WO2024038632A1 - Shock wave generating device - Google Patents
Shock wave generating device Download PDFInfo
- Publication number
- WO2024038632A1 WO2024038632A1 PCT/JP2023/006517 JP2023006517W WO2024038632A1 WO 2024038632 A1 WO2024038632 A1 WO 2024038632A1 JP 2023006517 W JP2023006517 W JP 2023006517W WO 2024038632 A1 WO2024038632 A1 WO 2024038632A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flame
- combustion
- shock wave
- generation timing
- combustible gas
- Prior art date
Links
- 230000035939 shock Effects 0.000 title claims abstract description 87
- 239000007789 gas Substances 0.000 claims abstract description 144
- 238000001514 detection method Methods 0.000 claims abstract description 101
- 238000002485 combustion reaction Methods 0.000 claims abstract description 79
- 239000000567 combustion gas Substances 0.000 claims abstract description 6
- 238000005474 detonation Methods 0.000 claims description 60
- 238000004200 deflagration Methods 0.000 claims description 28
- 230000003287 optical effect Effects 0.000 claims description 28
- 238000010926 purge Methods 0.000 claims description 21
- 239000000446 fuel Substances 0.000 description 64
- 239000007800 oxidant agent Substances 0.000 description 48
- 239000000428 dust Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 10
- 238000011144 upstream manufacturing Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 238000002309 gasification Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J3/00—Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/08—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/20—Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/24—Preventing development of abnormal or undesired conditions, i.e. safety arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28G—CLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
- F28G7/00—Cleaning by vibration or pressure waves
Definitions
- the present disclosure relates to a shock wave generation device for generating shock waves due to detonation.
- dust contained in exhaust gas adheres to the inner wall surface of the furnace, the outer surface of the heat transfer tube, etc. Dust that adheres to the inner wall surface of the furnace, the outer surface of the heat exchanger tubes, etc. reduces the heat transfer coefficient, worsening the heat recovery efficiency, and acts as a resistance to the flow of exhaust gas, reducing the performance of the furnace. Therefore, it is necessary to periodically remove dust adhering to the inner wall of the furnace and the outer surface of the heat exchanger tubes using a dust removal device.
- IGCC integrated coal gasification combined cycle facilities
- the dust removal device has a shock wave generation device.
- a shock wave generation device generates a shock wave by detonation in which the propagation speed of flame exceeds the speed of sound by burning fuel.
- the dust removal device removes dust using shock waves generated by the shock wave generation device.
- a conventional shock wave generation device there is one described in the following patent documents.
- a conventional shock wave generation device ignites a mixture of fuel and an oxidizer, and when the mixture burns, it generates a shock wave due to a detonation. At this time, depending on the type of combustion, a detonation wave may not be generated, but a deflagration wave may result, and for example, there is a possibility that dust cannot be appropriately removed. Furthermore, the air-fuel mixture may self-ignite before it ignites, causing flashback. Therefore, the shock wave generation device needs to determine whether or not detonation is occurring properly.
- the present disclosure solves the above-mentioned problems, and aims to provide a shock wave generation device that can determine the combustion state of fuel.
- a shock wave generating device of the present disclosure for achieving the above object includes a combustion device in which a gas passage through which combustion gas flows from a base end to a distal end and an opening is provided in the distal end;
- a combustible gas supply device that supplies flammable gas from the base end to the inside, an ignition device that ignites the combustible gas supplied to the combustion device, and detects the timing of flame generation due to combustion of the flammable gas. It includes a flame generation timing detection sensor, and a determination device that determines self-ignition of the combustible gas before ignition by the ignition device based on the detection result of the flame generation timing detection sensor.
- the combustion state of fuel can be determined.
- FIG. 1 is a schematic configuration diagram showing a shock wave generation device according to a first embodiment.
- FIG. 2 is a sectional view showing the mounting structure of the optical sensor.
- FIG. 3 is a sectional view showing a modification of the optical sensor mounting structure.
- FIG. 4 is a time chart for explaining a method of detecting detonation, deflagration, and flashback.
- FIG. 5 is a flowchart illustrating a method for determining the combustion state of fuel by the shock wave generating device.
- FIG. 6 is a schematic diagram for explaining the intensity of detonation in the shock wave generation device of the second embodiment.
- FIG. 7 is a schematic configuration diagram showing a shock wave generation device according to the third embodiment.
- FIG. 8 is a time chart for explaining a method for detecting detonation, deflagration, and flashback.
- FIG. 1 is a schematic configuration diagram showing a shock wave generation device according to a first embodiment.
- the shock wave generation device 10 of the first embodiment is applied to the inner wall surface of a furnace such as a garbage incinerator, a combined coal gasification combined cycle facility, a power generation boiler (hereinafter referred to as a boiler), and a heat exchanger tube. It is applied to dust removal equipment that removes dust that adheres to external surfaces.
- a furnace consists of a wall that surrounds the combustion field of the boiler, and the dust removal device removes dust that adheres to the inner wall surface of the wall that continues to the upper and lower parts of the furnace. be able to.
- the dust removal device supplies flammable gas into the furnace through a pipe communicating with the inside of the furnace, and ignites the flammable gas to generate a shock wave S due to detonation. That is, when combustible gas burns, a detonation wave, which is a combination of flame and shock wave, propagates, and when the combustible gas runs out, it propagates as a shock wave.
- the dust removal device blows away adhering dust by applying a shock wave S caused by the detonation to the inner wall of the furnace and the outer surface of the heat exchanger tube.
- the shock wave generation device 10 is installed in the dust removal device, and generates a shock wave S by detonation caused by combustion of fuel when the dust removal device is activated while the boiler is stopped.
- the shock wave generation device 10 includes a combustion device 11, a combustible gas supply device 12, an ignition device 13, a flame generation timing detection sensor 14, a control device (determination device) 15, and an alarm device 16.
- the combustion device 11 has a gas passage 21 through which combustion gas flows from the base end to the distal end.
- Combustion device 11 has a detonator 22 and a combustor 23.
- the gas passage 21 includes a first passage 24 provided inside the detonator 22 and a second passage 25 provided inside the combustor 23.
- the detonator 22 has a cylindrical shape, with a proximal end 22a closed and a distal end 22b open.
- the detonator 22 is provided with a first passage 24 having a predetermined length inside.
- the combustible gas supply device 12 is connected to the base end 22a of the detonator 22.
- the combustor 23 has a cylindrical shape, a base end 23a is connected to and communicates with a tip 22b of the detonator 22, and the tip 23b is open to form an opening 23c.
- the gas passage 21 of the detonator 22 and the second passage 25 of the combustor 23 are concentric.
- the gas passage 21 of the detonator 22 and the second passage 25 of the combustor 23 may not be concentric and may have different shapes.
- the combustor 23 is provided with a second passage 25 having a predetermined length inside.
- the second passage 25 of the combustor 23 has a larger diameter than the first passage 24 of the squib 22 .
- the second passage 25 has the same diameter from the base end 23a to the distal end 22b, but the distal end 22b may have a larger diameter than the base end 23a.
- the combustor 23 has an opening 23c at a tip 23b communicating with an internal space 103 defined by a furnace wall 102 of the furnace 101.
- the combustible gas supply device 12 includes a fuel supply section 31 and an oxidizer supply section 41.
- the fuel supply section 31 supplies fuel F.
- the oxidizing agent supply unit 41 supplies oxygen or air as the oxidizing agent A.
- the combustible gas supply device 12 supplies a mixture of the fuel F supplied by the fuel supply unit 31 and the oxidizer A supplied by the oxidizer supply unit 41 to the inside of the combustion device 11 from the base end of the combustion device 11 as a combustible gas M. supply to.
- the fuel supply section 31 includes a fuel supply path 32, a fuel cylinder 33, a pressure reducing valve 34, a mass flow controller 35, a safety device 36, a fuel supply valve 37, and a check valve 38.
- a fuel cylinder 33 is connected to the upstream end of the fuel supply path 32, and a pressure reducing valve 34, a mass flow controller 35, a safety device 36, a fuel supply valve 37, and a check valve 38 are provided toward the downstream side.
- the fuel cylinder 33 stores fuel F.
- the pressure reducing valve 34 reduces the pressure of the fuel F in the fuel cylinder 33 and adjusts the pressure of the supplied fuel F.
- the mass flow controller 35 measures the mass flow rate of the fuel F, compares the measured mass flow rate of the fuel F with a preset value of the fuel F, and controls the flow rate so that the mass flow rate of the fuel F becomes the set value. Adjust the valve opening.
- the safety device 36 prevents backfire.
- the fuel supply valve 37 is an on-off valve, supplies fuel F when opened, and stops supplying fuel F when closed.
- the check valve 38 prevents backflow of the fuel F and combustible gas M to the upstream side.
- the oxidizing agent supply section 41 includes an oxidizing agent supply path 42 , an oxidizing agent cylinder 43 , a pressure reducing valve 44 , a mass flow controller 45 , a safety device 46 , an oxidizing agent supply valve 47 , and a check valve 48 .
- the oxidizing agent supply path 42 has an oxidizing agent cylinder 43 connected to its upstream end, and is provided with a pressure reducing valve 44, a mass flow controller 45, a safety device 46, an oxidizing agent supply valve 47, and a check valve 48 toward the downstream side.
- the oxidizing agent cylinder 43 stores the oxidizing agent A.
- the pressure reducing valve 44 reduces the pressure of the oxidizing agent A in the oxidizing agent cylinder 43 and adjusts the pressure of the oxidizing agent A to be supplied.
- the mass flow controller 45 measures the mass flow rate of the oxidizing agent A, compares the measured mass flow rate of the oxidizing agent A with a preset value of the oxidizing agent A, and the mass flow rate of the oxidizing agent A becomes the set value. Adjust the opening of the flow control valve as follows.
- the safety device 46 prevents backfire.
- the oxidizing agent supply valve 47 is an on-off valve that supplies oxidizing agent A when opened and stops supplying oxidizing agent A when closed.
- the check valve 48 prevents backflow of the oxidizing agent A and the combustible gas M to the upstream side.
- the downstream ends of the fuel supply route 32 and the oxidizer supply route 42 are connected to the upstream end of the combustible gas supply route 52 via a cross joint 51, and the combustible gas supply route 52 has a downstream end connected to the detonator.
- the base end 22a of 22 is connected to the base end 22a.
- the purge gas path 53 has an upstream end connected to a blower 54 and a downstream end connected to the cross joint 51.
- the purge gas path 53 is provided with a purge gas supply valve 55 .
- the cross joint 51 connects the fuel supply path 32, the oxidizer supply path 42, the combustible gas supply path 52, and the purge gas path 53.
- the blower 54 supplies purge gas (eg, air, inert gas, etc.) P to the combustible gas supply path 52.
- the purge gas supply valve 55 is an on-off valve, supplies purge gas P when opened, and stops supplying purge gas P when closed.
- the ignition device 13 ignites the combustible gas M supplied to the detonator 22 in the combustion device 11.
- the ignition device 13 is provided at the base end 22a of the detonator 22.
- the flame generation timing detection sensor 14 detects the generation timing of the flame C due to combustion of the combustible gas M.
- the flame generation timing detection sensor 14 is provided at the base end 23a of the combustor 23 in the combustion device 11.
- the flame generation timing detection sensor 14 is disposed facing the opening 23c from the base end 23a of the combustor 23, and has a sensor area 14a having a predetermined angle.
- the flame generation timing detection sensor 14 is preferably an optical sensor that detects light emitted from the flame C generated in the combustor 23.
- an ultraviolet light detection sensor is preferable. Flames emit electromagnetic waves at infrared (IR), visible, and ultraviolet (UV) wavelengths. However, since infrared rays and visible rays are emitted from sources other than flame C, by using an ultraviolet light detection sensor, insensitivity to infrared rays and visible rays is detected, and the ultraviolet rays are detected to detect pure flame C. Detect only the signal.
- short-wavelength ultraviolet light for example, the wavelength 100 nm to 315 nm, which is difficult to reach the ground as a component of sunlight due to atmospheric absorption, especially the solar blind region of 100 nm to 280 nm, which hardly reaches the ground.
- the optical sensor is not limited to an ultraviolet light detection sensor.
- a photodiode, a phototube, or the like may be used as the optical sensor.
- the control device 15 is connected to the ignition device 13, the flame generation timing detection sensor 14, the mass flow controller 35, the fuel supply valve 37, the mass flow controller 45, the oxidizing agent supply valve 47, and the purge gas supply valve 55.
- the control device 15 can control the timing of ignition of the combustible gas M by the ignition device 13.
- the control device 15 receives the detection results of the flame generation timing detection sensor 14 as input.
- the control device 15 can adjust and control the mass flow controller 35 and the mass flow controller 45.
- the control device 15 is capable of controlling the opening and closing of the fuel supply valve 37, the oxidizer supply valve 47, and the purge gas supply valve 55.
- control device 15 functions as a determination device. That is, the control device 15 determines self-ignition of the combustible gas M before ignition by the ignition device 13 based on the detection result of the flame generation timing detection sensor 14. Further, the control device 15 determines whether the detonation is a detonation or a deflagration based on the propagation speed of the flame C detected by the flame generation timing detection sensor 14.
- the control device 15 determines that the combustible gas M is self-ignited
- the control device 15 controls the combustible gas supply device 12 to stop supplying the combustible gas M to the combustion device 11. That is, the control device 15 closes the fuel supply valve 37 and the oxidizer supply valve 47. Further, when the control device 15 determines that the combustible gas M is self-ignited, the control device 15 supplies the purge gas P to the inside of the combustion device 11 . That is, the control device 15 closes the fuel supply valve 37 and the oxidizer supply valve 47, and then opens the purge gas supply valve 55.
- An alarm device 16 is connected to the control device 15.
- the control device 15 can operate and control the alarm device 16.
- the control device 15 determines that the combustible gas M has self-ignited or deflagrated, it activates the alarm device 16.
- control device 15 is a controller, and for example, various programs stored in a storage section are executed by a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) using a RAM as a work area. Realized.
- CPU Central Processing Unit
- MPU Micro Processing Unit
- FIG. 2 is a sectional view showing the mounting structure of the optical sensor.
- the combustor 23 is provided with an optical window 62 on the wall 61 on the base end 23a side.
- An optical sensor serving as the flame generation timing detection sensor 14 is arranged outside the wall portion 61 of the combustor 23 so as to cover the optical window 62.
- a sensor area 14a having a predetermined angle is set through an optical window 62.
- the flame generation timing detection sensor 14 detects light emitted from the flame C through the optical window 62.
- the optical window 62 may be transparent and may have filtering performance to extract only light of a specific wavelength (for example, ultraviolet light). Further, the optical window 62 may be provided with a mechanism for ejecting purge gas to the inner surface to ensure visibility and cooling performance.
- FIG. 3 is a sectional view showing a modification of the optical sensor mounting structure.
- the combustor 23 is provided with an optical window 62 on the wall 61 on the base end 23a side.
- An optical sensor serving as the flame generation timing detection sensor 14 is arranged at a predetermined position apart from the combustor 23.
- An optical fiber 63 is provided between the flame generation timing detection sensor 14 and the optical window 62. One end of the optical fiber 63 is connected to the flame generation timing detection sensor 14 , and the other end is attached by a mounting member 64 to the outside of the wall 61 of the combustor 23 so as to face the optical window 62 .
- a sensor area 14a having a predetermined angle is set via an optical fiber 63 and an optical window 62.
- the flame generation timing detection sensor 14 detects light emitted from the flame C through the optical window 62 using the optical fiber 63.
- FIG. 4 is a time chart for explaining a method of detecting detonation, deflagration, and flashback.
- the combustible gas supply device 12 fills the detonator 22 by supplying a flammable gas M in which fuel and an oxidizer are mixed by a fuel supply section 31 and an oxidizer supply section 41. do.
- the ignition device 13 is activated to ignite the combustible gas M in the detonator 22.
- the combustible gas M is ignited while flowing through the first passage 24 of the detonator 22, and burns so that the flame C spreads from the base end 22a to the tip 22b.
- the flame C of the detonator 22 reaches the combustor 23, the flame C burns so as to spread from the base end 23a through the second passage 25 to the tip 23b, and a shock wave S is generated by the detonation.
- the control device 15 determines detonation, deflagration, and backfire (self-ignition) based on the generation timing (propagation velocity) of the flame C detected by the flame generation timing detection sensor 14.
- the flame generation timing detection sensor 14 is an optical sensor that detects flame C (for example, ultraviolet light). In the flame generation timing detection sensor 14, the pulse is turned ON when the flame C is generated, and the pulse is turned OFF when the flame C is extinguished. Therefore, the control device 15 calculates the pulse length ⁇ d, which is the time during which the flame C was generated from the time of flame generation (pulse ON) detected by the flame generation timing detection sensor 14 to the time of flame extinction (pulse OFF).
- the pulse length ⁇ d is inversely proportional to the propagation speed of the flame C.
- the control device 15 determines the combustion state of the fuel (combustible gas M) based on the pulse length ⁇ d (propagation speed of the flame C) during the generation period of the flame C.
- a threshold value ⁇ t corresponding to the propagation speed of the flame C is set between the deflagration and the detonation.
- the threshold value ⁇ t depending on the propagation speed between the deflagration and the detonation is, for example, a pulse length depending on the propagation speed of 1000 m/s.
- the calculated pulse length ⁇ d is less than or equal to the threshold value ⁇ t, it is a detonation, and when the pulse length ⁇ d (propagation speed of the flame C) exceeds the threshold value ⁇ t, it is a deflagration.
- the propagation speed of the shock wave S due to the detonation is 1000 m/s or more, so the pulse length ⁇ d becomes short.
- the control device 15 determines that it is a detonation when the pulse length ⁇ d is less than or equal to the threshold value ⁇ t, and determines that it is a deflagration when the pulse length ⁇ d (propagation speed of the flame C) exceeds the threshold value ⁇ t. . That is, when the pulse is turned ON at time t3 and turned OFF at time t4, the control device 15 determines that it is a detonation because the pulse length ⁇ d is equal to or less than the threshold value ⁇ t. On the other hand, when the pulse is turned ON at time t3 and turned OFF at time t6, the pulse length ⁇ d exceeds the threshold value ⁇ t, so the control device 15 determines that there is a deflagration.
- the combustible gas M filled in the combustor 23 may self-ignite due to heat in the exhaust gas rising in the internal space 103 of the furnace 101.
- the control device 15 determines flashback due to self-ignition based on the generation timing of the flame C detected by the flame generation timing detection sensor 14. That is, at time t2, the ignition device 13 is activated and the combustible gas M in the detonator 22 is ignited, and then the combustible gas M is ignited and a shock wave S is generated by a detonation. However, when the combustible gas M filled in the combustor 23 self-ignites, the flame generation timing detection sensor 14 detects the flame C before the ignition device 13 is activated.
- the pulse When the ignition device 13 operates to ignite the combustible gas M at time t2, if backfire (self-ignition) occurs, the pulse is turned ON at time t1, which is a time Ta before time t2, and at time t5. Then, the pulse turns OFF.
- the control device 15 determines that there is a backfire when the pulse is turned on at time t1, which is before time t2 when the ignition device 13 is activated.
- control device 15 determines that there is a detonation, the combustion device 11 is performing normal combustion. Therefore, the control device 15 controls the combustion device 11 and the combustible gas supply device 12 by the same control at the next operation timing. and activates the ignition device 13.
- the control device 15 determines that there is deflagration, the combustion device 11 will control the combustion device 11 and the combustible gas supply device 12 by different control at the next operation timing. Activate the ignition device 13. That is, the control device 15 adjusts the mixing ratio of fuel and oxidizer in the combustible gas M generated by the combustible gas supply device 12, for example.
- the combustion device 11 stops the supply of the combustible gas M to the combustion device 11 by the combustible gas supply device 12 because the combustion is abnormal. do. Then, by supplying the purge gas P to the combustion device 11, the progress of flashback is suppressed.
- FIG. 5 is a flowchart illustrating a method for determining the combustion state of fuel by the shock wave generating device.
- step S11 the control device 15 closes the purge gas supply valve 55 and stops supplying the purge gas P to the combustion device 11.
- step S12 the control device 15 opens the fuel supply valve 37 to start supplying the fuel F, and opens the oxidizing agent supply valve 47 to start supplying the oxidizing agent A. Then, combustible gas M in which fuel F and oxidizer A are mixed is supplied to the detonator 22 of the combustion device 11 .
- step S13 the control device 15 determines whether the flame generation timing detection sensor 14 has detected a pulse (ON) that is generated with flame generation.
- the control device 15 determines that the flame generation timing detection sensor 14 has detected the pulse (ON) (Yes)
- step S14 the control device 15 determines that a backfire has occurred
- step S15 it is determined that there is abnormal combustion in the combustion device 11. That is, since the flame generation timing detection sensor 14 detected the flame C generated in the combustor 23 even before the ignition device 13 was activated, the control device 15 determines that this is abnormal combustion in which backfire has occurred.
- step S16 the alarm device 16 is activated.
- step S17 the supply of combustible gas M to the combustion device 11 is stopped, and in step S18, the purge gas P is supplied to the combustion device 11.
- step S19 the control device 15 determines whether a predetermined elapsed time set in advance has elapsed since the combustible gas M was supplied to the detonator 22.
- the elapsed time is the time until a predetermined amount of combustible gas M is filled into the detonator 22 and the combustor 23 in the combustion device 11.
- step S20 the control device 15 closes the fuel supply valve 37 to stop the supply of the fuel F, and also The supply valve 47 is closed to stop the supply of oxidizing agent A. Then, the supply of flammable gas M to the detonator 22 of the combustion device 11 is stopped. Then, in step S21, the control device 15 operates the ignition device 13 to ignite the combustible gas M filled in the detonator 22. Then, the combustible gas M is ignited while flowing through the first passage 24 of the detonator 22, and burns so that the flame C spreads from the base end 22a to the tip 22b. When the flame C of the detonator 22 reaches the combustor 23, the flame C is combusted so as to spread from the base end 23a through the second passage 25 to the tip 23b.
- step S22 the control device 15 determines whether the flame generation timing detection sensor 14 has detected a pulse (ON) that is generated with flame generation.
- the control device 15 determines that the flame generation timing detection sensor 14 has not detected the pulse (ON) (No)
- step S31 the control device 15 determines that the flame generation timing detection sensor 14 has not detected the pulse (ON). It is determined whether or not a predetermined waiting time has elapsed.
- the control device 15 determines that the waiting time has not elapsed (No), it remains on standby.
- step S32 the control device 15 estimates that the ignition device 13 has failed to ignite the combustible gas M, and in step S33, Activate the alarm device 16.
- step S23 the control device 15 determines that the detected pulse length ⁇ d is equal to or less than the threshold value ⁇ t. Determine whether it exists or not.
- the control device 15 determines that the detected pulse length ⁇ d is not equal to or less than the threshold value ⁇ t (No)
- the control device 15 determines that deflagration has occurred in step S24, and in step S25 , it is determined that there is abnormal combustion in the combustion device 11.
- step S26 the alarm device 16 is activated.
- step S27 the mixture ratio of fuel F and oxidizer A in the combustible gas M supplied to the combustion device 11 is adjusted.
- step S23 determines that the detected pulse length ⁇ d is equal to or less than the threshold value ⁇ t (Yes)
- the control device 15 determines that a detonation has occurred in step S28.
- step S29 it is determined that the combustion device 11 is performing normal combustion.
- FIG. 6 is a schematic diagram for explaining the intensity of detonation in the shock wave generation device of the second embodiment.
- the basic configuration of the second embodiment is the same as that of the first embodiment described above, and will be explained using FIG. Reference numerals are given and detailed explanations are omitted.
- the shock wave generation device 10 includes a combustion device 11, a flammable gas supply device 12, an ignition device 13, a flame generation timing detection sensor 14, a control device (determination device) 15, and an alarm device. 16.
- the control device 15 functions as a determination device, and determines detonation, deflagration, and backfire (self-ignition) based on the detection results of the flame generation timing detection sensor 14. Then, when the control device 15 determines that there is a detonation based on the detection result of the flame generation timing detection sensor 14, the control device 15 estimates the intensity of the detonation wave based on the propagation speed of the flame.
- the intensity of the detonation is determined by the generation time of the flame C generated in the combustor 23, that is, the pulse length ⁇ d from when the flame generation timing detection sensor 14 detects the flame C and the pulse turns ON until the pulse turns OFF. Estimated according to. That is, the intensity of the flame detonation changes depending on the amount of combustible gas M supplied to the combustor 23. Therefore, it can be estimated that the intensity of the detonation is higher as the pulse length ⁇ d is less than or equal to the threshold value ⁇ t and the pulse length ⁇ d is longer.
- the pulse length ⁇ d is a pulse length ⁇ d1 shorter than 1/2 of the threshold value ⁇ t
- the first shock wave has a low intensity.
- the pulse length ⁇ d is a pulse length ⁇ d2 that is longer than 1/2 of the threshold value ⁇ t
- the second shock wave has a high intensity.
- the threshold value ⁇ t is set in consideration of a margin.
- the control device 15 controls the combustible gas supply device 12 based on the intensity of the detonation (shock wave S) estimated from the pulse length ⁇ d of the shock wave S.
- the control device 15 may increase or decrease the amount of combustible gas M filled into the combustion device 11 or change the mixing ratio of fuel F and oxidizer A in the combustible gas M based on the intensity of the detonation (shock wave S). Make adjustments. Therefore, the intensity of the shock wave S can be set to the optimum intensity according to the volume of the furnace 101.
- FIG. 7 is a schematic configuration diagram showing a shock wave generation device according to the third embodiment. Note that members having the same functions as those in the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted.
- the shock wave generation device 10A includes a combustion device 11, a combustible gas supply device 12, an ignition device 13, flame generation timing detection sensors 14A, 14B, a control device (determination device) 15, An alarm device 16 is provided.
- the combustion device 11, the combustible gas supply device 12, the ignition device 13, the control device 15, and the alarm device 16 have substantially the same configuration as in the first embodiment.
- the first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B detect the generation timing of the flame C due to combustion of the combustible gas M.
- a plurality of flame generation timing detection sensors 14A and a plurality of second flame generation timing detection sensors 14B are arranged at intervals in the gas flow direction of the combustor 23 in the combustion device 11.
- the flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B are arranged to face a direction intersecting the flow direction of the combustible gas M or flame C (shock wave S) in the second passage 25 of the combustor 23. .
- the flame generation timing detection sensor 14A is arranged on the upstream side of the second passage 25, and the second flame generation timing detection sensor 14B is arranged on the upstream side of the second passage 25.
- the first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B detect flames at two locations in the second passage 25 of the combustor 23 in different gas flow directions.
- the first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B are optical sensors that detect light emission from the flame C generated in the combustor 23, and the detection method is the same as in the first embodiment. It is.
- FIG. 8 is a time chart for explaining a method for detecting detonation, deflagration, and flashback.
- the combustible gas supply device 12 fills the detonator 22 by supplying a combustible gas M in which fuel and an oxidizer are mixed by a fuel supply section 31 and an oxidizer supply section 41. do.
- the ignition device 13 is activated to ignite the combustible gas M in the detonator 22.
- the combustible gas M is ignited while flowing through the first passage 24 of the detonator 22, and burns so that the flame C spreads from the base end 22a to the tip 22b.
- the flame C of the detonator 22 reaches the combustor 23, the flame C burns so as to spread from the base end 23a through the second passage 25 to the tip 23b, and a shock wave S is generated by the detonation.
- the control device 15 determines detonation, deflagration, and backfire (self-ignition) based on the generation timing (propagation speed) of the flame C detected by the first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B. do.
- the first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B are optical sensors that detect flame C (for example, ultraviolet light).
- the pulse is turned ON when the flame C is generated, and the pulse is turned OFF when the flame C is extinguished.
- the fuel burns it results in a deflagration or detonation depending on the propagation speed of the flame C.
- the propagation speed of the flame C is less than the speed of sound, it becomes a deflagration, and when the propagation speed of the flame C exceeds the speed of sound, it becomes a detonation and a shock wave S is generated.
- the first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B are arranged a distance L apart from each other in the gas flow direction of the second passage 25. Therefore, a time difference ⁇ t occurs between the flame detection timing (pulse ON) by the first flame generation timing detection sensor 14A and the flame detection timing (pulse ON) by the second flame generation timing detection sensor 14B.
- the time difference ⁇ t is inversely proportional to the propagation speed of the flame C.
- the control device 15 determines the combustion state of the fuel (combustible gas M) based on the time difference ⁇ t of the shock wave S (propagation speed of the flame C).
- a threshold value Vt of the propagation speed of the flame C is set between deflagration and detonation.
- the threshold value Vt of the propagation velocity between deflagration and detonation is, for example, a propagation velocity of 1000 m/s.
- the propagation speed L/ ⁇ t calculated from the distance L and the calculated time difference ⁇ t is equal to or higher than the threshold value Vt, it is a detonation, and when the propagation velocity L/ ⁇ t is less than the threshold value Vt, it is a deflagration.
- the control device 15 determines that it is a detonation when the propagation speed L/ ⁇ t is equal to or higher than the threshold value Vt, and determines that it is a deflagration when the propagation speed L/ ⁇ t is less than the threshold value Vt.
- the pulse of the first flame generation timing detection sensor 14A turns ON at time t3
- the pulse of the second flame generation timing detection sensor 14B turns ON at time t4
- the time difference ⁇ t1 becomes short, and the propagation speed L/ ⁇ t1 decreases. Since it is equal to or higher than the threshold value Vt, the control device 15 determines that it is a detonation.
- the control device 15 determines that it is a deflagration.
- the combustible gas M filled in the combustor 23 may self-ignite due to heat in the exhaust gas rising in the internal space 103 of the furnace 101.
- the control device 15 determines flashback due to self-ignition based on the generation timing of the flame C detected by the first flame generation timing detection sensor 14A or the second flame generation timing detection sensor 14B. That is, at time t2, when the ignition device 13 is activated and the combustible gas M in the detonator 22 is ignited, the combustible gas M is ignited and a shock wave S is generated by a detonation.
- the flame generation timing detection sensors 14 and 14B detect the flame C before the ignition device 13 is activated.
- the ignition device 13 operates to ignite the combustible gas M at time t2
- backfire self-ignition
- the pulse is turned ON at time t1, which is a time Ta before time t2, and at time t4. Then, the pulse turns OFF.
- the control device 15 determines that there is a backfire when the pulse is turned on at time t1, which is before time t2 when the ignition device 13 is activated.
- the method of determining the combustion state of fuel by the shock wave generating device 10A of the third embodiment is almost the same as that of the first embodiment, so the explanation will be omitted.
- the positions of the flame generation timing detection sensors 14 and 14B are changed from those in the first embodiment.
- the flame generation timing detection sensors 14 and 14B of the third embodiment may be added to the flame generation timing detection sensor 14 of the first embodiment. In this case, detonation can be determined with higher accuracy.
- the shock wave generating device includes a combustion device 11 in which a gas passage 21 through which combustion gas flows from a base end to a tip end is provided and an opening is provided in the front end, and a combustion device 11 in which combustion gas flows from the base end to the inside.
- a combustible gas supply device 12 that supplies combustible gas M
- an ignition device 13 that ignites combustible gas M supplied to combustion device 11, and a flame that detects the timing of generation of flame C due to combustion of combustible gas M.
- a control device determines self-ignition of the combustible gas M before ignition by the ignition device 13 based on the detection results of the flame generation timing detection sensors 14, 14A, 14B and the flame generation timing detection sensors 14, 14A, 14B. 15.
- the control device 15 determines self-ignition of the combustible gas M before ignition by the ignition device 13 based on the generation timing of the flame C due to combustion of the combustible gas M. . As a result, the combustion state of the fuel can be determined.
- the shock wave generation device is the shock wave generation device according to the first aspect, and further, the control device 15 causes a detonation based on the propagation speed of the flame C detected by the flame generation timing detection sensor 14. and determine deflagration. Thereby, the combustion state of the fuel can be determined in detail.
- the shock wave generation device is the shock wave generation device according to the second aspect, furthermore, when the control device 15 determines that there is a detonation, the intensity of the detonation wave is determined based on the propagation speed of the flame C. Estimate. Thereby, by estimating the intensity of the detonation wave, it is possible to adjust the intensity of the detonation wave depending on the destination to which the shock wave is applied.
- the shock wave generation device is the shock wave generation device according to any one of the first to third aspects, and further, the flame generation timing detection sensors 14, 14A, 14B This is an optical sensor that detects light emitted from the Thereby, flames can be easily identified by detecting infrared rays, visible rays, and ultraviolet rays.
- the shock wave generation device is the shock wave generation device according to any one of the first to fourth aspects, and further includes a combustion device 11 having a combustible gas supply device at the base end 22a.
- the flame generation timing detection sensor 14 faces the opening 23c of the combustor 23. Placed. Thereby, the flame generated in the combustor 23 can be easily detected by one flame generation timing detection sensor 14.
- the shock wave generation device is the shock wave generation device according to any one of the first to fifth aspects, and the combustion device 11 further includes a combustible gas supply device at the base end 22a.
- the flame generation timing detection sensors 14A and 14B are connected to the combustor 23 in the direction of gas flow. Multiple locations are placed at intervals. Thereby, the flame generated in the combustor 23 can be appropriately detected.
- the shock wave generation device is the shock wave generation device according to any one of the first to sixth aspects, and further, when the control device 15 determines that the combustible gas M self-ignites, , the combustible gas supply device 12 stops supplying the combustible gas M. Thereby, safety can be improved.
- the shock wave generation device is the shock wave generation device according to the seventh aspect, and further, when the control device 15 determines that the combustible gas M self-ignites, the purge gas P is supplied into the combustion device 11. supply Thereby, safety can be improved.
- the shock wave generation device is used as a dust removal device that removes dust adhering to the inner wall surface of a furnace, the outer surface of a heat exchanger tube, etc. of a furnace such as a garbage incinerator, coal gasification combined cycle power generation facility, and power generation boiler.
- Shock wave generating devices are, for example, propulsion engines that emit shock waves from the opening of a combustor and generate thrust by receiving the reaction force, power engines that turn turbines, or power engines that emit shock waves from the opening of a combustor and generate thrust near the opening.
- a device that uses the high pressure of shock waves to exert physical effects on objects placed inside a combustion device (destruction of structures, separation of materials, etc.)
- a device that uses high pressure of shock waves to act on objects placed inside a combustion device It can be applied to devices that exert physical action (destruction of structures, separation of materials, etc.).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Control Of Combustion (AREA)
- Incineration Of Waste (AREA)
- Gas Burners (AREA)
Abstract
This shock wave generating device comprises: a combustion device provided with a gas passage through which a combustion gas flows from a base end to a tip end, and provided with an opening portion at the tip end; a flammable gas supply device for supplying a flammable gas into the combustion device from the base end; an ignition device for igniting the flammable gas supplied into the combustion device; a flame generation timing detecting sensor for detecting a generation timing of a flame resulting from combustion of the flammable gas; and a determining device for determining autoignition of the flammable gas prior to ignition by the ignition device on the basis of a detection result from the flame generation timing detecting sensor.
Description
本開示は、爆轟による衝撃波を生成するための衝撃波生成装置に関するものである。
The present disclosure relates to a shock wave generation device for generating shock waves due to detonation.
例えば、ごみ焼却炉、石炭ガス化複合発電設備(IGCC)、発電用ボイラなどは、排ガス中に含まれるダストが火炉の内壁面や伝熱管の外面などに付着する。火炉の内壁面や伝熱管の外面などに付着したダストは、熱伝達率を低下させて熱回収効率を悪化させたり、排ガスの流れの抵抗になって火炉の性能を低下させたりする。そのため、ダスト除去装置により、火炉の内壁や伝熱管の外面に付着したダストを定期的に除去する必要がある。
For example, in garbage incinerators, integrated coal gasification combined cycle facilities (IGCC), power generation boilers, etc., dust contained in exhaust gas adheres to the inner wall surface of the furnace, the outer surface of the heat transfer tube, etc. Dust that adheres to the inner wall surface of the furnace, the outer surface of the heat exchanger tubes, etc. reduces the heat transfer coefficient, worsening the heat recovery efficiency, and acts as a resistance to the flow of exhaust gas, reducing the performance of the furnace. Therefore, it is necessary to periodically remove dust adhering to the inner wall of the furnace and the outer surface of the heat exchanger tubes using a dust removal device.
ダスト除去装置は、衝撃波生成装置を有する。衝撃波生成装置は、燃料を燃焼させることで火炎の伝播速度が音速を超える爆轟による衝撃波を生成する。ダスト除去装置は、衝撃波生成装置が生成した衝撃波によりダストを除去する。このような従来の衝撃波生成装置として、下記特許文献に記載されたものがある。
The dust removal device has a shock wave generation device. A shock wave generation device generates a shock wave by detonation in which the propagation speed of flame exceeds the speed of sound by burning fuel. The dust removal device removes dust using shock waves generated by the shock wave generation device. As such a conventional shock wave generation device, there is one described in the following patent documents.
従来の衝撃波生成装置は、燃料と酸化剤とが混合された混合気に点火し、混合気が燃焼することで爆轟による衝撃波を生成する。このとき、燃焼の形態により爆轟波が生成されず、爆燃波となってしまうことがあり、例えば、ダストを適切に除去することができないおそれがある。また、混合気に着火する前に、混合気が自着火して逆火が発生することがある。そのため、衝撃波生成装置は、適正に爆轟が発生しているか否かを判定する必要がある。
A conventional shock wave generation device ignites a mixture of fuel and an oxidizer, and when the mixture burns, it generates a shock wave due to a detonation. At this time, depending on the type of combustion, a detonation wave may not be generated, but a deflagration wave may result, and for example, there is a possibility that dust cannot be appropriately removed. Furthermore, the air-fuel mixture may self-ignite before it ignites, causing flashback. Therefore, the shock wave generation device needs to determine whether or not detonation is occurring properly.
本開示は、上述した課題を解決するものであり、燃料の燃焼状態を判定可能な衝撃波生成装置を提供することを目的とする。
The present disclosure solves the above-mentioned problems, and aims to provide a shock wave generation device that can determine the combustion state of fuel.
上記の目的を達成するための本開示の衝撃波生成装置は、基端から先端に向けて燃焼ガスが流れるガス通路が設けられて前記先端に開口部が設けられる燃焼装置と、前記燃焼装置の前記基端から内部に可燃性ガスを供給する可燃性ガス供給装置と、前記燃焼装置に供給された前記可燃性ガスに点火する点火装置と、前記可燃性ガスの燃焼による火炎の発生時期を検出する火炎発生時期検出センサと、前記火炎発生時期検出センサの検出結果に基づいて前記点火装置による点火前の前記可燃性ガスの自着火を判定する判定装置と、を備える。
A shock wave generating device of the present disclosure for achieving the above object includes a combustion device in which a gas passage through which combustion gas flows from a base end to a distal end and an opening is provided in the distal end; A combustible gas supply device that supplies flammable gas from the base end to the inside, an ignition device that ignites the combustible gas supplied to the combustion device, and detects the timing of flame generation due to combustion of the flammable gas. It includes a flame generation timing detection sensor, and a determination device that determines self-ignition of the combustible gas before ignition by the ignition device based on the detection result of the flame generation timing detection sensor.
本開示の衝撃波生成装置によれば、燃料の燃焼状態を判定することができる。
According to the shock wave generation device of the present disclosure, the combustion state of fuel can be determined.
以下に図面を参照して、本開示の好適な実施形態を詳細に説明する。なお、この実施形態により本開示が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。また、実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。
Preferred embodiments of the present disclosure will be described in detail below with reference to the drawings. Note that the present disclosure is not limited to this embodiment, and if there are multiple embodiments, the present disclosure also includes a configuration in which each embodiment is combined. In addition, the components in the embodiments include those that can be easily imagined by those skilled in the art, those that are substantially the same, and those that are in the so-called equivalent range.
[第1実施形態]
<衝撃波生成装置>
図1は、第1実施形態の衝撃波生成装置を表す概略構成図である。 [First embodiment]
<Shock wave generator>
FIG. 1 is a schematic configuration diagram showing a shock wave generation device according to a first embodiment.
<衝撃波生成装置>
図1は、第1実施形態の衝撃波生成装置を表す概略構成図である。 [First embodiment]
<Shock wave generator>
FIG. 1 is a schematic configuration diagram showing a shock wave generation device according to a first embodiment.
図1に示すように、第1実施形態の衝撃波生成装置10は、ごみ焼却炉、石炭ガス化複合発電設備、発電用ボイラ(以下、ボイラと称する。)などの火炉の内壁面や伝熱管の外面などに付着するダストを除去するダスト除去装置に適用される。なお、火炉は、ボイラの燃焼場の周囲を取り囲む壁部から構成されるものであるが、ダスト除去装置は、火炉の上部や下部に連続する壁部の内壁面などに付着するダストを除去することができる。ダスト除去装置は、火炉の内部に連通する配管を通して火炉内に可燃性ガスを供給し、可燃性ガスに着火させることで爆轟による衝撃波Sを発生させる。すなわち、可燃性ガスが燃焼すると、火炎と衝撃波が一体になった爆轟波が伝播し、可燃性ガスがなくなった時点で衝撃波として伝播する。ダスト除去装置は、爆轟による衝撃波Sが火炉の内壁や伝熱管の外面に作用することで、付着したダストを吹き飛ばして除去する。
As shown in FIG. 1, the shock wave generation device 10 of the first embodiment is applied to the inner wall surface of a furnace such as a garbage incinerator, a combined coal gasification combined cycle facility, a power generation boiler (hereinafter referred to as a boiler), and a heat exchanger tube. It is applied to dust removal equipment that removes dust that adheres to external surfaces. Incidentally, a furnace consists of a wall that surrounds the combustion field of the boiler, and the dust removal device removes dust that adheres to the inner wall surface of the wall that continues to the upper and lower parts of the furnace. be able to. The dust removal device supplies flammable gas into the furnace through a pipe communicating with the inside of the furnace, and ignites the flammable gas to generate a shock wave S due to detonation. That is, when combustible gas burns, a detonation wave, which is a combination of flame and shock wave, propagates, and when the combustible gas runs out, it propagates as a shock wave. The dust removal device blows away adhering dust by applying a shock wave S caused by the detonation to the inner wall of the furnace and the outer surface of the heat exchanger tube.
衝撃波生成装置10は、ダスト除去装置に設けられ、ボイラの停止中にダスト除去装置が作動するとき、燃料の燃焼による爆轟で衝撃波Sを生成するものである。
The shock wave generation device 10 is installed in the dust removal device, and generates a shock wave S by detonation caused by combustion of fuel when the dust removal device is activated while the boiler is stopped.
衝撃波生成装置10は、燃焼装置11と、可燃性ガス供給装置12と、点火装置13と、火炎発生時期検出センサ14と、制御装置(判定装置)15と、警報装置16とを備える。
The shock wave generation device 10 includes a combustion device 11, a combustible gas supply device 12, an ignition device 13, a flame generation timing detection sensor 14, a control device (determination device) 15, and an alarm device 16.
燃焼装置11は、基端から先端に向けて燃焼ガスが流れるガス通路21を有する。燃焼装置11は、起爆管22と、燃焼器23とを有する。ガス通路21は、起爆管22の内部に設けられる第1通路24と、燃焼器23の内部に設けられる第2通路25とから構成される。
The combustion device 11 has a gas passage 21 through which combustion gas flows from the base end to the distal end. Combustion device 11 has a detonator 22 and a combustor 23. The gas passage 21 includes a first passage 24 provided inside the detonator 22 and a second passage 25 provided inside the combustor 23.
起爆管22は、筒形状をなし、基端22aが閉塞し、先端22bが開口する。起爆管22は、内部に所定長さの第1通路24が設けられる。起爆管22は、基端22aに可燃性ガス供給装置12が接続される。燃焼器23は、筒形状をなし、基端23aが起爆管22の先端22bに連結されて連通し、先端23bが開口して開口部23cが設けられる。起爆管22のガス通路21と、燃焼器23の第2通路25は、同心である。但し、起爆管22のガス通路21と、燃焼器23の第2通路25は、同心ではなくてもよく、異なる形状であってもよい。燃焼器23は、内部に所定長さの第2通路25が設けられる。燃焼器23の第2通路25は、起爆管22の第1通路24より大径である。燃焼器23は、基端23aから先端22bまで第2通路25が同径であるが、基端23aに対して先端22bが拡径していてもよい。燃焼器23は、先端23bの開口部23cが火炉101の火炉壁102に区画された内部空間103に連通する。
The detonator 22 has a cylindrical shape, with a proximal end 22a closed and a distal end 22b open. The detonator 22 is provided with a first passage 24 having a predetermined length inside. The combustible gas supply device 12 is connected to the base end 22a of the detonator 22. The combustor 23 has a cylindrical shape, a base end 23a is connected to and communicates with a tip 22b of the detonator 22, and the tip 23b is open to form an opening 23c. The gas passage 21 of the detonator 22 and the second passage 25 of the combustor 23 are concentric. However, the gas passage 21 of the detonator 22 and the second passage 25 of the combustor 23 may not be concentric and may have different shapes. The combustor 23 is provided with a second passage 25 having a predetermined length inside. The second passage 25 of the combustor 23 has a larger diameter than the first passage 24 of the squib 22 . In the combustor 23, the second passage 25 has the same diameter from the base end 23a to the distal end 22b, but the distal end 22b may have a larger diameter than the base end 23a. The combustor 23 has an opening 23c at a tip 23b communicating with an internal space 103 defined by a furnace wall 102 of the furnace 101.
可燃性ガス供給装置12は、燃料供給部31と、酸化剤供給部41とを有する。燃料供給部31は、燃料Fを供給する。酸化剤供給部41は、酸化剤Aとしての酸素または空気を供給する。可燃性ガス供給装置12は、燃料供給部31が供給した燃料Fと酸化剤供給部41が供給した酸化剤Aとが混合された混合気を可燃性ガスMとして燃焼装置11の基端から内部に供給する。
The combustible gas supply device 12 includes a fuel supply section 31 and an oxidizer supply section 41. The fuel supply section 31 supplies fuel F. The oxidizing agent supply unit 41 supplies oxygen or air as the oxidizing agent A. The combustible gas supply device 12 supplies a mixture of the fuel F supplied by the fuel supply unit 31 and the oxidizer A supplied by the oxidizer supply unit 41 to the inside of the combustion device 11 from the base end of the combustion device 11 as a combustible gas M. supply to.
燃料供給部31は、燃料供給経路32と、燃料ボンベ33と、減圧弁34と、マスフローコントローラ35と、安全器36と、燃料供給弁37と、逆止弁38とを有する。燃料供給経路32は、上流端部に燃料ボンベ33が連結され、下流側に向けて減圧弁34、マスフローコントローラ35、安全器36、燃料供給弁37、逆止弁38が設けられる。燃料ボンベ33は、燃料Fが貯留される。減圧弁34は、燃料ボンベ33の燃料Fを減圧し、供給する燃料Fの圧力を調整する。マスフローコントローラ35は、燃料Fの質量流量を計測し、計測した燃料Fの質量流量と予め設定された燃料Fの設定値とを比較し、燃料Fの質量流量が設定値となるように流量制御弁の開度を調整する。安全器36は、逆火を防止する。燃料供給弁37は、開閉弁であり、開放時に燃料Fを供給し、閉止時に燃料Fの供給を停止する。逆止弁38は、上流側への燃料Fや可燃性ガスMの逆流を防止する。
The fuel supply section 31 includes a fuel supply path 32, a fuel cylinder 33, a pressure reducing valve 34, a mass flow controller 35, a safety device 36, a fuel supply valve 37, and a check valve 38. A fuel cylinder 33 is connected to the upstream end of the fuel supply path 32, and a pressure reducing valve 34, a mass flow controller 35, a safety device 36, a fuel supply valve 37, and a check valve 38 are provided toward the downstream side. The fuel cylinder 33 stores fuel F. The pressure reducing valve 34 reduces the pressure of the fuel F in the fuel cylinder 33 and adjusts the pressure of the supplied fuel F. The mass flow controller 35 measures the mass flow rate of the fuel F, compares the measured mass flow rate of the fuel F with a preset value of the fuel F, and controls the flow rate so that the mass flow rate of the fuel F becomes the set value. Adjust the valve opening. The safety device 36 prevents backfire. The fuel supply valve 37 is an on-off valve, supplies fuel F when opened, and stops supplying fuel F when closed. The check valve 38 prevents backflow of the fuel F and combustible gas M to the upstream side.
酸化剤供給部41は、酸化剤供給経路42と、酸化剤ボンベ43と、減圧弁44と、マスフローコントローラ45と、安全器46と、酸化剤供給弁47と、逆止弁48とを有する。酸化剤供給経路42は、上流端部に酸化剤ボンベ43が連結され、下流側に向けて減圧弁44、マスフローコントローラ45、安全器46、酸化剤供給弁47、逆止弁48が設けられる。酸化剤ボンベ43は、酸化剤Aが貯留される。減圧弁44は、酸化剤ボンベ43の酸化剤Aを減圧し、供給する酸化剤Aの圧力を調整する。マスフローコントローラ45は、酸化剤Aの質量流量を計測し、計測した酸化剤Aの質量流量と予め設定された酸化剤Aの設定値とを比較し、酸化剤Aの質量流量が設定値となるように流量制御弁の開度を調整する。安全器46は、逆火を防止する。酸化剤供給弁47は、開閉弁であり、開放時に酸化剤Aを供給し、閉止時に酸化剤Aの供給を停止する。逆止弁48は、上流側への酸化剤Aや可燃性ガスMの逆流を防止する。
The oxidizing agent supply section 41 includes an oxidizing agent supply path 42 , an oxidizing agent cylinder 43 , a pressure reducing valve 44 , a mass flow controller 45 , a safety device 46 , an oxidizing agent supply valve 47 , and a check valve 48 . The oxidizing agent supply path 42 has an oxidizing agent cylinder 43 connected to its upstream end, and is provided with a pressure reducing valve 44, a mass flow controller 45, a safety device 46, an oxidizing agent supply valve 47, and a check valve 48 toward the downstream side. The oxidizing agent cylinder 43 stores the oxidizing agent A. The pressure reducing valve 44 reduces the pressure of the oxidizing agent A in the oxidizing agent cylinder 43 and adjusts the pressure of the oxidizing agent A to be supplied. The mass flow controller 45 measures the mass flow rate of the oxidizing agent A, compares the measured mass flow rate of the oxidizing agent A with a preset value of the oxidizing agent A, and the mass flow rate of the oxidizing agent A becomes the set value. Adjust the opening of the flow control valve as follows. The safety device 46 prevents backfire. The oxidizing agent supply valve 47 is an on-off valve that supplies oxidizing agent A when opened and stops supplying oxidizing agent A when closed. The check valve 48 prevents backflow of the oxidizing agent A and the combustible gas M to the upstream side.
燃料供給経路32と酸化剤供給経路42は、下流端部がクロス継手51を介して可燃性ガス供給経路52の上流端部に連結され、可燃性ガス供給経路52は、下流端部が起爆管22の基端22aに連結される。また、パージガス経路53は、上流端部に送風機54が連結され、下流端部がクロス継手51に連結される。パージガス経路53は、パージガス供給弁55が設けられる。クロス継手51は、燃料供給経路32と酸化剤供給経路42と可燃性ガス供給経路52とパージガス経路53とを連通する。送風機54は、パージガス(例えば、空気や不活性ガスなど)Pを可燃性ガス供給経路52に供給する。パージガス供給弁55は、開閉弁であり、開放時にパージガスPを供給し、閉止時にパージガスPの供給を停止する。
The downstream ends of the fuel supply route 32 and the oxidizer supply route 42 are connected to the upstream end of the combustible gas supply route 52 via a cross joint 51, and the combustible gas supply route 52 has a downstream end connected to the detonator. The base end 22a of 22 is connected to the base end 22a. Further, the purge gas path 53 has an upstream end connected to a blower 54 and a downstream end connected to the cross joint 51. The purge gas path 53 is provided with a purge gas supply valve 55 . The cross joint 51 connects the fuel supply path 32, the oxidizer supply path 42, the combustible gas supply path 52, and the purge gas path 53. The blower 54 supplies purge gas (eg, air, inert gas, etc.) P to the combustible gas supply path 52. The purge gas supply valve 55 is an on-off valve, supplies purge gas P when opened, and stops supplying purge gas P when closed.
点火装置13は、燃焼装置11における起爆管22に供給された可燃性ガスMに点火する。点火装置13は、起爆管22の基端22aに設けられる。
The ignition device 13 ignites the combustible gas M supplied to the detonator 22 in the combustion device 11. The ignition device 13 is provided at the base end 22a of the detonator 22.
火炎発生時期検出センサ14は、可燃性ガスMの燃焼による火炎Cの発生時期を検出する。火炎発生時期検出センサ14は、燃焼装置11における燃焼器23の基端23aに設けられる。火炎発生時期検出センサ14は、燃焼器23の基端23aから開口部23cを向いて配置されることで、所定角度のセンサ領域14aを有する。
The flame generation timing detection sensor 14 detects the generation timing of the flame C due to combustion of the combustible gas M. The flame generation timing detection sensor 14 is provided at the base end 23a of the combustor 23 in the combustion device 11. The flame generation timing detection sensor 14 is disposed facing the opening 23c from the base end 23a of the combustor 23, and has a sensor area 14a having a predetermined angle.
火炎発生時期検出センサ14は、燃焼器23で発生した火炎Cからの発光を検出する光学センサであることが好ましい。光学センサとしては、紫外光検出センサが好ましい。火炎は、赤外光線(IR)、可視光線、紫外光線(UV)の波長の電磁波を放射する。但し、赤外光線や可視光線は、火炎C以外からも放出されることから、紫外光検出センサを用いることで、赤外光線や可視光線を不感とし、紫外光線を検出して純粋に火炎Cだけの信号を検出する。特に、波長の短い紫外光(例えば、大気の吸収により太陽光の成分として地上に届きにくい波長100nm~315nm、特に地上に殆ど届かない100nmから280nmのソーラーブラインド領域)を選択的に検出することで、誤って太陽外光を検知することを防止する。
The flame generation timing detection sensor 14 is preferably an optical sensor that detects light emitted from the flame C generated in the combustor 23. As the optical sensor, an ultraviolet light detection sensor is preferable. Flames emit electromagnetic waves at infrared (IR), visible, and ultraviolet (UV) wavelengths. However, since infrared rays and visible rays are emitted from sources other than flame C, by using an ultraviolet light detection sensor, insensitivity to infrared rays and visible rays is detected, and the ultraviolet rays are detected to detect pure flame C. Detect only the signal. In particular, by selectively detecting short-wavelength ultraviolet light (for example, the wavelength 100 nm to 315 nm, which is difficult to reach the ground as a component of sunlight due to atmospheric absorption, especially the solar blind region of 100 nm to 280 nm, which hardly reaches the ground). , to prevent erroneous detection of external sunlight.
但し、光学センサとしては、紫外光検出センサに限るものではない。例えば、光学センサとして、フォトダイオードや光電管などを適用してもよい。
However, the optical sensor is not limited to an ultraviolet light detection sensor. For example, a photodiode, a phototube, or the like may be used as the optical sensor.
制御装置15は、点火装置13、火炎発生時期検出センサ14、マスフローコントローラ35、燃料供給弁37、マスフローコントローラ45、酸化剤供給弁47、パージガス供給弁55が接続される。
The control device 15 is connected to the ignition device 13, the flame generation timing detection sensor 14, the mass flow controller 35, the fuel supply valve 37, the mass flow controller 45, the oxidizing agent supply valve 47, and the purge gas supply valve 55.
制御装置15は、点火装置13による可燃性ガスMへの点火時期を制御可能である。制御装置15は、火炎発生時期検出センサ14の検出結果が入力される。制御装置15は、マスフローコントローラ35とマスフローコントローラ45を調整制御可能である。制御装置15は、燃料供給弁37と酸化剤供給弁47とパージガス供給弁55を開閉制御可能である。
The control device 15 can control the timing of ignition of the combustible gas M by the ignition device 13. The control device 15 receives the detection results of the flame generation timing detection sensor 14 as input. The control device 15 can adjust and control the mass flow controller 35 and the mass flow controller 45. The control device 15 is capable of controlling the opening and closing of the fuel supply valve 37, the oxidizer supply valve 47, and the purge gas supply valve 55.
また、制御装置15は、判定装置として機能する。すなわち、制御装置15は、火炎発生時期検出センサ14の検出結果に基づいて点火装置13による点火前の可燃性ガスMの自着火を判定する。また、制御装置15は、火炎発生時期検出センサ14が検出した火炎Cの伝播速度に基づいて爆轟と爆燃を判定する。
Additionally, the control device 15 functions as a determination device. That is, the control device 15 determines self-ignition of the combustible gas M before ignition by the ignition device 13 based on the detection result of the flame generation timing detection sensor 14. Further, the control device 15 determines whether the detonation is a detonation or a deflagration based on the propagation speed of the flame C detected by the flame generation timing detection sensor 14.
そして、制御装置15は、可燃性ガスMの自着火を判定すると、可燃性ガス供給装置12を制御し、燃焼装置11への可燃性ガスMの供給を停止する。すなわち、制御装置15は、燃料供給弁37および酸化剤供給弁47を閉止する。また、制御装置15は、可燃性ガスMの自着火を判定すると、燃焼装置11の内部にパージガスPを供給する。すなわち、制御装置15は、燃料供給弁37および酸化剤供給弁47を閉止した後、パージガス供給弁55を開放する。
When the control device 15 determines that the combustible gas M is self-ignited, the control device 15 controls the combustible gas supply device 12 to stop supplying the combustible gas M to the combustion device 11. That is, the control device 15 closes the fuel supply valve 37 and the oxidizer supply valve 47. Further, when the control device 15 determines that the combustible gas M is self-ignited, the control device 15 supplies the purge gas P to the inside of the combustion device 11 . That is, the control device 15 closes the fuel supply valve 37 and the oxidizer supply valve 47, and then opens the purge gas supply valve 55.
制御装置15は、警報装置16が接続される。制御装置15は、警報装置16を作動制御可能である。制御装置15は、可燃性ガスMの自着火や爆燃を判定すると、警報装置16を作動させる。
An alarm device 16 is connected to the control device 15. The control device 15 can operate and control the alarm device 16. When the control device 15 determines that the combustible gas M has self-ignited or deflagrated, it activates the alarm device 16.
ここで、制御装置15は、コントローラであり、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)などにより、記憶部に記憶されている各種プログラムがRAMを作業領域として実行されることにより実現される。
Here, the control device 15 is a controller, and for example, various programs stored in a storage section are executed by a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) using a RAM as a work area. Realized.
<光学センサの取付構造>
図2は、光学センサの取付構造を表す断面図である。 <Optical sensor mounting structure>
FIG. 2 is a sectional view showing the mounting structure of the optical sensor.
図2は、光学センサの取付構造を表す断面図である。 <Optical sensor mounting structure>
FIG. 2 is a sectional view showing the mounting structure of the optical sensor.
図2に示すように、燃焼器23は、基端23a側の壁部61に光学窓62が設けられる。火炎発生時期検出センサ14としての光学センサは、燃焼器23における壁部61の外側で、光学窓62を覆うように配置される。火炎発生時期検出センサ14は、光学窓62を介して所定角度のセンサ領域14aが設定される。火炎発生時期検出センサ14は、光学窓62を通して火炎Cからの発光を検出する。なお、光学窓62は、透過性を有し、特定の波長の光(例えば、紫外光)だけを取り出すフィルタリング性能を有していてもよい。また、光学窓62は、内側の面に対してパージガスを噴出する機構を設けることで、視認性の確保や冷却性を確保してもよい。
As shown in FIG. 2, the combustor 23 is provided with an optical window 62 on the wall 61 on the base end 23a side. An optical sensor serving as the flame generation timing detection sensor 14 is arranged outside the wall portion 61 of the combustor 23 so as to cover the optical window 62. In the flame generation timing detection sensor 14, a sensor area 14a having a predetermined angle is set through an optical window 62. The flame generation timing detection sensor 14 detects light emitted from the flame C through the optical window 62. Note that the optical window 62 may be transparent and may have filtering performance to extract only light of a specific wavelength (for example, ultraviolet light). Further, the optical window 62 may be provided with a mechanism for ejecting purge gas to the inner surface to ensure visibility and cooling performance.
なお、光学センサの取付構造は、上述したものに限定されない。図3は、光学センサの取付構造の変形例を表す断面図である。
Note that the mounting structure of the optical sensor is not limited to that described above. FIG. 3 is a sectional view showing a modification of the optical sensor mounting structure.
図3に示すように、燃焼器23は、基端23a側の壁部61に光学窓62が設けられる。火炎発生時期検出センサ14としての光学センサは、燃焼器23から離間した所定の位置に配置される。火炎発生時期検出センサ14と光学窓62との間に光ファイバ63が設けられる。光ファイバ63は、一端部が火炎発生時期検出センサ14に接続され、他端部が取付部材64により燃焼器23における壁部61の外側で、光学窓62に面するように取付けられる。火炎発生時期検出センサ14は、光ファイバ63および光学窓62を介して所定角度のセンサ領域14aが設定される。火炎発生時期検出センサ14は、光ファイバ63により光学窓62を通して火炎Cからの発光を検出する。
As shown in FIG. 3, the combustor 23 is provided with an optical window 62 on the wall 61 on the base end 23a side. An optical sensor serving as the flame generation timing detection sensor 14 is arranged at a predetermined position apart from the combustor 23. An optical fiber 63 is provided between the flame generation timing detection sensor 14 and the optical window 62. One end of the optical fiber 63 is connected to the flame generation timing detection sensor 14 , and the other end is attached by a mounting member 64 to the outside of the wall 61 of the combustor 23 so as to face the optical window 62 . In the flame generation timing detection sensor 14, a sensor area 14a having a predetermined angle is set via an optical fiber 63 and an optical window 62. The flame generation timing detection sensor 14 detects light emitted from the flame C through the optical window 62 using the optical fiber 63.
<爆轟と爆燃と逆火の検出方法>
図4は、爆轟と爆燃と逆火の検出方法を説明するためのタイムチャートである。 <How to detect detonation, deflagration, and flashback>
FIG. 4 is a time chart for explaining a method of detecting detonation, deflagration, and flashback.
図4は、爆轟と爆燃と逆火の検出方法を説明するためのタイムチャートである。 <How to detect detonation, deflagration, and flashback>
FIG. 4 is a time chart for explaining a method of detecting detonation, deflagration, and flashback.
図1および図4に示すように、可燃性ガス供給装置12は、燃料供給部31および酸化剤供給部41により燃料と酸化剤が混合された可燃性ガスMを起爆管22に供給して充てんする。そして、時間t2にて、点火装置13が作動し、起爆管22の可燃性ガスMに点火する。すると、可燃性ガスMは、起爆管22の第1通路24を流れる間に着火され、火炎Cが基端22aから先端22bに広がるように燃焼する。そして、起爆管22の火炎Cが燃焼器23に到達すると、火炎Cが基端23aから第2通路25を通って先端23bに広がるように燃焼し、爆轟による衝撃波Sが生成される。
As shown in FIGS. 1 and 4, the combustible gas supply device 12 fills the detonator 22 by supplying a flammable gas M in which fuel and an oxidizer are mixed by a fuel supply section 31 and an oxidizer supply section 41. do. Then, at time t2, the ignition device 13 is activated to ignite the combustible gas M in the detonator 22. Then, the combustible gas M is ignited while flowing through the first passage 24 of the detonator 22, and burns so that the flame C spreads from the base end 22a to the tip 22b. Then, when the flame C of the detonator 22 reaches the combustor 23, the flame C burns so as to spread from the base end 23a through the second passage 25 to the tip 23b, and a shock wave S is generated by the detonation.
制御装置15は、火炎発生時期検出センサ14が検出した火炎Cの発生時期(伝播速度)に基づいて爆轟と爆燃と逆火(自着火)を判定する。火炎発生時期検出センサ14は、光学センサであって、火炎C(例えば、紫外光線)を検出する。火炎発生時期検出センサ14は、火炎Cの発生時にパルスがONとなり、火炎Cが消滅時にパルスがOFFとなる。そのため、制御装置15は、火炎発生時期検出センサ14が検出した火炎発生時(パルスON)から火炎消滅時(パルスOFF)までの火炎Cが発生した時間であるパルス長τdを算出する。パルス長τdは、火炎Cの伝播速度に反比例する。制御装置15は、火炎Cの発生期間のパルス長τd(火炎Cの伝播速度)に基づいて燃料(可燃性ガスM)の燃焼状態を判定する。
The control device 15 determines detonation, deflagration, and backfire (self-ignition) based on the generation timing (propagation velocity) of the flame C detected by the flame generation timing detection sensor 14. The flame generation timing detection sensor 14 is an optical sensor that detects flame C (for example, ultraviolet light). In the flame generation timing detection sensor 14, the pulse is turned ON when the flame C is generated, and the pulse is turned OFF when the flame C is extinguished. Therefore, the control device 15 calculates the pulse length τd, which is the time during which the flame C was generated from the time of flame generation (pulse ON) detected by the flame generation timing detection sensor 14 to the time of flame extinction (pulse OFF). The pulse length τd is inversely proportional to the propagation speed of the flame C. The control device 15 determines the combustion state of the fuel (combustible gas M) based on the pulse length τd (propagation speed of the flame C) during the generation period of the flame C.
燃料が燃焼するとき、火炎Cの伝播速度に応じて爆燃または爆轟となる。火炎Cの伝播速度が音速以下であるときは爆燃となり、火炎Cの伝播速度が音速を超えると爆轟となって衝撃波Sが生成される。爆轟になると、衝撃波Sが生成される。ここで、爆燃と爆轟との間に、火炎Cの伝播速度に応じたしきい値τtを設定する。爆燃と爆轟との間の伝播速度に応じたしきい値τtは、例えば、伝播速度1000m/sに応じたパルス長である。つまり、算出したパルス長τdがしきい値τt以下であるときは爆轟であり、パルス長τd(火炎Cの伝播速度)がしきい値τtを超えたときは爆燃である。一般的に、爆轟による衝撃波Sの伝播速度(火炎Cの伝播速度)は、1000m/s以上となることから、パルス長τdが短くなる。
When the fuel burns, it becomes a deflagration or a detonation depending on the propagation speed of the flame C. When the propagation speed of the flame C is less than the speed of sound, it becomes a deflagration, and when the propagation speed of the flame C exceeds the speed of sound, it becomes a detonation and a shock wave S is generated. When the explosion occurs, a shock wave S is generated. Here, a threshold value τt corresponding to the propagation speed of the flame C is set between the deflagration and the detonation. The threshold value τt depending on the propagation speed between the deflagration and the detonation is, for example, a pulse length depending on the propagation speed of 1000 m/s. That is, when the calculated pulse length τd is less than or equal to the threshold value τt, it is a detonation, and when the pulse length τd (propagation speed of the flame C) exceeds the threshold value τt, it is a deflagration. Generally, the propagation speed of the shock wave S due to the detonation (the propagation speed of the flame C) is 1000 m/s or more, so the pulse length τd becomes short.
そのため、制御装置15は、パルス長τdがしきい値τt以下であるときは爆轟と判定し、パルス長τd(火炎Cの伝播速度)がしきい値τtを超えたときは爆燃と判定する。つまり、時間t3でパルスがONとなり、時間t4でパルスがOFFとなると、パルス長τdがしきい値τt以下であるため、制御装置15は、爆轟と判定する。一方、時間t3でパルスがONとなり、時間t6でパルスがOFFとなると、パルス長τdがしきい値τtを超えるため、制御装置15は、爆燃と判定する。
Therefore, the control device 15 determines that it is a detonation when the pulse length τd is less than or equal to the threshold value τt, and determines that it is a deflagration when the pulse length τd (propagation speed of the flame C) exceeds the threshold value τt. . That is, when the pulse is turned ON at time t3 and turned OFF at time t4, the control device 15 determines that it is a detonation because the pulse length τd is equal to or less than the threshold value τt. On the other hand, when the pulse is turned ON at time t3 and turned OFF at time t6, the pulse length τd exceeds the threshold value τt, so the control device 15 determines that there is a deflagration.
また、ボイラの稼働中、火炉101の内部空間103を上昇する排ガスに熱により燃焼器23に充てんされた可燃性ガスMが自着火することがある。制御装置15は、火炎発生時期検出センサ14が検出した火炎Cの発生時期に基づいて自着火による逆火を判定する。すなわち、時間t2にて、点火装置13が作動し、起爆管22の可燃性ガスMに点火されると、その後、可燃性ガスMが着火されて爆轟による衝撃波Sが生成される。しかし、燃焼器23に充てんされた可燃性ガスMが自着火すると、火炎発生時期検出センサ14は、点火装置13が作動する前に火炎Cを検出する。時間t2で点火装置13が作動して可燃性ガスMに点火するとき、逆火(自着火)が発生すると、時間t2より時間Taだけ前の時間t1にて、パルスがONとなり、時間t5にて、パルスがOFFとなる。制御装置15は、点火装置13が作動する時間t2より前の時間t1にて、パルスがONになると、逆火と判定する。
Furthermore, during operation of the boiler, the combustible gas M filled in the combustor 23 may self-ignite due to heat in the exhaust gas rising in the internal space 103 of the furnace 101. The control device 15 determines flashback due to self-ignition based on the generation timing of the flame C detected by the flame generation timing detection sensor 14. That is, at time t2, the ignition device 13 is activated and the combustible gas M in the detonator 22 is ignited, and then the combustible gas M is ignited and a shock wave S is generated by a detonation. However, when the combustible gas M filled in the combustor 23 self-ignites, the flame generation timing detection sensor 14 detects the flame C before the ignition device 13 is activated. When the ignition device 13 operates to ignite the combustible gas M at time t2, if backfire (self-ignition) occurs, the pulse is turned ON at time t1, which is a time Ta before time t2, and at time t5. Then, the pulse turns OFF. The control device 15 determines that there is a backfire when the pulse is turned on at time t1, which is before time t2 when the ignition device 13 is activated.
そして、制御装置15が爆轟と判定すると、燃焼装置11は、正常な燃焼であることから、制御装置15は、次の運転タイミングでも同様の制御により、燃焼装置11と可燃性ガス供給装置12と点火装置13を作動する。
When the control device 15 determines that there is a detonation, the combustion device 11 is performing normal combustion. Therefore, the control device 15 controls the combustion device 11 and the combustible gas supply device 12 by the same control at the next operation timing. and activates the ignition device 13.
一方、制御装置15が爆燃と判定すると、燃焼装置11は、異常な燃焼であることから、制御装置15は、次の運転タイミングでは、異なる制御により、燃焼装置11と可燃性ガス供給装置12と点火装置13を作動する。すなわち、制御装置15は、例えば、可燃性ガス供給装置12により生成される可燃性ガスMにおける燃料と酸化剤の混合比を調整する。
On the other hand, if the control device 15 determines that there is deflagration, the combustion device 11 will control the combustion device 11 and the combustible gas supply device 12 by different control at the next operation timing. Activate the ignition device 13. That is, the control device 15 adjusts the mixing ratio of fuel and oxidizer in the combustible gas M generated by the combustible gas supply device 12, for example.
また、制御装置15が逆火と判定すると、燃焼装置11は、異常な燃焼であることから、制御装置15は、可燃性ガス供給装置12による燃焼装置11への可燃性ガスMの供給を停止する。そして、パージガスPを燃焼装置11へ供給することで、逆火の進行を抑制する。
Further, when the control device 15 determines that there is a backfire, the combustion device 11 stops the supply of the combustible gas M to the combustion device 11 by the combustible gas supply device 12 because the combustion is abnormal. do. Then, by supplying the purge gas P to the combustion device 11, the progress of flashback is suppressed.
<燃料の燃焼状態判定方法>
図5は、衝撃波生成装置による燃料の燃焼状態判定方法を表すフローチャートである。 <Fuel combustion state determination method>
FIG. 5 is a flowchart illustrating a method for determining the combustion state of fuel by the shock wave generating device.
図5は、衝撃波生成装置による燃料の燃焼状態判定方法を表すフローチャートである。 <Fuel combustion state determination method>
FIG. 5 is a flowchart illustrating a method for determining the combustion state of fuel by the shock wave generating device.
図1および図5に示すように、ステップS11にて、制御装置15は、パージガス供給弁55を閉止し、燃焼装置11へのパージガスPの供給を停止する。ステップS12にて、制御装置15は、燃料供給弁37を開放して燃料Fの供給を開始すると共に、酸化剤供給弁47を開放して酸化剤Aの供給を開始する。すると、燃料Fと酸化剤Aが混合された可燃性ガスMが燃焼装置11の起爆管22に供給される。
As shown in FIGS. 1 and 5, in step S11, the control device 15 closes the purge gas supply valve 55 and stops supplying the purge gas P to the combustion device 11. In step S12, the control device 15 opens the fuel supply valve 37 to start supplying the fuel F, and opens the oxidizing agent supply valve 47 to start supplying the oxidizing agent A. Then, combustible gas M in which fuel F and oxidizer A are mixed is supplied to the detonator 22 of the combustion device 11 .
ステップS13にて、制御装置15は、火炎発生時期検出センサ14が火炎発生に伴って発生するパルス(ON)を検出したか否かを判定する。ここで、制御装置15は、火炎発生時期検出センサ14がパルス(ON)を検出したと判定(Yes)すると、ステップS14にて、制御装置15は、逆火が発生したと判定し、ステップS15にて、燃焼装置11の異常燃焼であると判定する。すなわち、制御装置15は、点火装置13の作動前にもかかわらず、火炎発生時期検出センサ14が燃焼器23で発生した火炎Cを検出したため、逆火が発生した異常燃焼であると判定する。そして、ステップS16にて、警報装置16を作動する。ステップS17にて、燃焼装置11への可燃性ガスMの供給を停止し、ステップS18にて、パージガスPを燃焼装置11へ供給する。
In step S13, the control device 15 determines whether the flame generation timing detection sensor 14 has detected a pulse (ON) that is generated with flame generation. Here, if the control device 15 determines that the flame generation timing detection sensor 14 has detected the pulse (ON) (Yes), in step S14, the control device 15 determines that a backfire has occurred, and in step S15 , it is determined that there is abnormal combustion in the combustion device 11. That is, since the flame generation timing detection sensor 14 detected the flame C generated in the combustor 23 even before the ignition device 13 was activated, the control device 15 determines that this is abnormal combustion in which backfire has occurred. Then, in step S16, the alarm device 16 is activated. In step S17, the supply of combustible gas M to the combustion device 11 is stopped, and in step S18, the purge gas P is supplied to the combustion device 11.
一方、ステップS13にて、制御装置15は、火炎発生時期検出センサ14がパルス(ON)を検出していないと判定(No)すると、ステップS19に移行する。ステップS19にて、制御装置15は、可燃性ガスMを起爆管22に供給してから、予め設定された所定の経過時間が経過したか否かを判定する。ここで、経過時間とは、所定量の可燃性ガスMが燃焼装置11における起爆管22および燃焼器23の内部に充填されるまでの時間である。制御装置15は、所定の経過時間が経過していないと判定(NO)すると、ステップS13に戻る。
On the other hand, if the control device 15 determines in step S13 that the flame generation timing detection sensor 14 has not detected the pulse (ON) (No), the process proceeds to step S19. In step S19, the control device 15 determines whether a predetermined elapsed time set in advance has elapsed since the combustible gas M was supplied to the detonator 22. Here, the elapsed time is the time until a predetermined amount of combustible gas M is filled into the detonator 22 and the combustor 23 in the combustion device 11. When the control device 15 determines that the predetermined elapsed time has not elapsed (NO), the process returns to step S13.
一方、制御装置15は、所定の経過時間が経過したと判定(Yes)すると、ステップS20にて、制御装置15は、燃料供給弁37を閉止して燃料Fの供給を停止すると共に、酸化剤供給弁47を閉止して酸化剤Aの供給を停止する。すると、燃焼装置11の起爆管22への可燃性ガスMの供給が停止される。そして、ステップS21にて、制御装置15は、点火装置13を作動し、起爆管22に充填された可燃性ガスMに点火する。すると、可燃性ガスMは、起爆管22の第1通路24を流れる間に着火され、火炎Cが基端22aから先端22bに広がるように燃焼する。そして、起爆管22の火炎Cが燃焼器23に到達すると、火炎Cが基端23aから第2通路25を通って先端23bに広がるように燃焼する。
On the other hand, if the control device 15 determines that the predetermined elapsed time has elapsed (Yes), in step S20, the control device 15 closes the fuel supply valve 37 to stop the supply of the fuel F, and also The supply valve 47 is closed to stop the supply of oxidizing agent A. Then, the supply of flammable gas M to the detonator 22 of the combustion device 11 is stopped. Then, in step S21, the control device 15 operates the ignition device 13 to ignite the combustible gas M filled in the detonator 22. Then, the combustible gas M is ignited while flowing through the first passage 24 of the detonator 22, and burns so that the flame C spreads from the base end 22a to the tip 22b. When the flame C of the detonator 22 reaches the combustor 23, the flame C is combusted so as to spread from the base end 23a through the second passage 25 to the tip 23b.
ステップS22にて、制御装置15は、火炎発生時期検出センサ14が火炎発生に伴って発生するパルス(ON)を検出したか否かを判定する。ここで、制御装置15は、火炎発生時期検出センサ14がパルス(ON)を検出していないと判定(No)すると、ステップS31にて、制御装置15は、点火装置13が作動してから予め設定された所定の待ち時間が経過したか否かを判定する。ここで、制御装置15は、待ち時間が経過していないと判定(No)すると、このままで待機する。しかし、制御装置15は、待ち時間が経過したと判定(Yes)すると、ステップS32にて、制御装置15は、点火装置13による可燃性ガスMへの着火失敗と推定し、ステップS33にて、警報装置16を作動する。
In step S22, the control device 15 determines whether the flame generation timing detection sensor 14 has detected a pulse (ON) that is generated with flame generation. Here, if the control device 15 determines that the flame generation timing detection sensor 14 has not detected the pulse (ON) (No), in step S31, the control device 15 determines that the flame generation timing detection sensor 14 has not detected the pulse (ON). It is determined whether or not a predetermined waiting time has elapsed. Here, if the control device 15 determines that the waiting time has not elapsed (No), it remains on standby. However, if the control device 15 determines that the waiting time has elapsed (Yes), in step S32, the control device 15 estimates that the ignition device 13 has failed to ignite the combustible gas M, and in step S33, Activate the alarm device 16.
一方、制御装置15は、火炎発生時期検出センサ14がパルス(ON)を検出したと判定(Yes)すると、ステップS23にて、制御装置15は、検出したパルス長τdがしきい値τt以下であるか否かを判定する。ここで、制御装置15は、検出したパルス長τdがしきい値τt以下ではないと判定(No)すると、ステップS24にて、制御装置15は、爆燃が発生したと判定し、ステップS25にて、燃焼装置11の異常燃焼であると判定する。そして、ステップS26にて、警報装置16を作動する。ステップS27にて、燃焼装置11へ供給する可燃性ガスMにおける燃料Fと酸化剤Aの混合比を調整する。
On the other hand, when the control device 15 determines that the flame generation timing detection sensor 14 has detected the pulse (ON) (Yes), in step S23, the control device 15 determines that the detected pulse length τd is equal to or less than the threshold value τt. Determine whether it exists or not. Here, if the control device 15 determines that the detected pulse length τd is not equal to or less than the threshold value τt (No), the control device 15 determines that deflagration has occurred in step S24, and in step S25 , it is determined that there is abnormal combustion in the combustion device 11. Then, in step S26, the alarm device 16 is activated. In step S27, the mixture ratio of fuel F and oxidizer A in the combustible gas M supplied to the combustion device 11 is adjusted.
一方、ステップS23にて、制御装置15は、検出したパルス長τdがしきい値τt以下であると判定(Yes)すると、ステップS28にて、制御装置15は、爆轟が発生したと判定し、ステップS29にて、燃焼装置11の正常燃焼であると判定する。
On the other hand, if the control device 15 determines in step S23 that the detected pulse length τd is equal to or less than the threshold value τt (Yes), the control device 15 determines that a detonation has occurred in step S28. , in step S29, it is determined that the combustion device 11 is performing normal combustion.
[第2実施形態]
図6は、第2実施形態の衝撃波生成装置における爆轟の強度を説明するための概略図である。なお、第2実施形態の基本的な構成は、上述した第1実施形態と同様であり、図1を用いて説明し、上述した第1実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。 [Second embodiment]
FIG. 6 is a schematic diagram for explaining the intensity of detonation in the shock wave generation device of the second embodiment. The basic configuration of the second embodiment is the same as that of the first embodiment described above, and will be explained using FIG. Reference numerals are given and detailed explanations are omitted.
図6は、第2実施形態の衝撃波生成装置における爆轟の強度を説明するための概略図である。なお、第2実施形態の基本的な構成は、上述した第1実施形態と同様であり、図1を用いて説明し、上述した第1実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。 [Second embodiment]
FIG. 6 is a schematic diagram for explaining the intensity of detonation in the shock wave generation device of the second embodiment. The basic configuration of the second embodiment is the same as that of the first embodiment described above, and will be explained using FIG. Reference numerals are given and detailed explanations are omitted.
図1に示すように、衝撃波生成装置10は、燃焼装置11と、可燃性ガス供給装置12と、点火装置13と、火炎発生時期検出センサ14と、制御装置(判定装置)15と、警報装置16とを備える。
As shown in FIG. 1, the shock wave generation device 10 includes a combustion device 11, a flammable gas supply device 12, an ignition device 13, a flame generation timing detection sensor 14, a control device (determination device) 15, and an alarm device. 16.
制御装置15は、判定装置として機能し、火炎発生時期検出センサ14の検出結果に基づいて爆轟と爆燃と逆火(自着火)を判定する。そして、制御装置15は、火炎発生時期検出センサ14の検出結果に基づいて爆轟と判定したとき、火炎の伝播速度に基づいて爆轟波の強度を推定する。
The control device 15 functions as a determination device, and determines detonation, deflagration, and backfire (self-ignition) based on the detection results of the flame generation timing detection sensor 14. Then, when the control device 15 determines that there is a detonation based on the detection result of the flame generation timing detection sensor 14, the control device 15 estimates the intensity of the detonation wave based on the propagation speed of the flame.
爆轟の強度は、燃焼器23で発生した火炎Cの発生時間、つまり、火炎発生時期検出センサ14が火炎Cを検出してパルスがONとなってからパルスがOFFとなるまでのパルス長τdに応じて推定される。すなわち、燃焼器23に供給される可燃性ガスMの充填量に応じて火炎の爆轟の強度が変化する。そのため、爆轟は、パルス長τdがしきい値τt以下で、且つ、パルス長τdが長いほど強度が高いものと推定できる。
The intensity of the detonation is determined by the generation time of the flame C generated in the combustor 23, that is, the pulse length τd from when the flame generation timing detection sensor 14 detects the flame C and the pulse turns ON until the pulse turns OFF. Estimated according to. That is, the intensity of the flame detonation changes depending on the amount of combustible gas M supplied to the combustor 23. Therefore, it can be estimated that the intensity of the detonation is higher as the pulse length τd is less than or equal to the threshold value τt and the pulse length τd is longer.
図6に示すように、爆轟の判定は、衝撃波S(火炎)のパルス長τdがしきい値τt以下であると規定されたとき、最も強度の高い最大衝撃波は、パルス長τd=しきい値τtのときである。例えば、パルス長τdがしきい値τtの1/2よりも短いパルス長τd1であるとき、第1衝撃波は、強度が低いものとなる。一方、パルス長τdがしきい値τtの1/2よりも長いパルス長τd2であるとき、第2衝撃波は、強度が高いものとなる。なお、しきい値τtは、余裕分を考慮して設定される。
As shown in FIG. 6, when determining a detonation, when the pulse length τd of the shock wave S (flame) is specified to be less than or equal to the threshold value τt, the maximum shock wave with the highest intensity is determined by the pulse length τd=threshold value. This is when the value τt. For example, when the pulse length τd is a pulse length τd1 shorter than 1/2 of the threshold value τt, the first shock wave has a low intensity. On the other hand, when the pulse length τd is a pulse length τd2 that is longer than 1/2 of the threshold value τt, the second shock wave has a high intensity. Note that the threshold value τt is set in consideration of a margin.
図1に示すように、制御装置15は、衝撃波Sのパルス長τdから推定した爆轟(衝撃波S)の強度に基づいて、可燃性ガス供給装置12の制御を行う。例えば、制御装置15は、爆轟(衝撃波S)の強度に基づいて、燃焼装置11に対する可燃性ガスMの充てん量を増減したり、可燃性ガスMにおける燃料Fと酸化剤Aの混合比を調整したりする。そのため、衝撃波Sの強度を、火炉101の容積に応じた最適な強度に設定することができる。
As shown in FIG. 1, the control device 15 controls the combustible gas supply device 12 based on the intensity of the detonation (shock wave S) estimated from the pulse length τd of the shock wave S. For example, the control device 15 may increase or decrease the amount of combustible gas M filled into the combustion device 11 or change the mixing ratio of fuel F and oxidizer A in the combustible gas M based on the intensity of the detonation (shock wave S). Make adjustments. Therefore, the intensity of the shock wave S can be set to the optimum intensity according to the volume of the furnace 101.
[第3実施形態]
図7は、第3実施形態の衝撃波生成装置を表す概略構成図である。なお、上述した第1実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。 [Third embodiment]
FIG. 7 is a schematic configuration diagram showing a shock wave generation device according to the third embodiment. Note that members having the same functions as those in the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted.
図7は、第3実施形態の衝撃波生成装置を表す概略構成図である。なお、上述した第1実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。 [Third embodiment]
FIG. 7 is a schematic configuration diagram showing a shock wave generation device according to the third embodiment. Note that members having the same functions as those in the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted.
図7に示すように、衝撃波生成装置10Aは、燃焼装置11と、可燃性ガス供給装置12と、点火装置13と、火炎発生時期検出センサ14A,14Bと、制御装置(判定装置)15と、警報装置16とを備える。燃焼装置11と可燃性ガス供給装置12と点火装置13と制御装置15と警報装置16は、第1実施形態とほぼ同様の構成である。
As shown in FIG. 7, the shock wave generation device 10A includes a combustion device 11, a combustible gas supply device 12, an ignition device 13, flame generation timing detection sensors 14A, 14B, a control device (determination device) 15, An alarm device 16 is provided. The combustion device 11, the combustible gas supply device 12, the ignition device 13, the control device 15, and the alarm device 16 have substantially the same configuration as in the first embodiment.
第1火炎発生時期検出センサ14Aおよび第2火炎発生時期検出センサ14Bは、可燃性ガスMの燃焼による火炎Cの発生時期を検出する。火炎発生時期検出センサ14Aおよび第2火炎発生時期検出センサ14Bは、燃焼装置11における燃焼器23のガス流れ方向に間隔を空けて複数(本実施形態では、2個)配置される。火炎発生時期検出センサ14Aおよび第2火炎発生時期検出センサ14Bは、燃焼器23の第2通路25における可燃性ガスMまたは火炎C(衝撃波S)の流れ方向に交差する方向を向いて配置される。火炎発生時期検出センサ14Aは、第2通路25の上流側に配置され、第2火炎発生時期検出センサ14Bは、第2通路25の上流側に配置される。第1火炎発生時期検出センサ14Aおよび第2火炎発生時期検出センサ14Bは、燃焼器23の第2通路25におけるガス流れ方向の異なる2か所で火炎を検出する。なお、第1火炎発生時期検出センサ14Aおよび第2火炎発生時期検出センサ14Bは、燃焼器23で発生した火炎Cからの発光を検出する光学センサであり、検出方法は、第1実施形態と同様である。
The first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B detect the generation timing of the flame C due to combustion of the combustible gas M. A plurality of flame generation timing detection sensors 14A and a plurality of second flame generation timing detection sensors 14B (two in this embodiment) are arranged at intervals in the gas flow direction of the combustor 23 in the combustion device 11. The flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B are arranged to face a direction intersecting the flow direction of the combustible gas M or flame C (shock wave S) in the second passage 25 of the combustor 23. . The flame generation timing detection sensor 14A is arranged on the upstream side of the second passage 25, and the second flame generation timing detection sensor 14B is arranged on the upstream side of the second passage 25. The first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B detect flames at two locations in the second passage 25 of the combustor 23 in different gas flow directions. Note that the first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B are optical sensors that detect light emission from the flame C generated in the combustor 23, and the detection method is the same as in the first embodiment. It is.
図8は、爆轟と爆燃と逆火の検出方法を説明するためのタイムチャートである。
FIG. 8 is a time chart for explaining a method for detecting detonation, deflagration, and flashback.
図7および図8に示すように、可燃性ガス供給装置12は、燃料供給部31および酸化剤供給部41により燃料と酸化剤が混合された可燃性ガスMを起爆管22に供給して充てんする。そして、時間t2にて、点火装置13が作動し、起爆管22の可燃性ガスMに点火する。すると、可燃性ガスMは、起爆管22の第1通路24を流れる間に着火され、火炎Cが基端22aから先端22bに広がるように燃焼する。そして、起爆管22の火炎Cが燃焼器23に到達すると、火炎Cが基端23aから第2通路25を通って先端23bに広がるように燃焼し、爆轟による衝撃波Sが生成される。
As shown in FIGS. 7 and 8, the combustible gas supply device 12 fills the detonator 22 by supplying a combustible gas M in which fuel and an oxidizer are mixed by a fuel supply section 31 and an oxidizer supply section 41. do. Then, at time t2, the ignition device 13 is activated to ignite the combustible gas M in the detonator 22. Then, the combustible gas M is ignited while flowing through the first passage 24 of the detonator 22, and burns so that the flame C spreads from the base end 22a to the tip 22b. Then, when the flame C of the detonator 22 reaches the combustor 23, the flame C burns so as to spread from the base end 23a through the second passage 25 to the tip 23b, and a shock wave S is generated by the detonation.
制御装置15は、第1火炎発生時期検出センサ14Aおよび第2火炎発生時期検出センサ14Bが検出した火炎Cの発生時期(伝播速度)に基づいて爆轟と爆燃と逆火(自着火)を判定する。第1火炎発生時期検出センサ14Aおよび第2火炎発生時期検出センサ14Bは、光学センサであって、火炎C(例えば、紫外光線)を検出する。第1火炎発生時期検出センサ14Aおよび第2火炎発生時期検出センサ14Bは、火炎Cの発生時にパルスがONとなり、火炎Cが消滅時にパルスがOFFとなる。燃料が燃焼するとき、火炎Cの伝播速度に応じて爆燃または爆轟となる。火炎Cの伝播速度が音速以下であるときは爆燃となり、火炎Cの伝播速度が音速を超えると爆轟となって衝撃波Sが生成される。
The control device 15 determines detonation, deflagration, and backfire (self-ignition) based on the generation timing (propagation speed) of the flame C detected by the first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B. do. The first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B are optical sensors that detect flame C (for example, ultraviolet light). In the first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B, the pulse is turned ON when the flame C is generated, and the pulse is turned OFF when the flame C is extinguished. When the fuel burns, it results in a deflagration or detonation depending on the propagation speed of the flame C. When the propagation speed of the flame C is less than the speed of sound, it becomes a deflagration, and when the propagation speed of the flame C exceeds the speed of sound, it becomes a detonation and a shock wave S is generated.
第1火炎発生時期検出センサ14Aと第2火炎発生時期検出センサ14Bは、第2通路25のガス流れ方向に距離Lだけ離間して配置される。そのため、第1火炎発生時期検出センサ14Aにより火炎の検出時期(パルスON)と、第2火炎発生時期検出センサ14Bにより火炎の検出時期(パルスON)との間に時間差Δtが発生する。時間差Δtは、火炎Cの伝播速度に反比例する。制御装置15は、衝撃波Sの時間差Δt(火炎Cの伝播速度)に基づいて燃料(可燃性ガスM)の燃焼状態を判定する。
The first flame generation timing detection sensor 14A and the second flame generation timing detection sensor 14B are arranged a distance L apart from each other in the gas flow direction of the second passage 25. Therefore, a time difference Δt occurs between the flame detection timing (pulse ON) by the first flame generation timing detection sensor 14A and the flame detection timing (pulse ON) by the second flame generation timing detection sensor 14B. The time difference Δt is inversely proportional to the propagation speed of the flame C. The control device 15 determines the combustion state of the fuel (combustible gas M) based on the time difference Δt of the shock wave S (propagation speed of the flame C).
ここで、爆燃と爆轟との間に、火炎Cの伝播速度のしきい値Vtを設定する。爆燃と爆轟との間の伝播速度のしきい値Vtは、例えば、伝播速度1000m/sである。つまり、距離Lと算出した時間差Δtから求めた伝播速度L/Δtがしきい値Vt以上であるときは爆轟であり、伝播速度L/Δtがしきい値Vt未満であるときは爆燃である。
Here, a threshold value Vt of the propagation speed of the flame C is set between deflagration and detonation. The threshold value Vt of the propagation velocity between deflagration and detonation is, for example, a propagation velocity of 1000 m/s. In other words, when the propagation speed L/Δt calculated from the distance L and the calculated time difference Δt is equal to or higher than the threshold value Vt, it is a detonation, and when the propagation velocity L/Δt is less than the threshold value Vt, it is a deflagration. .
そのため、制御装置15は、伝播速度L/Δtがしきい値Vt以上であるときは爆轟と判定し、伝播速度L/Δtがしきい値Vt未満であるときは爆燃と判定する。つまり、時間t3で第1火炎発生時期検出センサ14AのパルスがONとなり、時間t4で第2火炎発生時期検出センサ14BのパルスがONなると、時間差Δt1が短いものとなり、伝播速度L/Δt1がしきい値Vt以上であるため、制御装置15は、爆轟と判定する。一方、時間t3で第1火炎発生時期検出センサ14AのパルスがONとなり、時間t5で第2火炎発生時期検出センサ14BのパルスがONなると、時間差Δt2が長いものとなり、伝播速度L/Δt2がしきい値Vt未満であるため、制御装置15は、爆燃と判定する。
Therefore, the control device 15 determines that it is a detonation when the propagation speed L/Δt is equal to or higher than the threshold value Vt, and determines that it is a deflagration when the propagation speed L/Δt is less than the threshold value Vt. In other words, when the pulse of the first flame generation timing detection sensor 14A turns ON at time t3, and the pulse of the second flame generation timing detection sensor 14B turns ON at time t4, the time difference Δt1 becomes short, and the propagation speed L/Δt1 decreases. Since it is equal to or higher than the threshold value Vt, the control device 15 determines that it is a detonation. On the other hand, when the pulse of the first flame generation timing detection sensor 14A turns ON at time t3 and the pulse of the second flame generation timing detection sensor 14B turns ON at time t5, the time difference Δt2 becomes long, and the propagation speed L/Δt2 increases. Since it is less than the threshold value Vt, the control device 15 determines that it is a deflagration.
また、ボイラの稼働中、火炉101の内部空間103を上昇する排ガスに熱により燃焼器23に充てんされた可燃性ガスMが自着火することがある。制御装置15は、第1火炎発生時期検出センサ14Aまたは第2火炎発生時期検出センサ14Bが検出した火炎Cの発生時期に基づいて自着火による逆火を判定する。すなわち、時間t2にて、点火装置13が作動し、起爆管22の可燃性ガスMに点火されると、その後、可燃性ガスM着火されて爆轟による衝撃波Sが生成される。しかし、燃焼器23に充てんされた可燃性ガスMが自着火すると、火炎発生時期検出センサ14,14Bは、点火装置13が作動する前に火炎Cを検出する。時間t2で点火装置13が作動して可燃性ガスMに点火するとき、逆火(自着火)が発生すると、時間t2より時間Taだけ前の時間t1にて、パルスがONとなり、時間t4にて、パルスがOFFとなる。制御装置15は、点火装置13が作動する時間t2より前の時間t1にて、パルスがONになると、逆火と判定する。
Furthermore, during operation of the boiler, the combustible gas M filled in the combustor 23 may self-ignite due to heat in the exhaust gas rising in the internal space 103 of the furnace 101. The control device 15 determines flashback due to self-ignition based on the generation timing of the flame C detected by the first flame generation timing detection sensor 14A or the second flame generation timing detection sensor 14B. That is, at time t2, when the ignition device 13 is activated and the combustible gas M in the detonator 22 is ignited, the combustible gas M is ignited and a shock wave S is generated by a detonation. However, when the combustible gas M filled in the combustor 23 self-ignites, the flame generation timing detection sensors 14 and 14B detect the flame C before the ignition device 13 is activated. When the ignition device 13 operates to ignite the combustible gas M at time t2, if backfire (self-ignition) occurs, the pulse is turned ON at time t1, which is a time Ta before time t2, and at time t4. Then, the pulse turns OFF. The control device 15 determines that there is a backfire when the pulse is turned on at time t1, which is before time t2 when the ignition device 13 is activated.
第3実施形態の衝撃波生成装置10Aによる燃料の燃焼状態判定方法は、第1実施形態とほぼ同様であることから、説明は省略する。
The method of determining the combustion state of fuel by the shock wave generating device 10A of the third embodiment is almost the same as that of the first embodiment, so the explanation will be omitted.
なお、第3実施形態は、第1実施形態に対して火炎発生時期検出センサ14,14Bに位置を変更したものである。但し、第1実施形態の火炎発生時期検出センサ14に対して、第3実施形態の火炎発生時期検出センサ14,14Bを追加してもよい。この場合、爆轟をより高精度に判定することができる。
Note that in the third embodiment, the positions of the flame generation timing detection sensors 14 and 14B are changed from those in the first embodiment. However, the flame generation timing detection sensors 14 and 14B of the third embodiment may be added to the flame generation timing detection sensor 14 of the first embodiment. In this case, detonation can be determined with higher accuracy.
[本実施形態の作用効果]
第1の態様に係る衝撃波生成装置は、基端から先端に向けて燃焼ガスが流れるガス通路21が設けられて先端に開口部が設けられる燃焼装置11と、燃焼装置11の基端から内部に可燃性ガスMを供給する可燃性ガス供給装置12と、燃焼装置11に供給された可燃性ガスMに点火する点火装置13と、可燃性ガスMの燃焼による火炎Cの発生時期を検出する火炎発生時期検出センサ14,14A,14Bと、火炎発生時期検出センサ14,14A,14Bの検出結果に基づいて点火装置13による点火前の可燃性ガスMの自着火を判定する制御装置(判定装置)15とを備える。 [Actions and effects of this embodiment]
The shock wave generating device according to the first aspect includes acombustion device 11 in which a gas passage 21 through which combustion gas flows from a base end to a tip end is provided and an opening is provided in the front end, and a combustion device 11 in which combustion gas flows from the base end to the inside. A combustible gas supply device 12 that supplies combustible gas M, an ignition device 13 that ignites combustible gas M supplied to combustion device 11, and a flame that detects the timing of generation of flame C due to combustion of combustible gas M. A control device (determination device) that determines self-ignition of the combustible gas M before ignition by the ignition device 13 based on the detection results of the flame generation timing detection sensors 14, 14A, 14B and the flame generation timing detection sensors 14, 14A, 14B. 15.
第1の態様に係る衝撃波生成装置は、基端から先端に向けて燃焼ガスが流れるガス通路21が設けられて先端に開口部が設けられる燃焼装置11と、燃焼装置11の基端から内部に可燃性ガスMを供給する可燃性ガス供給装置12と、燃焼装置11に供給された可燃性ガスMに点火する点火装置13と、可燃性ガスMの燃焼による火炎Cの発生時期を検出する火炎発生時期検出センサ14,14A,14Bと、火炎発生時期検出センサ14,14A,14Bの検出結果に基づいて点火装置13による点火前の可燃性ガスMの自着火を判定する制御装置(判定装置)15とを備える。 [Actions and effects of this embodiment]
The shock wave generating device according to the first aspect includes a
第1の態様に係る衝撃波生成装置によれば、制御装置15は、可燃性ガスMの燃焼による火炎Cの発生時期に基づいて点火装置13による点火前の可燃性ガスMの自着火を判定する。その結果、燃料の燃焼状態を判定することができる。
According to the shock wave generation device according to the first aspect, the control device 15 determines self-ignition of the combustible gas M before ignition by the ignition device 13 based on the generation timing of the flame C due to combustion of the combustible gas M. . As a result, the combustion state of the fuel can be determined.
第2の態様に係る衝撃波生成装置は、第1の態様に係る衝撃波生成装置であって、さらに、制御装置15は、火炎発生時期検出センサ14が検出した火炎Cの伝播速度に基づいて爆轟と爆燃を判定する。これにより、燃料の燃焼状態を詳細に判定することができる。
The shock wave generation device according to the second aspect is the shock wave generation device according to the first aspect, and further, the control device 15 causes a detonation based on the propagation speed of the flame C detected by the flame generation timing detection sensor 14. and determine deflagration. Thereby, the combustion state of the fuel can be determined in detail.
第3の態様に係る衝撃波生成装置は、第2の態様に係る衝撃波生成装置であって、さらに、制御装置15が爆轟と判定したとき、火炎Cの伝播速度に基づいて爆轟波の強度を推定する。これにより、爆轟波の強度を推定することで、衝撃波の適用先に応じて爆轟波の強度を調整することができる。
The shock wave generation device according to the third aspect is the shock wave generation device according to the second aspect, furthermore, when the control device 15 determines that there is a detonation, the intensity of the detonation wave is determined based on the propagation speed of the flame C. Estimate. Thereby, by estimating the intensity of the detonation wave, it is possible to adjust the intensity of the detonation wave depending on the destination to which the shock wave is applied.
第4の態様に係る衝撃波生成装置は、第1の態様から第3の態様のいずれか一つに係る衝撃波生成装置であって、さらに、火炎発生時期検出センサ14,14A,14Bは、前記火炎からの発光を検出する光学センサである。これにより、赤外光線、可視光線、紫外光線を検出することで、火炎を容易に特定することができる。
The shock wave generation device according to a fourth aspect is the shock wave generation device according to any one of the first to third aspects, and further, the flame generation timing detection sensors 14, 14A, 14B This is an optical sensor that detects light emitted from the Thereby, flames can be easily identified by detecting infrared rays, visible rays, and ultraviolet rays.
第5の態様に係る衝撃波生成装置は、第1の態様から第4の態様のいずれか一つに係る衝撃波生成装置であって、さらに、燃焼装置11は、基端22aに可燃性ガス供給装置12が接続される起爆管22と、基端23aが起爆管22の先端22bに連結された燃焼器23とを有し、火炎発生時期検出センサ14は、燃焼器23の開口部23cを向いて配置される。これにより、一つの火炎発生時期検出センサ14により、燃焼器23で発生する火炎を容易に検出することができる。
The shock wave generation device according to the fifth aspect is the shock wave generation device according to any one of the first to fourth aspects, and further includes a combustion device 11 having a combustible gas supply device at the base end 22a. The flame generation timing detection sensor 14 faces the opening 23c of the combustor 23. Placed. Thereby, the flame generated in the combustor 23 can be easily detected by one flame generation timing detection sensor 14.
第6の態様に係る衝撃波生成装置は、第1の態様から第5の態様のいずれか一つに係る衝撃波生成装置であって、さらに、燃焼装置11は、基端22aに可燃性ガス供給装置12が接続される起爆管22と、基端23aが起爆管22の先端22bに連結された燃焼器23とを有し、火炎発生時期検出センサ14A,14Bは、燃焼器23にガス流れ方向に間隔を空けて複数配置される。これにより、燃焼器23で発生する火炎を適切に検出することができる。
The shock wave generation device according to the sixth aspect is the shock wave generation device according to any one of the first to fifth aspects, and the combustion device 11 further includes a combustible gas supply device at the base end 22a. The flame generation timing detection sensors 14A and 14B are connected to the combustor 23 in the direction of gas flow. Multiple locations are placed at intervals. Thereby, the flame generated in the combustor 23 can be appropriately detected.
第7の態様に係る衝撃波生成装置は、第1の態様から第6の態様のいずれか一つに係る衝撃波生成装置であって、さらに、制御装置15が可燃性ガスMの自着火を判定すると、可燃性ガス供給装置12は、可燃性ガスMの供給を停止する。これにより、安全性を向上することができる。
The shock wave generation device according to the seventh aspect is the shock wave generation device according to any one of the first to sixth aspects, and further, when the control device 15 determines that the combustible gas M self-ignites, , the combustible gas supply device 12 stops supplying the combustible gas M. Thereby, safety can be improved.
第8の態様に係る衝撃波生成装置は、第7の態様に係る衝撃波生成装置であって、さらに、制御装置15が可燃性ガスMの自着火を判定すると、燃焼装置11の内部にパージガスPを供給する。これにより、安全性を向上することができる。
The shock wave generation device according to the eighth aspect is the shock wave generation device according to the seventh aspect, and further, when the control device 15 determines that the combustible gas M self-ignites, the purge gas P is supplied into the combustion device 11. supply Thereby, safety can be improved.
なお、上述した実施形態では、衝撃波生成装置を、ごみ焼却炉、石炭ガス化複合発電設備、発電用ボイラなどの火炉の内壁面や伝熱管の外面などに付着するダストを除去するダスト除去装置に適用したが、適用先はこれらに限定されるものではない。衝撃波生成装置は、例えば、衝撃波を燃焼装置の開口部から放射してその反力を受けて推力とする推進機関やタービンを回す動力機関、衝撃波を燃焼器の開口部から放射して開口部近くに配置した物体に対して衝撃波の高圧を利用して物理的な作用を及ぼす(構造物の破壊、材料の分離など)装置、燃焼装置の内部に配置した物体に対して衝撃波の高圧を利用して物理的な作用を及ぼす(構造物の破壊、材料の分離など)装置などに適用可能である。
In the embodiments described above, the shock wave generation device is used as a dust removal device that removes dust adhering to the inner wall surface of a furnace, the outer surface of a heat exchanger tube, etc. of a furnace such as a garbage incinerator, coal gasification combined cycle power generation facility, and power generation boiler. However, the scope of application is not limited to these. Shock wave generating devices are, for example, propulsion engines that emit shock waves from the opening of a combustor and generate thrust by receiving the reaction force, power engines that turn turbines, or power engines that emit shock waves from the opening of a combustor and generate thrust near the opening. A device that uses the high pressure of shock waves to exert physical effects on objects placed inside a combustion device (destruction of structures, separation of materials, etc.), a device that uses high pressure of shock waves to act on objects placed inside a combustion device, It can be applied to devices that exert physical action (destruction of structures, separation of materials, etc.).
10,10A 衝撃波生成装置
11 燃焼装置
12 可燃性ガス供給装置
13 点火装置
14 火炎発生時期検出センサ
14A 第1火炎発生時期検出センサ
14B 第2火炎発生時期検出センサ
15 制御装置(判定装置)
21 ガス通路
22 起爆管
23 燃焼器
24 第1通路
25 第2通路
31 燃料供給部
32 燃料供給経路
33 燃料ボンベ
34 減圧弁
35 マスフローコントローラ
36 安全器
37 燃料供給弁
38 逆止弁
41 酸化剤供給部
42 酸化剤供給経路
43 酸化剤ボンベ
44 減圧弁
45 マスフローコントローラ
46 安全器
47 酸化剤供給弁
48 逆止弁
51 クロス継手
52 可燃性ガス供給経路
53 パージガス経路
54 送風機
55 パージガス供給弁
61 壁部
62 光学窓
63 光ファイバ
64 取付部材
F 燃料
A 酸化剤
M 可燃性ガス
C 火炎
S 衝撃波
10, 10A Shockwave generation device 11 Combustion device 12 Flammable gas supply device 13 Ignition device 14 Flame generation timing detection sensor 14A First flame generation timing detection sensor 14B Second flame generation timing detection sensor 15 Control device (judgment device)
21gas passage 22 detonator 23 combustor 24 first passage 25 second passage 31 fuel supply section 32 fuel supply route 33 fuel cylinder 34 pressure reducing valve 35 mass flow controller 36 safety device 37 fuel supply valve 38 check valve 41 oxidizer supply section 42 Oxidizing agent supply route 43 Oxidizing agent cylinder 44 Pressure reducing valve 45 Mass flow controller 46 Safety device 47 Oxidizing agent supply valve 48 Check valve 51 Cross joint 52 Flammable gas supply route 53 Purge gas route 54 Blower 55 Purge gas supply valve 61 Wall portion 62 Optics Window 63 Optical fiber 64 Mounting member F Fuel A Oxidizer M Flammable gas C Flame S Shock wave
11 燃焼装置
12 可燃性ガス供給装置
13 点火装置
14 火炎発生時期検出センサ
14A 第1火炎発生時期検出センサ
14B 第2火炎発生時期検出センサ
15 制御装置(判定装置)
21 ガス通路
22 起爆管
23 燃焼器
24 第1通路
25 第2通路
31 燃料供給部
32 燃料供給経路
33 燃料ボンベ
34 減圧弁
35 マスフローコントローラ
36 安全器
37 燃料供給弁
38 逆止弁
41 酸化剤供給部
42 酸化剤供給経路
43 酸化剤ボンベ
44 減圧弁
45 マスフローコントローラ
46 安全器
47 酸化剤供給弁
48 逆止弁
51 クロス継手
52 可燃性ガス供給経路
53 パージガス経路
54 送風機
55 パージガス供給弁
61 壁部
62 光学窓
63 光ファイバ
64 取付部材
F 燃料
A 酸化剤
M 可燃性ガス
C 火炎
S 衝撃波
10, 10A Shock
21
Claims (8)
- 基端から先端に向けて燃焼ガスが流れるガス通路が設けられて前記先端に開口部が設けられる燃焼装置と、
前記燃焼装置の前記基端から内部に可燃性ガスを供給する可燃性ガス供給装置と、
前記燃焼装置に供給された前記可燃性ガスに点火する点火装置と、
前記可燃性ガスの燃焼による火炎の発生時期を検出する火炎発生時期検出センサと、
前記火炎発生時期検出センサの検出結果に基づいて前記点火装置による点火前の前記可燃性ガスの自着火を判定する判定装置と、
を備える衝撃波生成装置。 A combustion device in which a gas passage through which combustion gas flows from a base end to a distal end is provided, and an opening is provided at the distal end;
a combustible gas supply device that supplies flammable gas from the base end of the combustion device to the inside;
an ignition device that ignites the combustible gas supplied to the combustion device;
a flame generation timing detection sensor that detects the generation timing of flame due to combustion of the combustible gas;
a determination device that determines self-ignition of the combustible gas before ignition by the ignition device based on a detection result of the flame generation timing detection sensor;
A shock wave generation device comprising: - 前記判定装置は、前記火炎発生時期検出センサが検出した火炎の伝播速度に基づいて爆轟と爆燃を判定する、
請求項1に記載の衝撃波生成装置。 The determination device determines whether a detonation is a detonation or a deflagration based on a flame propagation speed detected by the flame generation timing detection sensor.
The shock wave generating device according to claim 1. - 前記判定装置が爆轟と判定したとき、火炎の伝播速度に基づいて爆轟波の強度を推定する、
請求項2に記載の衝撃波生成装置。 When the determination device determines that there is a detonation, the intensity of the detonation wave is estimated based on the propagation speed of the flame.
The shock wave generating device according to claim 2. - 前記火炎発生時期検出センサは、前記火炎からの発光を検出する光学センサである、
請求項1から請求項3のいずれか一項に記載の衝撃波生成装置。 The flame generation timing detection sensor is an optical sensor that detects light emitted from the flame.
The shock wave generation device according to any one of claims 1 to 3. - 前記燃焼装置は、基端に可燃性ガス供給装置が接続される起爆管と、基端が前記起爆管の先端に連結された燃焼器とを有し、前記火炎発生時期検出センサは、前記燃焼器の前記開口部を向いて配置される、
請求項1に記載の衝撃波生成装置。 The combustion device includes a detonator whose base end is connected to a flammable gas supply device, and a combustor whose base end is connected to the tip of the detonator, and the flame generation timing detection sensor is configured to detect the combustion timing. placed facing the opening of the vessel;
The shock wave generating device according to claim 1. - 前記燃焼装置は、基端に可燃性ガス供給装置が接続される起爆管と、基端が前記起爆管の先端に連結された燃焼器とを有し、前記火炎発生時期検出センサは、前記燃焼器にガス流れ方向に間隔を空けて複数配置される、
請求項1に記載の衝撃波生成装置。 The combustion device includes a detonator whose base end is connected to a flammable gas supply device, and a combustor whose base end is connected to the tip of the detonator, and the flame generation timing detection sensor is configured to detect the combustion timing. Multiple units are placed at intervals in the gas flow direction in the vessel.
The shock wave generating device according to claim 1. - 前記判定装置が前記可燃性ガスの自着火を判定すると、前記可燃性ガス供給装置は、前記可燃性ガスの供給を停止する、
請求項1に記載の衝撃波生成装置。 When the determination device determines that the combustible gas has self-ignited, the combustible gas supply device stops supplying the combustible gas.
The shock wave generating device according to claim 1. - 前記判定装置が前記可燃性ガスの自着火を判定すると、前記燃焼装置の内部にパージガスを供給する、
請求項7に記載の衝撃波生成装置。
When the determination device determines that the combustible gas has self-ignited, supplying purge gas into the combustion device;
The shock wave generating device according to claim 7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022130078A JP2024027347A (en) | 2022-08-17 | 2022-08-17 | Shock wave generation device |
JP2022-130078 | 2022-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024038632A1 true WO2024038632A1 (en) | 2024-02-22 |
Family
ID=89941643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/006517 WO2024038632A1 (en) | 2022-08-17 | 2023-02-22 | Shock wave generating device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024027347A (en) |
WO (1) | WO2024038632A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0765558B2 (en) * | 1988-07-01 | 1995-07-19 | 本田技研工業株式会社 | Abnormal combustion detection device and combustion control device for internal combustion engine |
JPH08277458A (en) * | 1995-04-06 | 1996-10-22 | Nippon Steel Corp | Thermal spraying device having backfire detector and method for extinguishing backfire |
JP2008272747A (en) * | 2007-04-26 | 2008-11-13 | United Technol Corp <Utc> | Cleaning apparatus and method for cleaning surface within vessel |
JP2014074336A (en) * | 2012-10-02 | 2014-04-24 | Toyota Motor Corp | Control device of vehicle |
JP2017219221A (en) * | 2016-06-06 | 2017-12-14 | 岩谷産業株式会社 | Hydrogen combustion device |
JP2018178868A (en) * | 2017-04-14 | 2018-11-15 | 三菱電機株式会社 | Device for detecting abnormal combustion of internal combustion engine |
-
2022
- 2022-08-17 JP JP2022130078A patent/JP2024027347A/en active Pending
-
2023
- 2023-02-22 WO PCT/JP2023/006517 patent/WO2024038632A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0765558B2 (en) * | 1988-07-01 | 1995-07-19 | 本田技研工業株式会社 | Abnormal combustion detection device and combustion control device for internal combustion engine |
JPH08277458A (en) * | 1995-04-06 | 1996-10-22 | Nippon Steel Corp | Thermal spraying device having backfire detector and method for extinguishing backfire |
JP2008272747A (en) * | 2007-04-26 | 2008-11-13 | United Technol Corp <Utc> | Cleaning apparatus and method for cleaning surface within vessel |
JP2014074336A (en) * | 2012-10-02 | 2014-04-24 | Toyota Motor Corp | Control device of vehicle |
JP2017219221A (en) * | 2016-06-06 | 2017-12-14 | 岩谷産業株式会社 | Hydrogen combustion device |
JP2018178868A (en) * | 2017-04-14 | 2018-11-15 | 三菱電機株式会社 | Device for detecting abnormal combustion of internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP2024027347A (en) | 2024-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2421662C2 (en) | Gas turbine engine and method of detecting partial tail cone extinction of gas turbine engine | |
US8789478B2 (en) | Dry distillation and gasification typed incinerator | |
JP2613345B2 (en) | Dry distillation gasification and incineration of waste | |
EP4105556A1 (en) | Burner with torch ignition mechanism and operation method thereof | |
WO2024038632A1 (en) | Shock wave generating device | |
US6302682B1 (en) | Laser controlled flame stabilization | |
JP3963925B2 (en) | Secondary combustion method and apparatus in incineration system | |
JP3437951B2 (en) | Combustion control system for carbonization gasifier | |
KR101811798B1 (en) | Off-gas flare | |
JP4614078B2 (en) | Flame detection device in a combustor | |
JP2010230236A (en) | Flare tip | |
JP3784194B2 (en) | Burner and operating method thereof | |
US5775895A (en) | Combustion-state detecting circuit of combustion apparatus | |
JP2024027346A (en) | Shock wave generation device | |
JPH07208734A (en) | Flame detecting system | |
KR0138508B1 (en) | Apparatus for incinerating waste material | |
RU2388969C1 (en) | Device for monitoring of burner torch availability | |
KR200276033Y1 (en) | A exhaust of coal boiler | |
JP2558797B2 (en) | Water heater controller | |
JPS584043Y2 (en) | Combustible gas combustion detection device | |
RU2324116C1 (en) | System for firing torch and controlling flame presence | |
KR100422866B1 (en) | Inflammation Stabilization Apparatus and Method Thereof While Initial Igniting In Premix Condensing Boiler | |
JPH0979555A (en) | Garbage incinerator | |
DK0866269T3 (en) | Boiler for heat generation | |
RU1839218C (en) | Ignition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23854672 Country of ref document: EP Kind code of ref document: A1 |