WO2024038672A1 - Energy consumption estimation device, model generation device, program, and method for generating model - Google Patents

Energy consumption estimation device, model generation device, program, and method for generating model Download PDF

Info

Publication number
WO2024038672A1
WO2024038672A1 PCT/JP2023/022798 JP2023022798W WO2024038672A1 WO 2024038672 A1 WO2024038672 A1 WO 2024038672A1 JP 2023022798 W JP2023022798 W JP 2023022798W WO 2024038672 A1 WO2024038672 A1 WO 2024038672A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
energy consumption
model
information
model generation
Prior art date
Application number
PCT/JP2023/022798
Other languages
French (fr)
Japanese (ja)
Inventor
悟 渡辺
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2024038672A1 publication Critical patent/WO2024038672A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present disclosure relates to an energy consumption estimation device, a model generation device, a program, and a model generation method.
  • the present disclosure particularly relates to an energy consumption estimation device, a model generation device, a program, and a model generation method for estimating the energy consumption of a vehicle.
  • Patent Document 1 in addition to acquiring the fuel consumption amount and mileage associated with the driving history from the vehicle, the fuel consumption amount of the planned driving route is calculated based on the tendency of fuel consumption amount for each driving situation pattern of the driver. Discloses a system for estimating.
  • Patent Document 1 estimate fuel consumption from information on a planned travel route, but cannot estimate changes in fuel consumption due to changes in vehicle equipment, for example. Therefore, there is a need to further improve the estimation accuracy of vehicle energy consumption.
  • An object of the present disclosure is to provide an energy consumption estimation device, a model generation device, a program, and a model generation method that are capable of estimating the energy consumption of a vehicle with high accuracy. .
  • An energy consumption estimation device is an energy consumption estimation device for a vehicle, and includes a model generation unit that generates a model for obtaining a target variable from an explanatory variable, and the model is a multiple regression model that includes the energy consumption of the vehicle as the objective variable, and includes traveling information of the vehicle, load information of the vehicle, and tire information of the vehicle as the explanatory variables; , calculating a first coefficient associated with tire information of the vehicle using performance data of the vehicle indicating the objective variable for the explanatory variable.
  • the first coefficient is associated with a dynamic load radius.
  • the model generation unit calculates a second coefficient associated with at least one of slope resistance and rolling resistance.
  • the model further includes vehicle information of the vehicle as the explanatory variable.
  • the vehicle includes an energy consumption estimation unit that estimates the energy consumption of the vehicle using the generated model.
  • the energy consumption estimating unit is configured to reduce energy consumption of the vehicle, which is consumed by at least one of rolling resistance, air resistance, slope resistance, acceleration resistance, and kinetic energy. Estimate energy consumption.
  • a model generation device is a model generation device that generates a model for estimating energy consumption of a vehicle, and is a model that generates a model for obtaining a target variable from an explanatory variable.
  • the model includes an energy consumption amount of the vehicle as the target variable, travel information of the vehicle, load information of the vehicle, and tire information of the vehicle having at least a dynamic load radius as the explanatory variables.
  • the model generation unit generates the model by machine learning using performance data of the vehicle indicating the objective variable for the explanatory variable.
  • a program is a program that causes a computer to generate a model for estimating energy consumption of a vehicle, the model including the energy consumption of the vehicle as a target variable. , a machine learning model that includes running information of the vehicle, load information of the vehicle, and tire information of the vehicle having at least a dynamic load radius as explanatory variables, and the objective variable for the explanatory variable is displayed on the computer. acquiring performance data of the vehicle, and performing machine learning using the performance data.
  • a method of generating a model according to an embodiment of the present disclosure is a method of generating a model for estimating energy consumption of a vehicle, which is executed by a computer, wherein the model uses energy of the vehicle as an objective variable.
  • the machine learning model is a machine learning model that includes a consumption amount, and includes driving information of the vehicle, load information of the vehicle, and tire information of the vehicle having at least a dynamic load radius as explanatory variables, and the objective variable for the explanatory variable is indicated. and performing machine learning using the performance data.
  • an energy consumption estimation device a model generation device, a program, and a model generation method that can estimate the energy consumption of a vehicle with high accuracy.
  • FIG. 1 is a diagram illustrating a configuration example of an energy consumption estimation system including an energy consumption estimation device according to an embodiment of the present disclosure.
  • FIG. 2 is another diagram showing a configuration example of the energy consumption estimation system of FIG. 1.
  • FIG. 3 is a flowchart illustrating an example of an energy consumption estimation method according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart showing details of the model generation process of FIG. 3.
  • FIG. 5 is a flowchart showing details of the energy consumption estimation process of FIG. 3.
  • FIGS. 1 and 2 are diagrams showing a configuration example of an energy consumption estimation system including an energy consumption estimation device 10 according to the present embodiment.
  • FIG. 1 is a block diagram including an example of the internal configuration of an energy consumption estimation device 10. As shown in FIG. FIG. 2 shows the overall configuration of the energy consumption estimation system.
  • the energy consumption estimation device 10 is a device for estimating the energy consumption of the vehicle 20.
  • the energy consumption estimation device 10 generates a model and estimates the energy consumption of the vehicle 20 using the generated model.
  • the energy consumption estimation device 10 may include only a function of generating a model, or may include only a function of estimating the energy consumption of the vehicle 20.
  • the functional part of the energy consumption estimation device 10 that generates a model may be treated as one device and referred to as a model generation device.
  • the energy consumption amount is the amount of energy consumed by the vehicle 20 for running, and is expressed based on a certain standard so that it can be compared objectively. For example, if the vehicle 20 uses gasoline, the energy consumption may be the fuel consumption.
  • the energy consumption amount will be explained as the fuel consumption amount, but it is not limited to this.
  • the energy consumption may be the power consumption.
  • the energy consumption may be the amount of hydrogen used if the vehicle 20 uses hydrogen.
  • the energy consumption estimation device 10 includes a communication section 11, a storage section 12, and a control section 13.
  • the control unit 13 includes a model generation unit 131 and an energy consumption estimation unit 132.
  • the energy consumption estimation device 10 may be, for example, a computer as a hardware configuration. Details of the components of the energy consumption estimation device 10 will be described later.
  • the energy consumption estimation device 10 may constitute an energy consumption estimation system together with the operation management device 60 connected through the network 40.
  • the network 40 is, for example, the Internet, but may also be a LAN (Local Area Network) or the like.
  • the operation management device 60 is a device that manages the operation of the vehicle 20.
  • the operation management device 60 is configured, for example, by a computer different from the energy consumption estimation device 10.
  • the vehicle 20 is not limited to a specific purpose and may be, for example, a passenger car, a taxi, a truck, etc., but will be described as a bus in this embodiment. That is, in this embodiment, the operation management device 60 is a device that manages the vehicle 20 as a bus that is a public transportation system.
  • the operation management device 60 manages the running state of the vehicle 20, the load state, information about the tires 30 mounted on the vehicle 20, and the like.
  • the operation management device 60 may manage the type, size, dynamic load radius, rolling resistance, etc. of the tires 30 as information about the tires 30 mounted on the vehicle 20.
  • the dynamic load radius is the effective radius of the tire 30 in terms of the actual amount of movement of the vehicle 20.
  • the traffic management device 60 may manage the type of the vehicle 20, the front projected area according to the type, etc. as vehicle information. Further, the operation management device 60 may manage data such as the weight of the vehicle 20, map information of the travel route (route) of the vehicle 20, and the like. The operation management device 60 may accumulate information regarding the operation of the vehicle 20 as a database and store it in an accessible storage device. Additionally, the traffic management device 60 provides information in the database to the energy consumption estimation device 10 so that the energy consumption estimation device 10 can estimate the energy consumption of the vehicle 20.
  • the vehicle 20, which is a bus includes a detection device 70 and a communication device 80.
  • the detection device 70 detects vehicle operation information, which is information indicating the running state of the vehicle 20, and outputs it to the communication device 80.
  • the detection device 70 may include, for example, an acceleration sensor, and output information on the acceleration of the vehicle 20 as vehicle operation information.
  • the detection device 70 may include, for example, a speed sensor, and output information on the speed of the vehicle 20 as vehicle operation information.
  • the detection device 70 includes, for example, a device having a GPS (Global Positioning System) function, and may output position information or travel distance of the vehicle 20 as vehicle operation information.
  • the detection device 70 includes an IC card reader for paying fares, and outputs the number of people getting on and off the vehicle 20 as vehicle operation information.
  • the communication device 80 is an in-vehicle device that outputs vehicle operation information to the operation management device 60.
  • the communication device 80 may be configured with, for example, a wireless communication module, or may be a digital tachograph, but is not limited to a specific device.
  • the communication device 80 is configured to be able to communicate with the operation management device 60 via the network 40.
  • the vehicle operation information output to the operation management device 60 is accumulated in the database of the operation management device 60 as performance data.
  • the performance data (vehicle operation information output to the operation management device 60 via the communication device 80) is stored in the database in association with the actual fuel consumption of the vehicle 20 by the operation management device 60.
  • the actual fuel consumption of the vehicle 20 may be calculated by the operation management device 60 based on the refueling information of the vehicle 20, for example.
  • the performance data may be stored in the database by the operation management device 60 in association with the type of tire 30 or the type of vehicle 20.
  • the communication unit 11 is configured to include one or more communication modules connected to the network 40.
  • the communication unit 11 may include a communication module compatible with mobile communication standards such as 4G (4th Generation) and 5G (5th Generation).
  • the communication unit 11 may include, for example, a communication module compatible with a wired LAN standard (for example, 1000BASE-T).
  • the communication unit 11 may include, for example, a communication module compatible with a wireless LAN standard (for example, IEEE802.11).
  • the storage unit 12 is one or more memories.
  • the memory is, for example, a semiconductor memory, a magnetic memory, or an optical memory, but is not limited to these and may be any memory.
  • the storage unit 12 is built in, for example, the energy consumption estimation device 10, but a configuration in which it is externally accessed by the energy consumption estimation device 10 via an arbitrary interface is also possible.
  • the storage unit 12 stores various data used in various calculations executed by the control unit 13. Furthermore, the storage unit 12 may store intermediate data and results of various calculations executed by the control unit 13. In this embodiment, the storage unit 12 stores the generated model.
  • the control unit 13 is one or more processors.
  • the processor is, for example, a general-purpose processor or a dedicated processor specialized for specific processing, but is not limited to these and can be any processor.
  • the control unit 13 controls the overall operation of the energy consumption estimation device 10.
  • the energy consumption estimation device 10 may have the following software configuration.
  • One or more programs used to control the operation of the energy consumption estimation device 10 are stored in the storage unit 12.
  • the program stored in the storage unit 12 is read by the processor of the control unit 13, the program causes the control unit 13 to function as the model generation unit 131 and the energy consumption estimation unit 132.
  • the model generation unit 131 generates a model used to estimate the energy consumption (fuel consumption in this embodiment) of the vehicle 20.
  • the model is not limited to a specific model as long as it is configured to obtain the objective variable from the explanatory variables.
  • the model is a multiple regression model (multiple regression equation) that has coefficients for multiple explanatory variables.
  • the target variable is the fuel consumption amount of the vehicle 20.
  • the explanatory variables include travel information of the vehicle 20, load information of the vehicle 20, and tire information of the vehicle 20.
  • the performance data accumulated in the database of the operation management device 60 is associated with the actual fuel consumption of the vehicle 20. In other words, the performance data indicates fuel consumption with respect to travel information, load information, and tire information of the vehicle 20.
  • the model generation unit 131 generates a model by determining coefficients using performance data of the vehicle 20.
  • the explanatory variables may further include vehicle information of the vehicle 20.
  • the travel information of the vehicle 20 may include at least one of the acceleration and speed of the vehicle 20 in the performance data. Further, the traveling information of the vehicle 20 may include position information of the vehicle 20. Based on the position information, the distance traveled by the vehicle 20, etc. can be calculated. Further, based on the position information and map information managed by the traffic management device 60, the slope or altitude of the location where the vehicle 20 is traveling can be calculated.
  • the load information of the vehicle 20 may include information on the weight of the vehicle 20 managed by the operation management device 60.
  • the load information of the vehicle 20 is determined in consideration of the number of people getting on and off the vehicle 20.
  • the weight of the vehicle 20 is not fixedly determined only by the weight of the vehicle 20 itself, but the weight of the vehicle 20 is accurately calculated by taking into account variations based on the number of passengers getting on and off the vehicle.
  • the tire information of the vehicle 20 includes at least the type of tire 30 and the dynamic load radius.
  • the tire information of the vehicle 20 may further include rolling resistance, size, and the like. The relationship between the dynamic load radius and the kinetic energy of the vehicle 20 will be described later.
  • the vehicle information of the vehicle 20 includes at least the type of the vehicle 20 and the front projected area.
  • the front projected area is a cross-sectional area when the vehicle 20 is viewed from the front, and an air resistance value can be obtained by multiplying this by an air resistance coefficient.
  • the front projected area differs depending on the type of vehicle 20 (model, class, etc.).
  • the model includes vehicle information as an explanatory variable, it becomes possible to take into account differences in air resistance depending on the vehicle 20, and it becomes possible to estimate the energy consumption of the vehicle 20 with even higher accuracy. .
  • the model generation unit 131 may classify the performance data used for model generation, for example, by the type of vehicle 20.
  • the model generation unit 131 may generate a plurality of models using each of the classified performance data.
  • the model generation unit 131 may classify the performance data used for model generation by service system. For example, when performance data is classified by system X, system Y, or system Z, which are operating systems, there is a model corresponding to the vehicle 20 traveling on system X, a model corresponding to the vehicle 20 traveling on system Y, and a model corresponding to the system A model corresponding to the vehicle 20 traveling in Z may be generated.
  • the model generation unit 131 may cause the storage unit 12 to store the generated model.
  • the energy consumption estimation unit 132 estimates the energy consumption (fuel consumption in this embodiment) of the vehicle 20 using the model generated by the model generation unit 131.
  • the energy consumption estimation unit 132 executes the estimation of the fuel consumption when receiving an estimation execution instruction and estimation conditions (input data) from outside the energy consumption estimation device 10 via the communication unit 11. good.
  • the energy consumption estimation unit 132 may select a model according to input data. For example, when the input data specifies the vehicle 20 of a specific model, the energy consumption estimation unit 132 selects a model corresponding to the specific model and estimates (calculates) the energy consumption. It's fine.
  • the model generation unit 131 generates a multiple regression model having coefficients for a plurality of explanatory variables, as described above.
  • the model generation unit 131 calculates a first coefficient associated with tire information of the vehicle 20 using performance data of the vehicle 20, and calculates a first coefficient associated with at least one of slope resistance and rolling resistance. 2. Calculate the coefficient. That is, the model generation unit 131 generates a model used for estimating the energy consumption amount of the vehicle 20 by determining the first coefficient and the second coefficient of the multiple regression model. The concept of fuel consumption estimation in this embodiment will be explained below in relation to the first coefficient and the second coefficient.
  • the energy generated by fuel is converted into rotational motion of the tires 30.
  • the energy generated by the fuel is determined by dividing the kinetic energy of the vehicle 20 by the energy conversion efficiency. Therefore, the energy consumption (fuel consumption in this embodiment) of the vehicle 20 can be estimated with high accuracy by accurately determining the kinetic energy of the vehicle 20.
  • the kinetic energy E[J] of the vehicle 20 is calculated using the following formula.
  • M is the weight [kg] of the vehicle 20.
  • a is the acceleration [m/s 2 ] of the vehicle 20.
  • L is the moving distance [m] of the vehicle 20.
  • R is the running resistance [N] of the vehicle 20. Running resistance can generally be broken down into Rr, Ra, Rg, and Rac.
  • Rr is rolling resistance [N].
  • Ra is air resistance [N].
  • Rg is gradient resistance [N].
  • Rh is acceleration resistance [N].
  • Rr, Ra, Rg and Rac are calculated using the following formulas.
  • g gravitational acceleration [m/s 2 ].
  • RRC rolling resistance coefficient [-].
  • is the air density [N ⁇ s 2 /m 4 ].
  • Cd is the air resistance coefficient [-].
  • A is the front projected area [m 2 ] of the vehicle 20.
  • V is the speed [m/s] of the vehicle 20.
  • is the gradient angle [°] of the road on which the vehicle 20 travels.
  • Mr is the weight [kg] equivalent to the rotating part of the vehicle 20.
  • the weight (M) of the vehicle 20 is obtained from the load information of the vehicle 20 stored in the database.
  • the acceleration (a), travel distance (L), and speed (V) of the vehicle 20 are obtained from travel information of the vehicle 20 stored in the database.
  • the slope angle ( ⁇ ) can be obtained based on travel information of the vehicle 20 stored in the database.
  • the rolling resistance coefficient (RRC) can be obtained based on the tire information of the vehicle 20 stored in the database.
  • a general size of a bus (7 [m 2 ] as an example) may be used, or it may be calculated from the vehicle information when the vehicle information of the vehicle 20 is stored in the database. Good to get it.
  • Constants may be used for the gravitational acceleration (g), air density ( ⁇ ), and air resistance coefficient (Cd).
  • the weight equivalent to the rotating part (Mr) of the vehicle 20 cannot be obtained as a measured value.
  • values related to the internal mechanical structure of the vehicle 20, such as the gear ratio of the transmission are required. Values regarding the internal mechanical structure of the vehicle 20 are not disclosed to the public. Therefore, it is difficult to accurately determine the kinetic energy E according to the calculation formula for the kinetic energy E.
  • the weight equivalent to the rotating part of the vehicle 20 changes according to (1/r 2 ), where r is the dynamic load radius [m] of the tire 30.
  • a multiple regression model is adopted in which the explanatory variable is the dynamic load radius (first term).
  • a term (second term) is used in which the explanatory variable is at least one of gradient resistance and rolling resistance.
  • the coefficient of the first term is the first coefficient
  • the coefficient of the second term is the second coefficient.
  • measured values can be obtained as described above, but generally the measured values may include errors.
  • the gradient angle may include an error.
  • rolling resistance is sometimes given as a theoretical value, which may differ from the actual value.
  • the multiple regression equation used in this embodiment is shown as follows, for example.
  • y is the energy consumption amount of the vehicle 20.
  • a1 and a2 are the first coefficient and the second coefficient, respectively.
  • FIG. 3 is a flowchart illustrating an example of an energy consumption estimation method executed by the energy consumption estimation device 10 according to the present embodiment.
  • the model generation unit 131 executes a model generation step (step S1) to generate a model for estimating the fuel consumption of the vehicle 20.
  • the energy consumption estimation unit 132 executes an energy consumption estimation step (step S2) of estimating the fuel consumption of the vehicle 20 using the generated model.
  • the energy consumption estimation step may be performed continuously with the model generation step, or may be performed after a certain period of time has elapsed after the model generation step.
  • FIG. 4 is a flowchart showing details of the model generation process in FIG. 3.
  • the model generation unit 131 acquires performance data accumulated in the database of the operation management device 60 (step S11).
  • the model generation unit 131 classifies the acquired performance data (step S12).
  • the model generation unit 131 classifies performance data according to at least the type of vehicle 20. For example, if the vehicle models are the same (if the same vehicle model buses are used), step S12 may be omitted.
  • the model generation unit 131 generates a model (step S13).
  • the model generation unit 131 generates a model by determining coefficients of a multiple regression model.
  • a first factor is associated with the dynamic load radius.
  • a second coefficient is associated with at least one of grade resistance and rolling resistance. This makes it possible to correct unrelated resistance and errors in measurement values, making it possible to accurately estimate kinetic energy and more accurately estimating the energy consumption of the vehicle 20. Become. Furthermore, based on the determined coefficients, the contribution rate of each explanatory variable to the amount of fuel consumption can be determined.
  • the second term above includes various types of resistance, but in the process of determining the second coefficient, the contribution rate to the kinetic energy of each of the rolling resistance, air resistance, gradient resistance, etc. associated with the second coefficient is calculated. Calculated. Therefore, it is possible to understand the relationship between a specific resistance and energy consumption based on each contribution rate.
  • FIG. 5 is a flowchart showing details of the energy consumption estimation process in FIG. 3.
  • the energy consumption estimation unit 132 Upon receiving an instruction to perform estimation from outside the energy consumption estimation device 10, the energy consumption estimation unit 132 obtains input data (step S21) and obtains a model from the storage unit 12 (step S22).
  • the input data is data indicating the estimation conditions as described above.
  • the energy consumption estimation unit 132 may select a model to be used for estimation based on input data when a plurality of models are generated.
  • the energy consumption estimating unit 132 estimates the fuel consumption using the model and outputs the estimation result (step S23).
  • the energy consumption estimating unit 132 can estimate the energy consumption of the vehicle 20 with high accuracy using a model that takes into account the kinetic energy related to the weight equivalent to the rotating part as described above and also corrects errors in measurement values.
  • the energy consumption estimation unit 132 can estimate the energy consumption of the vehicle 20, which is consumed by at least one of rolling resistance, air resistance, slope resistance, acceleration resistance, and kinetic energy. As described above, since the relationship between a specific resistance and energy consumption is grasped in the process of determining the first coefficient and the second coefficient, the energy consumption estimation unit 132 calculates the 20 energy consumption can be estimated. In other words, energy consumption due to some factors can be estimated with high accuracy.
  • the energy consumption estimation unit 132 when the input data requests estimation of fuel consumption when the type A tires 30 installed on the vehicle 20 are changed to type B tires 30, the energy consumption estimation unit 132 , the estimation can be made as follows. After estimating the energy consumption of the vehicle 20 equipped with the type A tire 30, the energy consumption estimating unit 132 calculates the difference (eg, ratio) in rolling resistance between the type A and type B tires 30. The energy consumption estimation unit 132 specifies the contribution rate of rolling resistance to the total kinetic energy based on, for example, the second coefficient. The energy consumption estimating unit 132 then adjusts the estimated energy consumption based on the difference in rolling resistance and the contribution rate.
  • the difference eg, ratio
  • the estimation results may be transmitted over the network 40 and displayed on a display that can be viewed by the person requesting the fuel consumption estimation (eg, a bus operator). For example, the results of a plurality of fuel consumption calculations for tires 30 of type A and tires 30 of type B may be displayed for comparison.
  • the conditions specified by the input data are not limited to the type of tire 30, and may be, for example, the type of vehicle 20.
  • the energy consumption estimation unit 132 may adjust the energy consumption by calculating the difference in air resistance and acceleration resistance. Further, when estimation of a change in fuel consumption on a slope is requested, the energy consumption estimation unit 132 may calculate the difference in slope resistance and adjust the energy consumption.
  • the energy consumption estimation device 10, model generation device, program, and model generation method according to the present embodiment can estimate the energy consumption of the vehicle 20 with high accuracy through the above configuration and steps. enable.
  • the configurations of the energy consumption estimation device 10 and the energy consumption estimation system shown in FIGS. 1 and 2 are merely examples, and are not limited to the configurations shown in FIGS. 1 and 2.
  • the energy consumption estimation system may have a configuration in which the energy consumption estimation device 10 and the operation management device 60 are integrated.
  • the energy consumption estimation device 10 may also perform the function of the operation management device 60, and the energy consumption estimation device 10 may function alone as an energy consumption estimation system.
  • the traffic management device 60 may be composed of not one computer but a plurality of computers.
  • the traffic management device 60 is configured of a plurality of computers that can communicate with each other, including at least one computer that manages location information of the vehicle 20 and another computer that manages information on the number of people getting on and off the vehicle 20. It's fine.
  • the model generation unit 131 and the energy consumption estimation unit 132 may be included in different computers.
  • the model generation unit 131 may be included in another computer that can communicate with the energy consumption estimation device 10 and also have access to the storage unit 12.
  • the energy consumption estimation device 10 may estimate the energy consumption of the vehicle 20 using a model generated by another computer and stored in the storage unit 12.
  • the model may be generated in the same manner as above. That is, another computer may acquire performance data of the vehicle 20 and generate a model using the performance data.
  • the model may be a machine learning model that includes the energy consumption amount of the vehicle 20 as an objective variable, and includes travel information of the vehicle 20, load information of the vehicle 20, and tire information of the vehicle 20 as explanatory variables.
  • the tire information of the vehicle 20 has at least a dynamic load radius.
  • the machine learning method may be, but is not limited to, a neural network, for example.
  • the model generation unit 131 acquires the track record data of the vehicle 20, performs machine learning using the track record data, and generates a model.
  • a model capable of estimating the energy consumption of the vehicle 20 with high accuracy is generated by performing machine learning using appropriate performance data, such as through classification processing by the model generation unit 131.
  • highly accurate estimation becomes possible using the model.
  • the model generation unit 131 and the energy consumption estimation unit 132 may be included in different computers. That is, another computer may generate a machine learning model, and the energy consumption estimation device 10 may estimate the energy consumption of the vehicle 20 using the model generated by the other computer and stored in the storage unit 12. .
  • the detection device 70 and the communication device 80 have been described as being devices mounted on the vehicle 20, they are not limited to such a configuration.
  • the detection device 70 and the communication device 80 may be realized by an application on a mobile terminal (for example, a smartphone) owned by a passenger of the vehicle 20.
  • An application on the mobile terminal may control various sensors and communication modules included in the mobile terminal to output vehicle operation information so as to be stored in a database as performance data. Further, part of the vehicle operation information may be detected and output by the mobile terminal, and the remaining vehicle operation information may be detected and output by the detection device 70 and communication device 80 that are different from the mobile terminal.
  • the application of the mobile terminal may detect and output the acceleration, speed, position information of the vehicle 20, the gradient of the place where the vehicle is traveling, the distance traveled, the number of people getting on and off the vehicle, and the like.
  • the detection device 70 and the communication device 80 are realized by an application of a mobile terminal owned by a passenger of the vehicle 20, the energy consumption estimation device 10 and the operation management device 60 are configured to be integrated. It's fine. That is, the energy consumption estimation device 10 may be configured to receive vehicle operation information from a mobile terminal and manage it in a database.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Provided is an energy consumption estimation device (10) for estimating energy consumption of a vehicle (20), the energy consumption estimation device comprising a model generation unit (131) that generates a model for obtaining an objective variable from an explanatory variable. The model is a multiple regression model that includes the energy consumption of the vehicle as an objective variable, and includes vehicle travel information, vehicle load information, and vehicle tire information as explanatory variables. The model generation unit calculates a first coefficient associated with the vehicle tire information, using vehicle performance data indicating the objective variable with respect to the explanatory variables.

Description

エネルギー消費量推定装置、モデル生成装置、プログラム及びモデルの生成方法Energy consumption estimation device, model generation device, program and model generation method
 本開示は、エネルギー消費量推定装置、モデル生成装置、プログラム及びモデルの生成方法に関する。本開示は、特に車両のエネルギー消費量を推定するためのエネルギー消費量推定装置、モデル生成装置、プログラム及びモデルの生成方法に関する。 The present disclosure relates to an energy consumption estimation device, a model generation device, a program, and a model generation method. The present disclosure particularly relates to an energy consumption estimation device, a model generation device, a program, and a model generation method for estimating the energy consumption of a vehicle.
 従来、車両の燃料消費量などのエネルギー消費量を推定する技術が提案されている。例えば、特許文献1は、車両から運転履歴に伴う燃料消費量及び走行距離を取得する他に、運転者個人の運転状況パターン毎の燃料消費量の傾向に基づいて、走行予定経路の燃料消費量を推定するシステムを開示する。 Conventionally, techniques have been proposed to estimate energy consumption such as vehicle fuel consumption. For example, in Patent Document 1, in addition to acquiring the fuel consumption amount and mileage associated with the driving history from the vehicle, the fuel consumption amount of the planned driving route is calculated based on the tendency of fuel consumption amount for each driving situation pattern of the driver. Discloses a system for estimating.
特開2009-031046号公報JP2009-031046A
 ここで、車両の燃料消費量などのエネルギー消費量は、走行状況及び装備などの様々な因子によって変化する。特許文献1などの従来技術は、走行予定経路の情報から燃料消費量を推定するが、例えば車両の装備変更などによる燃料消費量の変化を推定することができなかった。そのため、車両のエネルギー消費量について、さらなる推定精度の向上が求められている。 Here, energy consumption such as fuel consumption of a vehicle changes depending on various factors such as driving conditions and equipment. Conventional technologies such as Patent Document 1 estimate fuel consumption from information on a planned travel route, but cannot estimate changes in fuel consumption due to changes in vehicle equipment, for example. Therefore, there is a need to further improve the estimation accuracy of vehicle energy consumption.
 かかる事情に鑑みてなされた本開示の目的は、高精度に車両のエネルギー消費量を推定することが可能なエネルギー消費量推定装置、モデル生成装置、プログラム及びモデルの生成方法を提供することにある。 An object of the present disclosure, made in view of the above circumstances, is to provide an energy consumption estimation device, a model generation device, a program, and a model generation method that are capable of estimating the energy consumption of a vehicle with high accuracy. .
 (1)本開示の一実施形態に係るエネルギー消費量推定装置は、車両のエネルギー消費量推定装置であって、説明変数から目的変数を得るためのモデルを生成するモデル生成部を備え、前記モデルは、前記目的変数として前記車両のエネルギー消費量を含み、前記説明変数として前記車両の走行情報、前記車両の荷重情報及び前記車両のタイヤ情報を含む、重回帰モデルであり、前記モデル生成部は、前記説明変数に対する前記目的変数が示された前記車両の実績データを用いて、前記車両のタイヤ情報に関連付けられた第1係数を算出する。 (1) An energy consumption estimation device according to an embodiment of the present disclosure is an energy consumption estimation device for a vehicle, and includes a model generation unit that generates a model for obtaining a target variable from an explanatory variable, and the model is a multiple regression model that includes the energy consumption of the vehicle as the objective variable, and includes traveling information of the vehicle, load information of the vehicle, and tire information of the vehicle as the explanatory variables; , calculating a first coefficient associated with tire information of the vehicle using performance data of the vehicle indicating the objective variable for the explanatory variable.
 (2)本開示の一実施形態として、(1)において、前記第1係数は、動的負荷半径に関連付けられる。 (2) As an embodiment of the present disclosure, in (1), the first coefficient is associated with a dynamic load radius.
 (3)本開示の一実施形態として、(1)又は(2)において、前記モデル生成部は、勾配抵抗及び転がり抵抗の少なくとも1つに関連付けられた第2係数を算出する。 (3) As an embodiment of the present disclosure, in (1) or (2), the model generation unit calculates a second coefficient associated with at least one of slope resistance and rolling resistance.
 (4)本開示の一実施形態として、(1)から(3)のいずれかにおいて、前記モデルは、前記説明変数として前記車両の車両情報をさらに含む。 (4) As an embodiment of the present disclosure, in any one of (1) to (3), the model further includes vehicle information of the vehicle as the explanatory variable.
 (5)本開示の一実施形態として、(1)から(4)のいずれかにおいて、生成された前記モデルを用いて、前記車両のエネルギー消費量を推定するエネルギー消費量推定部を備える。 (5) As an embodiment of the present disclosure, in any one of (1) to (4), the vehicle includes an energy consumption estimation unit that estimates the energy consumption of the vehicle using the generated model.
 (6)本開示の一実施形態として、(5)において、前記エネルギー消費量推定部は、転がり抵抗、空気抵抗、勾配抵抗、加速抵抗及び運動エネルギーの少なくとも1つによって消費される、前記車両のエネルギー消費量を推定する。 (6) As an embodiment of the present disclosure, in (5), the energy consumption estimating unit is configured to reduce energy consumption of the vehicle, which is consumed by at least one of rolling resistance, air resistance, slope resistance, acceleration resistance, and kinetic energy. Estimate energy consumption.
 (7)本開示の一実施形態に係るモデル生成装置は、車両のエネルギー消費量推定のためのモデルを生成するモデル生成装置であって、説明変数から目的変数を得るためのモデルを生成するモデル生成部を備え、前記モデルは、前記目的変数として前記車両のエネルギー消費量を含み、前記説明変数として前記車両の走行情報、前記車両の荷重情報及び少なくとも動的負荷半径を有する前記車両のタイヤ情報を含む、機械学習モデルであり、前記モデル生成部は、前記説明変数に対する前記目的変数が示された前記車両の実績データを用いて、機械学習によって前記モデルを生成する。 (7) A model generation device according to an embodiment of the present disclosure is a model generation device that generates a model for estimating energy consumption of a vehicle, and is a model that generates a model for obtaining a target variable from an explanatory variable. The model includes an energy consumption amount of the vehicle as the target variable, travel information of the vehicle, load information of the vehicle, and tire information of the vehicle having at least a dynamic load radius as the explanatory variables. The model generation unit generates the model by machine learning using performance data of the vehicle indicating the objective variable for the explanatory variable.
 (8)本開示の一実施形態に係るプログラムは、コンピュータに、車両のエネルギー消費量推定のためのモデルを生成させるプログラムであって、前記モデルは、目的変数として前記車両のエネルギー消費量を含み、説明変数として前記車両の走行情報、前記車両の荷重情報及び少なくとも動的負荷半径を有する前記車両のタイヤ情報を含む、機械学習モデルであり、前記コンピュータに、前記説明変数に対する前記目的変数が示された前記車両の実績データを取得することと、前記実績データを用いた機械学習を行うことと、を実行させる。 (8) A program according to an embodiment of the present disclosure is a program that causes a computer to generate a model for estimating energy consumption of a vehicle, the model including the energy consumption of the vehicle as a target variable. , a machine learning model that includes running information of the vehicle, load information of the vehicle, and tire information of the vehicle having at least a dynamic load radius as explanatory variables, and the objective variable for the explanatory variable is displayed on the computer. acquiring performance data of the vehicle, and performing machine learning using the performance data.
 (9)本開示の一実施形態に係るモデルの生成方法は、コンピュータが実行する、車両のエネルギー消費量推定のためのモデルの生成方法であって、前記モデルは、目的変数として前記車両のエネルギー消費量を含み、説明変数として前記車両の走行情報、前記車両の荷重情報及び少なくとも動的負荷半径を有する前記車両のタイヤ情報を含む、機械学習モデルであり、前記説明変数に対する前記目的変数が示された前記車両の実績データを取得することと、前記実績データを用いた機械学習を行うことと、を含む。 (9) A method of generating a model according to an embodiment of the present disclosure is a method of generating a model for estimating energy consumption of a vehicle, which is executed by a computer, wherein the model uses energy of the vehicle as an objective variable. The machine learning model is a machine learning model that includes a consumption amount, and includes driving information of the vehicle, load information of the vehicle, and tire information of the vehicle having at least a dynamic load radius as explanatory variables, and the objective variable for the explanatory variable is indicated. and performing machine learning using the performance data.
 本開示によれば、高精度に車両のエネルギー消費量を推定することが可能なエネルギー消費量推定装置、モデル生成装置、プログラム及びモデルの生成方法を提供することができる。 According to the present disclosure, it is possible to provide an energy consumption estimation device, a model generation device, a program, and a model generation method that can estimate the energy consumption of a vehicle with high accuracy.
図1は、本開示の一実施形態に係るエネルギー消費量推定装置を含むエネルギー消費量推定システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of an energy consumption estimation system including an energy consumption estimation device according to an embodiment of the present disclosure. 図2は、図1のエネルギー消費量推定システムの構成例を示す別の図である。FIG. 2 is another diagram showing a configuration example of the energy consumption estimation system of FIG. 1. 図3は、本開示の一実施形態に係るエネルギー消費量推定方法の例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of an energy consumption estimation method according to an embodiment of the present disclosure. 図4は、図3のモデル生成工程の詳細を示すフローチャートである。FIG. 4 is a flowchart showing details of the model generation process of FIG. 3. 図5は、図3のエネルギー消費量推定工程の詳細を示すフローチャートである。FIG. 5 is a flowchart showing details of the energy consumption estimation process of FIG. 3.
 以下、図面を参照して本開示の一実施形態に係るエネルギー消費量推定装置、モデル生成装置、プログラム及びモデルの生成方法が説明される。各図中、同一又は相当する部分には、同一符号が付されている。本実施形態の説明において、同一又は相当する部分については、説明を適宜省略又は簡略化する。 Hereinafter, an energy consumption estimation device, a model generation device, a program, and a model generation method according to an embodiment of the present disclosure will be described with reference to the drawings. In each figure, the same or corresponding parts are given the same reference numerals. In the description of this embodiment, the description of the same or corresponding parts will be omitted or simplified as appropriate.
 図1及び図2は、本実施形態に係るエネルギー消費量推定装置10を含むエネルギー消費量推定システムの構成例を示す図である。図1はエネルギー消費量推定装置10の内部構成例を含むブロック図である。図2はエネルギー消費量推定システムの全体構成を示す。 FIGS. 1 and 2 are diagrams showing a configuration example of an energy consumption estimation system including an energy consumption estimation device 10 according to the present embodiment. FIG. 1 is a block diagram including an example of the internal configuration of an energy consumption estimation device 10. As shown in FIG. FIG. 2 shows the overall configuration of the energy consumption estimation system.
 エネルギー消費量推定装置10は、車両20のエネルギー消費量推定のための装置である。本実施形態において、エネルギー消費量推定装置10は、モデルを生成し、生成したモデルを用いて車両20のエネルギー消費量を推定する。ここで、エネルギー消費量推定装置10は、モデルを生成する機能のみを備えてよいし、車両20のエネルギー消費量を推定する機能のみを備えてよい。また、エネルギー消費量推定装置10のモデルを生成する機能部分を1つの装置のように扱って、モデル生成装置と称することがある。エネルギー消費量は、車両20が走行のために消費するエネルギーの量であって、客観的に比較可能なように、一定の基準当たりで示されるものをいう。エネルギー消費量は、例えば車両20がガソリンを用いるものであれば、燃料消費量であってよい。本実施形態において、エネルギー消費量は燃料消費量であるとして説明するが、これに限定されない。例えばエネルギー消費量は、車両20が電気自動車であれば、消費電力量であってよい。また、例えばエネルギー消費量は、車両20が水素を用いるものであれば、水素の使用量であってよい。 The energy consumption estimation device 10 is a device for estimating the energy consumption of the vehicle 20. In this embodiment, the energy consumption estimation device 10 generates a model and estimates the energy consumption of the vehicle 20 using the generated model. Here, the energy consumption estimation device 10 may include only a function of generating a model, or may include only a function of estimating the energy consumption of the vehicle 20. Further, the functional part of the energy consumption estimation device 10 that generates a model may be treated as one device and referred to as a model generation device. The energy consumption amount is the amount of energy consumed by the vehicle 20 for running, and is expressed based on a certain standard so that it can be compared objectively. For example, if the vehicle 20 uses gasoline, the energy consumption may be the fuel consumption. In this embodiment, the energy consumption amount will be explained as the fuel consumption amount, but it is not limited to this. For example, if the vehicle 20 is an electric vehicle, the energy consumption may be the power consumption. Further, for example, the energy consumption may be the amount of hydrogen used if the vehicle 20 uses hydrogen.
 エネルギー消費量推定装置10は、通信部11と、記憶部12と、制御部13と、を備える。制御部13は、モデル生成部131と、エネルギー消費量推定部132と、を備える。エネルギー消費量推定装置10は、ハードウェア構成として、例えばコンピュータであってよい。エネルギー消費量推定装置10の構成要素の詳細については後述する。 The energy consumption estimation device 10 includes a communication section 11, a storage section 12, and a control section 13. The control unit 13 includes a model generation unit 131 and an energy consumption estimation unit 132. The energy consumption estimation device 10 may be, for example, a computer as a hardware configuration. Details of the components of the energy consumption estimation device 10 will be described later.
 エネルギー消費量推定装置10は、ネットワーク40で接続される運行管理装置60とともに、エネルギー消費量推定システムを構成してよい。ネットワーク40は、例えばインターネットであるが、LAN(Local Area Network)などであってよい。 The energy consumption estimation device 10 may constitute an energy consumption estimation system together with the operation management device 60 connected through the network 40. The network 40 is, for example, the Internet, but may also be a LAN (Local Area Network) or the like.
 運行管理装置60は、車両20の運行を管理する装置である。運行管理装置60は、例えばエネルギー消費量推定装置10とは別のコンピュータで構成される。車両20は、特定の用途のものに限定されるものでなく、例えば乗用車、タクシー、トラック等であり得るが、本実施形態においてバスであるとして説明される。つまり、本実施形態において、運行管理装置60は、公共交通機関であるバスとしての車両20を管理する装置である。運行管理装置60は、車両20の走行状態、荷重の状態、さらに装着しているタイヤ30の情報などを管理する。運行管理装置60は、車両20が装着するタイヤ30の情報として、タイヤ30の種類、サイズ、動的負荷半径及び転がり抵抗などを管理してよい。動的負荷半径は、車両20の実際の移動量からみたタイヤ30の有効半径である。運行管理装置60は、車両情報として、車両20の種類、種類に応じた前方投影面積などを管理してよい。また、運行管理装置60は、車両20の重量などのデータ、車両20の走行ルート(路線)の地図情報などを管理してよい。運行管理装置60は、車両20の運行に関する情報をデータベースとして蓄積して、アクセス可能な記憶装置に記憶してよい。また、運行管理装置60は、エネルギー消費量推定装置10が車両20のエネルギー消費量を推定できるように、データベースの情報をエネルギー消費量推定装置10に提供する。 The operation management device 60 is a device that manages the operation of the vehicle 20. The operation management device 60 is configured, for example, by a computer different from the energy consumption estimation device 10. The vehicle 20 is not limited to a specific purpose and may be, for example, a passenger car, a taxi, a truck, etc., but will be described as a bus in this embodiment. That is, in this embodiment, the operation management device 60 is a device that manages the vehicle 20 as a bus that is a public transportation system. The operation management device 60 manages the running state of the vehicle 20, the load state, information about the tires 30 mounted on the vehicle 20, and the like. The operation management device 60 may manage the type, size, dynamic load radius, rolling resistance, etc. of the tires 30 as information about the tires 30 mounted on the vehicle 20. The dynamic load radius is the effective radius of the tire 30 in terms of the actual amount of movement of the vehicle 20. The traffic management device 60 may manage the type of the vehicle 20, the front projected area according to the type, etc. as vehicle information. Further, the operation management device 60 may manage data such as the weight of the vehicle 20, map information of the travel route (route) of the vehicle 20, and the like. The operation management device 60 may accumulate information regarding the operation of the vehicle 20 as a database and store it in an accessible storage device. Additionally, the traffic management device 60 provides information in the database to the energy consumption estimation device 10 so that the energy consumption estimation device 10 can estimate the energy consumption of the vehicle 20.
 本実施形態において、バスである車両20は、検出装置70及び通信装置80を備える。検出装置70は、車両20の走行状態を示す情報である車両運行情報を検出して通信装置80に出力する。検出装置70は、例えば加速度センサを含み、車両運行情報として車両20の加速度の情報を出力してよい。検出装置70は、例えば速度センサを含み、車両運行情報として車両20の速度の情報を出力してよい。検出装置70は、例えばGPS(Global Positioning System)機能を有する装置を含み、車両運行情報として車両20の位置情報又は移動距離を出力してよい。また、本実施形態において、検出装置70は、運賃を支払うためのICカードのリーダを含み、車両運行情報として車両20の乗降人数を出力する。 In this embodiment, the vehicle 20, which is a bus, includes a detection device 70 and a communication device 80. The detection device 70 detects vehicle operation information, which is information indicating the running state of the vehicle 20, and outputs it to the communication device 80. The detection device 70 may include, for example, an acceleration sensor, and output information on the acceleration of the vehicle 20 as vehicle operation information. The detection device 70 may include, for example, a speed sensor, and output information on the speed of the vehicle 20 as vehicle operation information. The detection device 70 includes, for example, a device having a GPS (Global Positioning System) function, and may output position information or travel distance of the vehicle 20 as vehicle operation information. In this embodiment, the detection device 70 includes an IC card reader for paying fares, and outputs the number of people getting on and off the vehicle 20 as vehicle operation information.
 通信装置80は、車両運行情報を運行管理装置60に出力する車載装置である。通信装置80は例えば無線通信モジュールで構成されてよいし、例えばデジタルタコグラフであってよいが、特定の装置に限定されない。本実施形態において、通信装置80は、ネットワーク40を介して、運行管理装置60と通信可能であるように構成される。運行管理装置60に出力された車両運行情報は、実績データとして運行管理装置60のデータベースに蓄積される。 The communication device 80 is an in-vehicle device that outputs vehicle operation information to the operation management device 60. The communication device 80 may be configured with, for example, a wireless communication module, or may be a digital tachograph, but is not limited to a specific device. In this embodiment, the communication device 80 is configured to be able to communicate with the operation management device 60 via the network 40. The vehicle operation information output to the operation management device 60 is accumulated in the database of the operation management device 60 as performance data.
 ここで、実績データ(通信装置80を介して運行管理装置60に出力された車両運行情報)は、運行管理装置60によって車両20の実際の燃料消費量と関連付けられてデータベースに蓄積される。車両20の実際の燃料消費量は、例えば車両20の給油の情報に基づいて運行管理装置60が計算してよい。また、実績データは運行管理装置60によってタイヤ30の種類又は車両20の種類と関連付けられてデータベースに蓄積されてよい。 Here, the performance data (vehicle operation information output to the operation management device 60 via the communication device 80) is stored in the database in association with the actual fuel consumption of the vehicle 20 by the operation management device 60. The actual fuel consumption of the vehicle 20 may be calculated by the operation management device 60 based on the refueling information of the vehicle 20, for example. Further, the performance data may be stored in the database by the operation management device 60 in association with the type of tire 30 or the type of vehicle 20.
 以下、エネルギー消費量推定装置10の構成要素の詳細が説明される。通信部11は、ネットワーク40に接続する1つ以上の通信モジュールを含んで構成される。通信部11は、例えば4G(4th Generation)、5G(5th Generation)などの移動体通信規格に対応する通信モジュールを含んでよい。通信部11は、例えば有線のLAN規格(一例として1000BASE-T)に対応する通信モジュールを含んでよい。通信部11は、例えば無線のLAN規格(一例としてIEEE802.11)に対応する通信モジュールを含んでよい。 Hereinafter, the details of the components of the energy consumption estimation device 10 will be explained. The communication unit 11 is configured to include one or more communication modules connected to the network 40. The communication unit 11 may include a communication module compatible with mobile communication standards such as 4G (4th Generation) and 5G (5th Generation). The communication unit 11 may include, for example, a communication module compatible with a wired LAN standard (for example, 1000BASE-T). The communication unit 11 may include, for example, a communication module compatible with a wireless LAN standard (for example, IEEE802.11).
 記憶部12は、1つ以上のメモリである。メモリは、例えば半導体メモリ、磁気メモリ、又は光メモリ等であるが、これらに限られず任意のメモリとすることができる。記憶部12は、例えばエネルギー消費量推定装置10に内蔵されるが、任意のインターフェースを介してエネルギー消費量推定装置10によって外部からアクセスされる構成も可能である。 The storage unit 12 is one or more memories. The memory is, for example, a semiconductor memory, a magnetic memory, or an optical memory, but is not limited to these and may be any memory. The storage unit 12 is built in, for example, the energy consumption estimation device 10, but a configuration in which it is externally accessed by the energy consumption estimation device 10 via an arbitrary interface is also possible.
 記憶部12は、制御部13が実行する各種の算出において使用される各種のデータを記憶する。また、記憶部12は、制御部13が実行する各種の算出の結果及び中間データを記憶してよい。本実施形態において、記憶部12は、生成されたモデルを記憶する。 The storage unit 12 stores various data used in various calculations executed by the control unit 13. Furthermore, the storage unit 12 may store intermediate data and results of various calculations executed by the control unit 13. In this embodiment, the storage unit 12 stores the generated model.
 制御部13は、1つ以上のプロセッサである。プロセッサは、例えば汎用のプロセッサ、又は特定の処理に特化した専用プロセッサであるが、これらに限られず任意のプロセッサとすることができる。制御部13は、エネルギー消費量推定装置10の全体の動作を制御する。 The control unit 13 is one or more processors. The processor is, for example, a general-purpose processor or a dedicated processor specialized for specific processing, but is not limited to these and can be any processor. The control unit 13 controls the overall operation of the energy consumption estimation device 10.
 ここで、エネルギー消費量推定装置10は、以下のようなソフトウェア構成を有してよい。エネルギー消費量推定装置10の動作の制御に用いられる1つ以上のプログラムが記憶部12に記憶される。記憶部12に記憶されたプログラムは、制御部13のプロセッサによって読み込まれると、制御部13をモデル生成部131及びエネルギー消費量推定部132として機能させる。 Here, the energy consumption estimation device 10 may have the following software configuration. One or more programs used to control the operation of the energy consumption estimation device 10 are stored in the storage unit 12. When the program stored in the storage unit 12 is read by the processor of the control unit 13, the program causes the control unit 13 to function as the model generation unit 131 and the energy consumption estimation unit 132.
 モデル生成部131は、車両20のエネルギー消費量(本実施形態において燃料消費量)を推定するために用いられるモデルを生成する。モデルは、説明変数から目的変数を得るように構成されていれば、特定のものに限定されない。本実施形態において、モデルは、複数の説明変数に係数を有する重回帰モデル(重回帰式)である。目的変数は車両20の燃料消費量である。また、説明変数は車両20の走行情報、車両20の荷重情報及び車両20のタイヤ情報を含む。上記のように、運行管理装置60のデータベースに蓄積された実績データは、車両20の実際の燃料消費量と関連付けられている。つまり、実績データは、車両20の走行情報、荷重情報及びタイヤ情報に対する燃料消費量を示すものである。モデル生成部131は、車両20の実績データを用いて、係数を決定することによってモデルを生成する。ここで、説明変数は車両20の車両情報をさらに含んでよい。 The model generation unit 131 generates a model used to estimate the energy consumption (fuel consumption in this embodiment) of the vehicle 20. The model is not limited to a specific model as long as it is configured to obtain the objective variable from the explanatory variables. In this embodiment, the model is a multiple regression model (multiple regression equation) that has coefficients for multiple explanatory variables. The target variable is the fuel consumption amount of the vehicle 20. Further, the explanatory variables include travel information of the vehicle 20, load information of the vehicle 20, and tire information of the vehicle 20. As described above, the performance data accumulated in the database of the operation management device 60 is associated with the actual fuel consumption of the vehicle 20. In other words, the performance data indicates fuel consumption with respect to travel information, load information, and tire information of the vehicle 20. The model generation unit 131 generates a model by determining coefficients using performance data of the vehicle 20. Here, the explanatory variables may further include vehicle information of the vehicle 20.
 ここで、車両20の走行情報は、実績データにおける車両20の加速度及び速度の少なくとも1つを含んでよい。また、車両20の走行情報は、車両20の位置情報を含んでよい。位置情報に基づいて、車両20の移動距離などが計算され得る。また、位置情報及び運行管理装置60によって管理される地図情報に基づいて、車両20の走行する場所の勾配又は高度が計算され得る。 Here, the travel information of the vehicle 20 may include at least one of the acceleration and speed of the vehicle 20 in the performance data. Further, the traveling information of the vehicle 20 may include position information of the vehicle 20. Based on the position information, the distance traveled by the vehicle 20, etc. can be calculated. Further, based on the position information and map information managed by the traffic management device 60, the slope or altitude of the location where the vehicle 20 is traveling can be calculated.
 また、車両20の荷重情報は、運行管理装置60によって管理される車両20の重量の情報を含んでよい。本実施形態において、車両20の荷重情報は、車両20の乗降人数を考慮して定められる。車両20の荷重が、車両20自体の重量だけで固定的に定められるのでなく、乗降人数に基づく変動が考慮されることによって、正確に車両20の重量が算出される。 Furthermore, the load information of the vehicle 20 may include information on the weight of the vehicle 20 managed by the operation management device 60. In this embodiment, the load information of the vehicle 20 is determined in consideration of the number of people getting on and off the vehicle 20. The weight of the vehicle 20 is not fixedly determined only by the weight of the vehicle 20 itself, but the weight of the vehicle 20 is accurately calculated by taking into account variations based on the number of passengers getting on and off the vehicle.
 また、車両20のタイヤ情報は、タイヤ30の種類及び動的負荷半径を少なくとも含む。車両20のタイヤ情報は、さらに転がり抵抗、サイズなどを含んでよい。動的負荷半径と車両20の運動エネルギーとの関係については後述する。 Additionally, the tire information of the vehicle 20 includes at least the type of tire 30 and the dynamic load radius. The tire information of the vehicle 20 may further include rolling resistance, size, and the like. The relationship between the dynamic load radius and the kinetic energy of the vehicle 20 will be described later.
 また、車両20の車両情報は、車両20の種類及び前方投影面積を少なくとも含む。前方投影面積は、車両20を正面から見た場合の断面面積であって、これに空気抵抗係数を乗じることによって空気抵抗値が得られる。前方投影面積は、車両20の種類(車種、車格など)によって異なっている。ここで、モデルが説明変数として車両情報を含む場合に、車両20による空気抵抗の違い等を考慮することが可能になり、さらに高精度に車両20のエネルギー消費量を推定することが可能になる。 Further, the vehicle information of the vehicle 20 includes at least the type of the vehicle 20 and the front projected area. The front projected area is a cross-sectional area when the vehicle 20 is viewed from the front, and an air resistance value can be obtained by multiplying this by an air resistance coefficient. The front projected area differs depending on the type of vehicle 20 (model, class, etc.). Here, when the model includes vehicle information as an explanatory variable, it becomes possible to take into account differences in air resistance depending on the vehicle 20, and it becomes possible to estimate the energy consumption of the vehicle 20 with even higher accuracy. .
 ここで、モデル生成部131は、モデル生成に用いる実績データを、例えば車両20の種類などで分類してよい。モデル生成部131は、分類された実績データのそれぞれを用いて、複数のモデルを生成してよい。また、本実施形態のように車両20がバスである場合に、モデル生成部131は、モデル生成に用いる実績データを運行系統で分類してよい。例えば実績データが運行系統である系統X、系統Y又は系統Zで分類された場合に、系統Xを走行する車両20に対応するモデルと、系統Yを走行する車両20に対応するモデルと、系統Zを走行する車両20に対応するモデルと、が生成されてよい。モデル生成部131は、生成したモデルを記憶部12に記憶させてよい。 Here, the model generation unit 131 may classify the performance data used for model generation, for example, by the type of vehicle 20. The model generation unit 131 may generate a plurality of models using each of the classified performance data. Further, when the vehicle 20 is a bus as in this embodiment, the model generation unit 131 may classify the performance data used for model generation by service system. For example, when performance data is classified by system X, system Y, or system Z, which are operating systems, there is a model corresponding to the vehicle 20 traveling on system X, a model corresponding to the vehicle 20 traveling on system Y, and a model corresponding to the system A model corresponding to the vehicle 20 traveling in Z may be generated. The model generation unit 131 may cause the storage unit 12 to store the generated model.
 エネルギー消費量推定部132は、モデル生成部131によって生成されたモデルを用いて、車両20のエネルギー消費量(本実施形態において燃料消費量)を推定する。エネルギー消費量推定部132は、通信部11を介してエネルギー消費量推定装置10の外部から推定実行の指示及び推定の条件(入力データ)を受け取った場合に、燃料消費量の推定を実行してよい。モデル生成部131によって複数のモデルが生成された場合に、エネルギー消費量推定部132は、入力データに応じてモデルを選択してよい。例えば、入力データが特定の車種である車両20を指定する内容である場合に、エネルギー消費量推定部132は、特定の車種に対応するモデルを選択して、エネルギー消費量を推定(計算)してよい。 The energy consumption estimation unit 132 estimates the energy consumption (fuel consumption in this embodiment) of the vehicle 20 using the model generated by the model generation unit 131. The energy consumption estimation unit 132 executes the estimation of the fuel consumption when receiving an estimation execution instruction and estimation conditions (input data) from outside the energy consumption estimation device 10 via the communication unit 11. good. When a plurality of models are generated by the model generation unit 131, the energy consumption estimation unit 132 may select a model according to input data. For example, when the input data specifies the vehicle 20 of a specific model, the energy consumption estimation unit 132 selects a model corresponding to the specific model and estimates (calculates) the energy consumption. It's fine.
 ここで、モデル生成部131は、上記のように、複数の説明変数に係数を有する重回帰モデルを生成する。本実施形態において、モデル生成部131は、車両20の実績データを用いて、車両20のタイヤ情報に関連付けられた第1係数を算出し、勾配抵抗及び転がり抵抗の少なくとも1つに関連付けられた第2係数を算出する。つまり、モデル生成部131は、重回帰モデルの第1係数と第2係数を決定することによって、車両20のエネルギー消費量の推定に用いられるモデルを生成する。第1係数と第2係数に関連して、以下に、本実施形態における燃料消費量推定の考え方が説明される。 Here, the model generation unit 131 generates a multiple regression model having coefficients for a plurality of explanatory variables, as described above. In the present embodiment, the model generation unit 131 calculates a first coefficient associated with tire information of the vehicle 20 using performance data of the vehicle 20, and calculates a first coefficient associated with at least one of slope resistance and rolling resistance. 2. Calculate the coefficient. That is, the model generation unit 131 generates a model used for estimating the energy consumption amount of the vehicle 20 by determining the first coefficient and the second coefficient of the multiple regression model. The concept of fuel consumption estimation in this embodiment will be explained below in relation to the first coefficient and the second coefficient.
 車両20では、燃料が生み出すエネルギーをタイヤ30の回転運動に変えている。燃料が生み出すエネルギーは車両20の運動エネルギーをエネルギー変換効率で割った値で求められる。したがって、車両20のエネルギー消費量(本実施形態において燃料消費量)は、車両20の運動エネルギーを正確に求めることによって、高精度に推定することが可能である。車両20の運動エネルギーE[J]は以下の式で計算される。 In the vehicle 20, energy generated by fuel is converted into rotational motion of the tires 30. The energy generated by the fuel is determined by dividing the kinetic energy of the vehicle 20 by the energy conversion efficiency. Therefore, the energy consumption (fuel consumption in this embodiment) of the vehicle 20 can be estimated with high accuracy by accurately determining the kinetic energy of the vehicle 20. The kinetic energy E[J] of the vehicle 20 is calculated using the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Mは車両20の重量[kg]である。aは車両20の加速度[m/s]である。Lは車両20の移動距離[m]である。Rは車両20の走行抵抗[N]である。走行抵抗は、一般に、Rr、Ra、Rg及びRacに分解できる。Rrは転がり抵抗[N]である。Raは空気抵抗[N]である。Rgは勾配抵抗[N]である。Racは加速抵抗[N]である。Rr、Ra、Rg及びRacは以下の式で計算される。 Here, M is the weight [kg] of the vehicle 20. a is the acceleration [m/s 2 ] of the vehicle 20. L is the moving distance [m] of the vehicle 20. R is the running resistance [N] of the vehicle 20. Running resistance can generally be broken down into Rr, Ra, Rg, and Rac. Rr is rolling resistance [N]. Ra is air resistance [N]. Rg is gradient resistance [N]. Rac is acceleration resistance [N]. Rr, Ra, Rg and Rac are calculated using the following formulas.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、gは重力加速度[m/s]である。RRCは転がり抵抗係数[-]である。ρは空気密度[N・s/m]である。Cdは空気抵抗係数[-]である。Aは車両20の前方投影面積[m]である。Vは車両20の速度[m/s]である。θは車両20が走行する道路の勾配角度[°]である。Mrは車両20の回転部相当重量[kg]である。 Here, g is gravitational acceleration [m/s 2 ]. RRC is rolling resistance coefficient [-]. ρ is the air density [N·s 2 /m 4 ]. Cd is the air resistance coefficient [-]. A is the front projected area [m 2 ] of the vehicle 20. V is the speed [m/s] of the vehicle 20. θ is the gradient angle [°] of the road on which the vehicle 20 travels. Mr is the weight [kg] equivalent to the rotating part of the vehicle 20.
 ここで、運動エネルギーEの計算において、車両20の重量(M)は、データベースに蓄積される車両20の荷重情報から得られる。車両20の加速度(a)、移動距離(L)及び速度(V)は、データベースに蓄積される車両20の走行情報から得られる。勾配角度(θ)は、データベースに蓄積される車両20の走行情報に基づいて取得可能である。転がり抵抗係数(RRC)は、データベースに蓄積される車両20のタイヤ情報に基づいて取得可能である。車両20の前方投影面積(A)は、バスの一般的なサイズ(一例として7[m])が使用されてよいし、データベースに車両20の車両情報が蓄積されている場合に車両情報から得られてよい。重力加速度(g)、空気密度(ρ)及び空気抵抗係数(Cd)は、定数が用いられてよい。しかし、車両20の回転部相当重量(Mr)は測定値として得ることができない。また、車両20の回転部相当重量を計算する場合には、変速機の変速比などの車両20の内部機械構造に関する値が必要になる。車両20の内部機械構造に関する値は一般に公開されていない。そのため、運動エネルギーEの計算式に従って、正確に運動エネルギーEを求めることは困難である。ただし、車両20の回転部相当重量は、タイヤ30の動的負荷半径[m]をrとする場合に、(1/r)に応じて変化することが知られている。 Here, in calculating the kinetic energy E, the weight (M) of the vehicle 20 is obtained from the load information of the vehicle 20 stored in the database. The acceleration (a), travel distance (L), and speed (V) of the vehicle 20 are obtained from travel information of the vehicle 20 stored in the database. The slope angle (θ) can be obtained based on travel information of the vehicle 20 stored in the database. The rolling resistance coefficient (RRC) can be obtained based on the tire information of the vehicle 20 stored in the database. For the front projected area (A) of the vehicle 20, a general size of a bus (7 [m 2 ] as an example) may be used, or it may be calculated from the vehicle information when the vehicle information of the vehicle 20 is stored in the database. Good to get it. Constants may be used for the gravitational acceleration (g), air density (ρ), and air resistance coefficient (Cd). However, the weight equivalent to the rotating part (Mr) of the vehicle 20 cannot be obtained as a measured value. Furthermore, when calculating the weight equivalent to the rotating parts of the vehicle 20, values related to the internal mechanical structure of the vehicle 20, such as the gear ratio of the transmission, are required. Values regarding the internal mechanical structure of the vehicle 20 are not disclosed to the public. Therefore, it is difficult to accurately determine the kinetic energy E according to the calculation formula for the kinetic energy E. However, it is known that the weight equivalent to the rotating part of the vehicle 20 changes according to (1/r 2 ), where r is the dynamic load radius [m] of the tire 30.
 本実施形態では、運動エネルギーEにおける回転部相当重量に関する部分について、説明変数を動的負荷半径とする項(第1項)とする重回帰モデルを採用する。また、運動エネルギーEにおける他の部分については、説明変数を勾配抵抗及び転がり抵抗の少なくとも1つとする項(第2項)とする。第1項の係数が第1係数であり、第2項の係数が第2係数である。ここで、第2項に相当する部分については、上記のように測定値を得ることができるが、一般に測定値に誤差が含まれることがある。例えば勾配抵抗は勾配角度が誤差を含むことがある。また、転がり抵抗は理論値で与えられることがあり、実際の値と差が生じることがある。そのため、回転部相当重量以外の部分についても重回帰モデルの第2項として解析し、重回帰係数によって補正が行われるようにする。本実施形態で用いられる重回帰式は例えば以下のように示される。yは車両20のエネルギー消費量である。a1、a2はそれぞれ第1係数、第2係数である。 In this embodiment, for the portion of the kinetic energy E related to the weight equivalent to the rotating part, a multiple regression model is adopted in which the explanatory variable is the dynamic load radius (first term). Further, for other parts of the kinetic energy E, a term (second term) is used in which the explanatory variable is at least one of gradient resistance and rolling resistance. The coefficient of the first term is the first coefficient, and the coefficient of the second term is the second coefficient. Here, for the portion corresponding to the second term, measured values can be obtained as described above, but generally the measured values may include errors. For example, in the case of a gradient resistance, the gradient angle may include an error. Additionally, rolling resistance is sometimes given as a theoretical value, which may differ from the actual value. Therefore, parts other than the weight equivalent to the rotating part are also analyzed as the second term of the multiple regression model, and correction is performed using the multiple regression coefficient. The multiple regression equation used in this embodiment is shown as follows, for example. y is the energy consumption amount of the vehicle 20. a1 and a2 are the first coefficient and the second coefficient, respectively.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図3は、本実施形態に係るエネルギー消費量推定装置10が実行するエネルギー消費量推定方法の例を示すフローチャートである。モデル生成部131は、車両20の燃料消費量を推定するためのモデルを生成するモデル生成工程(ステップS1)を実行する。また、エネルギー消費量推定部132は、生成されたモデルを用いて、車両20の燃料消費量を推定するエネルギー消費量推定工程(ステップS2)を実行する。エネルギー消費量推定工程は、モデル生成工程と連続して実行されてよいが、モデル生成工程の後に一定の時間が経過してから実行されてよい。 FIG. 3 is a flowchart illustrating an example of an energy consumption estimation method executed by the energy consumption estimation device 10 according to the present embodiment. The model generation unit 131 executes a model generation step (step S1) to generate a model for estimating the fuel consumption of the vehicle 20. Furthermore, the energy consumption estimation unit 132 executes an energy consumption estimation step (step S2) of estimating the fuel consumption of the vehicle 20 using the generated model. The energy consumption estimation step may be performed continuously with the model generation step, or may be performed after a certain period of time has elapsed after the model generation step.
 図4は、図3のモデル生成工程の詳細を示すフローチャートである。モデル生成部131は、運行管理装置60のデータベースに蓄積された実績データを取得する(ステップS11)。モデル生成部131は、取得した実績データを分類する(ステップS12)。本実施形態において、モデル生成部131は、少なくとも車両20の種類に応じて実績データを分類する。例えば車種が同一である場合(同じ車種のバスが使用される場合)に、ステップS12が省略されてよい。そして、モデル生成部131はモデルを生成する(ステップS13)。本実施形態において、モデル生成部131は、重回帰モデルの係数を決定することによってモデルを生成する。上記のように、本実施形態において、第1係数が動的負荷半径に関連付けられる。このことによって、計算式から得ることが難しい回転部相当重量に関する加速抵抗についても、動的負荷半径に基づいて正確に推定することができ、さらに高精度に車両20のエネルギー消費量を推定することが可能になる。また、第2係数が勾配抵抗及び転がり抵抗の少なくとも1つに関連付けられる。このことによって、関連付けられていない抵抗及び測定値の誤差などについても補正可能になり、運動エネルギーを正確に推定することができ、さらに高精度に車両20のエネルギー消費量を推定することが可能になる。また、決定された係数に基づいて、それぞれの説明変数の燃料消費量に対する寄与率を求めることができる。例えば上記の第2項は様々な種類の抵抗を含むが、第2係数の決定の過程において、第2係数に関連付けた転がり抵抗、空気抵抗、勾配抵抗などのそれぞれの運動エネルギーへの寄与率が計算される。そのため、それぞれの寄与率に基づいて、特定の抵抗とエネルギー消費量との関係を把握可能である。 FIG. 4 is a flowchart showing details of the model generation process in FIG. 3. The model generation unit 131 acquires performance data accumulated in the database of the operation management device 60 (step S11). The model generation unit 131 classifies the acquired performance data (step S12). In the present embodiment, the model generation unit 131 classifies performance data according to at least the type of vehicle 20. For example, if the vehicle models are the same (if the same vehicle model buses are used), step S12 may be omitted. Then, the model generation unit 131 generates a model (step S13). In this embodiment, the model generation unit 131 generates a model by determining coefficients of a multiple regression model. As mentioned above, in this embodiment, a first factor is associated with the dynamic load radius. As a result, it is possible to accurately estimate the acceleration resistance related to the weight equivalent to the rotating part, which is difficult to obtain from a calculation formula, based on the dynamic load radius, and to estimate the energy consumption of the vehicle 20 with high precision. becomes possible. Also, a second coefficient is associated with at least one of grade resistance and rolling resistance. This makes it possible to correct unrelated resistance and errors in measurement values, making it possible to accurately estimate kinetic energy and more accurately estimating the energy consumption of the vehicle 20. Become. Furthermore, based on the determined coefficients, the contribution rate of each explanatory variable to the amount of fuel consumption can be determined. For example, the second term above includes various types of resistance, but in the process of determining the second coefficient, the contribution rate to the kinetic energy of each of the rolling resistance, air resistance, gradient resistance, etc. associated with the second coefficient is calculated. Calculated. Therefore, it is possible to understand the relationship between a specific resistance and energy consumption based on each contribution rate.
 図5は、図3のエネルギー消費量推定工程の詳細を示すフローチャートである。エネルギー消費量推定部132は、エネルギー消費量推定装置10の外部から推定実行の指示を受け取ると、入力データを取得し(ステップS21)、記憶部12からモデルを取得する(ステップS22)。入力データは、上記のように推定の条件を示すデータである。エネルギー消費量推定部132は、複数のモデルが生成されている場合に、入力データに基づいて推定に用いるモデルを選択してよい。そして、エネルギー消費量推定部132は、モデルを用いて燃料消費量を推定し、推定結果を出力する(ステップS23)。エネルギー消費量推定部132は、上記のように回転部相当重量に関する運動エネルギーを考慮して、測定値の誤差なども補正したモデルを用いて、高精度に車両20のエネルギー消費量を推定できる。 FIG. 5 is a flowchart showing details of the energy consumption estimation process in FIG. 3. Upon receiving an instruction to perform estimation from outside the energy consumption estimation device 10, the energy consumption estimation unit 132 obtains input data (step S21) and obtains a model from the storage unit 12 (step S22). The input data is data indicating the estimation conditions as described above. The energy consumption estimation unit 132 may select a model to be used for estimation based on input data when a plurality of models are generated. The energy consumption estimating unit 132 then estimates the fuel consumption using the model and outputs the estimation result (step S23). The energy consumption estimating unit 132 can estimate the energy consumption of the vehicle 20 with high accuracy using a model that takes into account the kinetic energy related to the weight equivalent to the rotating part as described above and also corrects errors in measurement values.
 ここで、エネルギー消費量推定部132は、転がり抵抗、空気抵抗、勾配抵抗、加速抵抗及び運動エネルギーの少なくとも1つによって消費される、車両20のエネルギー消費量を推定することができる。上記のように、第1係数、第2係数の決定の過程において特定の抵抗とエネルギー消費量との関係が把握されるため、エネルギー消費量推定部132は、特定の抵抗が寄与する分の車両20のエネルギー消費量を推定することができる。つまり、一部の要因によるエネルギー消費量を高精度に推定することができる。 Here, the energy consumption estimation unit 132 can estimate the energy consumption of the vehicle 20, which is consumed by at least one of rolling resistance, air resistance, slope resistance, acceleration resistance, and kinetic energy. As described above, since the relationship between a specific resistance and energy consumption is grasped in the process of determining the first coefficient and the second coefficient, the energy consumption estimation unit 132 calculates the 20 energy consumption can be estimated. In other words, energy consumption due to some factors can be estimated with high accuracy.
 例えば入力データが、車両20が装着していた種類Aのタイヤ30を、種類Bのタイヤ30に変更した場合の燃料消費量の推定を要求するものである場合に、エネルギー消費量推定部132は、以下のように推定を行うことができる。エネルギー消費量推定部132は、種類Aのタイヤ30を装着する車両20のエネルギー消費量を推定した後に、種類Aと種類Bのタイヤ30の転がり抵抗の違い(例えば比)を計算する。エネルギー消費量推定部132は、転がり抵抗の全体の運動エネルギーへの寄与率を例えば第2係数に基づいて特定する。そして、エネルギー消費量推定部132は、推定したエネルギー消費量を、転がり抵抗の違い及び寄与率に基づいて調整する。推定結果は、ネットワーク40を介して送信されて、燃料消費量推定を要求した者(例えばバスの運行管理者)が見ることができるディスプレイに表示されてよい。例えば、種類Aのタイヤ30と種類Bのタイヤ30の複数の燃料消費量計算の結果が対比されるように示されてよい。ここで、入力データが指定する条件はタイヤ30の種類に限定されず、例えば車両20の種類などであってよい。例えば車両20の種類が異なる場合に、エネルギー消費量推定部132は、空気抵抗及び加速抵抗の違いを計算して、エネルギー消費量を調整してよい。また、坂道での燃料消費量変化の推定が要求された場合に、エネルギー消費量推定部132は、勾配抵抗の違いを計算して、エネルギー消費量を調整してよい。 For example, when the input data requests estimation of fuel consumption when the type A tires 30 installed on the vehicle 20 are changed to type B tires 30, the energy consumption estimation unit 132 , the estimation can be made as follows. After estimating the energy consumption of the vehicle 20 equipped with the type A tire 30, the energy consumption estimating unit 132 calculates the difference (eg, ratio) in rolling resistance between the type A and type B tires 30. The energy consumption estimation unit 132 specifies the contribution rate of rolling resistance to the total kinetic energy based on, for example, the second coefficient. The energy consumption estimating unit 132 then adjusts the estimated energy consumption based on the difference in rolling resistance and the contribution rate. The estimation results may be transmitted over the network 40 and displayed on a display that can be viewed by the person requesting the fuel consumption estimation (eg, a bus operator). For example, the results of a plurality of fuel consumption calculations for tires 30 of type A and tires 30 of type B may be displayed for comparison. Here, the conditions specified by the input data are not limited to the type of tire 30, and may be, for example, the type of vehicle 20. For example, when the types of vehicles 20 are different, the energy consumption estimation unit 132 may adjust the energy consumption by calculating the difference in air resistance and acceleration resistance. Further, when estimation of a change in fuel consumption on a slope is requested, the energy consumption estimation unit 132 may calculate the difference in slope resistance and adjust the energy consumption.
 以上のように、本実施形態に係るエネルギー消費量推定装置10、モデル生成装置、プログラム及びモデルの生成方法は、上記の構成及び工程によって、高精度に車両20のエネルギー消費量を推定することを可能にする。 As described above, the energy consumption estimation device 10, model generation device, program, and model generation method according to the present embodiment can estimate the energy consumption of the vehicle 20 with high accuracy through the above configuration and steps. enable.
 本開示の実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部又は各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部又はステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。本開示に係る実施形態は装置が備えるプロセッサにより実行されるプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。 Although the embodiments of the present disclosure have been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. It should therefore be noted that these variations or modifications are included within the scope of this disclosure. For example, the functions included in each component or each step can be rearranged to avoid logical contradictions, and multiple components or steps can be combined or divided into one. It is. Embodiments according to the present disclosure can also be realized as a storage medium recording a program executed by a processor included in the device. It is to be understood that these are also encompassed within the scope of the present disclosure.
 例えば図1及び図2に示されるエネルギー消費量推定装置10及びエネルギー消費量推定システムの構成は一例であって、図1及び図2の構成に限定されるものでない。例えばエネルギー消費量推定システムは、エネルギー消費量推定装置10と運行管理装置60とが一体化された構成であってよい。この場合に、エネルギー消費量推定装置10が運行管理装置60の機能も実行し、エネルギー消費量推定装置10が単体でエネルギー消費量推定システムとして機能してよい。また、例えばエネルギー消費量推定システムが運行管理装置60を備える場合に、運行管理装置60は1つでなく複数のコンピュータで構成されてよい。例えば運行管理装置60は、車両20の位置情報を管理する1つのコンピュータと、車両20の乗降人数の情報を管理する別のコンピュータと、を少なくとも含む、相互に通信可能な複数のコンピュータで構成されてよい。 For example, the configurations of the energy consumption estimation device 10 and the energy consumption estimation system shown in FIGS. 1 and 2 are merely examples, and are not limited to the configurations shown in FIGS. 1 and 2. For example, the energy consumption estimation system may have a configuration in which the energy consumption estimation device 10 and the operation management device 60 are integrated. In this case, the energy consumption estimation device 10 may also perform the function of the operation management device 60, and the energy consumption estimation device 10 may function alone as an energy consumption estimation system. Further, for example, when the energy consumption estimation system includes the traffic management device 60, the traffic management device 60 may be composed of not one computer but a plurality of computers. For example, the traffic management device 60 is configured of a plurality of computers that can communicate with each other, including at least one computer that manages location information of the vehicle 20 and another computer that manages information on the number of people getting on and off the vehicle 20. It's fine.
 モデル生成部131と、エネルギー消費量推定部132と、が異なるコンピュータに含まれる構成であってよい。例えば、モデル生成部131は、エネルギー消費量推定装置10と通信可能であって、記憶部12にもアクセス可能な別のコンピュータに含まれてよい。この場合に、エネルギー消費量推定装置10は、別のコンピュータで生成されて記憶部12に記憶されたモデルを用いて、車両20のエネルギー消費量を推定してよい。モデルは上記と同様に生成されてよい。つまり、別のコンピュータが、車両20の実績データを取得し、実績データを用いてモデルを生成してよい。 The model generation unit 131 and the energy consumption estimation unit 132 may be included in different computers. For example, the model generation unit 131 may be included in another computer that can communicate with the energy consumption estimation device 10 and also have access to the storage unit 12. In this case, the energy consumption estimation device 10 may estimate the energy consumption of the vehicle 20 using a model generated by another computer and stored in the storage unit 12. The model may be generated in the same manner as above. That is, another computer may acquire performance data of the vehicle 20 and generate a model using the performance data.
 また、上記の実施形態において、重回帰モデルが用いられたが、機械学習モデルが用いられてよい。つまり、モデルは、目的変数として車両20のエネルギー消費量を含み、説明変数として車両20の走行情報、車両20の荷重情報及び車両20のタイヤ情報を含む、機械学習モデルであってよい。車両20のタイヤ情報は少なくとも動的負荷半径を有する。機械学習の手法は、限定されないが、例えばニューラルネットワークなどであってよい。この場合に、モデル生成部131は、車両20の実績データを取得して、実績データを用いた機械学習を行ってモデルを生成する。例えばモデル生成部131による分類処理などによって、適切な実績データを用いて機械学習が実行されることによって、高精度に車両20のエネルギー消費量を推定することが可能なモデルが生成される。また、そのモデルを用いて高精度な推定が可能になる。ここで、機械学習モデルが用いられる場合においても、モデル生成部131と、エネルギー消費量推定部132と、が異なるコンピュータに含まれる構成であってよい。つまり、別のコンピュータが機械学習モデルを生成し、エネルギー消費量推定装置10が別のコンピュータで生成されて記憶部12に記憶されたモデルを用いて、車両20のエネルギー消費量を推定してよい。 Also, in the above embodiments, a multiple regression model was used, but a machine learning model may be used. That is, the model may be a machine learning model that includes the energy consumption amount of the vehicle 20 as an objective variable, and includes travel information of the vehicle 20, load information of the vehicle 20, and tire information of the vehicle 20 as explanatory variables. The tire information of the vehicle 20 has at least a dynamic load radius. The machine learning method may be, but is not limited to, a neural network, for example. In this case, the model generation unit 131 acquires the track record data of the vehicle 20, performs machine learning using the track record data, and generates a model. For example, a model capable of estimating the energy consumption of the vehicle 20 with high accuracy is generated by performing machine learning using appropriate performance data, such as through classification processing by the model generation unit 131. In addition, highly accurate estimation becomes possible using the model. Here, even when a machine learning model is used, the model generation unit 131 and the energy consumption estimation unit 132 may be included in different computers. That is, another computer may generate a machine learning model, and the energy consumption estimation device 10 may estimate the energy consumption of the vehicle 20 using the model generated by the other computer and stored in the storage unit 12. .
 また、検出装置70及び通信装置80は、車両20に搭載される装置であるとして説明したが、このような形態に限定されない。例えば検出装置70及び通信装置80は、車両20の搭乗者が有する携帯端末(一例としてスマートフォン)のアプリケーションで実現されてよい。携帯端末のアプリケーションが、携帯端末が備える各種のセンサと通信モジュールを制御して、実績データとしてデータベースに蓄積されるように、車両運行情報を出力してよい。また、車両運行情報の一部が携帯端末によって検出及び出力されて、残りの車両運行情報が、携帯端末と異なる検出装置70及び通信装置80によって検出及び出力されてよい。この場合に、携帯端末のアプリケーションによって、車両20の加速度、速度、位置情報、走行する場所の勾配、移動距離及び乗降人数などが検出及び出力されてよい。ここで、検出装置70及び通信装置80が車両20の搭乗者が有する携帯端末のアプリケーションで実現される場合にも、エネルギー消費量推定装置10と運行管理装置60とが一体化された構成であってよい。つまり、エネルギー消費量推定装置10が携帯端末からの車両運行情報を受け取って、データベースで管理する構成であってよい。 Furthermore, although the detection device 70 and the communication device 80 have been described as being devices mounted on the vehicle 20, they are not limited to such a configuration. For example, the detection device 70 and the communication device 80 may be realized by an application on a mobile terminal (for example, a smartphone) owned by a passenger of the vehicle 20. An application on the mobile terminal may control various sensors and communication modules included in the mobile terminal to output vehicle operation information so as to be stored in a database as performance data. Further, part of the vehicle operation information may be detected and output by the mobile terminal, and the remaining vehicle operation information may be detected and output by the detection device 70 and communication device 80 that are different from the mobile terminal. In this case, the application of the mobile terminal may detect and output the acceleration, speed, position information of the vehicle 20, the gradient of the place where the vehicle is traveling, the distance traveled, the number of people getting on and off the vehicle, and the like. Here, even when the detection device 70 and the communication device 80 are realized by an application of a mobile terminal owned by a passenger of the vehicle 20, the energy consumption estimation device 10 and the operation management device 60 are configured to be integrated. It's fine. That is, the energy consumption estimation device 10 may be configured to receive vehicle operation information from a mobile terminal and manage it in a database.
 10 エネルギー消費量推定装置
 11 通信部
 12 記憶部
 13 制御部
 20 車両
 30 タイヤ
 40 ネットワーク
 60 運行管理装置
 70 検出装置
 80 通信装置
 131 モデル生成部
 132 エネルギー消費量推定部
10 Energy consumption estimation device 11 Communication unit 12 Storage unit 13 Control unit 20 Vehicle 30 Tire 40 Network 60 Operation management device 70 Detection device 80 Communication device 131 Model generation unit 132 Energy consumption estimation unit

Claims (9)

  1.  車両のエネルギー消費量推定装置であって、
     説明変数から目的変数を得るためのモデルを生成するモデル生成部を備え、
     前記モデルは、前記目的変数として前記車両のエネルギー消費量を含み、前記説明変数として前記車両の走行情報、前記車両の荷重情報及び前記車両のタイヤ情報を含む、重回帰モデルであり、
     前記モデル生成部は、前記説明変数に対する前記目的変数が示された前記車両の実績データを用いて、前記車両のタイヤ情報に関連付けられた第1係数を算出する、エネルギー消費量推定装置。
    A vehicle energy consumption estimation device,
    Equipped with a model generation unit that generates a model for obtaining the objective variable from the explanatory variables,
    The model is a multiple regression model that includes the energy consumption amount of the vehicle as the objective variable, and includes travel information of the vehicle, load information of the vehicle, and tire information of the vehicle as the explanatory variables,
    The model generation unit is an energy consumption estimation device that calculates a first coefficient associated with tire information of the vehicle using performance data of the vehicle indicating the target variable for the explanatory variable.
  2.  前記第1係数は、動的負荷半径に関連付けられる、請求項1に記載のエネルギー消費量推定装置。 The energy consumption estimation device according to claim 1, wherein the first coefficient is associated with a dynamic load radius.
  3.  前記モデル生成部は、勾配抵抗及び転がり抵抗の少なくとも1つに関連付けられた第2係数を算出する、請求項1又は2に記載のエネルギー消費量推定装置。 The energy consumption estimation device according to claim 1 or 2, wherein the model generation unit calculates a second coefficient associated with at least one of slope resistance and rolling resistance.
  4.  前記モデルは、前記説明変数として前記車両の車両情報をさらに含む、請求項1から3のいずれか一項に記載のエネルギー消費量推定装置。 The energy consumption estimation device according to any one of claims 1 to 3, wherein the model further includes vehicle information of the vehicle as the explanatory variable.
  5.  生成された前記モデルを用いて、前記車両のエネルギー消費量を推定するエネルギー消費量推定部を備える、請求項1から4のいずれか一項に記載のエネルギー消費量推定装置。 The energy consumption estimation device according to any one of claims 1 to 4, further comprising an energy consumption estimation unit that estimates the energy consumption of the vehicle using the generated model.
  6.  前記エネルギー消費量推定部は、転がり抵抗、空気抵抗、勾配抵抗、加速抵抗及び運動エネルギーの少なくとも1つによって消費される、前記車両のエネルギー消費量を推定する、請求項5に記載のエネルギー消費量推定装置。 The energy consumption amount according to claim 5, wherein the energy consumption estimator estimates the energy consumption amount of the vehicle consumed by at least one of rolling resistance, air resistance, slope resistance, acceleration resistance, and kinetic energy. Estimation device.
  7.  車両のエネルギー消費量推定のためのモデルを生成するモデル生成装置であって、
     説明変数から目的変数を得るためのモデルを生成するモデル生成部を備え、
     前記モデルは、前記目的変数として前記車両のエネルギー消費量を含み、前記説明変数として前記車両の走行情報、前記車両の荷重情報及び少なくとも動的負荷半径を有する前記車両のタイヤ情報を含む、機械学習モデルであり、
     前記モデル生成部は、前記説明変数に対する前記目的変数が示された前記車両の実績データを用いて、機械学習によって前記モデルを生成する、モデル生成装置。
    A model generation device that generates a model for estimating energy consumption of a vehicle, comprising:
    Equipped with a model generation unit that generates a model for obtaining the objective variable from the explanatory variables,
    The model includes machine learning, including energy consumption of the vehicle as the objective variable, travel information of the vehicle, load information of the vehicle, and tire information of the vehicle having at least a dynamic load radius as the explanatory variables. is a model,
    The model generation unit is a model generation device that generates the model by machine learning using performance data of the vehicle indicating the objective variable for the explanatory variable.
  8.  コンピュータに、車両のエネルギー消費量推定のためのモデルを生成させるプログラムであって、
     前記モデルは、目的変数として前記車両のエネルギー消費量を含み、説明変数として前記車両の走行情報、前記車両の荷重情報及び少なくとも動的負荷半径を有する前記車両のタイヤ情報を含む、機械学習モデルであり、
     前記コンピュータに、
      前記説明変数に対する前記目的変数が示された前記車両の実績データを取得することと、
      前記実績データを用いた機械学習を行うことと、を実行させる、プログラム。
    A program that causes a computer to generate a model for estimating energy consumption of a vehicle, the program comprising:
    The model is a machine learning model that includes energy consumption of the vehicle as an objective variable, and includes traveling information of the vehicle, load information of the vehicle, and tire information of the vehicle having at least a dynamic load radius as explanatory variables. can be,
    to the computer;
    obtaining performance data of the vehicle indicating the objective variable for the explanatory variable;
    A program that executes machine learning using the performance data.
  9.  コンピュータが実行する、車両のエネルギー消費量推定のためのモデルの生成方法であって、
     前記モデルは、目的変数として前記車両のエネルギー消費量を含み、説明変数として前記車両の走行情報、前記車両の荷重情報及び少なくとも動的負荷半径を有する前記車両のタイヤ情報を含む、機械学習モデルであり、
     前記説明変数に対する前記目的変数が示された前記車両の実績データを取得することと、
     前記実績データを用いた機械学習を行うことと、を含む、モデルの生成方法。
    A method of generating a model for estimating energy consumption of a vehicle, the method being executed by a computer, comprising:
    The model is a machine learning model that includes energy consumption of the vehicle as an objective variable, and includes traveling information of the vehicle, load information of the vehicle, and tire information of the vehicle having at least a dynamic load radius as explanatory variables. can be,
    obtaining performance data of the vehicle indicating the objective variable for the explanatory variable;
    A method for generating a model, the method comprising: performing machine learning using the performance data.
PCT/JP2023/022798 2022-08-19 2023-06-20 Energy consumption estimation device, model generation device, program, and method for generating model WO2024038672A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022131382A JP2024028051A (en) 2022-08-19 2022-08-19 Energy consumption estimation device, model generation device, program and model generation method
JP2022-131382 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024038672A1 true WO2024038672A1 (en) 2024-02-22

Family

ID=89941437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022798 WO2024038672A1 (en) 2022-08-19 2023-06-20 Energy consumption estimation device, model generation device, program, and method for generating model

Country Status (2)

Country Link
JP (1) JP2024028051A (en)
WO (1) WO2024038672A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212637A (en) * 2013-04-19 2014-11-13 三菱電機株式会社 Management system for electrically-driven vehicle
JP2020027432A (en) * 2018-08-10 2020-02-20 株式会社東芝 Energy management device, model management method, and computer program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212637A (en) * 2013-04-19 2014-11-13 三菱電機株式会社 Management system for electrically-driven vehicle
JP2020027432A (en) * 2018-08-10 2020-02-20 株式会社東芝 Energy management device, model management method, and computer program

Also Published As

Publication number Publication date
JP2024028051A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
JP2021168193A (en) Intelligent self-adaptive automobile device for measurement and integration of risk based on dynamic score using telematics connection search engine and corresponding method thereof
RU2566951C2 (en) Fuel feed control device and method
EP2428944A1 (en) Driving management system and method
US10249112B2 (en) Vehicle state monitoring apparatus, vehicle state monitoring system, and vehicle state monitoring method
CN111670340A (en) Method for acquiring remaining driving mileage of vehicle, electronic equipment and vehicle
CN106500707B (en) Device and method for indicating fuel mileage measurements in a vehicle
WO2014192615A1 (en) Simulation device, simulation method, and program
US11656086B2 (en) Electricity consumption rate predicting device
JP2010271749A (en) Vehicle travel information comparison system
JP6205919B2 (en) Information estimation device for electric vehicles, route search system, and computer program
AU2020333471B2 (en) Estimating fuel economy
KR20180070127A (en) Vehicle and method for controlling thereof
CN117400948A (en) Automobile energy consumption prediction method and device, electronic equipment and storage medium
WO2024038672A1 (en) Energy consumption estimation device, model generation device, program, and method for generating model
Shaw et al. Instantaneous fuel consumption estimation using smartphones
US20220041169A1 (en) System and Method for Providing an Indication of Driving Performance
CN116853001A (en) Vehicle endurance mileage determination method and device, electronic equipment and storage medium
WO2020213024A1 (en) Information processing device, information processing method, and information processing program
WO2019225497A1 (en) On-road travel test system, and program for on-road travel test system
JP2014238648A (en) Driving evaluation system and driving evaluation method
US11525728B1 (en) Systems and methods for determining an estimated weight of a vehicle
US11465453B2 (en) Computer system with tire wear measurement mechanism and method of operation thereof
JP2023178096A (en) Energy consumption estimation device, energy consumption estimation method, program and model generation method
JP6361801B2 (en) Information estimation device for electric vehicles, route search system, and computer program
GB2579559A (en) System and method for providing an indication of driving performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854710

Country of ref document: EP

Kind code of ref document: A1