WO2024038607A1 - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
WO2024038607A1
WO2024038607A1 PCT/JP2022/031451 JP2022031451W WO2024038607A1 WO 2024038607 A1 WO2024038607 A1 WO 2024038607A1 JP 2022031451 W JP2022031451 W JP 2022031451W WO 2024038607 A1 WO2024038607 A1 WO 2024038607A1
Authority
WO
WIPO (PCT)
Prior art keywords
sbfd
symbol
slot
subband
symbols
Prior art date
Application number
PCT/JP2022/031451
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 栗田
浩樹 原田
チーピン ピ
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/031451 priority Critical patent/WO2024038607A1/en
Publication of WO2024038607A1 publication Critical patent/WO2024038607A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • This disclosure relates to a terminal that supports SBFD.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)), and further develops the next generation called Beyond 5G, 5G Evolution or 6G. Specifications are also being developed.
  • 5G also known as New Radio (NR) or Next Generation (NG)
  • NR New Radio
  • NG Next Generation
  • 6G 6th Generation
  • the UE transmits data in UL slots/symbols.
  • UL slots/symbols there is a problem in how to transmit data in an SBFD slot/symbol where multiple subbands are defined within the TDD band.
  • the present disclosure has been made in view of this situation, and aims to provide a terminal that can transmit data in SBFD slots/symbols.
  • One aspect of the disclosure includes a transmission unit 260 that transmits a preamble in random access, and a control unit 270 that selects a transmission opportunity for the transmission unit 260 to transmit the preamble, and the control unit 270 has a TDD (Time This is a terminal that selects a transmission opportunity that overlaps with the UL (UpLink) subband from among multiple subbands specified within the UL (UpLink) subband.
  • TDD Time This is a terminal that selects a transmission opportunity that overlaps with the UL (UpLink) subband from among multiple subbands specified within the UL (UpLink) subband.
  • One aspect of the disclosure includes a transmission unit 260 that transmits a message including an RRC (Radio Resource Control) connection request in random access, and an UL (Uplink )
  • a terminal comprising: a controller 270 that causes the transmitter 260 to transmit the message in a subband.
  • RRC Radio Resource Control
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10.
  • FIG. 2 is a diagram showing a configuration example of a radio frame, subframe, slot, and symbol used in the radio communication system 10.
  • FIG. 3 is a diagram showing an example of the configuration of SBFD slots/symbols.
  • FIG. 4 is a diagram showing mapping between SSB and RO.
  • FIG. 5 is a functional block diagram of the terminal 200.
  • FIG. 6 is a diagram showing overlapping ROs in SBFD slots/symbols.
  • FIG. 7 is a diagram illustrating an example of understanding of SSB-RO mapping between an SBFD-compatible terminal and an SBFD-incompatible terminal.
  • FIG. 8 is a diagram illustrating an example of understanding of SSB-RO mapping between an SBFD-compatible terminal and an SBFD-incompatible terminal.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the wireless base station 100 and the terminal 200.
  • FIG. 10 is a diagram showing an example of the configuration of vehicle 2001.
  • the wireless communication system 10 includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN20) including a wireless base station 100 (hereinafter referred to as gNB 100), A terminal 200 (hereinafter referred to as UE (User Equipment) 200) is included.
  • NG-RAN20 may be simply expressed as a "network.”
  • the wireless communication system 10 is a wireless communication system that complies with 5G New Radio (NR).
  • the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
  • the specific configuration of the wireless communication system 10, for example, the number of gNBs 100 and UEs 200, is not limited to the example shown in FIG. 1.
  • the wireless communication system 10 includes a Massive MIMO (Multiple-Input Multiple-Output) system that generates a highly directional antenna beam (hereinafter referred to as beam BM) by controlling wireless signals transmitted from multiple antenna elements. It can support carrier aggregation (CA), which uses multiple component carriers (CC), and dual connectivity (DC), which allows simultaneous communication with two wireless base stations.
  • Massive MIMO Multiple-Input Multiple-Output
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • the wireless communication system 10 may support multiple frequency ranges (FR). Specifically, the following frequency ranges may be supported.
  • ⁇ FR1 410MHz to 7.125GHz
  • ⁇ FR2-1 24.25GHz to 52.6GHz
  • sub-carrier spacing SCS
  • BW bandwidth
  • the wireless communication system 10 may support a frequency band higher than the frequency band of FR2-1. Specifically, the wireless communication system 10 may support frequency bands exceeding 52.6 GHz and up to 71 GHz. Such a high frequency band may be referred to as FR2-2.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT- S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • the time direction may also be referred to as a time domain, time domain, symbol period, symbol length, symbol time, or the like.
  • the frequency direction may be called a frequency domain, resource block, subcarrier, BWP (BandWidth Part), or the like.
  • Frequency resources may include component carriers, subcarriers, resource blocks (RBs), resource block groups (RBGs), BWPs, etc.
  • the time resources may include symbols, slots, minislots, subframes, radio frames, DRX (Discontinuous Reception) periods, and the like.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols, and may be, for example, 28 or 56 symbols. Further, the number of slots per subframe may differ depending on the SCS.
  • a plurality of duplex schemes may be used.
  • SBFD Subscribe-Band Duplex
  • the gNB 100 and UE 200 of the embodiment support SBFD in addition to FDD and TDD.
  • a slot/symbol in which multiple subbands are defined within a TDD band will also be referred to as an SBFD slot/symbol.
  • SBFD can also be said to be a duplex method in which UL and DL are allocated non-overlappingly in the frequency direction within a specified time based on TDD. SBFD can also be said to be subband full duplex.
  • the SBFD slot/symbol is a slot/symbol in which multiple subbands are defined within the TDD band.
  • Each subband is assigned a UL or DL.
  • a subband to which UL is assigned is also referred to as a UL subband
  • a subband to which DL is assigned is also referred to as a DL subband.
  • slots/symbols or subbands marked with "U” are UL slots/symbols or UL subbands
  • slots/symbols marked with "D” are UL slots/symbols or UL subbands.
  • or a subband is a DL slot/symbol or a DL subband.
  • the gNB100 is a radio base station that transmits and receives radio signals to and from UE200.
  • the gNB 100 can spatially and time-divisionally transmit a plurality of beams BM having different transmission directions (which may also be referred to simply as directions, radiation directions, coverage, etc.). Note that the gNB 100 may transmit multiple beams BM simultaneously.
  • the gNB 100 of the embodiment periodically transmits a synchronization signal using the beam BM.
  • the synchronization signal is, for example, SSB (SS/PBCH Block).
  • SSB SS/PBCH Block
  • the transmission period (periodity) of SSB is, for example, 5, 10, 20, 40, 80, or 160 milliseconds.
  • the RACH opportunity (Random Access CHannel Occasion, hereinafter also referred to as RO), which is a resource for transmitting a preamble when the UE 200 starts random access, is mapped to the SSB. Ru.
  • the RO can also be said to be a transmission opportunity for the UE 200 to transmit a preamble.
  • one RO is mapped to four SSBs, but the mapping is not limited to this.
  • One RO may be mapped to one SSB, or two ROs may be mapped to one SSB.
  • the number of SSBs or ROs in the frequency direction or the time direction is not particularly limited.
  • the UE 200 is a terminal that transmits and receives wireless signals to and from the gNB 100.
  • UE 200 of embodiments may transmit data in SBFD slots/symbols.
  • UE 200 can transmit data in the UL subband among the multiple subbands defined in the SBFD slot/symbol.
  • the data to be transmitted may be, for example, a preamble for random access or a message including an RRC (Radio Resource Control) connection request (hereinafter also referred to as Msg 3 PUSCH (Physical Uplink Shared CHannel)), but is limited to these. do not have.
  • RRC Radio Resource Control
  • the UE 200 includes a wireless signal transmitting/receiving section 210, an amplifier section 220, a modulation/demodulation section 230, a control signal/reference signal processing section 240, and an encoding/decoding section. 250, a data transmitting/receiving section 260, and a control section 270.
  • the wireless signal transmitting and receiving unit 210 transmits and receives wireless signals to and from the gNB 100.
  • the wireless signal transmitting/receiving unit 210 may include a transmitting unit that transmits a wireless signal to the gNB 100, and a receiving unit that receives the wireless signal from the gNB 100.
  • the amplifier section 220 is composed of a PA (Power Amplifier)/LNA (Low Noise Amplifier), etc.
  • Amplifier section 220 amplifies the radio signal output from modulation/demodulation section 230 to a predetermined power level. Furthermore, the amplifier section 220 amplifies the wireless signal output from the wireless signal transmitting/receiving section 210.
  • the modulation/demodulation unit 230 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the modulation/demodulation unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing (DFT-S-OFDM).
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM may be used not only for UL but also for DL.
  • the control signal/reference signal processing unit 240 executes processing regarding various control signals and reference signals transmitted and received by the UE 200.
  • control signal/reference signal processing unit 240 receives the SSB transmitted from the gNB 100. Further, the control signal/reference signal processing unit 240 selects an RO to be mapped to the SSB in random access. The control signal/reference signal processing unit 240 selects an RO that overlaps the UL subband of the UL slot/symbol or the SBFD slot/symbol. Thereby, the data transmitting/receiving section 260, which will be described later, can transmit the preamble in the UL slot/symbol or the UL subband.
  • control signal/reference signal processing unit 240 does not select an RO that overlaps with the DL subband of the DL slot/symbol or the SBFD slot/symbol. As a result, the data transmitter/receiver 260 cannot transmit the preamble in the DL slot/symbol or DL subband.
  • the data transmitting/receiving unit 260 transmits the preamble in the RO selected by the control signal/reference signal processing unit 240. Therefore, it can be said that the control signal/reference signal processing section 240 causes the data transmitting/receiving section 260 to transmit the preamble in the selected RO.
  • the preamble is transmitted on a physical random access channel such as PRACH (Physical Random Access CHannel).
  • PRACH Physical Random Access CHannel
  • Msg 1 PRACH Physical Random Access CHannel
  • the control signal/reference signal processing unit 240 does not have to cause the data transmitting/receiving unit 260 to transmit the preamble in the selected RO. For example, if an RO that overlaps with the UL subband of the SBFD slot/symbol is selected, the data transmitter/receiver 260 does not need to transmit a preamble in this RO. In this case, that is, when no preamble is transmitted in the overlapping RO in the UL subband of the SBFD slot/symbol, the control signal/reference signal processing unit 240 transmits a control channel such as PDCCH (Physical downlink Control CHannel) in this UL subband. Candidates may be monitored.
  • PDCCH Physical downlink Control CHannel
  • an RO that overlaps with the UL subband of a UL slot/symbol or SBFD slot/symbol is also referred to as a valid RO.
  • an RO that overlaps with the DL subband of a DL slot/symbol or SBFD slot/symbol is also referred to as an invalid RO.
  • a transmission opportunity that can transmit a preamble is valid RO, and a transmission opportunity that cannot transmit a preamble is invalid RO. Therefore, the control signal/reference signal processing unit 240 selects valid RO and does not select invalid RO as a transmission opportunity for transmitting a preamble.
  • SBFD capable UE is the UE 200 of the embodiment that supports SBFD
  • Legacy UE is a conventional terminal that does not support SBFD.
  • Legacy UE recognizes SBFD slots/symbols as DL slots/symbols that cannot transmit data.
  • the UE 200 considers ROs that overlap the UL subbands of UL slots/symbols or SBFD slots/symbols to be valid ROs.
  • conventional terminals consider ROs that overlap in UL slots/symbols to be valid ROs. Therefore, as shown in FIG. 7, even when only valid ROs that overlap in UL slots/symbols are taken up between the UE 200 and the conventional terminal, the mapping understanding between SSB and RO is different.
  • beam BM can only be formed in one direction at the same time, and resources can be divided in the frequency direction. I can't do it either. In such a case, the gNB 100 must select any one beam BM to receive the preamble. However, if the SSB and RO mapping understanding is different between the UE200 and the conventional terminal in the same slot/symbol, the gNB100 may decide which beam BM to select in order to transmit the RAR UL grant for the received preamble. cannot be recognized.
  • the RACH settings may be distinguished in advance between SBFD slots/symbols and non-SBFD slots/symbols.
  • ROs that overlap with SBFD slots/symbols and ROs that overlap with slots/symbols that are not SBFD slots/symbols (hereinafter also referred to as non-SBFD slots/symbols) may be distinguished in advance.
  • ROs that overlap SBFD slots/symbols may be mapped to SSBs separately from ROs that overlap non-SBFD slots/symbols.
  • Distinguishing the RACH settings between SBFD slots/symbols and non-SBFD slots/symbols may be achieved, for example, as follows.
  • RACH settings for SBFD slots/symbols such as RACH-ConfigCommon-For-SBFD/RACH-ConfigCommonTwoStepRA-For-SBFD/RACH-ConfigDedicated -For-SBFD/RACH-ConfigGeneric-For-SBFD/RACH-ConfigGenericTwoStepRA-For-SBFD parameters are indicated by SIB 1/can be configured by RRC.
  • PRACH Mask index is for non-SBFD slots/symbols or SBFD slots/symbols.
  • the following means may be used.
  • One bit from the reserved bits of DCI 1_0 for RACH ordering may be used to indicate whether the RACH setting is for non-SBFD slots/symbols or for SBFD slots/symbols. - It may be determined by default that it is for non-SBFD slots/symbols (or for SBFD slots/symbols). - Since the ROs for non-SBFD slots/symbols and ROs for SBFD slots/symbols for the same SSB are in the same order, the PRACH Mask index may be used to instruct the ROs in the set order.
  • the mapping understanding between SSB and RO may be completely different between the UE 200 and the conventional terminal. That is, selectable ROs may be distinguished in advance between the UE 200 and the conventional terminal. In this case, the UE 200 selects the RO for the UE 200, and the conventional terminal selects the RO for the conventional terminal.
  • the control signal/reference signal processing unit 240 receives the RAR (Random Access Response) UL grant transmitted from the gNB100. Further, the control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit a message including the RRC connection request based on the RAR UL grant. Specifically, the control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit a message including the RRC connection request in the UL slot/symbol or UL subband. Note that the message including the RRC connection request is transmitted on a physical uplink shared channel such as PUSCH (Physical Uplink Shared CHannel). In the following, the message containing the RRC connection request is also referred to as Msg 3 PUSCH.
  • PUSCH Physical Uplink Shared CHannel
  • control signal/reference signal processing unit 240 does not cause the data transmitting/receiving unit 260 to transmit Msg 3 PUSCH in the DL subband of the DL slot/symbol or the SBFD slot/symbol.
  • control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit the preamble and Msg 3 PUSCH in the UL subband of the UL slot/symbol or SBFD slot/symbol. Furthermore, the control signal/reference signal processing unit 240 does not cause the data transmitting/receiving unit 260 to transmit the preamble and Msg 3 PUSCH in the DL subband of the DL slot/symbol or the SBFD slot/symbol.
  • the encoding/decoding unit 250 performs data division/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmitting/receiving unit 260 into predetermined sizes, and performs channel coding on the divided data. Furthermore, the encoding/decoding section 250 decodes the data output from the modulation/demodulation section 230 and concatenates the decoded data.
  • the data transmitting and receiving unit 260 transmits and receives data such as Protocol Data Unit (PDU)/Service Data Unit (SDU) to and from the gNB 100.
  • the data transmitting/receiving section 260 may include a transmitting section that transmits data to the gNB 100 and a receiving section that receives data from the gNB 100.
  • the data transmitter/receiver 260 assembles PDUs/SDUs in multiple layers (medium access control (MAC) layer, radio link control (RLC) layer, packet data convergence protocol (PDCP) layer, etc.). /Perform disassembly, etc.
  • the data transmitting/receiving unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • HARQ Hybrid Automatic Repeat Request
  • the transmitting unit forming the data transmitting/receiving unit 260 of the embodiment transmits a preamble and Msg 3 PUSCH in random access.
  • the preamble is transmitted in the RO selected by the control signal/reference signal processing unit 240.
  • the receiving unit forming the data transmitting/receiving unit 260 receives the SSB and RAR UL grant transmitted from the gNB 100 in random access. Based on the SSB and RAR UL grant received by the receiving unit constituting the data transmitting/receiving unit 260, the control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit a preamble and Msg 3 PUSCH.
  • the control unit 270 controls each functional block that configures the UE 200. That is, it can be said that the functions of the control unit in the claims are realized by each functional block that constitutes the UE 200, such as the control signal/reference signal processing unit 240 of the embodiment.
  • UE 200 may transmit capability information of UE 200 such as UE Capability (see FIG. 1).
  • capability information of the UE 200 such as UE Capability (see FIG. 1).
  • the following content may be defined as the capability information of the UE 200.
  • - Whether or not to support Msg 1 PRACH transmission in SBFD slot/symbol - Whether to support distinguishing RACH settings between SBFD slot/symbol and non-SBFD slot/symbol - Msg 3 PUSCH in SBFD slot/symbol Whether to support transmission -
  • PDCCH for RAR CSS with RA-RNTI and/or with type 1 Whether or not to support CSS with TC-RNTI monitoring
  • Assignment 1 UE200 starts random access in order to establish a connection with gNB100. Specifically, the UE 200 transmits a preamble in the RO mapped to the SSB transmitted from the gNB 100. However, when SBFD slots/symbols are used in which multiple subbands are defined within the TDD band, there is a problem of how to transmit a preamble in an RO that overlaps with the SBFD slots/symbols. (3.1.2) Assignment 2 UE200 transmits Msg 3 PUSCH based on the RAR UL grant transmitted from gNB100 in random access. However, there is a problem in how to transmit Msg 3 PUSCH in an SBFD slot/symbol where multiple subbands are defined within the TDD band.
  • Operation example (3.2) Operation example (3.2.1) Operation example 1 UE 200 receives the SSB transmitted from gNB 100 when starting random access. Specifically, the receiving section that constitutes the data transmitting and receiving section 260 receives the SSB transmitted from the gNB 100.
  • the control signal/reference signal processing unit 240 selects the RO to be mapped to the SSB. Specifically, the control signal/reference signal processing unit 240 selects an RO that overlaps the UL subband of the UL slot/symbol or the SBFD slot/symbol. Here, it is assumed that the control signal/reference signal processing unit 240 selects an RO that overlaps the UL subband of the SBFD slot/symbol. Note that the control signal/reference signal processing unit 240 does not select an RO that overlaps with the DL subband of the DL slot/symbol or the SBFD slot/symbol.
  • the data transmitting/receiving unit 260 transmits the preamble in the RO selected by the control signal/reference signal processing unit 240. Thereby, UE200 starts random access with gNB100.
  • control signal/reference signal processing unit 240 may monitor control channel candidates such as PDCCH in the UL subband where the selected ROs overlap.
  • Operation example 3 UE200 receives the RAR UL grant transmitted from gNB100 in random access. Specifically, a receiving unit forming the data transmitting/receiving unit 260 receives the RAR UL grant transmitted from the gNB 100.
  • the control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit Msg 3 PUSCH in the UL slot/symbol or UL subband.
  • the control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit Msg 3 PUSCH in the UL subband of the SBFD slot/symbol.
  • the control signal/reference signal processing unit 240 does not cause the data transmitting/receiving unit 260 to transmit Msg 3 PUSCH in the DL subband of the DL slot/symbol or the SBFD slot/symbol.
  • the UE 200 of the embodiment described above selects an RO that overlaps the UL subband of the SBFD slot/symbol, and transmits a preamble in the selected RO. In this way, preambles can be transmitted in SBFD slots/symbols.
  • the UE 200 in the embodiment described above may monitor control channel candidates such as PDCCH in the UL subband where the ROs overlap. This allows monitoring of control channel candidates to be prioritized over preamble transmission in the RO.
  • the UE 200 of the embodiment described above transmits Msg 3 PUSCH in the UL subband of the SBFD slot/symbol in random access. In this way, Msg 3 PUSCH can be transmitted in an SBFD slot/symbol.
  • the UE 200 of the embodiment supports SBFD and selects an RO that overlaps with the SBFD slot/symbol, but the present invention is not limited to this.
  • SBFD while supporting SBFD, it may not be assumed that ROs overlap SBFD slots/symbols.
  • a specific example is shown below.
  • SBFD semi-static UL slot/symbol is an SBFD slot/symbol that is configured as UL by tdd-UL-DL-ConfigurationCommon (or tdd-UL-DL-ConfigurationDedicated). Additionally, the SBFD dynamic UL slot/symbol is the SBFD slot/symbol that is set as flexible by tdd-UL-DL-ConfigurationCommon (or tdd-UL-DL-ConfigurationDedicated) and indicated as UL by DCI 2_0.
  • a SBFD semi-static flexible slot/symbol is an SBFD slot/symbol that is set as flexible by tdd-UL-DL-ConfigurationCommon (or tdd-UL-DL-ConfigurationDedicated). Additionally, the SBFD dynamic flexible slot/symbol is the SBFD slot/symbol that is set as flexible by tdd-UL-DL-ConfigurationCommon (or tdd-UL-DL-ConfigurationDedicated) and indicated as flexible by DCI 2_0.
  • the UE 200 of the embodiment supports SBFD and selects an RO that overlaps with the SBFD slot/symbol, but the present invention is not limited to this.
  • ROs that overlap SBFD slots/symbols may be considered invalid ROs.
  • a specific example is shown below.
  • ⁇ SBFD semi-static (and/or dynamic) ROs that overlap in DL slots/symbols are considered invalid ROs.
  • - SBFD semi-static (and/or dynamic) ROs that overlap in UL and/or flexible slots/symbols are considered invalid ROs.
  • a particular RACH procedure is, for example, a 2-step RACH or a 4-step RACH.
  • Specific RACH types are contention based RACH or contention free RACH.
  • Specific RACH purposes are, for example, RACH for initial access/for SI request/for SpCell BFR/sync with reconfiguration.
  • the specific triggering method is, for example, PDCCH order/MAC entity/RRC. - Applies depending on whether the specific scenario is RRC reconfigured/DCI indicated (for PDCCH order PRACH).
  • the UE 200 of the embodiment supports SBFD and transmits Msg 3 PUSCH in the SBFD slot/symbol, but the present invention is not limited to this.
  • SBFD while supporting SBFD, it may not be assumed to transmit Msg 3 PUSCH in SBFD slots/symbols.
  • Msg 3 PUSCH may not be transmitted. In the first place, it is not necessary to assume that a RAR that schedules transmission of Msg 3 PUSCH in an SBFD slot/symbol is detected.
  • the gNB 100 may recognize whether the terminal transmitting and receiving data is the UE 200 that can transmit Msg 3 PUSCH in the SBFD slot/symbol as follows. - Distinguish in advance the RO for UE 200 that can transmit Msg 3 PUSCH in the SBFD slot/symbol. ⁇ Whether the received RO overlaps the SBFD slot/symbol ⁇ Whether the received RO has the RACH settings for SBFD slots/symbols or the RACH settings for non-SBFD slots/symbols
  • the synchronization signal is not limited to this.
  • the reference signal CSI-RS may be used as the synchronization signal. Note that since the CSI-RS is used to establish time and frequency synchronization between the gNB 100 and the UE 200, it can also be said to be a synchronization signal.
  • a slot/symbol in which multiple subbands are defined within a TDD band is called an SBFD slot/symbol, but the slot/symbol is not limited to this.
  • it may be called an XDD (Cross Division Duplex) slot/symbol.
  • configure, activate, update, indicate, enable, specify, and select may be used interchangeably.
  • link, associate, correspond, and map may be used interchangeably; allocate, assign, and monitor.
  • map may also be read interchangeably.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the device may include one or more of the devices shown in the figure, or may not include some of the devices.
  • Each functional block of the device (see FIG. 5) is realized by any hardware element of the computer device or a combination of hardware elements.
  • each function in the device is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations, controls communication by the communication device 1004, and controls the memory This is realized by controlling at least one of data reading and writing in the storage 1002 and the storage 1003.
  • predetermined software programs
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be done.
  • Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store programs (program codes), software modules, etc. that can execute a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 1003 may also be called auxiliary storage.
  • the above-mentioned recording medium may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, network controller, network card, communication module, etc.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor 1001 may be implemented using at least one of these hardwares.
  • information notification is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • information notification can be performed using physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)
  • RRC signaling may also be referred to as RRC messages, such as RRC Connection Setup ) message, RRC Connection Reconfiguration message, etc.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate systems and next-generation systems enhanced based on these.
  • a combination of multiple systems for example, a combination of at least one of LTE and LTE-A with 5G
  • 5G 5th generation mobile communication system
  • FPA Future Radio Access
  • NR New Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi
  • the specific operations performed by the base station in this disclosure may be performed by its upper node.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this can be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.).
  • MME mobile phone
  • S-GW network node
  • Information, signals can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information that is input and output can be overwritten, updated, or added. The output information may be deleted. The input information may be sent to other devices.
  • Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, cell, frequency carrier, etc.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (Remote Radio Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Communication services
  • cell refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions that the mobile station has.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe.
  • a subframe may further be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • the numerology may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • TTI is not limited to this.
  • the TTI may be a unit of transmission time such as a channel-coded data packet (transport block), a code block, or a codeword, or may be a unit of processing such as scheduling or link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI e.g., normal TTI, subframe, etc.
  • short TTI e.g., shortened TTI, etc.
  • TTI with a time length of less than the long TTI and 1ms. It may also be read as a TTI having a TTI length of the above length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the new merology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs are classified into physical resource blocks (Physical RBs: PRBs), sub-carrier groups (SCGs), resource element groups (Resource Element Groups: REGs), PRB pairs, RB pairs, etc. May be called.
  • Physical RBs Physical RBs: PRBs
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of contiguous common resource blocks for a certain numerology in a certain carrier. good.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured within one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as "assuming", “expecting", “considering”, etc.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • FIG. 10 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, Equipped with various sensors 2021 to 2029, an information service section 2012, and a communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • a steering wheel also referred to as a steering wheel
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2027 provided in the vehicle are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2028 include current signals from current sensor 2021 that senses motor current, front and rear wheel rotation speed signals obtained by rotation speed sensor 2022, and front wheel rotation speed signals obtained by air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal acquired by vehicle speed sensor 2024, acceleration signal acquired by acceleration sensor 2025, accelerator pedal depression amount signal acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028.
  • the Information Service Department 2012 provides various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 1 using information acquired from an external device via the communication module 2013 and the like.
  • the driving support system unit 2030 includes millimeter wave radar, LiDAR (Light Detection and Ranging), cameras, positioning locators (e.g. GNSS, etc.), map information (e.g. high definition (HD) maps, autonomous vehicle (AV) maps, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. It consists of various devices that provide functions for the system and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • the communication module 2013 can communicate with the microprocessor 2031 and the components of the vehicle 1 via the communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, which are included in the vehicle 2001, through the communication port 2033.
  • Data is transmitted and received between the axle 2009, the microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and the sensors 2021 to 2028.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • Communication module 2013 may be located either inside or outside electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also receives the front wheel and rear wheel rotational speed signals acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor, which are input to the electronic control unit 2010.
  • the shift lever operation signal acquired by the sensor 2027, the detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service section 2012 provided in the vehicle. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, and left and right rear wheels provided in the vehicle 2001. 2008, axle 2009, sensors 2021 to 2028, etc. may be controlled.
  • various information traffic information, signal information, inter-vehicle information, etc.
  • the terminal of the embodiment may be configured as a terminal shown in each section below.
  • (Section 1) a transmitter that transmits a preamble in random access; a control unit that selects a transmission opportunity for the transmission unit to transmit the preamble; Equipped with The control unit selects a transmission opportunity that overlaps with a UL (UpLink) subband from among a plurality of subbands defined within a TDD (Time Division Duplex) band. terminal.
  • the control unit does not select a transmission opportunity that overlaps with a DL (DownLink) subband among the plurality of subbands.
  • the terminal according to claim 1.
  • the transmission opportunity is mapped to a synchronization signal transmitted from a base station; Transmission opportunities that overlap in bands in which the plurality of subbands are defined are mapped to the synchronization signal separately from transmission opportunities that overlap in bands in which the plurality of subbands are not defined;
  • the control unit monitors control channel candidates in the UL subband if the preamble is not transmitted in the selected transmission opportunity.
  • (Section 5) a transmitting unit that transmits a message including an RRC (Radio Resource Control) connection request in random access;
  • a control unit that causes the transmitter to transmit the message in a UL (UpLink) subband among a plurality of subbands defined within a TDD (Time Division Duplex) band;
  • a terminal equipped with (Section 6) The control unit does not cause the transmission unit to transmit the message in a DL (DownLink) subband among the plurality of subbands.
  • the terminal according to claim 5.
  • Wireless communication system 20 NG-RAN 100 gNB 200 U.E. 210 Wireless signal transmission/reception section 220 Amplifier section 230 Modulation/demodulation section 240 Control signal/reference signal processing section 250 Encoding/decoding section 260 Data transmission/reception section 270 Control section 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service department 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed Sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 communication port

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention provides a terminal comprising: a transmission unit that transmits a preamble in random access; and a control unit that selects transmission opportunities at which the transmission unit is to transmit the preamble, wherein the control unit selects transmission opportunities that overlap with an uplink (UL) subband from among a plurality of subbands defined in a time-division duplex (TDD) band.

Description

端末terminal
 本開示は、SBFDをサポートする端末に関する。 This disclosure relates to a terminal that supports SBFD.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる。)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)), and further develops the next generation called Beyond 5G, 5G Evolution or 6G. Specifications are also being developed.
 3GPP Release 18において、TDD(Time Division Duplex)の拡張が議論されている。具体的には、TDDのバンド内において複数のサブバンドが規定されることにより、UL(UpLink)とDL(DownLink)の同時使用を可能とするSBFD(SubBand non-overlapping Full Duplex)が議論されている(非特許文献1)。 In 3GPP Release 18, expansion of TDD (Time Division Duplex) is being discussed. Specifically, SBFD (SubBand non-overlapping Full Duplex) is being discussed, which enables simultaneous use of UL (UpLink) and DL (DownLink) by specifying multiple subbands within the TDD band. (Non-patent Document 1).
 UEは、ULスロット/シンボルにおいてデータを送信する。しかしながら、TDDのバンド内において複数のサブバンドが規定されるSBFDスロット/シンボルにおいて、どのようにデータを送信するかという問題がある。 The UE transmits data in UL slots/symbols. However, there is a problem in how to transmit data in an SBFD slot/symbol where multiple subbands are defined within the TDD band.
 そこで、本開示は、このような状況に鑑みてなされたものであり、SBFDスロット/シンボルにおいてデータを送信することのできる端末の提供を目的とする。 Therefore, the present disclosure has been made in view of this situation, and aims to provide a terminal that can transmit data in SBFD slots/symbols.
 開示の一態様は、ランダムアクセスにおいてプリアンブルを送信する送信部260と、前記送信部260が前記プリアンブルを送信する送信機会を選択する制御部270と、を備え、前記制御部270は、TDD(Time Division Duplex)のバンド内において規定される複数のサブバンドのうちUL(UpLink)サブバンドに重複する送信機会を選択する、端末である。 One aspect of the disclosure includes a transmission unit 260 that transmits a preamble in random access, and a control unit 270 that selects a transmission opportunity for the transmission unit 260 to transmit the preamble, and the control unit 270 has a TDD (Time This is a terminal that selects a transmission opportunity that overlaps with the UL (UpLink) subband from among multiple subbands specified within the UL (UpLink) subband.
 開示の一態様は、ランダムアクセスにおいてRRC(Radio Resource Control)接続要求を含むメッセージを送信する送信部260と、TDD(Time Division Duplex)のバンド内において規定される複数のサブバンドのうちUL(UpLink)サブバンドにおいて、前記送信部260に前記メッセージを送信させる制御部270と、を備える端末。 One aspect of the disclosure includes a transmission unit 260 that transmits a message including an RRC (Radio Resource Control) connection request in random access, and an UL (Uplink ) A terminal comprising: a controller 270 that causes the transmitter 260 to transmit the message in a subband.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10. 図2は、無線通信システム10において用いられる無線フレーム、サブフレーム、スロット、シンボルの構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a radio frame, subframe, slot, and symbol used in the radio communication system 10. 図3は、SBFDスロット/シンボルの構成例を示す図である。FIG. 3 is a diagram showing an example of the configuration of SBFD slots/symbols. 図4は、SSBとROとのマッピングを示す図である。FIG. 4 is a diagram showing mapping between SSB and RO. 図5は、端末200の機能ブロック図である。FIG. 5 is a functional block diagram of the terminal 200. 図6は、SBFDスロット/シンボルに重複するROを示す図である。FIG. 6 is a diagram showing overlapping ROs in SBFD slots/symbols. 図7は、SBFD対応端末とSBFD非対応端末におけるSSB-ROマッピングに対する理解の一例を示す図である。FIG. 7 is a diagram illustrating an example of understanding of SSB-RO mapping between an SBFD-compatible terminal and an SBFD-incompatible terminal. 図8は、SBFD対応端末とSBFD非対応端末におけるSSB-ROマッピングに対する理解の一例を示す図である。FIG. 8 is a diagram illustrating an example of understanding of SSB-RO mapping between an SBFD-compatible terminal and an SBFD-incompatible terminal. 図9は、無線基地局100及び端末200のハードウェア構成の一例を示す図である。FIG. 9 is a diagram showing an example of the hardware configuration of the wireless base station 100 and the terminal 200. 図10は、車両2001の構成例を示す図である。FIG. 10 is a diagram showing an example of the configuration of vehicle 2001.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. Note that the same functions and configurations are given the same or similar symbols, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1に示すように、無線通信システム10は、無線基地局100(以下、gNB100)を含むNext Generation-Radio Access Network 20(以下、NG-RAN20)と、端末200(以下、UE(User Equipment)200)とを含む。NG-RAN20は、単に「ネットワーク」と表現されてもよい。
[Embodiment]
(1) Overall schematic configuration of the wireless communication system As shown in FIG. 1, the wireless communication system 10 includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN20) including a wireless base station 100 (hereinafter referred to as gNB 100), A terminal 200 (hereinafter referred to as UE (User Equipment) 200) is included. NG-RAN20 may be simply expressed as a "network."
 無線通信システム10は、5G New Radio(NR)に従った無線通信システムである。一方で、無線通信システム10は、Beyond 5G、5G Evolutionあるいは6Gと呼ばれる方式に従った無線通信システムでもよい。また、無線通信システム10の具体的な構成、例えばgNB100及びUE200の数は、図1に示した例に限定されない。 The wireless communication system 10 is a wireless communication system that complies with 5G New Radio (NR). On the other hand, the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G. Further, the specific configuration of the wireless communication system 10, for example, the number of gNBs 100 and UEs 200, is not limited to the example shown in FIG. 1.
 無線通信システム10は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いアンテナビーム(以下、ビームBM)を生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、2つの無線基地局と同時通信を行うデュアルコネクティビティ(DC)などをサポートすることができる。 The wireless communication system 10 includes a Massive MIMO (Multiple-Input Multiple-Output) system that generates a highly directional antenna beam (hereinafter referred to as beam BM) by controlling wireless signals transmitted from multiple antenna elements. It can support carrier aggregation (CA), which uses multiple component carriers (CC), and dual connectivity (DC), which allows simultaneous communication with two wireless base stations.
 無線通信システム10は、複数の周波数レンジ(FR)に対応してもよい。具体的には、次のような周波数レンジに対応してもよい。 The wireless communication system 10 may support multiple frequency ranges (FR). Specifically, the following frequency ranges may be supported.
 ・FR1:410MHz~7.125GHz
 ・FR2-1:24.25GHz~52.6GHz
・FR1: 410MHz to 7.125GHz
・FR2-1: 24.25GHz to 52.6GHz
 FR1においては、15、30または60kHzのサブキャリア間隔(Sub-Carrier Spacing、SCS)及び5~100MHzの帯域幅(BW)が用いられてもよい。FR2-1においては、60または120kHz(240kHzが含まれてもよい。)のSCS及び50~400MHzのBWが用いられてもよい。 In FR1, sub-carrier spacing (SCS) of 15, 30 or 60 kHz and a bandwidth (BW) of 5 to 100 MHz may be used. In FR2-1, SCS of 60 or 120kHz (may include 240kHz) and BW of 50-400MHz may be used.
 さらに、無線通信システム10は、FR2-1の周波数帯域よりも高い周波数帯域に対応してもよい。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまでの周波数帯域に対応してもよい。このような高周波数帯域は、FR2-2と呼ばれてもよい。 Furthermore, the wireless communication system 10 may support a frequency band higher than the frequency band of FR2-1. Specifically, the wireless communication system 10 may support frequency bands exceeding 52.6 GHz and up to 71 GHz. Such a high frequency band may be referred to as FR2-2.
 FR2-2の周波数帯域を用いる場合、位相雑音の増大を避けるために、より大きなSCSを有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)またはDiscrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing(DFT-S-OFDM)を適用してもよい。 When using the FR2-2 frequency band, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) or Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing (DFT- S-OFDM) may be applied.
 ところで、図2に示すように、1スロットあたり14シンボルの構成が維持される場合、SCSが大きく(広く)なるほど、シンボル期間(及びスロット期間)は短くなる。なお、時間方向は、時間領域、時間ドメイン、シンボル期間、シンボル長またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、BWP(BandWidth Part)などと呼ばれてもよい。 By the way, as shown in FIG. 2, when the configuration of 14 symbols per slot is maintained, the larger (wider) the SCS, the shorter the symbol period (and slot period) becomes. Note that the time direction may also be referred to as a time domain, time domain, symbol period, symbol length, symbol time, or the like. Further, the frequency direction may be called a frequency domain, resource block, subcarrier, BWP (BandWidth Part), or the like.
 周波数リソースには、コンポーネントキャリア、サブキャリア、リソースブロック(RB)、リソースブロックグループ(RBG)、BWPなどが含まれてもよい。時間リソースには、シンボル、スロット、ミニスロット、サブフレーム、無線フレーム、DRX(Discontinuous Reception)周期などが含まれてもよい。 Frequency resources may include component carriers, subcarriers, resource blocks (RBs), resource block groups (RBGs), BWPs, etc. The time resources may include symbols, slots, minislots, subframes, radio frames, DRX (Discontinuous Reception) periods, and the like.
 なお、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよく、例えば、28または56シンボルであってもよい。また、サブフレームあたりのスロット数は、SCSによって異なってもよい。 Note that the number of symbols constituting one slot does not necessarily have to be 14 symbols, and may be, for example, 28 or 56 symbols. Further, the number of slots per subframe may differ depending on the SCS.
 実施形態の無線通信システム10においては、複数の複信方式(Duplex)が用いられてもよい。具体的には、FDD(Frequency Division Duplex)、TDD(Time Division Duplex)に加え、TDDのバンド内において複数のサブバンドを規定し、ULとDLとの同時使用を可能にするSBFD(Sub-Band non-overlapping Full Duplex)が用いられてもよい。すなわち、実施形態のgNB100及びUE200は、FDD、TDDに加え、SBFDをサポートする。以下では、TDDのバンド内において複数のサブバンドが規定されるスロット/シンボルを、SBFDスロット/シンボルともいう。 In the wireless communication system 10 of the embodiment, a plurality of duplex schemes may be used. Specifically, in addition to FDD (Frequency Division Duplex) and TDD (Time Division Duplex), SBFD (Sub-Band Duplex) defines multiple subbands within the TDD band and enables simultaneous use of UL and DL. non-overlapping Full Duplex) may be used. That is, the gNB 100 and UE 200 of the embodiment support SBFD in addition to FDD and TDD. Hereinafter, a slot/symbol in which multiple subbands are defined within a TDD band will also be referred to as an SBFD slot/symbol.
 なお、SBFDは、TDDを基準とした規定時間内において、周波数方向にUL及びDLが非重複で割り当てられる複信方式であるともいえる。SBFDは、サブバンドの全二重であるともいえる。 Note that SBFD can also be said to be a duplex method in which UL and DL are allocated non-overlappingly in the frequency direction within a specified time based on TDD. SBFD can also be said to be subband full duplex.
 図3に示すように、SBFDスロット/シンボルは、TDDのバンド内において複数のサブバンドが規定されるスロット/シンボルである。各サブバンドには、ULまたはDLが割り当てられる。以下では、ULが割り当てられるサブバンドをULサブバンド、DLが割り当てられるサブバンドをDLサブバンドともいう。 As shown in FIG. 3, the SBFD slot/symbol is a slot/symbol in which multiple subbands are defined within the TDD band. Each subband is assigned a UL or DL. In the following, a subband to which UL is assigned is also referred to as a UL subband, and a subband to which DL is assigned is also referred to as a DL subband.
 なお、図3、図6~図8において、「U」が付されているスロット/シンボルまたはサブバンドは、ULスロット/シンボルまたはULサブバンドであり、「D」が付されているスロット/シンボルまたはサブバンドは、DLスロット/シンボルまたはDLサブバンドである。 In Figures 3 and 6 to 8, slots/symbols or subbands marked with "U" are UL slots/symbols or UL subbands, and slots/symbols marked with "D" are UL slots/symbols or UL subbands. or a subband is a DL slot/symbol or a DL subband.
 gNB100は、UE200との間で無線信号の送受信を行う無線基地局である。gNB100は、送信方向(単に方向、或いは放射方向またはカバレッジなどと呼ばれてもよい。)が異なる複数のビームBMを空間及び時分割して送信することができる。なお、gNB100は、複数のビームBMを同時に送信してもよい。 gNB100 is a radio base station that transmits and receives radio signals to and from UE200. The gNB 100 can spatially and time-divisionally transmit a plurality of beams BM having different transmission directions (which may also be referred to simply as directions, radiation directions, coverage, etc.). Note that the gNB 100 may transmit multiple beams BM simultaneously.
 実施形態のgNB100は、ビームBMにより、周期的に同期信号を送信する。同期信号は、例えばSSB(SS/PBCH Block)である。なお、SSBの送信周期(periodicity)は、例えば、5、10、20、40、80、160ミリ秒である。 The gNB 100 of the embodiment periodically transmits a synchronization signal using the beam BM. The synchronization signal is, for example, SSB (SS/PBCH Block). Note that the transmission period (periodity) of SSB is, for example, 5, 10, 20, 40, 80, or 160 milliseconds.
 図4に示すように、SSBには、UE200がランダムアクセス(Random Access)を開始するにあたってプリアンブルを送信するためのリソースであるRACH機会(Random Access CHannel Occasion、以下、ROともいう。)がマッピングされる。ROは、UE200がプリアンブルを送信する送信機会であるともいえる。 As shown in FIG. 4, the RACH opportunity (Random Access CHannel Occasion, hereinafter also referred to as RO), which is a resource for transmitting a preamble when the UE 200 starts random access, is mapped to the SSB. Ru. The RO can also be said to be a transmission opportunity for the UE 200 to transmit a preamble.
 なお、図4においては、4つのSSBに1つのROがマッピングされているが、これに限られない。1つのSSBに1つのROがマッピングされてもよいし、1つのSSBに2つのROがマッピングされてもよい。また、周波数方向または時間方向におけるSSBまたはROの数についても、特に限定されない。 Note that in FIG. 4, one RO is mapped to four SSBs, but the mapping is not limited to this. One RO may be mapped to one SSB, or two ROs may be mapped to one SSB. Furthermore, the number of SSBs or ROs in the frequency direction or the time direction is not particularly limited.
 UE200は、gNB100との間で無線信号の送受信を行う端末である。実施形態のUE200は、SBFDスロット/シンボルにおいてデータを送信することができる。具体的には、UE200は、SBFDスロット/シンボルにおいて規定される複数のサブバンドのうち、ULサブバンドにおいてデータを送信することができる。送信するデータは、例えば、ランダムアクセスにおけるプリアンブルやRRC(Radio Resource Control)接続要求を含むメッセージ(以下、Msg 3 PUSCH(Physical Uplink Shared CHannel)ともいう。)であってもよいが、これらに限られない。 The UE 200 is a terminal that transmits and receives wireless signals to and from the gNB 100. UE 200 of embodiments may transmit data in SBFD slots/symbols. Specifically, UE 200 can transmit data in the UL subband among the multiple subbands defined in the SBFD slot/symbol. The data to be transmitted may be, for example, a preamble for random access or a message including an RRC (Radio Resource Control) connection request (hereinafter also referred to as Msg 3 PUSCH (Physical Uplink Shared CHannel)), but is limited to these. do not have.
 (2)無線通信システムの構成
 図5に示すように、UE200は、無線信号送受信部210と、アンプ部220と、変復調部230と、制御信号・参照信号処理部240と、符号化/復号部250と、データ送受信部260と、制御部270とを備える。
(2) Configuration of wireless communication system As shown in FIG. 5, the UE 200 includes a wireless signal transmitting/receiving section 210, an amplifier section 220, a modulation/demodulation section 230, a control signal/reference signal processing section 240, and an encoding/decoding section. 250, a data transmitting/receiving section 260, and a control section 270.
 無線信号送受信部210は、gNB100との間で無線信号を送受信する。無線信号送受信部210は、gNB100に無線信号を送信する送信部と、gNB100から無線信号を受信する受信部と、を構成してもよい。 The wireless signal transmitting and receiving unit 210 transmits and receives wireless signals to and from the gNB 100. The wireless signal transmitting/receiving unit 210 may include a transmitting unit that transmits a wireless signal to the gNB 100, and a receiving unit that receives the wireless signal from the gNB 100.
 アンプ部220は、PA(Power Amplifier)/LNA(Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された無線信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力された無線信号を増幅する。 The amplifier section 220 is composed of a PA (Power Amplifier)/LNA (Low Noise Amplifier), etc. Amplifier section 220 amplifies the radio signal output from modulation/demodulation section 230 to a predetermined power level. Furthermore, the amplifier section 220 amplifies the wireless signal output from the wireless signal transmitting/receiving section 210.
 変復調部230は、所定の通信先(gNB100又は他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、ULだけでなく、DLにも用いられてもよい。 The modulation/demodulation unit 230 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB). The modulation/demodulation unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing (DFT-S-OFDM). Furthermore, DFT-S-OFDM may be used not only for UL but also for DL.
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号及び参照信号に関する処理を実行する。 The control signal/reference signal processing unit 240 executes processing regarding various control signals and reference signals transmitted and received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100から送信されるSSBを受信する。さらに、制御信号・参照信号処理部240は、ランダムアクセスにおいて、SSBにマッピングされるROを選択する。制御信号・参照信号処理部240は、ULスロット/シンボルまたはSBFDスロット/シンボルのULサブバンドに重複するROを選択する。これにより、後述するデータ送受信部260は、ULスロット/シンボルまたはULサブバンドにおいて、プリアンブルを送信することができる。 Specifically, the control signal/reference signal processing unit 240 receives the SSB transmitted from the gNB 100. Further, the control signal/reference signal processing unit 240 selects an RO to be mapped to the SSB in random access. The control signal/reference signal processing unit 240 selects an RO that overlaps the UL subband of the UL slot/symbol or the SBFD slot/symbol. Thereby, the data transmitting/receiving section 260, which will be described later, can transmit the preamble in the UL slot/symbol or the UL subband.
 また、制御信号・参照信号処理部240は、DLスロット/シンボルまたはSBFDスロット/シンボルのDLサブバンドに重複するROを選択しない。これにより、データ送受信部260は、DLスロット/シンボルまたはDLサブバンドにおいて、プリアンブルを送信することができない。 Furthermore, the control signal/reference signal processing unit 240 does not select an RO that overlaps with the DL subband of the DL slot/symbol or the SBFD slot/symbol. As a result, the data transmitter/receiver 260 cannot transmit the preamble in the DL slot/symbol or DL subband.
 このように、制御信号・参照信号処理部240が選択したROにおいて、データ送受信部260がプリアンブルを送信する。従って、制御信号・参照信号処理部240は、選択したROにおいてデータ送受信部260にプリアンブルを送信させるともいえる。なお、プリアンブルは、PRACH(Physical Random Access CHannel)などの物理ランダムアクセスチャネルにおいて送信される。以下では、プリアンブルを、Msg 1 PRACHともいう。 In this way, the data transmitting/receiving unit 260 transmits the preamble in the RO selected by the control signal/reference signal processing unit 240. Therefore, it can be said that the control signal/reference signal processing section 240 causes the data transmitting/receiving section 260 to transmit the preamble in the selected RO. Note that the preamble is transmitted on a physical random access channel such as PRACH (Physical Random Access CHannel). In the following, the preamble is also referred to as Msg 1 PRACH.
 一方で、制御信号・参照信号処理部240は、選択したROにおいてデータ送受信部260にプリアンブルを送信させなくてもよい。例えば、SBFDスロット/シンボルのULサブバンドに重複するROを選択した場合、このROにおいてデータ送受信部260にプリアンブルを送信させなくてもよい。この場合、すなわちSBFDスロット/シンボルのULサブバンドにおいて重複するROにおいてプリアンブルが送信されない場合、制御信号・参照信号処理部240は、このULサブバンドにおいてPDCCH(Physical downlink Control CHannel)などの制御チャネルの候補(candidate)をモニタリングしてもよい。 On the other hand, the control signal/reference signal processing unit 240 does not have to cause the data transmitting/receiving unit 260 to transmit the preamble in the selected RO. For example, if an RO that overlaps with the UL subband of the SBFD slot/symbol is selected, the data transmitter/receiver 260 does not need to transmit a preamble in this RO. In this case, that is, when no preamble is transmitted in the overlapping RO in the UL subband of the SBFD slot/symbol, the control signal/reference signal processing unit 240 transmits a control channel such as PDCCH (Physical downlink Control CHannel) in this UL subband. Candidates may be monitored.
 なお、図6に示すように、ULスロット/シンボルまたはSBFDスロット/シンボルのULサブバンドに重複するROをvalid ROともいう。また、DLスロット/シンボルまたはSBFDスロット/シンボルのDLサブバンドに重複するROをinvalid ROともいう。換言すれば、プリアンブルを送信できる送信機会がvalid ROであり、プリアンブルを送信できない送信機会がinvalid ROである。従って、制御信号・参照信号処理部240は、プリアンブルを送信する送信機会として、valid ROを選択し、invalid ROを選択しない。 Note that as shown in FIG. 6, an RO that overlaps with the UL subband of a UL slot/symbol or SBFD slot/symbol is also referred to as a valid RO. In addition, an RO that overlaps with the DL subband of a DL slot/symbol or SBFD slot/symbol is also referred to as an invalid RO. In other words, a transmission opportunity that can transmit a preamble is valid RO, and a transmission opportunity that cannot transmit a preamble is invalid RO. Therefore, the control signal/reference signal processing unit 240 selects valid RO and does not select invalid RO as a transmission opportunity for transmitting a preamble.
 ここで、図7及び図8を参照しつつ、UE200から見たSSBとROとのマッピング理解について説明する。なお、以下に説明するUE200から見たSSBとROとのマッピング理解は、SSBとvalid ROとのマッピング理解であるものとする。図7及び図8において、SBFD capable UEは、SBFDをサポートする実施形態のUE200であり、Legacy UEは、SBFDをサポートしない従来の端末である。Legacy UEは、SBFDスロット/シンボルを、データを送信できないDLスロット/シンボルとして認識する。 Here, with reference to FIGS. 7 and 8, understanding of the mapping between SSB and RO from the perspective of the UE 200 will be explained. Note that the mapping understanding between SSB and RO seen from the UE 200 described below is the mapping understanding between SSB and valid RO. In FIGS. 7 and 8, SBFD capable UE is the UE 200 of the embodiment that supports SBFD, and Legacy UE is a conventional terminal that does not support SBFD. Legacy UE recognizes SBFD slots/symbols as DL slots/symbols that cannot transmit data.
 UE200は、ULスロット/シンボルまたはSBFDスロット/シンボルのULサブバンドに重複するROをvalid ROと見なす。一方で、従来の端末は、ULスロット/シンボルに重複するROをvalid ROと見なす。そのため、図7に示すように、UE200と従来の端末との間で、ULスロット/シンボルに重複するvalid ROだけを取り上げた場合であっても、SSBとROとのマッピング理解が異なってしまう。 The UE 200 considers ROs that overlap the UL subbands of UL slots/symbols or SBFD slots/symbols to be valid ROs. On the other hand, conventional terminals consider ROs that overlap in UL slots/symbols to be valid ROs. Therefore, as shown in FIG. 7, even when only valid ROs that overlap in UL slots/symbols are taken up between the UE 200 and the conventional terminal, the mapping understanding between SSB and RO is different.
 例えば、gNB100のビームBMの制約として、FR2で一般的なアナログビームフォーミングにしか対応していない場合、同時に一つの方向にしかビームBMを形成することができず、周波数方向にリソースを分割することもできない。このような場合、gNB100は、いずれか一つのビームBMを選択してプリアンブルを受信しなければならない。しかしながら、同じスロット/シンボルにおいてUE200と従来の端末との間でSSBとROとのマッピング理解が異なると、gNB100は、受信したプリアンブルに対してRAR UL grantを送信するために、選択すべきビームBMを認識できない。 For example, as a beam BM limitation of gNB100, if FR2 only supports general analog beamforming, beam BM can only be formed in one direction at the same time, and resources can be divided in the frequency direction. I can't do it either. In such a case, the gNB 100 must select any one beam BM to receive the preamble. However, if the SSB and RO mapping understanding is different between the UE200 and the conventional terminal in the same slot/symbol, the gNB100 may decide which beam BM to select in order to transmit the RAR UL grant for the received preamble. cannot be recognized.
 従って、図8に示すように、UE200と従来の端末との間で、ULスロット/シンボルに重複するROにおいては、SSBとROとのマッピング理解を同じにすることが望ましい。そのため、SBFDスロット/シンボルと非SBFDスロット/シンボルとでRACH設定を予め区別してもよい。これにより、SBFDスロット/シンボルに重複するROと、SBFDスロット/シンボルでないスロット/シンボル(以下では、非SBFDスロット/シンボルともいう。)に重複するROとを予め区別してもよい。換言すれば、ROは、SSBにマッピングされるところ、SBFDスロット/シンボルに重複するROは、非SBFDスロット/シンボルに重複するROとは別に、SSBにマッピングされてもよい。 Therefore, as shown in FIG. 8, between the UE 200 and the conventional terminal, it is desirable to have the same understanding of mapping between SSB and RO in ROs that overlap in UL slots/symbols. Therefore, the RACH settings may be distinguished in advance between SBFD slots/symbols and non-SBFD slots/symbols. Thereby, ROs that overlap with SBFD slots/symbols and ROs that overlap with slots/symbols that are not SBFD slots/symbols (hereinafter also referred to as non-SBFD slots/symbols) may be distinguished in advance. In other words, where ROs are mapped to SSBs, ROs that overlap SBFD slots/symbols may be mapped to SSBs separately from ROs that overlap non-SBFD slots/symbols.
 SBFDスロット/シンボルと非SBFDスロット/シンボルとでRACH設定を区別することは、例えば、次のようにして実現されてもよい。 Distinguishing the RACH settings between SBFD slots/symbols and non-SBFD slots/symbols may be achieved, for example, as follows.
 ・非SBFDスロット/シンボル用のRACH設定(従来のRACH設定)に加え、SBFDスロット/シンボル用のRACH設定として、例えば、RACH-ConfigCommon-For-SBFD/RACH-ConfigCommonTwoStepRA-For-SBFD/RACH-ConfigDedicated-For-SBFD/RACH-ConfigGeneric-For-SBFD/RACH-ConfigGenericTwoStepRA-For-SBFDといったパラメータが、SIB 1により示される/RRCにより構成されることができる。 ・In addition to RACH settings for non-SBFD slots/symbols (traditional RACH settings), RACH settings for SBFD slots/symbols such as RACH-ConfigCommon-For-SBFD/RACH-ConfigCommonTwoStepRA-For-SBFD/RACH-ConfigDedicated -For-SBFD/RACH-ConfigGeneric-For-SBFD/RACH-ConfigGenericTwoStepRA-For-SBFD parameters are indicated by SIB 1/can be configured by RRC.
 これにより、UE200は、SBFDスロット/シンボルに重複するROを区別することができるため、非SBFDスロット/シンボルに重複するROにおいては、従来の端末との間でSSBとROとのマッピング理解を同じにすることができる。 This allows the UE200 to distinguish between ROs that overlap in SBFD slots/symbols, so for ROs that overlap in non-SBFD slots/symbols, the UE200 has the same understanding of the mapping between SSB and RO as with conventional terminals. It can be done.
 なお、PDCCH ordered RACHを用いる場合、PRACH Mask indexは、非SBFDスロット/シンボル用であるのか、SBFDスロット/シンボル用であるのかを明確にする必要があるかも知れない。そのために、以下の手段を用いてもよい。 Note that when using PDCCH ordered RACH, it may be necessary to clarify whether the PRACH Mask index is for non-SBFD slots/symbols or SBFD slots/symbols. For this purpose, the following means may be used.
 ・RACH ordering用のDCI 1_0のreserved bitsから1ビットを用いて、非SBFDスロット/シンボル用のRACH設定か、SBFDスロット/シンボル用のRACH設定かを示してもよい。
 ・非SBFDスロット/シンボル用である(あるいは、SBFDスロット/シンボル用である)とデフォルトで定めてもよい。
 ・同じSSBに対する非SBFDスロット/シンボル用のROとSBFDスロット/シンボル用のROとが順番は同一のため、PRACH Mask indexにより、設定された順序のROに対して指示を行ってもよい。
- One bit from the reserved bits of DCI 1_0 for RACH ordering may be used to indicate whether the RACH setting is for non-SBFD slots/symbols or for SBFD slots/symbols.
- It may be determined by default that it is for non-SBFD slots/symbols (or for SBFD slots/symbols).
- Since the ROs for non-SBFD slots/symbols and ROs for SBFD slots/symbols for the same SSB are in the same order, the PRACH Mask index may be used to instruct the ROs in the set order.
 あるいは、UE200と従来の端末との間で、SSBとROとのマッピング理解を完全に異ならせてもよい。すなわち、UE200と従来の端末とで、選択可能なROを予め区別しておいてもよい。この場合、UE200はUE200用のROを選択し、従来の端末は従来の端末用のROを選択する。 Alternatively, the mapping understanding between SSB and RO may be completely different between the UE 200 and the conventional terminal. That is, selectable ROs may be distinguished in advance between the UE 200 and the conventional terminal. In this case, the UE 200 selects the RO for the UE 200, and the conventional terminal selects the RO for the conventional terminal.
 制御信号・参照信号処理部240は、gNB100から送信されるRAR(Random Access Response) UL grantを受信する。さらに、制御信号・参照信号処理部240は、RAR UL grantに基づいて、データ送受信部260にRRC接続要求を含むメッセージを送信させる。具体的には、制御信号・参照信号処理部240は、ULスロット/シンボルまたはULサブバンドにおいて、データ送受信部260にRRC接続要求を含むメッセージを送信させる。なお、RRC接続要求を含むメッセージは、PUSCH(Physical Uplink Shared CHannel)などの物理アップリンク共有チャネルにおいて送信される。以下では、RRC接続要求を含むメッセージを、Msg 3 PUSCHともいう。 The control signal/reference signal processing unit 240 receives the RAR (Random Access Response) UL grant transmitted from the gNB100. Further, the control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit a message including the RRC connection request based on the RAR UL grant. Specifically, the control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit a message including the RRC connection request in the UL slot/symbol or UL subband. Note that the message including the RRC connection request is transmitted on a physical uplink shared channel such as PUSCH (Physical Uplink Shared CHannel). In the following, the message containing the RRC connection request is also referred to as Msg 3 PUSCH.
 また、制御信号・参照信号処理部240は、DLスロット/シンボルまたはSBFDスロット/シンボルのDLサブバンドにおいて、データ送受信部260にMsg 3 PUSCHを送信させない。 Furthermore, the control signal/reference signal processing unit 240 does not cause the data transmitting/receiving unit 260 to transmit Msg 3 PUSCH in the DL subband of the DL slot/symbol or the SBFD slot/symbol.
 このように、制御信号・参照信号処理部240は、ULスロット/シンボルまたはSBFDスロット/シンボルのULサブバンドにおいて、データ送受信部260にプリアンブル及びMsg 3 PUSCHを送信させる。また、制御信号・参照信号処理部240は、DLスロット/シンボルまたはSBFDスロット/シンボルのDLサブバンドにおいて、データ送受信部260にプリアンブル及びMsg 3 PUSCHを送信させない。 In this way, the control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit the preamble and Msg 3 PUSCH in the UL subband of the UL slot/symbol or SBFD slot/symbol. Furthermore, the control signal/reference signal processing unit 240 does not cause the data transmitting/receiving unit 260 to transmit the preamble and Msg 3 PUSCH in the DL subband of the DL slot/symbol or the SBFD slot/symbol.
 符号化/復号部250は、所定の通信先(gNB100又は他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The encoding/decoding unit 250 performs data division/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the encoding/decoding unit 250 divides the data output from the data transmitting/receiving unit 260 into predetermined sizes, and performs channel coding on the divided data. Furthermore, the encoding/decoding section 250 decodes the data output from the modulation/demodulation section 230 and concatenates the decoded data.
 データ送受信部260は、gNB100との間でProtocol Data Unit(PDU)/Service Data Unit(SDU)などのデータを送受信する。データ送受信部260は、gNB100にデータを送信する送信部と、gNB100からデータを受信する受信部と、を構成してもよい。 The data transmitting and receiving unit 260 transmits and receives data such as Protocol Data Unit (PDU)/Service Data Unit (SDU) to and from the gNB 100. The data transmitting/receiving section 260 may include a transmitting section that transmits data to the gNB 100 and a receiving section that receives data from the gNB 100.
 具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御(MAC)レイヤ、無線リンク制御(RLC)レイヤ、パケット・データ・コンバージェンス・プロトコル(PDCP)レイヤなど)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、HARQ(Hybrid Automatic Repeat Request)に基づいて、データの誤り訂正及び再送制御を実行する。 Specifically, the data transmitter/receiver 260 assembles PDUs/SDUs in multiple layers (medium access control (MAC) layer, radio link control (RLC) layer, packet data convergence protocol (PDCP) layer, etc.). /Perform disassembly, etc. The data transmitting/receiving unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
 実施形態のデータ送受信部260を構成する送信部は、ランダムアクセスにおいて、プリアンブル及びMsg 3 PUSCHを送信する。特に、プリアンブルを送信する場合、制御信号・参照信号処理部240が選択したROにおいて、プリアンブルを送信する。 The transmitting unit forming the data transmitting/receiving unit 260 of the embodiment transmits a preamble and Msg 3 PUSCH in random access. In particular, when transmitting a preamble, the preamble is transmitted in the RO selected by the control signal/reference signal processing unit 240.
 また、データ送受信部260を構成する受信部は、ランダムアクセスにおいて、gNB100から送信されるSSB及びRAR UL grantを受信する。データ送受信部260を構成する受信部が受信したSSB及びRAR UL grantに基づいて、制御信号・参照信号処理部240は、データ送受信部260にプリアンブル及びMsg 3 PUSCHを送信させる。 In addition, the receiving unit forming the data transmitting/receiving unit 260 receives the SSB and RAR UL grant transmitted from the gNB 100 in random access. Based on the SSB and RAR UL grant received by the receiving unit constituting the data transmitting/receiving unit 260, the control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit a preamble and Msg 3 PUSCH.
 制御部270は、UE200を構成する各機能ブロックを制御する。すなわち、請求項の制御部の機能は、実施形態の制御信号・参照信号処理部240など、UE200を構成する各機能ブロックにより実現されていると言える。 The control unit 270 controls each functional block that configures the UE 200. That is, it can be said that the functions of the control unit in the claims are realized by each functional block that constitutes the UE 200, such as the control signal/reference signal processing unit 240 of the embodiment.
 UE200は、UE CapabilityなどのUE200の能力情報を送信してもよい(図1参照)。UE200の能力情報としては、例えば、以下の内容が定義されてもよい。
 ・SBFDスロット/シンボルにおいてMsg 1 PRACH送信をサポートするか否か
 ・SBFDスロット/シンボルと非SBFDスロット/シンボルとでRACH設定を区別することをサポートするか否か
 ・SBFDスロット/シンボルにおいてMsg 3 PUSCH送信をサポートするか否か
 ・valid ROにおいてプリアンブルが送信されない場合、当該valid ROシンボル及び当該valid ROの前のN_gapシンボルの一連のシンボルにおいて、PDCCH(for RAR CSS with RA-RNTI and/or with type 1 CSS with TC-RNTI)モニタリングをサポートするか否か
UE 200 may transmit capability information of UE 200 such as UE Capability (see FIG. 1). For example, the following content may be defined as the capability information of the UE 200.
- Whether or not to support Msg 1 PRACH transmission in SBFD slot/symbol - Whether to support distinguishing RACH settings between SBFD slot/symbol and non-SBFD slot/symbol - Msg 3 PUSCH in SBFD slot/symbol Whether to support transmission - If a preamble is not transmitted in a valid RO, in a series of symbols of the valid RO symbol and the N_gap symbol before the valid RO, PDCCH (for RAR CSS with RA-RNTI and/or with type 1 Whether or not to support CSS with TC-RNTI) monitoring
 (3)無線通信システムの動作
 無線通信システム10の動作について説明する。具体的には、UE200が、ランダムアクセスにおいて、SBFDスロット/シンボルにおいてデータを送信する動作について説明する。まず、SBFDスロット/シンボルにおいてプリアンブルを送信する動作について説明し、次に、SBFDスロット/シンボルにおいてMsg 3 PUSCHを送信する動作について説明する。
(3) Operation of wireless communication system The operation of the wireless communication system 10 will be explained. Specifically, an operation in which UE 200 transmits data in SBFD slots/symbols in random access will be described. First, the operation of transmitting a preamble in the SBFD slot/symbol will be explained, and then the operation of transmitting Msg 3 PUSCH in the SBFD slot/symbol will be explained.
 (3.1)課題
 (3.1.1)課題1
 UE200は、gNB100との接続を確立するために、ランダムアクセスを開始する。具体的には、UE200は、gNB100から送信されるSSBにマッピングされるROにおいて、プリアンブルを送信する。しかしながら、TDDのバンド内において複数のサブバンドが規定されるSBFDスロット/シンボルが用いられる場合に、SBFDスロット/シンボルに重複するROにおいてどのようにプリアンブルを送信するかという問題がある。
 (3.1.2)課題2
 UE200は、ランダムアクセスにおいて、gNB100から送信されるRAR UL grantに基づいて、Msg 3 PUSCHを送信する。しかしながら、TDDのバンド内において複数のサブバンドが規定されるSBFDスロット/シンボルにおいて、どのようにMsg 3 PUSCHを送信するかという問題がある。
(3.1) Assignment (3.1.1) Assignment 1
UE200 starts random access in order to establish a connection with gNB100. Specifically, the UE 200 transmits a preamble in the RO mapped to the SSB transmitted from the gNB 100. However, when SBFD slots/symbols are used in which multiple subbands are defined within the TDD band, there is a problem of how to transmit a preamble in an RO that overlaps with the SBFD slots/symbols.
(3.1.2) Assignment 2
UE200 transmits Msg 3 PUSCH based on the RAR UL grant transmitted from gNB100 in random access. However, there is a problem in how to transmit Msg 3 PUSCH in an SBFD slot/symbol where multiple subbands are defined within the TDD band.
 (3.2)動作例
 (3.2.1)動作例1
 UE200は、ランダムアクセスを開始するにあたって、gNB100から送信されるSSBを受信する。具体的には、データ送受信部260を構成する受信部が、gNB100から送信されるSSBを受信する。
(3.2) Operation example (3.2.1) Operation example 1
UE 200 receives the SSB transmitted from gNB 100 when starting random access. Specifically, the receiving section that constitutes the data transmitting and receiving section 260 receives the SSB transmitted from the gNB 100.
 制御信号・参照信号処理部240は、SSBにマッピングされるROを選択する。具体的には、制御信号・参照信号処理部240は、ULスロット/シンボルまたはSBFDスロット/シンボルのULサブバンドに重複するROを選択する。ここでは、制御信号・参照信号処理部240は、SBFDスロット/シンボルのULサブバンドに重複するROを選択するものとする。なお、制御信号・参照信号処理部240は、DLスロット/シンボルまたはSBFDスロット/シンボルのDLサブバンドに重複するROを選択しない。 The control signal/reference signal processing unit 240 selects the RO to be mapped to the SSB. Specifically, the control signal/reference signal processing unit 240 selects an RO that overlaps the UL subband of the UL slot/symbol or the SBFD slot/symbol. Here, it is assumed that the control signal/reference signal processing unit 240 selects an RO that overlaps the UL subband of the SBFD slot/symbol. Note that the control signal/reference signal processing unit 240 does not select an RO that overlaps with the DL subband of the DL slot/symbol or the SBFD slot/symbol.
 データ送受信部260は、制御信号・参照信号処理部240が選択したROにおいて、プリアンブルを送信する。これにより、UE200は、gNB100との間でランダムアクセスを開始する。 The data transmitting/receiving unit 260 transmits the preamble in the RO selected by the control signal/reference signal processing unit 240. Thereby, UE200 starts random access with gNB100.
 (3.2.2)動作例2
 ここで、上述した動作例3.2.1において、制御信号・参照信号処理部240が選択したROにおいてプリアンブルが送信されない場合について説明する。この場合、制御信号・参照信号処理部240は、選択したROが重複するULサブバンドにおいて、PDCCHなどの制御チャネルの候補をモニタリングしてもよい。
(3.2.2) Operation example 2
Here, a case will be described in which the preamble is not transmitted in the RO selected by the control signal/reference signal processing unit 240 in the above-described operation example 3.2.1. In this case, the control signal/reference signal processing unit 240 may monitor control channel candidates such as PDCCH in the UL subband where the selected ROs overlap.
 (3.2.3)動作例3
 UE200は、ランダムアクセスにおいて、gNB100から送信されるRAR UL grantを受信する。具体的には、データ送受信部260を構成する受信部が、gNB100から送信されるRAR UL grantを受信する。
(3.2.3) Operation example 3
UE200 receives the RAR UL grant transmitted from gNB100 in random access. Specifically, a receiving unit forming the data transmitting/receiving unit 260 receives the RAR UL grant transmitted from the gNB 100.
 制御信号・参照信号処理部240は、ULスロット/シンボルまたはULサブバンドにおいて、データ送受信部260にMsg 3 PUSCHを送信させる。ここでは、制御信号・参照信号処理部240は、SBFDスロット/シンボルのULサブバンドにおいて、データ送受信部260にMsg 3 PUSCHを送信させるものとする。なお、制御信号・参照信号処理部240は、DLスロット/シンボルまたはSBFDスロット/シンボルのDLサブバンドにおいて、データ送受信部260にMsg 3 PUSCHを送信させない。 The control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit Msg 3 PUSCH in the UL slot/symbol or UL subband. Here, it is assumed that the control signal/reference signal processing unit 240 causes the data transmitting/receiving unit 260 to transmit Msg 3 PUSCH in the UL subband of the SBFD slot/symbol. Note that the control signal/reference signal processing unit 240 does not cause the data transmitting/receiving unit 260 to transmit Msg 3 PUSCH in the DL subband of the DL slot/symbol or the SBFD slot/symbol.
 (4)作用・効果
 上述した実施形態のUE200は、ランダムアクセスにおいて、SBFDスロット/シンボルのULサブバンドに重複するROを選択し、選択したROにおいてプリアンブルを送信する。このように、SBFDスロット/シンボルにおいてプリアンブルを送信することができる。
(4) Effects and Effects In random access, the UE 200 of the embodiment described above selects an RO that overlaps the UL subband of the SBFD slot/symbol, and transmits a preamble in the selected RO. In this way, preambles can be transmitted in SBFD slots/symbols.
 また、上述した実施形態のUE200は、選択したROにおいてプリアンブルが送信されない場合、ROが重複するULサブバンドにおいて、PDCCHなどの制御チャネルの候補をモニタリングしてもよい。これにより、ROにおけるプリアンブルの送信よりも、制御チャネルの候補のモニタリングを優先することができる。 Furthermore, when the preamble is not transmitted in the selected RO, the UE 200 in the embodiment described above may monitor control channel candidates such as PDCCH in the UL subband where the ROs overlap. This allows monitoring of control channel candidates to be prioritized over preamble transmission in the RO.
 また、上述した実施形態のUE200は、ランダムアクセスにおいて、SBFDスロット/シンボルのULサブバンドにおいてMsg 3 PUSCHを送信する。このように、SBFDスロット/シンボルにおいてMsg 3 PUSCHを送信することができる。 In addition, the UE 200 of the embodiment described above transmits Msg 3 PUSCH in the UL subband of the SBFD slot/symbol in random access. In this way, Msg 3 PUSCH can be transmitted in an SBFD slot/symbol.
 (5)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the content of the present invention has been explained above in accordance with the embodiments, it is understood that the present invention is not limited to these descriptions and that various modifications and improvements are possible. It is self-evident to business operators.
 上述した開示において、実施形態のUE200は、SBFDをサポートし、SBFDスロット/シンボルに重複するROを選択するものとしたが、これに限られない。例えば、SBFDをサポートする一方で、ROがSBFDスロット/シンボルに重複することを想定しなくてもよい。具体的な例を以下に示す。 In the above disclosure, the UE 200 of the embodiment supports SBFD and selects an RO that overlaps with the SBFD slot/symbol, but the present invention is not limited to this. For example, while supporting SBFD, it may not be assumed that ROs overlap SBFD slots/symbols. A specific example is shown below.
 ・ROシンボル及び当該ROの前のN_gapシンボルがSBFDスロット/シンボルに重複することを想定しない。
 ・valid ROシンボル及び当該valid ROの前のN_gapシンボルがSBFDスロット/シンボルに重複することを想定しない。
 ・ROシンボル及び当該ROの前のN_gapシンボルがSBFD semi-static (and/or dynamic) UL and/or flexibleスロット/シンボルに重複することを想定しない。
 ・valid ROシンボル及び当該valid ROの前のN_gapシンボルがSBFD semi-static (and/or dynamic) UL and/or flexibleスロット/シンボルに重複することを想定しない。
- It is not assumed that the RO symbol and the N_gap symbol before the RO overlap with the SBFD slot/symbol.
- It is not assumed that a valid RO symbol and the N_gap symbol before the valid RO overlap in an SBFD slot/symbol.
- It is not assumed that the RO symbol and the N_gap symbol before the RO overlap with the SBFD semi-static (and/or dynamic) UL and/or flexible slot/symbol.
- It is not assumed that a valid RO symbol and the N_gap symbol before the valid RO overlap in the SBFD semi-static (and/or dynamic) UL and/or flexible slot/symbol.
 SBFD semi-static ULスロット/シンボルは、tdd-UL-DL-ConfigurationCommon(またはtdd-UL-DL-ConfigurationDedicated)によりULとして設定されるSBFDスロット/シンボルである。また、SBFD dynamic ULスロット/シンボルは、tdd-UL-DL-ConfigurationCommon(またはtdd-UL-DL-ConfigurationDedicated)によりflexibleとして設定され、DCI 2_0によりULとして示されるSBFDスロット/シンボルである。 SBFD semi-static UL slot/symbol is an SBFD slot/symbol that is configured as UL by tdd-UL-DL-ConfigurationCommon (or tdd-UL-DL-ConfigurationDedicated). Additionally, the SBFD dynamic UL slot/symbol is the SBFD slot/symbol that is set as flexible by tdd-UL-DL-ConfigurationCommon (or tdd-UL-DL-ConfigurationDedicated) and indicated as UL by DCI 2_0.
 SBFD semi-static flexibleスロット/シンボルは、tdd-UL-DL-ConfigurationCommon(またはtdd-UL-DL-ConfigurationDedicated)によりflexibleとして設定されるSBFDスロット/シンボルである。また、SBFD dynamic flexibleスロット/シンボルは、tdd-UL-DL-ConfigurationCommon(またはtdd-UL-DL-ConfigurationDedicated)によりflexibleとして設定され、DCI 2_0によりflexibleとして示されるSBFDスロット/シンボルである。 A SBFD semi-static flexible slot/symbol is an SBFD slot/symbol that is set as flexible by tdd-UL-DL-ConfigurationCommon (or tdd-UL-DL-ConfigurationDedicated). Additionally, the SBFD dynamic flexible slot/symbol is the SBFD slot/symbol that is set as flexible by tdd-UL-DL-ConfigurationCommon (or tdd-UL-DL-ConfigurationDedicated) and indicated as flexible by DCI 2_0.
 上述した開示において、実施形態のUE200は、SBFDをサポートし、SBFDスロット/シンボルに重複するROを選択するものとしたが、これに限られない。例えば、SBFDをサポートする一方で、SBFDスロット/シンボルに重複するROをinvalid ROと見なしてもよい。具体的な例を以下に示す。 In the above disclosure, the UE 200 of the embodiment supports SBFD and selects an RO that overlaps with the SBFD slot/symbol, but the present invention is not limited to this. For example, while supporting SBFD, ROs that overlap SBFD slots/symbols may be considered invalid ROs. A specific example is shown below.
 ・SBFD semi-static (and/or dynamic) DLスロット/シンボルに重複するROをinvalid ROと見なす。
 ・SBFD semi-static (and/or dynamic) UL and/or flexibleスロット/シンボルに重複するROをinvalid ROと見なす。
・SBFD semi-static (and/or dynamic) ROs that overlap in DL slots/symbols are considered invalid ROs.
- SBFD semi-static (and/or dynamic) ROs that overlap in UL and/or flexible slots/symbols are considered invalid ROs.
 上述した開示におけるROとSBFDスロット/シンボルとの重複に係る設定は、以下に示すような条件に合わせて適用してもよい。 The settings regarding the overlap between RO and SBFD slots/symbols in the above disclosure may be applied according to the conditions shown below.
 ・すべてのROに適用する。
 ・SIB 1により示されるRACH設定/dedicated RRC configurationにより示されるRACH設定など、特定のRACH設定に従うROに適用する。
 ・特定のRACH手順/特定のRACHタイプ/特定のRACH目的/特定のtriggering methodに適用する。特定のRACH手順は、例えば、2ステップRACHまたは4ステップRACHである。特定のRACHタイプは、contention based RACHまたはcontention free RACHである。特定のRACH目的は、例えば、イニシャルアクセスのための/SI requestのための/SpCell BFRのための/sync with reconfigurationのためのRACHである。特定のtriggering methodは、例えば、PDCCH order/MAC entity/RRCである。
 ・特定のシナリオが(PDCCH order PRACHのために)RRC reconfigureされる/DCI indicateされるか否かに応じて適用する。
・Apply to all ROs.
- Applies to ROs that follow a specific RACH configuration, such as the RACH configuration indicated by SIB 1 / RACH configuration indicated by dedicated RRC configuration.
-Apply to a specific RACH procedure/specific RACH type/specific RACH purpose/specific triggering method. A particular RACH procedure is, for example, a 2-step RACH or a 4-step RACH. Specific RACH types are contention based RACH or contention free RACH. Specific RACH purposes are, for example, RACH for initial access/for SI request/for SpCell BFR/sync with reconfiguration. The specific triggering method is, for example, PDCCH order/MAC entity/RRC.
- Applies depending on whether the specific scenario is RRC reconfigured/DCI indicated (for PDCCH order PRACH).
 上述した開示において、実施形態のUE200は、SBFDをサポートし、SBFDスロット/シンボルにおいてMsg 3 PUSCHを送信するものとしたが、これに限られない。例えば、SBFDをサポートする一方で、SBFDスロット/シンボルにおいてMsg 3 PUSCHを送信することを想定しなくてもよい。具体的には、SBFDスロット/シンボルにおいてMsg 3 PUSCHを送信することをスケジューリングするRARを検出した場合、Msg 3 PUSCHを送信しなくてもよい。そもそも、SBFDスロット/シンボルにおいてMsg 3 PUSCHを送信することをスケジューリングするRARを検出することを想定しなくてもよい。 In the above disclosure, the UE 200 of the embodiment supports SBFD and transmits Msg 3 PUSCH in the SBFD slot/symbol, but the present invention is not limited to this. For example, while supporting SBFD, it may not be assumed to transmit Msg 3 PUSCH in SBFD slots/symbols. Specifically, if a RAR that schedules transmission of Msg 3 PUSCH in an SBFD slot/symbol is detected, Msg 3 PUSCH may not be transmitted. In the first place, it is not necessary to assume that a RAR that schedules transmission of Msg 3 PUSCH in an SBFD slot/symbol is detected.
 上述した開示において、gNB100は、データを送受信する端末がSBFDスロット/シンボルにおいてMsg 3 PUSCHを送信することのできるUE200であるか否かを、以下のように認識してもよい。
 ・SBFDスロット/シンボルにおいてMsg 3 PUSCHを送信することのできるUE200用のROを予め区別しておく。
 ・受信したROがSBFDスロット/シンボルに重複するか否か
 ・受信したROがSBFDスロット/シンボル用のRACH設定のものか、非SBFDスロット/シンボル用のRACH設定のものか
In the above disclosure, the gNB 100 may recognize whether the terminal transmitting and receiving data is the UE 200 that can transmit Msg 3 PUSCH in the SBFD slot/symbol as follows.
- Distinguish in advance the RO for UE 200 that can transmit Msg 3 PUSCH in the SBFD slot/symbol.
・Whether the received RO overlaps the SBFD slot/symbol ・Whether the received RO has the RACH settings for SBFD slots/symbols or the RACH settings for non-SBFD slots/symbols
 上述した開示において、同期信号の例としてSSBを挙げて説明したが、これに限られない。例えば、同期信号として参照信号のCSI-RSを用いてもよい。なお、CSI-RSは、gNB100とUE200との間における時間及び周波数の同期確立に用いられるので、同期信号であるともいえる。 In the above disclosure, SSB was cited as an example of the synchronization signal, but the synchronization signal is not limited to this. For example, the reference signal CSI-RS may be used as the synchronization signal. Note that since the CSI-RS is used to establish time and frequency synchronization between the gNB 100 and the UE 200, it can also be said to be a synchronization signal.
 上述した開示において、TDDのバンド内において複数のサブバンドが規定されるスロット/シンボルをSBFDスロット/シンボルと呼んだが、これに限られない。例えば、XDD(Cross Division Duplex)スロット/シンボルと呼んでもよい。 In the above disclosure, a slot/symbol in which multiple subbands are defined within a TDD band is called an SBFD slot/symbol, but the slot/symbol is not limited to this. For example, it may be called an XDD (Cross Division Duplex) slot/symbol.
 上述した動作例は、矛盾が生じない限り、組み合わせて複合的に適用されてもよい。 The above-described operation examples may be combined and applied in a complex manner as long as no contradiction occurs.
 上述した開示において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 In the above disclosure, the terms configure, activate, update, indicate, enable, specify, and select may be used interchangeably. Similarly, link, associate, correspond, and map may be used interchangeably; allocate, assign, and monitor. , map may also be read interchangeably.
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Further, the terms "specific", "dedicated", "UE specific", and "UE individual" may be interchanged. Similarly, common, shared, group-common, UE common, and UE shared may be interchanged.
 上述した実施形態の説明に用いたブロック構成図(図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagram (FIG. 5) used to explain the embodiment described above shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、当該装置のハードウェア構成の一例を示す図である。図9に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the gNB 100 and UE 200 (the devices) described above may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 9 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 9, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the device may include one or more of the devices shown in the figure, or may not include some of the devices.
 当該装置の各機能ブロック(図5参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 5) is realized by any hardware element of the computer device or a combination of hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the device is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations, controls communication by the communication device 1004, and controls the memory This is realized by controlling at least one of data reading and writing in the storage 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Further, the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be done. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store programs (program codes), software modules, etc. that can execute a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, such as an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. Storage 1003 may also be called auxiliary storage. The above-mentioned recording medium may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, network controller, network card, communication module, etc.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, information notification can be performed using physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination thereof. RRC signaling may also be referred to as RRC messages, such as RRC Connection Setup ) message, RRC Connection Reconfiguration message, etc.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate systems and next-generation systems enhanced based on these. may be applied to. Furthermore, a combination of multiple systems (for example, a combination of at least one of LTE and LTE-A with 5G) may be applied.
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operations performed by the base station in this disclosure may be performed by its upper node. In a network consisting of one or more network nodes including a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this can be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of multiple other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information that is input and output can be overwritten, updated, or added. The output information may be deleted. The input information may be sent to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may also be called a carrier frequency, cell, frequency carrier, etc.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "base station (BS)", "wireless base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " The terms "carrier", "component carrier", etc. may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (Remote Radio Communication services can also be provided by Head: RRH).
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the base station has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions that the mobile station has.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in an LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a unit of transmission time such as a channel-coded data packet (transport block), a code block, or a codeword, or may be a unit of processing such as scheduling or link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (e.g., normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1ms, and short TTI (e.g., shortened TTI, etc.) may be interpreted as TTI with a time length of less than the long TTI and 1ms. It may also be read as a TTI having a TTI length of the above length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the new merology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on newerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs are classified into physical resource blocks (Physical RBs: PRBs), sub-carrier groups (SCGs), resource element groups (Resource Element Groups: REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of contiguous common resource blocks for a certain numerology in a certain carrier. good. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be configured within one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, refer to any connection or coupling, direct or indirect, between two or more elements and to each other. It can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (for example, accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" refer to resolving, selecting, choosing, establishing, comparing, etc. as "judgment" and "decision". may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 図10は、車両2001の構成例を示す。図10に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。 FIG. 10 shows an example of the configuration of the vehicle 2001. As shown in FIG. 10, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, Equipped with various sensors 2021 to 2029, an information service section 2012, and a communication module 2013.
 駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
 操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。 The electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2027 provided in the vehicle are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 Signals from various sensors 2021 to 2028 include current signals from current sensor 2021 that senses motor current, front and rear wheel rotation speed signals obtained by rotation speed sensor 2022, and front wheel rotation speed signals obtained by air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal acquired by vehicle speed sensor 2024, acceleration signal acquired by acceleration sensor 2025, accelerator pedal depression amount signal acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The Information Service Department 2012 provides various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 1 using information acquired from an external device via the communication module 2013 and the like.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能または自動運転機能を実現する。 The driving support system unit 2030 includes millimeter wave radar, LiDAR (Light Detection and Ranging), cameras, positioning locators (e.g. GNSS, etc.), map information (e.g. high definition (HD) maps, autonomous vehicle (AV) maps, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. It consists of various devices that provide functions for the system and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and the components of the vehicle 1 via the communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, which are included in the vehicle 2001, through the communication port 2033. Data is transmitted and received between the axle 2009, the microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and the sensors 2021 to 2028.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. Communication module 2013 may be located either inside or outside electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などについても無線通信を介して外部装置へ送信する。 The communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication. In addition, the communication module 2013 also receives the front wheel and rear wheel rotational speed signals acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor, which are input to the electronic control unit 2010. A vehicle speed signal obtained by the acceleration sensor 2024, an acceleration signal obtained by the acceleration sensor 2025, an accelerator pedal depression amount signal obtained by the accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by the brake pedal sensor 2026, and a shift lever. The shift lever operation signal acquired by the sensor 2027, the detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service section 2012 provided in the vehicle. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, and left and right rear wheels provided in the vehicle 2001. 2008, axle 2009, sensors 2021 to 2028, etc. may be controlled.
 <付記>
 実施形態の端末は、下記の各項に示す端末として構成されてもよい。
(第1項)
 ランダムアクセスにおいてプリアンブルを送信する送信部と、
 前記送信部が前記プリアンブルを送信する送信機会を選択する制御部と、
 を備え、
 前記制御部は、TDD(Time Division Duplex)のバンド内において規定される複数のサブバンドのうちUL(UpLink)サブバンドに重複する送信機会を選択する、
 端末。
(第2項)
 前記制御部は、前記複数のサブバンドのうちDL(DownLink)サブバンドに重複する送信機会を選択しない、
 請求項1に記載の端末。
(第3項)
 前記送信機会は、基地局から送信される同期信号にマッピングされ、
 前記複数のサブバンドが規定されるバンドに重複する送信機会は、複数のサブバンドが規定されないバンドに重複する送信機会とは別に、前記同期信号にマッピングされる、
 請求項1または2に記載の端末。
(第4項)
 前記制御部は、選択された前記送信機会において前記プリアンブルが送信されない場合、前記ULサブバンドにおいて制御チャネル候補をモニタリングする、
 請求項1乃至3のいずれかに記載の端末。
(第5項)
 ランダムアクセスにおいてRRC(Radio Resource Control)接続要求を含むメッセージを送信する送信部と、
 TDD(Time Division Duplex)のバンド内において規定される複数のサブバンドのうちUL(UpLink)サブバンドにおいて、前記送信部に前記メッセージを送信させる制御部と、
 を備える端末。
(第6項)
 前記制御部は、前記複数のサブバンドのうちDL(DownLink)サブバンドにおいて、前記送信部に前記メッセージを送信させない、
 請求項5に記載の端末。
<Additional notes>
The terminal of the embodiment may be configured as a terminal shown in each section below.
(Section 1)
a transmitter that transmits a preamble in random access;
a control unit that selects a transmission opportunity for the transmission unit to transmit the preamble;
Equipped with
The control unit selects a transmission opportunity that overlaps with a UL (UpLink) subband from among a plurality of subbands defined within a TDD (Time Division Duplex) band.
terminal.
(Section 2)
The control unit does not select a transmission opportunity that overlaps with a DL (DownLink) subband among the plurality of subbands.
The terminal according to claim 1.
(Section 3)
the transmission opportunity is mapped to a synchronization signal transmitted from a base station;
Transmission opportunities that overlap in bands in which the plurality of subbands are defined are mapped to the synchronization signal separately from transmission opportunities that overlap in bands in which the plurality of subbands are not defined;
The terminal according to claim 1 or 2.
(Section 4)
The control unit monitors control channel candidates in the UL subband if the preamble is not transmitted in the selected transmission opportunity.
A terminal according to any one of claims 1 to 3.
(Section 5)
a transmitting unit that transmits a message including an RRC (Radio Resource Control) connection request in random access;
A control unit that causes the transmitter to transmit the message in a UL (UpLink) subband among a plurality of subbands defined within a TDD (Time Division Duplex) band;
A terminal equipped with
(Section 6)
The control unit does not cause the transmission unit to transmit the message in a DL (DownLink) subband among the plurality of subbands.
The terminal according to claim 5.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 2001 車両
 2002 駆動部
 2003 操舵部
 2004 アクセルペダル
 2005 ブレーキペダル
 2006 シフトレバー
 2007 左右の前輪
 2008 左右の後輪
 2009 車軸
 2010 電子制御部
 2012 情報サービス部
 2013 通信モジュール
 2021 電流センサ
 2022 回転数センサ
 2023 空気圧センサ
 2024 車速センサ
 2025 加速度センサ
 2026 ブレーキペダルセンサ
 2027 シフトレバーセンサ
 2028 物体検出センサ
 2029 アクセルペダルセンサ
 2030 運転支援システム部
 2031 マイクロプロセッサ
 2032 メモリ(ROM、RAM)
 2033 通信ポート
10 Wireless communication system 20 NG-RAN
100 gNB
200 U.E.
210 Wireless signal transmission/reception section 220 Amplifier section 230 Modulation/demodulation section 240 Control signal/reference signal processing section 250 Encoding/decoding section 260 Data transmission/reception section 270 Control section 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service department 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed Sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 communication port

Claims (6)

  1.  ランダムアクセスにおいてプリアンブルを送信する送信部と、
     前記送信部が前記プリアンブルを送信する送信機会を選択する制御部と、
     を備え、
     前記制御部は、TDD(Time Division Duplex)のバンド内において規定される複数のサブバンドのうちUL(UpLink)サブバンドに重複する送信機会を選択する、
     端末。
    a transmitter that transmits a preamble in random access;
    a control unit that selects a transmission opportunity for the transmission unit to transmit the preamble;
    Equipped with
    The control unit selects a transmission opportunity that overlaps with a UL (UpLink) subband from among a plurality of subbands defined within a TDD (Time Division Duplex) band.
    terminal.
  2.  前記制御部は、前記複数のサブバンドのうちDL(DownLink)サブバンドに重複する送信機会を選択しない、
     請求項1に記載の端末。
    The control unit does not select a transmission opportunity that overlaps with a DL (DownLink) subband among the plurality of subbands.
    The terminal according to claim 1.
  3.  前記送信機会は、基地局から送信される同期信号にマッピングされ、
     前記複数のサブバンドが規定されるバンドに重複する送信機会は、複数のサブバンドが規定されないバンドに重複する送信機会とは別に、前記同期信号にマッピングされる、
     請求項1に記載の端末。
    the transmission opportunity is mapped to a synchronization signal transmitted from a base station;
    Transmission opportunities that overlap in bands in which the plurality of subbands are defined are mapped to the synchronization signal separately from transmission opportunities that overlap in bands in which the plurality of subbands are not defined;
    The terminal according to claim 1.
  4.  前記制御部は、選択された前記送信機会において前記プリアンブルが送信されない場合、前記ULサブバンドにおいて制御チャネル候補をモニタリングする、
     請求項1に記載の端末。
    The control unit monitors control channel candidates in the UL subband if the preamble is not transmitted in the selected transmission opportunity.
    The terminal according to claim 1.
  5.  ランダムアクセスにおいてRRC(Radio Resource Control)接続要求を含むメッセージを送信する送信部と、
     TDD(Time Division Duplex)のバンド内において規定される複数のサブバンドのうちUL(UpLink)サブバンドにおいて、前記送信部に前記メッセージを送信させる制御部と、
     を備える端末。
    a transmitting unit that transmits a message including an RRC (Radio Resource Control) connection request in random access;
    A control unit that causes the transmitter to transmit the message in a UL (UpLink) subband among a plurality of subbands defined within a TDD (Time Division Duplex) band;
    A terminal equipped with
  6.  前記制御部は、前記複数のサブバンドのうちDL(DownLink)サブバンドにおいて、前記送信部に前記メッセージを送信させない、
     請求項5に記載の端末。
    The control unit does not cause the transmission unit to transmit the message in a DL (DownLink) subband among the plurality of subbands.
    The terminal according to claim 5.
PCT/JP2022/031451 2022-08-19 2022-08-19 Terminal WO2024038607A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031451 WO2024038607A1 (en) 2022-08-19 2022-08-19 Terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031451 WO2024038607A1 (en) 2022-08-19 2022-08-19 Terminal

Publications (1)

Publication Number Publication Date
WO2024038607A1 true WO2024038607A1 (en) 2024-02-22

Family

ID=89941755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031451 WO2024038607A1 (en) 2022-08-19 2022-08-19 Terminal

Country Status (1)

Country Link
WO (1) WO2024038607A1 (en)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on subband non-overlapping full duplex", 3GPP DRAFT; R1-2206911, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052274849 *
HUAWEI, HISILICON: "Discussion on subband non-overlapping full duplex", 3GPP DRAFT; R1-2205897, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052273827 *
NEW H3C: "Discussion for subband non-overlapping full duplex", 3GPP DRAFT; R1-2206108, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052274041 *
NTT DOCOMO, INC.: "Discussion on subband non-overlapping full duplex", 3GPP DRAFT; R1-2209902, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052259375 *
SAMSUNG: "SBFD feasibility and design considerations for NR duplex evolution", 3GPP DRAFT; R1-2206421, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052274353 *

Similar Documents

Publication Publication Date Title
WO2024038607A1 (en) Terminal
WO2024024098A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023210008A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024024100A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024024096A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023210009A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024034093A1 (en) Terminal and wireless communication method
WO2024034094A1 (en) Terminal and wireless communication method
WO2023063397A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023188212A1 (en) Terminal, base station, and communication method
WO2024029078A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024034095A1 (en) Terminal
WO2024053114A1 (en) Terminal and communication method
WO2023175979A1 (en) Terminal, base station, and communication method
WO2024034083A1 (en) Terminal and wireless communication method
WO2023195141A1 (en) Terminal, base station, and communication method
WO2024075299A1 (en) Terminal
WO2023242929A1 (en) Terminal, base station, radio communication system, and radio communication method
WO2023210006A1 (en) Terminal, wireless base station, and wireless communication method
WO2024034121A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023199447A1 (en) Terminal, base station, and communication method
WO2023067750A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023199495A1 (en) Terminal, base station, and communication method
WO2023199446A1 (en) Terminal, base station, and communication method
WO2023199496A1 (en) Terminal, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955779

Country of ref document: EP

Kind code of ref document: A1