WO2024038669A1 - Coiling machine and production method for coil springs - Google Patents

Coiling machine and production method for coil springs Download PDF

Info

Publication number
WO2024038669A1
WO2024038669A1 PCT/JP2023/022577 JP2023022577W WO2024038669A1 WO 2024038669 A1 WO2024038669 A1 WO 2024038669A1 JP 2023022577 W JP2023022577 W JP 2023022577W WO 2024038669 A1 WO2024038669 A1 WO 2024038669A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
laser beam
irradiation
coiling machine
output
Prior art date
Application number
PCT/JP2023/022577
Other languages
French (fr)
Japanese (ja)
Inventor
尚 岩田
将梧 市川
雄一郎 山内
怜 田中
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2024038669A1 publication Critical patent/WO2024038669A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F11/00Cutting wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire

Definitions

  • the present invention relates to a coiling machine for manufacturing a coil spring and a method for manufacturing a coil spring.
  • a coil spring forming machine described in Patent Document 1 is known as an apparatus for manufacturing coil springs.
  • This coil spring forming machine calculates the position of the cutting part in advance based on the length of the wire to be spirally formed, and cuts the wire while softening the cutting part by high-frequency heating.
  • coiling machines are also known, such as the spring manufacturing apparatus described in Patent Document 2, which cut a spirally formed wire using a laser beam.
  • the responsiveness of heating the cut portion is not good.
  • the wire is cut while the cutting region continues to be heated by high-frequency heating, so that the members used for cutting may be affected by the high-frequency heating.
  • the responsiveness of high-frequency heating is not sufficient and the wire is coiled while it is partially heated, so it is difficult to maintain a constant spring forming accuracy. There is a possibility that it will become difficult.
  • the spring manufacturing apparatus of Patent Document 2 requires a high-power laser beam that can cut the wire.
  • sputtering may occur due to laser light irradiation, and the laser light may irradiate not only the wire but also various parts of the spring manufacturing apparatus, so these measures must be taken.
  • the applicant of the present application has proposed a method in which a portion of the wire heated by laser light is cut using a cutting component such as a cutter, as described in Patent Document 3. According to this method, the wire can be easily cut and a coil spring having a good cut surface can be obtained.
  • the conditions for irradiating the wire with laser light need to be appropriately determined so that the wire is heated to a temperature suitable for cutting and the cross section of the wire after cutting has a good shape.
  • One of the objects of the present invention is to provide a coiling machine and a method for manufacturing a coil spring that can improve the manufacturing efficiency of coil springs and manufacture coil springs with good shapes.
  • the coiling machine includes a laser heating machine that heats a part of the wire by irradiating the wire into a spiral shape with laser light, and a coiling machine that heats a part of the wire by irradiating the wire with laser light.
  • a cutting unit that cuts the part, and the output density of the laser beam is 10 W/mm 2 or more and 100 W/mm 2 or less.
  • the method for manufacturing a coil spring according to the present invention includes heating a part of the wire by irradiating a wire formed into a spiral shape with a laser beam, and heating a part of the wire by irradiating the wire with the laser beam. cutting a portion of the wire, and the output density of the laser beam is 10 W/mm 2 or more and 100 W/mm 2 or less.
  • the power density is preferably 31 W/mm 2 or more and 74 W/mm 2 or less.
  • the output density is a value obtained by dividing the output of the laser beam by the area of the irradiation region of the laser beam on the surface of the wire when viewed in the irradiation direction of the laser beam.
  • the irradiation area is an area defined by the half width of the output distribution of the laser beam on the surface of the wire.
  • the irradiation area may have an elongated shape in the width direction of the wire.
  • the diameter of the wire is 8 mm or more and 18 mm or less
  • the area of the irradiation region is 16 mm 2 or more and 108 mm 2 or less
  • the output of the laser beam is 500 W or more and 8000 W or less.
  • FIG. 1 is a schematic perspective view showing main parts of a coiling machine according to an embodiment.
  • FIG. 2 is a schematic front view of a coiling machine according to one embodiment.
  • FIG. 3 is a flowchart showing the operation of the coiling machine according to one embodiment.
  • FIG. 4 is a schematic perspective view showing a specific example of a spiral forming process using a coiling machine according to an embodiment.
  • FIG. 5 is a schematic perspective view showing a specific example of a heating process performed by a coiling machine according to an embodiment.
  • FIG. 6 is a perspective view showing a first example of a method of heating and softening a part of the wire in the heating step.
  • FIG. 7 is a cross-sectional view of the wire along line VII-VII in FIG. FIG.
  • FIG. 8 is a perspective view showing a second example of a method of heating and softening a part of the wire in the heating step.
  • FIG. 9 is a cross-sectional view of the wire taken along line IX-IX in FIG.
  • FIG. 10 is a schematic perspective view showing a specific example of a cutting process by a coiling machine according to an embodiment.
  • FIG. 11 is a schematic cross-sectional view of a wire irradiated with laser light.
  • FIG. 12 is a cross-sectional view showing an example of a suitable positional relationship between the cutter, the mandrel, and the laser beam irradiation area.
  • FIG. 13 is a sectional view showing a state in which the cutter is lowered from the state shown in FIG. 12 to cut the wire.
  • FIG. 14 is a schematic side view of a coil spring cut from wire in the manner shown in FIGS. 12 and 13.
  • FIG. 15 is a schematic plan view of the surface of a wire that is irradiated with a laser beam having a rectangular beam profile, as viewed in the irradiation direction.
  • FIG. 16 is a diagram for explaining the definition of the irradiation area shown in FIG. 15.
  • FIG. 17 is a schematic plan view of the surface of a wire irradiated with a laser beam having a circular beam profile, viewed in the irradiation direction.
  • FIG. 18 is a diagram for explaining the definition of the irradiation area shown in FIG. 17.
  • FIG. 19 is a table showing irradiation conditions and examples that can be applied to laser light.
  • FIG. 1 is a schematic perspective view showing the main parts of a coiling machine 100 according to the present embodiment.
  • FIG. 2 is a schematic front view of the coiling machine 100 shown in FIG. 1.
  • a conveying direction X, a vertical direction Y, a forming direction Z, and a circumferential direction D ⁇ are defined.
  • the conveying direction X, the vertical direction Y, and the forming direction Z are orthogonal to each other.
  • the conveyance direction X is the direction in which the straight wire 1 before being formed into a spiral shape is conveyed.
  • the forming direction Z is the direction in which the coil spring made of the spirally bent wire 1 extends (the direction in which the coil spring grows).
  • the circumferential direction D ⁇ is the direction in which the wire 1 constituting the coil spring is wound.
  • the coiling machine 100 includes a conveying unit 10, a spiral forming unit 20, a heating unit (laser heating machine 30), a cutting unit 40, and a control unit 50.
  • the transport unit 10 includes a pair of drive rollers 11, a pair of driven rollers 12, and a wire guide 13.
  • the transport unit 10 may include more drive rollers 11 and more driven rollers 12.
  • Each driving roller 11 and each driven roller 12 are opposed to each other via the wire 1.
  • each driving roller 11 rotates
  • each driven roller 12 rotates via the wire 1.
  • the wire 1 sandwiched between each drive roller 11 and each driven roller 12 is transported in the transport direction X.
  • the wire 1 is inserted into the wire guide 13.
  • the wire guide 13 guides the wire 1 so as to move straight in the conveying direction X, and leads the wire 1 to the spiral forming unit 20 .
  • the spiral forming unit 20 forms the wire 1 transported by the transport unit 10 into a spiral shape.
  • the spiral forming unit 20 includes a first forming roller 21, a second forming roller 22, and a pitch tool 23.
  • the first forming roller 21, the second forming roller 22, and the pitch tool 23 are arranged in order along the circumferential direction D ⁇ .
  • the positions of the first forming roller 21, the second forming roller 22, and the pitch tool 23 in the forming direction Z are different from each other.
  • the first forming roller 21 and the second forming roller 22 sequentially bend the wire 1 conveyed in the conveying direction X in the vertical direction Y.
  • the wire 1 sequentially bent in this manner draws an arc along the circumferential direction D ⁇ .
  • the bent wire 1 is guided by the pitch tool 23 at a position shifted from the second forming roller 22 in the forming direction Z.
  • the laser heating machine 30 irradiates a part of the spirally formed wire 1 with a laser beam L.
  • a heated region 1V having a higher temperature than other parts is formed in the wire 1.
  • the laser heating machine 30 includes a laser oscillator 31, an optical fiber 32, and a laser head 33.
  • the laser head 33 includes, for example, a beam spot adjuster.
  • the laser oscillator 31 for example, a semiconductor laser that generates the laser beam L can be used.
  • the optical fiber 32 transmits the laser beam L generated by the laser oscillator 31 to the laser head 33.
  • the laser head 33 adjusts the beam shape of the laser light L into a rectangular or circular shape using the above-mentioned beam spot adjuster.
  • the beam spot adjuster for example, an optical element such as a beam homogenizer can be used.
  • the laser heating machine 30 may further include a measuring device 34 that measures the temperature of the heated region 1V.
  • the measuring device 34 includes, for example, a sensor that detects the temperature of the heated portion 1V of the wire 1.
  • the measuring device 34 may be provided on the side of the cutting unit 40 in order to avoid interference with the cutting unit 40.
  • the measuring device 34 may be configured to be moved away from the cutter 41 in conjunction with the operation of the cutter 41 in order to avoid interference with the cutter 41, which will be described later.
  • the measurement results obtained by the measuring device 34 can be used, for example, to control the timing at which the cutting unit 40 cuts the wire 1 .
  • the measuring device 34 is not an essential component. That is, without using the measuring device 34, various conditions for cutting the wire 1 may be set in advance, and the cutting unit 40 may cut the heated portion 1V based on the conditions.
  • the laser heating machine 30 may further include a moving stage that causes the laser head 33 to approach and move away from the heating region 1V of the wire 1.
  • the moving stage can be configured by, for example, a linear motion stage or a robot hand. If the working distance of the laser head 33 is set sufficiently long or if interference with the cutting unit 40 can be avoided, there is no need to use a moving stage.
  • the cutting unit 40 cuts the heated portion 1V of the wire 1, which has a higher temperature after the irradiation of the laser beam L is stopped than before the irradiation with the laser beam.
  • the cutting unit 40 includes a cutter 41 and a mandrel 42.
  • the cutter 41 is arranged between the second forming roller 22 and the pitch tool 23 in the circumferential direction D ⁇ .
  • the cutter 41 has, for example, a sharp cutting blade at its tip that extends in the forming direction Z.
  • the cutter 41 is configured to be movable along the vertical direction Y by a drive mechanism (not shown).
  • the mandrel 42 is arranged inside the first forming roller 21, the second forming roller 22, and the pitch tool 23.
  • the mandrel 42 has a semicircular shape along the XY plane, for example, as shown in FIG. 2, and extends long in the forming direction Z.
  • the mandrel 42 supports the inner circumferential surface of the spirally formed wire 1 mainly at the end of the arcuate surface in the vertical direction Y.
  • the control unit 50 controls the transport unit 10, the spiral forming unit 20, the laser heating machine 30, and the cutting unit 40.
  • Such a control unit 50 includes a controller 51.
  • the controller 51 includes a ROM (Read Only Memory), a CPU (Central Processing Unit), and a RAM (Random Access Memory).
  • the ROM stores a computer program for controlling the conveyance unit 10, the spiral forming unit 20, the laser heating machine 30, and the cutting unit 40.
  • the CPU executes computer programs stored in the ROM.
  • the RAM temporarily stores various data generated as the computer program is executed by the CPU.
  • FIG. 3 is a flowchart showing the operation of the coiling machine 100.
  • the operations shown in this flowchart are mainly realized by the controller 51 executing a computer program.
  • the manufacturing process of the coil spring 2 by the coiling machine 100 includes a spiral forming process S01, a heating process S02, and a cutting process S03.
  • the wire 1 is formed into a spiral shape.
  • a portion of the wire 1 is irradiated with the laser beam L, thereby forming a heated region 1V in the wire 1.
  • the heated portion 1V includes a portion of the wire 1 that is softer than other portions (base material).
  • the cutting step S03 after the heating step S02 is completed the heated portion 1V of the wire 1 is cut.
  • FIG. 4 is a schematic perspective view of a coiling machine 100 showing a specific example of the spiral forming process S01.
  • the conveyance unit 10 causes the wire 1 to move straight in the conveyance direction X using the driving roller 11 and the driven roller 12, and guides it to the wire guide 13.
  • the wire 1 led out from the wire guide 13 is bent in the vertical direction Y by the first forming roller 21 and the second forming roller 22, and is formed into an arc shape.
  • the wire 1 formed into an arc shape is guided by a pitch tool 23 so that it is formed into a spiral shape with a predetermined pitch. By such an operation, the spiral wire 1 is gradually extended in the forming direction Z.
  • FIG. 5 is a schematic perspective view of the coiling machine 100 showing a specific example of the heating step S02.
  • the laser heating machine 30 directly applies a laser beam to, for example, a portion of the spirally formed wire 1 located near the end of the mandrel 42 in the vertical direction Y (below the cutter 41). Irradiate L. The energy of this laser beam L heats the base material of the wire 1, and a softened heated region 1V is formed.
  • the transport of the wire 1 by the transport unit 10 is stopped.
  • the laser heating device 30 is fixedly arranged at a predetermined position, for example, and irradiates the laser beam L toward a part of the wire 1 that is stopped from this position.
  • the laser heating machine 30 may irradiate the laser beam L after bringing the laser head 33 closer to the wire 1.
  • the laser heating device 30 may irradiate the portion of the wire 1 that is sent in the circumferential direction D ⁇ with the laser beam L without stopping the transport of the wire 1 by the transport unit 10.
  • the movement of the laser heating device 30 may be controlled so that the irradiation position of the laser beam L moves following the movement of the cutting position due to coiling.
  • FIG. 6 is a perspective view of the wire 1 showing a first example of a method of heating and softening a part of the wire 1.
  • the laser heating device 30 irradiates the surface of the wire 1 with laser light L1 in the irradiation direction DL.
  • the laser beam L1 has, for example, a long rectangular beam profile in the width direction of the wire 1.
  • a heated region 1V is formed in and around the irradiation region 1a of the wire 1 irradiated with the laser beam L1.
  • FIG. 7 is a cross-sectional view of the wire 1 along line VII-VII in FIG. 6.
  • the heating region 1V extends not only around the irradiation area 1a on the surface of the wire 1 but also inside the wire 1.
  • the width of the laser beam L1 is smaller than the diameter R of the wire 1. Therefore, most of the laser light L1 is irradiated onto the wire 1.
  • FIG. 8 is a perspective view of the wire 1 showing a second example of a method of heating and softening a part of the wire 1.
  • the laser heating device 30 irradiates the surface of the wire 1 with laser light L2 in the irradiation direction DL.
  • the laser beam L2 has, for example, a circular beam profile.
  • a heated region 1V is formed in and around the irradiation region 1a of the wire 1 irradiated with the laser beam L2, as in the first example.
  • FIG. 9 is a cross-sectional view of the wire 1 taken along line IX-IX in FIG.
  • the heating region 1V extends not only around the irradiation area 1a on the surface of the wire 1 but also inside the wire 1.
  • the diameter of the laser beam L2 is smaller than the diameter R of the wire 1. Therefore, most of the laser light L2 is irradiated onto the wire 1.
  • the heating region 1V may extend further into the wire 1 than in the examples shown in FIGS. 7 and 9.
  • the shape of the laser beam L emitted by the laser heating machine 30 is not limited to the first example and the second example.
  • the heating region 1V may include a molten pool in which the base material of the wire 1 is melted by the energy of the laser beam L.
  • the molten pool may spread not only in the irradiated area 1a but also around it.
  • FIG. 10 is a schematic perspective view of a coiling machine 100 showing a specific example of the cutting process S03.
  • the cutting step S03 is executed after the irradiation of the laser beam L is stopped.
  • the cutting step S03 may be performed during irradiation with the laser beam L.
  • the heating portion 1V of the wire 1, which is at a higher temperature than before being irradiated with the laser beam L, is cut by the cutting unit 40. In this way, the coil spring 2 is manufactured.
  • the cutter 41 descends toward the vicinity of the portion of the wire 1 that is supported by the mandrel 42. At this time, the wire 1 is cut by the impact given by the cutter 41.
  • the molten pool may solidify after the irradiation of the laser beam L stops and before the cutter 41 operates. Furthermore, after the cutter 41 is operated, when the cutter 41 comes into contact with the surface of the wire 1, the cutter 41 removes the heat from the heated portion 1V, thereby solidifying the molten pool. In this way, by solidifying the molten pool before or during the operation of the cutter 41, it is possible to prevent molten metal from adhering to the cutter 41.
  • the cutter 41 can also be operated based on the measurement result of the temperature of the heated region 1V by the measuring device 34. That is, after irradiation with the laser beam L, the cutter 41 may operate when the temperature of the heated region 1V falls to a predetermined target temperature.
  • the target temperature may be, for example, a temperature at which the molten base material solidifies.
  • the heated region 1V may be cut without using the measuring device 34 by predetermining a delay time from the stop of irradiation of the laser beam L to the start of operation of the cutter 41.
  • the cut coil spring 2 has a first end 61 including a first end surface 61a and a second end 62 including a second end surface 62a. After one coil spring 2 is manufactured, the above-described spiral forming step S01, heating step S02, and cutting step S03 are performed again to manufacture the next coil spring 2. Therefore, both the first terminal 61 and the second terminal 62 are cut through the above-mentioned steps.
  • the shearing force required to cut the wire 1 decreases as the wire 1 is heated and its temperature increases. Further, even if the wire 1 has not reached its melting point, the shearing force can be reduced. Furthermore, this tendency does not depend on the diameter of the wire 1. As an example, when cutting the wire 1 with the cutter 41, it is preferable that the temperature of at least a portion of the heated portion 1V is 500° C. or higher.
  • FIG. 11 is a schematic cross-sectional view of the wire 1 irradiated with the laser beam L.
  • the surface of the wire 1 is irradiated with the laser beam L2 having the shape shown in FIG. 8, and a molten pool is formed.
  • O in the figure indicates the center of the irradiation area 1a of the laser beam L on the outer peripheral surface of the wire 1 (see FIGS. 6 and 8).
  • this irradiation center O corresponds to the position where the peak portion of the highest intensity in the beam profile of the laser light L is irradiated.
  • the irradiation center O can also be considered as the center of the molten pool.
  • the heated region 1V is formed.
  • a molten pool is formed around the irradiation center O.
  • the molten pool solidifies and a quench hardened portion 1C is formed.
  • a heat affected zone 1H (HAZ) is formed around the molten pool, which is not melted but whose characteristics have changed from the base material of the wire 1 due to the heat generated during irradiation with the laser beam L.
  • the heated portion 1V includes the quench hardened portion 1C and the heat affected zone 1H.
  • FIG. 11 shows the results of measuring the Vickers hardness [HV] of each of the quench hardened portion 1C, the heat affected zone 1H, and the base material of the wire 1.
  • the quench hardened portion 1C has greater hardness overall than the base material.
  • the heat affected zone 1H has a lower hardness overall than the base material.
  • the hardness of the heat-affected zone 1H gradually increases from the vicinity of the quench-hardened zone 1C toward the base material.
  • FIG. 12 is a cross-sectional view showing an example of a suitable positional relationship between the cutter 41, the mandrel 42, and the irradiation area of the laser beam L.
  • the wire 1 formed into a spiral shape is sent between the cutter 41 and the mandrel 42.
  • a clearance G is provided between the end 41a of the cutter 41 and the end 42a of the mandrel 42.
  • the center of the clearance G in the circumferential direction D ⁇ will be referred to as a clearance center C.
  • the clearance center C and the irradiation center O are shifted in the circumferential direction D ⁇ . Specifically, the irradiation center O is located closer to the cutter 41 (downstream in the circumferential direction D ⁇ ) than the clearance center C.
  • the heating region 1V includes a molten pool 1P that becomes the above-mentioned quench hardened portion 1C after solidification.
  • the melt pool 1P overlaps with the clearance center C. Further, the molten pool 1P overlaps the end portion 41a of the cutter 41 in the vertical direction Y.
  • the molten pool 1P does not overlap the end 42a of the mandrel 42 in the vertical direction Y.
  • the end portion 42a of the mandrel 42 and the portion of the heat affected zone 1H located upstream of the molten pool 1P in the circumferential direction D ⁇ overlap in the vertical direction Y.
  • FIG. 13 is a sectional view showing a state in which the wire 1 is cut by lowering the cutter 41 in parallel to the vertical direction Y from the state shown in FIG.
  • the molten pool 1P is already solidified, or heat is removed by contact with the cutter 41, and the molten pool 1P solidifies. Therefore, a quench hardened portion 1C is formed during cutting. Note that during cutting, a portion of the molten pool 1P may remain inside the heating portion 1V.
  • the heat-affected zone 1H is softer than the quench-hardened portion 1C and the base material of the wire 1. Therefore, when the cutter 41 applies an impact to the wire 1, the heat affected zone 1H is likely to break at the heated portion 1V. In particular, if the irradiation center O is shifted toward the cutter 41 side from the clearance center C as shown in FIG. It is possible to apply a load to the wire 1 and break the wire 1 along the corresponding portion.
  • FIG. 14 is a schematic side view of the coil spring 2 cut from the wire 1 in the manner shown in FIGS. 12 and 13.
  • the coil spring 2 has a first end 61 including a first end surface 61a and a second end 62 including a second end surface 62a.
  • the first end surface 61a corresponds to the fractured surface of the coil spring 2 cut off from the wire 1 in FIG.
  • the first terminal 61 has a first irradiation mark M1 of the laser beam L and a dent B of the cutter 41.
  • the first irradiation mark M1 includes a quench hardened portion 1C and a heat affected zone 1H (first heat affected zone).
  • the second end surface 62a corresponds to the fractured surface of the wire 1 left above the mandrel 42 when the coil spring 2 manufactured before this coil spring 2 is cut off.
  • the second terminal 62 has a second irradiation mark M2 of the laser beam L.
  • the second irradiation mark M2 includes a heat affected zone 1H (second heat affected zone).
  • the second irradiation mark M2 does not include the quench hardened portion 1C.
  • the second irradiation mark M2 may include, for example, a smaller amount of the quench hardened portion 1C than the first irradiation mark M1.
  • the heat affected zone 1H included in the first irradiation mark M1 extends over at least a portion of the first end surface 61a. Furthermore, the heat affected zone 1H included in the second irradiation mark M2 extends over at least a portion of the second end surface 62a.
  • the quench hardened portion 1C included in the first irradiation mark M1 does not extend to the first end surface 61a. However, a part of the quench hardened portion 1C may extend to the first end surface 61a. In this case, in the first end surface 61a, it is preferable that the area of the quench hardened portion 1C is smaller than the area of the heat affected zone 1H.
  • FIG. 15 is a schematic plan view of the surface of the wire 1, which is irradiated with the laser beam L1 having a rectangular beam profile as shown in FIG. 6, as viewed in the irradiation direction DL.
  • a direction parallel to the axis of the wire 1 will be referred to as an axial direction DA
  • a direction perpendicular to the axial direction DA and the irradiation direction DL will be referred to as a width direction DW of the wire 1.
  • the dotted area in FIG. 15 corresponds to the irradiation area 1a of the laser beam L1 on the surface of the wire 1.
  • the irradiation area 1a When viewed in the irradiation direction DL, the irradiation area 1a has a rectangular shape having a width W1 in the axial direction DA and a width W2 in the width direction DW. Width W1 is smaller than width W2. That is, in the example of FIG. 15, the irradiation area 1a has an elongated shape in the width direction DW.
  • FIG. 16 is a diagram for explaining the definition of the irradiation area 1a shown in FIG. 15.
  • FIG. 16 shows a center line CL1 passing through the irradiation center O of the irradiation area 1a and parallel to the axial direction DA, and a center line CL2 passing through the irradiation center O and parallel to the width direction DW.
  • the laser beam L1 On the surface of the wire 1, the laser beam L1 has an output distribution PW1 along the center line CL1 and an output distribution PW2 along the center line CL2.
  • the output distribution PW1 is a Gaussian type
  • the output distribution PW2 is a top hat type.
  • the Gaussian output distribution PW1 has a mountain shape with the output value peaking at the center.
  • the top-hat type output distribution PW2 has a trapezoidal shape in which the peak of the output value extends over a wide range.
  • the half-value width in the output distribution PW1 is defined as the width W1
  • the half-value width in the output distribution PW2 is defined as the width W2.
  • the half-width of the Gaussian output distribution PW1 corresponds to the width of the output distribution PW1 at a position where the output value is half of the peak PK.
  • the half-width of the top-hat type output distribution PW2 corresponds to the width of the output distribution PW2 at the position where the output value is half of the peak.
  • the half-value width of the top-hat type output distribution PW2 can also be said to be the value obtained by adding the bottom length Wb and the top length Wt of the output distribution PW2 and multiplying the sum by 1/2.
  • FIG. 17 is a schematic plan view of the surface of the wire 1, which is irradiated with the laser beam L2 having a circular beam profile as shown in FIG. 8, as viewed in the irradiation direction DL.
  • the irradiation area 1a is a perfect circle with a diameter Ra.
  • FIG. 18 is a diagram for explaining the definition of the irradiation area 1a shown in FIG. 17.
  • the laser beam L2 has a Gaussian output distribution PW on a line segment passing through the irradiation center O, such as center lines CL1 and CL2, on the surface of the wire 1.
  • the diameter Ra corresponds to the half width of the output distribution PW, that is, the width of the output distribution PW at a position where the output value is half of the peak PK.
  • the irradiation area 1a of the laser beam L2 may be defined in a rectangular shape represented by a width W1 in the axial direction DA and a width W2 in the width direction DW, similarly to the examples of FIGS. 15 and 16.
  • the shape of the irradiation area 1a and the output distribution of the laser beams L1 and L2 are not limited to those illustrated using FIGS. 15 to 18.
  • both output distributions PW1 and PW2 may be top hat type, or both output distributions PW1 and PW2 may be Gaussian type.
  • the output distribution PW may be top-hat shaped.
  • the irradiation area 1a may be defined as an area where the laser beam L is irradiated with an output equal to or more than half the peak value, and its shape is not limited to a rectangular shape or a perfect circle.
  • the irradiation area 1a may be elliptical.
  • the long axis and short axis of the irradiation area 1a may be defined by the half width of the output distribution.
  • FIG. 19 is a table showing irradiation conditions applicable to the laser beam L and Examples 1, 2, and 3.
  • a cutting method using both heating by the laser beam L and the cutting unit 40 as in this embodiment is suitable for cutting a thick wire 1 having a diameter R of 8 mm or more, for example.
  • the wire 1 is too thick, a good cut surface may not be obtained. Therefore, in this embodiment, as an example, it is assumed that the diameter R of the wire 1 is 8 mm or more and 18 mm or less, as shown in the irradiation conditions of FIG.
  • the laser beam L is irradiated so as not to protrude the wire 1. Moreover, if the irradiation area 1a of the laser beam L is too small, there is a possibility that the heat-affected zone 1H having a shape suitable for cutting cannot be formed on the wire 1. Therefore, for example, if the irradiation area 1a has a rectangular shape as shown in FIGS. 15 and 16, and the diameter R of the wire 1 is 8 mm or more and 18 mm or less, the width W1 of the irradiation area 1a is set to 2 mm or more and 6 mm or less, and the width It is preferable that W2 be 8 mm or more and 18 mm or less. In the case of such an irradiation size, the irradiation area (width W1 x width W2) is 16 mm 2 or more and 108 mm 2 .
  • the output of the laser beam L needs to be determined so that a sufficient heat-affected zone 1H is formed in the wire 1 and the wire 1 is not cut by irradiation with the laser beam L alone. If the output of the laser beam L is small, the irradiation time must be increased in order to form a heat-affected zone 1H sufficient for cutting, but if the irradiation time is too long, the manufacturing efficiency of the coil spring 2 will decrease. Moreover, when the output of the laser beam L is large, the laser heating machine 30 becomes large and the degree of freedom in layout of each part of the coiling machine 100 decreases. Furthermore, the wire 1 may be overheated and the quench hardened portion 1C may become large or spatter may occur.
  • the output of the laser beam L be 500 W or more and 8000 W or less.
  • the output density corresponding to the output of the laser beam L per unit area is preferably 10 W/mm 2 or more and 100 W/mm 2 or less. It is more preferable that the power density is 31 W/mm 2 or more and 74 W/mm 2 or less.
  • the output density is a value obtained by dividing the output of the laser beam L by the area of the irradiation region 1a on the surface of the wire 1 when viewed in the irradiation direction DL.
  • the irradiation region 1a referred to herein is a region defined by the half-width of the output distribution of the laser beam L on the surface of the wire 1, for example, as described using FIG. 16.
  • the output of the laser beam L is 3000 W, but the irradiation size and irradiation area are different.
  • the irradiation size is 4 mm x 14 mm in Example 1, 3.9 mm x 12.1 mm in Example 2, and 3.8 mm x 15.4 mm in Example 3. Further, the irradiation area was 56 mm 2 in Example 1, 47.19 mm 2 in Example 2, and 58.52 mm 2 in Example 3.
  • the power density in this case is 53.57 W/mm 2 in Example 1, 63.57 W/mm 2 in Example 2, and 51.26 W/mm 2 in Example 3.
  • These output densities are all 10 W/mm 2 or more and 100 W/mm 2 or less, as shown in the irradiation conditions of FIG. 19, and further 31 W/mm 2 or more and 74 W/mm 2 or less.
  • the irradiation size is defined by the width W1 and the width W2, but if the irradiation area 1a is circular, the irradiation size may be defined by the radius. In addition, the irradiation size can be determined as appropriate depending on the shape of the irradiation area 1a. Regardless of how the irradiation size is determined, the same effect can be obtained as long as the output density is within the range shown in FIG.
  • the portion of the spirally bent wire 1 that has become hot due to the irradiation with the laser beam L (heated portion 1V) is cut by the cutting unit 40 (cutter 41 and mandrel 42).
  • the shearing force required for cutting is reduced. Therefore, the wire 1 can be easily cut.
  • the coiling machine 100 uses the cutter 41 to cut the heated portion 1V of the wire 1.
  • the coiling machine 100 is not limited to such a configuration, and may cut the heated portion 1V of the wire 1 by cutting using a rotary saw blade.
  • the coil spring 2 manufactured by the coiling machine 100 there are various forms of the coil spring 2 manufactured by the coiling machine 100, and for example, the coil diameter and pitch may change in the axial direction of the coil spring. That is, the coil springs 2 manufactured by the coiling machine 100 include cylindrical coil springs, barrel-shaped coil springs, hourglass-shaped coil springs, tapered coil springs, unequal pitch coil springs, coil springs having negative pitch parts, and the like. , various forms of coil springs may be used.
  • Coiling machine L, L1 , L2...Laser beam, S01...Spiral forming process, S02...Heating process, S03...Cutting process, M1...First irradiation mark, M2...Second irradiation mark, B...Document mark, X...Transportation direction, Y...Vertical direction , Z... Molding direction, D ⁇ ... Circumferential direction, DL... Irradiation direction.

Abstract

This coiling machine comprises: a laser heater for heating a portion of a wire, which is to be formed into a spiral shape, by irradiating the same with a laser beam; and a cutting unit for cutting the portion of the wire heated by irradiation with the laser beam. The power density of the laser beam is 10-100 W/mm2.<sp />

Description

コイリングマシンおよびコイルばねの製造方法Coiling machine and coil spring manufacturing method
 本発明は、コイルばねを製造するためのコイリングマシンおよびコイルばねの製造方法に関する。 The present invention relates to a coiling machine for manufacturing a coil spring and a method for manufacturing a coil spring.
 コイルばねを製造する装置として、例えば特許文献1に記載されているコイルばね成形機が知られている。このコイルばね成形機は、螺旋状に成形されるワイヤの長さに基づいて切断部位の位置を予め算出し、その切断部位を高周波加熱によって軟化させた状態でワイヤを切断する。 A coil spring forming machine described in Patent Document 1, for example, is known as an apparatus for manufacturing coil springs. This coil spring forming machine calculates the position of the cutting part in advance based on the length of the wire to be spirally formed, and cuts the wire while softening the cutting part by high-frequency heating.
 一方、特許文献2に記載されているばね製造装置のように、螺旋状に成形されるワイヤをレーザ光により切断するコイリングマシンも知られている。 On the other hand, coiling machines are also known, such as the spring manufacturing apparatus described in Patent Document 2, which cut a spirally formed wire using a laser beam.
 特許文献1のコイルばね成形機のように高周波加熱を用いる場合、切断部位の加熱の応答性が良くない。しかも、当該コイルばね成形機においては、高周波加熱による切断部位の加熱が継続している状態でワイヤが切断されることから、切断に用いる部材に高周波加熱の影響が及ぶことがある。さらに、当該コイルばね成形機においては、高周波加熱の応答性が十分でないことや、ワイヤが部分的に加熱された状態でワイヤがコイリングされることから、ばねの成形精度を一定に維持することが難しくなる虞がある。 When using high frequency heating like the coil spring forming machine of Patent Document 1, the responsiveness of heating the cut portion is not good. In addition, in the coil spring forming machine, the wire is cut while the cutting region continues to be heated by high-frequency heating, so that the members used for cutting may be affected by the high-frequency heating. Furthermore, in this coil spring forming machine, the responsiveness of high-frequency heating is not sufficient and the wire is coiled while it is partially heated, so it is difficult to maintain a constant spring forming accuracy. There is a possibility that it will become difficult.
 一方、特許文献2のばね製造装置においては、ワイヤを切断することが可能な高出力のレーザ光が必要となる。この場合、レーザ光の照射に起因したスパッタが発生し得るし、レーザ光がワイヤだけでなくばね製造装置の各部にも照射され得るため、これらの対策を講じなければならない。 On the other hand, the spring manufacturing apparatus of Patent Document 2 requires a high-power laser beam that can cut the wire. In this case, sputtering may occur due to laser light irradiation, and the laser light may irradiate not only the wire but also various parts of the spring manufacturing apparatus, so these measures must be taken.
 これに対し、本願の出願人は、特許文献3に記載されたように、レーザ光で加熱されたワイヤの部位をカッタなどの切断部品で切断する方法を提案している。この方法によれば、ワイヤを容易に切断できるとともに、良好な切断面を有するコイルばねを得ることが可能となる。 On the other hand, the applicant of the present application has proposed a method in which a portion of the wire heated by laser light is cut using a cutting component such as a cutter, as described in Patent Document 3. According to this method, the wire can be easily cut and a coil spring having a good cut surface can be obtained.
特開昭62-50028号公報Japanese Unexamined Patent Publication No. 62-50028 特開平6-218476号公報Japanese Patent Application Publication No. 6-218476 特許第7066880号公報Patent No. 7066880
 上述のようにレーザ光で加熱されたワイヤの部位を切断部品で切断する方法においては、種々の改善の余地がある。例えば、ワイヤに対するレーザ光の照射条件は、ワイヤが切断に適した温度に加熱され、切断後のワイヤの断面も良好な形状となるように適切に定める必要がある。 As described above, there is room for various improvements in the method of cutting the portion of the wire heated by laser light using a cutting component. For example, the conditions for irradiating the wire with laser light need to be appropriately determined so that the wire is heated to a temperature suitable for cutting and the cross section of the wire after cutting has a good shape.
 本発明は、コイルばねの製造効率を向上させるとともに、良好な形状のコイルばねを製造することが可能なコイリングマシンおよびコイルばねの製造方法を提供することを目的の一つとする。 One of the objects of the present invention is to provide a coiling machine and a method for manufacturing a coil spring that can improve the manufacturing efficiency of coil springs and manufacture coil springs with good shapes.
 本発明に係るコイリングマシンは、螺旋状に成形されるワイヤに対してレーザ光を照射することにより前記ワイヤの一部を加熱するレーザ加熱機と、前記レーザ光の照射により加熱された前記ワイヤの部位を切断する切断ユニットと、を備え、前記レーザ光の出力密度は、10W/mm以上かつ100W/mm以下である。 The coiling machine according to the present invention includes a laser heating machine that heats a part of the wire by irradiating the wire into a spiral shape with laser light, and a coiling machine that heats a part of the wire by irradiating the wire with laser light. a cutting unit that cuts the part, and the output density of the laser beam is 10 W/mm 2 or more and 100 W/mm 2 or less.
 また、本発明に係るコイルばねの製造方法は、螺旋状に成形されるワイヤに対してレーザ光を照射することにより前記ワイヤの一部を加熱することと、前記レーザ光の照射により加熱された前記ワイヤの部位を切断することと、を含み、前記レーザ光の出力密度は、10W/mm以上かつ100W/mm以下である。 Further, the method for manufacturing a coil spring according to the present invention includes heating a part of the wire by irradiating a wire formed into a spiral shape with a laser beam, and heating a part of the wire by irradiating the wire with the laser beam. cutting a portion of the wire, and the output density of the laser beam is 10 W/mm 2 or more and 100 W/mm 2 or less.
 前記コイリングマシンおよび前記製造方法の各々において、前記出力密度は、31W/mm以上かつ74W/mm以下であることが好ましい。 In each of the coiling machine and the manufacturing method, the power density is preferably 31 W/mm 2 or more and 74 W/mm 2 or less.
 例えば、前記出力密度は、前記レーザ光の出力を、前記レーザ光の照射方向に見たときの前記ワイヤの表面における前記レーザ光の照射領域の面積で割った値である。また、前記照射領域は、前記ワイヤの表面における前記レーザ光の出力分布の半値幅で規定される領域である。前記照射領域は、前記ワイヤの幅方向に長尺な形状を有してもよい。 For example, the output density is a value obtained by dividing the output of the laser beam by the area of the irradiation region of the laser beam on the surface of the wire when viewed in the irradiation direction of the laser beam. Further, the irradiation area is an area defined by the half width of the output distribution of the laser beam on the surface of the wire. The irradiation area may have an elongated shape in the width direction of the wire.
 一例では、前記ワイヤの直径は、8mm以上かつ18mm以下であり、前記照射領域の面積は、16mm以上かつ108mm以下であり、前記レーザ光の出力は、500W以上かつ8000W以下である。 In one example, the diameter of the wire is 8 mm or more and 18 mm or less, the area of the irradiation region is 16 mm 2 or more and 108 mm 2 or less, and the output of the laser beam is 500 W or more and 8000 W or less.
 本発明によれば、コイルばねの製造効率を向上させるとともに、良好な形状のコイルばねを製造することが可能なコイリングマシンおよびコイルばねの製造方法を提供することができる。 According to the present invention, it is possible to provide a coiling machine and a method for manufacturing a coil spring that can improve the manufacturing efficiency of coil springs and manufacture coil springs with good shapes.
図1は、一実施形態に係るコイリングマシンの要部を示す概略的な斜視図である。FIG. 1 is a schematic perspective view showing main parts of a coiling machine according to an embodiment. 図2は、一実施形態に係るコイリングマシンの概略的な正面図である。FIG. 2 is a schematic front view of a coiling machine according to one embodiment. 図3は、一実施形態に係るコイリングマシンの動作を示すフローチャートである。FIG. 3 is a flowchart showing the operation of the coiling machine according to one embodiment. 図4は、一実施形態に係るコイリングマシンによる螺旋成形工程の具体例を示す概略的な斜視図である。FIG. 4 is a schematic perspective view showing a specific example of a spiral forming process using a coiling machine according to an embodiment. 図5は、一実施形態に係るコイリングマシンによる加熱工程の具体例を示す概略的な斜視図である。FIG. 5 is a schematic perspective view showing a specific example of a heating process performed by a coiling machine according to an embodiment. 図6は、加熱工程においてワイヤの一部を加熱して軟化させる方法の第1例を示す斜視図である。FIG. 6 is a perspective view showing a first example of a method of heating and softening a part of the wire in the heating step. 図7は、図6におけるVII-VII線に沿うワイヤの断面図である。FIG. 7 is a cross-sectional view of the wire along line VII-VII in FIG. 図8は、加熱工程においてワイヤの一部を加熱して軟化させる方法の第2例を示す斜視図である。FIG. 8 is a perspective view showing a second example of a method of heating and softening a part of the wire in the heating step. 図9は、図8におけるIX-IX線に沿うワイヤの断面図である。FIG. 9 is a cross-sectional view of the wire taken along line IX-IX in FIG. 図10は、一実施形態に係るコイリングマシンによる切断工程の具体例を示す概略的な斜視図である。FIG. 10 is a schematic perspective view showing a specific example of a cutting process by a coiling machine according to an embodiment. 図11は、レーザ光が照射されたワイヤの概略的な断面図である。FIG. 11 is a schematic cross-sectional view of a wire irradiated with laser light. 図12は、カッタ、マンドレルおよびレーザ光の照射領域の好適な位置関係の一例を示す断面図である。FIG. 12 is a cross-sectional view showing an example of a suitable positional relationship between the cutter, the mandrel, and the laser beam irradiation area. 図13は、図12に示す状態からカッタを下降させてワイヤを切断した状態を示す断面図である。FIG. 13 is a sectional view showing a state in which the cutter is lowered from the state shown in FIG. 12 to cut the wire. 図14は、図12および図13に示した方法でワイヤから切断されたコイルばねの概略的な側面図である。FIG. 14 is a schematic side view of a coil spring cut from wire in the manner shown in FIGS. 12 and 13. 図15は、矩形状のビームプロファイルを有するレーザ光が照射されるワイヤの表面を照射方向に見た概略的な平面図である。FIG. 15 is a schematic plan view of the surface of a wire that is irradiated with a laser beam having a rectangular beam profile, as viewed in the irradiation direction. 図16は、図15に示した照射領域の定義を説明するための図である。FIG. 16 is a diagram for explaining the definition of the irradiation area shown in FIG. 15. 図17は、円形のビームプロファイルを有するレーザ光が照射されるワイヤの表面を照射方向に見た概略的な平面図である。FIG. 17 is a schematic plan view of the surface of a wire irradiated with a laser beam having a circular beam profile, viewed in the irradiation direction. 図18は、図17に示した照射領域の定義を説明するための図である。FIG. 18 is a diagram for explaining the definition of the irradiation area shown in FIG. 17. 図19は、レーザ光に適用し得る照射条件と実施例を示す表である。FIG. 19 is a table showing irradiation conditions and examples that can be applied to laser light.
 以下、コイリングマシンおよびコイルばねの製造方法に関する実施形態につき、図面を参照しながら説明する。 Hereinafter, embodiments related to a coiling machine and a method for manufacturing a coil spring will be described with reference to the drawings.
 図1は、本実施形態に係るコイリングマシン100の要部を示す概略的な斜視図である。図2は、図1に示すコイリングマシン100の概略的な正面図である。図1および図2に示すように、搬送方向X、鉛直方向Y、成形方向Zおよび周方向Dθを定義する。搬送方向X、鉛直方向Yおよび成形方向Zは、互いに直交している。搬送方向Xは、螺旋状に成形される前の直線状のワイヤ1が搬送される方向である。成形方向Zは、螺旋状に曲げられたワイヤ1によって構成されるコイルばねが延びる方向(コイルばねが成長する方向)である。周方向Dθは、コイルばねを構成するワイヤ1が巻かれる方向である。 FIG. 1 is a schematic perspective view showing the main parts of a coiling machine 100 according to the present embodiment. FIG. 2 is a schematic front view of the coiling machine 100 shown in FIG. 1. As shown in FIGS. 1 and 2, a conveying direction X, a vertical direction Y, a forming direction Z, and a circumferential direction Dθ are defined. The conveying direction X, the vertical direction Y, and the forming direction Z are orthogonal to each other. The conveyance direction X is the direction in which the straight wire 1 before being formed into a spiral shape is conveyed. The forming direction Z is the direction in which the coil spring made of the spirally bent wire 1 extends (the direction in which the coil spring grows). The circumferential direction Dθ is the direction in which the wire 1 constituting the coil spring is wound.
 コイリングマシン100は、搬送ユニット10と、螺旋成形ユニット20と、加熱ユニット(レーザ加熱機30)と、切断ユニット40と、制御ユニット50とを備えている。 The coiling machine 100 includes a conveying unit 10, a spiral forming unit 20, a heating unit (laser heating machine 30), a cutting unit 40, and a control unit 50.
 図1および図2の例において、搬送ユニット10は、一対の駆動ローラ11と、一対の従動ローラ12と、ワイヤガイド13とを備えている。搬送ユニット10は、より多くの駆動ローラ11および従動ローラ12を備えてもよい。 In the example shown in FIGS. 1 and 2, the transport unit 10 includes a pair of drive rollers 11, a pair of driven rollers 12, and a wire guide 13. The transport unit 10 may include more drive rollers 11 and more driven rollers 12.
 各駆動ローラ11と各従動ローラ12は、ワイヤ1を介して対向している。各駆動ローラ11が回転すると、ワイヤ1を介して各従動ローラ12が回転する。この回転に伴い、各駆動ローラ11と各従動ローラ12によって挟み込まれたワイヤ1は、搬送方向Xに搬送される。ワイヤガイド13には、ワイヤ1が挿入されている。ワイヤガイド13は、ワイヤ1を搬送方向Xに直進するようにガイドして、ワイヤ1を螺旋成形ユニット20に導く。 Each driving roller 11 and each driven roller 12 are opposed to each other via the wire 1. When each driving roller 11 rotates, each driven roller 12 rotates via the wire 1. With this rotation, the wire 1 sandwiched between each drive roller 11 and each driven roller 12 is transported in the transport direction X. The wire 1 is inserted into the wire guide 13. The wire guide 13 guides the wire 1 so as to move straight in the conveying direction X, and leads the wire 1 to the spiral forming unit 20 .
 螺旋成形ユニット20は、搬送ユニット10により搬送されるワイヤ1を螺旋状に成形する。図1および図2の例において、螺旋成形ユニット20は、第1成形ローラ21と、第2成形ローラ22と、ピッチツール23とを備えている。 The spiral forming unit 20 forms the wire 1 transported by the transport unit 10 into a spiral shape. In the example of FIGS. 1 and 2, the spiral forming unit 20 includes a first forming roller 21, a second forming roller 22, and a pitch tool 23.
 第1成形ローラ21、第2成形ローラ22およびピッチツール23は、周方向Dθに沿って順に配置されている。第1成形ローラ21、第2成形ローラ22およびピッチツール23の成形方向Zにおける位置は、互いに異なっている。 The first forming roller 21, the second forming roller 22, and the pitch tool 23 are arranged in order along the circumferential direction Dθ. The positions of the first forming roller 21, the second forming roller 22, and the pitch tool 23 in the forming direction Z are different from each other.
 第1成形ローラ21および第2成形ローラ22は、搬送方向Xに搬送されるワイヤ1を鉛直方向Yに順次曲げる。このように順次曲げられたワイヤ1は、周方向Dθに沿った円弧を描く。曲げられたワイヤ1は、第2成形ローラ22よりも成形方向Zにずれた位置でピッチツール23によってガイドされる。 The first forming roller 21 and the second forming roller 22 sequentially bend the wire 1 conveyed in the conveying direction X in the vertical direction Y. The wire 1 sequentially bent in this manner draws an arc along the circumferential direction Dθ. The bent wire 1 is guided by the pitch tool 23 at a position shifted from the second forming roller 22 in the forming direction Z.
 レーザ加熱機30は、図2に示すように、螺旋状に成形されたワイヤ1の一部にレーザ光Lを照射する。このレーザ光Lの照射により、ワイヤ1に他の部分よりも高温の加熱部位1Vが形成される。 As shown in FIG. 2, the laser heating machine 30 irradiates a part of the spirally formed wire 1 with a laser beam L. By irradiating the laser beam L, a heated region 1V having a higher temperature than other parts is formed in the wire 1.
 図1および図2の例において、レーザ加熱機30は、レーザ発振器31と、光ファイバ32と、レーザヘッド33とを備えている。レーザヘッド33は、例えばビームスポット調整器などを含む。 In the example of FIGS. 1 and 2, the laser heating machine 30 includes a laser oscillator 31, an optical fiber 32, and a laser head 33. The laser head 33 includes, for example, a beam spot adjuster.
 レーザ発振器31には、例えば、レーザ光Lを生成する半導体レーザを用いることができる。光ファイバ32は、レーザ発振器31で生成されたレーザ光Lをレーザヘッド33まで伝送する。レーザヘッド33は、上述のビームスポット調整器によりレーザ光Lのビーム形状を矩形や円形に調整する。ビームスポット調整器としては、例えば、ビームホモジナイザなどの光学素子を用いることができる。 For the laser oscillator 31, for example, a semiconductor laser that generates the laser beam L can be used. The optical fiber 32 transmits the laser beam L generated by the laser oscillator 31 to the laser head 33. The laser head 33 adjusts the beam shape of the laser light L into a rectangular or circular shape using the above-mentioned beam spot adjuster. As the beam spot adjuster, for example, an optical element such as a beam homogenizer can be used.
 レーザ加熱機30は、加熱部位1Vの温度を測定する測定器34をさらに備えてもよい。測定器34は、例えば、ワイヤ1の加熱部位1Vの温度を検出するセンサを有している。測定器34は、切断ユニット40との干渉を避けるために、切断ユニット40の側方に設けられてもよい。測定器34は、後述するカッタ41との干渉を避けるために、カッタ41の作動と連動して、カッタ41から離れるように移動させる構成とすることもできる。測定器34による測定結果は、例えば、切断ユニット40によるワイヤ1の切断タイミングの制御に用いることができる。 The laser heating machine 30 may further include a measuring device 34 that measures the temperature of the heated region 1V. The measuring device 34 includes, for example, a sensor that detects the temperature of the heated portion 1V of the wire 1. The measuring device 34 may be provided on the side of the cutting unit 40 in order to avoid interference with the cutting unit 40. The measuring device 34 may be configured to be moved away from the cutter 41 in conjunction with the operation of the cutter 41 in order to avoid interference with the cutter 41, which will be described later. The measurement results obtained by the measuring device 34 can be used, for example, to control the timing at which the cutting unit 40 cuts the wire 1 .
 なお、測定器34は、必須の構成ではない。すなわち、測定器34を用いることなく、予めワイヤ1の切断に関する各種の条件を設定しておき、当該条件に基づいて切断ユニット40が加熱部位1Vを切断してもよい。 Note that the measuring device 34 is not an essential component. That is, without using the measuring device 34, various conditions for cutting the wire 1 may be set in advance, and the cutting unit 40 may cut the heated portion 1V based on the conditions.
 レーザ加熱機30は、レーザヘッド33をワイヤ1の加熱部位1Vに接近および離間させる移動ステージをさらに備えてもよい。移動ステージは、例えば、直動ステージやロボットハンドによって構成することができる。レーザヘッド33の作動距離を十分に長く設定したり、切断ユニット40との干渉が回避できたりすれば、移動ステージを用いる必要はない。 The laser heating machine 30 may further include a moving stage that causes the laser head 33 to approach and move away from the heating region 1V of the wire 1. The moving stage can be configured by, for example, a linear motion stage or a robot hand. If the working distance of the laser head 33 is set sufficiently long or if interference with the cutting unit 40 can be avoided, there is no need to use a moving stage.
 切断ユニット40は、レーザ光Lの照射が停止された後においてレーザ光が照射される前よりも高温になっているワイヤ1の加熱部位1Vを切断する。図1および図2の例において、切断ユニット40は、カッタ41およびマンドレル42を備えている。 The cutting unit 40 cuts the heated portion 1V of the wire 1, which has a higher temperature after the irradiation of the laser beam L is stopped than before the irradiation with the laser beam. In the example of FIGS. 1 and 2, the cutting unit 40 includes a cutter 41 and a mandrel 42.
 カッタ41は、周方向Dθにおいて第2成形ローラ22とピッチツール23の間に配置されている。カッタ41は、例えば刃先が成形方向Zに沿う鋭利な切断刃を先端に有している。カッタ41は、図示せぬ駆動機構によって鉛直方向Yに沿って移動可能に構成されている。 The cutter 41 is arranged between the second forming roller 22 and the pitch tool 23 in the circumferential direction Dθ. The cutter 41 has, for example, a sharp cutting blade at its tip that extends in the forming direction Z. The cutter 41 is configured to be movable along the vertical direction Y by a drive mechanism (not shown).
 マンドレル42は、第1成形ローラ21、第2成形ローラ22およびピッチツール23の内側に配置されている。マンドレル42は、例えば図2に示すようにX-Y平面に沿う形状が半円状であり、成形方向Zに長尺に延びている。マンドレル42は、螺旋状に成形されたワイヤ1の内周面を、主に円弧面の鉛直方向Yにおける端部で支持する。 The mandrel 42 is arranged inside the first forming roller 21, the second forming roller 22, and the pitch tool 23. The mandrel 42 has a semicircular shape along the XY plane, for example, as shown in FIG. 2, and extends long in the forming direction Z. The mandrel 42 supports the inner circumferential surface of the spirally formed wire 1 mainly at the end of the arcuate surface in the vertical direction Y.
 制御ユニット50は、搬送ユニット10、螺旋成形ユニット20、レーザ加熱機30および切断ユニット40を制御する。このような制御ユニット50は、コントローラ51を備えている。 The control unit 50 controls the transport unit 10, the spiral forming unit 20, the laser heating machine 30, and the cutting unit 40. Such a control unit 50 includes a controller 51.
 コントローラ51は、ROM(Read Only Memory)、CPU(Central Processing Unit)およびRAM(Random Access Memory)を含んでいる。ROMは、搬送ユニット10、螺旋成形ユニット20、レーザ加熱機30および切断ユニット40を制御するためのコンピュータプログラムを格納している。CPUは、ROMに格納されているコンピュータプログラムを実行する。RAMは、CPUによるコンピュータプログラムの実行中に、当該コンピュータプログラムの実行に伴って発生する様々なデータを一時的に記憶する。 The controller 51 includes a ROM (Read Only Memory), a CPU (Central Processing Unit), and a RAM (Random Access Memory). The ROM stores a computer program for controlling the conveyance unit 10, the spiral forming unit 20, the laser heating machine 30, and the cutting unit 40. The CPU executes computer programs stored in the ROM. The RAM temporarily stores various data generated as the computer program is executed by the CPU.
 続いて、本実施形態に係るコイリングマシン100を用いたコイルばね2の製造方法を、図3から図13を参照して説明する。 Next, a method for manufacturing the coil spring 2 using the coiling machine 100 according to the present embodiment will be described with reference to FIGS. 3 to 13.
 図3は、コイリングマシン100の動作を示すフローチャートである。このフローチャートに示す動作は、主にコントローラ51がコンピュータプログラムを実行することにより実現される。コイリングマシン100によるコイルばね2の製造工程は、螺旋成形工程S01と、加熱工程S02と、切断工程S03とを含む。 FIG. 3 is a flowchart showing the operation of the coiling machine 100. The operations shown in this flowchart are mainly realized by the controller 51 executing a computer program. The manufacturing process of the coil spring 2 by the coiling machine 100 includes a spiral forming process S01, a heating process S02, and a cutting process S03.
 螺旋成形工程S01においては、ワイヤ1が螺旋状に成形される。螺旋成形工程S01が完了した後の加熱工程S02においては、ワイヤ1の一部にレーザ光Lが照射され、これによりワイヤ1に加熱部位1Vが形成される。加熱部位1Vは、ワイヤ1の他の部分(母材)よりも軟化した部分を含む。加熱工程S02が完了した後の切断工程S03においては、ワイヤ1の加熱部位1Vが切断される。 In the spiral forming step S01, the wire 1 is formed into a spiral shape. In the heating step S02 after the spiral forming step S01 is completed, a portion of the wire 1 is irradiated with the laser beam L, thereby forming a heated region 1V in the wire 1. The heated portion 1V includes a portion of the wire 1 that is softer than other portions (base material). In the cutting step S03 after the heating step S02 is completed, the heated portion 1V of the wire 1 is cut.
 図4は、螺旋成形工程S01の具体例を示すコイリングマシン100の概略的な斜視図である。螺旋成形工程S01において、搬送ユニット10は、駆動ローラ11と従動ローラ12によってワイヤ1を搬送方向Xに直進させてワイヤガイド13に導く。ワイヤガイド13から導出されたワイヤ1は、第1成形ローラ21および第2成形ローラ22によって鉛直方向Yに曲げられ、円弧状に成形される。円弧状に成形されたワイヤ1は、ピッチツール23によって所定のピッチの螺旋状に成形されるようにガイドされる。このような動作により、螺旋状のワイヤ1が成形方向Zに徐々に伸長する。 FIG. 4 is a schematic perspective view of a coiling machine 100 showing a specific example of the spiral forming process S01. In the spiral forming step S01, the conveyance unit 10 causes the wire 1 to move straight in the conveyance direction X using the driving roller 11 and the driven roller 12, and guides it to the wire guide 13. The wire 1 led out from the wire guide 13 is bent in the vertical direction Y by the first forming roller 21 and the second forming roller 22, and is formed into an arc shape. The wire 1 formed into an arc shape is guided by a pitch tool 23 so that it is formed into a spiral shape with a predetermined pitch. By such an operation, the spiral wire 1 is gradually extended in the forming direction Z.
 図5は、加熱工程S02の具体例を示すコイリングマシン100の概略的な斜視図である。加熱工程S02において、レーザ加熱機30は、例えば螺旋状に成形されたワイヤ1のうちマンドレル42の鉛直方向Yにおける端部付近(カッタ41の下方)に位置する部分に対して直接的にレーザ光Lを照射する。このレーザ光Lのエネルギーによってワイヤ1の母材が加熱されるとともに、軟化した加熱部位1Vが形成される。 FIG. 5 is a schematic perspective view of the coiling machine 100 showing a specific example of the heating step S02. In the heating step S02, the laser heating machine 30 directly applies a laser beam to, for example, a portion of the spirally formed wire 1 located near the end of the mandrel 42 in the vertical direction Y (below the cutter 41). Irradiate L. The energy of this laser beam L heats the base material of the wire 1, and a softened heated region 1V is formed.
 加熱工程S02の実行時には、搬送ユニット10によるワイヤ1の搬送が停止している。レーザ加熱機30は、例えば所定位置に固定的に配置されており、この位置から停止したワイヤ1の一部に向けてレーザ光Lを照射する。他の例として、上述の移動ステージをレーザ加熱機30が有する場合、レーザ加熱機30は、レーザヘッド33をワイヤ1に対して近づけてからレーザ光Lを照射してもよい。また、加熱工程S02において搬送ユニット10によるワイヤ1の搬送を停止させずに、周方向Dθに送られるワイヤ1の部位に対してレーザ加熱機30がレーザ光Lを照射してもよい。この場合において、コイリングによる切断位置の移動に追従してレーザ光Lの照射位置が移動するように、レーザ加熱機30の動きを制御してもよい。 When the heating step S02 is executed, the transport of the wire 1 by the transport unit 10 is stopped. The laser heating device 30 is fixedly arranged at a predetermined position, for example, and irradiates the laser beam L toward a part of the wire 1 that is stopped from this position. As another example, when the laser heating machine 30 has the above-mentioned moving stage, the laser heating machine 30 may irradiate the laser beam L after bringing the laser head 33 closer to the wire 1. Further, in the heating step S02, the laser heating device 30 may irradiate the portion of the wire 1 that is sent in the circumferential direction Dθ with the laser beam L without stopping the transport of the wire 1 by the transport unit 10. In this case, the movement of the laser heating device 30 may be controlled so that the irradiation position of the laser beam L moves following the movement of the cutting position due to coiling.
 図6は、ワイヤ1の一部を加熱して軟化させる方法の第1例を示すワイヤ1の斜視図である。この例において、レーザ加熱機30は、ワイヤ1の表面に対し、照射方向DLにレーザ光L1を照射する。レーザ光L1は、例えばワイヤ1の幅方向に長尺な矩形状のビームプロファイルを有している。このレーザ光L1が照射されたワイヤ1の照射領域1aやその周囲には、加熱部位1Vが形成される。 FIG. 6 is a perspective view of the wire 1 showing a first example of a method of heating and softening a part of the wire 1. In this example, the laser heating device 30 irradiates the surface of the wire 1 with laser light L1 in the irradiation direction DL. The laser beam L1 has, for example, a long rectangular beam profile in the width direction of the wire 1. A heated region 1V is formed in and around the irradiation region 1a of the wire 1 irradiated with the laser beam L1.
 図7は、図6におけるVII-VII線に沿うワイヤ1の断面図である。加熱部位1Vは、ワイヤ1の表面における照射領域1aの周囲だけでなく、ワイヤ1の内部にも及んでいる。この図の例において、レーザ光L1の幅は、ワイヤ1の直径Rよりも小さい。したがって、レーザ光L1のほとんどがワイヤ1に照射される。 FIG. 7 is a cross-sectional view of the wire 1 along line VII-VII in FIG. 6. The heating region 1V extends not only around the irradiation area 1a on the surface of the wire 1 but also inside the wire 1. In the example of this figure, the width of the laser beam L1 is smaller than the diameter R of the wire 1. Therefore, most of the laser light L1 is irradiated onto the wire 1.
 図8は、ワイヤ1の一部を加熱して軟化させる方法の第2例を示すワイヤ1の斜視図である。この例において、レーザ加熱機30は、ワイヤ1の表面に対し、照射方向DLにレーザ光L2を照射する。レーザ光L2は、例えば円形のビームプロファイルを有している。このレーザ光L2が照射されたワイヤ1の照射領域1aやその周囲には、第1例と同様に加熱部位1Vが形成される。 FIG. 8 is a perspective view of the wire 1 showing a second example of a method of heating and softening a part of the wire 1. In this example, the laser heating device 30 irradiates the surface of the wire 1 with laser light L2 in the irradiation direction DL. The laser beam L2 has, for example, a circular beam profile. A heated region 1V is formed in and around the irradiation region 1a of the wire 1 irradiated with the laser beam L2, as in the first example.
 図9は、図8におけるIX-IX線に沿うワイヤ1の断面図である。加熱部位1Vは、ワイヤ1の表面における照射領域1aの周囲だけでなく、ワイヤ1の内部にも及んでいる。例えば、レーザ光L2の直径は、ワイヤ1の直径Rよりも小さい。したがって、レーザ光L2のほとんどがワイヤ1に照射される。 FIG. 9 is a cross-sectional view of the wire 1 taken along line IX-IX in FIG. The heating region 1V extends not only around the irradiation area 1a on the surface of the wire 1 but also inside the wire 1. For example, the diameter of the laser beam L2 is smaller than the diameter R of the wire 1. Therefore, most of the laser light L2 is irradiated onto the wire 1.
 加熱部位1Vは、図7および図9に示した例よりもワイヤ1のより内部にまで及んでもよい。レーザ加熱機30が発するレーザ光Lの形状は、第1例および第2例に限られない。 The heating region 1V may extend further into the wire 1 than in the examples shown in FIGS. 7 and 9. The shape of the laser beam L emitted by the laser heating machine 30 is not limited to the first example and the second example.
 第1例および第2例の双方において、加熱部位1Vは、ワイヤ1の母材がレーザ光Lのエネルギーにより溶融した溶融プールを含み得る。溶融プールは、照射領域1aだけでなくその周囲に広がってもよい。 In both the first and second examples, the heating region 1V may include a molten pool in which the base material of the wire 1 is melted by the energy of the laser beam L. The molten pool may spread not only in the irradiated area 1a but also around it.
 図10は、切断工程S03の具体例を示すコイリングマシン100の概略的な斜視図である。本実施形態において、切断工程S03は、レーザ光Lの照射が停止された後に実行される。他の例として、切断工程S03は、レーザ光Lの照射中に実行されてもよい。切断工程S03においては、レーザ光Lが照射される前よりも高温になっているワイヤ1の加熱部位1Vが切断ユニット40により切断される。これにより、コイルばね2が製造される。 FIG. 10 is a schematic perspective view of a coiling machine 100 showing a specific example of the cutting process S03. In this embodiment, the cutting step S03 is executed after the irradiation of the laser beam L is stopped. As another example, the cutting step S03 may be performed during irradiation with the laser beam L. In the cutting step S03, the heating portion 1V of the wire 1, which is at a higher temperature than before being irradiated with the laser beam L, is cut by the cutting unit 40. In this way, the coil spring 2 is manufactured.
 具体的には、切断工程S03においては、ワイヤ1のうちマンドレル42によって支持されている部分の近傍に向けてカッタ41が下降する。このときカッタ41によって与えられる衝撃により、ワイヤ1が切断される。 Specifically, in the cutting step S03, the cutter 41 descends toward the vicinity of the portion of the wire 1 that is supported by the mandrel 42. At this time, the wire 1 is cut by the impact given by the cutter 41.
 加熱部位1Vが溶融プールを含む場合、レーザ光Lの照射が停止してからカッタ41が動作するまでの間に、当該溶融プールが凝固してもよい。また、カッタ41の動作後、カッタ41がワイヤ1の表面に接触した際に加熱部位1Vの熱がカッタ41により奪われることで、溶融プールが凝固してもよい。このように、カッタ41の動作前あるいは動作中に溶融プールが凝固することで、溶融した金属がカッタ41に付着することを抑制できる。 When the heating region 1V includes a molten pool, the molten pool may solidify after the irradiation of the laser beam L stops and before the cutter 41 operates. Furthermore, after the cutter 41 is operated, when the cutter 41 comes into contact with the surface of the wire 1, the cutter 41 removes the heat from the heated portion 1V, thereby solidifying the molten pool. In this way, by solidifying the molten pool before or during the operation of the cutter 41, it is possible to prevent molten metal from adhering to the cutter 41.
 切断工程S03においては、測定器34による加熱部位1Vの温度の測定結果に基づいてカッタ41を動作させることもできる。すなわち、レーザ光Lの照射の後、加熱部位1Vの温度が予め定められた目標温度まで低下した際にカッタ41が動作してもよい。上記目標温度は、例えば溶融した母材が凝固する温度であってもよい。もちろん、切断工程S03では、レーザ光Lの照射停止からカッタ41の動作開始までの遅延時間を予め定めておくことで、測定器34を用いることなく加熱部位1Vが切断されてもよい。 In the cutting step S03, the cutter 41 can also be operated based on the measurement result of the temperature of the heated region 1V by the measuring device 34. That is, after irradiation with the laser beam L, the cutter 41 may operate when the temperature of the heated region 1V falls to a predetermined target temperature. The target temperature may be, for example, a temperature at which the molten base material solidifies. Of course, in the cutting step S03, the heated region 1V may be cut without using the measuring device 34 by predetermining a delay time from the stop of irradiation of the laser beam L to the start of operation of the cutter 41.
 切断されたコイルばね2は、第1端面61aを含む第1端末61と、第2端面62aを含む第2端末62とを有している。1つのコイルばね2が製造された後、上述の螺旋成形工程S01、加熱工程S02および切断工程S03が再度実行されて次のコイルばね2が製造される。そのため、第1端末61および第2端末62は、いずれも上述の各工程を経て切断されている。 The cut coil spring 2 has a first end 61 including a first end surface 61a and a second end 62 including a second end surface 62a. After one coil spring 2 is manufactured, the above-described spiral forming step S01, heating step S02, and cutting step S03 are performed again to manufacture the next coil spring 2. Therefore, both the first terminal 61 and the second terminal 62 are cut through the above-mentioned steps.
 ワイヤ1を切断するために必要なせん断力は、ワイヤ1を加熱して昇温させる程低下する。また、ワイヤ1が融点に達していない場合であってもせん断力を低下させることができる。さらに、このような傾向はワイヤ1の直径によらない。一例として、カッタ41によりワイヤ1を切断する際に、加熱部位1Vの少なくとも一部の温度が500℃以上であることが好ましい。 The shearing force required to cut the wire 1 decreases as the wire 1 is heated and its temperature increases. Further, even if the wire 1 has not reached its melting point, the shearing force can be reduced. Furthermore, this tendency does not depend on the diameter of the wire 1. As an example, when cutting the wire 1 with the cutter 41, it is preferable that the temperature of at least a portion of the heated portion 1V is 500° C. or higher.
 図11は、レーザ光Lが照射されたワイヤ1の概略的な断面図である。ここでは、図8に示した形状のレーザ光L2がワイヤ1の表面に照射され、溶融プールが形成される場合を想定する。図中のOは、ワイヤ1の外周面におけるレーザ光Lの照射領域1a(図6および図8を参照)の中心を示す。一例として、この照射中心Oは、レーザ光Lのビームプロファイルにおいて最も高強度のピーク部分が照射される位置に相当する。また、照射中心Oは、溶融プールの中心と考えることもできる。 FIG. 11 is a schematic cross-sectional view of the wire 1 irradiated with the laser beam L. Here, it is assumed that the surface of the wire 1 is irradiated with the laser beam L2 having the shape shown in FIG. 8, and a molten pool is formed. O in the figure indicates the center of the irradiation area 1a of the laser beam L on the outer peripheral surface of the wire 1 (see FIGS. 6 and 8). As an example, this irradiation center O corresponds to the position where the peak portion of the highest intensity in the beam profile of the laser light L is irradiated. Moreover, the irradiation center O can also be considered as the center of the molten pool.
 上述の通り、レーザ光Lがワイヤ1に照射されると加熱部位1Vが形成される。レーザ光Lの照射中あるいは照射直後においては、照射中心Oの周囲に溶融プールが形成される。その後の冷却により、溶融プールが凝固して焼入硬化部1Cが形成される。溶融プールの周囲には、溶融はしていないがレーザ光Lの照射時の熱によりワイヤ1の母材から特性が変化した熱影響部1H(HAZ:Heat Affected Zone)が形成される。このように、加熱部位1Vは、焼入硬化部1Cおよび熱影響部1Hを含む。 As described above, when the wire 1 is irradiated with the laser beam L, the heated region 1V is formed. During or immediately after irradiation with the laser beam L, a molten pool is formed around the irradiation center O. By subsequent cooling, the molten pool solidifies and a quench hardened portion 1C is formed. A heat affected zone 1H (HAZ) is formed around the molten pool, which is not melted but whose characteristics have changed from the base material of the wire 1 due to the heat generated during irradiation with the laser beam L. In this way, the heated portion 1V includes the quench hardened portion 1C and the heat affected zone 1H.
 図11においては、焼入硬化部1C、熱影響部1Hおよびワイヤ1の母材のそれぞれについてビッカース硬さ[HV]を測定した結果を示している。焼入硬化部1Cは、全体的に母材に比べて大きい硬さを有している。一方、熱影響部1Hは、全体的に母材に比べて小さい硬さを有している。熱影響部1Hの硬さは、焼入硬化部1Cの近傍から母材に向けて徐々に大きくなる。 FIG. 11 shows the results of measuring the Vickers hardness [HV] of each of the quench hardened portion 1C, the heat affected zone 1H, and the base material of the wire 1. The quench hardened portion 1C has greater hardness overall than the base material. On the other hand, the heat affected zone 1H has a lower hardness overall than the base material. The hardness of the heat-affected zone 1H gradually increases from the vicinity of the quench-hardened zone 1C toward the base material.
 このように、加熱部位1Vにおいても硬さの分布が一様でない。そのため、カッタ41およびマンドレル42の位置と、レーザ光Lの照射領域との関係を適切に定める必要がある。 In this way, the distribution of hardness is not uniform even in the heated region 1V. Therefore, it is necessary to appropriately determine the relationship between the positions of the cutter 41 and the mandrel 42 and the irradiation area of the laser beam L.
 図12は、カッタ41、マンドレル42およびレーザ光Lの照射領域の好適な位置関係の一例を示す断面図である。上述の螺旋成形工程S01においては、螺旋状に成形されたワイヤ1がカッタ41とマンドレル42の間に送られる。このワイヤ1の送り方向(周方向Dθ)において、カッタ41の端部41aとマンドレル42の端部42aの間には、クリアランスGが設けられている。以下、周方向DθにおけるクリアランスGの中心を、クリアランス中心Cと呼ぶ。 FIG. 12 is a cross-sectional view showing an example of a suitable positional relationship between the cutter 41, the mandrel 42, and the irradiation area of the laser beam L. In the above-described spiral forming step S01, the wire 1 formed into a spiral shape is sent between the cutter 41 and the mandrel 42. In the feeding direction of the wire 1 (circumferential direction Dθ), a clearance G is provided between the end 41a of the cutter 41 and the end 42a of the mandrel 42. Hereinafter, the center of the clearance G in the circumferential direction Dθ will be referred to as a clearance center C.
 図12の例においては、クリアランス中心Cと照射中心Oとが周方向Dθにずれている。具体的には、照射中心Oは、クリアランス中心Cよりもカッタ41側(周方向Dθの下流側)に位置している。 In the example of FIG. 12, the clearance center C and the irradiation center O are shifted in the circumferential direction Dθ. Specifically, the irradiation center O is located closer to the cutter 41 (downstream in the circumferential direction Dθ) than the clearance center C.
 図12の例において、加熱部位1Vは、凝固後に上述の焼入硬化部1Cとなる溶融プール1Pを含む。例えば、溶融プール1Pは、クリアランス中心Cと重なっている。また、溶融プール1Pは、カッタ41の端部41aと鉛直方向Yにおいて重なっている。 In the example of FIG. 12, the heating region 1V includes a molten pool 1P that becomes the above-mentioned quench hardened portion 1C after solidification. For example, the melt pool 1P overlaps with the clearance center C. Further, the molten pool 1P overlaps the end portion 41a of the cutter 41 in the vertical direction Y.
 一方で、溶融プール1Pは、マンドレル42の端部42aと鉛直方向Yにおいて重なっていない。図12の例においては、マンドレル42の端部42aと、熱影響部1Hのうち溶融プール1Pよりも周方向Dθの上流側に位置する部分とが鉛直方向Yにおいて重なっている。 On the other hand, the molten pool 1P does not overlap the end 42a of the mandrel 42 in the vertical direction Y. In the example of FIG. 12, the end portion 42a of the mandrel 42 and the portion of the heat affected zone 1H located upstream of the molten pool 1P in the circumferential direction Dθ overlap in the vertical direction Y.
 図13は、図12に示す状態からカッタ41を鉛直方向Yと平行に下降させてワイヤ1を切断した状態を示す断面図である。上述のように、カッタ41によってワイヤ1を切断する際には、既に溶融プール1Pが凝固しているか、あるいはカッタ41との接触により熱が奪われて溶融プール1Pが凝固する。したがって、切断中には焼入硬化部1Cが形成されている。なお、切断に際し、加熱部位1Vの内部に溶融プール1Pが一部残存していてもよい。 FIG. 13 is a sectional view showing a state in which the wire 1 is cut by lowering the cutter 41 in parallel to the vertical direction Y from the state shown in FIG. As described above, when cutting the wire 1 with the cutter 41, the molten pool 1P is already solidified, or heat is removed by contact with the cutter 41, and the molten pool 1P solidifies. Therefore, a quench hardened portion 1C is formed during cutting. Note that during cutting, a portion of the molten pool 1P may remain inside the heating portion 1V.
 マンドレル42の端部42aから突出したワイヤ1の外周面に対してカッタ41の先端部が衝撃を与えると、加熱部位1Vとその周囲にせん断力が加わり、ワイヤ1が破断する。カッタ41は、例えば最大でワイヤ1の軸付近まで降下する。切断されたワイヤ1、すなわちコイルばね2には、カッタ41による打痕B(凹部)が形成される。図13の例においては、焼入硬化部1Cおよび熱影響部1Hが打痕Bと重なっているが、これらが互いにずれていてもよい。 When the tip of the cutter 41 impacts the outer circumferential surface of the wire 1 protruding from the end 42a of the mandrel 42, shearing force is applied to the heated region 1V and its surroundings, causing the wire 1 to break. The cutter 41 descends, for example, to the vicinity of the axis of the wire 1 at the maximum. A dent B (recess) by the cutter 41 is formed on the cut wire 1, that is, the coil spring 2. In the example of FIG. 13, the quench-hardened portion 1C and the heat-affected zone 1H overlap with the dent B, but these may be shifted from each other.
 上述のように、熱影響部1Hは、焼入硬化部1Cおよびワイヤ1の母材よりも軟らかい。そのため、カッタ41がワイヤ1に衝撃を与えた際に、加熱部位1Vにおいては熱影響部1Hが破断しやすい。特に、図12に示したように照射中心Oがクリアランス中心Cよりもカッタ41側にずれていれば、熱影響部1Hのうち溶融プール1Pよりも周方向Dθの上流側に位置する部分に効果的に負荷を与え、当該部分に沿ってワイヤ1を破断させることができる。 As described above, the heat-affected zone 1H is softer than the quench-hardened portion 1C and the base material of the wire 1. Therefore, when the cutter 41 applies an impact to the wire 1, the heat affected zone 1H is likely to break at the heated portion 1V. In particular, if the irradiation center O is shifted toward the cutter 41 side from the clearance center C as shown in FIG. It is possible to apply a load to the wire 1 and break the wire 1 along the corresponding portion.
 図14は、図12および図13に示した方法でワイヤ1から切断されたコイルばね2の概略的な側面図である。コイルばね2は、第1端面61aを含む第1端末61と、第2端面62aを含む第2端末62とを有している。 FIG. 14 is a schematic side view of the coil spring 2 cut from the wire 1 in the manner shown in FIGS. 12 and 13. The coil spring 2 has a first end 61 including a first end surface 61a and a second end 62 including a second end surface 62a.
 第1端面61aは、図13においてワイヤ1から切り離されたコイルばね2の破断面に相当する。第1端末61は、レーザ光Lの第1照射痕M1と、カッタ41の打痕Bとを有している。第1照射痕M1は、焼入硬化部1Cおよび熱影響部1H(第1熱影響部)を含む。 The first end surface 61a corresponds to the fractured surface of the coil spring 2 cut off from the wire 1 in FIG. The first terminal 61 has a first irradiation mark M1 of the laser beam L and a dent B of the cutter 41. The first irradiation mark M1 includes a quench hardened portion 1C and a heat affected zone 1H (first heat affected zone).
 第2端面62aは、このコイルばね2の前に製造されるコイルばね2を切り離した際に、マンドレル42の上方に残されたワイヤ1の破断面に相当する。第2端末62は、レーザ光Lの第2照射痕M2を有している。第2照射痕M2は、熱影響部1H(第2熱影響部)を含む。図13に示したようにワイヤ1が切断された場合、第2照射痕M2は焼入硬化部1Cを含まない。ただし、第2照射痕M2は、例えば第1照射痕M1よりも少量の焼入硬化部1Cを含んでもよい。 The second end surface 62a corresponds to the fractured surface of the wire 1 left above the mandrel 42 when the coil spring 2 manufactured before this coil spring 2 is cut off. The second terminal 62 has a second irradiation mark M2 of the laser beam L. The second irradiation mark M2 includes a heat affected zone 1H (second heat affected zone). When the wire 1 is cut as shown in FIG. 13, the second irradiation mark M2 does not include the quench hardened portion 1C. However, the second irradiation mark M2 may include, for example, a smaller amount of the quench hardened portion 1C than the first irradiation mark M1.
 第1照射痕M1に含まれる熱影響部1Hは、第1端面61aの少なくとも一部に及んでいる。また、第2照射痕M2に含まれる熱影響部1Hは、第2端面62aの少なくとも一部に及んでいる。一方で、第1照射痕M1に含まれる焼入硬化部1Cは、第1端面61aに及んでいない。ただし、焼入硬化部1Cの一部が第1端面61aに及んでいてもよい。この場合、第1端面61aにおいて、焼入硬化部1Cの面積が熱影響部1Hの面積より小さいことが好ましい。 The heat affected zone 1H included in the first irradiation mark M1 extends over at least a portion of the first end surface 61a. Furthermore, the heat affected zone 1H included in the second irradiation mark M2 extends over at least a portion of the second end surface 62a. On the other hand, the quench hardened portion 1C included in the first irradiation mark M1 does not extend to the first end surface 61a. However, a part of the quench hardened portion 1C may extend to the first end surface 61a. In this case, in the first end surface 61a, it is preferable that the area of the quench hardened portion 1C is smaller than the area of the heat affected zone 1H.
 続いて、レーザ光Lの照射条件について説明する。
 図15は、図6に示したように矩形状のビームプロファイルを有するレーザ光L1が照射されるワイヤ1の表面を照射方向DLに見た概略的な平面図である。以下の説明においては、ワイヤ1の軸と平行な方向を軸方向DAと呼び、軸方向DAおよび照射方向DLと直交する方向をワイヤ1の幅方向DWと呼ぶ。
Next, the irradiation conditions of the laser beam L will be explained.
FIG. 15 is a schematic plan view of the surface of the wire 1, which is irradiated with the laser beam L1 having a rectangular beam profile as shown in FIG. 6, as viewed in the irradiation direction DL. In the following description, a direction parallel to the axis of the wire 1 will be referred to as an axial direction DA, and a direction perpendicular to the axial direction DA and the irradiation direction DL will be referred to as a width direction DW of the wire 1.
 図15においてドットを付した領域は、ワイヤ1の表面におけるレーザ光L1の照射領域1aに相当する。照射方向DLに見たとき、この照射領域1aは、軸方向DAにおいて幅W1を有し、幅方向DWにおいて幅W2を有した矩形状である。幅W1は、幅W2よりも小さい。すなわち、図15の例において、照射領域1aは、幅方向DWに長尺な形状を有している。 The dotted area in FIG. 15 corresponds to the irradiation area 1a of the laser beam L1 on the surface of the wire 1. When viewed in the irradiation direction DL, the irradiation area 1a has a rectangular shape having a width W1 in the axial direction DA and a width W2 in the width direction DW. Width W1 is smaller than width W2. That is, in the example of FIG. 15, the irradiation area 1a has an elongated shape in the width direction DW.
 図16は、図15に示した照射領域1aの定義を説明するための図である。図16においては、照射領域1aの照射中心Oを通り軸方向DAと平行な中心線CL1と、照射中心Oを通り幅方向DWと平行な中心線CL2とを示している。ワイヤ1の表面において、レーザ光L1は、中心線CL1に沿う出力分布PW1と、中心線CL2に沿う出力分布PW2とを有している。 FIG. 16 is a diagram for explaining the definition of the irradiation area 1a shown in FIG. 15. FIG. 16 shows a center line CL1 passing through the irradiation center O of the irradiation area 1a and parallel to the axial direction DA, and a center line CL2 passing through the irradiation center O and parallel to the width direction DW. On the surface of the wire 1, the laser beam L1 has an output distribution PW1 along the center line CL1 and an output distribution PW2 along the center line CL2.
 図16の例においては、出力分布PW1がガウシアン型であり、出力分布PW2がトップハット型である。ガウシアン型の出力分布PW1は、中央で出力値がピークとなる山状である。トップハット型の出力分布PW2は、出力値のピークが広範囲に及ぶ台形状である。 In the example of FIG. 16, the output distribution PW1 is a Gaussian type, and the output distribution PW2 is a top hat type. The Gaussian output distribution PW1 has a mountain shape with the output value peaking at the center. The top-hat type output distribution PW2 has a trapezoidal shape in which the peak of the output value extends over a wide range.
 本実施形態においては、出力分布PW1における半値幅を幅W1と定義し、出力分布PW2における半値幅を幅W2と定義する。なお、ガウシアン型の出力分布PW1の半値幅は、出力値がピークPKの半分となる位置での出力分布PW1の幅に相当する。また、トップハット型の出力分布PW2の半値幅も同様に、出力値がピークの半分となる位置での出力分布PW2の幅に相当する。トップハット型の出力分布PW2の半値幅は、出力分布PW2のボトム長Wbとトップ長Wtとを加算して1/2を掛けた値ということもできる。 In this embodiment, the half-value width in the output distribution PW1 is defined as the width W1, and the half-value width in the output distribution PW2 is defined as the width W2. Note that the half-width of the Gaussian output distribution PW1 corresponds to the width of the output distribution PW1 at a position where the output value is half of the peak PK. Similarly, the half-width of the top-hat type output distribution PW2 corresponds to the width of the output distribution PW2 at the position where the output value is half of the peak. The half-value width of the top-hat type output distribution PW2 can also be said to be the value obtained by adding the bottom length Wb and the top length Wt of the output distribution PW2 and multiplying the sum by 1/2.
 図17は、図8に示したように円形のビームプロファイルを有するレーザ光L2が照射されるワイヤ1の表面を照射方向DLに見た概略的な平面図である。図17の例においては照射領域1aが直径Raの正円形である。 FIG. 17 is a schematic plan view of the surface of the wire 1, which is irradiated with the laser beam L2 having a circular beam profile as shown in FIG. 8, as viewed in the irradiation direction DL. In the example of FIG. 17, the irradiation area 1a is a perfect circle with a diameter Ra.
 図18は、図17に示した照射領域1aの定義を説明するための図である。例えば、レーザ光L2は、ワイヤ1の表面において、中心線CL1,CL2のように照射中心Oを通る線分上でガウシアン型の出力分布PWを有している。直径Raは、出力分布PWの半値幅、すなわち出力値がピークPKの半分となる位置での出力分布PWの幅に相当する。 FIG. 18 is a diagram for explaining the definition of the irradiation area 1a shown in FIG. 17. For example, the laser beam L2 has a Gaussian output distribution PW on a line segment passing through the irradiation center O, such as center lines CL1 and CL2, on the surface of the wire 1. The diameter Ra corresponds to the half width of the output distribution PW, that is, the width of the output distribution PW at a position where the output value is half of the peak PK.
 なお、レーザ光L2の照射領域1aは、図15および図16の例と同様に軸方向DAにおける幅W1と幅方向DWにおける幅W2とで表される矩形状に定義されてもよい。 Note that the irradiation area 1a of the laser beam L2 may be defined in a rectangular shape represented by a width W1 in the axial direction DA and a width W2 in the width direction DW, similarly to the examples of FIGS. 15 and 16.
 照射領域1aの形状やレーザ光L1,L2の出力分布は、図15乃至図18を用いて例示したものに限られない。例えば図15および図16において、出力分布PW1,PW2の双方がトップハット型であってもよいし、出力分布PW1,PW2の双方がガウシアン型であってもよい。また、図17および図18の例において、出力分布PWがトップハット型であってもよい。 The shape of the irradiation area 1a and the output distribution of the laser beams L1 and L2 are not limited to those illustrated using FIGS. 15 to 18. For example, in FIGS. 15 and 16, both output distributions PW1 and PW2 may be top hat type, or both output distributions PW1 and PW2 may be Gaussian type. Furthermore, in the examples of FIGS. 17 and 18, the output distribution PW may be top-hat shaped.
 照射領域1aは、ピークの半値以上の出力でレーザ光Lが照射される領域として定義されればよく、その形状は矩形状や正円形に限られない。他の例として、照射領域1aは、楕円形であってもよい。この場合において、照射領域1aの長軸と短軸を出力分布の半値幅で定義してもよい。 The irradiation area 1a may be defined as an area where the laser beam L is irradiated with an output equal to or more than half the peak value, and its shape is not limited to a rectangular shape or a perfect circle. As another example, the irradiation area 1a may be elliptical. In this case, the long axis and short axis of the irradiation area 1a may be defined by the half width of the output distribution.
 図19は、レーザ光Lに適用し得る照射条件と実施例1,2,3を示す表である。本実施形態のように、レーザ光Lによる加熱と切断ユニット40の双方を用いる切断方式は、例えば直径Rが8mm以上の太いワイヤ1の切断に適している。ただし、ワイヤ1が太すぎると、良好な切断面が得られない可能性がある。そこで、本実施形態においては一例として、図19の照射条件に示すようにワイヤ1の直径Rが8mm以上かつ18mm以下である場合を想定する。 FIG. 19 is a table showing irradiation conditions applicable to the laser beam L and Examples 1, 2, and 3. A cutting method using both heating by the laser beam L and the cutting unit 40 as in this embodiment is suitable for cutting a thick wire 1 having a diameter R of 8 mm or more, for example. However, if the wire 1 is too thick, a good cut surface may not be obtained. Therefore, in this embodiment, as an example, it is assumed that the diameter R of the wire 1 is 8 mm or more and 18 mm or less, as shown in the irradiation conditions of FIG.
 加熱効率を考慮すると、レーザ光Lは、ワイヤ1をはみ出さないように照射することが好ましい。また、レーザ光Lの照射領域1aが小さすぎると、切断に適した形状の熱影響部1Hをワイヤ1に形成できない可能性がある。そこで、例えば照射領域1aが図15および図16に示した矩形状であり、ワイヤ1の直径Rが8mm以上かつ18mm以下である場合、照射領域1aの幅W1を2mm以上かつ6mm以下とし、幅W2を8mm以上かつ18mm以下とすることが好ましい。このような照射サイズの場合、照射面積(幅W1×幅W2)は16mm以上かつ108mmとなる。 Considering heating efficiency, it is preferable that the laser beam L is irradiated so as not to protrude the wire 1. Moreover, if the irradiation area 1a of the laser beam L is too small, there is a possibility that the heat-affected zone 1H having a shape suitable for cutting cannot be formed on the wire 1. Therefore, for example, if the irradiation area 1a has a rectangular shape as shown in FIGS. 15 and 16, and the diameter R of the wire 1 is 8 mm or more and 18 mm or less, the width W1 of the irradiation area 1a is set to 2 mm or more and 6 mm or less, and the width It is preferable that W2 be 8 mm or more and 18 mm or less. In the case of such an irradiation size, the irradiation area (width W1 x width W2) is 16 mm 2 or more and 108 mm 2 .
 レーザ光Lの出力は、ワイヤ1に十分な熱影響部1Hが形成され、かつレーザ光Lの照射のみでワイヤ1が切断されないように定める必要がある。レーザ光Lの出力が小さいと、切断に十分な熱影響部1Hを形成するために照射時間を長くしなければならないが、照射時間が長すぎるとコイルばね2の製造効率が低下する。また、レーザ光Lの出力が大きいと、レーザ加熱機30が大型化してコイリングマシン100の各部のレイアウトの自由度が低下する。さらには、ワイヤ1が過熱されて焼入硬化部1Cが大きくなったり、スパッタが生じたりする可能性がある。 The output of the laser beam L needs to be determined so that a sufficient heat-affected zone 1H is formed in the wire 1 and the wire 1 is not cut by irradiation with the laser beam L alone. If the output of the laser beam L is small, the irradiation time must be increased in order to form a heat-affected zone 1H sufficient for cutting, but if the irradiation time is too long, the manufacturing efficiency of the coil spring 2 will decrease. Moreover, when the output of the laser beam L is large, the laser heating machine 30 becomes large and the degree of freedom in layout of each part of the coiling machine 100 decreases. Furthermore, the wire 1 may be overheated and the quench hardened portion 1C may become large or spatter may occur.
 例えばこれらを考慮すると、レーザ光Lの出力は500W以上かつ8000W以下とすることが好ましい。また、単位面積あたりのレーザ光Lの出力に相当する出力密度は、10W/mm以上かつ100W/mm以下であることが好ましい。出力密度が31W/mm以上かつ74W/mm以下であると一層好適である。 For example, taking these into consideration, it is preferable that the output of the laser beam L be 500 W or more and 8000 W or less. Further, the output density corresponding to the output of the laser beam L per unit area is preferably 10 W/mm 2 or more and 100 W/mm 2 or less. It is more preferable that the power density is 31 W/mm 2 or more and 74 W/mm 2 or less.
 なお、出力密度は、レーザ光Lの出力を、照射方向DLに見たときのワイヤ1の表面における照射領域1aの面積で割った値である。また、ここにいう照射領域1aは、例えば図16を用いて説明したようにワイヤ1の表面におけるレーザ光Lの出力分布の半値幅で規定される領域である。 Note that the output density is a value obtained by dividing the output of the laser beam L by the area of the irradiation region 1a on the surface of the wire 1 when viewed in the irradiation direction DL. Furthermore, the irradiation region 1a referred to herein is a region defined by the half-width of the output distribution of the laser beam L on the surface of the wire 1, for example, as described using FIG. 16.
 図19に示す実施例1,2,3においては、いずれもレーザ光Lの出力が3000Wであるが、照射サイズおよび照射面積が異なる。照射サイズは、実施例1において4mm×14mmであり、実施例2において3.9mm×12.1mmであり、実施例3において3.8mm×15.4mmである。また、照射面積は、実施例1において56mmであり、実施例2において47.19mmであり、実施例3において58.52mmである。 In Examples 1, 2, and 3 shown in FIG. 19, the output of the laser beam L is 3000 W, but the irradiation size and irradiation area are different. The irradiation size is 4 mm x 14 mm in Example 1, 3.9 mm x 12.1 mm in Example 2, and 3.8 mm x 15.4 mm in Example 3. Further, the irradiation area was 56 mm 2 in Example 1, 47.19 mm 2 in Example 2, and 58.52 mm 2 in Example 3.
 この場合の出力密度は、実施例1において53.57W/mmであり、実施例2において63.57W/mmであり、実施例3において51.26W/mmである。これらの出力密度は、いずれも図19の照射条件に示した10W/mm以上かつ100W/mm以下、さらには31W/mm以上かつ74W/mm以下である。 The power density in this case is 53.57 W/mm 2 in Example 1, 63.57 W/mm 2 in Example 2, and 51.26 W/mm 2 in Example 3. These output densities are all 10 W/mm 2 or more and 100 W/mm 2 or less, as shown in the irradiation conditions of FIG. 19, and further 31 W/mm 2 or more and 74 W/mm 2 or less.
 直径Rが8mm以上かつ18mm以下のワイヤ1を用いてコイリングマシン100によりコイルばね2を製造するにあたり、実施例1,2,3の条件のレーザ光Lを加熱工程S02で用いると、切断に要するせん断力が小さく、良好な端末形状のコイルばね2を製造することができた。 When manufacturing a coil spring 2 using a coiling machine 100 using a wire 1 with a diameter R of 8 mm or more and 18 mm or less, if the laser beam L under the conditions of Examples 1, 2, and 3 is used in the heating step S02, the amount required for cutting is It was possible to manufacture a coil spring 2 with a small shearing force and a good end shape.
 なお、図19においては、照射サイズが幅W1と幅W2で定義される場合を想定したが、照射領域1aが円形である場合には照射サイズが半径で定義されてもよい。その他、照射サイズは照射領域1aの形状に応じて適宜に定め得る。照射サイズがどのような定め方であっても、出力密度が図19に示す範囲であれば同様の効果を得ることができる。 Note that in FIG. 19, it is assumed that the irradiation size is defined by the width W1 and the width W2, but if the irradiation area 1a is circular, the irradiation size may be defined by the radius. In addition, the irradiation size can be determined as appropriate depending on the shape of the irradiation area 1a. Regardless of how the irradiation size is determined, the same effect can be obtained as long as the output density is within the range shown in FIG.
 以上の本実施形態によれば、螺旋状に曲げられたワイヤ1のうち、レーザ光Lの照射によって高温になっている部位(加熱部位1V)が切断ユニット40(カッタ41およびマンドレル42)により切断されるため、切断に要するせん断力が小さくなる。したがって、ワイヤ1を容易に切断することができる。 According to the above-described embodiment, the portion of the spirally bent wire 1 that has become hot due to the irradiation with the laser beam L (heated portion 1V) is cut by the cutting unit 40 (cutter 41 and mandrel 42). As a result, the shearing force required for cutting is reduced. Therefore, the wire 1 can be easily cut.
 さらに、図19を用いて説明したように出力密度などのレーザ光Lの照射条件を定めることで、コイルばね2の製造効率を高めるとともに、良好な端末を有する高品質のコイルばね2を得ることができる。 Furthermore, as explained using FIG. 19, by determining the irradiation conditions of the laser beam L such as the output density, it is possible to increase the manufacturing efficiency of the coil spring 2 and obtain a high-quality coil spring 2 with good terminals. Can be done.
 以上の実施形態は、本発明の範囲を当該実施形態にて開示した構成に限定するものではない。本発明は、当該実施形態にて開示した構成を種々の態様に変形して実施することができる。 The above embodiments do not limit the scope of the present invention to the configuration disclosed in the embodiments. The present invention can be implemented by modifying the configuration disclosed in the embodiment in various ways.
 例えば、本発明を実施するに当たり、コイリングマシン100が備える各要素の構成や配置等の態様を必要に応じて種々に変更して実施できることは言うまでもない。 For example, in carrying out the present invention, it goes without saying that the configuration and arrangement of each element included in the coiling machine 100 can be changed in various ways as necessary.
 各実施形態においては、コイリングマシン100がカッタ41を用いてワイヤ1の加熱部位1Vを切断する構成を例示した。コイリングマシン100は、このような構成に限定されることなく、回転鋸刃を用いた切削によってワイヤ1の加熱部位1Vを切断してもよい。 In each embodiment, the coiling machine 100 uses the cutter 41 to cut the heated portion 1V of the wire 1. The coiling machine 100 is not limited to such a configuration, and may cut the heated portion 1V of the wire 1 by cutting using a rotary saw blade.
 コイリングマシン100によって製造されるコイルばね2の形態は様々であり、例えばコイル径とピッチがコイルばねの軸線方向に変化していてもよい。すなわち、コイリングマシン100によって製造されるコイルばね2は、円筒コイルばねをはじめとして、たる形コイルばね、鼓形コイルばね、テーパコイルばね、不等ピッチコイルばね、マイナスピッチの部分を有するコイルばね等など、様々な形態のコイルばねであってもよい。 There are various forms of the coil spring 2 manufactured by the coiling machine 100, and for example, the coil diameter and pitch may change in the axial direction of the coil spring. That is, the coil springs 2 manufactured by the coiling machine 100 include cylindrical coil springs, barrel-shaped coil springs, hourglass-shaped coil springs, tapered coil springs, unequal pitch coil springs, coil springs having negative pitch parts, and the like. , various forms of coil springs may be used.
 1…ワイヤ、1a…照射領域、1V…加熱部位、1P…溶融プール、1C…焼入硬化部、1H…熱影響部、2…コイルばね、10…搬送ユニット、11…駆動ローラ、12…従動ローラ、13…ワイヤガイド、20…螺旋成形ユニット、21…第1成形ローラ、22…第2成形ローラ、23…ピッチツール、30…レーザ加熱機、31…レーザ発振器、32…光ファイバ、33…レーザヘッド、34…測定器、40…切断ユニット、41…カッタ、42…マンドレル、50…制御ユニット、51…コントローラ、61…第1端末、62…第2端末、100…コイリングマシン、L,L1,L2…レーザ光、S01…螺旋成形工程、S02…加熱工程、S03…切断工程、M1…第1照射痕、M2…第2照射痕、B…打痕、X…搬送方向、Y…鉛直方向、Z…成形方向、Dθ…周方向,DL…照射方向。 DESCRIPTION OF SYMBOLS 1... Wire, 1a... Irradiation area, 1V... Heating region, 1P... Molten pool, 1C... Quench hardening part, 1H... Heat affected zone, 2... Coil spring, 10... Conveyance unit, 11... Drive roller, 12... Follower Roller, 13... Wire guide, 20... Spiral forming unit, 21... First forming roller, 22... Second forming roller, 23... Pitch tool, 30... Laser heating machine, 31... Laser oscillator, 32... Optical fiber, 33... Laser head, 34... Measuring device, 40... Cutting unit, 41... Cutter, 42... Mandrel, 50... Control unit, 51... Controller, 61... First terminal, 62... Second terminal, 100... Coiling machine, L, L1 , L2...Laser beam, S01...Spiral forming process, S02...Heating process, S03...Cutting process, M1...First irradiation mark, M2...Second irradiation mark, B...Document mark, X...Transportation direction, Y...Vertical direction , Z... Molding direction, Dθ... Circumferential direction, DL... Irradiation direction.

Claims (12)

  1.  螺旋状に成形されるワイヤに対してレーザ光を照射することにより前記ワイヤの一部を加熱するレーザ加熱機と、
     前記レーザ光の照射により加熱された前記ワイヤの部位を切断する切断ユニットと、
     を備え、
     前記レーザ光の出力密度は、10W/mm以上かつ100W/mm以下である、
     コイリングマシン。
    a laser heating machine that heats a part of the wire by irradiating the wire into a spiral shape with a laser beam;
    a cutting unit that cuts a portion of the wire heated by irradiation with the laser beam;
    Equipped with
    The output density of the laser beam is 10 W/mm 2 or more and 100 W/mm 2 or less,
    coiling machine.
  2.  前記出力密度は、31W/mm以上かつ74W/mm以下である、
     請求項1に記載のコイリングマシン。
    The power density is 31 W/mm 2 or more and 74 W/mm 2 or less,
    A coiling machine according to claim 1.
  3.  前記出力密度は、前記レーザ光の出力を、前記レーザ光の照射方向に見たときの前記ワイヤの表面における前記レーザ光の照射領域の面積で割った値である、
     請求項1に記載のコイリングマシン。
    The output density is a value obtained by dividing the output of the laser beam by the area of the irradiation area of the laser beam on the surface of the wire when viewed in the irradiation direction of the laser beam.
    A coiling machine according to claim 1.
  4.  前記照射領域は、前記ワイヤの表面における前記レーザ光の出力分布の半値幅で規定される領域である、
     請求項3に記載のコイリングマシン。
    The irradiation area is an area defined by the half width of the output distribution of the laser beam on the surface of the wire,
    A coiling machine according to claim 3.
  5.  前記照射領域は、前記ワイヤの幅方向に長尺な形状を有している、
     請求項4に記載のコイリングマシン。
    The irradiation area has an elongated shape in the width direction of the wire,
    The coiling machine according to claim 4.
  6.  前記ワイヤの直径は、8mm以上かつ18mm以下であり、
     前記照射領域の面積は、16mm以上かつ108mm以下であり、
     前記レーザ光の出力は、500W以上かつ8000W以下である、
     請求項3乃至5のうちいずれか1項に記載のコイリングマシン。
    The diameter of the wire is 8 mm or more and 18 mm or less,
    The area of the irradiation area is 16 mm 2 or more and 108 mm 2 or less,
    The output of the laser beam is 500 W or more and 8000 W or less,
    A coiling machine according to any one of claims 3 to 5.
  7.  螺旋状に成形されるワイヤに対してレーザ光を照射することにより前記ワイヤの一部を加熱することと、
     前記レーザ光の照射により加熱された前記ワイヤの部位を切断することと、
     を含み、
     前記レーザ光の出力密度は、10W/mm以上かつ100W/mm以下である、
     コイルばねの製造方法。
    heating a part of the wire by irradiating the wire formed into a spiral shape with a laser beam;
    cutting a portion of the wire heated by the laser beam irradiation;
    including;
    The output density of the laser beam is 10 W/mm 2 or more and 100 W/mm 2 or less,
    How to manufacture coil springs.
  8.  前記出力密度は、31W/mm以上かつ74W/mm以下である、
     請求項7に記載のコイルばねの製造方法。
    The power density is 31 W/mm 2 or more and 74 W/mm 2 or less,
    The method for manufacturing a coil spring according to claim 7.
  9.  前記出力密度は、前記レーザ光の出力を、前記レーザ光の照射方向に見たときの前記ワイヤの表面における前記レーザ光の照射領域の面積で割った値である、
     請求項7に記載のコイルばねの製造方法。
    The output density is a value obtained by dividing the output of the laser beam by the area of the irradiation area of the laser beam on the surface of the wire when viewed in the irradiation direction of the laser beam.
    The method for manufacturing a coil spring according to claim 7.
  10.  前記照射領域は、前記ワイヤの表面における前記レーザ光の出力分布の半値幅で規定される領域である、
     請求項9に記載のコイルばねの製造方法。
    The irradiation area is an area defined by the half width of the output distribution of the laser beam on the surface of the wire,
    A method for manufacturing a coil spring according to claim 9.
  11.  前記照射領域は、前記ワイヤの幅方向に長尺な形状を有している、
     請求項10に記載のコイルばねの製造方法。
    The irradiation area has an elongated shape in the width direction of the wire,
    The method for manufacturing a coil spring according to claim 10.
  12.  前記ワイヤの直径は、8mm以上かつ18mm以下であり、
     前記照射領域の面積は、16mm以上かつ108mm以下であり、
     前記レーザ光の出力は、500W以上かつ8000W以下である、
     請求項9乃至11のうちいずれか1項に記載のコイルばねの製造方法。
    The diameter of the wire is 8 mm or more and 18 mm or less,
    The area of the irradiation area is 16 mm 2 or more and 108 mm 2 or less,
    The output of the laser beam is 500 W or more and 8000 W or less,
    A method for manufacturing a coil spring according to any one of claims 9 to 11.
PCT/JP2023/022577 2022-08-15 2023-06-19 Coiling machine and production method for coil springs WO2024038669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022129256A JP2024025901A (en) 2022-08-15 2022-08-15 Coiling machine and coil spring manufacturing method
JP2022-129256 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024038669A1 true WO2024038669A1 (en) 2024-02-22

Family

ID=89941432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022577 WO2024038669A1 (en) 2022-08-15 2023-06-19 Coiling machine and production method for coil springs

Country Status (2)

Country Link
JP (1) JP2024025901A (en)
WO (1) WO2024038669A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187414A (en) * 1983-04-08 1984-10-24 Mitsubishi Electric Corp Shearing machine additionally using laser
JPS6250028A (en) * 1985-08-27 1987-03-04 High Frequency Heattreat Co Ltd Cutting method at forming cold formed coil spring of high strength and thick diameter wire
JPS63260716A (en) * 1987-04-20 1988-10-27 Nippon Steel Corp Method for reducing burrs generated in shearing of steel sheet
JPH06218476A (en) * 1993-01-27 1994-08-09 Itaya Seisakusho:Kk Manufacture of spring
JP2022109282A (en) * 2019-02-06 2022-07-27 日本発條株式会社 coil spring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187414A (en) * 1983-04-08 1984-10-24 Mitsubishi Electric Corp Shearing machine additionally using laser
JPS6250028A (en) * 1985-08-27 1987-03-04 High Frequency Heattreat Co Ltd Cutting method at forming cold formed coil spring of high strength and thick diameter wire
JPS63260716A (en) * 1987-04-20 1988-10-27 Nippon Steel Corp Method for reducing burrs generated in shearing of steel sheet
JPH06218476A (en) * 1993-01-27 1994-08-09 Itaya Seisakusho:Kk Manufacture of spring
JP2022109282A (en) * 2019-02-06 2022-07-27 日本発條株式会社 coil spring

Also Published As

Publication number Publication date
JP2024025901A (en) 2024-02-28

Similar Documents

Publication Publication Date Title
JP7225457B2 (en) Coiling machine and coil spring manufacturing method
JP5266068B2 (en) Steel plate laser welding method and laser welding apparatus
CA2414099A1 (en) Method and apparatus for flexible manufacturing a discrete curved product from feed stock
CN114040827B (en) Additive manufacturing device
EP3085465B9 (en) Apparatus for side trimming a steel plate
WO2024038669A1 (en) Coiling machine and production method for coil springs
EP3766630B1 (en) Laser processing machine and laser processing method
KR101067312B1 (en) Method of forming fracture start portion of ductile metal part and fracture start portion forming device
EP3525972B1 (en) Method of manufacturing a toothed blade and apparatus for manufacturing such a blade
US11953875B2 (en) Cutting processing machine and cutting processing method
JP7282270B2 (en) LASER CUTTING METHOD AND LASER CUTTING APPARATUS FOR METAL FOIL
US6365870B1 (en) Method and device for treating work pieces with laser radiation
WO2024038668A1 (en) Coiling machine and coil spring manufacturing method
JP6846273B2 (en) Laser machining machine, bending method, and punching method
JPH05185174A (en) Method for cutting fine wire
EP3831527B1 (en) Laser machining device and laser machining method
WO1996003249A1 (en) Method of manufacturing laser welded pipes and apparatus for manufacturing the same
KR101655320B1 (en) Side trimming device and method of steel plate
WO1999036200A1 (en) A welding method, a heat exchanger tube, and an apparatus for the manufacturing of a heat exchanger tube
JP2002219589A (en) Laser beam welding device and laser beam welding method
WO2023248357A1 (en) Additive manufacturing device and additive manufacturing method
JP2023017298A (en) Hardening device and hardening method
JP2003103382A (en) Setting method for laser beam irradiation position
CN114008223A (en) Method and system for heating using an energy beam
JP2003029100A (en) Method and device for manufacturing optical fiber sheathed with metal pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854707

Country of ref document: EP

Kind code of ref document: A1