WO2024038768A1 - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
WO2024038768A1
WO2024038768A1 PCT/JP2023/028386 JP2023028386W WO2024038768A1 WO 2024038768 A1 WO2024038768 A1 WO 2024038768A1 JP 2023028386 W JP2023028386 W JP 2023028386W WO 2024038768 A1 WO2024038768 A1 WO 2024038768A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
terminal
base station
group
gnb
Prior art date
Application number
PCT/JP2023/028386
Other languages
French (fr)
Japanese (ja)
Inventor
天楊 閔
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2024038768A1 publication Critical patent/WO2024038768A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present disclosure relates to a terminal compatible with interactive services.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project: registered trademark
  • 5G New Radio (NR) or Next Generation (NG)
  • NG Next Generation
  • 5G New Radio
  • NG Next Generation
  • 6G 6th Generation
  • Non-Patent Document 1 XR (Extended Reality) services that can be realized using NR networks and the like.
  • XR refers to a composite environment of reality and virtuality generated by a computer.
  • the XR service there is a transmission period in which only DL data such as video traffic is transmitted from the base station to the terminal, and a transmission period in which DL and UL data is transmitted between the terminal and the base station (interactive service period).
  • the interactive service period the frequency of occurrence of UL data may increase, so power saving of the terminal is required. Also, low latency (low delay) of UL data is required.
  • parameters related to the interactive service period settings (DRX config, ConfiguredGrantConfig, SPS config, etc.) must be set appropriately in the wireless network (base station, etc.). It is important to set the timing.
  • Non-Patent Document 2 a proposal has been made to switch a plurality of parameters set in DRX config using L1/L2 signaling (for example, Non-Patent Document 3).
  • setting multiple DRX config means that multiple DRX groups (DRX group1, DRX group2, DRX group3, etc.) are set.
  • the conventional technology does not specify how to change the DRX configuration set in multiple DRX groups. Therefore, there is a possibility that power saving cannot be achieved in a terminal that uses the XR service.
  • the following disclosure has been made in view of this situation, and aims to provide a terminal that can realize power saving in interactive services.
  • One aspect of the present disclosure provides a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted in a specific period between a terminal and a base station, and sets the groups to an active state. or a receiving unit that receives information for inactivating the base station from the base station.
  • One aspect of the present disclosure provides a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted in a specific period between a terminal and a base station; a receiving unit that receives from the base station, using a media access control control element, a signal for switching parameters for each group, or a signal indicating that the parameters included in a plurality of groups are to be switched all at once. It is a terminal.
  • One aspect of the present disclosure provides a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception that are transmitted in a specific period between a terminal and a base station, and a control unit that is used in the terminal.
  • a transmitter that transmits to the base station, by a media access control control element, a signal requesting the parameters for each group, or a signal requesting the parameters of a plurality of groups used by the terminal all at once;
  • a terminal equipped with A terminal equipped with .
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10 according to this embodiment.
  • FIG. 2 is a functional block configuration diagram of the gNB 100 and the UE 200.
  • FIG. 3 is a functional block configuration diagram of the AMF 50.
  • FIG. 4 is a diagram for explaining mapping between DRX groups and serving cells.
  • FIG. 5 is a diagram for explaining a method for activating or deactivating a DRX group.
  • FIG. 6 is a diagram for explaining mapping between DRX groups and serving cells.
  • FIG. 7 is a diagram for explaining a method of switching parameters set in a DRX group.
  • FIG. 8 is a diagram for explaining a method of switching parameters set in a DRX group.
  • FIG. 9 is a diagram for explaining a method of selecting a DRX cycle.
  • FIG. 10 is a diagram for explaining how to set DRX cycle and drx-InactivityTimer.
  • FIG. 11 is a diagram for explaining how to set DRX cycle and drx-InactivityTimer.
  • FIG. 12 is a diagram showing an example of the DRX cycle.
  • FIG. 13 is a diagram showing an example of the DRX cycle.
  • FIG. 14 is a diagram showing an example of the hardware configuration of the gNB 100, the UE 200, and the AMF 50.
  • FIG. 15 is a diagram showing a configuration example of vehicle 2001.
  • FIG. 1 is an overall schematic configuration diagram of wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system compliant with 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a head-mounted terminal 200.
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network 20
  • head-mounted terminal 200 head-mounted terminal 200.
  • the head-mounted terminal 200 is an example of an information terminal that is attached to the user's head so as to cover the user's eyes.
  • the head-mounted terminal 200 is also an example of an information terminal that supports interactive services such as XR services.
  • the head-mounted terminal 200 may be interpreted as an information terminal capable of transmitting and receiving DL data and UL data (DL and UL data) transmitted during a specific period between the head-mounted terminal 200 and the wireless base station 100. good.
  • the head-mounted terminal 200 may be expressed as a "UE (User Equipment) 200" or simply as a "terminal 200.”
  • the UE 200 may include wearable information terminals such as a watch-type, goggle-type, bracelet-type, and necklace-type. Further, the UE 200 may include an information terminal such as a mobile phone, a portable game machine, a portable information terminal, or an electronic book terminal.
  • the portable information terminal may include a smartphone, a tablet information terminal, and the like.
  • the interactive service may be interpreted as a CG (Cloud Gaming) service in which information is distributed interactively.
  • the CG service is a service in which operation data indicating the operation of the UE 200 is sent to a specific server, various game processes are executed in the server, and the execution results are streamed to the UE 200 as video and audio.
  • the interactive service may be interpreted as a service in which information is distributed interactively, and may include, for example, the following services in addition to the XR (Extended Reality) service.
  • interactive services to which the invention of the present disclosure is applied include services that display comments, etc. input by viewers (UE200 users) of content distributed from a network, superimposed on the content; This may include services that allow users to experience the experience of participating in content distribution.
  • the interactive service may be interpreted as a traffic model of DL and UL data for applications such as VR (Virtual Reality) and AR (Augmented Reality).
  • VR Virtual Reality
  • AR Augmented Reality
  • the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
  • the NG-RAN 20 includes a wireless base station 100 (hereinafter referred to as gNB 100). Note that the specific configuration of the wireless communication system 10 including the number of gNBs 100 and UEs 200 is not limited to the example shown in FIG. 1.
  • the NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNB 100 (or ng-eNB), and is connected to a 5G-compliant core network 40 (which may also be referred to as 5GC). .
  • the NG-RAN 20 is connected to an Access and Mobility Management Function 50 (AMF 50) that is included in the 5G system architecture and provides access and mobility management functions for the UE 200.
  • AMF 50 Access and Mobility Management Function 50
  • network elements other than the wireless communication system 10 for example, a private network (NPN: Non-Public Network), etc.
  • NPN Non-Public Network
  • the gNB 100 is a radio base station that complies with the NR, and performs radio communication with the UE 200 in accordance with the NR.
  • the gNB 100 may be configured with a CU (Central Unit) and a DU (Distributed Unit), and the DU may be separated from the CU and installed at a geographically different location.
  • CU Central Unit
  • DU Distributed Unit
  • the gNB 100 and the UE 200 perform Massive MIMO, which generates a more highly directional beam by controlling radio signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which uses multiple component carriers (CC) in a bundle; Also, it is possible to support dual connectivity (DC) in which communication is performed simultaneously between the UE 200 and each of a plurality of NG-RAN nodes.
  • Massive MIMO which generates a more highly directional beam by controlling radio signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which uses multiple component carriers (CC) in a bundle;
  • CA Carrier Aggregation
  • DC dual connectivity
  • a Neighbor Relationship Table (NRT) and a Neighbor Cell R (NCRT) are applied to handover (HO) of the UE 200 to another cell and manage identification information (CGI: Cell Global Identifier) of neighboring cells. elation Table) and ) may be used.
  • the contents of the NRT may be manually set in advance, but an ANR (Automatic Neighbor Relation) function that automatically associates neighboring cell information (CGI) may be introduced.
  • FIG. 2 is a functional block configuration diagram of the gNB 100 and the UE 200.
  • FIG. 3 is a functional block configuration diagram of the AMF 50. Note that in FIGS. 2 and 3, only main functional blocks related to the description of the embodiments are shown, and the gNB 100, UE 200, and AMF 50 have other functional blocks (for example, a power supply unit, etc.). I want to be Further, FIGS. 2 and 3 show functional block configurations of the gNB 100, UE 200, and AMF 50, and please refer to FIG. 14 for the hardware configuration of these devices.
  • the radio signal transmitting/receiving unit 210 of the UE 200 (gNB 100) transmits and receives radio signals according to NR.
  • the radio signal transmitting/receiving unit 210 uses Massive MIMO, which generates a highly directional beam by controlling radio (RF) signals transmitted from a plurality of antenna elements, and a carrier that uses a plurality of component carriers (CC) in a bundle. It is possible to support aggregation (CA), dual connectivity (DC) in which communication is performed simultaneously between the UE 200 and each of two NG-RAN nodes, and the like.
  • Massive MIMO which generates a highly directional beam by controlling radio (RF) signals transmitted from a plurality of antenna elements, and a carrier that uses a plurality of component carriers (CC) in a bundle.
  • CC component carriers
  • CA aggregation
  • DC dual connectivity
  • the amplifier unit 220 of the UE 200 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier), etc.
  • the amplifier section 220 amplifies the signal output from the modulation/demodulation section 230 to a specific power level. Furthermore, the amplifier section 220 amplifies the RF signal output from the radio signal transmitting/receiving section 210.
  • the modulation/demodulation unit 230 of the UE 200 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each specific communication destination (gNB 100, etc.).
  • the modulation/demodulation section 230 performs Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread ( DFT-S-OFDM) may be applied.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-Spread
  • DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal/reference signal processing unit 240 of the UE 200 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
  • the control signal/reference signal processing unit 240 of the gNB 100 executes processing related to various control signals transmitted and received by the gNB 100 and processing related to various reference signals transmitted and received by the gNB 100.
  • the control signal/reference signal processing unit 240 of the UE 200 uses reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS). Execute the specified processing.
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a reference signal (pilot signal) known between a terminal-specific base station and the terminal for estimating a fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • reference signals include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Posit for location information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Posit for location information
  • the channels include a control channel and a data channel.
  • the control channels include PDCCH, PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), and Random Access Radio Network.
  • Downlink Control Information (DCI) including Temporary Identifier (RA-RNTI), Physical Broadcast Channel (PBCH), etc. may be included.
  • data channels include PDSCH, PUSCH (Physical Uplink Shared Channel), and the like.
  • Data may refer to data transmitted over a data channel.
  • control signal/reference signal processing unit 240 of the UE 200 processes parameters related to uplink data and downlink discontinuous reception (DRX) transmitted during a specific period between the terminal and the base station.
  • a control unit may be configured to set a plurality of groups including the following.
  • Parameters related to discontinuous reception may include the following parameters.
  • drx-SlotOffset may be interpreted as the delay time before starting drx-onDurationTimer.
  • drx-InactivityTimer may be interpreted as the duration of a PDCCH occasion in which the PDCCH indicates a new UL (uplink) transmission or DL (downlink) transmission of the MAC entity.
  • drx-RetransmissionTimerDL may be interpreted as the maximum duration time until receiving DL (downlink) retransmission.
  • drx-RetransmissionTimerDL may be interpreted as the maximum duration until receiving a DL (downlink) retransmission for each DL HARQ (Hybrid Automatic Repeat Request) process, excluding broadcast processes.
  • drx-RetransmissionTimerUL may be interpreted as the maximum duration time until receiving a grant for UL retransmission for each UL HARQ process.
  • drx-LongCycleStartOffset may be interpreted as drx-StartOffset that defines the Long DRX cycle and the subframe in which the Long DRX cycle and the Short DRX cycle are started.
  • drx-ShortCycle (optional) may be interpreted as Short DRX cycle.
  • drx-ShortCycleTimer (optional) may be interpreted as the time during which the UE continues the Short DRX cycle.
  • drx-HARQ-RTT-TimerDL may be interpreted as the minimum period until DL allocation for HARQ retransmission is expected by the MAC entity.
  • drx-HARQ-RTT-TimerDL may be interpreted as the minimum period until a DL allocation for HARQ retransmissions is expected by the MAC entity for each DL HARQ process, excluding broadcast processes.
  • drx-HARQ-RTT-TimerUL may be interpreted as the minimum time before a UL HARQ retransmission is expected to be granted by the MAC entity for each UL HARQ process.
  • drx-RetransmissionTimerSL may be interpreted as the maximum duration until receiving a grant for SL retransmission for each SL (side link) HARQ process.
  • drx-HARQ-RTT-TimerSL may be interpreted as the minimum duration before an SL retransmission grant is expected by the MAC entity for each SL HARQ process.
  • control signal/reference signal processing unit 240 of the UE 200 may constitute a control unit that performs mapping between the group and the serving cell of the terminal using a radio resource control layer (RRC).
  • RRC radio resource control layer
  • the encoding/decoding unit 250 of the UE 200 (gNB 100) performs data division/concatenation, channel coding/decoding, etc. for each specific communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmitting/receiving unit 260 into predetermined sizes, and performs channel coding on the divided data. Furthermore, the encoding/decoding section 250 decodes the data output from the modulation/demodulation section 230 and concatenates the decoded data.
  • the data transmission/reception unit 260 of the UE 200 executes transmission and reception of Protocol Data Units (PDUs) and Service Data Units (SDUs). Specifically, the data transmitting/receiving unit 260 transmits PDUs/SDUs in multiple layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble/disassemble etc. Further, the data transmitter/receiver 260 performs data error correction and retransmission control based on hybrid ARQ (Hybrid automatic repeat request).
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • the data transmitting/receiving unit 260 transmits PDUs/SDUs in multiple layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble/disassemble etc. Further, the data transmitter/receiver 260 performs data error
  • the data transmitting/receiving unit 260 may constitute a receiving unit that receives information for setting the group into an active state or an inactive state from the base station.
  • the data transmitting/receiving unit 260 transmits a signal indicating that parameters included in the group are to be switched for each group, or a signal indicating that the parameters included in a plurality of groups are to be switched all at once, for media access control.
  • the control element may configure a receiving section that receives data from the base station.
  • the data transmitting/receiving unit 260 sends a signal requesting the parameters to be used in the terminal for each group, or a signal requesting the parameters of a plurality of groups to be used in the terminal all at once to the media.
  • a transmitter that transmits to the base station may be configured by an access control control element.
  • the control unit 270 controls each functional block that configures the UE 200.
  • the AMF 50 includes a communication section 51, a transmission section 52, and a control section 53.
  • the communication unit 51 transmits signals to the gNB 100 and receives signals transmitted from the gNB 100.
  • the control unit 53 controls each functional block that constitutes the AMF 50.
  • the XR service there is a transmission period in which only DL data such as video traffic is transmitted from the base station to the terminal, and a transmission period in which DL and UL data is transmitted between the terminal and the base station (interactive service period).
  • the interactive service period the frequency of occurrence of UL data may increase, so power saving of the terminal is required. Also, low latency (low delay) of UL data is required.
  • parameters related to the interactive service period settings (DRX config, ConfiguredGrantConfig, SPS config, etc.) must be set appropriately in the wireless network (base station, etc.). It is important to set the timing.
  • setting multiple DRX config means that multiple DRX groups (DRX group1, DRX group2, DRX group3, etc.) are set.
  • the conventional technology does not specify how to change the DRX configuration set in multiple DRX groups.
  • Second issue In the conventional technology, when multiple DRX groups are set and multiple DRX parameters (for example, drx-onDurationTimer, drx-InactivityTimer, drx-SlotOffset, etc.) are set for each DRX group, It is not specified how to switch between multiple DRX parameters.
  • DRX parameters for example, drx-onDurationTimer, drx-InactivityTimer, drx-SlotOffset, etc.
  • rel-17 TS 38.321 contains the following description regarding setting two DRX groups for a MAC entity.
  • Serving Cells of a MAC entity may be configured by RRC in two DRX groups with separate DRX parameters.
  • RRC does not configure a secondary DRX group, there is only one DRX group and all Serving Cells belong to that one DRX group.
  • each Serving Cell is uniquely assigned to either of the two groups.
  • the DRX parameters that are separately configured for each DRX group are: drx-onDurationTimer, drx-InactivityTimer.
  • drx-SlotOffset drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-LongCycleStartOffset, drx-ShortCycle (optional), drx-ShortCycleTimer (optional), drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, and uplinkHARQ -Mode (optional).
  • DRX length e.g. short DRX cycle, long DRX cycle, etc.
  • ON/OFF of drx-InactivityTimer, etc. depending on the The power saving effect may be improved.
  • RRCReconfiguration is required to change short DRX cycle, long DRX cycle, drx-InactivityTimer, etc. set in the existing DRX config, and changing these settings may take a long time.
  • activation/deactivation of short DRX cycle, long DRX cycle, drx-InactivityTimer, etc. cannot be dynamically set.
  • the conventional technology may not be able to realize power saving in terminals that use XR services.
  • the NW may activate/deactivate the DRX group for the UE using the MAC CE (control element for media access control).
  • the MAC CE control element for media access control
  • the field of DRX group(i) i is a natural number of 1 or more
  • the DRX group becomes activated. If the DRX group(i) field is set to 0, the DRX group will be in a deactivated state.
  • NW may be interpreted as gNB100 or AMF50.
  • the serving cell that was using that DRX group may use the configuration of the default DRX group (see Figure 4), or it may use the configuration of another DRX group (DRX group other than the default DRX group). configuration may also be used.
  • the gNB 100 and/or the UE 200 may perform mapping between DRX groups and serving cells using RRC. Specifically, as shown in FIG. 5, the gNB 100 and/or the UE 200 may perform mapping with corresponding serving cells for each DRX group using RRC. Furthermore, the gNB 100 and/or the UE 200 may perform mapping with a corresponding DRX group for each serving cell. The gNB 100 and/or the UE 200 may define one DRX group among multiple DRX groups as a default DRX group.
  • the gNB 100 and/or the UE 200 may perform (re)mapping between the serving cell and the DRX group using MAC CE. Specifically, the gNB 100 and/or the UE 200 may perform (re)mapping between the serving cell and the DRX group using the MAC CE in the format shown in FIG.
  • the Serving cell ID field indicates the serving cell ID.
  • the DRX group ID field indicates the DRX group ID used by the serving cell.
  • the NW may instruct the UE to (re)map the serving cell and DRX group using the MAC CE shown in FIG. 6.
  • the UE may request (re)mapping between the serving cell and the DRX group from the NW using the MAC CE shown in FIG. 6.
  • the NW may switch multiple DRX parameters in the DRX configuration for each DRX group using the MAC CE for the UE.
  • the NW may switch the DRX parameters of multiple DRX groups all at once for the UE using the MAC CE.
  • the UE may transmit a request signal to the NW using the MAC CE to indicate which DRX parameter to use for each DRX group.
  • the UE may transmit a request signal to the NW, using the MAC CE, to request the DRX parameters set for multiple DRX groups all at once.
  • the NW may switch the DRX parameter for the UE using the MAC CE in the format shown on the right side of FIG.
  • the UE may request the NW for the DRX parameters it wishes to use using the MAC CE.
  • the DRX Group ID field indicates the DRX Group whose DRX parameters are to be changed.
  • the drx-OnDurationTimer field indicates the drx-OnDurationTimer switching value. For example, 0001 indicates value1 set in RRC. 0010 indicates value2.
  • the drx-InactivityTimer field indicates the drx-InactivityTimer switching value. For example, 0001 indicates value1 set in RRC. 0010 indicates value2.
  • the drx-slotOffset field indicates the drx-slotOffset switching value. For example, 0001 indicates value1 set in RRC. 0010 indicates value2.
  • the drx-shortCycleStartOffset field indicates the switching value of drx-shortCycleStartOffset. For example, 0001 indicates value1 set in RRC. 0010 indicates value2.
  • the drx-longCycleStartOffset field indicates the switching value of drx-longCycleStartOffset. For example, 0001 indicates value1 set in RRC. 0010 indicates value2.
  • multiple DRX parameter values may be set for each DRX group using RRC. After that, you can dynamically switch each parameter value using MAC CE.
  • the DRX parameters may be switched using the MAC CE in the format shown in FIG.
  • the desired DRX parameters may be requested using the MAC CE in the format shown in FIG.
  • the UE may request the NW to use short DRX cycle or long DRX cycle using MAC CE or PUCCH.
  • the UE may send the request depending on the arrival status of UL data.
  • the UE may autonomously decide whether it wants to use short DRX cycle or long DRX cycle.
  • the NW may instruct the UE via MAC CE or PDCCH as to whether the UE should use short DRX cycle or long DRX cycle after the drx-InactivityTimer expires.
  • the NW may transmit the request (instruction) depending on the arrival status of DL data.
  • the NW or UE may set short DRX cycle or long DRX cycle and activate/deactivate drx-InactivityTimer for each DRX group using the MAC CE shown in FIG. 10.
  • the DRX Group ID field refers to the DRX Group for which you want to change the DRX parameters.
  • S field refers to the activation/deactivation state of short DRX cycle. When S field is set to 1, it refers to the activated state. When S field is set to 0, it refers to the deactivated state.
  • L field refers to the activation/deactivation state of Long DRX cycle. When L field is set to 1, it refers to the activated state. When L field is set to 0, it refers to deactivated state.
  • I field refers to the activation/deactivation state of drx-InactivityTimer. When the I field is set to 1, it refers to the activated state. When the I field is set to 0, it refers to the deactivated state. R indicates this field is reserved.
  • the NW may instruct the UE to set short DRX cycle or long DRX cycle and activate/deactivate drx-InactivityTimer in the MAC CE.
  • the UE may request the NW for short DRX cycle or long DRX cycle settings and drx-InactivityTimer activation/deactivation preferences in the relevant MAC CE.
  • the NW or UE may set short DRX cycle or long DRX cycle for multiple DRX groups and activate/deactivate drx-InactivityTimer all at once using MAC CE (see FIG. 11).
  • the NW may instruct the UE to set short DRX cycles or long DRX cycles for multiple DRX groups and activate/deactivate drx-InactivityTimer using the MAC CE.
  • the UE may request the short DRX cycle or long DRX cycle settings of multiple DRX groups and drx-InactivityTimer activation/deactivation preferences from the NW using the MAC CE.
  • the words “configure”, “activate”, “update”, “indicate”, “enable”, “specify”, and “select” can be read interchangeably. good.
  • the words “link”, “associate”, “correspond” and “map” may be used interchangeably, and “allocate”, “assign”, and “monitor” may be used interchangeably.
  • map may also be read interchangeably.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, allocation gning), but these are limited to I can't.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • FIG. 14 is a diagram showing an example of the hardware configuration of the gNB 100, the UE 200, and the AMF 50.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the device may include one or more of the devices shown in the figure, or may not include some of the devices.
  • Each functional block of the device (see FIGS. 2 and 3) is realized by any hardware element of the computer device or a combination of hardware elements.
  • each function in the device is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations, controls communication by the communication device 1004, and controls the memory This is realized by controlling at least one of reading and writing data in the storage 1002 and the storage 1003.
  • predetermined software programs
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the memory 1002 is a computer-readable recording medium, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable RO. Consisting of at least one of M (EEPROM), Random Access Memory (RAM), etc. may be done.
  • Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store programs (program codes), software modules, etc. that can execute a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 1003 may also be called an auxiliary storage device.
  • the above-mentioned recording medium may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplexing (Frequency Division Duplex: FDD) and time division duplexing (Time Division Duplex: TDD). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the device includes a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic Consists of hardware such as Device (PLD), Field Programmable Gate Array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic Consists of hardware
  • PLD Device
  • FPGA Field Programmable Gate Array
  • processor 1001 may be implemented using at least one of these hardwares.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the information notification may be performed using physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information) Block (MIB), System Information Block (SIB)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, for example, RRC Connection Setup (RRC Connection Setup).
  • the message may be a setup message, an RRC connection reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication 4G
  • 5th generation mobile communication system 5G
  • Future Radio Access (FRA) New Radio
  • NR New Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate systems and systems that are extended based on these.
  • It may be applied to at least one next generation system.
  • a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the gNB 100 may be performed by its upper node in some cases.
  • various operations performed for communication with UE 200 are performed by gNB 100 and other network nodes other than gNB 100 (for example, MME or S-GW). It is clear that this can be carried out by at least one of the following methods (conceivable, but not limited to).
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • Information, signals can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information that is input and output may be overwritten, updated, or additionally written. The output information may be deleted. The input information may be sent to other devices.
  • the determination may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of the foregoing. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • BS Base Station
  • eNB wireless base station
  • gNodeB gNodeB
  • Access Points "Transmission Point”, “Receive Point”, “Sending Points (Transmission / Reception Point)", "Sel”, “Sel” “Sector”, “Cell Group”, "
  • carrier “component carrier”, etc.
  • the gNB 100 may also be called a macro cell, a small cell, a femto cell, a pico cell, or the like.
  • the gNB 100 can accommodate one or more (for example, three) cells (also called sectors). When the gNB 100 accommodates multiple cells, the entire coverage area of the gNB 100 can be divided into multiple smaller areas, and each smaller area is divided into a base station subsystem (e.g., an indoor small base station (Remote Radio Head: Communication services can also be provided by RRH).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Head: Communication services can also be provided by RRH).
  • cell refers to part or the entire coverage area of at least one of the gNB 100 and the base station subsystem that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the gNB 100 and the mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • at least one of the gNB 100 and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • at least one of the gNB 100 and the mobile station also includes devices that do not necessarily move during communication operations.
  • at least one of the gNB 100 and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the gNB 100 in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • a configuration in which communication between the gNB 100 and the mobile station is replaced with communication between multiple mobile stations for example, may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • the mobile station may have the functions that the gNB 100 has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the mobile station in the present disclosure may be read as gNB 100.
  • the gNB 100 may have the functions that the mobile station has.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe.
  • a subframe may further be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot is one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM)) symbol, Single Carrier Frequency Division Multiple iple Access (SC-FDMA) symbol, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple iple Access
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • the gNB 100 performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in LTE Rel. 8-12
  • a TTI that is shorter than a normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, etc. May be called.
  • PRB Physical resource block
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB pair, etc. May be called.
  • a resource block may be configured by one or more resource elements (RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • BWP Bandwidth Part
  • RBs common resource blocks
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • connection means any connection or coupling, direct or indirect, between two or more elements and each other. It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring. iry) (e.g., a search in a table, database, or other data structure), and assuming that an assertion has been made is a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include regarding the act as a "judgment” or “decision.”
  • judgment and “decision” mean that things such as resolving, selecting, choosing, establishing, and comparing are considered to be “judgment” and “decision.” may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting”, “considering”, etc.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • FIG. 15 is a diagram showing a configuration example of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, It includes various sensors 2021 to 2029, an information service section 2012, and a communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • a steering wheel also referred to as a steering wheel
  • the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals from various sensors 2021 to 2027 provided in the vehicle are input to the electronic control unit 2010.
  • the electronic control unit 2010 may be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028.
  • the information service department 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 1 using information acquired from an external device via the communication module 2013 and the like.
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (for example, IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors to prevent accidents. or reduce the driver's driving load.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • the communication module 2013 can communicate with the microprocessor 2031 and the components of the vehicle 1 via the communication port.
  • the communication module 2013 communicates via the communication port 2033 with a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, which are included in the vehicle 2001.
  • Data is transmitted and received between the axle 2009, the microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and the sensors 2021 to 2028.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, the gNB 100, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also receives the front wheel and rear wheel rotational speed signals inputted to the electronic control unit 2010 and acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by acceleration sensor 2025, an accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by brake pedal sensor 2026, and a shift lever.
  • a shift lever operation signal acquired by the sensor 2027 and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service section 2012 provided in the vehicle. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, and left and right rear wheels provided in the vehicle 2001. 2008, axle 2009, sensors 2021 to 2028, etc. may also be controlled.
  • various information traffic information, signal information, inter-vehicle information, etc.
  • the terminal or base station of this embodiment may be configured as the terminal or base station shown in each section below.
  • a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted during a specific period between a terminal and a base station, and information for setting the groups to an active state or an inactive state.
  • a receiving unit that receives from the base station.
  • (Section 2) The terminal according to claim 1, wherein the control unit performs mapping between the group and a serving cell of the terminal in a radio resource control layer.
  • (Section 3) a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted during a specific period between a terminal and a base station; and switching parameters included in the groups for each group.
  • a terminal comprising: a receiving unit that receives a signal or a signal indicating that the parameters included in the plurality of groups are to be switched all at once from the base station by a control element of media access control.
  • (Section 4) a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted in a specific period between a terminal and a base station;
  • a terminal comprising: a transmitter that transmits a request signal or a signal requesting the parameters of a plurality of groups used by the terminal all at once to the base station by a control element of media access control.
  • Wireless communication system 20 NG-RAN 40 Core network 50 AMF 51 Communication unit 52 Transmission unit 53 Control unit 100 gNB (wireless base station) 200 UE (head mounted terminal) 210 Wireless signal transmission/reception section 220 Amplifier section 270 Control section 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive section 2003 Steering section 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 axle 2010 axle 2010 electron control unit 2013 information service department 2013 1221 current sensor 222222 rotation number 2023 air pressure sensor 2024 vehicle speed sensor 2024 vehicle speed sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 object detection Sensor 2028 29 Axel pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a terminal that can achieve power saving in an interactive service. The terminal comprises: a control unit that sets a plurality of groups which contain downlink discontinuous reception-related parameters and uplink data transmitted between the terminal and a base station in a specific period; and a reception unit that receives, from the base station, information for putting the groups in an active state or a non-active state.

Description

端末terminal
 本開示は、インタラクティブサービスに対応した端末に関する。 The present disclosure relates to a terminal compatible with interactive services.
 3rd Generation Partnership Project(3GPP:登録商標)は、5th generation mobile communication system(5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 3rd Generation Partnership Project (3GPP: registered trademark) is a 5th generation mobile communication system (5G, New Radio (NR) or Next Generation (NG)), and furthermore, the Next Generation (NG), called Beyond 5G, 5G Evolution, or 6G. Generation specifications are also being developed.
 現在、NRネットワークなどで実現され得るXR(Extended Reality)サービスの研究が進められている(例えば非特許文献1)。XRとはコンピュータによって生成される現実と仮想の複合環境などを指す。 Currently, research is underway on XR (Extended Reality) services that can be realized using NR networks and the like (for example, Non-Patent Document 1). XR refers to a composite environment of reality and virtuality generated by a computer.
 XRサービスでは、基地局から端末に対してvideo trafficなどのDLデータのみが伝送される伝送周期と、端末と基地局との間でDL及びULデータが伝送される伝送周期(interactive service period)が存在する。interactive service periodでは、ULデータの発生頻度が高くなる場合があるため端末の省電力化が要求される。またULデータのLow Latency(低遅延)が要求される。 In the XR service, there is a transmission period in which only DL data such as video traffic is transmitted from the base station to the terminal, and a transmission period in which DL and UL data is transmitted between the terminal and the base station (interactive service period). exist. In the interactive service period, the frequency of occurrence of UL data may increase, so power saving of the terminal is required. Also, low latency (low delay) of UL data is required.
 このようにXRサービスにおいて、省電力化及び低遅延を実現するには、無線ネットワーク(基地局など)において、interactive service periodの設定に関わるパラメータ(DRX config、ConfiguredGrantConfig、SPS configなど)を、適切なタイミングで設定することが重要である。 In this way, in order to achieve power saving and low latency in XR services, parameters related to the interactive service period settings (DRX config, ConfiguredGrantConfig, SPS config, etc.) must be set appropriately in the wireless network (base station, etc.). It is important to set the timing.
 一方でXRサービスにおいて、異なるトラフィックパターンを有する複数のフロー(multiple flows with different traffic pattern)を処理するため、multiple DRX configの設定の必要性について提案されている(例えば非特許文献2)。異なるトラフィックパターンを有する複数のフローは、XR trafficの特徴と解釈してよい。またXRサービスにおいて、DRX configに設定されている複数のパラメータを、L1/L2 signalingで切り替える提案がなされている(例えば非特許文献3)。 On the other hand, in XR services, it has been proposed that multiple DRX config settings are necessary in order to process multiple flows with different traffic patterns (for example, Non-Patent Document 2). Multiple flows with different traffic patterns may be interpreted as a characteristic of XR traffic. Furthermore, in the XR service, a proposal has been made to switch a plurality of parameters set in DRX config using L1/L2 signaling (for example, Non-Patent Document 3).
 ここで、multiple DRX configが設定されることは複数のDRX group(DRX group1、DRX group2、DRX group3など)が設定されることを意味する。しかしながら、従来技術では、複数のDRX groupに設定されるDRX configurationを如何にして変更するのかが規定されていない。このためXRサービスを利用する端末における省電力化を実現できない可能性がある。 Here, setting multiple DRX config means that multiple DRX groups (DRX group1, DRX group2, DRX group3, etc.) are set. However, the conventional technology does not specify how to change the DRX configuration set in multiple DRX groups. Therefore, there is a possibility that power saving cannot be achieved in a terminal that uses the XR service.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、インタラクティブサービスにおいて、省電力化を実現し得る端末の提供を目的とする。 Therefore, the following disclosure has been made in view of this situation, and aims to provide a terminal that can realize power saving in interactive services.
 本開示の一態様は、端末と基地局との間で特定期間に伝送される上りリンクデータ及び下りリンクの非連続受信に関わるパラメータを含むグループを複数設定する制御部と、前記グループをアクティブ状態又は非アクティブ状態にする情報を前記基地局から受信する受信部と、を備える端末である。 One aspect of the present disclosure provides a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted in a specific period between a terminal and a base station, and sets the groups to an active state. or a receiving unit that receives information for inactivating the base station from the base station.
 本開示の一態様は、端末と基地局との間で特定期間に伝送される上りリンクデータ及び下りリンクの非連続受信に関わるパラメータを含むグループを複数設定する制御部と、前記グループに含まれるパラメータを前記グループ毎に切り替える信号、又は、複数の前記グループに含まれる前記パラメータを一斉に切り替えることを示す信号を、メディアアクセス制御の制御要素によって、前記基地局から受信する受信部と、を備える端末である。 One aspect of the present disclosure provides a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted in a specific period between a terminal and a base station; a receiving unit that receives from the base station, using a media access control control element, a signal for switching parameters for each group, or a signal indicating that the parameters included in a plurality of groups are to be switched all at once. It is a terminal.
 本開示の一態様は、端末と基地局との間で特定期間に伝送される上りリンクデータ及び下りリンクの非連続受信に関わるパラメータを含むグループを複数設定する制御部と、前記端末で利用する前記パラメータを前記グループ毎に要求する信号、又は、前記端末で利用する複数の前記グループの前記パラメータを一斉に要求する信号を、メディアアクセス制御の制御要素によって、前記基地局に送信する送信部と、を備える端末。 One aspect of the present disclosure provides a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception that are transmitted in a specific period between a terminal and a base station, and a control unit that is used in the terminal. a transmitter that transmits to the base station, by a media access control control element, a signal requesting the parameters for each group, or a signal requesting the parameters of a plurality of groups used by the terminal all at once; A terminal equipped with .
図1は、本実施形態に係る無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10 according to this embodiment. 図2は、gNB100及びUE200の機能ブロック構成図である。FIG. 2 is a functional block configuration diagram of the gNB 100 and the UE 200. 図3は、AMF50の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of the AMF 50. 図4は、DRX groupとserving cellとのmappingについて説明するための図である。FIG. 4 is a diagram for explaining mapping between DRX groups and serving cells. 図5は、DRX groupをactivation又はdeactivationにする方法について説明するための図である。FIG. 5 is a diagram for explaining a method for activating or deactivating a DRX group. 図6は、DRX groupとserving cellとのmappingについて説明するための図である。FIG. 6 is a diagram for explaining mapping between DRX groups and serving cells. 図7は、DRX groupに設定されるパラメータの切り替え方法について説明するための図である。FIG. 7 is a diagram for explaining a method of switching parameters set in a DRX group. 図8は、DRX groupに設定されるパラメータの切り替え方法について説明するための図である。FIG. 8 is a diagram for explaining a method of switching parameters set in a DRX group. 図9は、DRX cycleの選択方法について説明するための図である。FIG. 9 is a diagram for explaining a method of selecting a DRX cycle. 図10は、DRX cycleとdrx-InactivityTimerの設定方法について説明するための図である。FIG. 10 is a diagram for explaining how to set DRX cycle and drx-InactivityTimer. 図11は、DRX cycleとdrx-InactivityTimerの設定方法について説明するための図である。FIG. 11 is a diagram for explaining how to set DRX cycle and drx-InactivityTimer. 図12は、DRX cycleの例を示す図である。FIG. 12 is a diagram showing an example of the DRX cycle. 図13は、DRX cycleの例を示す図である。FIG. 13 is a diagram showing an example of the DRX cycle. 図14は、gNB100、UE200、及びAMF50のハードウェア構成の一例を示す図である。FIG. 14 is a diagram showing an example of the hardware configuration of the gNB 100, the UE 200, and the AMF 50. 図15は、車両2001の構成例を示す図である。FIG. 15 is a diagram showing a configuration example of vehicle 2001.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. Note that the same functions and configurations are given the same or similar symbols, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システム10の全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20)、及びヘッドマウント型端末200を含む。
[Embodiment]
(1) Overall schematic configuration of wireless communication system 10 FIG. 1 is an overall schematic configuration diagram of wireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system compliant with 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a head-mounted terminal 200.
 ヘッドマウント型端末200は、ユーザの目を覆うようにユーザの頭部に装着される情報端末の一例である。ヘッドマウント型端末200は、XRサービスなどのインタラクティブサービス(interactive service)に対応する情報端末の一例でもある。 The head-mounted terminal 200 is an example of an information terminal that is attached to the user's head so as to cover the user's eyes. The head-mounted terminal 200 is also an example of an information terminal that supports interactive services such as XR services.
 ヘッドマウント型端末200は、ヘッドマウント型端末200と無線基地局100との間で特定期間に伝送されるDLデータとULデータ(DL及びULデータ)の送受信が可能な情報端末と解釈されてもよい。ヘッドマウント型端末200は、「UE(User Equipment)200」と表現されてもよいし、単に「端末200」と表現されてもよい。 The head-mounted terminal 200 may be interpreted as an information terminal capable of transmitting and receiving DL data and UL data (DL and UL data) transmitted during a specific period between the head-mounted terminal 200 and the wireless base station 100. good. The head-mounted terminal 200 may be expressed as a "UE (User Equipment) 200" or simply as a "terminal 200."
 なお、UE200は、ヘッドマウント型の情報端末以外にも、時計型、ゴーグル型、ブレスレット型、ネックレス型などのウエアラブル情報端末を含み得る。また、UE200は、携帯電話、携帯型ゲーム機、携帯型情報端末、電子書籍端末などの情報端末を含み得る。当該携帯型情報端末は、スマートフォン、タブレット型情報端末などを含み得る。 In addition to the head-mounted information terminal, the UE 200 may include wearable information terminals such as a watch-type, goggle-type, bracelet-type, and necklace-type. Further, the UE 200 may include an information terminal such as a mobile phone, a portable game machine, a portable information terminal, or an electronic book terminal. The portable information terminal may include a smartphone, a tablet information terminal, and the like.
 インタラクティブサービスは、双方向(interactive)に情報が配信されるCG(Cloud Gaming)サービスと解釈されてもよい。CGサービスは、UE200の操作を示す操作データを特定のサーバに送り、当該サーバにおいて各種ゲーム処理が実行され、その実行結果が動画及び音声としてUE200にストリーミング配信されるようなサービスである。 The interactive service may be interpreted as a CG (Cloud Gaming) service in which information is distributed interactively. The CG service is a service in which operation data indicating the operation of the UE 200 is sent to a specific server, various game processes are executed in the server, and the execution results are streamed to the UE 200 as video and audio.
 なお、インタラクティブサービスは、双方向(interactive)に情報が配信されるサービスと解釈されるものであればよく、XR(Extended Reality)サービス以外にも、例えば以下のサービスも含み得る。例えば、本開示の発明が適用されるインタラクティブサービスには、CGサービス以外にも、ネットワークから配信されたコンテンツの視聴者(UE200のユーザ)が入力したコメントなどとコンテンツに重ねて表示するサービス、視聴者がコンテンツ配信に参加しているような体験ができるサービスなどを含み得る。 Note that the interactive service may be interpreted as a service in which information is distributed interactively, and may include, for example, the following services in addition to the XR (Extended Reality) service. For example, in addition to CG services, interactive services to which the invention of the present disclosure is applied include services that display comments, etc. input by viewers (UE200 users) of content distributed from a network, superimposed on the content; This may include services that allow users to experience the experience of participating in content distribution.
 また、インタラクティブサービスは、VR(Virtual Reality)、AR(Augmented Reality)などのアプリケーションのためのDL及びULデータのトラフィックモデルと解釈されてもよい。 Additionally, the interactive service may be interpreted as a traffic model of DL and UL data for applications such as VR (Virtual Reality) and AR (Augmented Reality).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 Note that the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB100及びUE200の数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 The NG-RAN 20 includes a wireless base station 100 (hereinafter referred to as gNB 100). Note that the specific configuration of the wireless communication system 10 including the number of gNBs 100 and UEs 200 is not limited to the example shown in FIG. 1.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB100(またはng-eNB)を含み、5Gに従ったコアネットワーク40(5GCと呼ばれてもよい)と接続される。NG-RAN20には、5Gのシステムアーキテクチャに含まれ、UE200のアクセス及びモビリティの管理機能を提供するAccess and Mobility Management Function 50(AMF50)などが接続される。また、コアネットワーク40には、無線通信システム10以外のネットワーク要素(例えば、プライベートネットワーク(NPN:Non-Public Network)など)が接続されてよい。 The NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNB 100 (or ng-eNB), and is connected to a 5G-compliant core network 40 (which may also be referred to as 5GC). . The NG-RAN 20 is connected to an Access and Mobility Management Function 50 (AMF 50) that is included in the 5G system architecture and provides access and mobility management functions for the UE 200. Further, network elements other than the wireless communication system 10 (for example, a private network (NPN: Non-Public Network), etc.) may be connected to the core network 40.
 gNB100は、NRに従った無線基地局であり、UE200とNRに従った無線通信を実行する。なお、gNB100は、CU(Central Unit)とDU(Distributed Unit)とによって構成されてもよく、DUは、CUから分離して地理的に異なる場所に設置されてもよい。 The gNB 100 is a radio base station that complies with the NR, and performs radio communication with the UE 200 in accordance with the NR. Note that the gNB 100 may be configured with a CU (Central Unit) and a DU (Distributed Unit), and the DU may be separated from the CU and installed at a geographically different location.
 gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUE200と複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 The gNB 100 and the UE 200 perform Massive MIMO, which generates a more highly directional beam by controlling radio signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which uses multiple component carriers (CC) in a bundle; Also, it is possible to support dual connectivity (DC) in which communication is performed simultaneously between the UE 200 and each of a plurality of NG-RAN nodes.
 無線通信システム10では、UE200の他セルへのハンドオーバー(HO)に適用され、近隣セルの識別情報(CGI:Cell Global Identifier)を管理するNRT(Neighbor Relation Table、NCRT(Neighbour Cell Relation Table)と呼ばれてもよい)が用いられてよい。NRTは、手動で内容が予め設定されてもよいが、自動的に近隣セルの情報(CGI)を関連付けるANR(Automatic Neighbour Relation)機能が導入されてよい。 In the wireless communication system 10, a Neighbor Relationship Table (NRT) and a Neighbor Cell R (NCRT) are applied to handover (HO) of the UE 200 to another cell and manage identification information (CGI: Cell Global Identifier) of neighboring cells. elation Table) and ) may be used. The contents of the NRT may be manually set in advance, but an ANR (Automatic Neighbor Relation) function that automatically associates neighboring cell information (CGI) may be introduced.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、gNB100及びUE200の機能ブロック構成について説明する。
(2) Functional block configuration of wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configurations of the gNB 100 and the UE 200 will be described.
 図2は、gNB100及びUE200の機能ブロック構成図である。図3は、AMF50の機能ブロック構成図である。なお、図2及び図3では、実施形態の説明に関連する主な機能ブロックのみが示されており、gNB100、UE200及びAMF50は、他の機能ブロック(例えば、電源部など)を有することに留意されたい。また、図2及び図3は、gNB100、UE200及びAMF50の機能的なブロック構成について示しており、これらの装置のハードウェア構成については、図14を参照されたい。 FIG. 2 is a functional block configuration diagram of the gNB 100 and the UE 200. FIG. 3 is a functional block configuration diagram of the AMF 50. Note that in FIGS. 2 and 3, only main functional blocks related to the description of the embodiments are shown, and the gNB 100, UE 200, and AMF 50 have other functional blocks (for example, a power supply unit, etc.). I want to be Further, FIGS. 2 and 3 show functional block configurations of the gNB 100, UE 200, and AMF 50, and please refer to FIG. 14 for the hardware configuration of these devices.
 (2.1)UE200、gNB100
 UE200(gNB100)の無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、複数のアンテナ素子から送信される無線(RF)信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、UE200と2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。
(2.1) UE200, gNB100
The radio signal transmitting/receiving unit 210 of the UE 200 (gNB 100) transmits and receives radio signals according to NR. The radio signal transmitting/receiving unit 210 uses Massive MIMO, which generates a highly directional beam by controlling radio (RF) signals transmitted from a plurality of antenna elements, and a carrier that uses a plurality of component carriers (CC) in a bundle. It is possible to support aggregation (CA), dual connectivity (DC) in which communication is performed simultaneously between the UE 200 and each of two NG-RAN nodes, and the like.
 UE200(gNB100)のアンプ部220は、PA(Power Amplifier)/LNA(Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を特定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier unit 220 of the UE 200 (gNB 100) is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier), etc. The amplifier section 220 amplifies the signal output from the modulation/demodulation section 230 to a specific power level. Furthermore, the amplifier section 220 amplifies the RF signal output from the radio signal transmitting/receiving section 210.
 UE200(gNB100)の変復調部230は、特定の通信先(gNB100など)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform-Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation/demodulation unit 230 of the UE 200 (gNB 100) performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each specific communication destination (gNB 100, etc.). The modulation/demodulation section 230 performs Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread ( DFT-S-OFDM) may be applied. Furthermore, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
 UE200の制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。gNB100の制御信号・参照信号処理部240は、gNB100が送受信する各種の制御信号に関する処理、及びgNB100が送受信する各種の参照信号に関する処理を実行する。 The control signal/reference signal processing unit 240 of the UE 200 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200. The control signal/reference signal processing unit 240 of the gNB 100 executes processing related to various control signals transmitted and received by the gNB 100 and processing related to various reference signals transmitted and received by the gNB 100.
 UE200(gNB100)の制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal(PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal/reference signal processing unit 240 of the UE 200 (gNB 100) uses reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS). Execute the specified processing.
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a reference signal (pilot signal) known between a terminal-specific base station and the terminal for estimating a fading channel used for data demodulation. PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, reference signals include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Posit for location information. ioning Reference Signal (PRS) may be included.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information(DCI)、及びPhysical Broadcast Channel(PBCH)などが含まれてよい。 Additionally, the channels include a control channel and a data channel. The control channels include PDCCH, PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), and Random Access Radio Network. Downlink Control Information (DCI) including Temporary Identifier (RA-RNTI), Physical Broadcast Channel (PBCH), etc. may be included.
 また、データチャネルには、PDSCH及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味してよい。 Further, data channels include PDSCH, PUSCH (Physical Uplink Shared Channel), and the like. Data may refer to data transmitted over a data channel.
 本実施形態では、UE200の制御信号・参照信号処理部240は、端末と基地局との間で特定期間に伝送される上りリンクデータ及び下りリンクの非連続受信(DRX:Discontinuous Reception)に関わるパラメータを含むグループを複数設定する制御部を構成してよい。 In the present embodiment, the control signal/reference signal processing unit 240 of the UE 200 processes parameters related to uplink data and downlink discontinuous reception (DRX) transmitted during a specific period between the terminal and the base station. A control unit may be configured to set a plurality of groups including the following.
 非連続受信に関わるパラメータは、以下のパラメータを含み得る。 Parameters related to discontinuous reception may include the following parameters.
 ・drx-onDurationTimer(図12及び図13参照)
 ・drx-SlotOffset
 ・drx-InactivityTimer(図12及び図13参照)
 ・drx-RetransmissionTimerDL
 ・drx-RetransmissionTimerUL
 ・drx-LongCycleStartOffset
 ・drx-ShortCycle(図12及び図13参照)
 ・drx-ShortCycleTimer
 ・drx-HARQ-RTT-TimerDL
 ・drx-HARQ-RTT-TimerUL
 ・drx-RetransmissionTimerSL
 ・drx-HARQ-RTT-TimerSL
 drx-onDurationTimerはDRXサイクルの開始時の持続時間と解釈してよい。
・drx-onDurationTimer (see Figures 12 and 13)
・drx-SlotOffset
・drx-InactivityTimer (see Figures 12 and 13)
・drx-RetransmissionTimerDL
・drx-RetransmissionTimerUL
・drx-LongCycleStartOffset
・drx-ShortCycle (see Figures 12 and 13)
・drx-ShortCycleTimer
・drx-HARQ-RTT-TimerDL
・drx-HARQ-RTT-TimerUL
・drx-RetransmissionTimerSL
・drx-HARQ-RTT-TimerSL
drx-onDurationTimer may be interpreted as the duration at the beginning of the DRX cycle.
 drx-SlotOffsetはdrx-onDurationTimerを開始する前の遅延時間と解釈してよい。 drx-SlotOffset may be interpreted as the delay time before starting drx-onDurationTimer.
 drx-InactivityTimerは、PDCCHがMACエンティティの新しいUL(上りリンク)送信又はDL(下りリンク)送信を示すPDCCH occasionの継続時間と解釈してよい。 drx-InactivityTimer may be interpreted as the duration of a PDCCH occasion in which the PDCCH indicates a new UL (uplink) transmission or DL (downlink) transmission of the MAC entity.
 drx-RetransmissionTimerDLは、DL(下りリンク)再送を受信するまでの最大継続時間と解釈してよい。drx-RetransmissionTimerDLは、ブロードキャストプロセスを除き、DL HARQ(Hybrid Automatic Repeat Request)プロセスごとに、DL(下りリンク)の再送を受信するまでの最大継続時間と解釈してもよい。 drx-RetransmissionTimerDL may be interpreted as the maximum duration time until receiving DL (downlink) retransmission. drx-RetransmissionTimerDL may be interpreted as the maximum duration until receiving a DL (downlink) retransmission for each DL HARQ (Hybrid Automatic Repeat Request) process, excluding broadcast processes.
 drx-RetransmissionTimerULは、UL HARQプロセス毎に、UL再送信のためのグラントを受信するまでの最大継続時間と解釈してよい。 drx-RetransmissionTimerUL may be interpreted as the maximum duration time until receiving a grant for UL retransmission for each UL HARQ process.
 drx-LongCycleStartOffsetは、Long DRXサイクルと、Long DRXサイクルおよびShort DRXサイクルが開始されるサブフレームとを定義するdrx-StartOffsetと解釈してよい。 drx-LongCycleStartOffset may be interpreted as drx-StartOffset that defines the Long DRX cycle and the subframe in which the Long DRX cycle and the Short DRX cycle are started.
 drx-ShortCycle(オプション)は、Short DRXサイクルと解釈してよい。 drx-ShortCycle (optional) may be interpreted as Short DRX cycle.
 drx-ShortCycleTimer(オプション)は、UEがShort DRXサイクルを継続する時間と解釈してよい。 drx-ShortCycleTimer (optional) may be interpreted as the time during which the UE continues the Short DRX cycle.
 drx-HARQ-RTT-TimerDLは、HARQ再送のためのDL割り当てが、MACエンティティによって期待されるまでの最小期間と解釈してよい。drx-HARQ-RTT-TimerDLは、ブロードキャストプロセスを除き、DL HARQプロセス毎に、HARQ再送のためのDL割り当てが、MACエンティティによって期待されるまでの最小期間と解釈してもよい。 drx-HARQ-RTT-TimerDL may be interpreted as the minimum period until DL allocation for HARQ retransmission is expected by the MAC entity. drx-HARQ-RTT-TimerDL may be interpreted as the minimum period until a DL allocation for HARQ retransmissions is expected by the MAC entity for each DL HARQ process, excluding broadcast processes.
 drx-HARQ-RTT-TimerULは、UL HARQプロセス毎に、MACエンティティによってUL HARQ再送信の付与が想定されるまでの最小時間と解釈してよい。 drx-HARQ-RTT-TimerUL may be interpreted as the minimum time before a UL HARQ retransmission is expected to be granted by the MAC entity for each UL HARQ process.
 drx-RetransmissionTimerSLは、SL(サイドリンク) HARQプロセス毎に、SL再送のためのグラントを受信するまでの最大継続時間と解釈してよい。 drx-RetransmissionTimerSL may be interpreted as the maximum duration until receiving a grant for SL retransmission for each SL (side link) HARQ process.
 drx-HARQ-RTT-TimerSLは、SL HARQプロセス毎に、MACエンティティによってSL再送信グラントが期待されるまでの最小持続時間と解釈してよい。 drx-HARQ-RTT-TimerSL may be interpreted as the minimum duration before an SL retransmission grant is expected by the MAC entity for each SL HARQ process.
 なお、非連続受信に関わるパラメータを含むグループの具体例は後述する。 Note that a specific example of a group including parameters related to discontinuous reception will be described later.
 本実施形態では、UE200の制御信号・参照信号処理部240は、前記グループと前記端末のサービングセルとのマッピングを無線リソース制御レイヤ(RRC)で行う制御部を構成してよい。 In the present embodiment, the control signal/reference signal processing unit 240 of the UE 200 may constitute a control unit that performs mapping between the group and the serving cell of the terminal using a radio resource control layer (RRC).
 UE200(gNB100)の符号化/復号部250は、特定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The encoding/decoding unit 250 of the UE 200 (gNB 100) performs data division/concatenation, channel coding/decoding, etc. for each specific communication destination (gNB 100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the encoding/decoding unit 250 divides the data output from the data transmitting/receiving unit 260 into predetermined sizes, and performs channel coding on the divided data. Furthermore, the encoding/decoding section 250 decodes the data output from the modulation/demodulation section 230 and concatenates the decoded data.
 UE200(gNB100)のデータ送受信部260は、Protocol Data Unit(PDU)ならびにService Data Unit(SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission/reception unit 260 of the UE 200 (gNB 100) executes transmission and reception of Protocol Data Units (PDUs) and Service Data Units (SDUs). Specifically, the data transmitting/receiving unit 260 transmits PDUs/SDUs in multiple layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble/disassemble etc. Further, the data transmitter/receiver 260 performs data error correction and retransmission control based on hybrid ARQ (Hybrid automatic repeat request).
 本実施形態では、データ送受信部260は、前記グループをアクティブ状態又は非アクティブ状態にする情報を前記基地局から受信する受信部を構成してよい。 In this embodiment, the data transmitting/receiving unit 260 may constitute a receiving unit that receives information for setting the group into an active state or an inactive state from the base station.
 本実施形態では、データ送受信部260は、前記グループに含まれるパラメータを前記グループ毎に切り替える信号、又は、複数の前記グループに含まれる前記パラメータを一斉に切り替えることを示す信号を、メディアアクセス制御の制御要素によって、前記基地局から受信する受信部を構成してよい。 In this embodiment, the data transmitting/receiving unit 260 transmits a signal indicating that parameters included in the group are to be switched for each group, or a signal indicating that the parameters included in a plurality of groups are to be switched all at once, for media access control. The control element may configure a receiving section that receives data from the base station.
 本実施形態では、データ送受信部260は、前記端末で利用する前記パラメータを前記グループ毎に要求する信号、又は、前記端末で利用する複数の前記グループの前記パラメータを一斉に要求する信号を、メディアアクセス制御の制御要素によって、前記基地局に送信する送信部を構成してよい。 In the present embodiment, the data transmitting/receiving unit 260 sends a signal requesting the parameters to be used in the terminal for each group, or a signal requesting the parameters of a plurality of groups to be used in the terminal all at once to the media. A transmitter that transmits to the base station may be configured by an access control control element.
 制御部270は、UE200を構成する各機能ブロックを制御する。 The control unit 270 controls each functional block that configures the UE 200.
 (2.2)AMF50
 図3に示すように、AMF50は、通信部51、送信部52及び制御部53を備える。
(2.2) AMF50
As shown in FIG. 3, the AMF 50 includes a communication section 51, a transmission section 52, and a control section 53.
 通信部51は、gNB100に対して信号を送信し、またgNB100から送信された信号を受信する。 The communication unit 51 transmits signals to the gNB 100 and receives signals transmitted from the gNB 100.
 制御部53は、AMF50を構成する各機能ブロックを制御する。 The control unit 53 controls each functional block that constitutes the AMF 50.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、インタラクティブサービスにおいて、省電力化を実現し得る無線通信システム10の動作例について説明する。
(3) Operation of the wireless communication system Next, the operation of the wireless communication system 10 will be explained. Specifically, an example of the operation of the wireless communication system 10 that can realize power saving in an interactive service will be described.
 (3.1)前提及び課題
 図5及び図6を参照して、複数のDRX groupに設定されるDRX configurationと利用するインタラクティブサービスにおいて、省電力化を実現する上での課題について説明する。
(3.1) Assumptions and Issues With reference to FIGS. 5 and 6, issues in realizing power saving in the DRX configuration set in multiple DRX groups and the interactive service used will be explained.
 XRサービスでは、基地局から端末に対してvideo trafficなどのDLデータのみが伝送される伝送周期と、端末と基地局との間でDL及びULデータが伝送される伝送周期(interactive service period)が存在する。interactive service periodでは、ULデータの発生頻度が高くなる場合があるため端末の省電力化が要求される。またULデータのLow Latency(低遅延)が要求される。 In the XR service, there is a transmission period in which only DL data such as video traffic is transmitted from the base station to the terminal, and a transmission period in which DL and UL data is transmitted between the terminal and the base station (interactive service period). exist. In the interactive service period, the frequency of occurrence of UL data may increase, so power saving of the terminal is required. Also, low latency (low delay) of UL data is required.
 このようにXRサービスにおいて、省電力化及び低遅延を実現するには、無線ネットワーク(基地局など)において、interactive service periodの設定に関わるパラメータ(DRX config、ConfiguredGrantConfig、SPS configなど)を、適切なタイミングで設定することが重要である。 In this way, in order to achieve power saving and low latency in XR services, parameters related to the interactive service period settings (DRX config, ConfiguredGrantConfig, SPS config, etc.) must be set appropriately in the wireless network (base station, etc.). It is important to set the timing.
 一方でXRサービスにおいて、異なるトラフィックパターンを有する複数のフロー(multiple flows with different traffic pattern)を処理するため、multiple DRX configの設定の必要性について提案されている(例えば前述の非特許文献2)。異なるトラフィックパターンを有する複数のフローは、XR trafficの特徴と解釈してよい。またXRサービスにおいて、DRX configに設定されている複数のパラメータを、L1/L2 signalingで切り替える提案がなされている(例えば前述の非特許文献3)。 On the other hand, in XR services, it has been proposed that multiple DRX config settings are necessary in order to process multiple flows with different traffic patterns (for example, the aforementioned Non-Patent Document 2). Multiple flows with different traffic patterns may be interpreted as a characteristic of XR traffic. Furthermore, in the XR service, a proposal has been made to switch a plurality of parameters set in DRX config using L1/L2 signaling (for example, the above-mentioned Non-Patent Document 3).
 ここで、multiple DRX configが設定されることは複数のDRX group(DRX group1、DRX group2、DRX group3など)が設定されることを意味する。しかしながら、従来技術では、複数のDRX groupに設定されるDRX configurationを如何にして変更するのかが規定されていない。 Here, setting multiple DRX config means that multiple DRX groups (DRX group1, DRX group2, DRX group3, etc.) are set. However, the conventional technology does not specify how to change the DRX configuration set in multiple DRX groups.
 具体的には、以下に示す複数の課題が想定される。 Specifically, the following multiple issues are envisaged.
 第1の課題:従来技術では、複数のDRX groupが設定されている場合、複数のDRX groupの内、一部のDRX groupのconfigurationをどのようにactivate又はdeactivateするのか規定されていない。またDRX groupとserving cellとのmapping又はremappingが、どう行われるか規定されていない。 First issue: In the conventional technology, when multiple DRX groups are set, it is not specified how to activate or deactivate the configuration of some of the multiple DRX groups. Furthermore, it is not specified how mapping or remapping between DRX groups and serving cells is performed.
 第2の課題:従来技術では、複数のDRX groupが設定されている場合、各DRX groupに複数のDRX parameter(例えばdrx-onDurationTimer、drx-InactivityTimer、drx-SlotOffsetなど)が設定されているとき、複数のDRX parameterをどのように切り替えるのか規定されていない。 Second issue: In the conventional technology, when multiple DRX groups are set and multiple DRX parameters (for example, drx-onDurationTimer, drx-InactivityTimer, drx-SlotOffset, etc.) are set for each DRX group, It is not specified how to switch between multiple DRX parameters.
 なお、rel-17 TS 38.321には、MAC entityに二つのDRX groupを設定することについて、以下のような記載がある。Serving Cells of a MAC entity may be configured by RRC in two DRX groups with separate DRX parameters. When RRC does not configure a secondary DRX group, there is only one DRX group and all Serving Cells belong to that one DRX group. When two DRX groups are configured, each Serving Cell is uniquely assigned to either of the two groups. The DRX parameters that are separately configured for each DRX group are: drx-onDurationTimer, drx-InactivityTimer. The DRX parameters that are common to the DRX groups are: drx-SlotOffset, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-LongCycleStartOffset, drx-ShortCycle (optional), drx-ShortCycleTimer (optional), drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, and uplinkHARQ-Mode (optional). Additionally, rel-17 TS 38.321 contains the following description regarding setting two DRX groups for a MAC entity. Serving Cells of a MAC entity may be configured by RRC in two DRX groups with separate DRX parameters. When RRC does not configure a secondary DRX group, there is only one DRX group and all Serving Cells belong to that one DRX group. When two DRX groups are configured, each Serving Cell is uniquely assigned to either of the two groups. The DRX parameters that are separately configured for each DRX group are: drx-onDurationTimer, drx-InactivityTimer. drx-SlotOffset, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-LongCycleStartOffset, drx-ShortCycle (optional), drx-ShortCycleTimer (optional), drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, and uplinkHARQ -Mode (optional).
 第3の課題:既存MAC(媒体アクセス制御レイヤ)仕様では、drx-InactivityTimerが満了後に、short DRX cycleとlong DRX cycleが同時にconfigureされるとき、short DRX cycleが優先的に利用される。しかしながら、DLデータ及び/又はULデータがUEに到来しない場合、short DRX cycleが優先的に利用されると、UEが頻繁にActive状態になるため、UEの消費電力が増加する可能性がある。 Third issue: In the existing MAC (Medium Access Control Layer) specifications, when short DRX cycle and long DRX cycle are configured at the same time after drx-InactivityTimer expires, short DRX cycle is preferentially used. However, when DL data and/or UL data does not arrive at the UE, if the short DRX cycle is preferentially used, the UE will frequently enter the Active state, which may increase the power consumption of the UE.
 第4の課題:XR trafficのcharacteristicsに応じてDRXの長さ(例えばshort DRX cycle、long DRX cycleなど)、drx-InactivityTimerのON/OFFなどを、dynamic(動)的に変更することで、UEのpower saving効果が向上する場合がある。しかしながら、既存のDRX configに設定されているshort DRX cycle、long DRX cycle、drx-InactivityTimerなどを変えるには、RRCReconfigurationが必要であり、これらの設定を変えるには長い時間を要する場合がる。しかしながら、従来技術では、short DRX cycle、long DRX cycle、drx-InactivityTimerなどのactivation/deactivationを、dynamic(動)的に設定することができない。 Fourth challenge: By dynamically changing the DRX length (e.g. short DRX cycle, long DRX cycle, etc.) and ON/OFF of drx-InactivityTimer, etc., depending on the The power saving effect may be improved. However, RRCReconfiguration is required to change short DRX cycle, long DRX cycle, drx-InactivityTimer, etc. set in the existing DRX config, and changing these settings may take a long time. However, with the conventional technology, activation/deactivation of short DRX cycle, long DRX cycle, drx-InactivityTimer, etc. cannot be dynamically set.
 これらの課題により、従来技術では、XRサービスを利用する端末における省電力化を実現できない可能性がある。 Due to these issues, the conventional technology may not be able to realize power saving in terminals that use XR services.
 このような課題の解決策として、以下に示す複数の動作例が考えられる。なお、後述される複数の動作例は、それぞれ単独で用いられてもよいし、これらの2つ以上の組み合わせにより利用されてもよい。 As a solution to such problems, several operation examples shown below can be considered. Note that the plurality of operation examples described below may be used alone, or may be used in combination of two or more thereof.
 (3.2)動作例
 以下では、上記の課題を解決し得る動作例について説明する。
(3.2) Operation example Below, an operation example that can solve the above problem will be explained.
 (3.2.1)動作例1
 以下では第1の課題を解決し得る動作例について説明する。
(3.2.1) Operation example 1
An example of operation that can solve the first problem will be described below.
 動作例1では、NWがUEに対して、MAC CE(メディアアクセス制御の制御要素)によって、DRX groupのactivation/deactivationを行ってもよい。図5に示すように、DRX group(i)(iは1以上の自然数)のfieldが1に設定される場合、当該DRX groupはactivated状態となる。DRX group(i)のfieldが0に設定される場合、当該DRX groupはdeactivated状態となる。NWは、gNB100と解釈してよく、AMF50と解釈してもよい。 In operation example 1, the NW may activate/deactivate the DRX group for the UE using the MAC CE (control element for media access control). As shown in FIG. 5, when the field of DRX group(i) (i is a natural number of 1 or more) is set to 1, the DRX group becomes activated. If the DRX group(i) field is set to 0, the DRX group will be in a deactivated state. NW may be interpreted as gNB100 or AMF50.
 DRX groupがdeactivatedされた際、当該DRX groupを利用していたserving cellは、default DRX group(図4参照)のconfigurationを用いてもよく、別のDRX group(default DRX group以外のDRX group)のconfigurationを用いてもよい。 When a DRX group is deactivated, the serving cell that was using that DRX group may use the configuration of the default DRX group (see Figure 4), or it may use the configuration of another DRX group (DRX group other than the default DRX group). configuration may also be used.
 gNB100及び/又はUE200は、DRX groupとserving cellとのmappingを、RRCにより行ってよい。具体的には、図5に示すように、gNB100及び/又はUE200は、RRCにより、DRX groupごとに対応するserving cellとのmappingを行ってよい。また、gNB100及び/又はUE200は、serving cellごとに対応するDRX groupとmappingを行ってもよい。gNB100及び/又はUE200は、複数DRX group中に一つのDRX groupをdefault DRX groupを定義してもよい。 The gNB 100 and/or the UE 200 may perform mapping between DRX groups and serving cells using RRC. Specifically, as shown in FIG. 5, the gNB 100 and/or the UE 200 may perform mapping with corresponding serving cells for each DRX group using RRC. Furthermore, the gNB 100 and/or the UE 200 may perform mapping with a corresponding DRX group for each serving cell. The gNB 100 and/or the UE 200 may define one DRX group among multiple DRX groups as a default DRX group.
 gNB100及び/又はUE200は、Serving cellとDRX groupとの(re)mappingを、MAC CEによって行ってもよい。具体的には、gNB100及び/又はUE200は、図6に示すようなformatのMAC CEにより、Serving cellとDRX groupとの(re)mappingを行ってもよい。Serving cell ID fieldは、serving cell IDを示す。DRX group ID fieldは、当該serving cellが使うDRX group IDを示す。 The gNB 100 and/or the UE 200 may perform (re)mapping between the serving cell and the DRX group using MAC CE. Specifically, the gNB 100 and/or the UE 200 may perform (re)mapping between the serving cell and the DRX group using the MAC CE in the format shown in FIG. The Serving cell ID field indicates the serving cell ID. The DRX group ID field indicates the DRX group ID used by the serving cell.
 NWは、UEに対して、Serving cellとDRX groupとの(re)mappingを、図6に示すMAC CEにより、指示してもよい。 The NW may instruct the UE to (re)map the serving cell and DRX group using the MAC CE shown in FIG. 6.
 UEは、NWに対して、Serving cellとDRX groupとの(re)mappingを、図6に示すMAC CEにより、requestしてもよい。 The UE may request (re)mapping between the serving cell and the DRX group from the NW using the MAC CE shown in FIG. 6.
 (3.2.2)動作例2
 以下では第2の課題を解決し得る動作例について説明する。
(3.2.2) Operation example 2
An example of operation that can solve the second problem will be described below.
 NWは、UEに対して、MAC CEにより、DRX groupごとに、DRX configuration内の複数DRX parameterを切り替えてよい。 The NW may switch multiple DRX parameters in the DRX configuration for each DRX group using the MAC CE for the UE.
 NWは、UEに対して、MAC CEにより、複数DRX groupのDRX parameterを一斉に切り替えてよい。 The NW may switch the DRX parameters of multiple DRX groups all at once for the UE using the MAC CE.
 UEは、NWに対して、MAC CEにより、DRX group毎に、どのDRX parameterを利用するかを示すrequest信号を送信してよい。 The UE may transmit a request signal to the NW using the MAC CE to indicate which DRX parameter to use for each DRX group.
 UEは、NWに対して、MAC CEにより、複数DRX groupに設定されるDRX parameterを一斉に要求するrequest信号を送信してよい。 The UE may transmit a request signal to the NW, using the MAC CE, to request the DRX parameters set for multiple DRX groups all at once.
 具体的には、NWは、UEに対して、図7の右側に示すようなformatのMAC CEにより、DRX parameterを切り替えてもよい。 Specifically, the NW may switch the DRX parameter for the UE using the MAC CE in the format shown on the right side of FIG.
 UEは、NWに対して、当該MAC CEにより、利用することを希望するDRX parameterを、requestしてもよい。 The UE may request the NW for the DRX parameters it wishes to use using the MAC CE.
 当該MAC CEにおいて、「R」はこのフィールドが予約されていることを示す。 In the relevant MAC CE, "R" indicates that this field is reserved.
 当該MAC CEにおいて、DRX Group ID fieldは、DRX parameterを変更したいDRX Groupを示す。 In the relevant MAC CE, the DRX Group ID field indicates the DRX Group whose DRX parameters are to be changed.
 当該MAC CEにおいて、drx-OnDurationTimer fieldは、drx-OnDurationTimerの切り替え値を示す。例えば、0001は、RRCで設定したvalue1を示す。0010は、value2を示す。 In the MAC CE, the drx-OnDurationTimer field indicates the drx-OnDurationTimer switching value. For example, 0001 indicates value1 set in RRC. 0010 indicates value2.
 当該MAC CEにおいて、drx-InactivityTimer fieldはdrx-InactivityTimerの切り替え値を示す。例えば、0001はRRCで設定したvalue1を示す。0010はvalue2を示す。 In the MAC CE, the drx-InactivityTimer field indicates the drx-InactivityTimer switching value. For example, 0001 indicates value1 set in RRC. 0010 indicates value2.
 当該MAC CEにおいて、drx-slotOffset fieldはdrx-slotOffsetの切り替え値を示す。例えば、0001はRRCで設定したvalue1を示す。0010はvalue2を示す。 In the relevant MAC CE, the drx-slotOffset field indicates the drx-slotOffset switching value. For example, 0001 indicates value1 set in RRC. 0010 indicates value2.
 当該MAC CEにおいて、drx-shortCycleStartOffset fieldはdrx-shortCycleStartOffsetの切り替え値を示す。例えば、0001はRRCで設定したvalue1を示す。0010はvalue2を示す。 In the relevant MAC CE, the drx-shortCycleStartOffset field indicates the switching value of drx-shortCycleStartOffset. For example, 0001 indicates value1 set in RRC. 0010 indicates value2.
 当該MAC CEにおいて、drx-longCycleStartOffset fieldはdrx-longCycleStartOffsetの切り替え値を示す。例えば、0001はRRCで設定したvalue1を示す。0010はvalue2を示す。 In the relevant MAC CE, the drx-longCycleStartOffset field indicates the switching value of drx-longCycleStartOffset. For example, 0001 indicates value1 set in RRC. 0010 indicates value2.
 なお、図7の左側において、RRCにより、DRX groupごとに、DRX parameterの値を複数設定してよい。その後、MAC CEでdynamic(動)的に各parameter値を切り替えてよい。 Note that on the left side of FIG. 7, multiple DRX parameter values may be set for each DRX group using RRC. After that, you can dynamically switch each parameter value using MAC CE.
 NWがUEの複数DRX groupのparameterを一斉に変更する場合、図8に示すようなformatのMAC CEにより、DRX parameterを切り替えてもよい。 When the NW changes the parameters of multiple DRX groups of the UE all at once, the DRX parameters may be switched using the MAC CE in the format shown in FIG.
 UEからNWに対して、複数のDRX groupのparameterの変更を一斉にrequestしたい場合、図8に示すようなformatのMAC CEにより、利用を希望するDRX parameterをrequestしてもよい。 If the UE wants to request parameter changes for multiple DRX groups all at once from the NW, the desired DRX parameters may be requested using the MAC CE in the format shown in FIG.
 (3.2.3)動作例3
 以下では第3の課題を解決し得る動作例について説明する。
(3.2.3) Operation example 3
An example of operation that can solve the third problem will be described below.
 drx-InactivityTimer満了後(図9参照)に、UEは、short DRX cycle又はlong DRX cycleを利用したいことを、MAC CE又はPUCCHにより、NWにrequestしてもよい。UEは、UL dataの到来状況に応じて、当該requestを送ってもよい。 After the drx-InactivityTimer expires (see FIG. 9), the UE may request the NW to use short DRX cycle or long DRX cycle using MAC CE or PUCCH. The UE may send the request depending on the arrival status of UL data.
 drx-InactivityTimer満了後に、UEは、自律的にshort DRX cycle又はlong DRX cycleを利用したいかを決めてもよい。 After the drx-InactivityTimer expires, the UE may autonomously decide whether it wants to use short DRX cycle or long DRX cycle.
 drx-InactivityTimer満了後に、UEがshort DRX cycle又はlong DRX cycleを使うべきか否かについて、NWは、MAC CE又はPDCCHによってUEに指示してもよい。NWは、DL dataの到来状況に応じて、当該request(指示)を送信してよい。 The NW may instruct the UE via MAC CE or PDCCH as to whether the UE should use short DRX cycle or long DRX cycle after the drx-InactivityTimer expires. The NW may transmit the request (instruction) depending on the arrival status of DL data.
 (3.2.4)動作例4
 以下では第4の課題を解決し得る動作例について説明する。
(3.2.4) Operation example 4
An example of operation that can solve the fourth problem will be described below.
 NW又はUEは、DRX groupごとに、short DRX cycle又はlong DRX cycleの設定と、drx-InactivityTimerのactivation/deactivationを、図10に示すMAC CEによって行ってもよい。 The NW or UE may set short DRX cycle or long DRX cycle and activate/deactivate drx-InactivityTimer for each DRX group using the MAC CE shown in FIG. 10.
 当該MAC CEにおいて、DRX Group ID fieldは、DRX parameterを変更したいDRX Groupを指す。S fieldは、short DRX cycleのactivation/deactivation状態を指す。S fieldが1に設定されるとき、activated状態を指す。S fieldが0に設定されるとき、deactivated状態を指す。L fieldは、Long DRX cycleのactivation/deactivation状態を指す。L fieldが1に設定されるとき、activated状態を指す。L fieldが0に設定されるとき、deactivated状態を指す。I fieldは、drx-InactivityTimerのactivation/deactivation状態を指す。I fieldが1に設定されるとき、activated状態を指す。I fieldが0に設定されるとき、deactivated状態を指す。Rはこのフィールドが予約されていることを示す。 In the relevant MAC CE, the DRX Group ID field refers to the DRX Group for which you want to change the DRX parameters. S field refers to the activation/deactivation state of short DRX cycle. When S field is set to 1, it refers to the activated state. When S field is set to 0, it refers to the deactivated state. L field refers to the activation/deactivation state of Long DRX cycle. When L field is set to 1, it refers to the activated state. When L field is set to 0, it refers to deactivated state. I field refers to the activation/deactivation state of drx-InactivityTimer. When the I field is set to 1, it refers to the activated state. When the I field is set to 0, it refers to the deactivated state. R indicates this field is reserved.
 NWは、UEに対して、当該MAC CEにてshort DRX cycle又はlong DRX cycleの設定とdrx-InactivityTimerのactivation/deactivationを指示してもよい。 The NW may instruct the UE to set short DRX cycle or long DRX cycle and activate/deactivate drx-InactivityTimer in the MAC CE.
 UEからNWに当該MAC CEにてshort DRX cycle又はlong DRX cycleの設定とdrx-InactivityTimerのactivation/deactivationのpreferenceをrequestしてもよい。 The UE may request the NW for short DRX cycle or long DRX cycle settings and drx-InactivityTimer activation/deactivation preferences in the relevant MAC CE.
 NW又はUEは、複数DRX groupのshort DRX cycle又はlong DRX cycleの設定と、drx-InactivityTimerのactivation/deactivationとを、一斉にMAC CE(図11参照)によって行ってもよい。 The NW or UE may set short DRX cycle or long DRX cycle for multiple DRX groups and activate/deactivate drx-InactivityTimer all at once using MAC CE (see FIG. 11).
 NWは、UEに対して、当該MAC CEによって、複数DRX groupのshort DRX cycle又はlong DRX cycleの設定と、drx-InactivityTimerのactivation/deactivationとを指示してもよい。 The NW may instruct the UE to set short DRX cycles or long DRX cycles for multiple DRX groups and activate/deactivate drx-InactivityTimer using the MAC CE.
 UEは、NWに対して、当該MAC CEによって、複数DRX groupのshort DRX cycle又はlong DRX cycleの設定と、drx-InactivityTimerのactivation/deactivationのpreferenceとをrequestしてもよい。 The UE may request the short DRX cycle or long DRX cycle settings of multiple DRX groups and drx-InactivityTimer activation/deactivation preferences from the NW using the MAC CE.
 (4)作用効果
 ・複数のDRX groupが設定されている場合に、一部のDRX groupのconfigurationをactivate/deactivateする方法
 ・DRX groupとserving cellとの(re)mapping方法
 ・各DRX groupの複数のDRX parameterの変更方法
 ・drx-InactivityTimerが満了後のshort DRX cycle又はlong DRX cycleの利用方法
 ・short DRX cycle又はlong DRX cycleのactivation/deactivationの方法
 これらの実施形態によれば以下の作用効果が得られる。具体的には、XR trafficの特徴に応じてdynamic的にDRX configurationを変更できるようになり、XR power saving効果が向上されることが期待される。
(4) Effects ・How to activate/deactivate the configuration of some DRX groups when multiple DRX groups are set ・(re)mapping method between DRX groups and serving cells ・Multiple numbers of each DRX group・How to use short DRX cycle or long DRX cycle after drx-InactivityTimer expires ・How to activate/deactivate short DRX cycle or long DRX cycle According to these embodiments, the following effects are achieved. can get. Specifically, it will be possible to dynamically change the DRX configuration according to the characteristics of XR traffic, which is expected to improve the XR power saving effect.
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that the embodiments are not limited to the description of the embodiments, and that various modifications and improvements can be made.
 また、上述した記載において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 In addition, in the above description, the words "configure", "activate", "update", "indicate", "enable", "specify", and "select" can be read interchangeably. good. Similarly, the words "link", "associate", "correspond" and "map" may be used interchangeably, and "allocate", "assign", and "monitor" may be used interchangeably. , map may also be read interchangeably.
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Furthermore, "specific", "dedicated", "UE specific", and "UE individual" may be read interchangeably. Similarly, common, shared, group-common, UE-common, and UE-shared may be interchanged.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, "precoding", "precoder", "weight (precoding weight)", "quasi-co-location (QCL)", "Transmission Configuration Indication state (TCI state)", "space "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", and "panel" are interchangeable. can be used.
 また、上述した実施形態の説明に用いたブロック構成図(図2及び図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Furthermore, the block configuration diagrams (FIGS. 2 and 3) used to explain the embodiments described above show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, allocation gning), but these are limited to I can't. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したgNB100、UE200及びAMF50(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、gNB100、UE200、及びAMF50のハードウェア構成の一例を示す図である。図14に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the gNB 100, UE 200, and AMF 50 (the devices) described above may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 14 is a diagram showing an example of the hardware configuration of the gNB 100, the UE 200, and the AMF 50. As shown in FIG. 14, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the device may include one or more of the devices shown in the figure, or may not include some of the devices.
 当該装置の各機能ブロック(図2及び図3を参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIGS. 2 and 3) is realized by any hardware element of the computer device or a combination of hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the device is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations, controls communication by the communication device 1004, and controls the memory This is realized by controlling at least one of reading and writing data in the storage 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Furthermore, the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable RO. Consisting of at least one of M (EEPROM), Random Access Memory (RAM), etc. may be done. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store programs (program codes), software modules, etc. that can execute a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, such as an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. Storage 1003 may also be called an auxiliary storage device. The above-mentioned recording medium may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplexing (Frequency Division Duplex: FDD) and time division duplexing (Time Division Duplex: TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic Consists of hardware such as Device (PLD), Field Programmable Gate Array (FPGA), etc. A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング)、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the information notification may be performed using physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information) Block (MIB), System Information Block (SIB)), other signals, or a combination thereof. RRC signaling may also be called an RRC message, for example, RRC Connection Setup (RRC Connection Setup). The message may be a setup message, an RRC connection reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure is applicable to Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication. ion system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 ( Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate systems and systems that are extended based on these. It may be applied to at least one next generation system. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示においてgNB100によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。gNB100を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、UE200との通信のために行われる様々な動作は、gNB100及びgNB100以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記においてgNB100以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this disclosure, the specific operation performed by the gNB 100 may be performed by its upper node in some cases. In a network consisting of one or more network nodes including gNB 100, various operations performed for communication with UE 200 are performed by gNB 100 and other network nodes other than gNB 100 (for example, MME or S-GW). It is clear that this can be carried out by at least one of the following methods (conceivable, but not limited to). In the above example, there is one network node other than the gNB 100, but it may be a combination of multiple other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information that is input and output may be overwritten, updated, or additionally written. The output information may be deleted. The input information may be sent to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of the foregoing. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms that have the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。gNB100は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)," "wireless base station," "fixed station," "NodeB," "eNodeB (eNB)," "gNodeB (gNB)," " Access Points, "Transmission Point", "Receive Point", "Sending Points (Transmission / Reception Point)", "Sel", "Sel" "Sector", "Cell Group", " The terms "carrier", "component carrier", etc. may be used interchangeably. The gNB 100 may also be called a macro cell, a small cell, a femto cell, a pico cell, or the like.
 gNB100は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。gNB100が複数のセルを収容する場合、gNB100のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The gNB 100 can accommodate one or more (for example, three) cells (also called sectors). When the gNB 100 accommodates multiple cells, the entire coverage area of the gNB 100 can be divided into multiple smaller areas, and each smaller area is divided into a base station subsystem (e.g., an indoor small base station (Remote Radio Head: Communication services can also be provided by RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行うgNB100、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to part or the entire coverage area of at least one of the gNB 100 and the base station subsystem that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)," "user terminal," "user equipment (UE)," and "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 gNB100及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、gNB100及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、gNB100及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、gNB100及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the gNB 100 and the mobile station may be called a transmitting device, a receiving device, a communication device, etc. Note that at least one of the gNB 100 and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the gNB 100 and the mobile station also includes devices that do not necessarily move during communication operations. For example, at least one of the gNB 100 and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示におけるgNB100は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、gNB100及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、gNB100が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the gNB 100 in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, a configuration in which communication between the gNB 100 and the mobile station is replaced with communication between multiple mobile stations (for example, may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the gNB 100 has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示における移動局は、gNB100として読み替えてもよい。この場合、移動局が有する機能をgNB100が有する構成としてもよい。無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 Similarly, the mobile station in the present disclosure may be read as gNB 100. In this case, the gNB 100 may have the functions that the mobile station has. A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot is one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM)) symbol, Single Carrier Frequency Division Multiple iple Access (SC-FDMA) symbol, etc.). A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、gNB100が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, the gNB 100 performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, etc. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. good. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, mean any connection or coupling, direct or indirect, between two or more elements and each other. It can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges, and the like.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 Where the terms "include", "including", and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising". It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, when articles are added through translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring. iry) (e.g., a search in a table, database, or other data structure), and assuming that an assertion has been made is a "judgment" or "decision." Also, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (for example, accessing data in memory) may include regarding the act as a "judgment" or "decision." In addition, "judgment" and "decision" mean that things such as resolving, selecting, choosing, establishing, and comparing are considered to be "judgment" and "decision." may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Moreover, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 図15は、車両2001の構成例を示す図である。図15に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。 FIG. 15 is a diagram showing a configuration example of the vehicle 2001. As shown in FIG. 15, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, It includes various sensors 2021 to 2029, an information service section 2012, and a communication module 2013.
 駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
 操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。 The electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals from various sensors 2021 to 2027 provided in the vehicle are input to the electronic control unit 2010. The electronic control unit 2010 may be called an ECU (Electronic Control Unit).
 各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 Signals from various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service department 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 1 using information acquired from an external device via the communication module 2013 and the like.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能または自動運転機能を実現する。 The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (for example, IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors to prevent accidents. or reduce the driver's driving load. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and the components of the vehicle 1 via the communication port. For example, the communication module 2013 communicates via the communication port 2033 with a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, which are included in the vehicle 2001. Data is transmitted and received between the axle 2009, the microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and the sensors 2021 to 2028.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、gNB100、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, the gNB 100, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などについても無線通信を介して外部装置へ送信する。 The communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication. In addition, the communication module 2013 also receives the front wheel and rear wheel rotational speed signals inputted to the electronic control unit 2010 and acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by acceleration sensor 2025, an accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by brake pedal sensor 2026, and a shift lever. A shift lever operation signal acquired by the sensor 2027 and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service section 2012 provided in the vehicle. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, and left and right rear wheels provided in the vehicle 2001. 2008, axle 2009, sensors 2021 to 2028, etc. may also be controlled.
 <付記>
 本実施の形態の端末又は基地局は、下記の各項に示す端末又は基地局として構成されてもよい。
<Additional notes>
The terminal or base station of this embodiment may be configured as the terminal or base station shown in each section below.
 (第1項)
 端末と基地局との間で特定期間に伝送される上りリンクデータ及び下りリンクの非連続受信に関わるパラメータを含むグループを複数設定する制御部と、前記グループをアクティブ状態又は非アクティブ状態にする情報を前記基地局から受信する受信部と、を備える端末。
(Section 1)
A control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted during a specific period between a terminal and a base station, and information for setting the groups to an active state or an inactive state. a receiving unit that receives from the base station.
 (第2項)
 前記制御部は、前記グループと前記端末のサービングセルとのマッピングを無線リソース制御レイヤで行う、請求項1に記載の端末。
(Section 2)
The terminal according to claim 1, wherein the control unit performs mapping between the group and a serving cell of the terminal in a radio resource control layer.
 (第3項)
 端末と基地局との間で特定期間に伝送される上りリンクデータ及び下りリンクの非連続受信に関わるパラメータを含むグループを複数設定する制御部と、前記グループに含まれるパラメータを前記グループ毎に切り替える信号、又は、複数の前記グループに含まれる前記パラメータを一斉に切り替えることを示す信号を、メディアアクセス制御の制御要素によって、前記基地局から受信する受信部と、を備える端末。
(Section 3)
a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted during a specific period between a terminal and a base station; and switching parameters included in the groups for each group. A terminal comprising: a receiving unit that receives a signal or a signal indicating that the parameters included in the plurality of groups are to be switched all at once from the base station by a control element of media access control.
 (第4項)
 端末と基地局との間で特定期間に伝送される上りリンクデータ及び下りリンクの非連続受信に関わるパラメータを含むグループを複数設定する制御部と、前記端末で利用する前記パラメータを前記グループ毎に要求する信号、又は、前記端末で利用する複数の前記グループの前記パラメータを一斉に要求する信号を、メディアアクセス制御の制御要素によって、前記基地局に送信する送信部と、を備える端末。
(Section 4)
a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted in a specific period between a terminal and a base station; A terminal comprising: a transmitter that transmits a request signal or a signal requesting the parameters of a plurality of groups used by the terminal all at once to the base station by a control element of media access control.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
 10 無線通信システム
 20 NG-RAN
 40 コアネットワーク
 50 AMF
 51 通信部
 52 送信部
 53 制御部
 100 gNB(無線基地局)
 200 UE(ヘッドマウント型端末)
 210 無線信号送受信部
 220 アンプ部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 2001 車両
 2002 駆動部
 2003 操舵部
 2004 アクセルペダル
 2005 ブレーキペダル
 2006 シフトレバー
 2007 左右の前輪
 2008 左右の後輪
 2009 車軸
 2010 電子制御部
 2012 情報サービス部
 2013 通信モジュール
 2021 電流センサ
 2022 回転数センサ
 2023 空気圧センサ
 2024 車速センサ
 2025 加速度センサ
 2026 ブレーキペダルセンサ
 2027 シフトレバーセンサ
 2028 物体検知センサ
 2029 アクセルペダルセンサ
 2030 運転支援システム部
 2031 マイクロプロセッサ
 2032 メモリ(ROM、RAM)
 2033 通信ポート
10 Wireless communication system 20 NG-RAN
40 Core network 50 AMF
51 Communication unit 52 Transmission unit 53 Control unit 100 gNB (wireless base station)
200 UE (head mounted terminal)
210 Wireless signal transmission/reception section 220 Amplifier section 270 Control section 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive section 2003 Steering section 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 axle 2010 axle 2010 electron control unit 2013 information service department 2013 1221 current sensor 222222 rotation number 2023 air pressure sensor 2024 vehicle speed sensor 2024 vehicle speed sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 object detection Sensor 2028 29 Axel pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port

Claims (4)

  1.  端末と基地局との間で特定期間に伝送される上りリンクデータ及び下りリンクの非連続受信に関わるパラメータを含むグループを複数設定する制御部と、
     前記グループをアクティブ状態又は非アクティブ状態にする情報を前記基地局から受信する受信部と、
     を備える端末。
    a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted during a specific period between a terminal and a base station;
    a receiving unit that receives information for setting the group into an active state or an inactive state from the base station;
    A terminal equipped with
  2.  前記制御部は、前記グループと前記端末のサービングセルとのマッピングを無線リソース制御レイヤで行う、請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit performs mapping between the group and the serving cell of the terminal in a radio resource control layer.
  3.  端末と基地局との間で特定期間に伝送される上りリンクデータ及び下りリンクの非連続受信に関わるパラメータを含むグループを複数設定する制御部と、
     前記グループに含まれるパラメータを前記グループ毎に切り替える信号、又は、複数の前記グループに含まれる前記パラメータを一斉に切り替えることを示す信号を、メディアアクセス制御の制御要素によって、前記基地局から受信する受信部と、
     を備える端末。
    a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted during a specific period between a terminal and a base station;
    A control element for media access control receives from the base station a signal indicating that parameters included in the group are to be switched for each group, or a signal indicating that the parameters included in a plurality of groups are to be switched all at once. Department and
    A terminal equipped with
  4.  端末と基地局との間で特定期間に伝送される上りリンクデータ及び下りリンクの非連続受信に関わるパラメータを含むグループを複数設定する制御部と、
     前記端末で利用する前記パラメータを前記グループ毎に要求する信号、又は、前記端末で利用する複数の前記グループの前記パラメータを一斉に要求する信号を、メディアアクセス制御の制御要素によって、前記基地局に送信する送信部と、
     を備える端末。
    a control unit that sets a plurality of groups including parameters related to uplink data and downlink discontinuous reception transmitted during a specific period between a terminal and a base station;
    A control element for media access control sends to the base station a signal requesting the parameters to be used by the terminal for each group, or a signal requesting the parameters of a plurality of groups to be used by the terminal all at once. a transmitting section that transmits;
    A terminal equipped with
PCT/JP2023/028386 2022-08-18 2023-08-03 Terminal WO2024038768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022130811 2022-08-18
JP2022-130811 2022-08-18

Publications (1)

Publication Number Publication Date
WO2024038768A1 true WO2024038768A1 (en) 2024-02-22

Family

ID=89941600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028386 WO2024038768A1 (en) 2022-08-18 2023-08-03 Terminal

Country Status (1)

Country Link
WO (1) WO2024038768A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170019820A1 (en) * 2015-07-17 2017-01-19 Qualcomm Incorporated Enhancements for discontinuous reception in wireless communications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170019820A1 (en) * 2015-07-17 2017-01-19 Qualcomm Incorporated Enhancements for discontinuous reception in wireless communications

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Study of C-DRX enhancements for XR traffic", 3GPP DRAFT; R2-2207119, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20220817 - 20220829, 9 August 2022 (2022-08-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052260442 *
INTERDIGITAL INC.: "Discussion on XR-specific power saving", 3GPP DRAFT; R2-2207490, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20220817 - 20220829, 10 August 2022 (2022-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052260810 *
LENOVO: "XR-specific power saving techniques", 3GPP DRAFT; R1-2206518, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052274450 *
LG ELECTRONICS INC.: "DRX enhancement for power saving in XR", 3GPP DRAFT; R2-2207569, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20220817 - 20220826, 10 August 2022 (2022-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052260889 *

Similar Documents

Publication Publication Date Title
WO2023162085A1 (en) Communication device and radio communication method
WO2024038768A1 (en) Terminal
WO2024034095A1 (en) Terminal
WO2024043154A1 (en) Wireless base station
WO2024043146A1 (en) Wireless base station and terminal
WO2023238402A1 (en) Terminal and base station
WO2024029078A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023210009A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024024112A1 (en) Base station
WO2024024111A1 (en) Terminal and base station
WO2024024096A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024024098A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024024100A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023210008A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023210006A1 (en) Terminal, wireless base station, and wireless communication method
WO2023067750A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024034093A1 (en) Terminal and wireless communication method
WO2024034138A1 (en) Terminal, wireless base station, and wireless communication method
WO2024057547A1 (en) Wireless base station and wireless communication method
WO2024034094A1 (en) Terminal and wireless communication method
WO2024079796A1 (en) Terminal and communication method
WO2024069900A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023195082A1 (en) Terminal, base station, and communication method
WO2024034146A1 (en) Terminal, base station, and communication method
WO2024034145A1 (en) Terminal, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854803

Country of ref document: EP

Kind code of ref document: A1