performed when forming the pixel division layer.
 以上から、クロム原子を分子内に有さない色材を含有し、開口部の表面において突起状の異物欠陥の発生を抑制して、遮光性の熱安定性が高く、高解像度の画素分割層および/または平坦化層を形成可能な感光性組成物が切望されていた。 From the above, the pixel dividing layer contains a coloring material that does not have chromium atoms in its molecules, suppresses the occurrence of protruding foreign matter defects on the surface of the opening, has high light-shielding thermal stability, and has high resolution. A photosensitive composition capable of forming a flattening layer and/or a flattening layer has been desired.
 上記課題を解決するため本発明のポジ型感光性組成物は、次の構成を有する。すなわち、
(a)式(1)で表される化合物および/または式(2)で表される化合物と、(b)樹脂と、(c)光酸発生剤と、(d)有機溶剤を含有するポジ型感光性組成物である。
In order to solve the above problems, the positive photosensitive composition of the present invention has the following configuration. That is,
A positive material containing (a) a compound represented by formula (1) and/or a compound represented by formula (2), (b) a resin, (c) a photoacid generator, and (d) an organic solvent. It is a type photosensitive composition.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(1)中、R、R、R、R、R、R、RおよびRは、それぞれ独立に、水素原子、-SOH、-SO 、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、-CF、-F、-Brまたは-CNを表す。ただし、R、R、R、R、R、R、RおよびR中、-SOHおよび-SO の合計数は1~4である。
、R10、R11およびR12は、それぞれ独立に、水素原子、-OH、-F、-Br、-CNまたは炭素数1~5のアルコキシ基を表す。ただし、RとR10、R11とR12は、それぞれ独立に、互いに結合して連結基-X-であってもよい。-X-は、-O-または-SO-を表す。
In formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, the total number of -SO 3 H and -SO 3 - in R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 is 1 to 4.
R 9 , R 10 , R 11 and R 12 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 9 and R 10 and R 11 and R 12 may each independently be bonded to each other to form a linking group -X 1 -. -X 1 - represents -O- or -SO 2 -.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式(2)中、R13、R14、R15、R16、R17、R18、R19およびR20は、それぞれ独立に、水素原子、-SOH、-SO 、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、-CF、-F、-Brまたは-CNを表す。ただし、R13、R14、R15、R16、R17、R18、R19およびR20中、-SOHおよび-SO の合計数は1~4である。
21、R22、R23およびR24は、それぞれ独立に、水素原子、-OH、-F、-Br、-CNまたは炭素数1~5のアルコキシ基を表す。ただし、R21とR22、R23とR24は、それぞれ独立に、互いに結合して連結基-X-であってもよい。-X-は、-O-または-SO-を表す。
In formula (2), R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, the total number of -SO 3 H and -SO 3 - in R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 is 1 to 4.
R 21 , R 22 , R 23 and R 24 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 21 and R 22 and R 23 and R 24 may each independently be bonded to each other to form a linking group -X 2 -. -X 2 - represents -O- or -SO 2 -.
 本発明によれば、開口部の表面において異物欠陥の発生を抑制して、遮光性の熱安定性が高く、高解像度の画素分割層および/または平坦化層を形成することができる。 According to the present invention, it is possible to suppress the occurrence of foreign matter defects on the surface of the opening, and form a pixel division layer and/or a planarization layer with high light-shielding properties, high thermal stability, and high resolution.
図1は、本発明の実施形態の具体例として挙げられる画素分割層および平坦化層を具備する、有機EL表示装置におけるTFT基板の断面図である。FIG. 1 is a cross-sectional view of a TFT substrate in an organic EL display device including a pixel dividing layer and a planarization layer as a specific example of an embodiment of the present invention. 図2は、比較例4で観られた突起状異物欠陥の走査電子顕微鏡(SEM)の撮像である。FIG. 2 is a scanning electron microscope (SEM) image of a protruding foreign particle defect observed in Comparative Example 4. 図3は、全ての実施例における、画素分割層の形成工程を含む有機EL表示装置の作製工程である。FIG. 3 shows a manufacturing process of an organic EL display device including a process of forming a pixel dividing layer in all Examples. 図4は、参考例1で得られたプリベーク膜(破線)と、参考例2で得られたプリベーク膜(実線)の、波長350~650nmにおける透過率(%)を比較したグラフである。FIG. 4 is a graph comparing the transmittance (%) of the prebaked film obtained in Reference Example 1 (broken line) and the prebaked film obtained in Reference Example 2 (solid line) at a wavelength of 350 to 650 nm.
 以下、本発明について詳細に説明する。「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。画素分割層とは、有機EL表示装置が具備する画素分割層のことを意味し、液晶表示装置のブラックマトリクスは包含しない。可視光線とは波長380nm以上780nm未満の領域の光を意味し、近紫外線とは200nm以上380nm未満の領域の光を意味する。近赤外線とは波長780nm以上1300nm以下の領域の光を意味する。 Hereinafter, the present invention will be explained in detail. A numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits. The pixel dividing layer means a pixel dividing layer included in an organic EL display device, and does not include the black matrix of a liquid crystal display device. Visible light means light with a wavelength of 380 nm or more and less than 780 nm, and near ultraviolet rays means light with a wavelength of 200 nm or more and less than 380 nm. Near-infrared rays mean light in a wavelength range of 780 nm or more and 1300 nm or less.
 遮光とは、硬化膜に対して垂直方向に入射した光の強度に対して透過した光の強度を低下させる機能を意味し、遮光性とは、可視光線を遮蔽する程度のことをいう。透過率とは、光透過率のことを意味する。重量平均分子量(Mw)とは、テトラヒドロフランをキャリヤーとするゲルパーミエーションクロマトグラフィ(GPC)で分析し、標準ポリスチレンによる検量線を用いて換算した値である。 Light-shielding refers to the function of reducing the intensity of transmitted light relative to the intensity of light incident perpendicularly to the cured film, and light-shielding property refers to the extent to which visible light is blocked. Transmittance means light transmittance. The weight average molecular weight (Mw) is a value analyzed by gel permeation chromatography (GPC) using tetrahydrofuran as a carrier and converted using a standard polystyrene calibration curve.
 一部の着色材の呼称に用いた「C.I.」とは、Colour Index Generic Nameの略であり、The Society of Dyers and Colourists発行のカラーインデックスに基づき、カラーインデックスに登録済の着色材に関しては、Colour Index Generic Nameが、顔料または染料の化学構造や結晶形を表す。固形分とは、ポジ型感光性組成物中、有機溶剤および水を除いた成分の割合(質量%)を意味する。 "C.I." used in the name of some coloring materials is an abbreviation for Color Index Generic Name, and is based on the color index published by The Society of Dyers and Colorists, and is based on the coloring materials registered in the color index. Color Index Generic Name represents the chemical structure and crystal form of the pigment or dye. Solid content means the proportion (mass %) of components excluding organic solvent and water in a positive photosensitive composition.
 本発明者らが鋭意検討した結果、遮光性を付与するための成分として特定の化学構造の色材を採用し、さらに樹脂と光酸発生剤とを組み合わせてポジ型の感光性を付与した組成物が、前述の課題の解決にあたり格別顕著な効果を奏することを見出した。 As a result of intensive studies by the present inventors, we adopted a coloring material with a specific chemical structure as a component for imparting light-shielding properties, and furthermore, a composition that imparts positive photosensitivity by combining a resin and a photoacid generator. We have discovered that this product has a particularly remarkable effect in solving the above-mentioned problems.
 すなわち、本発明のポジ型感光性組成物は、(a)式(1)で表される化合物および/または式(2)で表される化合物と、(b)樹脂と、(c)光酸発生剤と、(d)有機溶剤を含有するポジ型感光性組成物である。 That is, the positive photosensitive composition of the present invention comprises (a) a compound represented by formula (1) and/or a compound represented by formula (2), (b) a resin, and (c) a photoacid. It is a positive photosensitive composition containing a generator and (d) an organic solvent.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(1)中、R、R、R、R、R、R、RおよびRは、それぞれ独立に、水素原子、-SOH、-SO 、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、-CF、-F、-Brまたは-CNを表す。ただし、R、R、R、R、R、R、RおよびR中、-SOHおよび-SO の合計数は1~4である。
、R10、R11およびR12は、それぞれ独立に、水素原子、-OH、-F、-Br、-CNまたは炭素数1~5のアルコキシ基を表す。ただし、RとR10、R11とR12は、それぞれ独立に、互いに結合して連結基-X-であってもよい。-X-は、-O-または-SO-を表す。
In formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, the total number of -SO 3 H and -SO 3 - in R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 is 1 to 4.
R 9 , R 10 , R 11 and R 12 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 9 and R 10 and R 11 and R 12 may each independently be bonded to each other to form a linking group -X 1 -. -X 1 - represents -O- or -SO 2 -.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(2)中、R13、R14、R15、R16、R17、R18、R19およびR20は、それぞれ独立に、水素原子、-SOH、-SO 、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、-CF、-F、-Brまたは-CNを表す。ただし、R13、R14、R15、R16、R17、R18、R19およびR20中、-SOHおよび-SO の合計数は1~4である。
21、R22、R23およびR24は、それぞれ独立に、水素原子、-OH、-F、-Br、-CNまたは炭素数1~5のアルコキシ基を表す。ただし、R21とR22、R23とR24は、それぞれ独立に、互いに結合して連結基-X-であってもよい。-X-は、-O-または-SO-を表す。
In formula (2), R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, the total number of -SO 3 H and -SO 3 - in R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 is 1 to 4.
R 21 , R 22 , R 23 and R 24 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 21 and R 22 and R 23 and R 24 may each independently be bonded to each other to form a linking group -X 2 -. -X 2 - represents -O- or -SO 2 -.
 本発明のポジ型感光性組成物は、(a)式(1)で表される化合物および/または式(2)で表される化合物(以下、(a)成分という場合がある。)を含有する。 The positive photosensitive composition of the present invention contains (a) a compound represented by formula (1) and/or a compound represented by formula (2) (hereinafter sometimes referred to as component (a)). do.
 (a)成分は、最終的に得られる画素分割層および/または平坦化層に遮光性を与える効果を有する。(a)成分は、ペリレン-3,4,9,10-テトラカルボン酸ビスベンゾイミダゾール(以下、PTCBIという場合がある。)骨格を有し、2つのベンゾイミダゾール構造中のベンゼン環を構成する炭素原子に、1つ~4つのスルホ基が置換した縮合多環系芳香族スルホン酸である。ここでいうスルホ基とは、-SOH、およびプロトンが解離した-SO (すなわち、スルホナート基)を包含して意味する。PTCBI骨格とは、式(3)で表されるcis体の骨格および式(4)で表されるtrans体の骨格を包含して意味し、ベンゾイミダゾール骨格を分子内に2つ有することで高い遮光性が発現する。なお、後述する(a)成分を得るための合成方法について理解を助けるため、ペリレン環を構成する炭素原子のうち、一部の炭素原子の位置番号を、式(3)および式(4)中に併記する。 Component (a) has the effect of imparting light-shielding properties to the finally obtained pixel division layer and/or planarization layer. Component (a) has a perylene-3,4,9,10-tetracarboxylic acid bisbenzimidazole (hereinafter sometimes referred to as PTCBI) skeleton, and the carbon atoms constituting the benzene ring in the two benzimidazole structures. It is a condensed polycyclic aromatic sulfonic acid in which an atom is substituted with one to four sulfo groups. The sulfo group herein includes -SO 3 H and -SO 3 - in which protons have been dissociated (ie, sulfonate group). The PTCBI skeleton includes the cis skeleton represented by the formula (3) and the trans skeleton represented by the formula (4), and has two benzimidazole skeletons in the molecule. Light-shielding properties are developed. In order to help understand the synthesis method for obtaining component (a) described later, the position numbers of some of the carbon atoms constituting the perylene ring are shown in formula (3) and formula (4). Also listed in
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 ポジ型感光性組成物中、画素分割層中および平坦化層中における(a)成分の存在形態は特に制限されるものではなく、不溶粒子として分散していてもよく、あるいは溶解していてもよい。すなわち、(a)成分は顔料または染料であってよく、それらが混在していてもよい。(a)成分の存在形態は概して、炭素数1~5のアルキル基および/または炭素数1~5のアルコキシ基の炭素数や分子内の置換基数により(d)有機溶剤に対する溶解性を調整することで制御できる。また、(a)成分の化学構造に応じて(b)樹脂および(d)有機溶剤の選択により制御できる。 The form of component (a) present in the positive photosensitive composition, pixel dividing layer, and flattening layer is not particularly limited, and may be dispersed as insoluble particles or dissolved. good. That is, component (a) may be a pigment or a dye, or a mixture of them may be used. (a) The existing form of the component is generally adjusted by the number of carbon atoms of the alkyl group having 1 to 5 carbon atoms and/or the alkoxy group having 1 to 5 carbon atoms and the number of substituents in the molecule (d) solubility in organic solvents. It can be controlled by Moreover, it can be controlled by selecting (b) resin and (d) organic solvent depending on the chemical structure of component (a).
 (a)成分は-SO を由来として塩を形成していてもよく、塩を形成することにより(d)有機溶剤に対する溶解性を向上できる場合がある。塩の形態としては、例えば、Na、K、Liなどの一価の金属陽イオンとの塩や、Ca2+、Mn2+、Sr2+、Ba2+、Zn2+、Al3+などの多価金属陽イオンとの塩、C.I.ベーシックブルー3、22などのカチオン系染料のカチオン部位との塩、トリアルキルベンジルアンモニウムカチオン、テトラアルキルアンモニウムカチオンなどの有機カチオンとの塩が挙げられる。中でも、解像度を向上する上で、アニオン性化合物である(a)成分が、後述するカチオン性化合物である(f)成分と塩を形成していることが好ましい。塩を形成している場合、(a)成分とその他成分の混合物であると定義する。 Component (a) may form a salt derived from -SO 3 - , and by forming a salt, the solubility in the organic solvent (d) may be improved. Examples of the salt form include salts with monovalent metal cations such as Na + , K + , and Li + , and polyvalent salts such as Ca 2+ , Mn 2+ , Sr 2+ , Ba 2+ , Zn 2+ , and Al 3+ . Salts with metal cations, C. I. Examples include salts with cation moieties of cationic dyes such as Basic Blue 3 and 22, and salts with organic cations such as trialkylbenzylammonium cations and tetraalkylammonium cations. Among these, in order to improve resolution, it is preferable that component (a), which is an anionic compound, forms a salt with component (f), which is a cationic compound, which will be described later. When a salt is formed, it is defined as a mixture of component (a) and other components.
 ところで、有機顔料の分子構造中にスルホ基やアミノ基などの高極性官能基を導入すると、概して、結晶性が損なわれ、高極性官能基を導入する前の有機顔料と比べて熱安定性の低下や、結晶成長による突起状異物欠陥が生じやすくなるだけでなく、黒ずんだ色相となって近紫外線透過率が低くなってしまうことが当業者の技術常識としてよく知られている。これに対して、(a)成分は、前述の存在形態によらず、PTCBI骨格中にスルホ基が導入されていながら、後述のキュア工程における高温処理下(例えば、250~270℃)において突起状などの異物欠陥の発生を抑制して、優れた遮光性の熱安定性を得ることができる。画素分割層や平坦化層の開口部の表面に突起状異物欠陥が生じると、発光画素の点灯が困難となる。したがって、突起状異物欠陥の発生は抑制されるほど望ましい。 By the way, when a highly polar functional group such as a sulfo group or an amino group is introduced into the molecular structure of an organic pigment, the crystallinity is generally impaired and the thermal stability becomes lower than that of the organic pigment before the highly polar functional group is introduced. It is well known as common general knowledge among those skilled in the art that not only is it likely to cause defects such as protrusion-like foreign matter defects due to crystal growth, but also a dark hue and a decrease in near-ultraviolet transmittance. On the other hand, component (a) has a sulfo group introduced into the PTCBI skeleton, irrespective of the above-mentioned existence form, but becomes protrusive under high temperature treatment (for example, 250 to 270°C) in the curing process described below. It is possible to suppress the occurrence of foreign matter defects such as, and obtain excellent light-shielding thermal stability. When a protruding foreign particle defect occurs on the surface of the opening of the pixel dividing layer or the planarizing layer, it becomes difficult to light up the light emitting pixel. Therefore, it is desirable to suppress the occurrence of protruding foreign matter defects.
 また、(a)成分が有するスルホ基は立体的に嵩高く、PTCBI骨格に由来する分子間の強いスタッキング性を緩和する効果を奏する。従って、スルホ基以外の置換基が置換したPTCBI誘導体(以下、PTCBI誘導体という場合がある。)および無置換のPTCBIと比べて、(a)成分は、むしろ高められた近紫外線透過率と、同等の遮光性を兼ね備える。したがって(a)成分は、後述の露光工程において(c)光酸発生剤の反応率を好ましく向上して膜中での酸の発生量を多くすることができる。 Furthermore, the sulfo group possessed by component (a) is sterically bulky and has the effect of alleviating the strong stacking property between molecules derived from the PTCBI skeleton. Therefore, compared to PTCBI derivatives substituted with substituents other than sulfo groups (hereinafter sometimes referred to as PTCBI derivatives) and unsubstituted PTCBI, component (a) has rather increased near-ultraviolet transmittance, equivalent to It also has light blocking properties. Therefore, the component (a) can preferably improve the reaction rate of the photoacid generator (c) in the exposure step described below, thereby increasing the amount of acid generated in the film.
 さらに、(a)成分がスルホ基を有することで、後述の現像工程においてアルカリ現像液中における自己分散性および/または高い溶解性が好ましく付与され、現像残渣の発生を好ましく抑制できる。 Furthermore, since the component (a) has a sulfo group, it is preferably provided with self-dispersibility and/or high solubility in an alkaline developer in the development step described below, and the generation of development residues can be preferably suppressed.
 以上の原理から、(a)成分の特徴的な化学構造を由来として、遮光性の熱安定性が高く、かつ高解像度の画素分割層および/または平坦化層を形成することができる。ここでいう遮光性の熱安定性が高いとは、キュア工程における加熱温度の変化に対して遮光性の変化が小さく、また、得られた画素分割層および/または平坦化層を再び加熱した後の遮光性の変化が小さいことを意味する。一方、高解像度とは開口部の開口幅が狭いことを意味する。有機EL表示装置の表示エリアにおける発光画素サイズは、画素分割層の開口部の開口幅で決定され、発光画素サイズが小さいほど高精細で高い表示品位が得られるため、画素分割層の解像度は高いほど望ましい。また、パネル構成上、画素分割層が高解像度であると、平坦化層もまた高い解像度が必要となる。したがって、平坦化層の解像度もまた高いほど望ましい。 Based on the above principle, it is possible to form a pixel dividing layer and/or a flattening layer that has high light-shielding properties, high thermal stability, and high resolution due to the characteristic chemical structure of component (a). High thermal stability of the light-shielding property means that the light-shielding property changes little with respect to changes in heating temperature in the curing process, and that the resulting pixel dividing layer and/or planarization layer is heated again. This means that the change in light shielding properties is small. On the other hand, high resolution means that the aperture width of the aperture is narrow. The size of a light-emitting pixel in the display area of an organic EL display device is determined by the aperture width of the aperture of the pixel dividing layer, and the smaller the light-emitting pixel size, the higher the resolution and display quality can be obtained, so the resolution of the pixel dividing layer is higher. The more desirable. Further, due to the panel configuration, if the pixel division layer has a high resolution, the flattening layer also needs to have a high resolution. Therefore, it is desirable that the resolution of the planarization layer is also higher.
 (a)成分は波長550~650nmの領域に吸収極大波長を有し、暗青色を呈する色素であり、480~540nmの領域に吸収極大波長を有し、暗紫色を呈する色素であるPTCBIおよびPTCBI誘導体とは異なる光学的特性を有する。(a)成分を含有する本発明のポジ型感光性組成物のプリベーク膜は、比視感度が高く遮光性への寄与が大きい波長450~650nmの領域の最大透過率と比べて、800~1,200nmにおける最大透過率が高い。そのため、近赤外線カメラを用いて電極形成基板に対する露光マスクの位置合わせを自動で行う、近赤外線アライメントを利用することができ、高い遮光性を有していながら高い位置精度と高い生産性を得ることができる。 Component (a) is a pigment that has a maximum absorption wavelength in the wavelength range of 550 to 650 nm and exhibits a dark blue color, and PTCBI and PTCBI derivatives that have a maximum absorption wavelength in the wavelength range of 480 to 540 nm and are pigments that exhibit a dark purple color. It has different optical properties. The pre-baked film of the positive photosensitive composition of the present invention containing component (a) has a maximum transmittance of 800 to 1 , the maximum transmittance at 200 nm is high. Therefore, it is possible to use near-infrared alignment, which automatically aligns the exposure mask to the electrode-forming substrate using a near-infrared camera, and it is possible to obtain high positional accuracy and high productivity while having high light-shielding properties. Can be done.
 本発明のポジ型感光性組成物は、遮光性の熱安定性および解像度を向上する上で、(a)成分が式(5)で表される化合物および/または式(6)で表される化合物を含有することが好ましい。 In the positive photosensitive composition of the present invention, the component (a) is a compound represented by the formula (5) and/or a compound represented by the formula (6) in improving the thermal stability and resolution of the light-shielding property. It is preferable to contain a compound.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
式(5)中、R25およびR26は、それぞれ独立に、-SOHまたは-SO を表す。nおよびnは整数であり、それぞれ独立に、0~2を表す。ただし、nおよびnの合計数は1~4である。 In formula (5), R 25 and R 26 each independently represent -SO 3 H or -SO 3 - . n 1 and n 2 are integers and each independently represents 0 to 2. However, the total number of n 1 and n 2 is 1 to 4.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
式(6)中、R27およびR28は、それぞれ独立に、-SOHまたは-SO を表す。nおよびnは整数であり、それぞれ独立に、0~2を表す。ただし、nおよびnの合計数は1~4である。 In formula (6), R 27 and R 28 each independently represent -SO 3 H or -SO 3 - . n 3 and n 4 are integers and each independently represents 0 to 2. However, the total number of n 3 and n 4 is 1 to 4.
 本発明のポジ型感光性組成物が含有する(a)成分の具体例としては、式(7)で表される化合物、式(8)で表される化合物、式(9)で表される化合物、式(10)で表される化合物、式(11)で表される化合物、式(12)で表される化合物、式(13)で表される化合物、式(14)で表される化合物、式(15)で表される化合物、式(16)で表される化合物およびそれら化合物の異性体に相当するcis体の化合物の群が挙げられる。 Specific examples of the component (a) contained in the positive photosensitive composition of the present invention include a compound represented by formula (7), a compound represented by formula (8), and a compound represented by formula (9). Compound, compound represented by formula (10), compound represented by formula (11), compound represented by formula (12), compound represented by formula (13), compound represented by formula (14) Examples include a group of compounds represented by formula (15), compounds represented by formula (16), and cis-compounds corresponding to isomers of these compounds.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (a)成分を得るための合成方法としては、例えば、後述する第一の方法および第二の方法が挙げられる。 Examples of the synthesis method for obtaining component (a) include the first method and the second method described below.
 第一の方法としては、ペリレン-3,4,9,10-テトラカルボン酸二無水物(以下、PTCDAと略記する場合がある。)またはスルホ基以外の置換基がペリレン環を構成する炭素原子に置換したペリレン-3,4,9,10-テトラカルボン酸二無水物誘導体(以下、PTCDA誘導体と略記する場合がある。)に、1,2-ジアミノベンゼンおよび/またはスルホ基以外の置換基がベンゼン環を構成する炭素原子に置換した1,2-ジアミノベンゼン誘導体を反応させて得られる生成物をスルホン化して、スルホ基を導入することで(a)成分を得る方法が挙げられる。 The first method is perylene-3,4,9,10-tetracarboxylic dianhydride (hereinafter sometimes abbreviated as PTCDA) or a carbon atom in which a substituent other than a sulfo group constitutes a perylene ring. perylene-3,4,9,10-tetracarboxylic dianhydride derivative (hereinafter sometimes abbreviated as PTCDA derivative) substituted with 1,2-diaminobenzene and/or a substituent other than the sulfo group. A method for obtaining component (a) is to sulfonate a product obtained by reacting a 1,2-diaminobenzene derivative in which is substituted with a carbon atom constituting a benzene ring to introduce a sulfo group.
 PTCDA誘導体としては、例えば、1,12-ジヒドロキシペリレン-3,4,9,10-テトラカルボン酸二無水物、1,7-ジヒドロキシペリレン-3,4,9,10-テトラカルボン酸二無水物、1-ブロモペリレン-3,4,9,10-テトラカルボン酸二無水物、1,7-ジブロモペリレン-3,4,9,10-テトラカルボン酸二無水物、1,7-ジフルオロペリレン-3,4,9,10-テトラカルボン酸二無水物、1,6-ジフルオロペリレン-3,4,9,10-テトラカルボン酸二無水物、1,6,7,12-テトラフルオロペリレン-3,4,9,10-テトラカルボン酸二無水物、1,6,7,12-テトラシアノペリレン-3,4,9,10-テトラカルボン酸二無水物、1,12-メトキシペリレン-3,4,9,10-テトラカルボン酸二無水物、1,12-エトキシペリレン-3,4,9,10-テトラカルボン酸二無水物、1,12-プロポキシペリレン-3,4,9,10-テトラカルボン酸二無水物、1,12-イソプロポキシペリレン-3,4,9,10-テトラカルボン酸二無水物、1,12-ブトキシペリレン-3,4,9,10-テトラカルボン酸二無水物、1,12-ペントキシペリレン-3,4,9,10-テトラカルボン酸二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物モノスルホン、ペリレン-3,4,9,10-テトラカルボン酸二無水物ジスルホンが挙げられる。これらのPTCDA誘導体は、例えば、Henan Tianfu Chemical社製の市販品を用いてもよい。また、PTCDA誘導体を得る方法は、例えば、国際公開第97/22607号、特開2018-165257号公報、国際公開第2007/554787号および国際公開第2007/093643号で開示された合成方法を参照できる。 Examples of PTCDA derivatives include 1,12-dihydroxyperylene-3,4,9,10-tetracarboxylic dianhydride, 1,7-dihydroxyperylene-3,4,9,10-tetracarboxylic dianhydride , 1-bromoperylene-3,4,9,10-tetracarboxylic dianhydride, 1,7-dibromoperylene-3,4,9,10-tetracarboxylic dianhydride, 1,7-difluoroperylene- 3,4,9,10-tetracarboxylic dianhydride, 1,6-difluoroperylene-3,4,9,10-tetracarboxylic dianhydride, 1,6,7,12-tetrafluoroperylene-3 , 4,9,10-tetracarboxylic dianhydride, 1,6,7,12-tetracyanoperylene-3,4,9,10-tetracarboxylic dianhydride, 1,12-methoxyperylene-3, 4,9,10-tetracarboxylic dianhydride, 1,12-ethoxyperylene-3,4,9,10-tetracarboxylic dianhydride, 1,12-propoxyperylene-3,4,9,10- Tetracarboxylic dianhydride, 1,12-isopropoxyperylene-3,4,9,10-tetracarboxylic dianhydride, 1,12-butoxyperylene-3,4,9,10-tetracarboxylic dianhydride 1,12-pentoxyperylene-3,4,9,10-tetracarboxylic dianhydride, perylene-3,4,9,10-tetracarboxylic dianhydride monosulfone, perylene-3,4, Examples include 9,10-tetracarboxylic dianhydride disulfone. These PTCDA derivatives may be commercially available from Henan Tianfu Chemical Co., Ltd., for example. Further, for the method of obtaining the PTCDA derivative, refer to the synthesis methods disclosed in, for example, WO 97/22607, JP 2018-165257, WO 2007/554787, and WO 2007/093643. can.
 1,2-ジアミノベンゼン誘導体としては、例えば、4,5-ジメチル-1,2-フェニレンジアミン、2,3-ジアミノトルエン、4,5-ジエチル-1,2-フェニレンジアミン、4,5-ジプロピル-1,2-フェニレンジアミン、1,2-ジアミノ-4-フルオロベンゼン、1,2-ジアミノ-4-ブロモベンゼン、4-メトキシ-1,2-フェニレンジアミン、4-エトキシ-1,2-フェニレンジアミン、4-プロポキシ-1,2-フェニレンジアミン、4-ブトキシ-1,2-フェニレンジアミン、1,2-ジアミノ-4,5-メトキシベンゼン、1,2-ジアミノ-4,5-エトキシベンゼン、1,2-ジアミノ-4,5-プロポキシベンゼン、1,2-ジアミノ-4,5-ブトキシベンゼン、3,5-ビス(トリフルオロメチル)-1,2-フェニレンジアミン(以上、いずれもSigma-Aldrich社製)が挙げられ、1種または2種以上を組み合わせて用いてもよい。 Examples of 1,2-diaminobenzene derivatives include 4,5-dimethyl-1,2-phenylenediamine, 2,3-diaminotoluene, 4,5-diethyl-1,2-phenylenediamine, 4,5-dipropyl -1,2-phenylenediamine, 1,2-diamino-4-fluorobenzene, 1,2-diamino-4-bromobenzene, 4-methoxy-1,2-phenylenediamine, 4-ethoxy-1,2-phenylene Diamine, 4-propoxy-1,2-phenylenediamine, 4-butoxy-1,2-phenylenediamine, 1,2-diamino-4,5-methoxybenzene, 1,2-diamino-4,5-ethoxybenzene, 1,2-diamino-4,5-propoxybenzene, 1,2-diamino-4,5-butoxybenzene, 3,5-bis(trifluoromethyl)-1,2-phenylenediamine (all of the above are Sigma- (manufactured by Aldrich), and may be used alone or in combination of two or more.
 その他、より簡便な方法として、PTCBIのcis体/trans体混合物をスルホン化して、スルホ基を導入することで(a)成分を得てもよい。PTCBIのcis体/trans体混合物は市販品を用いてもよい。市販品としては、例えば、“Spectrasense(登録商標)”Black K0087(Color&Effect社製)、ペリレン-3,4,9,10-テトラカルボン酸ビスベンゾイミダゾール(東京化成工業(株)製)、PTCBI(Luminescence Technology Corporation社製)が挙げられる。 In addition, as a simpler method, component (a) may be obtained by sulfonating a cis/trans mixture of PTCBI and introducing a sulfo group. A commercially available product may be used as the cis/trans isomer mixture of PTCBI. Commercially available products include, for example, “Spectrasense (registered trademark)” Black K0087 (manufactured by Color & Effect), perylene-3,4,9,10-tetracarboxylic acid bisbenzimidazole (manufactured by Tokyo Kasei Kogyo Co., Ltd.), and PTCBI (manufactured by Tokyo Chemical Industry Co., Ltd.). (manufactured by Luminescence Technology Corporation).
 第二の方法としては、PTCDA(またはPTCDA誘導体)に、スルホ基が置換した1,2-ジアミノベンゼン誘導体を反応させて(a)成分を得る方法が挙げられる。スルホ基が置換した1,2-ジアミノベンゼン誘導体としては、例えば、1,2-ジアミノ-4-スルホン酸、1,2-ジアミノ-3-スルホン酸が挙げられる。 The second method includes a method in which component (a) is obtained by reacting PTCDA (or a PTCDA derivative) with a 1,2-diaminobenzene derivative substituted with a sulfo group. Examples of the 1,2-diaminobenzene derivatives substituted with a sulfo group include 1,2-diamino-4-sulfonic acid and 1,2-diamino-3-sulfonic acid.
 前述の第一の方法を例に挙げ、(a)成分を得る方法についてより具体的に説明する。
70~100℃で融解させたフェノールを溶媒として用い、出発原料であるPTCDA(またはPTCDA誘導体)と、1,2-ジアミノベンゼン(または1,2-ジアミノベンゼン誘導体)をそれぞれ1:2~1:2.5のmol比で添加し、さらにピペラジンなどの塩基性触媒を添加した混合物を、液温140~200℃条件下で6~10時間撹拌することにより反応を十分に進行させた後、生成した水をフェノールとの共沸混合物として蒸留分離する。溶媒と塩基性触媒に替えてピリジンを用いてよい。100℃に冷却し、エタノールを添加して50~70℃で1~3時間撹拌した後に濾別する。さらに、濾液が透明になるまでエタノールで洗浄後に水洗し、減圧下40~80℃で24時間以上乾燥させて、PTCBI(またはPTCBI誘導体)を得る。通常、PTCBI(またはPTCBI誘導体)はcis体とtrans体との合計100質量%に対してtrans体を30~70質量%含有する混合物として得られる。必要に応じて、cis体とtrans体いずれか一方をクロマト法で単離して得てもよい。
The method for obtaining component (a) will be explained in more detail by taking the above-mentioned first method as an example.
Using phenol melted at 70 to 100°C as a solvent, the starting material PTCDA (or PTCDA derivative) and 1,2-diaminobenzene (or 1,2-diaminobenzene derivative) were mixed in a ratio of 1:2 to 1:1, respectively. 2.5 and a basic catalyst such as piperazine was stirred for 6 to 10 hours at a liquid temperature of 140 to 200°C to allow the reaction to proceed sufficiently, and then The resulting water is separated by distillation as an azeotrope with phenol. Pyridine may be used in place of the solvent and basic catalyst. Cool to 100°C, add ethanol, stir at 50-70°C for 1-3 hours, and then filter. Further, the filtrate is washed with ethanol and water until it becomes clear, and dried under reduced pressure at 40 to 80° C. for 24 hours or more to obtain PTCBI (or PTCBI derivative). Usually, PTCBI (or PTCBI derivative) is obtained as a mixture containing 30 to 70% by mass of the trans isomer based on the total of 100% by mass of the cis and trans isomers. If necessary, either the cis form or the trans form may be isolated by chromatography.
 次いで、スルホン化反応を行う。PTCBI(またはPTCBI誘導体)を10~70質量%発煙硫酸に溶解させた混合物を加熱し、液温40~150℃の範囲で調整して3~15時間攪拌する。次いで、前述の出発原料に対して100倍以上の質量の水、好ましくは氷水の中に投入して析出物を含むスラリーを得て濾別する。次いで、イオンクロマトグラフィで定量される硫酸イオンの残存量が100質量ppmを下回るまでエタノールと水の混合液で繰り返し洗浄した後に水洗し、さらに60~80℃減圧下で乾燥させる。最後に、ハンマーミルまたはジェットミルを用いた乾式粉砕処理により乾燥凝集を解きほぐし、パウダー状の(a)成分が得られる。目的生成物の1分子あたりのスルホ基の導入数の分布は、発煙硫酸の濃度に応じた液温および反応時間で制御することができ、必要に応じて反応を多段階で行ってもよい。さらに得られた生成物を洗浄後、必要に応じてシリカゲルクロマトグラフィで精製処理を行い、特定範囲の数のスルホ基が導入された(a)成分の純度を高めてもよい。化学構造に対応する分子量と、その純度は、液体クロマトグラフ質量分析法(LC-MS)で簡便にモニターすることができる。 Next, a sulfonation reaction is performed. A mixture of PTCBI (or PTCBI derivative) dissolved in 10 to 70% by mass of oleum is heated, the liquid temperature is adjusted to a range of 40 to 150°C, and the mixture is stirred for 3 to 15 hours. Next, the starting material is poured into water of 100 times or more mass, preferably ice water, to obtain a slurry containing precipitates, which is filtered. Next, it is washed repeatedly with a mixture of ethanol and water until the residual amount of sulfate ions determined by ion chromatography is less than 100 mass ppm, then washed with water, and further dried at 60 to 80° C. under reduced pressure. Finally, the dry agglomerates are loosened by dry pulverization using a hammer mill or jet mill to obtain powdered component (a). The distribution of the number of sulfo groups introduced per molecule of the target product can be controlled by the liquid temperature and reaction time depending on the concentration of fuming sulfuric acid, and the reaction may be carried out in multiple stages if necessary. Furthermore, after washing the obtained product, it may be purified by silica gel chromatography if necessary to increase the purity of component (a) into which a specific range of numbers of sulfo groups have been introduced. The molecular weight corresponding to the chemical structure and its purity can be conveniently monitored by liquid chromatography mass spectrometry (LC-MS).
 さらに、(a)成分と金属陽イオンとの塩を得る方法としては、例えば、(a)成分を水に添加した後に攪拌しながらアルカリ条件下として溶解させ、水酸化ナトリウムなどのNa源、水酸化カリウムなどのK源、塩化アルミニウムなどのAl3+源、塩化バリウムなどのBa2+源、または塩化カルシウムなどのCa2+源を添加して30~60℃加温下で1~5時間攪拌して造塩した後に分離、精製、乾燥および乾式粉砕処理を行う方法が挙げられる。 Furthermore, as a method for obtaining a salt of component (a) and a metal cation, for example, after adding component (a) to water, it is dissolved under alkaline conditions while stirring, and a Na + source such as sodium hydroxide, Add a K + source such as potassium hydroxide, an Al 3+ source such as aluminum chloride, a Ba 2+ source such as barium chloride, or a Ca 2+ source such as calcium chloride, and stir at 30 to 60°C for 1 to 5 hours. Examples include a method in which salt formation is performed, followed by separation, purification, drying, and dry pulverization.
 一方、(a)成分と後述する(f)成分との塩を得る方法としては、例えば、(a)成分を水および有機溶剤に添加した後に攪拌しながら、(f)成分の源として、目的とする塩の構造に対応する2級アミン、3級アミン、4級アンモニウム塩および/またはホスホニウム塩を添加して30~90℃加温下で1~6時間攪拌して造塩させた後に分離、精製、乾燥および乾式粉砕処理を行う方法が挙げられる。また、より高い収率とする上で、(a)成分に替えて(a)成分と金属陽イオンとの塩を原料として用い、(f)成分の源とのカチオン交換により得てもよい。(a)成分を含む塩の分離、精製の操作は、例えば、デカンテーション、減圧留去、フィルタープレスおよびシリカゲルクロマトグラフィなどの一般的な手段を好ましく適用できる。 On the other hand, as a method for obtaining a salt of component (a) and component (f) (described later), for example, after adding component (a) to water and an organic solvent, while stirring, the salt is A secondary amine, a tertiary amine, a quaternary ammonium salt and/or a phosphonium salt corresponding to the structure of the salt is added and stirred at 30 to 90°C for 1 to 6 hours to form a salt, and then separated. , purification, drying and dry pulverization. Furthermore, in order to obtain a higher yield, a salt of component (a) and a metal cation may be used as a raw material instead of component (a), and the salt may be obtained by cation exchange with the source of component (f). For the separation and purification of the salt containing component (a), common means such as decantation, distillation under reduced pressure, filter press, and silica gel chromatography can be preferably applied.
 本発明のポジ型感光性組成物が、(a)成分の少なくとも一部が顔料の形態で含有される場合、顔料の形態にある(a)成分の平均一次粒子径は、解像度を向上する上で10nm以上が好ましく、30nm以上がより好ましい。同観点から300nm以下が好ましく、150nm以下がより好ましい。ここでいう平均一次粒子径とは、画像解析式粒度分布測定装置を用いた粒度測定法により算出した、一次粒子径の数平均値をいう。画像の撮影には、透過型電子顕微鏡(TEM)を用いることができ、倍率50,000倍の条件で(a)成分の一次粒子が100個以上撮影された画像から無作為に選択した50個の一次粒子を解析して平均一次粒子径を算出することができる。(a)成分が真球状でない場合は、その長径と短径の平均値を一次粒子径とする。画像解析には、画像解析式粒度分布ソフトウェアMac-View(マウンテック社製;JIS8827-1準拠;粒子径解析-画像解析法)を用いることができる。 When the positive photosensitive composition of the present invention contains at least a part of the component (a) in the form of a pigment, the average primary particle diameter of the component (a) in the form of a pigment is determined to improve resolution. It is preferably 10 nm or more, more preferably 30 nm or more. From the same point of view, the thickness is preferably 300 nm or less, more preferably 150 nm or less. The average primary particle diameter herein refers to the number average value of primary particle diameters calculated by a particle size measurement method using an image analysis type particle size distribution measuring device. A transmission electron microscope (TEM) can be used to take the image, and 50 primary particles of component (a) are randomly selected from images taken of 100 or more primary particles at a magnification of 50,000 times. The average primary particle diameter can be calculated by analyzing the primary particles. When component (a) is not perfectly spherical, the average value of its major axis and minor axis is taken as the primary particle diameter. Image analysis type particle size distribution software Mac-View (manufactured by Mountec, compliant with JIS 8827-1; particle size analysis - image analysis method) can be used for image analysis.
 (a)成分の化学構造は、本発明のポジ型感光性組成物を試料として、マトリックス支援レーザー脱離イオン化-飛行時間型質量分析法(MALDI-TOF MS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、飛行時間型質量分析法(TOF-MS)、液体クロマトグラフィー/電場型フーリエ変換質量分析(LC-FT-MS)、核磁気共鳴分析法(NMR)、液体クロマトグラフ質量分析法(LC-MS)、赤外吸収スペクトルおよびX線回析などの公知の手法を適宜組み合わせて解析することができる。顔料の存在形態にある(a)成分を含有する場合、動的光散乱法に基づく粒度分布測定装置でその存在を検知することができる。ポジ型感光性組成物を遠心分離処理して得られる濃縮物、あるいは、さらに後述のアミド系溶剤に溶解させたものを試料として用い、分析精度を高めてもよい。 The chemical structure of component (a) was determined using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and time-of-flight secondary ion mass spectrometry using the positive photosensitive composition of the present invention as a sample. method (TOF-SIMS), time-of-flight mass spectrometry (TOF-MS), liquid chromatography/electric field Fourier transform mass spectrometry (LC-FT-MS), nuclear magnetic resonance spectrometry (NMR), liquid chromatography mass spectrometry The analysis can be performed by appropriately combining known techniques such as analytical methods (LC-MS), infrared absorption spectroscopy, and X-ray diffraction. When component (a) is present in the form of a pigment, its presence can be detected with a particle size distribution measuring device based on dynamic light scattering. The accuracy of analysis may be improved by using as a sample a concentrate obtained by centrifuging a positive photosensitive composition, or a sample dissolved in an amide solvent described below.
 (a)成分の含有量は高い遮光性を得る上で、ポジ型感光性組成物の固形分100質量%中、5質量%以上が好ましく、10質量%以上がより好ましい。解像度を向上する上で、40質量%以下が好ましく、30質量%以下がより好ましい。 In order to obtain high light-shielding properties, the content of component (a) is preferably 5% by mass or more, more preferably 10% by mass or more based on 100% by mass of the solid content of the positive photosensitive composition. In order to improve resolution, the content is preferably 40% by mass or less, more preferably 30% by mass or less.
 本発明のポジ型感光性組成物は高い遮光性を得ていながら解像度を向上する上で、さらに、(f)式(70)で表される化合物(以下、(f)成分という場合がある。)を含有することが好ましい。ポジ型感光性組成物中、画素分割層中および平坦化層中における(f)成分の存在形態は特に制約されるものではないが、(f)成分の少なくとも一部が(a)成分と塩を形成していることが好ましい。 The positive photosensitive composition of the present invention improves resolution while obtaining high light-shielding properties, and further includes (f) a compound represented by formula (70) (hereinafter sometimes referred to as component (f)). ) is preferably contained. The form of the component (f) present in the positive photosensitive composition, the pixel dividing layer and the flattening layer is not particularly limited, but at least a part of the component (f) is a salt of the component (a). It is preferable that the
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
式(70)中、R81はNまたはPを表す。R82、R83、R84およびR85は、それぞれ独立に、-OHまたはフェニル基が置換していてもよい炭素数1~20のアルキル基、フェニル基または水素原子を表す。ただし、R81がNである場合、R82、R83、R84およびR85中、水素原子の合計数は0~2であり、R81がPである場合、R82、R83、R84およびR85中、水素原子の合計数は0である。
81がNである場合、(f)成分がアンモニウムカチオンを有することを意味し、Pである場合、(f)成分がホスホニウムカチオンを有することを意味する。
In formula (70), R 81 represents N + or P + . R 82 , R 83 , R 84 and R 85 each independently represent an alkyl group having 1 to 20 carbon atoms, a phenyl group, or a hydrogen atom which may be substituted with -OH or a phenyl group. However, when R 81 is N + , the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 to 2, and when R 81 is P + , R 82 , R 83 , R 84 and R 85 , the total number of hydrogen atoms is 0.
When R 81 is N + , it means that the (f) component has an ammonium cation, and when it is P + , it means that the (f) component has a phosphonium cation.
 なお、式(70)において、R81がNである場合、R82、R83、R84およびR85中、水素原子の合計数は0~2であるとは、R82、R83、R84およびR85のうち1つまたは2つが、R81と結合した水素原子であるか、または、全てがR81と結合した水素原子ではないことを意味しており、ここでいう水素原子とは、-OHまたはフェニル基が置換していてもよい炭素数1~20のアルキル基、およびフェニル基に含まれる水素原子のことを意味するものではない。R81がPである場合、R82、R83、R84およびR85中、水素原子の合計数は0である、との表記もまた同様に、R82、R83、R84およびR85が、いずれもR81と結合した水素原子ではないことを意味する。
また、式(70)および式(71)中、-OHまたはフェニル基が置換していてもよい炭素数1~20のアルキル基には、例えば、無置換のメチル基(-CH)、-OHが1つ置換したメチル基(-CHOH)、フェニル基が1つ置換したメチル基(すなわち、ベンジル基)などが包含される。-OHまたはフェニル基が置換している場合、解像度の観点から、炭素数1~20のアルキル基中の置換数は1つであることが好ましい。
In addition, in formula (70), when R 81 is N + , the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 to 2 means that R 82 , R 83 , This means that one or two of R 84 and R 85 are hydrogen atoms bonded to R 81 , or not all are hydrogen atoms bonded to R 81 , and the hydrogen atom here does not mean an alkyl group having 1 to 20 carbon atoms which may be substituted with --OH or a phenyl group, or a hydrogen atom contained in a phenyl group. When R 81 is P + , the expression that the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 also applies to R 82 , R 83 , R 84 and R This means that none of 85 is a hydrogen atom bonded to R 81 .
Furthermore, in formula (70) and formula (71), the alkyl group having 1 to 20 carbon atoms which may be substituted with -OH or a phenyl group includes, for example, an unsubstituted methyl group (-CH 3 ), - Included are a methyl group substituted with one OH (-CH 2 OH), a methyl group substituted with one phenyl group (ie, benzyl group), and the like. When substituted with -OH or a phenyl group, from the viewpoint of resolution, the number of substitutions in the alkyl group having 1 to 20 carbon atoms is preferably one.
 (f)成分としては、解像度を向上する上で、-OHまたはフェニル基が置換していてもよい炭素数1~15のアルキル基を有し、かつ無置換の炭素数1~15のアルキル基を少なくとも1つ有することが好ましい。
すなわち、本発明のポジ型感光性組成物は、(f)成分が式(71)で表される化合物を含有することがより好ましい。
In order to improve the resolution, the component (f) has an alkyl group having 1 to 15 carbon atoms which may be substituted with -OH or a phenyl group, and an unsubstituted alkyl group having 1 to 15 carbon atoms. It is preferable to have at least one.
That is, in the positive photosensitive composition of the present invention, the component (f) more preferably contains a compound represented by formula (71).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
式(71)中、R86はNまたはPを表す。R87、R88、R89およびR90は、それぞれ独立に、-OHまたはフェニル基が置換していてもよい炭素数1~15のアルキル基を表す。ただし、R87、R88、R89およびR90のうち、少なくとも1つが無置換の炭素数1~15のアルキル基である。R86がNである場合、(f)成分がアンモニウムカチオンを有することを意味し、Pである場合、(f)成分がホスホニウムカチオンを有することを意味する。 In formula (71), R 86 represents N + or P + . R 87 , R 88 , R 89 and R 90 each independently represent an alkyl group having 1 to 15 carbon atoms which may be substituted with -OH or a phenyl group. However, at least one of R 87 , R 88 , R 89 and R 90 is an unsubstituted alkyl group having 1 to 15 carbon atoms. When R 86 is N + , it means that the (f) component has an ammonium cation, and when it is P + , it means that the (f) component has a phosphonium cation.
 解像度を向上する上で、R86がNであり、R87、R88、R89およびR90が、無置換の炭素数1~15のアルキル基であることがさらに好ましい。 In order to improve resolution, it is more preferable that R 86 is N + and R 87 , R 88 , R 89 and R 90 are unsubstituted alkyl groups having 1 to 15 carbon atoms.
 以下に、(f)成分に属する化合物と、それを得るために好ましく用いられる原料化合物について具体例を挙げるが、これらに限定されるものではない。なお、原料化合物の市販品は東京化成工業(株)、Sigma-Aldrich社から入手可能である。
式(70)中、R81がNであり、かつR82、R83、R84およびR85中、R81と結合した水素原子の合計数が1または2である(f)成分の具体例としては、2-(ドデシルアミノ)エタノールなどに由来する式(72)で表される化合物、ビス(2-エチルヘキシル)アミンなどに由来する式(73)で表される化合物、トリ-n-オクチルアミンなどに由来する式(74)で表される化合物、ステアリルジエタノールアミンなどに由来する式(75)で表される化合物、2-ジエチルアミノエタノールなどに由来する式(76)で表される化合物が挙げられる。
Specific examples of compounds belonging to component (f) and raw material compounds preferably used to obtain them will be given below, but the invention is not limited thereto. Note that commercially available raw material compounds are available from Tokyo Kasei Kogyo Co., Ltd. and Sigma-Aldrich.
In formula (70), R 81 is N + and the total number of hydrogen atoms bonded to R 81 in R 82 , R 83 , R 84 and R 85 is 1 or 2. Examples include the compound represented by formula (72) derived from 2-(dodecylamino)ethanol etc., the compound represented by formula (73) derived from bis(2-ethylhexyl)amine etc., tri-n- A compound represented by formula (74) derived from octylamine etc., a compound represented by formula (75) derived from stearyldiethanolamine etc., a compound represented by formula (76) derived from 2-diethylaminoethanol etc. Can be mentioned.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(70)中、R81がNであり、かつR82、R83、R84およびR85中、R81と結合した水素原子の合計数が0である(f)成分の具体例としては、ベンジルドデシルジメチルアンモニウムクロリドなどに由来する式(77)で表される化合物、テトラエチルアンモニウムブロミドなどに由来する式(78)で表される化合物、トリメチルフェニルアンモニウムブロミドなどに由来する式(79)で表される化合物、テトラブチルアンモニウムブロミドなどに由来する式(80)で表される化合物、トリドデシルメチルアンモニウムクロリドなどに由来する式(81)で表される化合物が挙げられる。 As a specific example of component (f) in formula (70), R 81 is N + and the total number of hydrogen atoms bonded to R 81 in R 82 , R 83 , R 84 and R 85 is 0. is a compound represented by formula (77) derived from benzyldodecyldimethylammonium chloride etc., a compound represented by formula (78) derived from tetraethylammonium bromide etc., a compound represented by formula (79) derived from trimethylphenylammonium bromide etc. Examples include a compound represented by the formula (80) derived from tetrabutylammonium bromide and the like, and a compound represented by the formula (81) derived from tridodecylmethylammonium chloride and the like.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(70)中、R81がPである(f)成分の具体例としては、テトラブチルホスホニウムブロミドなどに由来する式(82)で表される化合物、トリブチルヘキシルホスホニウムブロミドなどに由来する式(83)で表される化合物、テトラキス(ヒドロキシメチル)ホスホニウムスルファートなどに由来する式(84)で表される化合物が挙げられる。 Specific examples of component (f) in which R 81 is P + in formula (70) include compounds represented by formula (82) derived from tetrabutylphosphonium bromide and the like, and formulas derived from tributylhexylphosphonium bromide and the like. Examples include a compound represented by formula (83) and a compound represented by formula (84) derived from tetrakis(hydroxymethyl)phosphonium sulfate.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
これら(f)成分は単独または複数種を混合して含有させてもよい。
(f)成分の含有量はポジ型感光性組成物中、(a)成分が有する-SOHおよび-SO の合計を100mol%としたとき、解像度を向上する上で10mol%以上であることが好ましく、20mol%以上がより好ましい。遮光性の熱安定性を向上する上で100mol%以下が好ましく、80mol%以下がより好ましい。
These (f) components may be contained alone or in combination.
The content of component (f) should be 10 mol% or more in order to improve resolution, when the total of -SO 3 H and -SO 3 - contained in component (a) is 100 mol% in the positive photosensitive composition. It is preferably present, and more preferably 20 mol% or more. In order to improve the thermal stability of light-shielding properties, the content is preferably 100 mol% or less, more preferably 80 mol% or less.
 本発明のポジ型感光性組成物は、(b)樹脂を含有する。ここでいう樹脂とは、繰り返し単位の数が5つ以上の高分子鎖を有し、かつ重量平均分子量(Mw)が1,000以上の化合物を意味する。(b)成分は後述する(c)成分とともに、ポジ型の感光性を与える成分であるとともに、最終的に得られる画素分割層および/または平坦化層中に(a)成分を固定化するためのバインダー成分としての機能を有する。 The positive photosensitive composition of the present invention contains (b) a resin. The resin here means a compound having a polymer chain having 5 or more repeating units and a weight average molecular weight (Mw) of 1,000 or more. Component (b), along with component (c) described below, is a component that provides positive photosensitivity, and also serves to fix component (a) in the finally obtained pixel dividing layer and/or flattening layer. It has a function as a binder component.
 (b)樹脂は特に限定されないが、解像度を向上する上で、(b-1)フェノール性水酸基含有樹脂(以下、(b-1)成分という場合がある。)が好ましい。すなわち、本発明のポジ型感光性組成物は、(b-1)フェノール性水酸基含有樹脂を含有することが好ましい。 (b) Resin is not particularly limited, but (b-1) phenolic hydroxyl group-containing resin (hereinafter sometimes referred to as component (b-1)) is preferred in order to improve resolution. That is, the positive photosensitive composition of the present invention preferably contains (b-1) a phenolic hydroxyl group-containing resin.
 (b-1)成分としては、例えば、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ノボラック樹脂、フェノール性水酸基を有するラジカル重合性単官能モノマー由来の繰り返し単位を有する樹脂およびポリシロキサンが挙げられる。これら樹脂を1種または2種以上含有してもよい。中でも、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体およびそれらの共重合体からなる群より選ばれる少なくとも1種の樹脂を含有することが好ましい。ここでいう共重合体は、ランダム共重合体であってもブロック共重合体であってもよい。ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体およびそれらの共重合体はいずれも熱分解しづらく、かつ膜の体積収縮が小さいため、高温処理後、膜厚1.0μmあたりの遮光性が高いほうに変化することを抑制する効果を有する。したがって、画素分割層および/または平坦化層の遮光性の熱安定性をさらに向上できる。 Component (b-1) includes, for example, polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, novolak resin, resin having a repeating unit derived from a radically polymerizable monofunctional monomer having a phenolic hydroxyl group, and polyamide. Examples include siloxane. One or more types of these resins may be contained. Among these, it is preferable to contain at least one resin selected from the group consisting of polyimide, polyimide precursor, polybenzoxazole precursor, and copolymers thereof. The copolymer referred to herein may be a random copolymer or a block copolymer. Polyimide, polyimide precursors, polybenzoxazole precursors, and their copolymers are all difficult to thermally decompose, and the volumetric shrinkage of the film is small, so after high-temperature treatment, the one with higher light-shielding property per 1.0 μm film thickness It has the effect of suppressing changes in Therefore, the thermal stability of the light-shielding property of the pixel division layer and/or the planarization layer can be further improved.
 すなわち、本発明のポジ型感光性組成物は、(b)樹脂が、(b-1)フェノール性水酸基含有樹脂を含有し、該(b-1)フェノール性水酸基含有樹脂が、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体およびそれらの共重合体からなる群より選ばれる少なくとも1種の樹脂を含有することが好ましい。 That is, in the positive photosensitive composition of the present invention, the (b) resin contains (b-1) a phenolic hydroxyl group-containing resin, and the (b-1) phenolic hydroxyl group-containing resin is a polyimide or a polyimide precursor. It is preferable to contain at least one resin selected from the group consisting of polybenzoxazole precursors, polybenzoxazole precursors, and copolymers thereof.
 (b-1)成分に属する樹脂の重量平均分子量(Mw)は遮光性の熱安定性と解像度を両立する上で、5,000~50,000が好ましい。10,000~30,000がより好ましい。 The weight average molecular weight (Mw) of the resin belonging to component (b-1) is preferably 5,000 to 50,000 in order to achieve both thermal stability of light-shielding property and resolution. More preferably 10,000 to 30,000.
 中でも、解像度を向上する上で、式(17)で表される構造単位および/または式(18)で表される構造単位を有する樹脂がより好ましい。すなわち、本発明のポジ型感光性組成物は、(b)樹脂が、(b-1)フェノール性水酸基含有樹脂を含有し、該(b-1)成分が、式(17)で表される構造単位を有する樹脂および/または式(18)で表される構造単位を有する樹脂を含有することがより好ましい。 Among these, resins having a structural unit represented by formula (17) and/or a structural unit represented by formula (18) are more preferable in terms of improving resolution. That is, in the positive photosensitive composition of the present invention, the (b) resin contains (b-1) a phenolic hydroxyl group-containing resin, and the (b-1) component is represented by formula (17). It is more preferable to contain a resin having a structural unit and/or a resin having a structural unit represented by formula (18).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
式(17)中、R37は、4~10価の有機基を表す。R38は2~8価の有機基を表す。R39およびR40は、それぞれ独立に、フェノール性水酸基またはカルボキシル基を表し、それぞれ単一の基であってもよく、異なる基が混在していてもよい。ただし、R39およびR40のうち、少なくともいずれか一方にフェノール性水酸基が含まれる。pおよびqは整数であり、それぞれ独立に、0~6を表す。ただし、p+q>0を満たす。*は結合部位を表す。 In formula (17), R 37 represents a 4- to 10-valent organic group. R 38 represents a divalent to octavalent organic group. R 39 and R 40 each independently represent a phenolic hydroxyl group or a carboxyl group, and each may be a single group or a mixture of different groups. However, at least one of R 39 and R 40 contains a phenolic hydroxyl group. p and q are integers and each independently represents 0 to 6. However, p+q>0 is satisfied. * represents a binding site.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
式(18)中、R41およびR42は、2~8価の有機基を表す。R43およびR44は、それぞれ独立に、フェノール性水酸基、カルボキシル基または-COOAを表し、それぞれ単一の基であってもよく、異なる基が混在していてもよい。ただし、R43およびR44のうち、少なくともいずれか一方にフェノール性水酸基が含まれる。Aは、炭素数1~10の1価の炭化水素基を表す。rおよびsは整数であり、それぞれ独立に、0~6を表す。ただし、r+s>0を満たす。*は結合部位を表す。 In formula (18), R 41 and R 42 represent a divalent to octavalent organic group. R 43 and R 44 each independently represent a phenolic hydroxyl group, a carboxyl group, or -COOA, and each may be a single group or different groups may be mixed. However, at least one of R 43 and R 44 contains a phenolic hydroxyl group. A represents a monovalent hydrocarbon group having 1 to 10 carbon atoms. r and s are integers and each independently represents 0 to 6. However, r+s>0 is satisfied. * represents a binding site.
 式(18)で表される構造単位を有する樹脂は、解像度を向上する上で-COOAで表される基を有することが好ましく、式(18)中、炭素数1~10の1価の炭化水素基Aとしては、例えば、メチル基、エチル基、プロピル基、フェニル基またはベンジル基が挙げられる。 The resin having a structural unit represented by formula (18) preferably has a group represented by -COOA in order to improve resolution, and in formula (18), a monovalent carbonized group having 1 to 10 carbon atoms Examples of the hydrogen group A include a methyl group, an ethyl group, a propyl group, a phenyl group, and a benzyl group.
 式(17)中、R37-(R39)pは、酸二無水物の残基を表す。R37は、芳香族環または環状脂肪族基を含有する炭素原子数5~40の有機基が好ましい。酸二無水物の残基としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニン)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス{4-(3,4-ジカルボキシフェノキシ) フェニル}フルオレン酸二無水物、式(19)で表される構造の酸二無水物の残基などの芳香族テトラカルボン酸二無水物の残基や、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物の残基などの脂肪族のテトラカルボン酸二無水物の残基などを挙げることができる。 In formula (17), R 37 -(R 39 )p represents a residue of an acid dianhydride. R 37 is preferably an organic group containing an aromatic ring or a cycloaliphatic group and having 5 to 40 carbon atoms. Examples of the acid dianhydride residue include pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, and 2,3,3',4'-biphenyltetracarboxylic dianhydride. Acid dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3' -benzophenonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1,1 -Bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyne)methane dianhydride , bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3 , 6,7-naphthalenetetracarboxylic dianhydride, 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride, 9,9-bis{4-(3,4-dicarboxyphenoxy) phenyl}fluorene dianhydride, aromatic tetracarboxylic dianhydride residues such as residues of acid dianhydride having the structure represented by formula (19), butanetetracarboxylic dianhydride, 1, Examples include residues of aliphatic tetracarboxylic dianhydrides such as residues of 2,3,4-cyclopentanetetracarboxylic dianhydrides.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
式(19)中、R45は単結合、-O-、-C(CF-、-C(CH-または-SO-を表す。R46およびR47は、それぞれ独立に、水素原子または-OHを表す。 In formula (19), R 45 represents a single bond, -O-, -C(CF 3 ) 2 -, -C(CH 3 ) 2 - or -SO 2 -. R 46 and R 47 each independently represent a hydrogen atom or -OH.
 式(18)中、R41-(R43)rは酸の残基を表す。R41は、芳香族環または環状脂肪族基を含有する炭素原子数5~40の有機基が好ましい。 In formula (18), R 41 -(R 43 )r represents an acid residue. R 41 is preferably an organic group containing an aromatic ring or a cycloaliphatic group and having 5 to 40 carbon atoms.
 酸の残基としては、例えば、ジカルボン酸の残基、トリカルボン酸の残基、テトラカルボン酸の残基などが挙げられる。ジカルボン酸としては、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸が挙げられる。トリカルボン酸としては、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸の残基などが挙げられる。テトラカルボン酸の残基としては、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパン、1,1-ビス(3,4-ジカルボキシフェニル) エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)エーテル、1,2,5,6-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,3,5,6-ピリジンテトラカルボン酸、3,4,9,10 -ペリレンテトラカルボン酸の残基などの芳香族テトラカルボン酸の残基や、ブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸などの脂肪族テトラカルボン酸の残基が挙げられる。 Examples of acid residues include dicarboxylic acid residues, tricarboxylic acid residues, and tetracarboxylic acid residues. Examples of dicarboxylic acids include terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, bis(carboxyphenyl)hexafluoropropane, biphenyl dicarboxylic acid, benzophenone dicarboxylic acid, and triphenyl dicarboxylic acid. Examples of tricarboxylic acids include residues of trimellitic acid, trimesic acid, diphenyl ethertricarboxylic acid, and biphenyltricarboxylic acid. Examples of tetracarboxylic acid residues include pyromellitic acid, 3,3',4,4'-biphenyltetracarboxylic acid, 2,3,3',4'-biphenyltetracarboxylic acid, 2,2',3, 3'-biphenyltetracarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, 2,2',3,3'-benzophenonetetracarboxylic acid, 2,2-bis(3,4-dicarboxylic acid) phenyl)hexafluoropropane, 2,2-bis(2,3-dicarboxyphenyl)hexafluoropropane, 1,1-bis(3,4-dicarboxyphenyl)ethane, 1,1-bis(2,3- dicarboxyphenyl)ethane, bis(3,4-dicarboxyphenyl)methane, bis(2,3-dicarboxyphenyl)methane, bis(3,4-dicarboxyphenyl)ether, 1,2,5,6- Aromatic compounds such as residues of naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 2,3,5,6-pyridinetetracarboxylic acid, and 3,4,9,10-perylenetetracarboxylic acid Examples thereof include tetracarboxylic acid residues and aliphatic tetracarboxylic acid residues such as butanetetracarboxylic acid and 1,2,3,4-cyclopentanetetracarboxylic acid.
 式(17)中のR38-(R40)qおよび式(18)中のR42-(R44)sは、ジアミンの残基を表す。R38およびR42は、芳香族環または環状脂肪族基を含有する炭素原子数5~40の有機基が好ましい。 R 38 -(R 40 )q in formula (17) and R 42 -(R 44 )s in formula (18) represent a diamine residue. R 38 and R 42 are preferably organic groups containing an aromatic ring or a cycloaliphatic group and having 5 to 40 carbon atoms.
 ジアミンの残基としては、例えば、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、1,6-ナフタレンジアミン、ビス(4-アミノフェノキシ)ビフェニル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンなどのジアミンの残基、式(20)で表される化合物の残基、式(21)で表される化合物の残基が挙げられる。 Examples of diamine residues include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, and 1,4-bis(4-aminodiphenylmethane). phenoxy)benzene, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 1,6-naphthalenediamine, bis(4-aminophenoxy)biphenyl, 1,4-bis(4-aminophenoxy)benzene, of diamines such as 2-bis(3-amino-4-hydroxyphenyl)propane, 1,3-bis(4-aminophenoxy)benzene, and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane. Examples thereof include a residue, a residue of a compound represented by formula (20), and a residue of a compound represented by formula (21).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
式(20)中、R48は単結合、-O-、-C(CF-、-C(CH-または-SO-を表す。R49およびR50は、それぞれ独立に、水素原子または-OHを表す。 In formula (20), R 48 represents a single bond, -O-, -C(CF 3 ) 2 -, -C(CH 3 ) 2 - or -SO 2 -. R 49 and R 50 each independently represent a hydrogen atom or -OH.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
式(21)中、R51は単結合、-O-、-C(CF-、-C(CH-または-SO-を表す。R52およびR53は、それぞれ独立に、水素原子または-OHを表す。 In formula (21), R 51 represents a single bond, -O-, -C(CF 3 ) 2 -, -C(CH 3 ) 2 - or -SO 2 -. R 52 and R 53 each independently represent a hydrogen atom or -OH.
 また、これら樹脂の末端を、モノアミンにより封止することで重量平均分子量(Mw)を調節しやすくなるとともに、(b)樹脂としての保存安定性を向上することができる。 Furthermore, by capping the ends of these resins with monoamine, it becomes easier to adjust the weight average molecular weight (Mw), and (b) the storage stability as a resin can be improved.
 モノアミンとしては、例えば、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノールが挙げられる。 Examples of monoamines include 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, and 1-carboxy-7-aminonaphthalene. , 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-aminophenol, 3-aminophenol, 4-amino Examples include phenol.
 式(18)中、COOAで表される基は、カルボキシル基をエステル化剤により変換することで得られる。エステル化剤としては、例えば、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタールが挙げられる。 In formula (18), the group represented by COOA can be obtained by converting a carboxyl group with an esterifying agent. Examples of the esterifying agent include N,N-dimethylformamide dimethyl acetal and N,N-dimethylformamide diethyl acetal.
 式(17)で表される構造単位および/または式(18)で表される構造単位を有する樹脂は公知の方法で得ることができ、例えば、日本国特許第4341293号、国際公開第2014/097992号、国際公開第2019/181782号に開示された方法で合成することができる。 A resin having a structural unit represented by formula (17) and/or a structural unit represented by formula (18) can be obtained by a known method, for example, Japanese Patent No. 4341293, International Publication No. 2014/ It can be synthesized by the method disclosed in No. 097992 and International Publication No. 2019/181782.
 ノボラック樹脂は公知の方法で得ることができ、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、キシレゾールなどのフェノール骨格を有する化合物に、ホルムアルデヒド、ベンズアルデヒドなどのアルデヒド化合物を、酸性触媒の共存下で縮合させることにより合成することができる。ノボラック樹脂の市販品としては、例えば、TRR5030G、TRR5010G、TR4020G、TR4080G、TR4000B、TRM30B20G、EP23F10G(以上、いずれも旭有機材(株)製)が挙げられる。 Novolak resin can be obtained by a known method, in which an aldehyde compound such as formaldehyde or benzaldehyde is added to a compound having a phenol skeleton such as phenol, o-cresol, m-cresol, p-cresol, or xyresol in the coexistence of an acidic catalyst. It can be synthesized by condensation with Commercially available novolak resins include, for example, TRR5030G, TRR5010G, TR4020G, TR4080G, TR4000B, TRM30B20G, and EP23F10G (all manufactured by Asahi Yokuzai Co., Ltd.).
 フェノール性水酸基を有するラジカル重合性単官能モノマー由来の繰り返し単位を有する樹脂としては、例えば、ヒドロキシスチレン、ヒドロキシフェニル(メタ)アクリレート、ヒドロキシフェニル(メタ)アクリルアミドなどのフェノール性水酸基を有するラジカル重合性単官能モノマーを1種または2種以上組み合わせて重合して得られる樹脂が挙げられる。さらに、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、アリルグリシジル(メタ)アクリレートなどの熱架橋性基を有するラジカル重合性単官能モノマーを共重合させてもよい。 Examples of resins having repeating units derived from radically polymerizable monofunctional monomers having a phenolic hydroxyl group include radically polymerizable monomers having a phenolic hydroxyl group such as hydroxystyrene, hydroxyphenyl (meth)acrylate, and hydroxyphenyl (meth)acrylamide. Examples include resins obtained by polymerizing one type or a combination of two or more functional monomers. Furthermore, a radically polymerizable monofunctional monomer having a thermally crosslinkable group such as glycidyl (meth)acrylate, 3,4-epoxycyclohexyl (meth)acrylate, or allylglycidyl (meth)acrylate may be copolymerized.
 (b)樹脂の含有量は、解像度を向上する上で、ポジ型感光性組成物の固形分100質量%中、30質量%以上が好ましく、50質量%以上がより好ましい。高い遮光性を得る上で、80質量%以下が好ましく、60質量%以下がより好ましい。 (b) The content of the resin is preferably 30% by mass or more, more preferably 50% by mass or more based on 100% by mass of the solid content of the positive photosensitive composition, in order to improve resolution. In order to obtain high light-shielding properties, the content is preferably 80% by mass or less, more preferably 60% by mass or less.
 本発明のポジ型感光性組成物は、(c)光酸発生剤(以下、(c)成分という場合がある。)を含有する。(c)成分は、少なくとも波長200~450nmの光を含む光の照射により分解し、酸を発生する化合物であれば、特に限定されない。発生する酸としては、カルボン酸および/またはスルホン酸であることが好ましい。 The positive photosensitive composition of the present invention contains (c) a photoacid generator (hereinafter sometimes referred to as component (c)). Component (c) is not particularly limited as long as it is a compound that decomposes and generates acid when irradiated with light containing at least a wavelength of 200 to 450 nm. The generated acid is preferably a carboxylic acid and/or a sulfonic acid.
 (c)成分を含有することで、発生した酸により露光部の膜のアルカリ現像液に対する溶解性を、未露光部の膜のアルカリ現像液に対する溶解性と比べて相対的に高くする効果を奏する。その結果、露光マスクを介してパターン露光された露光部の膜を除去してパターンを形成する、ポジ型のフォトリソグラフィが可能となる。加えて、露光量の調整により膜中の酸発生量を制御することも可能である。透過率が異なる複数種の開口部と光遮蔽部を面内に有する露光マスク、すなわちハーフトーン露光マスクを介して、少ない露光量で露光された露光部の膜のアルカリ現像液に対する溶解性を、多い露光量で露光された露光部の膜のアルカリ現像液に対する溶解性と比べて相対的に低くすることにより、ポジ型のハーフトーン加工により段差を有するパターンの形成を可能とする。 By containing component (c), the generated acid has the effect of making the solubility of the film in the exposed area relatively higher in the alkaline developer compared to the solubility of the film in the unexposed area in the alkaline developer. . As a result, it becomes possible to perform positive photolithography in which a pattern is formed by removing a film in an exposed area that has been pattern-exposed through an exposure mask. In addition, it is also possible to control the amount of acid generated in the film by adjusting the exposure amount. The solubility of the film in the exposed area in an alkaline developer that has been exposed with a small amount of light through an exposure mask that has multiple types of openings and light shielding areas with different transmittances in its plane, that is, a halftone exposure mask, is determined by By making the solubility in an alkaline developer relatively low compared to the solubility of the film in the exposed area exposed to a large amount of light, it is possible to form a pattern with steps through positive halftone processing.
 (c)成分としては、水銀灯におけるi線(波長365nm)、h線(波長405nm)およびg線(波長436nm)の領域に吸収を有し、酸を発生する化合物が好ましく、例えば、キノンジアジド化合物、オキシムスルホネート化合物、ナフタルイミドスルホネート化合物が挙げられる。中でも、未露光部の膜に優れた溶解抑止効果を発現し、露光部と未露光部の溶解速度の差をより大きくすることができ、解像度に優れる点から、キノンジアジド化合物が好ましい。 Component (c) is preferably a compound that has absorption in the i-line (wavelength 365 nm), h-line (wavelength 405 nm) and g-line (wavelength 436 nm) regions of a mercury lamp and generates an acid, such as a quinonediazide compound, Examples include oxime sulfonate compounds and naphthalimide sulfonate compounds. Among these, quinonediazide compounds are preferred because they exhibit an excellent dissolution inhibiting effect on the unexposed area of the film, can increase the difference in dissolution rate between the exposed area and the unexposed area, and have excellent resolution.
 キノンジアジド化合物としては、解像度を向上する上で、(c-1)式(22)で表される基を分子内に2つ以上有し、かつフェノール性水酸基を有する化合物、式(23)で表される基を分子内に2つ以上有し、かつフェノール性水酸基を有する化合物、および式(22)で表される基と式(23)で表される基を有し、かつフェノール性水酸基を有する化合物、からなる群より選ばれる少なくとも1種の化合物(以下、(c-1)成分という場合がある。)を含有することが好ましい。解像度を向上する上で、少なくとも式(22)で表される基を分子内に有し、かつフェノール性水酸基を有する化合物を含有することがより好ましい。 In order to improve resolution, quinonediazide compounds include (c-1) a compound having two or more groups represented by formula (22) in the molecule and a phenolic hydroxyl group, and a compound represented by formula (23). A compound having two or more groups in the molecule and a phenolic hydroxyl group, and a compound having a group represented by formula (22) and a group represented by formula (23) and a phenolic hydroxyl group. It is preferable to contain at least one compound selected from the group consisting of compounds (hereinafter sometimes referred to as component (c-1)). In order to improve the resolution, it is more preferable to contain a compound having at least a group represented by formula (22) in the molecule and a phenolic hydroxyl group.
 すなわち、本発明のポジ型感光性組成物は、(c)光酸発生剤が、(c-1)式(22)で表される基を分子内に2つ以上有し、かつフェノール性水酸基を有する化合物、式(23)で表される基を分子内に2つ以上有し、かつフェノール性水酸基を有する化合物、および式(22)で表される基と式(23)で表される基を有し、かつフェノール性水酸基を有する化合物、からなる群より選ばれる少なくとも1種の化合物を含有することが好ましい。 That is, in the positive photosensitive composition of the present invention, (c) the photoacid generator has two or more groups represented by formula (22) (c-1) in the molecule, and a phenolic hydroxyl group. A compound having two or more groups represented by formula (23) in the molecule and having a phenolic hydroxyl group, and a group represented by formula (22) and a compound represented by formula (23) It is preferable to contain at least one compound selected from the group consisting of a compound having a phenolic hydroxyl group and a phenolic hydroxyl group.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
式(22)中、R54、R55、R56およびR57は、それぞれ独立に、水素原子、炭素数1~5のアルキル基または炭素数1~5のアルコキシ基を表す。*は結合部位を表す。 In formula (22), R 54 , R 55 , R 56 and R 57 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. * represents a binding site.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
式(23)中、R58、R59およびR60は、それぞれ独立に、水素原子、炭素数1~5のアルキル基または炭素数1~5のアルコキシ基を表す。*は結合部位を表す。
式(22)中、R54、R55、R56およびR57は、解像度を向上する上で水素原子であることが好ましい。式(23)中、R58、R59およびR60は、解像度を向上する上で水素原子であることが好ましい。
In formula (23), R 58 , R 59 and R 60 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. * represents a binding site.
In formula (22), R 54 , R 55 , R 56 and R 57 are preferably hydrogen atoms in order to improve resolution. In formula (23), R 58 , R 59 and R 60 are preferably hydrogen atoms in order to improve resolution.
 式(22)で表される基を分子内に2つ以上有し、かつフェノール性水酸基を有する化合物は、例えば、フェノール性水酸基を分子内に3つ以上有する化合物と、1,2-ナフトキノン-2-ジアジド-4-スルホニルクロリドの部分エステル化反応により合成することができる。式(23)で表される基を分子内に2つ以上有し、かつフェノール性水酸基を有する化合物は、例えば、フェノール性水酸基を分子内に3つ以上有する化合物と、1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリドの部分エステル化反応により合成することができる。式(22)で表される基と式(23)で表される基を有し、かつフェノール性水酸基を有する化合物は、例えば、フェノール性水酸基を分子内に3つ以上有する化合物と、1,2-ナフトキノン-2-ジアジド-4-スルホニルクロリドおよび1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリドの部分エステル化反応により合成することができる。 Compounds having two or more groups represented by formula (22) in the molecule and phenolic hydroxyl groups include, for example, compounds having three or more phenolic hydroxyl groups in the molecule, and 1,2-naphthoquinone- It can be synthesized by a partial esterification reaction of 2-diazide-4-sulfonyl chloride. Compounds having two or more groups represented by formula (23) in the molecule and phenolic hydroxyl groups include, for example, compounds having three or more phenolic hydroxyl groups in the molecule, and 1,2-naphthoquinone- It can be synthesized by a partial esterification reaction of 2-diazide-5-sulfonyl chloride. A compound having a group represented by formula (22) and a group represented by formula (23) and having a phenolic hydroxyl group is, for example, a compound having three or more phenolic hydroxyl groups in the molecule, 1, It can be synthesized by a partial esterification reaction of 2-naphthoquinone-2-diazido-4-sulfonyl chloride and 1,2-naphthoquinone-2-diazido-5-sulfonyl chloride.
 フェノール性水酸基を分子内に3つ以上有する化合物としては、例えば、TrisP-HAP、TrisP-PA、TekP-4HBPA、TrisP-SA、TrisOCR-PA、Bis P-AP、Bis P-NO、Bis P-PR、BisP-B、BisP-DE、BisP-DP、Bis P-DP、Bis RS-2P、Bis RS-3P、Bis P-DEK(以上、いずれも本州化学工業(株)製)が挙げられる。 Examples of compounds having three or more phenolic hydroxyl groups in the molecule include TrisP-HAP, TrisP-PA, TekP-4HBPA, TrisP-SA, TrisOCR-PA, Bis P-AP, Bis P-NO, Bis P- Examples include PR, BisP-B, BisP-DE, BisP-DP, Bis P-DP, Bis RS-2P, Bis RS-3P, and Bis P-DEK (all manufactured by Honshu Kagaku Kogyo Co., Ltd.).
 (c-1)成分としては、例えば、式(24)で表される化合物、式(25)で表される化合物、式(27)で表される化合物、式(28)で表される化合物が挙げられる。 As the component (c-1), for example, a compound represented by formula (24), a compound represented by formula (25), a compound represented by formula (27), a compound represented by formula (28) can be mentioned.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
式(24)中、Q、Q、QおよびQは、それぞれ独立に、水素原子または式(26)で表される基を表す。ただし、Q、Q、QおよびQ中、式(26)で表される基の合計数は2または3である。
式(25)中、Q、QおよびQは、それぞれ独立に、水素原子または式(26)で表される基を表す。ただし、Q、QおよびQ中、式(26)で表される基の合計数は2である。
In formula (24), Q 1 , Q 2 , Q 3 and Q 4 each independently represent a hydrogen atom or a group represented by formula (26). However, among Q 1 , Q 2 , Q 3 and Q 4 , the total number of groups represented by formula (26) is 2 or 3.
In formula (25), Q 5 , Q 6 and Q 7 each independently represent a hydrogen atom or a group represented by formula (26). However, the total number of groups represented by formula (26) in Q 5 , Q 6 and Q 7 is 2.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
式(26)中、*は酸素原子との結合部位を表す。 In formula (26), * represents a bonding site with an oxygen atom.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
式(27)中、Q、QおよびQ10は、それぞれ独立に、水素原子または式(29)で表される基を表す。ただし、Q、QおよびQ10中、式(29)で表される基の合計数は2である。
式(28)中、Q11、Q12、Q13およびQ14は、それぞれ独立に、水素原子または式(29)で表される基を表す。ただし、Q11、Q12、Q13およびQ14中、式(29)で表される基の合計数は2または3である。
In formula (27), Q 8 , Q 9 and Q 10 each independently represent a hydrogen atom or a group represented by formula (29). However, among Q 8 , Q 9 and Q 10 , the total number of groups represented by formula (29) is 2.
In formula (28), Q 11 , Q 12 , Q 13 and Q 14 each independently represent a hydrogen atom or a group represented by formula (29). However, among Q 11 , Q 12 , Q 13 and Q 14 , the total number of groups represented by formula (29) is 2 or 3.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
式(29)中、*は酸素原子との結合部位を表す。 In formula (29), * represents a bonding site with an oxygen atom.
 i線に感光して酸を発生する(c)成分の市販品としては、ナフトキノンジアジド化合物であるPA-28(ダイトーケミックス(株)製)、オキシムスルホネート化合物であるPAG103、PAG203(以上、いずれもBASF社製)、ナフタルイミドスルホネート化合物であるNP-TM2、NP-SE10(以上、いずれもサンアプロ株式会社)が挙げられる。以上の(c)成分は1種または2種を混合して用いてもよく、例えば、キノンジアジド化合物に加えて、イミド結合を構成する窒素原子に-O-SO-CF基が結合したナフタルイミドスルホネート化合物を含有させてもよい。 Commercial products of component (c), which generates acid upon exposure to i-rays, include PA-28 (manufactured by Daito Chemix Co., Ltd.), which is a naphthoquinone diazide compound, and PAG103 and PAG203, which are oxime sulfonate compounds (both manufactured by BASF). (manufactured by San-Apro Co., Ltd.), and naphthalimide sulfonate compounds NP-TM2 and NP-SE10 (both manufactured by San-Apro Co., Ltd.). The above component (c) may be used alone or in combination. For example, in addition to a quinone diazide compound, a compound in which -O-SO 2 -CF 3 groups are bonded to the nitrogen atom constituting the imide bond is used. A phthalimide sulfonate compound may also be included.
 (c)成分の含有量は、膜中に必要十分な量の酸を発生させて解像度を向上する上で、ポジ型感光性組成物の固形分100質量%中、3質量%以上が好ましく、5質量%以上がより好ましい。膜表面における露光光の過度な吸収を抑制して解像度を向上する上で、30質量%以下が好ましく、20質量%以下がより好ましい。 The content of component (c) is preferably 3% by mass or more based on 100% by mass of the solid content of the positive photosensitive composition, in order to generate a necessary and sufficient amount of acid in the film and improve resolution. More preferably, the content is 5% by mass or more. In order to suppress excessive absorption of exposure light on the film surface and improve resolution, the content is preferably 30% by mass or less, more preferably 20% by mass or less.
 本発明のポジ型感光性組成物は(d)有機溶剤(以下、(d)成分という場合がある。)を含有する。(d)有機溶剤は、(a)成分の分散媒または溶媒として機能し、ポジ型感光性組成物の保存安定性を向上させるだけでなく、ポジ型感光性組成物の塗布性を向上して後述のプリベーク膜の平滑性を高める効果を奏する。 The positive photosensitive composition of the present invention contains (d) an organic solvent (hereinafter sometimes referred to as component (d)). (d) The organic solvent functions as a dispersion medium or solvent for component (a), and not only improves the storage stability of the positive photosensitive composition but also improves the coating properties of the positive photosensitive composition. This has the effect of increasing the smoothness of the pre-baked film, which will be described later.
 (d)成分としては、(d-1)水酸基を有する有機溶剤(以下、(d-1)成分という場合がある。)が好ましい。
すなわち、本発明のポジ型感光性組成物は(d-1)水酸基を有する有機溶剤を含有することが好ましい。(d-1)成分は、(a)成分との親和性が高く、解像度を向上する効果を奏する。
As component (d), (d-1) an organic solvent having a hydroxyl group (hereinafter sometimes referred to as component (d-1)) is preferred.
That is, the positive photosensitive composition of the present invention preferably contains (d-1) an organic solvent having a hydroxyl group. Component (d-1) has a high affinity with component (a) and has the effect of improving resolution.
 (d-1)成分としては、例えば、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(以下、「PGME」)、プロピレングリコールモノブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、エタノール、イソプロピルアルコール、ブタノールが挙げられる。 Component (d-1) includes, for example, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether (hereinafter referred to as "PGME") ), propylene glycol monobutyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, methyl lactate, ethyl lactate, ethanol, isopropyl alcohol, and butanol.
 本発明のポジ型感光性組成物は(d-2)水酸基を有さない有機溶剤(以下、(d-2)成分という場合がある。)を含有させても構わない。(d-2)成分により、(a)成分以外の成分の溶解性や、ポジ型感光性組成物の粘度を調整してもよい。 The positive photosensitive composition of the present invention may contain (d-2) an organic solvent having no hydroxyl group (hereinafter sometimes referred to as component (d-2)). Component (d-2) may be used to adjust the solubility of components other than component (a) and the viscosity of the positive photosensitive composition.
 (d-2)成分としては、例えば、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」)、3-メトキシブチルアセテート(以下、「MBA」)などのアセテート系溶剤、γ-ブチロラクトン(以下、「GBL」)、γ-バレロラクトンなどのラクトン系溶剤、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン(以下、「NMP」)などのアミド系溶剤が挙げられる。(a)成分を染料として存在させる場合、例えば、ラクトン系溶剤の含有量を(d)成分100質量%中、30質量%以上とすれば高い溶解度が得られる傾向がある。 Component (d-2) includes, for example, acetate solvents such as ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate (hereinafter referred to as "PGMEA"), and 3-methoxybutyl acetate (hereinafter referred to as "MBA"); - Lactone solvents such as butyrolactone (hereinafter referred to as "GBL") and γ-valerolactone, amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone (hereinafter referred to as "NMP") can be mentioned. When component (a) is present as a dye, high solubility tends to be obtained, for example, if the content of the lactone solvent is 30% by mass or more based on 100% by mass of component (d).
 (d)成分の含有量は、保存安定性を向上する上で、ポジ型感光性組成物100質量%中、40質量%以上が好ましく、60質量%以上がより好ましい。プリベーク膜の平滑性を高める上で、99質量%以下が好ましく、95質量%以下がより好ましい。また、(d-1)成分の含有量は、解像度を向上する上で、(d)成分100質量%中、50質量%以上が好ましく、80質量%以上がより好ましい。 In terms of improving storage stability, the content of component (d) is preferably 40% by mass or more, more preferably 60% by mass or more, based on 100% by mass of the positive photosensitive composition. In order to improve the smoothness of the prebaked film, the content is preferably 99% by mass or less, more preferably 95% by mass or less. Further, the content of component (d-1) is preferably 50% by mass or more, more preferably 80% by mass or more, based on 100% by mass of component (d), in order to improve resolution.
 すなわち、本発明のポジ型感光性組成物は、(d)成分が、(d-1)水酸基を有する有機溶剤を含有し、(d-1)成分の含有量が(d)成分100質量%中、50質量%以上であることが好ましい。 That is, in the positive photosensitive composition of the present invention, component (d) contains (d-1) an organic solvent having a hydroxyl group, and the content of component (d-1) is 100% by mass of component (d). Among them, it is preferably 50% by mass or more.
 本発明のポジ型感光性組成物は、遮光性の熱安定性を向上する上で、さらに、(e)式(30)で表される化合物、式(31)で表される化合物およびトリフェンジオキサジン骨格を有する化合物からなる群より選ばれる少なくとも1種の化合物(以下、(e)成分という場合がある。)を含有することが好ましい。ここでいうトリフェンジオキサジン骨格は、トリフェノジオキサジン骨格と同義である。なお、式(30)で表される化合物、および式(31)で表される化合物は、前述のPTCBI骨格を有するが、スルホ基を有さず、(a)成分に属さない化合物である。 The positive photosensitive composition of the present invention improves the thermal stability of light-shielding properties, and further includes (e) a compound represented by the formula (30), a compound represented by the formula (31), and a triphendi It is preferable to contain at least one compound selected from the group consisting of compounds having an oxazine skeleton (hereinafter sometimes referred to as component (e)). The triphendioxazine skeleton herein is synonymous with the triphenodioxazine skeleton. Note that the compound represented by formula (30) and the compound represented by formula (31) have the aforementioned PTCBI skeleton, but do not have a sulfo group and do not belong to component (a).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
式(30)および式(31)中、R61、R62、R63、R64、R65、R66、R67およびR68は、それぞれ独立に、水素原子、-F、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表す。
61、R62、R63、R64、R65、R66、R67およびR68は、遮光性の熱安定性を向上する上で、水素原子であることが好ましい。
In formula (30) and formula (31), R 61 , R 62 , R 63 , R 64 , R 65 , R 66 , R 67 and R 68 are each independently a hydrogen atom, -F, or a carbon number of 1 to 3 alkyl group or an alkoxy group having 1 to 3 carbon atoms.
R 61 , R 62 , R 63 , R 64 , R 65 , R 66 , R 67 and R 68 are preferably hydrogen atoms in order to improve the thermal stability of light-shielding properties.
 トリフェンジオキサジン骨格を有する化合物としては、例えば、式(32)で表される化合物、式(33)で表される化合物、C.I.ピグメントバイオレット23、C.I.ダイレクトバイオレット54、C.I.ダイレクトブルー106、107、108、190が挙げられる。 Examples of the compound having a triphendioxazine skeleton include a compound represented by formula (32), a compound represented by formula (33), a C.I. I. Pigment Violet 23, C. I. Direct Violet 54, C. I. Examples include Direct Blue 106, 107, 108, and 190.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
式(32)中、R69、R70、R71およびR72は、それぞれ独立に、炭素数1~3のアルキル基を表す。R73およびR74は、それぞれ独立に、-NH-または-O-を表す。 In formula (32), R 69 , R 70 , R 71 and R 72 each independently represent an alkyl group having 1 to 3 carbon atoms. R 73 and R 74 each independently represent -NH- or -O-.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
式(33)中、R75およびR76は、それぞれ独立に、水素原子またはハロゲン原子を表す。R77、R78、R79およびR80は、それぞれ独立に、水素原子、フェニル基または炭素数1~5のアルキル基を表す。
中でも、式(30)で表される化合物、式(31)で表される化合物および式(32)で表される化合物が好ましい。
In formula (33), R 75 and R 76 each independently represent a hydrogen atom or a halogen atom. R 77 , R 78 , R 79 and R 80 each independently represent a hydrogen atom, a phenyl group or an alkyl group having 1 to 5 carbon atoms.
Among these, the compound represented by formula (30), the compound represented by formula (31), and the compound represented by formula (32) are preferred.
 (e)成分の含有量は、遮光性の熱安定性を向上する上で、(a)成分と(e)成分の合計100質量%中、10質量%以上が好ましい。解像度を向上する上で、60質量%以下が好ましい。 The content of component (e) is preferably 10% by mass or more based on the total 100% by mass of components (a) and (e) in order to improve the thermal stability of light-shielding properties. In order to improve resolution, it is preferably 60% by mass or less.
 本発明のポジ型感光性組成物は必要に応じて、その他成分として熱架橋剤、レベリング剤、基板表面に対する密着改良剤などを含有させてもよい。 The positive photosensitive composition of the present invention may contain other components such as a thermal crosslinking agent, a leveling agent, and an adhesion improver to the substrate surface, if necessary.
 本発明のポジ型感光性組成物を調製する方法としては、例えば、(a)成分の少なくとも一部を不溶形態の顔料として存在させる場合、湿式メディア分散処理により(a)成分、(b)樹脂および(d)成分、さらに必要に応じて(e)成分を含有する顔料分散液を予め調製し、次いで(c)成分および(d)成分、さらに必要に応じてその他成分を顔料分散液と混合、撹拌して、必要に応じてフィルタ濾過を行う方法が挙げられる。(a)成分が(b)樹脂および(d)成分に対する溶解度の分布を有し、微量の(a)成分の溶け残りが生じうる場合、湿式メディア分散処理により粉砕することで、完全に溶解した染料とすることができる場合がある。一方、(a)成分の全てを溶解形態の染料として存在させる場合、湿式メディア分散処理に替えて(a)成分を40~70℃の加温下で(b)樹脂および(d)成分に溶解させる工程を行えばよい。
(f)成分を含有させる場合、混合するだけで(a)成分と(f)成分との塩の形成が生じるが、塩の形成をより進行させて解像度を向上する上で、前述の(f)成分の源と(a)成分を溶媒存在下で加温することで予め塩を形成させ、さらに精製、乾燥して得られる混合物を粉末化したものを用いてポジ型感光性組成物を調製することが好ましい。
As a method for preparing the positive photosensitive composition of the present invention, for example, when at least a part of the component (a) is present as an insoluble pigment, the component (a) and the resin (b) are treated by wet media dispersion treatment. A pigment dispersion containing component (d) and, if necessary, component (e) is prepared in advance, and then components (c) and (d), and other components as necessary, are mixed with the pigment dispersion. , stirring, and filtering if necessary. If component (a) has a solubility distribution with respect to resin (b) and component (d), and a small amount of component (a) remains undissolved, pulverization using a wet media dispersion process will completely dissolve the component. In some cases, it can be used as a dye. On the other hand, when all of component (a) is present as a dye in dissolved form, instead of wet media dispersion treatment, component (a) is dissolved in component (b) and component (d) under heating at 40 to 70°C. All you have to do is perform the process of
When component (f) is included, a salt is formed between component (a) and component (f) simply by mixing, but in order to promote salt formation and improve resolution, it is necessary to A positive photosensitive composition is prepared using the source of the component (a) and the mixture obtained by forming a salt in advance by heating the component (a) in the presence of a solvent, and further refining and drying the resulting mixture into a powder. It is preferable to do so.
 湿式メディア分散処理を行なうための分散機としてはセラミックビーズが充填されたビーズミルを好ましく利用できる。セラミックビーズとしては、“トレセラム(登録商標)”(東レ(株)製)が挙げられる。 A bead mill filled with ceramic beads can be preferably used as a dispersing machine for performing wet media dispersion treatment. Examples of ceramic beads include "Treceram (registered trademark)" (manufactured by Toray Industries, Inc.).
 本発明の第二の態様である本発明の硬化膜は、本発明のポジ型感光性組成物の硬化物を含有する硬化膜である。ここでいう硬化物とは、ポジ型感光性組成物を大気圧下200℃以上400℃以下の温度で10分間以上加熱する工程を経て得られたものを意味する。本発明の硬化膜は遮光性の熱安定性が高いという優れた技術的効果を奏し、例えば、有機EL表示装置の画素分割層やTFT平坦化層の用途に好ましく用いることができる。 The cured film of the present invention, which is the second aspect of the present invention, is a cured film containing a cured product of the positive photosensitive composition of the present invention. The term "cured product" as used herein means a product obtained through a step of heating a positive photosensitive composition at a temperature of 200° C. to 400° C. for 10 minutes or more under atmospheric pressure. The cured film of the present invention has excellent technical effects such as high light-shielding and thermal stability, and can be preferably used, for example, as a pixel dividing layer or a TFT flattening layer of an organic EL display device.
 本発明の硬化膜を有機EL表示装置の画素分割層や平坦化層として利用する場合の好ましい態様を以下に説明する。 Preferred embodiments of the case where the cured film of the present invention is used as a pixel dividing layer or a flattening layer of an organic EL display device will be described below.
 画素分割層および平坦化層の膜厚1.00μmあたりの光学濃度(Optical Density/μm、以下OD/μmという場合がある。)は、外光反射を抑制して表示装置としての価値を高める上で、0.50以上が好ましく、0.70以上がより好ましい。解像度を向上する上で、1.30以下が好ましく、1.10以下がより好ましい。画素分割層および平坦化層のそれぞれの膜厚は、外光反射を抑制して表示装置としての価値を高める上で、1.00μm以上が好ましい。高い解像度を得る上で、5.00μm以下が好ましい。 The optical density/μm (hereinafter sometimes referred to as OD/μm) per 1.00 μm thickness of the pixel dividing layer and the planarization layer is important for suppressing reflection of external light and increasing the value of the display device. and is preferably 0.50 or more, more preferably 0.70 or more. In order to improve resolution, it is preferably 1.30 or less, more preferably 1.10 or less. The thickness of each of the pixel division layer and the planarization layer is preferably 1.00 μm or more in order to suppress reflection of external light and increase the value of the display device. In order to obtain high resolution, it is preferably 5.00 μm or less.
 OD/μmは、透明基板上に膜厚1.50μmとなるように形成した画素分割層および/または平坦化層を、光学濃度計X-Rite 361T(X-Rite社製)を用いて入射光強度と透過光強度を測定し、以下の式から算出された値を、膜厚の値である1.50で除した値を意味する。OD/μmが高いほど、遮光性が高いことを意味する。透明基材としては、OD/μmが0.00である透明ガラス基板「テンパックス(AGCテクノグラス(株)製)」を好ましく用いることができる。
光学濃度 = log10(I/I)
 上式中、I:入射光強度、I:透過光強度である。
OD/μm is measured using an optical densitometer X-Rite 361T (manufactured by X-Rite) by measuring a pixel dividing layer and/or flattening layer formed to a thickness of 1.50 μm on a transparent substrate with incident light. It means the value obtained by measuring the intensity and transmitted light intensity and dividing the value calculated from the following formula by 1.50, which is the value of the film thickness. The higher the OD/μm, the higher the light shielding property. As the transparent base material, a transparent glass substrate "Tempax (manufactured by AGC Techno Glass Co., Ltd.)" having an OD/μm of 0.00 can be preferably used.
Optical density = log 10 (I 0 /I)
In the above formula, I0 : incident light intensity, I: transmitted light intensity.
 画素分割層の端部に位置する傾斜部における断面テーパー角度は、電極の断線を抑制して非点灯画素の発生を回避する上で50°以下が好ましく、40°以下がより好ましい。端部における遮光性の低下を抑制する上で15°以上が好ましく、20°以上がより好ましい。 The cross-sectional taper angle of the inclined portion located at the end of the pixel dividing layer is preferably 50° or less, more preferably 40° or less, in order to suppress electrode disconnection and avoid the occurrence of non-lighted pixels. The angle is preferably 15° or more, more preferably 20° or more in order to suppress a decrease in light shielding properties at the end portions.
 画素分割層を形成する方法としては、ポジ型感光性組成物を塗布して塗布膜を得る塗布工程と、塗布膜を加熱してプリベーク膜を得るプリベーク工程と、ポジ型露光マスクを介して活性化学線をパターン露光して露光部および未露光部を面内に有する露光膜を得る露光工程と、アルカリ現像液を用いて現像して露光部を除去して現像膜を得る現像工程と、加熱により熱硬化させて画素分割層を得るキュア工程とを順に含む方法が好ましい。一方、平坦化層は、画素分割層を形成する方法と同じ方法で形成することができる。 The methods for forming the pixel division layer include a coating process in which a positive-working photosensitive composition is applied to obtain a coating film, a pre-bake process in which the coating film is heated to obtain a pre-baked film, and an activation process is performed through a positive-working exposure mask. An exposure step to obtain an exposed film having exposed and unexposed regions in the plane by pattern exposure to actinic radiation, a development step to obtain a developed film by developing with an alkaline developer and removing the exposed regions, and heating. A method including, in order, a curing step of thermally curing to obtain a pixel dividing layer is preferred. On the other hand, the planarization layer can be formed by the same method as the pixel division layer.
 塗布工程で用いる塗布装置としては薄膜塗布性に優れる点で、スピンコーターまたはスリットコーターを好ましく用いることができる。
プリベーク工程におけるプリベーク温度は50~150℃が好ましく、プリベーク時間は30秒間~5分間が好ましい。膜厚均一性を高める上で、プリベーク膜の膜厚は3.0~6.0μmが好ましい。
As the coating device used in the coating step, a spin coater or a slit coater can be preferably used since they have excellent thin film coating properties.
The prebake temperature in the prebake step is preferably 50 to 150°C, and the prebake time is preferably 30 seconds to 5 minutes. In order to improve film thickness uniformity, the thickness of the prebaked film is preferably 3.0 to 6.0 μm.
 露光工程で用いる露光装置としては、例えば、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)が挙げられる。露光時に照射する活性化学線としては、超高圧水銀灯のj線(波長313nm)、i線(波長365nm)、h線(波長405nm)またはg線(波長436nm)が挙げられる。露光膜における露光部とは露光マスクの透過部を介してパターン露光された部位を意味し、未露光部とは露光マスクの遮蔽部により露光されない部位を意味する。露光マスクの開口幅の設計寸法の再現性が高い画素分割層および/または平坦化層を得る上で、露光マスクの開口幅から、パターン形成された開口部の開口幅を差し引いた値、すなわち露光マスクバイアスが±0.2μmの範囲内となるように露光量を調整して露光を行うことが好ましい。 Examples of the exposure apparatus used in the exposure process include a stepper, a mirror projection mask aligner (MPA), and a parallel light mask aligner (PLA). The actinic rays irradiated during exposure include J-line (wavelength 313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) from an ultra-high pressure mercury lamp. The exposed portion of the exposure film refers to a portion that is pattern-exposed through the transparent portion of the exposure mask, and the unexposed portion refers to a portion that is not exposed to light due to the shielding portion of the exposure mask. In order to obtain a pixel dividing layer and/or a flattening layer with high reproducibility of the design dimension of the opening width of the exposure mask, the value obtained by subtracting the opening width of the patterned opening from the opening width of the exposure mask, that is, the exposure It is preferable to perform exposure by adjusting the exposure amount so that the mask bias is within the range of ±0.2 μm.
 現像工程における現像方式としては、例えば、シャワー、ディッピング、パドルなどの方式が挙げられ、露光膜を10秒~3分間浸漬する方法が挙げられる。解像度の面内均一性を向上する上でパドル方式が好ましい。アルカリ現像液としては、0.4~2.5質量%水酸化テトラメチルアンモニウム水溶液(以下、「TMAH」)が好ましく、市販品としては、例えば、2.38質量%TMAH(多摩化学工業(株)製)が挙げられる。現像工程後は脱イオン水による水洗、すなわちリンス工程を加えた後に乾燥させ、現像膜を得ることが好ましい。現像時間は、現像膜の膜厚の面内均一性を高める上で、プリベーク膜の膜厚から現像膜(未露光部)の膜厚を差し引いた値、すなわち現像工程における膜減り(μm)が、1.00μm以下となるように設定することが好ましい。解像度を向上する上で、0.50μm以上となるように設定することが好ましい。また、得られた現像膜に対して、第二の露光工程として露光光を再度照射してキュア工程での膜の流動性を制御してもよい。 Examples of the development method in the development step include shower, dipping, and paddle methods, including a method in which the exposed film is immersed for 10 seconds to 3 minutes. The paddle method is preferable in terms of improving in-plane uniformity of resolution. As the alkaline developer, a 0.4 to 2.5 mass % tetramethylammonium hydroxide aqueous solution (hereinafter referred to as "TMAH") is preferable, and as a commercial product, for example, 2.38 mass % TMAH (Tama Chemical Industry Co., Ltd. ) manufactured by ). After the development step, it is preferable to wash with deionized water, that is, add a rinsing step, and then dry the film to obtain a developed film. The development time is determined by subtracting the thickness of the developed film (unexposed area) from the thickness of the pre-baked film, that is, the film reduction (μm) during the development process, in order to improve the in-plane uniformity of the thickness of the developed film. , is preferably set to 1.00 μm or less. In order to improve resolution, it is preferable to set the thickness to 0.50 μm or more. Furthermore, the obtained developed film may be irradiated with exposure light again in a second exposure step to control the fluidity of the film in the curing step.
 キュア工程に用いる加熱装置としては、例えば、熱風オーブン、IRオーブンなどが挙げられ、加熱雰囲気は窒素または空気下が挙げられる。加熱温度は大気圧下250~270℃が好ましく、加熱時間は1~3時間であってよい。キュア工程の条件は画素分割層中または平坦化層中から(f)成分の少なくとも一部が消失するように設定しても構わない。 Examples of the heating device used in the curing step include a hot air oven and an IR oven, and the heating atmosphere includes nitrogen or air. The heating temperature is preferably 250 to 270° C. under atmospheric pressure, and the heating time may be 1 to 3 hours. The conditions of the curing step may be set so that at least a part of the (f) component disappears from the pixel division layer or the planarization layer.
 本発明の第三の態様である本発明の有機EL表示装置は、画素分割層および平坦化層を具備する有機EL表示装置であって、画素分割層および/または平坦化層が本発明の硬化膜を含有する、有機EL表示装置である。遮光性およびその面内の均一性が高く、かつ解像度に優れた本発明の硬化膜を画素分割層および/または平坦化層が含有することにより、本発明の有機EL表示装置は望ましく高い視認性という技術的効果を奏する。 The organic EL display device of the present invention, which is a third aspect of the present invention, is an organic EL display device comprising a pixel dividing layer and a flattening layer, wherein the pixel dividing layer and/or the flattening layer are cured according to the present invention. It is an organic EL display device containing a film. Since the pixel dividing layer and/or the flattening layer contain the cured film of the present invention which has high light-shielding properties, high in-plane uniformity, and excellent resolution, the organic EL display device of the present invention has a desirable high visibility. This has the technical effect of
 図1に、本発明の実施形態の具体例として挙げられる画素分割層および平坦化層を具備する、有機EL表示装置におけるTFT基板の断面図を示す。 FIG. 1 shows a cross-sectional view of a TFT substrate in an organic EL display device including a pixel dividing layer and a planarization layer as a specific example of an embodiment of the present invention.
 基板6の表面に、ボトムゲート型またはトップゲート型の薄膜トランジスタ1(以降、TFT1と略記する。)が行列状に設けられており、TFT1と、TFT1に接続された配線2とを覆う状態でTFT絶縁層3が配置されている。さらに、TFT絶縁層3の表面には、平坦化層4がパターン形成されており、平坦化層4は、配線2と第一電極5を接続するための開口部であるコンタクトホール7を有する。平坦化層4の表面には、第一電極5がパターン形成されており、配線2に接続されている。第一電極5のパターン周縁を囲むようにして、段差を有し、スペーサー機能を有していてもよい画素分割層8が形成されている。画素分割層8は開口部を有し、開口部には有機EL発光材料を含む、発光画素9が形成されており、第二電極10が、画素分割層8と発光画素9とを覆う状態で成膜されている。以上の積層構成からなるTFT基板を真空下で封止した後に発光画素部に電圧を印加すれば、有機EL表示装置として発光させることできる。 Bottom-gate or top-gate thin film transistors 1 (hereinafter abbreviated as TFT1) are provided in a matrix on the surface of the substrate 6, and the TFTs cover the TFT1 and the wiring 2 connected to the TFT1. An insulating layer 3 is arranged. Further, a planarization layer 4 is patterned on the surface of the TFT insulating layer 3, and the planarization layer 4 has a contact hole 7, which is an opening for connecting the wiring 2 and the first electrode 5. A first electrode 5 is patterned on the surface of the planarization layer 4 and connected to the wiring 2 . A pixel dividing layer 8 having a step and may have a spacer function is formed so as to surround the pattern periphery of the first electrode 5. The pixel dividing layer 8 has an opening, and a light emitting pixel 9 containing an organic EL light emitting material is formed in the opening, and the second electrode 10 covers the pixel dividing layer 8 and the light emitting pixel 9. A film has been formed. If a voltage is applied to the light emitting pixel portion after the TFT substrate having the above laminated structure is sealed under vacuum, it can be made to emit light as an organic EL display device.
 本発明の画素分割層および平坦化層を具備する有機EL表示装置は、発光画素9から放たれる発光光を、基板6を介して基板側へ取り出す、ボトムエミッション型有機EL表示装置であってもよく、第二電極10を介して発光光を基板6の反対側へ取り出す、トップエミッション型有機EL表示装置であってもよい。遮光性を有する平坦化層4は、TFT1を保護するための光遮断層として機能させてもよい。TFT1としては、例えば、In-Ga-Zn-O(IGZO)、Ga-Zn-Snなどの酸化物半導体や、低温ポリシリコン(LTPS)からなるTFTが挙げられる。 The organic EL display device including the pixel dividing layer and the planarization layer of the present invention is a bottom emission type organic EL display device that extracts light emitted from the light emitting pixels 9 to the substrate side via the substrate 6. Alternatively, it may be a top emission type organic EL display device in which emitted light is extracted to the opposite side of the substrate 6 via the second electrode 10. The planarization layer 4 having a light blocking property may function as a light blocking layer for protecting the TFT 1. Examples of the TFT 1 include TFTs made of oxide semiconductors such as In-Ga-Zn-O (IGZO) and Ga-Zn-Sn, and low-temperature polysilicon (LTPS).
 画素分割層8および平坦化層4が有する開口部の形状は特に限定されず、正方形、長方形、円形または楕円であってよい。発光画素9のサイズおよび形状は、画素分割層8の開口部の開口幅および形状により決定され、例えば、直径が3~30μmの円形であってよい。平坦化層4が有する開口部であるコンタクトホール7は、例えば、直径が3~7μmの円形であってよい。画素分割層8および平坦化層4の解像度が高いほど、遮光性の熱安定性が高いという本発明の効果は、より有用なものとなる。 The shapes of the openings in the pixel dividing layer 8 and the flattening layer 4 are not particularly limited, and may be square, rectangular, circular, or elliptical. The size and shape of the light emitting pixel 9 are determined by the width and shape of the opening in the pixel dividing layer 8, and may be circular with a diameter of 3 to 30 μm, for example. The contact hole 7, which is an opening in the planarization layer 4, may have a circular shape with a diameter of 3 to 7 μm, for example. The higher the resolution of the pixel dividing layer 8 and the flattening layer 4, the more useful the effect of the present invention is that the thermal stability of the light shielding property is higher.
 発光画素9の発光ピーク波長は特に制限されないが、例えば、光の3原色であるブルー、レッド、グリーンの領域それぞれの発光ピーク波長を有する異なる種類の画素が配列したものを全面に成膜する構成が挙げられる。レッド領域のピーク波長は、560~700nm、ブルー領域のピーク波長は420~480nm、グリーン領域のピーク波長は、500~550nmであってもよい。さらに、別途の積層部材としてブルー、レッド、グリーンのカラーフィルタと、それらを隔てるブラックマトリクスが形成されたカラーフィルタ基板が表示部前面に配置されていてもよい。発光画素9を構成する有機EL発光材料としては、発光層に加え、さらに正孔輸送層および/または電子輸送層を組み合わせた材料を好適に用いることができる。発光画素9は、例えば、特開2019-163543号公報で開示されたマスク蒸着法により形成される。 Although the light emission peak wavelength of the light emitting pixel 9 is not particularly limited, for example, a structure in which different types of pixels having emission peak wavelengths for each of the three primary colors of light, blue, red, and green, are arranged is formed on the entire surface. can be mentioned. The peak wavelength of the red region may be 560 to 700 nm, the peak wavelength of the blue region may be 420 to 480 nm, and the peak wavelength of the green region may be 500 to 550 nm. Furthermore, a color filter substrate on which blue, red, and green color filters and a black matrix separating them may be arranged as a separate laminated member in front of the display section. As the organic EL light-emitting material constituting the light-emitting pixel 9, a material in which a hole transport layer and/or an electron transport layer are further combined in addition to a light emitting layer can be suitably used. The light-emitting pixel 9 is formed, for example, by a mask vapor deposition method disclosed in Japanese Patent Application Publication No. 2019-163543.
 第一電極5としては、例えば、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの透明導電性金属酸化物を用いることができる。ITOをパターン形成する方法としては、スパッタ法でITOを全面成膜したのちに、エッチング用ポジ型レジスト材料をフォトリソグラフィ法によりパターン形成してITO膜上にレジストパターンを得て、該レジストパターン非形成部のITO膜のみを酸性エッチング液により除去する。次いで、レジストパターンをレジスト剥離液により除去する方法が挙げられる。エッチング用ポジ型レジスト材料としてはアルカリ可溶性ノボラック系樹脂を含有するポジ型感光性組成物を用いることができる。トップエミッション型有機EL表示装置である場合、光取り出し効率を高めるため、第一電極5はITO/銀合金/ITOの積層体であってもよい。 As the first electrode 5, for example, a transparent conductive metal oxide such as indium tin oxide (ITO) or indium zinc oxide (IZO) can be used. The method for patterning ITO is to form a film of ITO on the entire surface by sputtering, then pattern a positive resist material for etching by photolithography to obtain a resist pattern on the ITO film, and then remove the resist pattern. Only the ITO film in the formed portion is removed using an acidic etching solution. Next, there is a method of removing the resist pattern using a resist stripping solution. As a positive resist material for etching, a positive photosensitive composition containing an alkali-soluble novolak resin can be used. In the case of a top emission type organic EL display device, the first electrode 5 may be a laminate of ITO/silver alloy/ITO in order to improve light extraction efficiency.
 第二電極10は電極として機能する層であれば、いかなる物質からなっていても構わない。ボトムエミッション型有機EL表示装置である場合、光反射性に優れる点で、アルミニウムからなる層を好ましく用いることができる。トップエミッション型有機EL表示装置である場合、光透過性に優れる点で、銀とマグネシウムからなる銀合金を好ましく用いることができる。第二電極10は、スパッタ法により全面に成膜できる。 The second electrode 10 may be made of any material as long as it is a layer that functions as an electrode. In the case of a bottom emission type organic EL display device, a layer made of aluminum can be preferably used because it has excellent light reflectivity. In the case of a top emission type organic EL display device, a silver alloy consisting of silver and magnesium can be preferably used because it has excellent light transmittance. The second electrode 10 can be formed over the entire surface by sputtering.
 基板8は、ガラス基板の他、ポリアミド酸溶液を仮支持体の表面に塗布し、次いで250~400℃で加熱処理後に生成したポリイミド形成基板から仮支持体をレーザー剥離して得られるフレキシブル基板を用いることができる。 In addition to the glass substrate, the substrate 8 is a flexible substrate obtained by coating the surface of a temporary support with a polyamic acid solution and then laser-peeling the temporary support from a polyimide-formed substrate produced after heat treatment at 250 to 400°C. Can be used.
 本発明の第四の態様である本発明の色素は、(f)式(70)で表される化合物に加えて、(a)式(85)で表される化合物および/または式(86)で表される化合物を含む色素(以下、本発明の色素という場合がある。)である。 The dye of the present invention, which is the fourth aspect of the present invention, includes (a) a compound represented by formula (85) and/or a compound represented by formula (86) in addition to (f) a compound represented by formula (70). A dye containing a compound represented by (hereinafter sometimes referred to as the dye of the present invention).
 本発明の色素は、有機EL表示装置が具備する画素分割層および/または平坦化層に遮光性を付与するための着色材として好ましく用いることができ、特にポジ型感光性組成物に含有させることで、遮光性の熱安定性に優れるだけでなく、高い遮光性を得ていながら高い解像度の硬化膜が得られるという格別顕著な技術的効果を奏する。 The dye of the present invention can be preferably used as a coloring material for imparting light-shielding properties to a pixel dividing layer and/or a flattening layer included in an organic EL display device, and can particularly be incorporated into a positive photosensitive composition. Not only does it have excellent light-shielding properties and thermal stability, but it also has a particularly remarkable technical effect in that a cured film with high resolution can be obtained while having high light-shielding properties.
 本発明の色素に含有する(f)式(70)で表される化合物と、(a)式(85)で表される化合物および/または式(86)で表される化合物は塩を形成していることが好ましく、(f)成分の含有量に加えて、NまたはPに結合した有機基の種類により極性を変化させ、樹脂との相溶性や有機溶剤に対する溶解性を制御することができる。 (f) The compound represented by formula (70) contained in the dye of the present invention and (a) the compound represented by formula (85) and/or the compound represented by formula (86) do not form a salt. In addition to the content of component (f), the polarity can be changed depending on the type of organic group bonded to N + or P + to control compatibility with the resin and solubility in organic solvents. Can be done.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
式(70)中、R81はNまたはPを表す。R82、R83、R84およびR85は、それぞれ独立に、-OHまたはフェニル基が置換していてもよい炭素数1~20のアルキル基、フェニル基または水素原子を表す。ただし、R81がNである場合、R82、R83、R84およびR85中、水素原子の合計数は0~2であり、R81がPである場合、R82、R83、R84およびR85中、水素原子の合計数は0である。
式(85)中、R91、R92、R93、R94、R95、R96、R97およびR98は、それぞれ独立に、水素原子、-SOH、-SO 、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、-CF、-F、-Brまたは-CNを表す。ただし、R91、R92、R93、R94、R95、R96、R97およびR98中、-SOHおよび-SO の合計数は1~4であり、少なくとも1つは-SO である。
99、R100、R101およびR102は、それぞれ独立に、水素原子、-OH、-F、-Br、-CNまたは炭素数1~5のアルコキシ基を表す。ただし、R99とR100、R101とR102は、それぞれ独立に、互いに結合して連結基-X-であってもよい。-X-は、-O-または-SO-を表す。
式(86)中、R103、R104、R105、R106、R107、R108、R109およびR110は、それぞれ独立に、水素原子、-SOH、-SO 、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、-CF、-F、-Brまたは-CNを表す。ただし、R103、R104、R105、R106、R107、R108、R109およびR110中、-SOHおよび-SO の合計数は1~4であり、少なくとも1つは-SO である。
111、R112、R113およびR114は、それぞれ独立に、水素原子、-OH、-F、-Br、-CNまたは炭素数1~5のアルコキシ基を表す。ただし、R111とR112、R113とR114は、それぞれ独立に、互いに結合して連結基-X-であってもよい。-X-は、-O-または-SO-を表す。
In formula (70), R 81 represents N + or P + . R 82 , R 83 , R 84 and R 85 each independently represent an alkyl group having 1 to 20 carbon atoms, a phenyl group, or a hydrogen atom which may be substituted with -OH or a phenyl group. However, when R 81 is N + , the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 to 2, and when R 81 is P + , R 82 , R 83 , R 84 and R 85 , the total number of hydrogen atoms is 0.
In formula (85), R 91 , R 92 , R 93 , R 94 , R 95 , R 96 , R 97 and R 98 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, in R 91 , R 92 , R 93 , R 94 , R 95 , R 96 , R 97 and R 98 , the total number of -SO 3 H and -SO 3 - is 1 to 4, and at least one -SO 3 - .
R 99 , R 100 , R 101 and R 102 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 99 and R 100 and R 101 and R 102 may each independently be bonded to each other to form a linking group -X 3 -. -X 3 - represents -O- or -SO 2 -.
In formula (86), R 103 , R 104 , R 105 , R 106 , R 107 , R 108 , R 109 and R 110 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, in R 103 , R 104 , R 105 , R 106 , R 107 , R 108 , R 109 and R 110 , the total number of -SO 3 H and -SO 3 - is 1 to 4, and at least one -SO 3 - .
R 111 , R 112 , R 113 and R 114 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 111 and R 112 and R 113 and R 114 may each independently be bonded to each other to form a linking group -X 4 -. -X 4 - represents -O- or -SO 2 -.
 なお、式(70)において、R81がNである場合、R82、R83、R84およびR85中、水素原子の合計数は0~2であるとは、R82、R83、R84およびR85のうち1つまたは2つが、R81と結合した水素原子であるか、または、いずれもR81と結合した水素原子ではないことを意味する。ここでいう水素原子とは、-OHまたはフェニル基が置換していてもよい炭素数1~20のアルキル基、およびフェニル基に含まれる水素原子のことを意味するものではない。R81がPである場合、R82、R83、R84およびR85中、水素原子の合計数は0である、との表記もまた同様に、R82、R83、R84およびR85が、いずれもR81と結合した水素原子ではないことを意味する。 In addition, in formula (70), when R 81 is N + , the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 to 2 means that R 82 , R 83 , This means that one or two of R 84 and R 85 are hydrogen atoms bonded to R 81 or none of them are hydrogen atoms bonded to R 81 . The hydrogen atom here does not mean an alkyl group having 1 to 20 carbon atoms which may be substituted with -OH or a phenyl group, or a hydrogen atom contained in a phenyl group. When R 81 is P + , the expression that the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 also applies to R 82 , R 83 , R 84 and R This means that none of 85 is a hydrogen atom bonded to R 81 .
 本発明の色素は、解像度を向上する上で、(f)式(71)で表される化合物を含有することがより好ましい。 The dye of the present invention more preferably contains (f) a compound represented by formula (71) in order to improve resolution.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
式(71)中、R86はNまたはPを表す。R87、R88、R89およびR90は、それぞれ独立に、-OHまたはフェニル基が置換していてもよい炭素数1~15のアルキル基を表す。ただし、R87、R88、R89およびR90のうち、少なくとも1つが無置換の炭素数1~15のアルキル基である。R86がNである場合、(f)成分がアンモニウムカチオンを有することを意味し、Pである場合、(f)成分がホスホニウムカチオンを有することを意味する。 In formula (71), R 86 represents N + or P + . R 87 , R 88 , R 89 and R 90 each independently represent an alkyl group having 1 to 15 carbon atoms which may be substituted with -OH or a phenyl group. However, at least one of R 87 , R 88 , R 89 and R 90 is an unsubstituted alkyl group having 1 to 15 carbon atoms. When R 86 is N + , it means that the (f) component has an ammonium cation, and when it is P + , it means that the (f) component has a phosphonium cation.
 解像度を向上する上で、R86がNであり、R87、R88、R89およびR90が、無置換の炭素数1~15のアルキル基であることがさらに好ましい。 In order to improve resolution, it is more preferable that R 86 is N + and R 87 , R 88 , R 89 and R 90 are unsubstituted alkyl groups having 1 to 15 carbon atoms.
 また、本発明の色素は遮光性の熱安定性および解像度を向上する上で、(a)式(87)で表される化合物および/または式(88)で表される化合物を含有することがより好ましい。 Further, the dye of the present invention may contain (a) a compound represented by formula (87) and/or a compound represented by formula (88) in order to improve the thermal stability of light-shielding property and resolution. More preferred.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
式(87)中、R115およびR116は、それぞれ独立に、-SOHまたは-SO を表す。nおよびnは整数であり、それぞれ独立に、0~2を表す。ただし、nおよびnの合計数は1~4であり、(R115)nおよび(R116)n中、少なくとも1つは-SO である。
式(88)中、R117およびR118は、それぞれ独立に、-SOHまたは-SO を表す。nおよびnは整数であり、それぞれ独立に、0~2を表す。ただし、nおよびnの合計数は1~4であり、(R117)nおよび(R118)n中、少なくとも1つは-SO である。
In formula (87), R 115 and R 116 each independently represent -SO 3 H or -SO 3 - . n 5 and n 6 are integers and each independently represents 0 to 2. However, the total number of n 5 and n 6 is 1 to 4, and at least one of (R 115 ) n 5 and (R 116 ) n 6 is -SO 3 - .
In formula (88), R 117 and R 118 each independently represent -SO 3 H or -SO 3 - . n 7 and n 8 are integers and each independently represents 0 to 2. However, the total number of n 7 and n 8 is 1 to 4, and at least one of (R 117 ) n 7 and (R 118 ) n 8 is -SO 3 - .
 本発明の色素としては、例えば、式(89)で表される化合物、式(90)で表される化合物、式(91)で表される化合物が挙げられるが、これらにのみ限定されるものではない。
式(89)で表される化合物は、(f)成分として、式(70)において、R81がNであり、R82、R83、R84およびR85中、水素原子の合計数が2である化合物を含有する。
式(90)で表される化合物は、(f)成分として、式(70)において、R81がNであり、R82、R83、R84およびR85中、水素原子の合計数が0である化合物を含有する。
式(91)で表される化合物は、(f)成分として、式(70)において、R81がPであり、R82、R83、R84およびR85中、水素原子の合計数が0である化合物を含有する。
Examples of the dye of the present invention include, but are not limited to, the compound represented by formula (89), the compound represented by formula (90), and the compound represented by formula (91). isn't it.
In the compound represented by formula (89), in formula (70), R 81 is N + and the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is Contains a compound that is 2.
In the compound represented by formula (90), R 81 is N + in formula (70) as the component (f), and the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is Contains compounds that are 0.
In the compound represented by formula (91), R 81 is P + in formula (70) as the component (f), and the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is Contains compounds that are 0.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 (f)成分の含有量は、本発明の色素中に含有する(a)成分が有する-SOHおよび-SO の合計を100mol%としたとき、解像度を向上する上で10mol%以上が好ましく、20mol%以上がより好ましい。遮光性の熱安定性を向上する上で100mol%以下が好ましく、80mol%がより好ましい。 The content of component (f) should be 10 mol% or more in order to improve resolution, when the sum of -SO 3 H and -SO 3 - contained in component (a) contained in the dye of the present invention is 100 mol%. is preferable, and 20 mol% or more is more preferable. In order to improve the thermal stability of light-shielding properties, the content is preferably 100 mol% or less, and more preferably 80 mol%.
 本発明の色素を得る方法としては、前述の(a)成分を得る方法に加えて、前述の(a)成分と(f)成分の塩を得る方法が好ましく適用される。 As a method for obtaining the dye of the present invention, in addition to the method for obtaining the above-mentioned component (a), the method for obtaining the salts of the above-mentioned components (a) and (f) is preferably applied.
 以下に本発明を、その実施例および比較例を挙げて詳細に説明するが、本発明の態様はこれらにのみ限定されるものではない。まず、各実施例および比較例における評価方法について説明する。 The present invention will be described in detail below with reference to Examples and Comparative Examples, but the embodiments of the present invention are not limited thereto. First, evaluation methods in each example and comparative example will be explained.
 <最適露光量の測定>
 縦150mm/横150mmの無アルカリガラス基板の表面に、スパッタ法により銀合金(99質量%の銀と1質量%の銅からなる合金)を全面成膜した。さらに、スパッタ法によりITO膜を全面成膜し、無アルカリガラス基板の表面の全面に銀合金膜/ITO膜を具備するガラス基板を得た。
<Measurement of optimal exposure amount>
A silver alloy (an alloy consisting of 99% by mass of silver and 1% by mass of copper) was deposited on the entire surface of an alkali-free glass substrate measuring 150 mm in length and 150 mm in width by sputtering. Furthermore, an ITO film was deposited on the entire surface by sputtering to obtain a glass substrate having a silver alloy film/ITO film on the entire surface of the alkali-free glass substrate.
 実施例1~13、比較例1~2で得られたポジ型感光性組成物1~15を、スピンコーターを用いて後述の窒素雰囲気下250℃で1時間加熱した後の硬化膜の膜厚が1.50μmとなるように回転数を調節して、銀合金膜/ITO膜を具備するガラス基板のITO表面にそれぞれ塗布し、塗布膜を得た。さらに、ホットプレートを用いて、塗布膜を大気圧下110℃で120秒間プリベークして、プリベーク膜を得て、ポジ型露光マスク(直径10.0μmの真円状の透過部が200個配列したホールパターンマスク)を介して、両面アライメント片面露光装置を用いて、50~200(mJ/cm:i線換算値)の範囲内で10mJごとに段階的に露光量を変えて、超高圧水銀灯のg、h、i混合線をプリベーク膜にパターン露光し、露光部および未露光部を面内に有する露光膜を得た。なお、パターン露光はポジ型露光マスクをプリベーク膜の表面に接触させて行った。 Film thickness of cured film after heating positive photosensitive compositions 1 to 15 obtained in Examples 1 to 13 and Comparative Examples 1 to 2 at 250 ° C. for 1 hour in a nitrogen atmosphere described below using a spin coater The rotational speed was adjusted so that the distance was 1.50 μm, and the ITO surfaces of the glass substrates each having a silver alloy film/ITO film were coated to obtain coated films. Furthermore, the coated film was prebaked for 120 seconds at 110°C under atmospheric pressure using a hot plate to obtain a prebaked film, and a positive exposure mask (200 perfectly circular transparent parts with a diameter of 10.0 μm was arranged) Using a double-sided alignment single-sided exposure device, the exposure amount was changed stepwise in steps of 10 mJ within the range of 50 to 200 (mJ/cm 2 : i-line equivalent value) using an ultra-high pressure mercury lamp. The prebaked film was pattern-exposed to the mixed lines g, h, and i of , to obtain an exposed film having an exposed portion and an unexposed portion within the plane. Note that pattern exposure was performed by bringing a positive exposure mask into contact with the surface of the prebaked film.
 次いで、現像工程として、フォトリソグラフィ用小型現像装置(AD-1200;滝沢産業(株)製)と、アルカリ現像液である2.38質量%水酸化テトラメチルアンモニウム水溶液とを用いてパドル方式で現像した。ここでいうパドル方式とは、露光膜の表面にアルカリ現像液を10秒間シャワー塗布した後、所定の現像時間に達するまで静置させて現像する方式のことをいう。さらに、脱イオン水を用いて30秒間シャワー方式でリンスした後に200rpmで30秒間の条件で基板を空回しして乾燥させ、現像膜を具備する現像膜形成基板を得た。なお、現像時間の設定は40~90秒の範囲内で、プリベーク膜の膜厚から現像膜(未露光部)の膜厚を差し引いた値、すなわち現像工程における膜減り(μm)が0.80μmとなる時間とした。 Next, as a development step, development was carried out using a paddle method using a small-sized developing device for photolithography (AD-1200; manufactured by Takizawa Sangyo Co., Ltd.) and a 2.38 mass % tetramethylammonium hydroxide aqueous solution, which is an alkaline developer. did. The paddle method here refers to a method in which an alkaline developer is shower coated on the surface of the exposed film for 10 seconds and then left to stand until a predetermined development time is reached for development. Furthermore, after rinsing with deionized water in a shower for 30 seconds, the substrate was dried by drying at 200 rpm for 30 seconds to obtain a developed film-forming substrate having a developed film. The development time is set within the range of 40 to 90 seconds, and the value obtained by subtracting the film thickness of the developed film (unexposed area) from the film thickness of the pre-baked film, that is, the film reduction (μm) in the development process is 0.80 μm. It was set as the time.
 次いで、キュア工程として、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム(株)製)を用いて現像膜を窒素雰囲気下250℃で1時間加熱して、ホール状の開口部を有する硬化膜を具備する最適露光量評価用基板を得た。 Next, as a curing process, the developed film is heated at 250°C for 1 hour in a nitrogen atmosphere using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.) to form a cured film with hole-shaped openings. A substrate for evaluating the optimum exposure amount provided with a film was obtained.
 FPD検査顕微鏡(MX-61L;オリンパス(株)製)を用いて硬化膜の中央部を観察し、各露光量の領域における硬化膜の開口部10箇所の開口幅の平均値が10.0μmとなるように開口したときの最小の露光量(mJ/cm:i線換算値)を最適露光量とした。開口部の形状が真円である場合はその直径を開口幅とし、楕円である場合はその短軸を開口幅とした。なお、各工程における膜厚は、触針式膜厚測定装置(東京精密(株);サーフコム)を用いて面内3箇所において測定し、その平均値の小数点第三位を四捨五入して、小数点第二位までの数値を求めた。 The central part of the cured film was observed using an FPD inspection microscope (MX-61L; manufactured by Olympus Corporation), and the average opening width of 10 openings in the cured film in each exposure area was 10.0 μm. The minimum exposure amount (mJ/cm 2 : i-line equivalent value) when the aperture was opened such that the following was defined as the optimum exposure amount. When the shape of the opening was a perfect circle, its diameter was taken as the opening width, and when it was an ellipse, its short axis was taken as the opening width. The film thickness in each process is measured at three locations within the surface using a stylus-type film thickness measuring device (Tokyo Seimitsu Co., Ltd.; Surfcom), and the average value is rounded to the second decimal place. The numbers up to second place were calculated.
 一方、比較例3~5で得られたネガ型感光性組成物1~3については、前述のポジ型露光マスクに替えて、マスクデザインが反転したネガ型露光マスク(直径10.0μmの真円状の遮蔽部が200個配列したホールパターンマスク)を用いたこと、ベタ部の未露光部の膜が溶解して基板が目視されるまでの時間に1.5を乗じた時間を現像時間としたこと以外は同様の方法で最適露光量を測定した。 On the other hand, for negative photosensitive compositions 1 to 3 obtained in Comparative Examples 3 to 5, a negative exposure mask with an inverted mask design (a perfect circle with a diameter of 10.0 μm) was used instead of the above-mentioned positive exposure mask. A hole pattern mask (with 200 shaped shielding parts arranged) was used, and the development time was the time required for the film in the unexposed area of the solid area to dissolve and the substrate to be visually observed, multiplied by 1.5. The optimum exposure amount was measured in the same manner except for the following.
 (1)硬化膜の遮光性の熱安定性の評価
 実施例1~13、比較例1~5で得られた遮光性評価用基板Aおよび遮光性評価用基板Bについて、光学濃度計(X-Rite社製;X-Rite 361T)を用いて膜面側から面内3箇所において全光学濃度(Total OD値)をそれぞれ測定して平均値を算出し、その値を硬化膜の膜厚の値で除した値を硬化膜の遮光性(OD/μm)とした。遮光性評価用基板Aの遮光性から、遮光性評価用基板Bの遮光性を差し引いた値の絶対値(ΔOD/μm)が小さいほど、加熱温度および加熱時間の変化に対して熱安定性が優れた硬化膜であり、以下の判定基準で評価し、AA、A~Cを合格、Dを不合格とした。
AA:ΔOD/μmが、0.03未満である。
A:ΔOD/μmが、0.03以上0.05未満である。
B:ΔOD/μmが、0.05以上0.10未満である。
C:ΔOD/μmが、0.10以上0.20未満である。
D:ΔOD/μmが、0.20以上である。
(1) Evaluation of thermal stability of light-shielding properties of cured films The light-shielding properties evaluation substrate A and the light-shielding properties evaluation substrate B obtained in Examples 1 to 13 and Comparative Examples 1 to 5 were evaluated using an optical densitometer (X- Rite (manufactured by Rite; The value divided by was defined as the light-shielding property (OD/μm) of the cured film. The smaller the absolute value (ΔOD/μm) of the value obtained by subtracting the light shielding property of the light shielding property evaluation board B from the light shielding property of the light blocking property evaluation board A, the better the thermal stability against changes in heating temperature and heating time. The cured film was excellent and was evaluated using the following criteria, with AA and A to C being passed and D being failing.
AA: ΔOD/μm is less than 0.03.
A: ΔOD/μm is 0.03 or more and less than 0.05.
B: ΔOD/μm is 0.05 or more and less than 0.10.
C: ΔOD/μm is 0.10 or more and less than 0.20.
D: ΔOD/μm is 0.20 or more.
 (2)硬化膜の解像度および突起状異物欠陥の評価
 実施例1~13、比較例1~5で得られた膜厚1.5μmの硬化膜を形成した解像度評価用基板についてFPD検査顕微鏡を用いて観察した。露光マスクの開口幅(直径10.0μm、9.0μm、8.0μm、7.0μm、6.0μm、5.0μm、4.0μm、3.0μmおよび2.0μmの真円状の透過部)から、それぞれ対応する硬化膜の開口部10箇所の開口幅の平均値を差し引いた値(露光マスクバイアス)が±0.2μmの範囲内であり、かつ現像残渣が発生することなくパターン形成が可能であった開口部のうち、最小の開口幅を解像度(μm)とした。最小の開口幅が小さいほど解像度が高く優れており、以下の判定基準で評価し、AA、A~Cを合格、Dを不合格とした。ただし、1つ以上の開口部の表面に突起状異物欠陥の発生が観られた場合は解像度によらず、その評価をEとし、不合格とした。また、現像残渣の発生が観られない開口部が無く、解像度の評価が不可能であった場合はその評価をFとし、不合格とした。なお、Eであり、かつFに相当する場合、その評価をFとした。
AA:解像度が、2.0±0.2μmである。
A:解像度が、3.0±0.2μmである。
B:解像度が、4.0±0.2μmまたは5.0±0.2μmである。
C:解像度が、6.0±0.2μmまたは7.0±0.2μmである。
D:解像度が、7.8μm以上である。
E:1つ以上の開口部の表面に突起状異物欠陥の発生が観られる。
F:現像残渣の発生が観られない開口部が無く、解像度の評価が不可能である。
(2) Evaluation of resolution of cured film and protrusion-like foreign matter defects Using an FPD inspection microscope for resolution evaluation substrates on which cured films with a film thickness of 1.5 μm obtained in Examples 1 to 13 and Comparative Examples 1 to 5 were formed. I observed it. Opening width of exposure mask (perfect circular transparent part with diameters of 10.0 μm, 9.0 μm, 8.0 μm, 7.0 μm, 6.0 μm, 5.0 μm, 4.0 μm, 3.0 μm, and 2.0 μm) The value obtained by subtracting the average opening width of 10 corresponding openings of the cured film (exposure mask bias) is within the range of ±0.2 μm, and pattern formation is possible without generating development residue. Among the openings, the smallest opening width was defined as the resolution (μm). The smaller the minimum aperture width, the higher the resolution and the better. Evaluation was made using the following criteria, and AA, A to C were judged as passing, and D was judged as failing. However, if a protruding foreign particle defect was observed on the surface of one or more openings, the evaluation was rated E and the test was rejected, regardless of the resolution. In addition, if there were no openings where no development residue was observed and it was impossible to evaluate the resolution, the evaluation was given as F and the film was judged as a failure. In addition, when it is E and corresponds to F, the evaluation was set as F.
AA: Resolution is 2.0±0.2 μm.
A: Resolution is 3.0±0.2 μm.
B: Resolution is 4.0±0.2 μm or 5.0±0.2 μm.
C: Resolution is 6.0±0.2 μm or 7.0±0.2 μm.
D: Resolution is 7.8 μm or more.
E: Protrusion-like foreign particle defects are observed on the surface of one or more openings.
F: There are no openings where no development residue is observed, making it impossible to evaluate the resolution.
 (3)有機EL表示装置の解像度の評価
 実施例14~26で得られた有機EL表示装置の発光面を上にして、10mA/cmで直流駆動にて発光させたまま静置し、FPD検査顕微鏡を用いて有機EL表示装置の発光面を観察し、正常な発光が認められた発光画素部10箇所の開口幅を測定し、その平均値を有機EL表示装置の解像度(μm)とした。解像度が高いほど表示装置として優れており、以下の判定基準で評価し、AA、A~Cを合格、Dを不合格とした。ただし、発光面内に発光しない画素(非点灯画素)が1つ以上観られた場合はその評価をEとし、不合格とした。なお、前述の(1)硬化膜の遮光性の熱安定性の評価と(2)硬化膜の解像度および突起状異物欠陥のうち、少なくともいずれかの評価で不合格であった感光性組成物については有機EL表示装置を作製せず、本評価対象から除外することとした。
AA:解像度が、2.0±0.2μmである。
A:解像度が、3.0±0.2μmである。
B:解像度が、4.0±0.2μmまたは5.0±0.2μmである。
C:解像度が、6.0±0.2μmまたは7.0±0.2μmである。
D:解像度が、7.8μm以上である。
E:1つ以上の非点灯画素が観られる。
(3) Evaluation of resolution of organic EL display devices The organic EL display devices obtained in Examples 14 to 26 were left standing with their light-emitting surfaces facing up and emitted by direct current driving at 10 mA/cm 2 , and the FPD The light emitting surface of the organic EL display device was observed using an inspection microscope, and the aperture widths of 10 light emitting pixel parts where normal light emission was observed were measured, and the average value was taken as the resolution (μm) of the organic EL display device. . The higher the resolution, the better the display device, and evaluation was made using the following criteria, with AA and A to C being passed and D being failing. However, if one or more pixels that did not emit light (non-lighted pixels) were observed within the light emitting surface, the evaluation was given as E and the test was rejected. Regarding the photosensitive compositions that failed in at least one of the above-mentioned (1) evaluation of the thermal stability of light-shielding properties of the cured film and (2) resolution and protruding foreign object defects of the cured film. did not produce an organic EL display device and was excluded from this evaluation.
AA: Resolution is 2.0±0.2 μm.
A: Resolution is 3.0±0.2 μm.
B: Resolution is 4.0±0.2 μm or 5.0±0.2 μm.
C: Resolution is 6.0±0.2 μm or 7.0±0.2 μm.
D: Resolution is 7.8 μm or more.
E: One or more non-lit pixels are observed.
 (合成例1:ヒドロキシル基含有ジアミン化合物Aの合成)
 18.30g(0.05 mol)の2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンを、100mLのアセトン、17.40g(0.3mol)のプロピレンオキシドに溶解させ、-15℃に冷却した。ここに20.40g(0.11mol)の3-ニトロベンゾイルクロリドを、100mLのアセトンに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させて、その後室温に戻した。析出した白色固体を濾別し、50℃で真空乾燥した。固体30.00gを300mLのステンレスオートクレーブに入れ、メチルセロソルブ250mLに分散させ、5%パラジウム-炭素を2.00g加えた。ここに水素を風船で導入して、還元反応を室温で行なった。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、濾過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、式(34)で表されるフェノール性水酸基含有ジアミン化合物Aを得た。
(Synthesis Example 1: Synthesis of hydroxyl group-containing diamine compound A)
18.30 g (0.05 mol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane was dissolved in 100 mL of acetone, 17.40 g (0.3 mol) of propylene oxide, and - Cooled to 15°C. A solution of 20.40 g (0.11 mol) of 3-nitrobenzoyl chloride dissolved in 100 mL of acetone was added dropwise thereto. After the dropwise addition was completed, the mixture was allowed to react at -15°C for 4 hours, and then the temperature was returned to room temperature. The precipitated white solid was filtered off and dried under vacuum at 50°C. 30.00 g of the solid was placed in a 300 mL stainless steel autoclave, dispersed in 250 mL of methyl cellosolve, and 2.00 g of 5% palladium-carbon was added. Hydrogen was introduced here using a balloon, and the reduction reaction was carried out at room temperature. After about 2 hours, it was confirmed that the balloon did not deflate any further, and the reaction was terminated. After the reaction was completed, the catalyst was filtered to remove the palladium compound, and the mixture was concentrated using a rotary evaporator to obtain a phenolic hydroxyl group-containing diamine compound A represented by formula (34).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 (合成例2:ポリイミド前駆体Bの合成)
 乾燥窒素気流下、31.00g(0.10mol)の3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物を、500.00gのNMPに溶解させた。ここに合成例1で得られた45.35g(0.075mol)のフェノール性水酸基含有ジアミン化合物Aと、1.24g(0.005mol)の1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンを、50.00gのNMPとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。末端封止剤として、4.36g(0.04mol)の3-アミノフェノールを5.00gのNMPとともに加え、50℃で2時間反応させた。その後、28.60g(0.24mol)のN,N-ジメチルホルムアミドジメチルアセタールを50.00g添加した。添加後、50℃で3時間撹拌した。撹拌終了後、溶液を室温まで冷却した後、溶液を3Lの水に投入して白色沈殿を得た。以上の操作を5回繰り返して得られた白色沈殿を濾物として集め、水で5回洗浄した後、80℃の真空乾燥機で24時間乾燥させ、粉末状のポリイミド前駆体Bを得た。ポリイミド前駆体Bは(b-1)成分に属する樹脂であり、式(18)で表される構造単位を有し、重量平均分子量(Mw)は25,000であった。
(Synthesis Example 2: Synthesis of polyimide precursor B)
Under a stream of dry nitrogen, 31.00 g (0.10 mol) of 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride was dissolved in 500.00 g of NMP. Here, 45.35 g (0.075 mol) of phenolic hydroxyl group-containing diamine compound A obtained in Synthesis Example 1 and 1.24 g (0.005 mol) of 1,3-bis(3-aminopropyl)tetramethyl diamine were added. The siloxane was added along with 50.00 g of NMP and reacted for 1 hour at 20°C and then for 2 hours at 50°C. As an end-capping agent, 4.36 g (0.04 mol) of 3-aminophenol was added together with 5.00 g of NMP, and the mixture was reacted at 50° C. for 2 hours. Thereafter, 50.00 g of 28.60 g (0.24 mol) of N,N-dimethylformamide dimethyl acetal was added. After the addition, the mixture was stirred at 50°C for 3 hours. After the stirring was completed, the solution was cooled to room temperature, and then poured into 3 L of water to obtain a white precipitate. The white precipitate obtained by repeating the above operation five times was collected as a filter material, washed five times with water, and then dried in a vacuum dryer at 80° C. for 24 hours to obtain a powdery polyimide precursor B. Polyimide precursor B was a resin belonging to component (b-1), had a structural unit represented by formula (18), and had a weight average molecular weight (Mw) of 25,000.
 (合成例3:ジイミダゾリド化合物Cの合成)
 乾燥窒素気流下、162.15g(1.00mol)の1,1’-カルボニルジイミダゾール(東京化成工業(株)製)を、1000.00gのNMPに添加し、液温10℃で1時間攪拌し溶解させた。さらに、液温を20℃以下に維持して、113.46g(0.44mol)のジフェニルエーテル4,4’-ジカルボン酸(東京化成工業(株)製)を添加して攪拌した。次いで、液温を60℃まで昇温させて攪拌し、炭酸ガスの発生が終了後、5℃まで冷却した。1000.00gの脱イオン水を10℃以下に維持して滴下し、沈殿物を濾別した。沈殿物を脱イオン水で洗浄し、さらにイソプロパノールで洗浄した。50℃で6時間減圧乾燥し、式(35)で表されるジイミダゾリド化合物Cを得た。
(Synthesis Example 3: Synthesis of diimidazolide compound C)
Under a stream of dry nitrogen, 162.15 g (1.00 mol) of 1,1'-carbonyldiimidazole (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added to 1000.00 g of NMP, and the mixture was stirred for 1 hour at a liquid temperature of 10°C. and dissolved. Further, 113.46 g (0.44 mol) of diphenyl ether 4,4'-dicarboxylic acid (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added and stirred while maintaining the liquid temperature at 20° C. or lower. Next, the liquid temperature was raised to 60°C and stirred, and after the generation of carbon dioxide gas was completed, the mixture was cooled to 5°C. 1000.00g of deionized water was added dropwise while maintaining the temperature below 10°C, and the precipitate was filtered off. The precipitate was washed with deionized water and then with isopropanol. It was dried under reduced pressure at 50° C. for 6 hours to obtain a diimidazolide compound C represented by formula (35).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 (合成例4:ポリベンゾオキサゾール前駆体Dの合成)
 乾燥窒素気流下、732.52g(2.00mol)の2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンを、3662.60gのNMPに添加して液温40℃で1時間攪拌した。さらに、合成例3で製造した573.38g(1.60mol)のジイミダゾリド化合物Cを、286.69gのNMPとともに添加して、液温80℃に昇温させ、5時間攪拌した。次いで、131.33g(0.80mol)の5-ノルボルネン-2,3-ジカルボン酸無水物を添加し、液温80℃で3時間攪拌した。液温20℃に冷却し、600.20gの酢酸を添加して30分間攪拌後、500.00gのNMPを添加して、さらに1時間攪拌した。以上の操作により得られた溶液を10Lの水に投入し、沈殿物を得た。この沈殿物を濾別し、脱イオン水で5回洗浄した後に50℃で3日間減圧乾燥させ、粉末状のポリベンゾオキサゾール前駆体Dを得た。ポリベンゾオキサゾール前駆体Dは(b-1)成分に属する樹脂であり、式(18)で表される構造単位を有し、重量平均分子量(Mw)は26,000であった。なお、ポリベンゾオキサゾール前駆体Dを、NMRおよびガスクロマトグラフィ質量分析法で解析したところ、式(35)で表されるジイミダゾリド化合物Cを由来とするイミダゾール環構造は検出されず、前述の反応操作により完全に消失したものと考えられた。
(Synthesis Example 4: Synthesis of polybenzoxazole precursor D)
Under a stream of dry nitrogen, 732.52 g (2.00 mol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane was added to 3662.60 g of NMP, and the mixture was heated at 40°C for 1 hour. Stirred. Furthermore, 573.38 g (1.60 mol) of diimidazolide compound C produced in Synthesis Example 3 was added together with 286.69 g of NMP, the liquid temperature was raised to 80° C., and the mixture was stirred for 5 hours. Next, 131.33 g (0.80 mol) of 5-norbornene-2,3-dicarboxylic anhydride was added, and the mixture was stirred at a liquid temperature of 80° C. for 3 hours. The liquid temperature was cooled to 20° C., 600.20 g of acetic acid was added, and the mixture was stirred for 30 minutes, followed by the addition of 500.00 g of NMP, and further stirred for 1 hour. The solution obtained by the above operation was poured into 10 L of water to obtain a precipitate. This precipitate was filtered, washed five times with deionized water, and then dried under reduced pressure at 50° C. for 3 days to obtain polybenzoxazole precursor D in powder form. Polybenzoxazole precursor D was a resin belonging to component (b-1), had a structural unit represented by formula (18), and had a weight average molecular weight (Mw) of 26,000. When polybenzoxazole precursor D was analyzed by NMR and gas chromatography-mass spectrometry, no imidazole ring structure derived from diimidazolide compound C represented by formula (35) was detected. It was thought that it had completely disappeared.
 (合成例5:キノンジアジド化合物Eの合成)
 乾燥窒素気流下、127.36g(0.30mol)の式(36)で表される化合物(本州化学工業(株)製)と、80.60g(0.30mol)の1,2-ナフトキノン-2-ジアジド-4-スルホニルクロリド(東洋合成(株)製)と、80.60g(0.30mol)の1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド(東洋合成(株)製)を、1910.43gの1,4-ジオキサンに添加し、液温20℃で1時間攪拌した。さらに、303.57gの添加剤(トリエチルアミン:1,4-ジオキサン=質量比率20:80)を滴下後し、液温30℃で3時間攪拌した。トリエチルアミン塩を濾別し、濾液を水に投入して生成した沈殿物を回収し、脱イオン水で3回洗浄した後に濾別して減圧乾燥し、式(38)で表される化合物を少なくとも含む混合物である、式(37)で表されるキノンジアジド化合物Eを得た。式(38)で表される化合物は(c-1)成分であり、式(22)で表される基と式(23)で表される基を有し、かつフェノール性水酸基を有する化合物に相当する。なお、式(38)で表される化合物はLC-MSおよびMALDI-TOF MSにより特定された。
(Synthesis Example 5: Synthesis of quinonediazide compound E)
Under a stream of dry nitrogen, 127.36 g (0.30 mol) of the compound represented by formula (36) (manufactured by Honshu Chemical Industry Co., Ltd.) and 80.60 g (0.30 mol) of 1,2-naphthoquinone-2 -Diazide-4-sulfonyl chloride (manufactured by Toyo Gosei Co., Ltd.) and 80.60 g (0.30 mol) of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride (manufactured by Toyo Gosei Co., Ltd.), The mixture was added to 1,910.43 g of 1,4-dioxane and stirred for 1 hour at a liquid temperature of 20°C. Further, 303.57 g of additive (triethylamine:1,4-dioxane = mass ratio 20:80) was added dropwise, and the mixture was stirred for 3 hours at a liquid temperature of 30°C. The triethylamine salt is separated by filtration, the filtrate is poured into water, the generated precipitate is collected, washed three times with deionized water, filtered and dried under reduced pressure to obtain a mixture containing at least the compound represented by formula (38). A quinonediazide compound E represented by formula (37) was obtained. The compound represented by formula (38) is the component (c-1), and has a group represented by formula (22) and a group represented by formula (23), and has a phenolic hydroxyl group. Equivalent to. The compound represented by formula (38) was identified by LC-MS and MALDI-TOF MS.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
式(37)中、*は酸素原子との結合部位を表す。 In formula (37), * represents a bonding site with an oxygen atom.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 (合成例6:キノンジアジド化合物Fの合成)
 乾燥窒素気流下、127.36g(0.30mol)の式(36)で表される化合物と、161.20g(0.60mol)の1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリドと、1910.43gの1,4-ジオキサンに添加し、液温20℃で1時間攪拌した。さらに、303.57gの添加剤(トリエチルアミン:1,4-ジオキサン=質量比率20:80)を滴下後し、液温30℃で3時間攪拌した。トリエチルアミン塩を濾別し、濾液を水に投入して生成した沈殿物を回収し、脱イオン水で3回洗浄した後に濾別して減圧乾燥し、式(40)で表される化合物を少なくとも含む混合物である、式(39)で表されるキノンジアジド化合物Fを得た。式(40)で表される化合物は(c-1)成分であり、式(23)で表される基を分子内に2つ有し、かつフェノール性水酸基を有する化合物に相当する。なお、式(40)で表される化合物はLC-MSおよびMALDI-TOF MSにより特定された。
(Synthesis Example 6: Synthesis of quinonediazide compound F)
Under a stream of dry nitrogen, 127.36 g (0.30 mol) of the compound represented by formula (36) and 161.20 g (0.60 mol) of 1,2-naphthoquinone-2-diazido-5-sulfonyl chloride, The mixture was added to 1,910.43 g of 1,4-dioxane and stirred for 1 hour at a liquid temperature of 20°C. Further, 303.57 g of additive (triethylamine:1,4-dioxane = mass ratio 20:80) was added dropwise, and the mixture was stirred for 3 hours at a liquid temperature of 30°C. The triethylamine salt is separated by filtration, the filtrate is poured into water, the generated precipitate is collected, washed three times with deionized water, filtered and dried under reduced pressure to obtain a mixture containing at least the compound represented by formula (40). A quinonediazide compound F represented by formula (39) was obtained. The compound represented by formula (40) is the component (c-1) and corresponds to a compound having two groups represented by formula (23) in the molecule and a phenolic hydroxyl group. The compound represented by formula (40) was identified by LC-MS and MALDI-TOF MS.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
式(39)中、*は酸素原子との結合部位を表す。 In formula (39), * represents a bonding site with an oxygen atom.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 (合成例7:ペリレンブルー色素1の合成)
 70℃で融解させた2,545.92gのフェノール中に、636.48g(1.50mol)の1,12-ジヒドロキシペリレン-3,4,9,10-テトラカルボン酸二無水物(Sigma-Aldrich社製)と、378.39g(3.00mol)の1,2-ジアミノ-3-フルオロベンゼン((Sigma-Aldrich社製)と、64.61gのピペラジンを添加し、混合物を攪拌しながら液温を170℃に昇温した。次いで、液温170℃で8時間撹拌を行い、反応を十分に進行させた後、生成した水をフェノールとの共沸混合物として蒸留分離した。次いで、100℃に冷却し、エタノール500gを50gずつ段階的に添加し、60℃でさらに1時間撹拌した後に水洗して濾別し、減圧下80℃で24時間乾燥させて反応生成物を得た。次いで、50.00gの反応生成物を、500.00gの30質量%発煙硫酸に溶解させて攪拌しながら液温を80℃に昇温した。液温80℃で8時間攪拌し、スルホン化反応を進行させた。次いで、7kgの氷水の中に投入して析出物を含むスラリーを得て濾別した。次いで、濾物を混合液(エタノール:水=質量比率80:20)で洗浄した後に再び濾別し、減圧下80℃で24時間乾燥させた。さらに、ナノジェットマイザー((株)アイシンナノテクノロジーズ製)を用いて乾式粉砕処理を行い、ステンレス製ふるい濾過器(開口径20μm)にかけて粗大分を除去し、ペリレンブルー色素1を得た。LC-MSおよびMALDI-TOF MSを用いて分析した結果、ペリレンブルー色素1は(a)成分であり、式(41)で表される化合物、式(42)で表される化合物、式(43)で表される化合物、式(44)で表される化合物、式(45)で表される化合物、式(46)で表される化合物、式(47)で表される化合物および式(48)で表される化合物の混合物であった。なお、式(45)で表される化合物、式(46)で表される化合物、式(47)で表される化合物および式(48)で表される化合物の含有量の合計は、100質量%のペリレンブルー色素1中、12質量%であった。
(Synthesis Example 7: Synthesis of perylene blue dye 1)
In 2,545.92 g of phenol melted at 70°C, 636.48 g (1.50 mol) of 1,12-dihydroxyperylene-3,4,9,10-tetracarboxylic dianhydride (Sigma-Aldrich 378.39 g (3.00 mol) of 1,2-diamino-3-fluorobenzene (manufactured by Sigma-Aldrich), and 64.61 g of piperazine were added, and while stirring the mixture, the liquid temperature The temperature was raised to 170°C.Next, stirring was performed for 8 hours at a liquid temperature of 170°C to allow the reaction to proceed sufficiently, and the produced water was separated by distillation as an azeotrope with phenol.Then, the temperature was raised to 100°C. After cooling, 500 g of ethanol was added stepwise in 50 g increments, and the mixture was further stirred at 60°C for 1 hour, washed with water, filtered, and dried under reduced pressure at 80°C for 24 hours to obtain a reaction product. .00g of the reaction product was dissolved in 500.00g of 30% by mass oleum and the solution temperature was raised to 80°C while stirring.The solution was stirred at 80°C for 8 hours to allow the sulfonation reaction to proceed. Then, it was poured into 7 kg of ice water to obtain a slurry containing precipitates, which was filtered.Then, the filtrate was washed with a mixed solution (ethanol:water = mass ratio of 80:20), and then filtered again. It was dried at 80°C under reduced pressure for 24 hours.Furthermore, it was dry-pulverized using a Nano Jet Mizer (manufactured by Aisin Nano Technologies Co., Ltd.), and coarse particles were removed by passing it through a stainless steel sieve filter (opening diameter 20 μm). was removed to obtain perylene blue dye 1. As a result of analysis using LC-MS and MALDI-TOF MS, perylene blue dye 1 was component (a), and was a compound represented by formula (41), formula ( 42), a compound represented by formula (43), a compound represented by formula (44), a compound represented by formula (45), a compound represented by formula (46), a compound represented by formula ( It was a mixture of the compound represented by formula (47) and the compound represented by formula (48).The compound represented by formula (45), the compound represented by formula (46), and the compound represented by formula (47) were The total content of the compound represented by the above formula and the compound represented by formula (48) was 12% by mass in 100% by mass of perylene blue dye 1.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 (合成例8:ペリレンブルー色素2の合成)
 100.00gのペリレン-3,4,9,10-テトラカルボン酸ビスベンゾイミダゾール(東京化成工業(株)製;cis体とtrans体の混合物)を、400.00gの20質量%発煙硫酸に溶解させて攪拌しながら液温を70℃に昇温した。液温70℃で5時間攪拌し、スルホン化反応を進行させた。次いで、9kgの氷水の中に投入して析出物を含むスラリーを得て濾別した。濾物を混合液(エタノール:水=質量比率80:20)で洗浄した後に再び濾別し、減圧下80℃で24時間乾燥させた。さらに、ナノジェットマイザーを用いて乾式粉砕処理を行い、ステンレス製ふるい濾過器(開口径20μm)にかけて粗大分を除去し、ペリレンブルー色素2を得た。LC-MSおよびMALDI-TOF MSを用いて分析した結果、ペリレンブルー色素2は(a)成分であり、式(49)で表される化合物、式(50)で表される化合物、式(51)で表される化合物および式(52)で表される化合物の混合物であった。なお、式(51)で表される化合物および式(52)で表される化合物の含有量の合計は、100質量%のペリレンブルー色素2中、74質量%であった。
(Synthesis example 8: Synthesis of perylene blue dye 2)
100.00 g of perylene-3,4,9,10-tetracarboxylic acid bisbenzimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.; mixture of cis and trans forms) was dissolved in 400.00 g of 20% by mass oleum. The liquid temperature was raised to 70°C while stirring. The mixture was stirred at a liquid temperature of 70° C. for 5 hours to allow the sulfonation reaction to proceed. Next, it was poured into 9 kg of ice water to obtain a slurry containing precipitates, which was filtered. The filtrate was washed with a mixed solution (ethanol:water = mass ratio 80:20), filtered again, and dried under reduced pressure at 80°C for 24 hours. Furthermore, dry pulverization was performed using a nanojet miser, and coarse components were removed by passing through a stainless steel sieve filter (opening diameter 20 μm) to obtain perylene blue dye 2. As a result of analysis using LC-MS and MALDI-TOF MS, perylene blue dye 2 was the component (a), and was found to be a compound represented by formula (49), a compound represented by formula (50), and a compound represented by formula (51). ) and the compound represented by formula (52). The total content of the compound represented by formula (51) and the compound represented by formula (52) was 74% by mass in 100% by mass of perylene blue dye 2.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 (合成例9:ペリレンブルー色素3の合成)
 前述の合成例8で得た、40.00gのペリレンブルー色素2を、400.00gの10質量%発煙硫酸に溶解させて攪拌しながら液温を130℃に昇温した。液温130℃で10時間攪拌し、スルホン化反応を進行させた。次いで、7kgの氷水の中に投入して析出物を含むスラリーを得て濾別した。次いで、濾物を混合液(エタノール:水=質量比率80:20)で洗浄した後に再び濾別し、減圧下80℃で24時間乾燥させた。さらに、ナノジェットマイザーを用いて乾式粉砕処理を行い、ステンレス製ふるい濾過器(開口径20μm)にかけて粗大分を除去し、ペリレンブルー色素3を得た。LC-MSおよびMALDI-TOF MSを用いて分析した結果、ペリレンブルー色素3は(a)成分であり、式(53)で表される化合物および式(54)で表される化合物の混合物であった。
(Synthesis Example 9: Synthesis of perylene blue dye 3)
40.00 g of perylene blue dye 2 obtained in Synthesis Example 8 above was dissolved in 400.00 g of 10% by mass oleum, and the temperature of the solution was raised to 130° C. with stirring. The mixture was stirred at a liquid temperature of 130° C. for 10 hours to allow the sulfonation reaction to proceed. Next, it was poured into 7 kg of ice water to obtain a slurry containing precipitates, which was filtered. Next, the filtrate was washed with a mixed solution (ethanol:water = mass ratio 80:20), filtered again, and dried under reduced pressure at 80°C for 24 hours. Furthermore, dry pulverization was performed using a nanojet miser, and coarse components were removed by passing through a stainless steel sieve filter (opening diameter 20 μm) to obtain perylene blue dye 3. As a result of analysis using LC-MS and MALDI-TOF MS, perylene blue dye 3 was component (a), and was a mixture of the compound represented by formula (53) and the compound represented by formula (54). Ta.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 (合成例10:ペリレンブルー色素4の合成)
 70℃で融解させた3,066.93gのフェノール中に、681.54g(1.50mol)のペリレン-3,4,9,10-テトラカルボン酸二無水物モノスルホン(Sigma-Aldrich社製)と、564.60g(3.00mol)の3,4-ジアミノベンゼンスルホン酸(東京化成工業(株)製)と、64.61gのピペラジンを添加し、混合物を攪拌しながら液温を170℃に昇温した。次いで、液温170℃で8時間撹拌を行い、反応を十分に進行させた後、生成した水をフェノールとの共沸混合物として蒸留分離した。次いで、100℃に冷却し、エタノール500gを50gずつ段階的に添加し、60℃でさらに1時間撹拌した後に水洗して濾別し、減圧下80℃で24時間乾燥させて反応生成物を得た。さらに、ナノジェットマイザーを用いて乾式粉砕処理を行い、ステンレス製ふるい濾過器(開口径20μm)にかけて粗大分を除去し、ペリレンブルー色素4を得た。LC-MSおよびMALDI-TOF MSを用いて分析した結果、ペリレンブルー色素4は(a)成分であり、式(55)で表される化合物および式(56)で表される化合物の混合物であった。
(Synthesis Example 10: Synthesis of perylene blue dye 4)
In 3,066.93 g of phenol melted at 70° C., 681.54 g (1.50 mol) of perylene-3,4,9,10-tetracarboxylic dianhydride monosulfone (manufactured by Sigma-Aldrich) was added. , 564.60 g (3.00 mol) of 3,4-diaminobenzenesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), and 64.61 g of piperazine were added, and the liquid temperature was raised to 170°C while stirring the mixture. The temperature rose. Next, the mixture was stirred at a liquid temperature of 170° C. for 8 hours to allow the reaction to proceed sufficiently, and then the produced water was separated by distillation as an azeotrope with phenol. Next, the mixture was cooled to 100°C, 500g of ethanol was added stepwise in 50g increments, and the mixture was further stirred at 60°C for 1 hour, washed with water, filtered, and dried under reduced pressure at 80°C for 24 hours to obtain a reaction product. Ta. Furthermore, dry pulverization was performed using a nanojet miser, and coarse components were removed by passing through a stainless steel sieve filter (opening diameter 20 μm) to obtain perylene blue dye 4. As a result of analysis using LC-MS and MALDI-TOF MS, perylene blue dye 4 was component (a), and was a mixture of the compound represented by formula (55) and the compound represented by formula (56). Ta.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 (合成例11:ペリレンブルー色素5の合成)
 70℃で融解させた2,569.80gのフェノール中に、642.45g(1.50mol)の1,7-ジフルオロペリレン-3,4,9,10-テトラカルボン酸二無水物(Sigma-Aldrich社製)と、366.51g(3.00mol)の3-メチルベンゼン-1,2-ジアミン(東京化成工業(株)製)と、64.61gのピペラジンを添加し、混合物を攪拌しながら液温を180℃に昇温した。次いで、液温180℃で9時間撹拌を行い、反応を十分に進行させた後、生成した水をフェノールとの共沸混合物として蒸留分離した。次いで、100℃に冷却し、エタノール500gを50gずつ段階的に添加し、60℃でさらに1時間撹拌した後に水洗して濾別し、減圧下80℃で24時間乾燥させて反応生成物を得た。次いで、50.00gの反応生成物を、500.00gの30質量%発煙硫酸に溶解させて攪拌しながら液温を80℃に昇温した。液温80℃で8時間攪拌し、スルホン化反応を進行させた。次いで、7kgの氷水の中に投入して析出物を含むスラリーを得て濾別した。次いで、濾物を混合液(エタノール:水=質量比率80:20)で洗浄した後に再び濾別し、減圧下80℃で24時間乾燥させた。さらに、ナノジェットマイザーを用いて乾式粉砕処理を行い、ステンレス製ふるい濾過器(開口径20μm)にかけて粗大分を除去し、ペリレンブルー色素5を得た。LC-MSおよびMALDI-TOF MSを用いて分析した結果、ペリレンブルー色素5は(a)成分であり、式(57)で表される化合物、式(58)で表される化合物、式(59)で表される化合物および式(60)で表される化合物の混合物であった。
(Synthesis Example 11: Synthesis of perylene blue dye 5)
In 2,569.80 g of phenol melted at 70°C, 642.45 g (1.50 mol) of 1,7-difluoroperylene-3,4,9,10-tetracarboxylic dianhydride (Sigma-Aldrich 366.51 g (3.00 mol) of 3-methylbenzene-1,2-diamine (manufactured by Tokyo Kasei Kogyo Co., Ltd.), and 64.61 g of piperazine were added, and the mixture was stirred. The temperature was raised to 180°C. Next, the mixture was stirred at a liquid temperature of 180° C. for 9 hours to allow the reaction to proceed sufficiently, and then the produced water was separated by distillation as an azeotrope with phenol. Next, the mixture was cooled to 100°C, 500g of ethanol was added stepwise in 50g increments, and the mixture was further stirred at 60°C for 1 hour, washed with water, filtered, and dried under reduced pressure at 80°C for 24 hours to obtain a reaction product. Ta. Next, 50.00 g of the reaction product was dissolved in 500.00 g of 30% by mass oleum, and the solution temperature was raised to 80° C. with stirring. The mixture was stirred at a liquid temperature of 80° C. for 8 hours to advance the sulfonation reaction. Next, it was poured into 7 kg of ice water to obtain a slurry containing precipitates, which was filtered. Next, the filtrate was washed with a mixed solution (ethanol:water = mass ratio 80:20), filtered again, and dried at 80° C. under reduced pressure for 24 hours. Furthermore, dry pulverization was performed using a nanojet miser, and coarse components were removed by passing through a stainless steel sieve filter (opening diameter 20 μm) to obtain perylene blue dye 5. As a result of analysis using LC-MS and MALDI-TOF MS, perylene blue dye 5 was the component (a), and was found to be a compound represented by formula (57), a compound represented by formula (58), and a compound represented by formula (59). ) and the compound represented by formula (60).
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 (合成例12:ペリレンブルー色素6の合成)
 前述の合成例8と同じ方法で得た80.00gのペリレンブルー色素2を、800.00gの10質量%発煙硫酸に溶解させて攪拌しながら液温を130℃に昇温した。液温130℃で10時間攪拌し、スルホン化反応を進行させた。次いで、14kgの氷水の中に投入してスラリーを得た後にエタノールで洗浄しながら濾別し、生成物が濃縮されたウェットケーキを得た。さらに、pH7.0となるまで攪拌しながら水酸化ナトリウム水溶液(10質量%)をウェットケーキに徐々に添加して中和し、液温30℃で3時間攪拌した後にエタノールで洗浄しながら濾別した。減圧下80℃で24時間乾燥させてペリレンブルー色素のナトリウム塩であるナトリウム塩Aを得た。LC-MSおよびICP-MS(誘導結合プラズマ質量分析法)を用いて分析した結果、ナトリウム塩Aは(a)成分とNaの混合物であり、式(92)で表される化合物および式(93)で表される化合物からなる色素であった。
(Synthesis Example 12: Synthesis of perylene blue dye 6)
80.00 g of perylene blue dye 2 obtained in the same manner as in Synthesis Example 8 above was dissolved in 800.00 g of 10% by mass oleum, and the temperature of the solution was raised to 130° C. with stirring. The mixture was stirred at a liquid temperature of 130° C. for 10 hours to allow the sulfonation reaction to proceed. Next, the slurry was poured into 14 kg of ice water to obtain a slurry, which was then filtered while washing with ethanol to obtain a wet cake in which the product was concentrated. Furthermore, a sodium hydroxide aqueous solution (10% by mass) was gradually added to the wet cake while stirring until the pH reached 7.0 to neutralize it, and after stirring for 3 hours at a liquid temperature of 30°C, it was filtered while washing with ethanol. did. It was dried at 80° C. under reduced pressure for 24 hours to obtain sodium salt A, which is a sodium salt of perylene blue dye. As a result of analysis using LC-MS and ICP-MS (inductively coupled plasma mass spectrometry), sodium salt A is a mixture of component (a) and Na + , and is a compound represented by formula (92) and formula ( It was a dye consisting of a compound represented by 93).
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 次いで、700.00gの脱イオン水と、50.00gのPGMEを入れたフラスコに、20.00gのナトリウム塩Aを添加して液温70℃で10分間攪拌した。さらに、7.32gの2-(ドデシルアミノ)エタノール塩酸塩(Sigma-Aldrich社製)を添加して液温70℃で3時間攪拌した後に濾別した。脱イオン水で水洗し、減圧下80℃で24時間乾燥し、ナノジェットマイザーを用いて乾式粉砕処理を行い、ペリレンブルー色素6を得た。LC-MSおよびMALDI-TOF MSを用いて分析した結果、ペリレンブルー色素6は(a)成分および(f)成分を含む、式(94)で表される化合物および式(95)で表される化合物の混合物であった。 Next, 20.00 g of sodium salt A was added to a flask containing 700.00 g of deionized water and 50.00 g of PGME, and the mixture was stirred at a liquid temperature of 70° C. for 10 minutes. Further, 7.32 g of 2-(dodecylamino)ethanol hydrochloride (manufactured by Sigma-Aldrich) was added, and the mixture was stirred at a temperature of 70° C. for 3 hours, and then filtered. It was washed with deionized water, dried under reduced pressure at 80° C. for 24 hours, and dry-pulverized using a nanojet miser to obtain perylene blue dye 6. As a result of analysis using LC-MS and MALDI-TOF MS, perylene blue dye 6 is a compound represented by formula (94) and formula (95) containing component (a) and (f). It was a mixture of compounds.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 (合成例13:ペリレンブルー色素7の合成)
 2-(ドデシルアミノ)エタノール塩酸塩に替えて、9.36gのベンジルドデシルジメチルアンモニウムクロリド(東京化成工業(株)製)を用いた以外は合成例12と同じ方法で、ナトリウム塩Aを出発原料として、ペリレンブルー色素7を合成した。LC-MSおよびMALDI-TOF MSを用いて分析した結果、ペリレンブルー色素7は(a)成分および(f)成分を含む、式(96)で表される化合物および式(97)で表される化合物の混合物であった。
(Synthesis Example 13: Synthesis of perylene blue dye 7)
Sodium salt A was used as the starting material in the same manner as in Synthesis Example 12, except that 9.36 g of benzyldodecyldimethylammonium chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 2-(dodecylamino)ethanol hydrochloride. Perylene blue dye 7 was synthesized as follows. As a result of analysis using LC-MS and MALDI-TOF MS, perylene blue dye 7 is a compound represented by formula (96) and formula (97) containing component (a) and component (f). It was a mixture of compounds.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 (合成例14:ペリレンブルー色素8の合成)
 2-(ドデシルアミノ)エタノール塩酸塩に替えて、9.34gのテトラブチルホスホニウムブロミド(東京化成工業(株)製)を用いた以外は合成例12と同じ方法で、ナトリウム塩Aを出発原料として、ペリレンブルー色素8を合成した。LC-MSおよびMALDI-TOF MSを用いて分析した結果、ペリレンブルー色素8は(a)成分および(f)成分を含む、式(98)で表される化合物および式(99)で表される化合物の混合物であった。
(Synthesis Example 14: Synthesis of perylene blue dye 8)
Sodium salt A was used as the starting material in the same manner as in Synthesis Example 12, except that 9.34 g of tetrabutylphosphonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 2-(dodecylamino)ethanol hydrochloride. , perylene blue dye 8 was synthesized. As a result of analysis using LC-MS and MALDI-TOF MS, perylene blue dye 8 is a compound represented by formula (98) and formula (99) containing component (a) and (f). It was a mixture of compounds.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 (合成例15:ペリレンブルー色素9の合成)
 100.00gの“Spectrasense(登録商標)”Black K0087(Color&Effect社製)を、400.00gの20質量%発煙硫酸に溶解させて攪拌しながら液温を70℃に昇温した。引き続き液温70℃で10時間攪拌し、スルホン化反応を進行させた。次いで、15kgの氷水の中に投入してスラリーを得た後にエタノールで洗浄しながら濾別し、生成物が濃縮されたウェットケーキを得た。さらに、pH7.0となるまで水酸化ナトリウム水溶液(10質量%)をウェットケーキに徐々に添加して攪拌しながら中和し、液温30℃で3時間攪拌した。中和して得られたスラリーをエタノールで洗浄しながら濾別した。濾別した固形物を減圧下80℃で24時間乾燥させて、ペリレンブルー色素のナトリウム塩であるナトリウム塩Bを得た。LC-MSおよびICP-MSを用いて分析した結果、ナトリウム塩Bは、(a)成分とNaの混合物であり、式(106)で表される化合物および式(107)で表される化合物からなる色素であった。
(Synthesis Example 15: Synthesis of perylene blue dye 9)
100.00 g of "Spectrasense (registered trademark)" Black K0087 (manufactured by Color & Effect) was dissolved in 400.00 g of 20% by mass oleum, and the temperature of the solution was raised to 70° C. while stirring. Subsequently, the mixture was stirred at a liquid temperature of 70° C. for 10 hours to advance the sulfonation reaction. Next, the slurry was poured into 15 kg of ice water to obtain a slurry, which was then filtered while washing with ethanol to obtain a wet cake in which the product was concentrated. Further, an aqueous sodium hydroxide solution (10% by mass) was gradually added to the wet cake to neutralize it with stirring until the pH reached 7.0, and the mixture was stirred at a liquid temperature of 30° C. for 3 hours. The slurry obtained by neutralization was filtered while washing with ethanol. The filtered solid was dried at 80° C. under reduced pressure for 24 hours to obtain sodium salt B, which is a sodium salt of perylene blue dye. As a result of analysis using LC-MS and ICP-MS, sodium salt B is a mixture of component (a) and Na + , and is a mixture of the compound represented by formula (106) and the compound represented by formula (107). It was a pigment consisting of
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 次いで、800.00gの脱イオン水を入れたフラスコに、20.00gのナトリウム塩Bを添加して液温40℃で10分間攪拌して溶解させた。さらに、15.14gのヘキシルトリメチルアンモニウムブロミド(東京化成工業(株)製)を添加して液温50℃で6時間攪拌し、不溶の固形物の生成を確認した。次いで、生成した固形物を脱イオン水で水洗し、濾別した。減圧下80℃で24時間乾燥し、ナノジェットマイザーを用いて乾式粉砕処理を行い、ペリレンブルー色素9を得た。LC-MSおよびMALDI-TOF MSを用いて分析した結果、ペリレンブルー色素9は(a)成分および(f)成分を含む、式(108)で表される化合物および式(109)で表される化合物の混合物であった。 Next, 20.00 g of sodium salt B was added to a flask containing 800.00 g of deionized water, and dissolved by stirring for 10 minutes at a liquid temperature of 40°C. Furthermore, 15.14 g of hexyltrimethylammonium bromide (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added and stirred at a liquid temperature of 50° C. for 6 hours, and the formation of insoluble solids was confirmed. The resulting solid was then washed with deionized water and filtered. It was dried at 80° C. under reduced pressure for 24 hours and dry-pulverized using a nano jet miser to obtain perylene blue dye 9. As a result of analysis using LC-MS and MALDI-TOF MS, perylene blue dye 9 is a compound represented by formula (108) and formula (109) containing component (a) and (f). It was a mixture of compounds.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 (製造例1:微細化ペリレン顔料Aの製造)
 1,000.00gの“Spectrasense(登録商標)”Black K0087(Color&Effect社製)を、大気圧下/空気下250℃のオーブンで1時間加熱した後に室温とし、ボールミルで乾燥凝集を解きほぐし、暗紫色顔料を得た。500.00gの暗紫色顔料と、2.5kgの摩砕材(塩化ナトリウム粒子)と、250.00gのジプロピレングリコールを混合して、ステンレス製1ガロンニーダー(井上製作所製)に仕込み、90℃で8時間混練した。この混練物を5Lの温水に投入し、70℃に維持しながら1時間攪拌してスラリー状とし、イオンクロマトグラフィで定量される塩素イオンが50質量ppm以下となるまで濾過、水洗を繰り返して、摩砕材およびジプロピレングリコールを除去した。さらに、大気圧下/空気下100℃のオーブンで6時間乾燥させた後にボールミルで乾燥凝集を解きほぐし、式(61)で表される化合物および式(62)で表される化合物の混合物からなる微細化ペリレン顔料Aを得た。微細化ペリレン顔料Aは(e)成分であり、前述の式(30)で表される化合物および式(31)で表される化合物に相当する。
(Production Example 1: Production of finely divided perylene pigment A)
1,000.00 g of "Spectrasense (registered trademark)" Black K0087 (manufactured by Color & Effect) was heated in an oven at 250°C under atmospheric pressure/air for 1 hour, then brought to room temperature, and the dried agglomerations were loosened using a ball mill to form a dark purple pigment. I got it. 500.00 g of dark purple pigment, 2.5 kg of grinding material (sodium chloride particles), and 250.00 g of dipropylene glycol were mixed, charged into a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho), and heated at 90°C. The mixture was kneaded for 8 hours. This kneaded material was poured into 5 L of warm water, stirred for 1 hour while maintaining the temperature at 70°C to form a slurry, and filtered and washed with water repeatedly until the chlorine ions determined by ion chromatography became 50 mass ppm or less. The crushed wood and dipropylene glycol were removed. Furthermore, after drying in an oven at 100°C under atmospheric pressure/in air for 6 hours, the dried agglomerates were loosened using a ball mill, and fine particles consisting of a mixture of the compound represented by formula (61) and the compound represented by formula (62) were prepared. Perylene pigment A was obtained. The finely divided perylene pigment A is the component (e) and corresponds to the compound represented by the above-mentioned formula (30) and the compound represented by the formula (31).
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 (製造例2:微細化ジオキサジン顔料Bの製造)
 1,000.00gの“Cromophtal(登録商標)”Violet D5700(BASF社製:C.I.ピグメントバイオレット37)を、大気圧下/空気下200℃のオーブンで1時間加熱した後に室温とし、ボールミルで乾燥凝集を解きほぐし、紫色顔料を得た。500.00gの紫色顔料と、2.5kgの摩砕材(塩化ナトリウム粒子)と、250.00gのジプロピレングリコールを混合して、ステンレス製1ガロンニーダーに仕込み、90℃で5時間混練した。この混練物を5Lの温水に投入し、70℃に維持しながら1時間攪拌してスラリー状とし、濾過、水洗を3回繰り返して、摩砕材およびジプロピレングリコールを除去した。さらに、大気圧下/空気下100℃のオーブンで6時間乾燥させた後にボールミルで乾燥凝集を解きほぐし、式(63)で表される微細化ジオキサジン顔料Bを得た。微細化ジオキサジン顔料Bは(e)成分であり、前述のトリフェンジオキサジン骨格を有する化合物に相当する。
(Production Example 2: Production of finely divided dioxazine pigment B)
1,000.00 g of "Cromophtal (registered trademark)" Violet D5700 (manufactured by BASF: C.I. Pigment Violet 37) was heated in an oven at 200°C under atmospheric pressure/air for 1 hour, brought to room temperature, and then heated in a ball mill. The dried agglomerates were loosened to obtain a purple pigment. 500.00 g of purple pigment, 2.5 kg of grinding material (sodium chloride particles), and 250.00 g of dipropylene glycol were mixed, charged into a 1-gallon stainless steel kneader, and kneaded at 90° C. for 5 hours. This kneaded material was poured into 5 L of warm water and stirred for 1 hour while maintaining the temperature at 70° C. to form a slurry. Filtration and water washing were repeated three times to remove the grinding material and dipropylene glycol. Furthermore, after drying in an oven at 100° C. under atmospheric pressure/in air for 6 hours, the dried agglomerates were loosened in a ball mill to obtain a finely divided dioxazine pigment B represented by formula (63). Finely divided dioxazine pigment B is component (e) and corresponds to the above-mentioned compound having the triphendioxazine skeleton.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 (製造例3:造塩染料Cの製造)
 フラスコに、塩基性染料である9.25gのC.I.ベーシックブルー7と、200.00gの脱イオン水を添加し、液温60℃で30分間攪拌した。次いで、酸性染料である11.50gのC.I.アシッドレッド52を、120.00gの脱イオン水に溶解させた溶液を添加し、液温60℃で1時間攪拌した後に25℃に冷却した後に濾別して、紫色の固体生成物を得た。さらに60℃で8時間乾燥させ、粉末状の造塩染料Cを得た。
(Production Example 3: Production of salt-forming dye C)
A flask was charged with 9.25 g of C.I., a basic dye. I. Basic Blue 7 and 200.00 g of deionized water were added, and the mixture was stirred at a liquid temperature of 60° C. for 30 minutes. Next, 11.50 g of C.I., which is an acid dye, is added. I. A solution of Acid Red 52 dissolved in 120.00 g of deionized water was added, stirred at a liquid temperature of 60° C. for 1 hour, cooled to 25° C., and filtered to obtain a purple solid product. It was further dried at 60° C. for 8 hours to obtain powdered salt-forming dye C.
 (合成例15:メタクリル樹脂溶液Gの合成)
 特許文献5に記載の合成例14(三級アミノ基およびエチレン性不飽和基含有樹脂(F-1))で開示された方法と同じ方法で合成した樹脂溶液をメタクリル樹脂溶液Gとした。
(Synthesis Example 15: Synthesis of methacrylic resin solution G)
A resin solution synthesized by the same method as that disclosed in Synthesis Example 14 (tertiary amino group and ethylenically unsaturated group-containing resin (F-1)) described in Patent Document 5 was used as methacrylic resin solution G.
 400.00gのPGMEAを攪拌装置、温度計、還流冷却機、滴下用ポンプを備えた耐圧容器に仕込み、反応容器内を窒素で満たした後、90℃まで昇温させた。2.00gのメタクリル酸-2-ジメチルアミノエチル、31.00gのメタクリル酸メチル、20.00gのメタクリル酸-2-エチルヘキシル、30.00gのスチレン、17.0gのメタクリル酸と、重合開始剤である2.0gのアゾビスイソブチロニトリルおよび3.0gのノルマルドデシルメルカプタンの混合液を3時間かけて滴下して共重合させた。次いで、反応容器内を空気で置換して10.00gのグリシジルメタクリレートを1時間かけて滴下して付加反応を進行させ、さらに2時間を攪拌して、重量平均分子量(Mw)7000のメタクリル樹脂を含有する樹脂溶液を得た。さらに、固形分20.00質量%となるようにPGMEAを用いて調製した樹脂溶液を、メタクリル樹脂溶液Gとした。 400.00 g of PGMEA was charged into a pressure vessel equipped with a stirrer, a thermometer, a reflux condenser, and a dripping pump, and after filling the reaction vessel with nitrogen, the temperature was raised to 90°C. 2.00 g of 2-dimethylaminoethyl methacrylate, 31.00 g of methyl methacrylate, 20.00 g of 2-ethylhexyl methacrylate, 30.00 g of styrene, 17.0 g of methacrylic acid, and a polymerization initiator. A mixed solution of 2.0 g of azobisisobutyronitrile and 3.0 g of n-dodecyl mercaptan was added dropwise over 3 hours to cause copolymerization. Next, the inside of the reaction vessel was purged with air, and 10.00 g of glycidyl methacrylate was added dropwise over 1 hour to advance the addition reaction, and the mixture was further stirred for 2 hours to form a methacrylic resin with a weight average molecular weight (Mw) of 7000. A containing resin solution was obtained. Furthermore, a resin solution prepared using PGMEA to have a solid content of 20.00% by mass was designated as methacrylic resin solution G.
 (合成例16:メタクリル樹脂溶液Hの合成)
 特許文献6に記載のアクリル樹脂1溶液の合成例と同じ方法で合成した樹脂溶液をメタクリル樹脂溶液Hとした。
(Synthesis Example 16: Synthesis of methacrylic resin solution H)
A resin solution synthesized by the same method as the synthesis example of acrylic resin 1 solution described in Patent Document 6 was designated as methacrylic resin solution H.
 反応容器に800.00gのシクロヘキサノンを入れ、容器に窒素ガスを注入しながら80℃に加熱した。次いで、60.00gのスチレンと、60.00gのメタクリル酸と、65.00gのメチルメタクリレートと、65.00gのブチルメタクリレートと、重合開始剤として10.00gのアゾビスイソブチロニトリルとの混合溶液を反応容器内に1時間かけて滴下した。滴下後、さらに100℃で3時間反応させた後、2.00gのアゾビスイソブチロニトリルを、50.00のシクロヘキサノンに溶解させた溶液を滴下し、さらに100℃1時間反応させて、質量平均分子量が40,000であるメタクリル樹脂を含む溶液を得た。室温まで冷却し、樹脂溶液の固形分が20.00質量%となるようにシクロヘキサノンを用いて希釈し、メタクリル樹脂溶液Hを得た。 800.00 g of cyclohexanone was placed in a reaction vessel and heated to 80°C while nitrogen gas was injected into the vessel. Then, 60.00 g of styrene, 60.00 g of methacrylic acid, 65.00 g of methyl methacrylate, 65.00 g of butyl methacrylate, and 10.00 g of azobisisobutyronitrile as a polymerization initiator were mixed. The solution was added dropwise into the reaction vessel over 1 hour. After the dropwise addition, the reaction was further carried out at 100°C for 3 hours, and then a solution of 2.00g of azobisisobutyronitrile dissolved in 50.00% of cyclohexanone was added dropwise, and the reaction was further carried out at 100°C for 1 hour to reduce the mass. A solution containing a methacrylic resin having an average molecular weight of 40,000 was obtained. It was cooled to room temperature and diluted with cyclohexanone so that the solid content of the resin solution was 20.00% by mass to obtain a methacrylic resin solution H.
 (合成例17:メタクリル樹脂溶液Iの合成)
 特許文献5に記載の合成例3:アルカリ可溶性樹脂A-3と同じ方法で合成した樹脂溶液をメタクリル樹脂溶液Iとした。
(Synthesis Example 17: Synthesis of methacrylic resin solution I)
Synthesis Example 3 described in Patent Document 5: A resin solution synthesized in the same manner as alkali-soluble resin A-3 was designated as methacrylic resin solution I.
 26.10gの4-ヒドロキシフェニルメタクリレート(昭和電工株式会社製「PQMA」)と、13.90gのグリシジルメタクリレート(東京化成工業(株)製)を、100.00gのPGMEA中に添加して30分間攪拌した。別途、熱重合開始剤である3.66gのV-601(富士フイルム和光純薬(株)製)を、15.00gのPGMEAに溶解させた液を添加して10分間攪拌した。得られた2つの溶液を、300mLの3つ口フラスコ中、窒素雰囲気下で液温85℃に維持した45.00gのPGMEAに同時に2時間かけて滴下した。滴下完了後、液温85℃で3時間攪拌して冷却し、重量平均分子量(Mw)8600であり、(b-1)成分に属する、4-ヒドロキシフェニルメタクリレート:グリシジルメタクリレート=mol比率60:40の共重合体を含む溶液を得た。これを、PGMEAを用いて固形分20.00質量%となるように調製して得た樹脂溶液を、メタクリル樹脂溶液Iとした。 26.10 g of 4-hydroxyphenyl methacrylate (PQMA, manufactured by Showa Denko K.K.) and 13.90 g of glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) were added to 100.00 g of PGMEA for 30 minutes. Stirred. Separately, a solution of 3.66 g of V-601 (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), a thermal polymerization initiator, dissolved in 15.00 g of PGMEA was added and stirred for 10 minutes. The two obtained solutions were simultaneously added dropwise over 2 hours to 45.00 g of PGMEA maintained at a liquid temperature of 85° C. under a nitrogen atmosphere in a 300 mL three-necked flask. After completion of the dropwise addition, the liquid was stirred for 3 hours at a temperature of 85°C and cooled to obtain a solution having a weight average molecular weight (Mw) of 8600 and belonging to component (b-1), 4-hydroxyphenyl methacrylate:glycidyl methacrylate = mol ratio of 60:40. A solution containing the copolymer was obtained. A resin solution obtained by preparing this with PGMEA to have a solid content of 20.00% by mass was designated as methacrylic resin solution I.
 (調製例1:色素分散液1の調製)
 (d)成分である900.00gの混合溶剤(PGME:乳酸エチル:GBL=質量比率50:30:20)中に、(b-1)成分である25.00gのポリイミド前駆体Bおよび35.00gのポリベンゾオキサゾール前駆体Dを添加し、30分間攪拌して溶解させた。さらに、(a)成分である40.00gのペリレンブルー色素1を添加して30分間攪拌し、予備攪拌液を得た。次いで、0.05mmφのジルコニアビーズである“トレセラム(登録商標)”(東レ(株)製)が充填率75体積%でベッセル内に充填された縦型ビーズミル“ウルトラアペックスミル アドバンス(登録商標)”;(株)広島メタル&マシナリー製)に予備攪拌液を送液し、循環方式にて周速8m/sで1時間、さらに周速10m/sで3時間の湿式メディア分散処理を行った。開口径0.5μmのフィルタで濾過を行い、固形分10.00質量%の色素分散液1を得た。各原料の配合質量を表1に示す。
(Preparation example 1: Preparation of dye dispersion 1)
In 900.00 g of a mixed solvent (PGME: ethyl lactate: GBL = mass ratio 50:30:20), which is component (d), 25.00 g of polyimide precursor B, which is component (b-1), and 35. 00g of Polybenzoxazole Precursor D was added and stirred for 30 minutes to dissolve. Furthermore, 40.00 g of perylene blue dye 1, which is component (a), was added and stirred for 30 minutes to obtain a pre-stirred liquid. Next, a vertical bead mill “Ultra Apex Mill Advance (registered trademark)” was used, in which the vessel was filled with “Treceram (registered trademark)” (manufactured by Toray Industries, Inc.), which is a 0.05 mmφ zirconia bead, at a filling rate of 75% by volume. ; manufactured by Hiroshima Metal & Machinery Co., Ltd.), and wet media dispersion treatment was carried out using a circulation method at a circumferential speed of 8 m/s for 1 hour and then at a circumferential speed of 10 m/s for 3 hours. Filtration was performed using a filter with an opening diameter of 0.5 μm to obtain a dye dispersion liquid 1 with a solid content of 10.00% by mass. Table 1 shows the blended mass of each raw material.
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
 (調製例2~5:色素分散液2~5の調製)
 ペリレンブルー色素1に替えてペリレンブルー色素2~5をそれぞれ用い、表1に示す各原料の配合量としたこと以外は調製例1と同じ方法で湿式メディア分散処理および濾過を行い、色素分散液2~5を得た。各原料の配合質量を表1に示す。
(Preparation Examples 2 to 5: Preparation of dye dispersions 2 to 5)
Wet media dispersion treatment and filtration were performed in the same manner as in Preparation Example 1, except that perylene blue dyes 2 to 5 were used in place of perylene blue dye 1, and the amounts of each raw material were as shown in Table 1, to obtain a dye dispersion. I got 2-5. Table 1 shows the blended mass of each raw material.
 (調製例6~7:色素分散液6~7の調製)
 ペリレンブルー色素1に替えて、微細化ペリレン顔料Aまたは微細化ジオキサジン顔料B、およびペリレンブルー色素2を用い、表2に示す各原料の配合量とした以外は調製例1と同じ方法でそれぞれ湿式メディア分散処理および濾過を行い、色素分散液6~7を得た。
(Preparation Examples 6-7: Preparation of dye dispersions 6-7)
In place of perylene blue pigment 1, finely divided perylene pigment A or finely divided dioxazine pigment B, and perylene blue pigment 2 were used, and the wet method was carried out in the same manner as in Preparation Example 1, except that the amounts of each raw material were as shown in Table 2. Media dispersion treatment and filtration were performed to obtain dye dispersions 6 to 7.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 (調製例8:色素分散液8の調製)
 混合溶剤(PGME:乳酸エチル:GBL=質量比率50:30:20)に替えて混合溶剤(PGMEA:乳酸エチル:GBL=質量比率50:30:20)を用い、表2に示す各原料の配合量とした以外は、調製例1と同じ方法で湿式メディア分散処理および濾過を行い、色素分散液8を得た。なお、PGMEおよび乳酸エチルは(d-1)成分であり、PGMEAおよびGBLは(d-2)成分である。
(Preparation example 8: Preparation of dye dispersion liquid 8)
Using a mixed solvent (PGMEA: ethyl lactate: GBL = mass ratio 50:30:20) instead of the mixed solvent (PGME: ethyl lactate: GBL = mass ratio 50:30:20), the formulation of each raw material shown in Table 2 A wet media dispersion treatment and filtration were performed in the same manner as in Preparation Example 1, except that the amount was determined, and dye dispersion liquid 8 was obtained. Note that PGME and ethyl lactate are components (d-1), and PGMEA and GBL are components (d-2).
 (調製例9:色素分散液9の調製)
 ポリイミド前駆体Bおよびポリベンゾオキサゾール前駆体Dに替えて、(b-1)成分であるTR4020G(クレゾールノボラック型フェノール樹脂の粉末;旭有機材(株)製)を用い、表2に示す各原料の配合量とした以外は調製例1と同じ方法で湿式メディア分散処理および濾過を行い、色素分散液9を得た。
(Preparation Example 9: Preparation of dye dispersion 9)
In place of polyimide precursor B and polybenzoxazole precursor D, component (b-1) TR4020G (powder of cresol novolac type phenolic resin; manufactured by Asahi Yokuzai Co., Ltd.) was used, and each raw material shown in Table 2 was used. A wet media dispersion treatment and filtration were carried out in the same manner as in Preparation Example 1, except that the amount was changed to obtain a pigment dispersion 9.
 (調製例10:色素分散液10の調製)
 特許文献5に記載の製造例1(着色顔料分散液(DB-1)の製造)で開示された方法に基づいて調製した顔料分散液を、色素分散液10とした。
(Preparation Example 10: Preparation of dye dispersion 10)
A pigment dispersion prepared based on the method disclosed in Production Example 1 (production of colored pigment dispersion (DB-1)) described in Patent Document 5 was designated as pigment dispersion 10.
 1875.2gのPGMEAに、478.50gのメタクリル樹脂溶液Gと、56.30gの分散剤(特開2020-070352号公報の合成例2に記載のアミン価20mgKOH/gの分散剤)を添加して10分間攪拌した。さらに、ラクタムブラック顔料である600.00gの“Irgaphor Black(登録商標)”S0100CF(BASF社製;表中「S0100」)を添加して20分間攪拌して予備攪拌液を得た。0.10mmφジルコニアビーズである“トレセラム(登録商標)”(東レ(株)製)が充填率70体積%でベッセル内に充填された縦型ビーズミル“ウルトラアペックスミル(登録商標)”;(株)広島メタル&マシナリー製)に予備攪拌液を送液し、循環方式にて周速10m/sで3時間の湿式メディア分散処理を行い、固形分25.00質量%であり、顔料:樹脂=質量比率80:20の色素分散液10を得た。各原料の配合量を表2に示す。 To 1875.2 g of PGMEA, 478.50 g of methacrylic resin solution G and 56.30 g of dispersant (dispersant with an amine value of 20 mg KOH / g described in Synthesis Example 2 of JP 2020-070352 A) were added. The mixture was stirred for 10 minutes. Furthermore, 600.00 g of "Irgaphor Black (registered trademark)" S0100CF (manufactured by BASF Corporation; "S0100" in the table), which is a lactam black pigment, was added and stirred for 20 minutes to obtain a pre-stirred liquid. Vertical bead mill "Ultra Apex Mill (registered trademark)" whose vessel is filled with 0.10 mm diameter zirconia beads "Treceram (registered trademark)" (manufactured by Toray Industries, Inc.) at a filling rate of 70% by volume; The pre-stirred liquid was sent to a tank (manufactured by Hiroshima Metal & Machinery) and subjected to wet media dispersion treatment for 3 hours at a circumferential speed of 10 m/s using a circulation method.The solid content was 25.00% by mass, and pigment: resin = mass. A dye dispersion 10 with a ratio of 80:20 was obtained. Table 2 shows the blending amount of each raw material.
 (調製例11:色素分散液11の調製)
 ペリレンブルー色素1に替えて微細化ペリレン顔料Aを用い、表3に示す各原料の配合量とした以外は調製例1と同じ方法でそれぞれ湿式メディア分散処理および濾過を行い、色素分散液11を得た。
(Preparation Example 11: Preparation of dye dispersion liquid 11)
A wet media dispersion treatment and filtration were carried out in the same manner as in Preparation Example 1, except that finely divided perylene pigment A was used in place of perylene blue dye 1, and the amounts of each raw material were as shown in Table 3. Obtained.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
 (調製例12:色素分散液12の調製)
 515.00gのシクロヘキサノンに、アミン系樹脂である5.00gのソルスパース24000(Lubrizol社製)と、ロジン変性マレイン酸樹脂である20.00gのマルキードNo.32(荒川化学(株)製)を添加し、1時間攪拌して溶解させた。さらに、250.00gのメタクリル樹脂溶液Hと、塩基性官能基を有する銅フタロシアニン化合物である10.00gの式(64)で表される化合物と、有機顔料である60.00gのC.I.ピグメントブルー60と、100.00gのC.I.ピグメントイエロー139と、40.00gのC.I.ピグメントバイオレット23を添加し、30分間攪拌して予備攪拌液を得た。次いで、1.0mmφのガラスビーズが充填されたサンドミルを用いて5時間湿式メディア分散処理を行い、開口径1μmのフィルタで濾過して、色素分散液12を得た。
(Preparation example 12: Preparation of dye dispersion liquid 12)
To 515.00 g of cyclohexanone, 5.00 g of Solsperse 24000 (manufactured by Lubrizol), which is an amine resin, and 20.00 g of Marquid No. 2, which is a rosin-modified maleic acid resin, were added. 32 (manufactured by Arakawa Chemical Co., Ltd.) was added and stirred for 1 hour to dissolve. Furthermore, 250.00 g of methacrylic resin solution H, 10.00 g of a compound represented by formula (64) which is a copper phthalocyanine compound having a basic functional group, and 60.00 g of C.I. I. Pigment Blue 60 and 100.00g of C.I. I. Pigment Yellow 139 and 40.00g of C.I. I. Pigment Violet 23 was added and stirred for 30 minutes to obtain a pre-stirred liquid. Next, a wet media dispersion treatment was performed for 5 hours using a sand mill filled with glass beads of 1.0 mmφ, and the mixture was filtered through a filter with an opening diameter of 1 μm to obtain a dye dispersion 12.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 (実施例1)
 黄色灯下、(d)成分である16.47gの混合溶剤(PGME:乳酸エチル:GBL=質量比率50:30:20)中に、(b-1)成分である1.15gのポリイミド前駆体Bと、(c)成分である0.68gのキノンジアジド化合物Eと、7.50gの架橋剤溶液X(本州化学工業(株)製;式(65)で表される化合物および式(66)で表される化合物を、PGME:乳酸エチル:GBL=質量比率50:30:20の混合溶剤を用いて固形分10.00質量%となるように溶解させた溶液)を添加し、30分間攪拌して溶解させた。さらに、24.20gの色素分散液1を添加し、1時間攪拌した後に開口径0.5μmの濾過フィルタを用いて濾過を行い、固形分10.00質量%のポジ型感光性組成物1を得た。各原料の配合量を表4に示す。なお、PGMEおよび乳酸エチルは(d-1)成分である。
(Example 1)
Under yellow light, 1.15 g of polyimide precursor, which is component (b-1), was added to 16.47 g of a mixed solvent (PGME: ethyl lactate: GBL = mass ratio 50:30:20), which is component (d). B, 0.68 g of quinonediazide compound E, which is component (c), and 7.50 g of crosslinking agent solution X (manufactured by Honshu Chemical Industry Co., Ltd.; a compound represented by formula (65) and A solution in which the represented compound was dissolved using a mixed solvent of PGME:ethyl lactate:GBL=mass ratio of 50:30:20 so that the solid content was 10.00% by mass was added, and the mixture was stirred for 30 minutes. and dissolved. Further, 24.20 g of dye dispersion 1 was added, stirred for 1 hour, and then filtered using a filtration filter with an opening diameter of 0.5 μm to obtain positive photosensitive composition 1 with a solid content of 10.00% by mass. Obtained. Table 4 shows the blending amount of each raw material. Note that PGME and ethyl lactate are components (d-1).
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 透明ガラス基材であるテンパックス(AGCテクノグラス(株)製)の表面に、ポジ型感光性組成物1を、後述の窒素雰囲気下250℃で1時間加熱した後の硬化膜の膜厚が1.50μmとなるように回転数を調節してスピンコーターで塗布する塗布工程を行い、塗布膜を得た。ホットプレートを用いて塗布膜を大気圧下110℃で2分間加熱するプリベーク工程を行い、プリベーク膜を得た。露光工程を行わず、前述の最適露光量の測定時と同じ方法で現像工程を行い、ベタ状の現像膜を得た。次いで、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム(株)製)を用いて現像膜を加熱する、1回目のキュア工程(窒素雰囲気下、250℃1時間)を行い、膜厚1.50μmのベタ状の硬化膜を具備する遮光性評価用基板Aを得て、前述の方法で遮光性(OD/μm)を評価した。 The thickness of the cured film after heating the positive photosensitive composition 1 at 250 ° C. for 1 hour in a nitrogen atmosphere described below on the surface of Tempax (manufactured by AGC Techno Glass Co., Ltd.), which is a transparent glass substrate, is as follows. A coating film was obtained by performing a coating process using a spin coater while adjusting the rotation speed so that the coating thickness was 1.50 μm. A prebaking process was performed in which the coated film was heated at 110° C. for 2 minutes under atmospheric pressure using a hot plate to obtain a prebaked film. A development process was performed in the same manner as in the measurement of the optimum exposure amount described above without performing an exposure process, to obtain a solid developed film. Next, a first curing process (under nitrogen atmosphere, 250°C for 1 hour) was performed in which the developed film was heated using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.), and the film thickness was 1 hour. A substrate A for evaluating light-shielding properties having a solid cured film of 50 μm was obtained, and its light-shielding properties (OD/μm) were evaluated by the method described above.
 一方、同じ方法でテンパックス上に現像膜を形成し、1回目のキュア工程(窒素雰囲気下、270℃1時間)を行い、一旦30℃まで自然冷却した後に再び高温イナートオーブンに入れ、さらに2回目のキュア工程(窒素雰囲気下、270℃1時間)を行った基板を遮光性評価用基板Bとし、遮光性(OD/μm)を評価し、前述の方法で遮光性の熱安定性(ΔOD/μm)を評価した。結果を表5に示す。 On the other hand, a developed film was formed on Tempax using the same method, a first curing process was performed (under nitrogen atmosphere, 270°C for 1 hour), and after being naturally cooled to 30°C, it was placed in a high-temperature inert oven again, and then The substrate subjected to the second curing process (270°C for 1 hour in a nitrogen atmosphere) was used as substrate B for evaluating light shielding properties, and the light shielding properties (OD/μm) were evaluated, and the thermal stability of the light shielding properties (ΔOD /μm) was evaluated. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
 次いで、ポジ型露光マスク(直径10.0μmの真円状の透過部が200個配列したホールパターンマスク)に替えて、ポジ型露光マスク(直径10.0μm、9.0μm、8.0μm、7.0μm、6.0μm、5.0μm、4.0μm、3.0μmおよび2.0μmの真円状の透過部が50個ずつ配列したホールパターンマスク)を用いた以外は、前述の最適露光量の測定と同じ方法で、塗布工程、プリベーク工程、露光工程、現像工程およびキュア工程を行い、銀合金膜/ITO膜を具備するガラス基板のITO表面に、ホール状の開口部を有する膜厚1.50μmの硬化膜を具備する解像度評価用基板を得て、前述の方法で解像度を評価した。評価結果を表5に示す。 Next, instead of using a positive exposure mask (a hole pattern mask in which 200 perfectly circular transparent parts with a diameter of 10.0 μm are arranged), a positive exposure mask (diameters of 10.0 μm, 9.0 μm, 8.0 μm, 7 The optimum exposure amount described above was used, except that a hole pattern mask (hole pattern mask in which 50 perfectly circular transparent parts of 0 μm, 6.0 μm, 5.0 μm, 4.0 μm, 3.0 μm, and 2.0 μm were arranged) was used. The coating process, pre-baking process, exposure process, development process, and curing process were performed in the same manner as in the measurement of 1 to 100 ml, and the ITO surface of the glass substrate having the silver alloy film/ITO film was coated with a film thickness of 1. A substrate for resolution evaluation having a cured film of .50 μm was obtained, and the resolution was evaluated by the method described above. The evaluation results are shown in Table 5.
 (実施例2~5)
 表4に示す配合量でポジ型感光性組成物2~5をそれぞれ調製し、実施例1と同じ方法で遮光性評価用基板AおよびBに加えて解像度評価用基板を作製して、前述の方法で遮光性の熱安定性および解像度を評価した結果を表5に示す。
(Examples 2 to 5)
Positive photosensitive compositions 2 to 5 were prepared in the amounts shown in Table 4, and in addition to the light-shielding evaluation substrates A and B, a resolution evaluation substrate was prepared in the same manner as in Example 1. Table 5 shows the results of evaluating the thermal stability and resolution of light shielding properties using the method.
 (実施例6~10)
 表6に示す配合量でポジ型感光性組成物6~10をそれぞれ調製し、実施例1と同じ方法で遮光性評価用基板AおよびBに加えて解像度評価用基板を作製し、前述の方法で遮光性の熱安定性および解像度を評価した結果を表7に示す。なお、ポジ型感光性組成物8の調製でのみ、架橋剤溶液Y(本州化学工業(株)製;式(65)で表される化合物および式(66)で表される化合物を、PGMEA:乳酸エチル:GBL=質量比率50:30:20の混合溶剤を用いて固形分10.00質量%となるように溶解させた溶液)を用いた。
(Examples 6 to 10)
Positive photosensitive compositions 6 to 10 were each prepared in the amounts shown in Table 6, and in addition to substrates A and B for light-shielding evaluation were prepared in the same manner as in Example 1, a substrate for resolution evaluation was prepared, and the same method was used as described above. Table 7 shows the results of evaluating the thermal stability and resolution of light shielding properties. In addition, only in the preparation of positive photosensitive composition 8, crosslinking agent solution Y (manufactured by Honshu Chemical Industry Co., Ltd.; the compound represented by formula (65) and the compound represented by formula (66) were mixed with PGMEA: A solution prepared by dissolving ethyl lactate:GBL using a mixed solvent with a mass ratio of 50:30:20 to give a solid content of 10.00% by mass was used.
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 (比較例1)
 黄色灯下、26.50gの混合溶剤(乳酸エチル:GBL=質量比率50:50)に、6.35gのポリイミド前駆体Bと、1.81gのキノンジアジド化合物Fを添加し30分間攪拌して溶解させた。次いで、前述の製造例3で得た0.64gの造塩染料Cと、染料である1.63gのC.I.ソルベントブルー45と、前述の10.89gの架橋剤溶液Xと、1.27gの式(67)で表される化合物と、0.73gの式(68)で表される化合物と、0.18gの式(69)で表される化合物を添加し、1時間攪拌して溶解させ、ポジ型感光性組成物11を調製した。各原料の配合質量を表8に示す。次いで、ポジ型感光性組成物11を用いて、実施例1と同じ方法で遮光性評価用基板AおよびBに加えて解像度評価用基板を作製し、前述の方法で遮光性の熱安定性および解像度を評価した。結果を表9に示す。
(Comparative example 1)
Under yellow light, 6.35 g of polyimide precursor B and 1.81 g of quinonediazide compound F were added to 26.50 g of mixed solvent (ethyl lactate: GBL = mass ratio 50:50) and dissolved by stirring for 30 minutes. I let it happen. Next, 0.64 g of salt-forming dye C obtained in Production Example 3 and 1.63 g of C. dye were added. I. Solvent Blue 45, the aforementioned 10.89 g of crosslinking agent solution X, 1.27 g of the compound represented by formula (67), 0.73 g of the compound represented by formula (68), and 0.18 g A compound represented by formula (69) was added and dissolved by stirring for 1 hour to prepare positive photosensitive composition 11. Table 8 shows the blended mass of each raw material. Next, using the positive photosensitive composition 11, a resolution evaluation substrate was prepared in addition to the light-shielding evaluation substrates A and B in the same manner as in Example 1, and the thermal stability of the light-shielding property and the The resolution was evaluated. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
 (比較例2)
 表8に示す配合量でポジ型感光性組成物12を調製し、実施例1と同じ方法で遮光性評価用基板AおよびBに加えて解像度評価用基板を作製し、前述の方法で遮光性の熱安定性および解像度を評価した。結果を表9に示す。
(Comparative example 2)
A positive photosensitive composition 12 was prepared with the amount shown in Table 8, and in addition to the light-shielding evaluation substrates A and B in the same manner as in Example 1, a resolution evaluation substrate was prepared. The thermal stability and resolution were evaluated. The results are shown in Table 9.
 (比較例3)
 24.34gのPGMEA中に、14.22gのメタクリル樹脂溶液Iと、ラジカル重合性化合物である2.12gのジペンタエリスリトールヘキサアクリレート(日本化薬(株)製;表中「DPHA」)と、光重合開始剤である0.27gの“アデカアークルズ”(登録商標)NCI-831(ADEKA(株)製;表中「NCI-831」)と、シリコーン系界面活性剤である0.01gのBYK-333(ビックケミー社製)を添加して30分間攪拌した。さらに、9.05gの色素分散液10を添加して1時間攪拌し、固形分15.00質量%のネガ型感光性組成物1を調製した。各原料の配合質量を表10に示す。
(Comparative example 3)
In 24.34 g of PGMEA, 14.22 g of methacrylic resin solution I and 2.12 g of dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.; "DPHA" in the table), which is a radically polymerizable compound, 0.27 g of "ADEKA Arkles" (registered trademark) NCI-831 (manufactured by ADEKA Corporation; "NCI-831" in the table), which is a photopolymerization initiator, and 0.01 g, which is a silicone surfactant. BYK-333 (manufactured by BYK Chemie) was added and stirred for 30 minutes. Further, 9.05 g of dye dispersion 10 was added and stirred for 1 hour to prepare negative photosensitive composition 1 with a solid content of 15.00% by mass. Table 10 shows the blended mass of each raw material.
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
 テンパックスの表面に、ネガ型感光性組成物1を、後述の窒素雰囲気下250℃で1時間加熱した後の硬化膜の膜厚が1.50μmとなるように回転数を調節してスピンコーターで塗布する塗布工程を行い、塗布膜を得た。ホットプレートを用いて塗布膜を大気圧下110℃で2分間加熱するプリベーク工程を行い、プリベーク膜を得た。前述の方法で測定した最適露光量で露光工程を行い、前述の最適露光量の測定時と同じ方法で現像工程を行い、ベタ状の現像膜を得た。次いで、実施例1と同じ方法で遮光性評価用基板AおよびBを得て、前述の方法で遮光性の熱安定性を評価した。評価結果を表11に示す。 Negative photosensitive composition 1 was applied to the surface of Tempax using a spin coater with the rotation speed adjusted so that the thickness of the cured film after heating at 250° C. for 1 hour in a nitrogen atmosphere (described later) would be 1.50 μm. A coating film was obtained by performing a coating process. A prebaking process was performed in which the coated film was heated at 110° C. for 2 minutes under atmospheric pressure using a hot plate to obtain a prebaked film. An exposure step was carried out using the optimum exposure amount measured by the method described above, and a developing step was carried out in the same manner as in the measurement of the optimum exposure amount described above, to obtain a solid developed film. Next, substrates A and B for evaluating light-shielding properties were obtained in the same manner as in Example 1, and the thermal stability of the light-shielding properties was evaluated by the method described above. The evaluation results are shown in Table 11.
 次いで、ネガ型露光マスク(直径10.0μm、9.0μm、8.0μm、7.0μm、6.0μm、5.0μm、4.0μm、3.0μmおよび2.0μmの真円状の遮蔽部が50個ずつ配列したホールパターンマスク)を用いた以外は、前述の最適露光量の測定と同じ方法で、塗布工程、プリベーク工程、露光工程、現像工程およびキュア工程を行い、銀合金膜/ITO膜を具備するガラス基板のITO表面に、ホール状の開口部を有する膜厚1.50μmの硬化膜を具備する解像度評価用基板を得て、前述の方法で解像度を評価した。評価結果を表11に示す。 Next, a negative exposure mask (complete circular shielding portions with diameters of 10.0 μm, 9.0 μm, 8.0 μm, 7.0 μm, 6.0 μm, 5.0 μm, 4.0 μm, 3.0 μm, and 2.0 μm) The coating process, pre-bake process, exposure process, development process and curing process were carried out in the same manner as in the measurement of the optimum exposure dose described above, except that a hole pattern mask (with 50 hole pattern masks arranged each) was used, and the silver alloy film/ITO A resolution evaluation substrate having a cured film having a thickness of 1.50 μm and having hole-shaped openings on the ITO surface of a glass substrate having the film was obtained, and the resolution was evaluated using the method described above. The evaluation results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
 (比較例4)
 20.64gのシクロヘキサノン中に、1.85gのメタクリル樹脂溶液Hと、ラジカル重合性化合物である2.00gのジペンタエリスリトールヘキサアクリレートと、光重合開始剤である0.50gの“Irgacure”(登録商標)369(BASF社製;表中「Irgacure369」)を添加して30分間攪拌した。さらに、25.01gの色素分散液12を添加して1時間攪拌し、固形分20.00質量%のネガ型感光性組成物2を調製した。各原料の配合質量を表10に示す。次いで、ネガ型感光性組成物2を用いて、比較例3と同じ方法で遮光性評価用基板AおよびBに加えて解像度評価用基板を作製し、前述の方法で遮光性の熱安定性および解像度を評価した。評価結果を表11に示す。
(Comparative example 4)
In 20.64 g of cyclohexanone, 1.85 g of methacrylic resin solution H, 2.00 g of dipentaerythritol hexaacrylate which is a radical polymerizable compound, and 0.50 g of "Irgacure" (registered) which is a photopolymerization initiator. Trademark) 369 (manufactured by BASF; "Irgacure 369" in the table) was added and stirred for 30 minutes. Further, 25.01 g of dye dispersion 12 was added and stirred for 1 hour to prepare negative photosensitive composition 2 with a solid content of 20.00% by mass. Table 10 shows the blended mass of each raw material. Next, using the negative photosensitive composition 2, a resolution evaluation substrate was prepared in addition to the light-shielding evaluation substrates A and B in the same manner as in Comparative Example 3, and the thermal stability of the light-shielding property and the The resolution was evaluated. The evaluation results are shown in Table 11.
 (比較例5)
 表10に示す配合量でネガ型感光性組成物3を調製し、実施例1と同じ方法で遮光性評価用基板AおよびBに加えて解像度評価用基板を作製し、前述の方法で遮光性の熱安定性および解像度を評価した結果を表11に示す。
(Comparative example 5)
Negative photosensitive composition 3 was prepared with the amount shown in Table 10, and in addition to the light-shielding evaluation substrates A and B in the same manner as in Example 1, a resolution evaluation substrate was prepared. Table 11 shows the results of evaluating the thermal stability and resolution of .
 (調製例13:色素分散液13の調製)
 (d)成分である360.00gの混合溶剤(PGME:乳酸エチル:GBL=質量比率50:30:20)中に、(b-1)成分である10.00gのポリイミド前駆体Bおよび14.00gのポリベンゾオキサゾール前駆体Dを添加し、30分間攪拌して溶解させた。さらに、(a)成分と(f)成分の塩である16.00gのペリレンブルー色素6を添加して30分間攪拌して溶解させて予備攪拌液を得た。予備攪拌液中にペリレンブルー色素6の不溶分が僅かに含まれていたため、0.05mmφのジルコニアビーズである“トレセラム(登録商標)”(東レ(株)製)が充填率75体積%でベッセル内に充填された縦型ビーズミル“ウルトラアペックスミル(登録商標)”;(株)広島メタル&マシナリー製)に予備攪拌液を送液し、循環方式にて周速8m/sで30分間の湿式メディア分散処理を行った。開口径0.5μmのフィルタで濾過を行い、固形分10.00質量%の色素分散液13を得た。各原料の配合質量を表12に示す。
(Preparation Example 13: Preparation of dye dispersion liquid 13)
In 360.00 g of a mixed solvent (PGME: ethyl lactate: GBL = mass ratio 50:30:20), which is component (d), 10.00 g of polyimide precursor B, which is component (b-1), and 14. 00g of Polybenzoxazole Precursor D was added and stirred for 30 minutes to dissolve. Furthermore, 16.00 g of perylene blue dye 6, which is a salt of components (a) and (f), was added and stirred for 30 minutes to dissolve it, thereby obtaining a pre-stirred liquid. Because the pre-stirred liquid contained a small amount of insoluble perylene blue dye 6, 0.05 mm diameter zirconia beads "Treceram (registered trademark)" (manufactured by Toray Industries, Inc.) were added to the vessel at a filling rate of 75% by volume. The pre-stirred liquid was sent to the vertical bead mill “Ultra Apex Mill (registered trademark)” (manufactured by Hiroshima Metal & Machinery Co., Ltd.) filled in the interior, and wet-processed for 30 minutes at a circumferential speed of 8 m/s using a circulation method. Performed media distribution processing. Filtration was performed using a filter with an opening diameter of 0.5 μm to obtain a dye dispersion liquid 13 with a solid content of 10.00% by mass. Table 12 shows the blended mass of each raw material.
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
 (調製例14~16:色素分散液14~16の調製)
 ペリレンブルー色素6に替えてペリレンブルー色素7、ペリレンブルー色素8、ペリレンブルー色素9をそれぞれ用いた以外は調製例13と同じ方法で、色素分散液14~16を得た。各原料の配合質量を表12に示す。
(Preparation Examples 14 to 16: Preparation of dye dispersions 14 to 16)
Dye dispersions 14 to 16 were obtained in the same manner as in Preparation Example 13, except that Perylene Blue Dye 7, Perylene Blue Dye 8, and Perylene Blue Dye 9 were used in place of Perylene Blue Dye 6. Table 12 shows the blended mass of each raw material.
 (実施例11~13、および実施例27)
 表13に示す配合量でポジ型感光性組成物13~16をそれぞれ調製し、実施例1と同じ方法で遮光性評価用基板AおよびBに加えて解像度評価用基板を作製して、前述の方法で遮光性の熱安定性および解像度を評価した。結果を表14に示す。
(Examples 11 to 13 and Example 27)
Positive photosensitive compositions 13 to 16 were prepared in the amounts shown in Table 13, and in addition to the light-shielding evaluation substrates A and B, a resolution evaluation substrate was prepared in the same manner as in Example 1. The thermal stability and resolution of light shielding properties were evaluated using the method. The results are shown in Table 14.
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
 (実施例14)
 以下の方法でポジ型感光性組成物1の硬化膜を含有する画素分割層、および画素分割層を具備する有機EL表示装置を作製した。
図3に、画素分割層の形成工程を含む有機EL表示装置の作製工程を示す。
縦70mm/横70mmの無アルカリガラス基板12の表面に、スパッタ法により銀合金(99.00重量%の銀と、1.00重量%の銅からなる合金)を全面成膜した。アルカリ可溶性ノボラック系ポジ型レジストを用いて、液温30℃の銀合金エッチング液に浸漬してエッチングして、膜厚50nmのパターン状の銀合金膜13を得た。さらに、スパッタ法によりITO膜(インジウム-錫酸化物)を全面成膜した。アルカリ可溶性ノボラック系ポジ型レジストを用いて液温50℃の5重量%シュウ酸水溶液に5分間浸漬し、脱イオン水で2分間シャワー水洗した後にエアーブローで乾燥させ、膜厚10nmの同パターン状のITO膜14を得た。以上の工程により、無アルカリガラス基板の表面に、銀合金膜/ITO膜の積層パターンからなる第一電極を具備する第一電極形成基板を得た。
(Example 14)
A pixel dividing layer containing a cured film of positive photosensitive composition 1 and an organic EL display device including the pixel dividing layer were manufactured by the following method.
FIG. 3 shows a manufacturing process of an organic EL display device including a process of forming a pixel division layer.
A silver alloy (an alloy consisting of 99.00% by weight of silver and 1.00% by weight of copper) was deposited on the entire surface of an alkali-free glass substrate 12 measuring 70 mm in length and 70 mm in width by sputtering. Using an alkali-soluble novolak positive type resist, etching was performed by immersing it in a silver alloy etching solution at a liquid temperature of 30° C. to obtain a patterned silver alloy film 13 with a thickness of 50 nm. Furthermore, an ITO film (indium-tin oxide) was formed on the entire surface by sputtering. Using an alkali-soluble novolak positive resist, it was immersed in a 5% by weight oxalic acid aqueous solution at a temperature of 50°C for 5 minutes, washed with deionized water for 2 minutes, and then dried with air blow to form the same pattern with a film thickness of 10 nm. An ITO film 14 was obtained. Through the above steps, a first electrode-forming substrate having a first electrode formed of a laminated pattern of a silver alloy film/ITO film on the surface of an alkali-free glass substrate was obtained.
 ポジ型感光性組成物1を、スピンコーターを用いて、最終的に得られる画素分割層の膜厚が1.50μmとなるように回転数を調節して、第一電極形成基板の表面に塗布し、塗布膜を得た。さらに、ホットプレートを用いて、塗布膜を大気圧下110℃で120秒間プリベークして、プリベーク膜を得た。ポジ型露光マスク(真円状の透過部が200個配列したホールパターンマスク)を介して、前述の方法で求めた最適露光量でプリベーク膜にパターン露光して露光膜を得た。なお、ポジ型露光マスクの透過部の開口幅は、前述の(2)硬化膜の解像度および突起状異物欠陥の評価において、各種ポジ型感光性組成物の解像度が得られたときの開口幅とそれぞれ同一となるようにした。すなわち、ポジ型感光性組成物1の場合、真円状の透過部の直径が4.0μmであるホールパターンマスクを用いた。なお、パターン露光はポジ型露光マスクをプリベーク膜の表面に接触させて行った。次いで、最適露光量の評価時と同じ方法で現像、リンスおよび乾燥を行い、パターン状の現像膜を得た。高温イナートガスオーブンを用いて現像膜を窒素雰囲気下270℃で2時間加熱して、第一電極形成基板中央部の縦30mm/横30mmのエリア内に、開口部を200個有する画素分割層15を具備する画素分割層形成基板を得た。 Positive photosensitive composition 1 is coated on the surface of the first electrode forming substrate using a spin coater, adjusting the rotation speed so that the thickness of the final pixel dividing layer is 1.50 μm. A coating film was obtained. Furthermore, the coated film was prebaked for 120 seconds at 110° C. under atmospheric pressure using a hot plate to obtain a prebaked film. The prebaked film was pattern-exposed to light through a positive exposure mask (a hole pattern mask having 200 perfectly circular transparent portions arranged) at the optimum exposure amount determined by the method described above to obtain an exposed film. Note that the opening width of the transparent part of the positive exposure mask is the same as the opening width when the resolution of various positive photosensitive compositions is obtained in the above-mentioned (2) resolution of cured film and evaluation of protruding foreign matter defects. I made sure that they were the same. That is, in the case of positive photosensitive composition 1, a hole pattern mask having a perfectly circular transparent portion having a diameter of 4.0 μm was used. Note that pattern exposure was performed by bringing a positive exposure mask into contact with the surface of the prebaked film. Next, development, rinsing and drying were performed in the same manner as in the evaluation of the optimum exposure amount to obtain a patterned developed film. The developed film was heated at 270° C. for 2 hours in a nitrogen atmosphere using a high-temperature inert gas oven to form a pixel dividing layer 15 having 200 openings in an area of 30 mm long/30 mm wide at the center of the first electrode forming substrate. A pixel division layer forming substrate was obtained.
 次に、真空蒸着法により発光層を含む有機EL層16を、画素分割層15の開口部に形成するため、真空度1×10-3Pa以下の蒸着条件下で、蒸着源に対して画素分割層形成基板を回転させ、まず、正孔注入層として、式(100)で表される化合物(HT-1)を10nm、正孔輸送層として、式(101)で表される化合物(HT-2)を50nmの厚さで成膜した。次に、発光層上に、ホスト材料として、式(102)で表される化合物(GH-1)、ドーパント材料として式(103)で表される化合物(GD-1)を40nmの厚さで蒸着した。次いで、電子輸送材料として式(104)で表される化合物(ET-1)と、式(105)で表される化合物(LiQ)を、体積比1:1で40nmの厚さで積層した。 Next, in order to form the organic EL layer 16 including the light-emitting layer in the opening of the pixel dividing layer 15 by vacuum evaporation, the pixel is The split layer forming substrate was rotated, and first, as a hole injection layer, a compound (HT-1) represented by formula (100) was added to a thickness of 10 nm, and as a hole transport layer, a compound (HT-1) represented by formula (101) was added to a thickness of 10 nm. -2) was formed into a film with a thickness of 50 nm. Next, a compound (GH-1) represented by formula (102) as a host material and a compound (GD-1) represented by formula (103) as a dopant material are placed on the light emitting layer to a thickness of 40 nm. Deposited. Next, a compound (ET-1) represented by formula (104) and a compound (LiQ) represented by formula (105) were laminated as electron transport materials at a volume ratio of 1:1 to a thickness of 40 nm.
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 次に、化合物(LiQ)を2nm蒸着した後、銀/マグネシウム合金(体積比10:1)を厚さ150nmとなるように蒸着して第二電極17を形成した。次いで、低湿/窒素雰囲気下、エポキシ樹脂系接着剤を用いて、キャップ状ガラス板を接着することにより封止し、グリーンの発光画素が配列した有機EL表示装置を得た。なお、有機EL層16を構成する各層は、前述の画素分割層と比べて非常に薄く、触針式膜厚測定装置では高い測定精度が得られないため、100nm未満の薄膜に好適な水晶発振式膜厚モニターを用いてそれぞれ測定し、面内3点の平均値の少数点第一位を四捨五入して得られた値を膜の厚さとした。作製した有機EL表示装置の解像度を前述の方法で評価した結果を表15に示す。 Next, a compound (LiQ) was deposited to a thickness of 2 nm, and then a silver/magnesium alloy (volume ratio 10:1) was deposited to a thickness of 150 nm to form the second electrode 17. Next, a cap-shaped glass plate was adhered and sealed using an epoxy resin adhesive under a low humidity/nitrogen atmosphere to obtain an organic EL display device in which green light-emitting pixels were arranged. Note that each layer constituting the organic EL layer 16 is extremely thin compared to the pixel dividing layer described above, and a stylus-type film thickness measuring device cannot obtain high measurement accuracy. Each was measured using a type film thickness monitor, and the value obtained by rounding off the average value at three points within the plane to the first decimal place was taken as the film thickness. Table 15 shows the results of evaluating the resolution of the manufactured organic EL display device using the method described above.
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
 (実施例15~26、および実施例28)
 ポジ型感光性組成物1に替えて、ポジ型感光性組成物2~10および13~16をそれぞれ用いて実施例14と同じ方法で有機EL表示装置を作製し、有機EL表示装置の解像度を前述の方法で評価した結果を表15に示す。
(Examples 15 to 26 and Example 28)
An organic EL display device was produced in the same manner as in Example 14 using positive photosensitive compositions 2 to 10 and 13 to 16 instead of positive photosensitive composition 1, and the resolution of the organic EL display device was Table 15 shows the results evaluated by the method described above.
 (参考例1)
 2.75gのポリイミド前駆体Bを、24.75gの混合溶剤(PGME:乳酸エチル:GBL=質量比率50:30:20)に溶解させ、さらに、22.50gの色素分散液11を添加して攪拌し、参考組成物1を調製した。参考組成物1は(c)成分を含有せず、ネガ型、ポジ型いずれの感光性も有さない組成物である。配合量を表16に示す。
(Reference example 1)
2.75 g of polyimide precursor B was dissolved in 24.75 g of a mixed solvent (PGME: ethyl lactate: GBL = mass ratio 50:30:20), and further 22.50 g of pigment dispersion 11 was added. The mixture was stirred to prepare Reference Composition 1. Reference composition 1 is a composition that does not contain component (c) and does not have either negative or positive photosensitivity. Table 16 shows the blending amounts.
 次いで、参考組成物1を、プリベーク工程後に得られるプリベーク膜の波長560nmにおける透過率が10%となるように回転数を調節してスピンコーターで塗布する塗布工程を行い、テンパックスの表面に塗布膜を得た。ホットプレートを用いて塗布膜を大気圧下110℃で2分間加熱するプリベーク工程を行い、プリベーク膜を得た。分光光度計U-4100(日立製作所製)を用い、得られたプリベーク膜の波長350~650nmにおける透過率を測定した。測定結果を図4のグラフ中、破線で示す。また、動的光散乱法に基づく粒度分布測定装置SZ-100(堀場製作所製)を用いて参考組成物1を測定したところ、粒度分布が出力されたことから、微細化ペリレン顔料Aが参考組成物1中で顔料として存在すると考えられた。 Next, a coating process was performed in which Reference Composition 1 was coated on the surface of Tempax by adjusting the rotation speed so that the prebaked film obtained after the prebaking process had a transmittance of 10% at a wavelength of 560 nm using a spin coater. A membrane was obtained. A prebaking process was performed in which the coated film was heated at 110° C. for 2 minutes under atmospheric pressure using a hot plate to obtain a prebaked film. The transmittance of the obtained prebaked film at a wavelength of 350 to 650 nm was measured using a spectrophotometer U-4100 (manufactured by Hitachi, Ltd.). The measurement results are shown by broken lines in the graph of FIG. In addition, when Reference Composition 1 was measured using a particle size distribution analyzer SZ-100 (manufactured by Horiba, Ltd.) based on the dynamic light scattering method, the particle size distribution was output. It was thought that it existed as a pigment in substance 1.
 (参考例2)
 色素分散液11に替えて、色素分散液16を用い、表16に示す配合量で参考組成物2を調製した。参考組成物2は(c)成分を含有せず、ネガ型、ポジ型いずれの感光性も有さない組成物である。参考組成物2を用いて、参考例1と同じ方法でプリベーク膜を得て、波長350~650nmにおける透過率を測定した。測定結果を図4のグラフ中、実線で示す。参考例1と参考例2の比較から、ペリレンブルー色素9は、微細化ペリレン顔料Aと比べて、波長560nmにおける透過率が同一であるとき、近紫外線領域の透過率が相対的に高く、高い解像度を得る上で好適な色材であると考えられた。また、参考例1と同じ方法でSZ-100を用いて参考組成物2を測定したところ、粒子成分が検出されなかったことから、ペリレンブルー色素9は参考組成物2中で完全に溶解形態の染料として存在すると考えられた。
(Reference example 2)
Reference Composition 2 was prepared using Dye Dispersion 16 in place of Dye Dispersion 11 in the amounts shown in Table 16. Reference composition 2 is a composition that does not contain component (c) and does not have either negative or positive photosensitivity. A prebaked film was obtained using Reference Composition 2 in the same manner as in Reference Example 1, and the transmittance at a wavelength of 350 to 650 nm was measured. The measurement results are shown as a solid line in the graph of FIG. Comparison of Reference Example 1 and Reference Example 2 shows that Perylene Blue Pigment 9 has a relatively higher transmittance in the near ultraviolet region than Fine Perylene Pigment A when the transmittance at a wavelength of 560 nm is the same. It was considered to be a suitable coloring material for obtaining resolution. Furthermore, when Reference Composition 2 was measured using SZ-100 in the same manner as Reference Example 1, no particle components were detected, indicating that perylene blue dye 9 was completely dissolved in Reference Composition 2. It was thought to exist as a dye.
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000081
 以上の結果から、実施例1~13、および実施例27におけるポジ型感光性組成物は、比較例1~2におけるポジ型感光性組成物、および比較例3~5におけるネガ型感光性組成物と比べて、高い遮光性の熱安定性と高い解像度を兼ね備えた硬化膜を、突起状異物欠陥の発生を抑制して形成できることがわかる。また、本発明の硬化膜を含有する画素分割層を具備する有機EL表示装置は解像度に優れていることがわかる。 From the above results, the positive photosensitive compositions in Examples 1 to 13 and Example 27 are the same as the positive photosensitive compositions in Comparative Examples 1 to 2 and the negative photosensitive compositions in Comparative Examples 3 to 5. It can be seen that it is possible to form a cured film that has both high light-shielding thermal stability and high resolution while suppressing the occurrence of protruding foreign particle defects. Furthermore, it can be seen that the organic EL display device including the pixel dividing layer containing the cured film of the present invention has excellent resolution.
 したがって、本発明のポジ型感光性組成物、硬化膜、有機EL表示装置、および色素が有用であることがわかる。 Therefore, it can be seen that the positive photosensitive composition, cured film, organic EL display device, and dye of the present invention are useful.
 本発明のポジ型感光性組成物は、高い遮光性の熱安定性と、高い解像度が求められる用途に有用であり、有機EL表示装置の画素分割層やTFT平坦化層の他、マイクロLEDディスプレイの平坦化層、液晶表示装置のブラックマトリクス、液晶表示装置のブラックカラムスペーサー、固体撮像素子の近赤外線透過性可視光遮蔽膜などを形成するための材料として好ましく利用することができる。中でも、有機EL表示装置が具備する画素分割層やTFT平坦化層を形成するための材料として特に好ましく利用することができる。 The positive photosensitive composition of the present invention is useful for applications requiring high light-shielding thermal stability and high resolution, and is useful in applications such as pixel dividing layers and TFT flattening layers of organic EL display devices, as well as micro LED displays. It can be preferably used as a material for forming a flattening layer for liquid crystal display devices, a black matrix for liquid crystal display devices, a black column spacer for liquid crystal display devices, a near-infrared transparent visible light shielding film for solid-state imaging devices, and the like. Among these, it can be particularly preferably used as a material for forming a pixel dividing layer and a TFT flattening layer included in an organic EL display device.
1:TFT
2:配線
3:TFT絶縁層
4:平坦化層
5:第一電極
6:基板
7:コンタクトホール
8:画素分割層
9:発光画素
10:第二電極
11:突起状異物欠陥
12:無アルカリガラス基板
13:銀合金膜
14:ITO膜
15:画素分割層
16:有機EL層
17:第二電極
1: TFT
2: Wiring 3: TFT insulating layer 4: Flattening layer 5: First electrode 6: Substrate 7: Contact hole 8: Pixel division layer 9: Light-emitting pixel 10: Second electrode 11: Protruding foreign matter defect 12: Alkali-free glass Substrate 13: Silver alloy film 14: ITO film 15: Pixel division layer 16: Organic EL layer 17: Second electrode

Claims (10)

  1. (a)式(1)で表される化合物および/または式(2)で表される化合物と、(b)樹脂と、(c)光酸発生剤と、(d)有機溶剤を含有するポジ型感光性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R、R、R、R、R、R、RおよびRは、それぞれ独立に、水素原子、-SOH、-SO 、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、-CF、-F、-Brまたは-CNを表す。ただし、R、R、R、R、R、R、RおよびR中、-SOHおよび-SO の合計数は1~4である。
    、R10、R11およびR12は、それぞれ独立に、水素原子、-OH、-F、-Br、-CNまたは炭素数1~5のアルコキシ基を表す。ただし、RとR10、R11とR12は、それぞれ独立に、互いに結合して連結基-X-であってもよい。-X-は、-O-または-SO-を表す。
    式(2)中、R13、R14、R15、R16、R17、R18、R19およびR20は、それぞれ独立に、水素原子、-SOH、-SO 、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、-CF、-F、-Brまたは-CNを表す。ただし、R13、R14、R15、R16、R17、R18、R19およびR20中、-SOHおよび-SO の合計数は1~4である。
    21、R22、R23およびR24は、それぞれ独立に、水素原子、-OH、-F、-Br、-CNまたは炭素数1~5のアルコキシ基を表す。ただし、R21とR22、R23とR24は、それぞれ独立に、互いに結合して連結基-X-であってもよい。-X-は、-O-または-SO-を表す。)
    A positive material containing (a) a compound represented by formula (1) and/or a compound represented by formula (2), (b) a resin, (c) a photoacid generator, and (d) an organic solvent. type photosensitive composition.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN.However, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 , the total number of -SO 3 H and -SO 3 - is 1 to 4.
    R 9 , R 10 , R 11 and R 12 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 9 and R 10 and R 11 and R 12 may each independently be bonded to each other to form a linking group -X 1 -. -X 1 - represents -O- or -SO 2 -.
    In formula (2), R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, the total number of -SO 3 H and -SO 3 - in R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 is 1 to 4.
    R 21 , R 22 , R 23 and R 24 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 21 and R 22 and R 23 and R 24 may each independently be bonded to each other to form a linking group -X 2 -. -X 2 - represents -O- or -SO 2 -. )
  2. 前記(a)成分が、式(5)で表される化合物および/または式(6)で表される化合物を含有する請求項1に記載のポジ型感光性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(5)中、R25およびR26は、それぞれ独立に、-SOHまたは-SO を表す。nおよびnは整数であり、それぞれ独立に、0~2を表す。ただし、nおよびnの合計数は1~4である。
    式(6)中、R27およびR28は、それぞれ独立に、-SOHまたは-SO を表す。nおよびnは整数であり、それぞれ独立に、0~2を表す。ただし、nおよびnの合計数は1~4である。)
    The positive photosensitive composition according to claim 1, wherein the component (a) contains a compound represented by formula (5) and/or a compound represented by formula (6).
    Figure JPOXMLDOC01-appb-C000002
    (In formula (5), R 25 and R 26 each independently represent -SO 3 H or -SO 3 - . n 1 and n 2 are integers and each independently represent 0 to 2. However, the total number of n 1 and n 2 is 1 to 4.
    In formula (6), R 27 and R 28 each independently represent -SO 3 H or -SO 3 - . n 3 and n 4 are integers and each independently represents 0 to 2. However, the total number of n 3 and n 4 is 1 to 4. )
  3. さらに、(f)式(70)で表される化合物を含有する請求項1または2に記載のポジ型感光性組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(70)中、R81はNまたはPを表す。R82、R83、R84およびR85は、それぞれ独立に、-OHまたはフェニル基が置換していてもよい炭素数1~20のアルキル基、フェニル基または水素原子を表す。ただし、R81がNである場合、R82、R83、R84およびR85中、水素原子の合計数は0~2であり、R81がPである場合、R82、R83、R84およびR85中、水素原子の合計数は0である。)
    The positive photosensitive composition according to claim 1 or 2, further comprising (f) a compound represented by formula (70).
    Figure JPOXMLDOC01-appb-C000003
    (In formula (70), R 81 represents N + or P + . R 82 , R 83 , R 84 and R 85 each independently have a carbon number of 1 which may be substituted with -OH or a phenyl group. ~20 alkyl group, phenyl group, or hydrogen atom.However, when R 81 is N + , the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 to 2, When R 81 is P + , the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0.)
  4. 前記(b)樹脂が、(b-1)フェノール性水酸基含有樹脂を含有し、該(b-1)フェノール性水酸基含有樹脂が、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体およびそれらの共重合体からなる群より選ばれる少なくとも1種の樹脂を含有する請求項1または2に記載のポジ型感光性組成物。 The (b) resin contains (b-1) a phenolic hydroxyl group-containing resin, and the (b-1) phenolic hydroxyl group-containing resin contains a polyimide, a polyimide precursor, a polybenzoxazole precursor, and a copolymer thereof. The positive photosensitive composition according to claim 1 or 2, which contains at least one resin selected from the group consisting of:
  5. さらに、(e)式(30)で表される化合物、式(31)で表される化合物およびトリフェンジオキサジン骨格を有する化合物からなる群より選ばれる少なくとも1種の化合物を含有する請求項1または2に記載のポジ型感光性組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(30)および式(31)中、R61、R62、R63、R64、R65、R66、R67およびR68は、それぞれ独立に、水素原子、-F、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表す。)
    1 or 2, further comprising (e) at least one compound selected from the group consisting of a compound represented by formula (30), a compound represented by formula (31), and a compound having a triphendioxazine skeleton. 2. The positive photosensitive composition according to 2.
    Figure JPOXMLDOC01-appb-C000004
    (In formula (30) and formula (31), R 61 , R 62 , R 63 , R 64 , R 65 , R 66 , R 67 and R 68 each independently represent a hydrogen atom, -F, or a carbon number of 1 ~3 alkyl group or an alkoxy group having 1 to 3 carbon atoms.)
  6. 前記(c)光酸発生剤が、(c-1)式(22)で表される基を分子内に2つ以上有し、かつフェノール性水酸基を有する化合物、式(23)で表される基を分子内に2つ以上有し、かつフェノール性水酸基を有する化合物、および式(22)で表される基と式(23)で表される基を有し、かつフェノール性水酸基を有する化合物、からなる群より選ばれる少なくとも1種の化合物を含有する請求項1または2に記載のポジ型感光性組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(22)中、R54、R55、R56およびR57は、それぞれ独立に、水素原子、炭素数1~5のアルキル基または炭素数1~5のアルコキシ基を表す。*は結合部位を表す。)
    (式(23)中、R58、R59およびR60は、それぞれ独立に、水素原子、炭素数1~5のアルキル基または炭素数1~5のアルコキシ基を表す。*は結合部位を表す。)
    The (c) photoacid generator is (c-1) a compound having two or more groups represented by formula (22) in the molecule and a phenolic hydroxyl group, and a compound represented by formula (23). Compounds having two or more groups in the molecule and having a phenolic hydroxyl group, and compounds having a group represented by formula (22) and a group represented by formula (23) and having a phenolic hydroxyl group 3. The positive photosensitive composition according to claim 1, comprising at least one compound selected from the group consisting of.
    Figure JPOXMLDOC01-appb-C000005
    (In formula (22), R 54 , R 55 , R 56 and R 57 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. * is a bond (Represents the part.)
    (In formula (23), R 58 , R 59 and R 60 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. * represents a bonding site. .)
  7. 前記(d)成分が、(d-1)水酸基を有する有機溶剤を含有し、該(d-1)成分の含有量が前記(d)成分100質量%中、50質量%以上である請求項1または2に記載のポジ型感光性組成物。 Component (d) contains (d-1) an organic solvent having a hydroxyl group, and the content of component (d-1) is 50% by mass or more based on 100% by mass of component (d). 3. The positive photosensitive composition according to 1 or 2.
  8. 請求項1または2に記載のポジ型感光性組成物の硬化物を含有する硬化膜。 A cured film containing a cured product of the positive photosensitive composition according to claim 1 or 2.
  9. 画素分割層および平坦化層を具備する有機EL表示装置であって、
    該画素分割層および/または該平坦化層が請求項8に記載の硬化膜を含有する、有機EL表示装置。
    An organic EL display device comprising a pixel dividing layer and a planarization layer,
    An organic EL display device, wherein the pixel dividing layer and/or the planarization layer contain the cured film according to claim 8.
  10. (f)式(70)で表される化合物に加えて、(a)式(85)で表される化合物および/または式(86)で表される化合物を含む色素。
    Figure JPOXMLDOC01-appb-C000006
    (式(70)中、R81はNまたはPを表す。R82、R83、R84およびR85は、それぞれ独立に、-OHまたはフェニル基が置換していてもよい炭素数1~20のアルキル基、フェニル基または水素原子を表す。ただし、R81がNである場合、R82、R83、R84およびR85中、水素原子の合計数は0~2であり、R81がPである場合、R82、R83、R84およびR85中、水素原子の合計数は0である。
    式(85)中、R91、R92、R93、R94、R95、R96、R97およびR98は、それぞれ独立に、水素原子、-SOH、-SO 、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、-CF、-F、-Brまたは-CNを表す。ただし、R91、R92、R93、R94、R95、R96、R97およびR98中、-SOHおよび-SO の合計数は1~4であり、少なくとも1つは-SO である。
    99、R100、R101およびR102は、それぞれ独立に、水素原子、-OH、-F、-Br、-CNまたは炭素数1~5のアルコキシ基を表す。ただし、R99とR100、R101とR102は、それぞれ独立に、互いに結合して連結基-X-であってもよい。-X-は、-O-または-SO-を表す。
    式(86)中、R103、R104、R105、R106、R107、R108、R109およびR110は、それぞれ独立に、水素原子、-SOH、-SO 、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、-CF、-F、-Brまたは-CNを表す。ただし、R103、R104、R105、R106、R107、R108、R109およびR110中、-SOHおよび-SO の合計数は1~4であり、少なくとも1つは-SO である。
    111、R112、R113およびR114は、それぞれ独立に、水素原子、-OH、-F、-Br、-CNまたは炭素数1~5のアルコキシ基を表す。ただし、R111とR112、R113とR114は、それぞれ独立に、互いに結合して連結基-X-であってもよい。-X-は、-O-または-SO-を表す。)
    (f) A dye containing, in addition to the compound represented by formula (70), (a) a compound represented by formula (85) and/or a compound represented by formula (86).
    Figure JPOXMLDOC01-appb-C000006
    (In formula (70), R 81 represents N + or P + . R 82 , R 83 , R 84 and R 85 each independently have a carbon number of 1 which may be substituted with -OH or a phenyl group. ~20 alkyl group, phenyl group, or hydrogen atom.However, when R 81 is N + , the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0 to 2, When R 81 is P + , the total number of hydrogen atoms in R 82 , R 83 , R 84 and R 85 is 0.
    In formula (85), R 91 , R 92 , R 93 , R 94 , R 95 , R 96 , R 97 and R 98 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, in R 91 , R 92 , R 93 , R 94 , R 95 , R 96 , R 97 and R 98 , the total number of -SO 3 H and -SO 3 - is 1 to 4, and at least one -SO 3 - .
    R 99 , R 100 , R 101 and R 102 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 99 and R 100 and R 101 and R 102 may each independently be bonded to each other to form a linking group -X 3 -. -X 3 - represents -O- or -SO 2 -.
    In formula (86), R 103 , R 104 , R 105 , R 106 , R 107 , R 108 , R 109 and R 110 each independently represent a hydrogen atom, -SO 3 H, -SO 3 - , carbon number Represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, -CF 3 , -F, -Br or -CN. However, in R 103 , R 104 , R 105 , R 106 , R 107 , R 108 , R 109 and R 110 , the total number of -SO 3 H and -SO 3 - is 1 to 4, and at least one -SO 3 - .
    R 111 , R 112 , R 113 and R 114 each independently represent a hydrogen atom, -OH, -F, -Br, -CN or an alkoxy group having 1 to 5 carbon atoms. However, R 111 and R 112 and R 113 and R 114 may each independently be bonded to each other to form a linking group -X 4 -. -X 4 - represents -O- or -SO 2 -. )
PCT/JP2023/029066 2022-08-19 2023-08-09 Positive-type photosensitive composition, cured film, organic el display device, and colorant WO2024038810A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022130869 2022-08-19
JP2022-130869 2022-08-19
JP2022204058 2022-12-21
JP2022-204058 2022-12-21

Publications (1)

Publication Number Publication Date
WO2024038810A1 true WO2024038810A1 (en) 2024-02-22

Family

ID=89942453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029066 WO2024038810A1 (en) 2022-08-19 2023-08-09 Positive-type photosensitive composition, cured film, organic el display device, and colorant

Country Status (1)

Country Link
WO (1) WO2024038810A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526013A (en) * 2003-04-25 2006-11-16 日東電工株式会社 Lyotropic liquid crystal systems based on perylenetetracarboxylic acid dibenzimidazole sulfo derivatives
JP2008143885A (en) * 2006-11-15 2008-06-26 Nitto Denko Corp Method for refining polycyclic compound, method for producing the same, and use of the same
JP2009098243A (en) * 2007-10-15 2009-05-07 Nitto Denko Corp Polarizing film and liquid crystal display device
WO2018038083A1 (en) * 2016-08-24 2018-03-01 東レ株式会社 Black pigment, method for producing same, pigment dispersion liquid, photosensitive composition and cured product of said photosensitive composition
WO2019058964A1 (en) * 2017-09-25 2019-03-28 富士フイルム株式会社 Curable composition, film, infrared transmitting filter, solid-state imaging element and optical sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526013A (en) * 2003-04-25 2006-11-16 日東電工株式会社 Lyotropic liquid crystal systems based on perylenetetracarboxylic acid dibenzimidazole sulfo derivatives
JP2008143885A (en) * 2006-11-15 2008-06-26 Nitto Denko Corp Method for refining polycyclic compound, method for producing the same, and use of the same
JP2009098243A (en) * 2007-10-15 2009-05-07 Nitto Denko Corp Polarizing film and liquid crystal display device
WO2018038083A1 (en) * 2016-08-24 2018-03-01 東レ株式会社 Black pigment, method for producing same, pigment dispersion liquid, photosensitive composition and cured product of said photosensitive composition
WO2019058964A1 (en) * 2017-09-25 2019-03-28 富士フイルム株式会社 Curable composition, film, infrared transmitting filter, solid-state imaging element and optical sensor

Similar Documents

Publication Publication Date Title
TWI705304B (en) Negative photosensitive resin composition, cured film, organic EL display with cured film, and manufacturing method thereof
TW574620B (en) Precursor composition of positive photosensitive resin and display device using it
TWI725250B (en) Resin composition, resin sheet, cured film, organic EL display device, semiconductor electronic part, semiconductor device, and method of manufacturing organic EL display device
JP7120022B2 (en) Organic EL display device and method for forming pixel division layer and planarization layer
KR20190130123A (en) Negative photosensitive resin composition, cured film, the element provided with cured film, organic electroluminescent display, and its manufacturing method
TWI485522B (en) Positive photosensitive resin composition, and photosensitive resin layer and display device using the same
TW201618297A (en) Organic el display device
WO2018123853A1 (en) Organic el display device
JP7106863B2 (en) Photosensitive resin composition for organic EL display device
TWI770283B (en) Photosensitive resin composition, cured film, element provided with cured film, organic EL display device provided with cured film, manufacturing method of cured film, and manufacturing method of organic EL display device
JPWO2018003808A1 (en) Negative photosensitive resin composition, cured film, element provided with cured film, display device provided with element, and organic EL display
KR20190089849A (en) Organic EL display device
CN116261688A (en) Photosensitive resin composition, cured product, display device, and method for producing cured product
WO2021182499A1 (en) Organic el display device and photosensitive resin composition
TWI450032B (en) A photosensitive resin composition, a hardened embossed pattern, and a semiconductor device
JP7342887B2 (en) Photosensitive composition, negative photosensitive composition, pixel dividing layer and organic EL display device
WO2022270182A1 (en) Positive photosensitive pigment composition, cured film containing cured product thereof, and organic el display device
WO2024038810A1 (en) Positive-type photosensitive composition, cured film, organic el display device, and colorant
TW202106760A (en) Photosensitive resin composition, photosensitive resin sheet, cured film, method for producing cured film, organic el display device and electronic component
WO2021171984A1 (en) Organic el display device, production method for cured product, and production method for organic el display device
WO2023195319A1 (en) Positive photosensitive pigment composition, cured film containing cured product thereof, and organic el display device
CN117043676A (en) Positive photosensitive pigment composition, cured film containing cured product thereof, and organic EL display device
WO2023067908A1 (en) Organic el display device
WO2023171284A1 (en) Photosensitive resin composition, cured article, method for manufacturing cured article, organic el display device, and display device
WO2023095785A1 (en) Photosensitive resin composition, cured article, organic el display device, semiconductor device, and method for producing cured article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854844

Country of ref document: EP

Kind code of ref document: A1