WO2024038646A1 - Control method for gel actuator and control device for gel actuator - Google Patents

Control method for gel actuator and control device for gel actuator Download PDF

Info

Publication number
WO2024038646A1
WO2024038646A1 PCT/JP2023/017287 JP2023017287W WO2024038646A1 WO 2024038646 A1 WO2024038646 A1 WO 2024038646A1 JP 2023017287 W JP2023017287 W JP 2023017287W WO 2024038646 A1 WO2024038646 A1 WO 2024038646A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
gel
actuator
gel sheet
layer
Prior art date
Application number
PCT/JP2023/017287
Other languages
French (fr)
Japanese (ja)
Inventor
喜樹 植田
洸貴 土屋
修功 奥田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024038646A1 publication Critical patent/WO2024038646A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present invention relates to a gel actuator control method and a gel actuator control device.
  • Patent Document 1 discloses a gel actuator that includes an actuator element and an applied voltage means.
  • the actuator element includes a gel sheet made of a dielectric material that undergoes creep deformation when a voltage is applied, and a mesh-like anode and a foil-like cathode arranged to sandwich the gel sheet in the thickness direction.
  • the applied voltage means applies a voltage between the anode and the cathode.
  • An object of the present invention is to provide a gel actuator control method and a gel actuator control device that can stabilize the displacement of the gel actuator.
  • a control method includes: A gel comprising a first electrode layer having a void, a second electrode layer facing the first electrode layer, and a gel sheet layer provided between the first electrode layer and the second electrode layer.
  • a method for controlling an actuator comprising: An AC voltage with a DC offset of less than 1/2 of the AC amplitude is applied so that the first electrode layer side is positive.
  • a control device includes: A gel comprising a first electrode layer having a void, a second electrode layer facing the first electrode layer, and a gel sheet layer provided between the first electrode layer and the second electrode layer. Equipped with a processor that can control the voltage applied to the actuator, The processor, An AC voltage with a DC offset of less than 1/2 of the AC amplitude is applied so that the first electrode layer side is positive.
  • sticking of the gel sheet layer to the first electrode layer can be suppressed when the first electrode layer side becomes the negative side.
  • FIG. 1 is a block diagram of a system including a control device according to an embodiment of the present invention.
  • FIG. 3 is an enlarged view of the cross-sectional view of FIG. 2; 2 is a flowchart for explaining an example of an actuator control method performed by the control device of FIG. 1.
  • FIG. FIG. 3 is a diagram showing a waveform of a voltage applied to an actuator in an example.
  • FIG. 7 is a diagram showing a waveform of a voltage applied to an actuator of a comparative example.
  • the first diagram showing the results of measuring the amount of displacement of the actuator immediately after the start of the operation and the amount of displacement of the gel actuator 10 one minute after the start of the operation.
  • the second diagram showing the results of measuring the amount of displacement of the actuator immediately after the start of the operation and the amount of displacement of the gel actuator 10 one minute after the start of the operation.
  • the third diagram showing the results of measuring the amount of displacement of the actuator immediately after the start of the operation and the amount of displacement of the gel actuator 10 one minute after the start of the operation.
  • the fourth diagram showing the results of measuring the amount of displacement of the actuator immediately after the start of the operation and the amount of displacement of the gel actuator 10 one minute after the start of the operation.
  • the control method of the first aspect of the present invention includes: A gel comprising a first electrode layer having a void, a second electrode layer facing the first electrode layer, and a gel sheet layer provided between the first electrode layer and the second electrode layer.
  • a method for controlling an actuator comprising: An AC voltage with a DC offset of less than 1/2 of the AC amplitude is applied so that the first electrode layer side is positive.
  • sticking of the gel sheet layer to the first electrode layer can be suppressed when the first electrode layer side becomes the negative side.
  • the control method according to the second aspect of the present invention includes, in the control method according to the first aspect,
  • the DC offset is DC offset/AC amplitude ⁇ 97.5%.
  • sticking of the gel sheet layer to the first electrode layer can be more reliably suppressed when the first electrode layer side becomes the negative side.
  • a control method includes, in the control method according to the first or second aspect, The DC offset is 75% ⁇ DC offset/AC amplitude ⁇ 97.5%.
  • the displacement of the gel sheet in the lamination direction of the first electrode layer, gel sheet layer, and second electrode layer can be increased.
  • a control method according to a fourth aspect of the present invention is a control method according to any one of the first to third aspects, comprising:
  • the gel sheet layer is a polyvinyl chloride gel sheet.
  • the displacement of the gel sheet in the lamination direction of the first electrode layer, gel sheet layer, and second electrode layer can be increased.
  • a control method includes, in a control method according to a fourth aspect,
  • the gel sheet layer contains polyvinyl chloride and a plasticizer dibutyl adipate,
  • the weight ratio of the plasticizer dibutyl adipate to polyvinyl chloride is 4 or more and 8 or less.
  • sticking of the gel sheet layer to the first electrode layer can be more reliably suppressed when the first electrode layer side becomes the negative side.
  • a control method includes, in the control method according to any one of the first to fifth aspects,
  • the first electrode layer includes a metal mesh electrode
  • the second electrode layer is a flat plate electrode.
  • the displacement of the gel sheet in the lamination direction of the first electrode layer, gel sheet layer, and second electrode layer can be increased.
  • a control method according to a seventh aspect of the present invention is a control method according to any one of the first to sixth aspects, including:
  • the gel actuator forms part of a gel speaker.
  • a gel speaker capable of outputting sound of several hundred Hz can be realized.
  • the control device includes: A gel comprising a first electrode layer having a void, a second electrode layer facing the first electrode layer, and a gel sheet layer provided between the first electrode layer and the second electrode layer. Equipped with a processor that can control the voltage applied to the actuator, The processor, An AC voltage with a DC offset of less than 1/2 of the AC amplitude is applied so that the first electrode layer side is positive.
  • sticking of the gel sheet layer to the first electrode layer can be suppressed when the first electrode layer side becomes the negative side.
  • a control device 40 constitutes a part of a system 1 that drives a gel speaker 100, as shown in FIG.
  • the system 1 includes a gel speaker 100 including a gel actuator 10, a high voltage amplifier 20 connected to the gel actuator 10, a function generator 30 connected to the high voltage amplifier 20, and a control device 40. Be prepared.
  • the gel actuator 10 includes a first electrode layer 11, a gel sheet layer 12, and a second electrode layer 13, which are laminated in order, for example, along the Z direction.
  • the gel actuator 10 has a substantially rectangular shape when viewed from above, and is surrounded by a frame 14.
  • the first electrode layer 11 has a recess 111 provided with an opening 112 facing the gel sheet layer 12.
  • the first electrode layer 11 is made of a metal mesh and has a plurality of recesses 111 (an example of voids).
  • the gel sheet layer 12 is made of a material that deforms in the thickness direction (in other words, in the stacking direction Z of the first electrode layer 11, gel sheet layer 12, and second electrode layer 13) by applying a voltage.
  • Materials that deform in the stacking direction by applying a voltage include, for example, polyvinyl chloride (PVC).
  • PVC polyvinyl chloride
  • the gel sheet layer 12 is formed by mixing PVC with a plasticizer.
  • Plasticizers include dimethylacetamide (DMA), diethanolamine (DEA), dibutyl adipate (DBA), dioctyl adipate (DOA), dimethyl phthalate (DMP), dibutyl phthalate (DBP), and dioctyl phthalate (DOP). , bisphthalate (DEHP), dimethyl adipate (DMA), etc.
  • DBA tetrahydrofuran
  • PVC and DBA are mixed such that the weight ratio of the plasticizer dibutyl adipate to polyvinyl chloride is 4 or more and 8 or less.
  • THF tetrahydrofuran
  • the second electrode layer 13 is, for example, a flat plate electrode, and has a flat surface 131 facing the gel sheet layer 12.
  • the high voltage amplifier 20 is connected to the first electrode layer 11 and the second electrode layer 13 of the gel actuator 10 via wiring 50.
  • High voltage amplifier 20 amplifies the AC voltage signal output from function generator 30 and outputs it to gel actuator 10 .
  • the function generator 30 generates an AC voltage signal having an arbitrary frequency and waveform based on the control signal transmitted from the control device 40 and outputs it to the high voltage amplifier 20.
  • the control device 40 includes a processor 41, a storage section 42, and a communication section 43.
  • Processor 41 includes a CPU, MPU, GPU, DSP, FPGA, ASIC, etc., and controls the voltage applied to gel actuator 10 via high voltage amplifier 20 and function generator 30.
  • the storage unit 42 includes, for example, an internal recording medium or an external recording medium.
  • the internal recording medium includes nonvolatile memory and the like.
  • External recording media include hard disks (HDD), solid state drives (SSD), optical disk devices, and the like.
  • the communication unit 43 includes, for example, a communication circuit or a communication module for transmitting and receiving signals and/or data to and from external devices such as the high voltage amplifier 20, the function generator 30, and a server (not shown). There is.
  • the processor 41 is configured to be able to control the AC voltage applied to the gel actuator 10.
  • An alternating current voltage is applied to the gel actuator 10, with the first electrode layer 11 side being positive and having a DC offset of less than 1/2 of the alternating current amplitude.
  • FIG. 4 An example of a method for controlling the gel actuator 10 will be described with reference to FIG. 4.
  • the control method of FIG. 4 is implemented, for example, by the processor 41 executing a predetermined program.
  • the processor 41 applies to the gel actuator 10 an AC voltage that is positive on the first electrode layer 11 side and has a DC offset that is less than 1/2 of the AC amplitude (step S1).
  • the processor 41 determines whether to end the control process for the gel actuator 10 (step S2). Step S2 is repeated until it is determined that the control process for the gel actuator 10 is finished.
  • the processor 41 stops applying the AC voltage to the gel actuator 10 (step S3). This completes the control process for the gel actuator 10.
  • the plasticizer when the gel sheet layer 12 contains a plasticizer, the plasticizer is negatively charged and attracted to a positive potential.
  • the plasticizer When the first electrode layer 11 has a positive potential, the plasticizer is attracted to the first electrode layer 11 , and the gel sheet layer 12 on the first electrode layer 11 side is deformed and enters the recess 111 . If the first electrode layer 11 becomes a negative potential in this state, the plasticizer will be attracted to the second electrode layer 13 that has a positive potential, making it impossible to maintain the deformation of the gel sheet layer 12 on the first electrode layer 11 side. . As a result, the sticking state of the gel sheet layer 12 to the first electrode layer 11 is eliminated.
  • the method of applying voltage to the gel actuator 10 can exhibit the following effects.
  • a method for controlling a gel actuator 10 wherein the gel actuator 10 includes a first electrode layer 11 having a gap, a second electrode layer 13 disposed opposite to the first electrode layer 11, and a first electrode layer 11 and a second electrode layer 13.
  • the gel sheet layer 12 is provided between the electrode layer 13 and the gel sheet layer 12 .
  • An AC voltage with a DC offset of less than 1/2 of the AC amplitude is applied so that the first electrode layer 11 side is positive. With such a configuration, sticking of the gel sheet layer 12 to the first electrode layer 11 can be suppressed when the first electrode layer 11 side becomes the negative side.
  • the gel sheet layer 12 is a polyvinyl chloride gel sheet. With such a configuration, the displacement of the gel sheet layer 12 in the lamination direction of the first electrode layer 11, the gel sheet layer 12, and the second electrode layer 13 can be increased.
  • the gel sheet layer 12 contains polyvinyl chloride and dibutyl adipate, and the weight ratio of dibutyl adipate to polyvinyl chloride is 4 or more and 8 or less. With such a configuration, sticking of the gel sheet layer 12 to the first electrode layer 11 can be more reliably suppressed when the first electrode layer 11 side becomes the negative side.
  • the first electrode layer 11 includes a metal mesh
  • the second electrode layer 13 is a flat plate electrode.
  • the gel actuator 10 constitutes a part of the gel speaker 100. With such a configuration, for example, a gel speaker capable of outputting sound of several hundred Hz can be realized.
  • the control device 40 can exhibit the following effects.
  • the control device 40 includes a processor 41 that can control the voltage applied to the gel actuator 10.
  • the gel actuator 10 includes a first electrode layer 11 having a void, a second electrode layer 13 disposed opposite to the first electrode layer 11, and a layer provided between the first electrode layer 11 and the second electrode layer 13.
  • a gel sheet layer 12 is provided.
  • the processor 41 applies an AC voltage such that the first electrode layer 11 side is positive and has a DC offset of less than 1/2 of the AC amplitude. With such a configuration, sticking of the gel sheet layer 12 to the first electrode layer 11 can be suppressed when the first electrode layer 11 side becomes the negative side.
  • the method of applying voltage to the gel actuator 10 and the control device 40 can also be configured as follows.
  • the first electrode layer 11 is not limited to a metal mesh, and may be made of any conductive material having voids (for example, a recessed portion with an opening facing the gel sheet layer 12).
  • the gel sheet layer 12 is not limited to polyvinyl chloride, but is made of, for example, polymethyl methacrylate, polyurethane, polystyrene, polyvinyl acetate, nylon 6, polyvinyl alcohol, polycarbonate, polyethylene terephthalate, polyacrylonitrile, or silicone rubber. A layer 12 may also be formed.
  • the second electrode layer 13 is not limited to a flat plate electrode, and may be made of any conductive material that has a flat surface facing the gel sheet layer 12.
  • the DC offset/AC amplitude may be configured to be 75.0% or more and 97.5% or less. With this configuration, the displacement of the gel sheet layer 12 in the lamination direction of the first electrode layer 11, gel sheet layer 12, and second electrode layer 13 can be increased.
  • the method of the present invention is not limited to being automatically executed by the control device 40 based on a command or the like input by the user. It may also be executed passively.
  • the gel actuator 10 in FIG. 2 was operated, and the amount of displacement of the gel actuator 10 immediately after the start of the operation and the amount of displacement of the gel actuator 10 one minute after the start of the operation were measured.
  • the gel actuator 10 (Examples 1 to 14) applies an AC voltage with a DC offset of less than 1/2 of the AC amplitude, and the gel actuator 10 applies an AC voltage with a DC offset of 1/2 of the AC amplitude.
  • Gel actuator 10 (Comparative Examples 1 to 4) was used.
  • FIG. 5 shows the waveforms of the AC voltages applied to the gel actuators 10 of Examples 1 to 14, and
  • FIG. 6 shows the waveforms of the AC voltages applied to the gel actuators 10 of Comparative Examples 1 to 4.
  • the gel actuator 10 used in this example is shown below.
  • ⁇ First electrode layer 11 Stainless steel mesh with a wire diameter of 0.4 mm and an opening of 1 mm x 1 mm.
  • ⁇ Second electrode layer 13 Aluminum flat plate
  • ⁇ High-voltage amplifier 20 High-speed high-voltage amplifier HAPS-2B200 manufactured by Matsusada Precision Co., Ltd.
  • ⁇ Function generator 30 Keysight function generator 33500B
  • a waveform is generated by the function generator 30 and amplified 200 times by the high-speed high-voltage amplifier 20 to generate a waveform in which a DC offset of 0 to 400 V is superimposed on a 100 Hz, 800 Vpp sine wave as an input waveform. did.
  • a bias voltage of 400V is applied to 800Vpp, the potential difference between the first electrode layer 11 and the second electrode layer 13 becomes 0 to 800V.
  • a gel speaker 100 having a substantially square shape in a plan view measuring 30 cm x 30 cm was manufactured and operated under the conditions of Example 9.
  • a sound level meter LA1441 manufactured by Ono Sokki
  • a sound pressure level of 10 dBA at 100 Hz was measured.

Landscapes

  • Micromachines (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

A control method for a gel actuator having a first electrode layer with gaps therein, a second electrode layer disposed facing the first electrode layer, and a gel sheet layer provided between the first electrode layer and the second electrode layer, wherein an AC voltage subjected to DC offset is applied so that the first electrode layer side becomes positive and the AC amplitude becomes less than 1/2.

Description

ゲルアクチュエータの制御方法およびゲルアクチュエータの制御装置Gel actuator control method and gel actuator control device
 本発明は、ゲルアクチュエータの制御方法およびゲルアクチュエータの制御装置に関する。 The present invention relates to a gel actuator control method and a gel actuator control device.
 特許文献1には、アクチュエータ素子と、印加電圧手段とを備えるゲルアクチュエータが開示されている。アクチュエータ素子は、電圧を印加した際にクリープ変形する誘電体材料からなるゲルシートと、このゲルシートを厚さ方向に挟む配置に設けたメッシュ状の陽極および箔状の陰極とを備える。印加電圧手段は、陽極および陰極の間に電圧を印加する。 Patent Document 1 discloses a gel actuator that includes an actuator element and an applied voltage means. The actuator element includes a gel sheet made of a dielectric material that undergoes creep deformation when a voltage is applied, and a mesh-like anode and a foil-like cathode arranged to sandwich the gel sheet in the thickness direction. The applied voltage means applies a voltage between the anode and the cathode.
 特許文献1のゲルアクチュエータは、陽極および陰極間に電圧を印加すると、メッシュ状の陽極の凹部にゲルシートが引き込まれ、全体として厚さ方向に収縮し、陽極および陰極間の印加電圧を解除すると、収縮していたゲルシートが元の状態に復帰する。 In the gel actuator of Patent Document 1, when a voltage is applied between the anode and the cathode, the gel sheet is drawn into the recess of the mesh-like anode, and the gel sheet contracts as a whole in the thickness direction, and when the voltage applied between the anode and the cathode is released, The contracted gel sheet returns to its original state.
特開2015-115992号公報Japanese Patent Application Publication No. 2015-115992
 特許文献1の誘電アクチュエータでは、ゲルシートに粘着性があるため、印加電圧を解除する際、メッシュ状の陽極にゲルシートの一部が張り付き、収縮および復帰による厚さ方向の変位が不安定になる場合がある。 In the dielectric actuator of Patent Document 1, since the gel sheet has adhesive properties, when the applied voltage is released, a part of the gel sheet sticks to the mesh-like anode, and displacement in the thickness direction due to contraction and recovery becomes unstable. There is.
 本発明は、ゲルアクチュエータの変位を安定させることができるゲルアクチュエータの制御方法、および、ゲルアクチュエータの制御装置を提供することを目的とする。 An object of the present invention is to provide a gel actuator control method and a gel actuator control device that can stabilize the displacement of the gel actuator.
 本発明の一態様の制御方法は、
 空隙を有する第1電極層と、前記第1電極層に対向配置された第2電極層と、前記第1電極層と前記第2電極層との間に設けられたゲルシート層と、を有するゲルアクチュエータの制御方法であって、
 前記第1電極層側が正となるように、かつ、交流振幅の1/2未満となるDCオフセットした交流電圧を印加する。
A control method according to one embodiment of the present invention includes:
A gel comprising a first electrode layer having a void, a second electrode layer facing the first electrode layer, and a gel sheet layer provided between the first electrode layer and the second electrode layer. A method for controlling an actuator, the method comprising:
An AC voltage with a DC offset of less than 1/2 of the AC amplitude is applied so that the first electrode layer side is positive.
 本発明の一態様の制御装置は、
 空隙を有する第1電極層と、前記第1電極層に対向配置された第2電極層と、前記第1電極層と前記第2電極層との間に設けられたゲルシート層と、を有するゲルアクチュエータに印加される電圧を制御可能なプロセッサを備え、
 前記プロセッサが、
 前記第1電極層側が正となるように、かつ、交流振幅の1/2未満となるDCオフセットした交流電圧を印加する。
A control device according to one embodiment of the present invention includes:
A gel comprising a first electrode layer having a void, a second electrode layer facing the first electrode layer, and a gel sheet layer provided between the first electrode layer and the second electrode layer. Equipped with a processor that can control the voltage applied to the actuator,
The processor,
An AC voltage with a DC offset of less than 1/2 of the AC amplitude is applied so that the first electrode layer side is positive.
 前記方法および前記制御装置によれば、第1電極層側が負側となる際に第1電極層へのゲルシート層の貼り付きを抑制できる。 According to the method and the control device, sticking of the gel sheet layer to the first electrode layer can be suppressed when the first electrode layer side becomes the negative side.
本発明の一実施形態の制御装置を備えるシステムのブロック図。FIG. 1 is a block diagram of a system including a control device according to an embodiment of the present invention. 図1のII-II線に沿った断面図。A sectional view taken along the II-II line in FIG. 1. 図2の断面図の拡大図。FIG. 3 is an enlarged view of the cross-sectional view of FIG. 2; 図1の制御装置で実施されるアクチュエータの制御方法の一例を説明するためのフローチャート。2 is a flowchart for explaining an example of an actuator control method performed by the control device of FIG. 1. FIG. 実施例のアクチュエータに印加される電圧の波形を示す図。FIG. 3 is a diagram showing a waveform of a voltage applied to an actuator in an example. 比較例のアクチュエータに印加される電圧の波形を示す図。FIG. 7 is a diagram showing a waveform of a voltage applied to an actuator of a comparative example. 動作開始直後のアクチュエータの変位量と、動作開始から1分後のゲルアクチュエータ10の変位量とを測定した結果を示す第1の図。The first diagram showing the results of measuring the amount of displacement of the actuator immediately after the start of the operation and the amount of displacement of the gel actuator 10 one minute after the start of the operation. 動作開始直後のアクチュエータの変位量と、動作開始から1分後のゲルアクチュエータ10の変位量とを測定した結果を示す第2の図。The second diagram showing the results of measuring the amount of displacement of the actuator immediately after the start of the operation and the amount of displacement of the gel actuator 10 one minute after the start of the operation. 動作開始直後のアクチュエータの変位量と、動作開始から1分後のゲルアクチュエータ10の変位量とを測定した結果を示す第3の図。The third diagram showing the results of measuring the amount of displacement of the actuator immediately after the start of the operation and the amount of displacement of the gel actuator 10 one minute after the start of the operation. 動作開始直後のアクチュエータの変位量と、動作開始から1分後のゲルアクチュエータ10の変位量とを測定した結果を示す第4の図。The fourth diagram showing the results of measuring the amount of displacement of the actuator immediately after the start of the operation and the amount of displacement of the gel actuator 10 one minute after the start of the operation.
 本発明の第1態様の制御方法は、
 空隙を有する第1電極層と、前記第1電極層に対向配置された第2電極層と、前記第1電極層と前記第2電極層との間に設けられたゲルシート層と、を有するゲルアクチュエータの制御方法であって、
 前記第1電極層側が正となるように、かつ、交流振幅の1/2未満となるDCオフセットした交流電圧を印加する。
The control method of the first aspect of the present invention includes:
A gel comprising a first electrode layer having a void, a second electrode layer facing the first electrode layer, and a gel sheet layer provided between the first electrode layer and the second electrode layer. A method for controlling an actuator, the method comprising:
An AC voltage with a DC offset of less than 1/2 of the AC amplitude is applied so that the first electrode layer side is positive.
 第1態様の制御方法によれば、第1電極層側が負側となる際に第1電極層へのゲルシート層の貼り付きを抑制できる。 According to the control method of the first aspect, sticking of the gel sheet layer to the first electrode layer can be suppressed when the first electrode layer side becomes the negative side.
 本発明の第2態様の制御方法は、第1態様の制御方法において、
 前記DCオフセットは、DCオフセット/交流振幅≦97.5%である。
The control method according to the second aspect of the present invention includes, in the control method according to the first aspect,
The DC offset is DC offset/AC amplitude≦97.5%.
 第2態様の制御方法によれば、第1電極層側が負側となる際に第1電極層へのゲルシート層の貼り付きをより確実に抑制できる。 According to the control method of the second aspect, sticking of the gel sheet layer to the first electrode layer can be more reliably suppressed when the first electrode layer side becomes the negative side.
 本発明の第3態様の制御方法は、第1態様または第2態様の制御方法において、
 前記DCオフセットは、75%≦DCオフセット/交流振幅≦97.5%である。
A control method according to a third aspect of the present invention includes, in the control method according to the first or second aspect,
The DC offset is 75%≦DC offset/AC amplitude≦97.5%.
 第3態様の制御方法によれば、第1電極層、ゲルシート層および第2電極層の積層方向におけるゲルシートの変位を大きくすることができる。 According to the control method of the third aspect, the displacement of the gel sheet in the lamination direction of the first electrode layer, gel sheet layer, and second electrode layer can be increased.
 本発明の第4態様の制御方法は、第1態様~第3態様のいずれかの制御方法において、
 前記ゲルシート層が、ポリ塩化ビニルゲルシートである。
A control method according to a fourth aspect of the present invention is a control method according to any one of the first to third aspects, comprising:
The gel sheet layer is a polyvinyl chloride gel sheet.
 第4態様の制御方法によれば、第1電極層、ゲルシート層および第2電極層の積層方向におけるゲルシートの変位を大きくすることができる。 According to the control method of the fourth aspect, the displacement of the gel sheet in the lamination direction of the first electrode layer, gel sheet layer, and second electrode layer can be increased.
 本発明の第5態様の制御方法は、第4態様の制御方法において、
 前記ゲルシート層が、ポリ塩化ビニルと可塑剤アジピン酸ジブチルとを含み、
 ポリ塩化ビニルに対する可塑剤アジピン酸ジブチルの重量比が、4以上でかつ8以下である。
A control method according to a fifth aspect of the present invention includes, in a control method according to a fourth aspect,
The gel sheet layer contains polyvinyl chloride and a plasticizer dibutyl adipate,
The weight ratio of the plasticizer dibutyl adipate to polyvinyl chloride is 4 or more and 8 or less.
 第5態様の制御方法によれば、第1電極層側が負側となる際に第1電極層へのゲルシート層の貼り付きをより確実に抑制できる。 According to the control method of the fifth aspect, sticking of the gel sheet layer to the first electrode layer can be more reliably suppressed when the first electrode layer side becomes the negative side.
 本発明の第6態様の制御方法は、第1態様~第5態様のいずれかの制御方法において、
 前記第1電極層は金属メッシュ電極を含み、前記第2電極層は平板電極である。
A control method according to a sixth aspect of the present invention includes, in the control method according to any one of the first to fifth aspects,
The first electrode layer includes a metal mesh electrode, and the second electrode layer is a flat plate electrode.
 第6態様の制御方法によれば、第1電極層、ゲルシート層および第2電極層の積層方向におけるゲルシートの変位を大きくすることができる。 According to the control method of the sixth aspect, the displacement of the gel sheet in the lamination direction of the first electrode layer, gel sheet layer, and second electrode layer can be increased.
 本発明の第7態様の制御方法は、第1態様~第6態様のいずれかの制御方法において、
 前記ゲルアクチュエータが、ゲルスピーカの一部を構成する。
A control method according to a seventh aspect of the present invention is a control method according to any one of the first to sixth aspects, including:
The gel actuator forms part of a gel speaker.
 第7態様の制御方法によれば、例えば、数百Hzの音を出力可能なゲルスピーカを実現できる。 According to the control method of the seventh aspect, for example, a gel speaker capable of outputting sound of several hundred Hz can be realized.
 本発明の第8態様の制御装置は、
 空隙を有する第1電極層と、前記第1電極層に対向配置された第2電極層と、前記第1電極層と前記第2電極層との間に設けられたゲルシート層と、を有するゲルアクチュエータに印加される電圧を制御可能なプロセッサを備え、
 前記プロセッサが、
 前記第1電極層側が正となるように、かつ、交流振幅の1/2未満となるDCオフセットした交流電圧を印加する。
The control device according to the eighth aspect of the present invention includes:
A gel comprising a first electrode layer having a void, a second electrode layer facing the first electrode layer, and a gel sheet layer provided between the first electrode layer and the second electrode layer. Equipped with a processor that can control the voltage applied to the actuator,
The processor,
An AC voltage with a DC offset of less than 1/2 of the AC amplitude is applied so that the first electrode layer side is positive.
 第8態様の制御装置によれば、第1電極層側が負側となる際に第1電極層へのゲルシート層の貼り付きを抑制できる。 According to the control device of the eighth aspect, sticking of the gel sheet layer to the first electrode layer can be suppressed when the first electrode layer side becomes the negative side.
 以下、本開示の実施形態について図面を参照しながら説明する。以下の説明は、本開示を限定するものではなく、本質的に例示に過ぎず、本開示の主旨を逸脱しない範囲で適宜変更が可能である。図面は模式的なものであり、各寸法の比率等は現実のものとは必ずしも合致していない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The following description does not limit the present disclosure, but is essentially just an example, and can be modified as appropriate without departing from the gist of the present disclosure. The drawings are schematic, and the ratio of each dimension does not necessarily match the reality.
 本発明の一実施形態の制御装置40は、図1に示すように、ゲルスピーカ100を駆動させるシステム1の一部を構成している。本実施形態では、システム1は、ゲルアクチュエータ10を備えるゲルスピーカ100と、ゲルアクチュエータ10に接続された高電圧アンプ20と、高電圧アンプ20に接続されたファンクションジェネレータ30と、制御装置40とを備える。 A control device 40 according to an embodiment of the present invention constitutes a part of a system 1 that drives a gel speaker 100, as shown in FIG. In this embodiment, the system 1 includes a gel speaker 100 including a gel actuator 10, a high voltage amplifier 20 connected to the gel actuator 10, a function generator 30 connected to the high voltage amplifier 20, and a control device 40. Be prepared.
 ゲルアクチュエータ10は、図2に示すように、例えばZ方向に沿って、順に積層された第1電極層11、ゲルシート層12および第2電極層13を備えている。本実施形態では、図1に示すように、ゲルアクチュエータ10は、平面視において、略四角形状で、周囲がフレーム14で取り囲まれている。 As shown in FIG. 2, the gel actuator 10 includes a first electrode layer 11, a gel sheet layer 12, and a second electrode layer 13, which are laminated in order, for example, along the Z direction. In this embodiment, as shown in FIG. 1, the gel actuator 10 has a substantially rectangular shape when viewed from above, and is surrounded by a frame 14.
 第1電極層11は、図3に示すように、ゲルシート層12に対向する開口112が設けられた凹部111を有している。本実施形態では、第1電極層11は、金属メッシュで構成され、複数の凹部111(空隙の一例)を有している。 As shown in FIG. 3, the first electrode layer 11 has a recess 111 provided with an opening 112 facing the gel sheet layer 12. In this embodiment, the first electrode layer 11 is made of a metal mesh and has a plurality of recesses 111 (an example of voids).
 ゲルシート層12は、電圧を印加することで厚さ方向(言い換えると、第1電極層11、ゲルシート層12および第2電極層13の積層方向Z)に変形する材料で構成されている。電圧を印加することで積層方向に変形する材料には、例えば、ポリ塩化ビニル(PVC)が含まれる。この場合、例えば、PVCに可塑剤を混合して、ゲルシート層12を形成する。 The gel sheet layer 12 is made of a material that deforms in the thickness direction (in other words, in the stacking direction Z of the first electrode layer 11, gel sheet layer 12, and second electrode layer 13) by applying a voltage. Materials that deform in the stacking direction by applying a voltage include, for example, polyvinyl chloride (PVC). In this case, for example, the gel sheet layer 12 is formed by mixing PVC with a plasticizer.
 可塑剤には、ジメチルアセトアミド(DMA)、ジエタノールアミン(DEA)、アジピン酸ジブチル(DBA)、アジピン酸ジオクチル(DOA)、フタル酸ジメチル(DMP)、フタル酸ジブチル(DBP)、フタル酸ジオクチル(DOP)、フタル酸ビス(DEHP)、アジピン酸ジメチル(DMA)等が含まれる。 Plasticizers include dimethylacetamide (DMA), diethanolamine (DEA), dibutyl adipate (DBA), dioctyl adipate (DOA), dimethyl phthalate (DMP), dibutyl phthalate (DBP), and dioctyl phthalate (DOP). , bisphthalate (DEHP), dimethyl adipate (DMA), etc.
 可塑剤としてDBAを用いる場合、例えば、ポリ塩化ビニルに対する可塑剤アジピン酸ジブチルの重量比が、4以上でかつ8以下になるように、PVCおよびDBAを混合する。この場合、例えば、溶剤としてテトラヒドロフラン(THF)を用い、PVC:THF=1:24になるようにPVCおよびTHFを混合して、原料溶液を作成する。 When using DBA as a plasticizer, for example, PVC and DBA are mixed such that the weight ratio of the plasticizer dibutyl adipate to polyvinyl chloride is 4 or more and 8 or less. In this case, for example, a raw material solution is created by using tetrahydrofuran (THF) as a solvent and mixing PVC and THF so that PVC:THF=1:24.
 第2電極層13は、例えば、平板電極であり、ゲルシート層12に対向する平面131を有している。 The second electrode layer 13 is, for example, a flat plate electrode, and has a flat surface 131 facing the gel sheet layer 12.
 高電圧アンプ20は、図1に示すように、配線50を介して、ゲルアクチュエータ10の第1電極層11および第2電極層13に接続されている。高電圧アンプ20は、ファンクションジェネレータ30から出力された交流電圧信号を増幅して、ゲルアクチュエータ10に出力する。 As shown in FIG. 1, the high voltage amplifier 20 is connected to the first electrode layer 11 and the second electrode layer 13 of the gel actuator 10 via wiring 50. High voltage amplifier 20 amplifies the AC voltage signal output from function generator 30 and outputs it to gel actuator 10 .
 ファンクションジェネレータ30は、制御装置40から送信される制御信号に基づいて、任意の周波数および波形を有する交流電圧信号を生成し、高電圧アンプ20に出力する。 The function generator 30 generates an AC voltage signal having an arbitrary frequency and waveform based on the control signal transmitted from the control device 40 and outputs it to the high voltage amplifier 20.
 制御装置40は、プロセッサ41、記憶部42および通信部43を含む。プロセッサ41は、CPU、MPU、GPU、DSP、FPGA、ASIC等を含み、高電圧アンプ20およびファンクションジェネレータ30を介して、ゲルアクチュエータ10に印加される電圧を制御する。記憶部42は、例えば、内部記録媒体または外部記録媒体で構成されている。内部記録媒体は、不揮発メモリ等を含む。外部記録媒体は、ハードディスク(HDD)、ソリッドステートドライブ(SSD)、光ディスク装置等を含む。通信部43は、例えば、高電圧アンプ20、ファンクションジェネレータ30、サーバ(図示せず)等の外部装置との間で信号および/またはデータの送受信を行うための通信回路または通信モジュールで構成されている。 The control device 40 includes a processor 41, a storage section 42, and a communication section 43. Processor 41 includes a CPU, MPU, GPU, DSP, FPGA, ASIC, etc., and controls the voltage applied to gel actuator 10 via high voltage amplifier 20 and function generator 30. The storage unit 42 includes, for example, an internal recording medium or an external recording medium. The internal recording medium includes nonvolatile memory and the like. External recording media include hard disks (HDD), solid state drives (SSD), optical disk devices, and the like. The communication unit 43 includes, for example, a communication circuit or a communication module for transmitting and receiving signals and/or data to and from external devices such as the high voltage amplifier 20, the function generator 30, and a server (not shown). There is.
 プロセッサ41は、ゲルアクチュエータ10に印加される交流電圧を制御可能に構成されている。ゲルアクチュエータ10には、第1電極層11側が正となり、かつ、交流振幅の1/2未満となるDCオフセットした交流電圧が印加される。 The processor 41 is configured to be able to control the AC voltage applied to the gel actuator 10. An alternating current voltage is applied to the gel actuator 10, with the first electrode layer 11 side being positive and having a DC offset of less than 1/2 of the alternating current amplitude.
 図4を参照して、ゲルアクチュエータ10の制御方法の一例を説明する。図4の制御方法は、例えば、プロセッサ41が所定のプログラムを実行することで実施される。 An example of a method for controlling the gel actuator 10 will be described with reference to FIG. 4. The control method of FIG. 4 is implemented, for example, by the processor 41 executing a predetermined program.
 図4に示すように、プロセッサ41は、第1電極層11側が正となり、かつ、交流振幅の1/2未満となるDCオフセットした交流電圧をゲルアクチュエータ10に印加する(ステップS1)。交流電圧が印加されると、プロセッサ41は、ゲルアクチュエータ10の制御処理を終了するか否かを判定する(ステップS2)。ステップS2は、ゲルアクチュエータ10の制御処理を終了すると判定されるまで繰り返される。 As shown in FIG. 4, the processor 41 applies to the gel actuator 10 an AC voltage that is positive on the first electrode layer 11 side and has a DC offset that is less than 1/2 of the AC amplitude (step S1). When the AC voltage is applied, the processor 41 determines whether to end the control process for the gel actuator 10 (step S2). Step S2 is repeated until it is determined that the control process for the gel actuator 10 is finished.
 ゲルアクチュエータ10の制御処理を終了すると判定されると、プロセッサ41は、ゲルアクチュエータ10への交流電圧の印加を停止する(ステップS3)。これにより、ゲルアクチュエータ10の制御処理が終了する。 When it is determined that the control process for the gel actuator 10 is finished, the processor 41 stops applying the AC voltage to the gel actuator 10 (step S3). This completes the control process for the gel actuator 10.
 例えば、ゲルシート層12が可塑剤を含んでいる場合、可塑剤がマイナスに帯電し、プラスの電位に引き寄せられる。第1電極層11が正の電位である場合、可塑剤が第1電極層11に引き寄せられ、第1電極層11側のゲルシート層12が変形して凹部111内に入り込む。この状態で第1電極層11が負の電位になると、可塑剤が正の電位となった第2電極層13に引き寄せられるため、第1電極層11側のゲルシート層12の変形を維持できなくなる。その結果、ゲルシート層12の第1電極層11への貼り付き状態が解消される。 For example, when the gel sheet layer 12 contains a plasticizer, the plasticizer is negatively charged and attracted to a positive potential. When the first electrode layer 11 has a positive potential, the plasticizer is attracted to the first electrode layer 11 , and the gel sheet layer 12 on the first electrode layer 11 side is deformed and enters the recess 111 . If the first electrode layer 11 becomes a negative potential in this state, the plasticizer will be attracted to the second electrode layer 13 that has a positive potential, making it impossible to maintain the deformation of the gel sheet layer 12 on the first electrode layer 11 side. . As a result, the sticking state of the gel sheet layer 12 to the first electrode layer 11 is eliminated.
 ゲルアクチュエータ10に電圧を印加する方法は、次のような効果を発揮できる。 The method of applying voltage to the gel actuator 10 can exhibit the following effects.
 ゲルアクチュエータ10の制御方法であって、ゲルアクチュエータ10が、空隙を有する第1電極層11と、第1電極層11に対向配置された第2電極層13と、第1電極層11と第2電極層13との間に設けられたゲルシート層12とを備える。第1電極層11側が正となるように、かつ、交流振幅の1/2未満となるDCオフセットした交流電圧を印加する。このような構成により、第1電極層11側が負側となる際に第1電極層11へのゲルシート層12の貼り付きを抑制できる。 A method for controlling a gel actuator 10, wherein the gel actuator 10 includes a first electrode layer 11 having a gap, a second electrode layer 13 disposed opposite to the first electrode layer 11, and a first electrode layer 11 and a second electrode layer 13. The gel sheet layer 12 is provided between the electrode layer 13 and the gel sheet layer 12 . An AC voltage with a DC offset of less than 1/2 of the AC amplitude is applied so that the first electrode layer 11 side is positive. With such a configuration, sticking of the gel sheet layer 12 to the first electrode layer 11 can be suppressed when the first electrode layer 11 side becomes the negative side.
 ゲルシート層12が、ポリ塩化ビニルゲルシートである。このような構成により、第1電極層11、ゲルシート層12および第2電極層13の積層方向におけるゲルシート層12の変位を大きくすることができる。 The gel sheet layer 12 is a polyvinyl chloride gel sheet. With such a configuration, the displacement of the gel sheet layer 12 in the lamination direction of the first electrode layer 11, the gel sheet layer 12, and the second electrode layer 13 can be increased.
 ゲルシート層12が、ポリ塩化ビニルとアジピン酸ジブチルとを含み、ポリ塩化ビニルに対するアジピン酸ジブチルの重量比が、4以上でかつ8以下である。このような構成により、第1電極層11側が負側となる際に第1電極層11へのゲルシート層12の貼り付きをより確実に抑制できる。 The gel sheet layer 12 contains polyvinyl chloride and dibutyl adipate, and the weight ratio of dibutyl adipate to polyvinyl chloride is 4 or more and 8 or less. With such a configuration, sticking of the gel sheet layer 12 to the first electrode layer 11 can be more reliably suppressed when the first electrode layer 11 side becomes the negative side.
 第1電極層11が、金属メッシュを含み、第2電極層13が平板電極である。このような構成により、第1電極層11、ゲルシート層12および第2電極層13の積層方向におけるゲルシート層12の変位を大きくすることができる。 The first electrode layer 11 includes a metal mesh, and the second electrode layer 13 is a flat plate electrode. With such a configuration, the displacement of the gel sheet layer 12 in the lamination direction of the first electrode layer 11, the gel sheet layer 12, and the second electrode layer 13 can be increased.
 ゲルアクチュエータ10が、ゲルスピーカ100の一部を構成する。このような構成により、例えば、数百Hzの音を出力可能なゲルスピーカを実現できる。 The gel actuator 10 constitutes a part of the gel speaker 100. With such a configuration, for example, a gel speaker capable of outputting sound of several hundred Hz can be realized.
 制御装置40は、次のような効果を発揮できる。 The control device 40 can exhibit the following effects.
 制御装置40が、ゲルアクチュエータ10に印加される電圧を制御可能なプロセッサ41を備える。ゲルアクチュエータ10は、空隙を有する第1電極層11と、第1電極層11に対向配置された第2電極層13と、第1電極層11と第2電極層13との間に設けられたゲルシート層12とを備える。プロセッサ41が、第1電極層11側が正となるように、かつ、交流振幅の1/2未満となるDCオフセットした交流電圧を印加する。このような構成により、第1電極層11側が負側となる際に第1電極層11へのゲルシート層12の貼り付きを抑制できる。 The control device 40 includes a processor 41 that can control the voltage applied to the gel actuator 10. The gel actuator 10 includes a first electrode layer 11 having a void, a second electrode layer 13 disposed opposite to the first electrode layer 11, and a layer provided between the first electrode layer 11 and the second electrode layer 13. A gel sheet layer 12 is provided. The processor 41 applies an AC voltage such that the first electrode layer 11 side is positive and has a DC offset of less than 1/2 of the AC amplitude. With such a configuration, sticking of the gel sheet layer 12 to the first electrode layer 11 can be suppressed when the first electrode layer 11 side becomes the negative side.
 ゲルアクチュエータ10に電圧を印加する方法および制御装置40は、次のように構成することもできる。 The method of applying voltage to the gel actuator 10 and the control device 40 can also be configured as follows.
 第1電極層11は、金属メッシュに限らず、空隙(例えば、ゲルシート層12に対向する開口が設けられた凹部)を有する任意の導電性材料で構成してもよい。 The first electrode layer 11 is not limited to a metal mesh, and may be made of any conductive material having voids (for example, a recessed portion with an opening facing the gel sheet layer 12).
 ゲルシート層12は、ポリ塩化ビニルに限らず、例えば、ポリメタクリル酸メチル、ポリウレタン、ポリスチレン、ポリ酢酸ビニル、ナイロン6、ポリビニルアルコール、ポリカーボネイト、ポリエチレンテレフタレート、ポリアクリロニトリルおよびシリコーンゴムのいずれかを用いてゲルシート層12を形成してもよい。 The gel sheet layer 12 is not limited to polyvinyl chloride, but is made of, for example, polymethyl methacrylate, polyurethane, polystyrene, polyvinyl acetate, nylon 6, polyvinyl alcohol, polycarbonate, polyethylene terephthalate, polyacrylonitrile, or silicone rubber. A layer 12 may also be formed.
 第2電極層13は、平板電極に限らず、ゲルシート層12に対する平面を有する任意の導電性材料で構成してもよい。 The second electrode layer 13 is not limited to a flat plate electrode, and may be made of any conductive material that has a flat surface facing the gel sheet layer 12.
 DCオフセット/交流振幅が、75.0%以上、97.5%以下であるように構成してもよい。このように構成することにより、第1電極層11、ゲルシート層12および第2電極層13の積層方向におけるゲルシート層12の変位を大きくすることができる。 The DC offset/AC amplitude may be configured to be 75.0% or more and 97.5% or less. With this configuration, the displacement of the gel sheet layer 12 in the lamination direction of the first electrode layer 11, gel sheet layer 12, and second electrode layer 13 can be increased.
 本発明の方法は、ユーザにより入力された指令等に基づいて制御装置40により自動的に実行される場合に限らず、例えば、ユーザが高電圧アンプ20およびファンクションジェネレータ30を手動で操作することにより他動的に実行されてもよい。 The method of the present invention is not limited to being automatically executed by the control device 40 based on a command or the like input by the user. It may also be executed passively.
 以下に実施例を示してさらに詳細に説明するが、本発明は実施例により何ら限定されるものではない。 The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to the Examples in any way.
 図2のゲルアクチュエータ10を動作させて、動作開始直後のゲルアクチュエータ10の変位量と、動作開始から1分後のゲルアクチュエータ10の変位量とを測定した。ゲルアクチュエータ10として、交流振幅の1/2未満となるDCオフセットした交流電圧を印加するゲルアクチュエータ10(実施例1~14)と、交流振幅の1/2となるDCオフセットした交流電圧を印加するゲルアクチュエータ10(比較例1~4)とを用いた。実施例1~14のゲルアクチュエータ10に印加される交流電圧の波形を図5に示し、比較例1~4のゲルアクチュエータ10に印加される交流電圧の波形を図6に示す。 The gel actuator 10 in FIG. 2 was operated, and the amount of displacement of the gel actuator 10 immediately after the start of the operation and the amount of displacement of the gel actuator 10 one minute after the start of the operation were measured. As the gel actuator 10, the gel actuator 10 (Examples 1 to 14) applies an AC voltage with a DC offset of less than 1/2 of the AC amplitude, and the gel actuator 10 applies an AC voltage with a DC offset of 1/2 of the AC amplitude. Gel actuator 10 (Comparative Examples 1 to 4) was used. FIG. 5 shows the waveforms of the AC voltages applied to the gel actuators 10 of Examples 1 to 14, and FIG. 6 shows the waveforms of the AC voltages applied to the gel actuators 10 of Comparative Examples 1 to 4.
 本実施例で使用したゲルアクチュエータ10を以下に示す。
  ・第1電極層11:線径0.4mm、目開き1mm×1mmのステンレスメッシュ
  ・ゲルシート層12:厚さが1mmでPVC/DBA=4~8のPVCゲルシート
  ・第2電極層13:アルミの平板
The gel actuator 10 used in this example is shown below.
・First electrode layer 11: Stainless steel mesh with a wire diameter of 0.4 mm and an opening of 1 mm x 1 mm. ・Gel sheet layer 12: PVC gel sheet with a thickness of 1 mm and PVC/DBA = 4 to 8. ・Second electrode layer 13: Aluminum flat plate
 本実施例で使用した機器を以下に示す。
  ・高電圧アンプ20:松定プレシジョン社製の高速高電圧アンプHAPS-2B200
  ・ファンクションジェネレータ30:キーサイト社製のファンクションジェネレータ33500B
The equipment used in this example is shown below.
・High-voltage amplifier 20: High-speed high-voltage amplifier HAPS-2B200 manufactured by Matsusada Precision Co., Ltd.
・Function generator 30: Keysight function generator 33500B
 本実施例では、ファンクションジェネレータ30で波形を生成し、高速高電圧アンプ20で200倍に増幅して、入力波形として、100Hz、800Vppの正弦波に0~400VのDCオフセットを重畳した波形を生成した。800Vppにバイアス電圧400Vを印加すると、第1電極層11および第2電極層13間の電位差は0~800Vとなる。 In this embodiment, a waveform is generated by the function generator 30 and amplified 200 times by the high-speed high-voltage amplifier 20 to generate a waveform in which a DC offset of 0 to 400 V is superimposed on a 100 Hz, 800 Vpp sine wave as an input waveform. did. When a bias voltage of 400V is applied to 800Vpp, the potential difference between the first electrode layer 11 and the second electrode layer 13 becomes 0 to 800V.
 図7~図10に測定結果を示す。図7~図10において、印加される交流電圧の最大振幅(peak to peak)の1/2を「交流振幅」としている。DCオフセットは0~400Vの任意の値に設定できる。「変位幅(初期)」は、動作開始3秒後のゲルアクチュエータ10の積層方向Zにおける変位量を示し、「変位幅(1分後)」は、動作開始から1分経過したときのゲルアクチュエータ10の積層方向Zにおける変位量を示す。 The measurement results are shown in Figures 7 to 10. In FIGS. 7 to 10, 1/2 of the maximum amplitude (peak to peak) of the applied AC voltage is defined as "AC amplitude". The DC offset can be set to any value between 0 and 400V. "Displacement width (initial)" indicates the amount of displacement of the gel actuator 10 in the stacking direction Z 3 seconds after the start of operation, and "Displacement width (1 minute later)" indicates the amount of displacement of the gel actuator 10 when 1 minute has passed since the start of operation. The amount of displacement in the stacking direction Z of No. 10 is shown.
 図7~図10に示すように、実施例1~14では、動作開始直後の変位幅と1分後の変位幅との間に差がなく、第1電極層11の凹部111へのゲルシート層12の貼り付きは確認できなかった。比較例1~4では、いずれも、動作開始直後はゲルアクチュエータ10が変位していたが、測定開始1分後には、ゲルシート層12が第1電極層11に貼り付いて変位幅がほぼゼロとなり、動作しなくなった。つまり、第1電極層11側が正となるように、かつ、交流振幅の1/2未満となるDCオフセットした交流電圧を印加することで、第1電極層11側が負側となる際に第1電極層11へのゲルシート層12の貼り付きを抑制できることが分かった。 As shown in FIGS. 7 to 10, in Examples 1 to 14, there is no difference between the displacement width immediately after the start of operation and the displacement width after 1 minute, and the gel sheet layer in the recess 111 of the first electrode layer 11 No. 12 sticking could be confirmed. In Comparative Examples 1 to 4, the gel actuator 10 was displaced immediately after the start of the operation, but one minute after the start of the measurement, the gel sheet layer 12 stuck to the first electrode layer 11 and the displacement width became almost zero. , stopped working. In other words, by applying an AC voltage with a DC offset that is less than 1/2 of the AC amplitude so that the first electrode layer 11 side is positive, when the first electrode layer 11 side becomes negative, the first It was found that sticking of the gel sheet layer 12 to the electrode layer 11 could be suppressed.
 図7~図10の結果から、DCオフセット/交流振幅が、97.5%以下であれば、特に、DCオフセット/交流振幅が、97.5%以下でかつ75.0%以上であれば、第1電極層11側が負側となる際に第1電極層11へのゲルシート層12の貼り付きをより確実に抑制できることが分かった。 From the results of FIGS. 7 to 10, if the DC offset/AC amplitude is 97.5% or less, especially if the DC offset/AC amplitude is 97.5% or less and 75.0% or more, It was found that when the first electrode layer 11 side becomes the negative side, sticking of the gel sheet layer 12 to the first electrode layer 11 can be suppressed more reliably.
 30cm×30cmの平面視略正方形のゲルスピーカ100を作製し、実施例9の条件で動作させた。ゲルスピーカ100の直上で50cm離れた位置に騒音計(小野測器製LA1441)を配置すると、100Hzで10dBAの音圧レベルが測定された。 A gel speaker 100 having a substantially square shape in a plan view measuring 30 cm x 30 cm was manufactured and operated under the conditions of Example 9. When a sound level meter (LA1441 manufactured by Ono Sokki) was placed directly above the gel speaker 100 at a distance of 50 cm, a sound pressure level of 10 dBA at 100 Hz was measured.
 前記様々な実施形態または変形例のうちの任意の実施形態または変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ、または、実施例同士の組み合わせ、または、実施形態と実施例との組み合わせが可能であると共に、異なる実施形態または実施例の中の特徴同士の組み合わせも可能である。 By appropriately combining any of the various embodiments or modifications described above, the effects of each can be achieved. In addition, it is possible to combine embodiments, or examples, or combinations of embodiments and examples, and also combinations of features in different embodiments or examples are possible.
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described with reference to preferred embodiments and with reference to the accompanying drawings, various variations and modifications will become apparent to those skilled in the art. It is to be understood that such variations and modifications are included insofar as they do not depart from the scope of the invention according to the appended claims.
1 システム
10 ゲルアクチュエータ
11 第1電極層
111 凹部
112 開口
12 ゲルシート層
13 第2電極層
131 平面
14 フレーム
20 高電圧アンプ
30 ファンクションジェネレータ
40 制御装置
41 プロセッサ
42 記憶部
43 通信部
50 配線
100 ゲルスピーカ
1 System 10 Gel actuator 11 First electrode layer 111 Recess 112 Opening 12 Gel sheet layer 13 Second electrode layer 131 Plane 14 Frame 20 High voltage amplifier 30 Function generator 40 Control device 41 Processor 42 Storage section 43 Communication section 50 Wiring 100 Gel speaker

Claims (8)

  1.  空隙を有する第1電極層と、前記第1電極層に対向配置された第2電極層と、前記第1電極層と前記第2電極層との間に設けられたゲルシート層と、を有するゲルアクチュエータの制御方法であって、
     前記第1電極層側が正となるように、かつ、交流振幅の1/2未満となるDCオフセットした交流電圧を印加するゲルアクチュエータの制御方法。
    A gel comprising a first electrode layer having a void, a second electrode layer facing the first electrode layer, and a gel sheet layer provided between the first electrode layer and the second electrode layer. A method for controlling an actuator, the method comprising:
    A method for controlling a gel actuator, comprising applying an AC voltage with a DC offset of less than 1/2 of the AC amplitude so that the first electrode layer side is positive.
  2.  前記DCオフセットは、DCオフセット/交流振幅≦97.5%である、請求項1に記載の制御方法。 The control method according to claim 1, wherein the DC offset is DC offset/AC amplitude≦97.5%.
  3.  前記DCオフセットは、75%≦DCオフセット/交流振幅≦97.5%である、請求項1または2に記載の制御方法。 The control method according to claim 1 or 2, wherein the DC offset is 75%≦DC offset/AC amplitude≦97.5%.
  4.  前記ゲルシート層が、ポリ塩化ビニルゲルシートである、請求項1~3のいずれかに記載の制御方法。 The control method according to any one of claims 1 to 3, wherein the gel sheet layer is a polyvinyl chloride gel sheet.
  5.  前記ゲルシート層が、ポリ塩化ビニルとアジピン酸ジブチルとを含み、
     ポリ塩化ビニルに対するアジピン酸ジブチルの重量比が、4以上でかつ8以下である、請求項4に記載の制御方法。
    The gel sheet layer contains polyvinyl chloride and dibutyl adipate,
    5. The control method according to claim 4, wherein the weight ratio of dibutyl adipate to polyvinyl chloride is 4 or more and 8 or less.
  6.  前記第1電極層は金属メッシュ電極を含み、前記第2電極層は平板電極である、請求項1~5のいずれかに記載の制御方法。 The control method according to any one of claims 1 to 5, wherein the first electrode layer includes a metal mesh electrode, and the second electrode layer is a flat plate electrode.
  7.  前記ゲルアクチュエータが、ゲルスピーカの一部を構成する、請求項1~6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the gel actuator forms part of a gel speaker.
  8.  空隙を有する第1電極層と、前記第1電極層に対向配置された第2電極層と、前記第1電極層と前記第2電極層との間に設けられたゲルシート層と、を有するゲルアクチュエータに印加される電圧を制御可能なプロセッサを備え、
     前記プロセッサが、
     前記第1電極層側が正となるように、かつ、交流振幅の1/2未満となるDCオフセットした交流電圧を印加するゲルアクチュエータの制御装置。
    A gel comprising a first electrode layer having a void, a second electrode layer facing the first electrode layer, and a gel sheet layer provided between the first electrode layer and the second electrode layer. Equipped with a processor that can control the voltage applied to the actuator,
    The processor,
    A control device for a gel actuator that applies an AC voltage with a DC offset of less than 1/2 of an AC amplitude so that the first electrode layer side is positive.
PCT/JP2023/017287 2022-08-17 2023-05-08 Control method for gel actuator and control device for gel actuator WO2024038646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-130160 2022-08-17
JP2022130160 2022-08-17

Publications (1)

Publication Number Publication Date
WO2024038646A1 true WO2024038646A1 (en) 2024-02-22

Family

ID=89941698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017287 WO2024038646A1 (en) 2022-08-17 2023-05-08 Control method for gel actuator and control device for gel actuator

Country Status (1)

Country Link
WO (1) WO2024038646A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141380A (en) * 2006-11-30 2008-06-19 Hyper Drive Corp Vibration element using electroactive polymer
WO2015050138A1 (en) * 2013-10-01 2015-04-09 住友理工株式会社 Transport apparatus
JP2020054131A (en) * 2018-09-27 2020-04-02 正毅 千葉 Dielectric elastomer vibration system and power supply device
JP2020122095A (en) * 2019-01-31 2020-08-13 三菱ケミカル株式会社 Actuator and gelatinous substance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141380A (en) * 2006-11-30 2008-06-19 Hyper Drive Corp Vibration element using electroactive polymer
WO2015050138A1 (en) * 2013-10-01 2015-04-09 住友理工株式会社 Transport apparatus
JP2020054131A (en) * 2018-09-27 2020-04-02 正毅 千葉 Dielectric elastomer vibration system and power supply device
JP2020122095A (en) * 2019-01-31 2020-08-13 三菱ケミカル株式会社 Actuator and gelatinous substance

Similar Documents

Publication Publication Date Title
US6343129B1 (en) Elastomeric dielectric polymer film sonic actuator
US7382688B2 (en) Ultrasonic transducer, ultrasonic speaker, and method of controlling the driving of ultrasonic transducer
US20110044476A1 (en) System to generate electrical signals for a loudspeaker
JP4295238B2 (en) Piezoelectric sound generator
US6349141B1 (en) Dual bi-laminate polymer audio transducer
US20140161291A1 (en) Drive control method of electrostatic-type ultrasonic transducer, electrostatic-type ultrasonic transducer, ultrasonic speaker using electrostatic-type ultrasonic transducer, audio signal reproducing method, superdirectional acoustic system, and display
CN110071658B (en) Piezoelectric transducer
US7355322B2 (en) Ultrasonic transducer, ultrasonic speaker and method of driving and controlling ultrasonic transducer
JP7457790B2 (en) Multilayer piezoelectric element and electroacoustic transducer
JP5990627B1 (en) Speaker
EP2863445A1 (en) Method and Apparatus for Electrical Gap Setting for a Piezoelectric Pressure Sensor
US20230026623A1 (en) Laminated piezoelectric element and electroacoustic transducer
EP3858497B1 (en) Dielectric elastomer vibration system and power supply device
WO2024038646A1 (en) Control method for gel actuator and control device for gel actuator
JP6881753B2 (en) Gel actuator
US9883291B2 (en) Portable terminal
US9219222B2 (en) Vibration device and portable terminal employing the same
Arevalo et al. MEMS acoustic pixel
JP2007274341A (en) Electrostatic speaker
US5949741A (en) Dual-section push-pull underwater projector
JP2013013058A (en) Drive circuit and electrostatic type electroacoustic conversion system
Bolzmacher et al. Piezoelectric transducer for low frequency sound generation on surface loudspeakers
EP4274257A1 (en) Piezoelectric transducer
CN113747298A (en) Electrostatic earphone
US20150108871A1 (en) Ultrasonic transducer with dielectric elastomer as active layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854685

Country of ref document: EP

Kind code of ref document: A1