WO2024038525A1 - Processing device, processing method, and program - Google Patents

Processing device, processing method, and program Download PDF

Info

Publication number
WO2024038525A1
WO2024038525A1 PCT/JP2022/031112 JP2022031112W WO2024038525A1 WO 2024038525 A1 WO2024038525 A1 WO 2024038525A1 JP 2022031112 W JP2022031112 W JP 2022031112W WO 2024038525 A1 WO2024038525 A1 WO 2024038525A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
deterioration
video data
vehicle
data
Prior art date
Application number
PCT/JP2022/031112
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 山本
浩明 前田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/031112 priority Critical patent/WO2024038525A1/en
Publication of WO2024038525A1 publication Critical patent/WO2024038525A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/035Bringing the control units into a predefined state, e.g. giving priority to particular actuators
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a processing device, a processing method, and a program.
  • remote monitoring and control a remote observer monitors the running of a remotely monitored vehicle, robot, etc. without an operator onboard the vehicle, using images of the surroundings of the vehicle.
  • the supervisor recognizes a dangerous situation, he or she takes control of the vehicle by remotely commanding the vehicle to stop.
  • monitoring images around the vehicle are transmitted to a remote location via a wireless network, and instructions such as emergency stop are sent from the remote location.
  • instructions such as emergency stop are sent from the remote location.
  • it is difficult to ensure continuous transmission of optimal video data. Temporary video stoppage or video deterioration may cause situations in which remote monitoring and control cannot be performed properly.
  • Automated driving of vehicles under conditions where remote monitoring and control cannot be performed appropriately is dangerous. For example, it is necessary to quickly identify situations where images around the vehicle are not being transmitted properly and take measures such as stopping the vehicle while it is driving automatically. For example, there is a method in which a remote person visually monitors images around the vehicle, and when the image stops or deteriorates, the remote person instructs the conductor to stop.
  • Non-Patent Document 1 there is a method of emitting a signal to confirm the normality of a communication network, such as ICMP (INTERNET CONTROL MESSAGE PROTOCOL) (Non-Patent Document 1). There is a method of periodically emitting such a signal, detecting deterioration of the surveillance video from changes in the response, specifically changes in delay time or loss rate, and instructing the vehicle to stop.
  • ICMP INTERNET CONTROL MESSAGE PROTOCOL
  • Non-Patent Document 2 Provided Media Delivery Index
  • Non-Patent Document 2 Provided Media Delivery Index
  • Methods such as ICMP that emit signals to confirm the normality of communication networks have a problem with low deterioration detection accuracy because video packets are not directly monitored. Since the detection of problems is limited to sections where surveillance video information is packetized and transferred, there is a problem in that problems occurring in other sections cannot be detected. Furthermore, in a narrowband wireless network, it is not suitable to emit a signal for confirming normality.
  • the method of measuring network characteristics such as MDI is only one standard for video quality, and there is a problem that control may be overlooked. There is also a problem that is limited to detecting problems in sections that are packetized and transferred.
  • Remote monitoring and control that refers to images that cannot determine the presence or absence of deterioration may cause the vehicle to run unsmoothly, such as repeatedly starting and stopping, or may increase the danger to surrounding vehicles or people.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technology that can support safe automatic driving of a vehicle by taking into account image deterioration.
  • a processing device includes a storage device that stores profile data that associates, for each control for safe driving of a vehicle, a control cost range that indexes the influence of the control, and a predetermined method. a detection unit that detects deterioration of video data photographing the surroundings of the vehicle; and a selection unit that selects a control that includes a control cost determined in consideration of detection accuracy in the method from the profile data within the range. , an instruction section for instructing the selected control.
  • a computer stores, in a storage device, profile data that associates, for each control for safe driving of a vehicle, a control cost range that indexes the influence of the control, and a computer detects deterioration of video data photographing the surroundings of the vehicle using a predetermined method;
  • the computer selects, from the profile data, a control that includes a control cost determined in consideration of detection accuracy in the method, and instructs the selected control.
  • One aspect of the present invention is a program that causes a computer to function as the processing device.
  • FIG. 1 is a diagram illustrating the system configuration of a processing system and functional blocks of a processing device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of the data structure and data of constant data according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of the data structure and data of profile data.
  • FIG. 4 is a flowchart illustrating an example of detection processing by the detection unit according to the embodiment.
  • FIG. 5 is a flowchart illustrating an example of selection processing by the selection unit according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of a data structure and data of constant data according to a modification.
  • FIG. 7 is a flowchart illustrating an example of detection processing by the detection unit according to the first modification.
  • FIG. 1 is a diagram illustrating the system configuration of a processing system and functional blocks of a processing device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of the data structure and data of constant data according
  • FIG. 8 is a flowchart illustrating an example of selection processing by the selection unit according to the first modification.
  • FIG. 9 is a flowchart illustrating an example of detection processing by the detection unit according to the second modification.
  • FIG. 10 is a flowchart illustrating an example of selection processing by the selection unit according to the second modification.
  • FIG. 11 is a diagram illustrating the hardware configuration of a computer used in the processing device.
  • a processing system 5 includes a processing device 1 and a vehicle 3.
  • the processing device 1 and the vehicle 3 are connected to be able to communicate with each other via a wireless network.
  • the vehicle 3 is a target of remote monitoring by the processing device 1 .
  • the processing system 5 shown in FIG. 1 includes a plurality of vehicles 3, and the processing device 1 may remotely monitor the plurality of vehicles 3.
  • the vehicle 3 is equipped with a GPS (Global Positioning System) receiver (not shown), pinpoints the vehicle's position from signals received from GPS satellites, and drives according to a pre-given program.
  • the vehicle 3 may issue a warning, decelerate, or otherwise avoid an obstacle in accordance with the control signal received from the processing device 1 .
  • the vehicle 3 includes a camera 31, an encoding section 32, a communication section 33, a control section 34, and a drive section 35.
  • the camera 31 inputs video data for capturing a video of the surroundings of the vehicle 3 to the encoding unit 32.
  • the encoding unit 32 encodes video data input from the camera 31 and transmits it to the processing device 1 via the communication unit 33.
  • the communication unit 33 transmits encoded video data to the processing device 1 , receives a control signal for the vehicle 3 from the processing device 1 , and inputs it to the control unit 34 .
  • the control section 34 drives the drive section 35 according to the control signal 15 received from the processing device 1 .
  • the drive unit 35 is a device for decelerating the vehicle 3 and warning the surrounding area, and is driven under control by the control unit 34.
  • the processing device 1 includes constant data 11, profile data 12, video data 13, control cost 14, and control signal 15, a communication section 21, a decoding section 22, a detection section 23, and a selection section 24. , an instruction section 25, a learning section 27, and a display section 26.
  • Each data is stored in a storage device such as memory 902 or storage 903.
  • Each function is implemented in the CPU 901.
  • the constant data 11 is data that is stored in advance in the processing device 1 prior to the processing of the video data 13 by the processing device 1.
  • the constant data 11 stores constants that take into account the accuracy of a detection method by which a detection unit 23 (described later) detects deterioration in the video data 13.
  • a high value is set to the constant of the constant data 11 when the reliability of the deterioration detection method is high, and a low value is set when the reliability is low.
  • the constant data 11 associates a true positive value, which is a constant set for true positives, with a false positive value, which is a constant set for false positives.
  • the true positive value is also referred to as True Positive (tp).
  • the true positive value corresponds to the ratio at which the quality of the video data 13 actually deteriorates when the deterioration detection method used by the detection unit 23 detects the deterioration of the quality of the video data 13.
  • False positive values are also referred to as False Positive (fp).
  • the false positive value corresponds to the ratio at which the quality of the video data 13 is not actually degraded when the deterioration detection method used by the detection unit 23 detects deterioration in the quality of the video data 13.
  • the profile data 12 is data that is stored in advance in the processing device 1 prior to the processing of the video data 13 by the processing device 1.
  • the profile data 12 is data that associates each control for safe driving of the vehicle 3 with a control cost range that indexes the influence of the control. As shown in FIG. 3, the profile data 12 associates a large control cost with a control that has a large influence on the vehicle 3 or the surroundings of the vehicle 3, and associates a small control cost with a control that has a small influence.
  • the control type defined by the profile data 12 is control selected by the processing device 1 for safe driving of the vehicle 3, and is not limited to control on the vehicle 3.
  • the profile data 12 may define, as a control type, that no control is performed when the control cost is low, such as "no control.”
  • notification to the supervisor may be defined as the control type.
  • the profile data 12 defines "warning to the supervisor" as the control type, it is possible to notify the supervisor of the possibility of video deterioration and urge the supervisor to pay close attention to the video data 13. It becomes possible.
  • the profile data 12 may set a control cost range for each environment in which the vehicle 3 travels.
  • each control cost range may be associated with each environment in which the vehicle travels, such as urban areas, rural areas, and expressways.
  • the video data 13 is video data photographed in the vehicle 3, and is subject to deterioration detection by the detection unit 23.
  • the video data 13 input to the detection unit 23 may be encoded video data received from the communication unit 21 or may be video data decoded by the decoding unit 22. be.
  • the video data 13 is sequentially input to the detection unit 23 in a form that can be processed by the deterioration detection method of the detection unit 23.
  • the detection unit 23 which will be described later, detects deterioration from encoded but undecoded video data 13 by a method of detecting deterioration of data before decoding, such as packet capture data.
  • the detection unit 23 detects deterioration from the decoded video data 13 using a method of detecting deterioration of a bit stream.
  • the control cost 14 is data that is determined when the detection unit 23 detects deterioration of the video data 13, taking into consideration the detection accuracy of the method used to detect the deterioration. In the embodiment of the present invention, the control cost 14 is calculated from the accuracy of the deterioration detection method used by the detection unit 23 for the video data 13 to be processed.
  • the control signal 15 is signal data for the vehicle 3 to perform the control selected by the selection unit 24 from the control cost 14 and the profile data 12. After the control signal 15 is generated by the selection section 24 , it is transmitted to the vehicle 3 and processed by the control section 34 .
  • the communication unit 21 is an interface for communicating with the vehicle 3.
  • the communication unit 21 receives encoded video data 13 from the vehicle 3 and transmits a control signal 15 to the vehicle 3.
  • the decoding unit 22 decodes the video data encoded in the vehicle and outputs video data 13 that can be confirmed as an image.
  • the decoded video data 13 is input to the detection section 23 or the display section 26.
  • the detection unit 23 detects deterioration of the video data 13 capturing the surroundings of the vehicle 3 using a predetermined method.
  • the detection unit 23 employs one deterioration detection method.
  • the deterioration detection method may be a method of detecting deterioration of data before decoding such as packet capture data, a method of detecting deterioration of a bitstream, or a method of detecting deterioration from both packet capture data and bitstream. But it's okay.
  • Information regarding the accuracy of the deterioration detection method employed by the detection unit 23, specifically, the true positive value and false positive value of the deterioration detection method, is set in the constant data 11.
  • the detection unit 23 When the detection unit 23 detects deterioration of the video data 13 using the deterioration detection method, it calculates the control cost 14 that is determined by taking into account the detection accuracy of the deterioration detection method that detected the deterioration.
  • the detection unit 23 calculates the control cost 14 from the true positive value set in the constant data 11, for example, as shown in equation (1). In this case, the control cost 14 has a positive correlation with the true positive value in the deterioration detection method that detects deterioration.
  • the detection unit 23 may calculate the control cost 14 from a value obtained by subtracting a false positive value from a true positive value, as shown in equation (2), for example.
  • the control cost 14 has a positive correlation with the true positive value in the deterioration detection method that detected the deterioration, and a negative correlation with the false positive value.
  • step S101 the detection unit 23 determines deterioration in the video data 13 to be processed. If it is determined in step S102 that no deterioration is detected, the detection unit 23 processes step S101 for the video data 13 to be processed next.
  • step S102 If it is determined in step S102 that deterioration is detected, the detection unit 23 calculates the control cost 14 from the true positive value in step S103, and ends the process.
  • the detection unit 23 processes step S101 for the video data 13 to be processed next.
  • the selection unit 24 selects a control that includes the control cost 14 from the profile data 12.
  • the control unit 34 generates a control signal 15 for performing the selected control.
  • the detection unit 23 sets the control cost 14 to 0.1.
  • the selection unit 24 selects the control "deceleration (small)" whose range includes the control cost of 0.1 from the profile data 12 of FIG.
  • control cost 14 is the value obtained by subtracting the false positive value from the true positive value
  • the detection unit 23 subtracts the false positive value 0.2 from the true positive value 0.1 shown in FIG. , set the control cost 14 to -0.1.
  • the selection unit 24 selects the control “none” whose range includes the control cost ⁇ 0.1 from the profile data 12 of FIG. Note that "no control" means no control, so the selection unit 24 does not need to generate the control signal 15.
  • the selection unit 24 selects the control from the range provided for the environment in which the vehicle 3 is traveling.
  • the selection unit 24 may identify the environment in which the vehicle 3 is traveling from the images around the vehicle 3 in the video data 13 by referring to a learned model that associates surrounding images with the environment.
  • the selection unit 24 may identify the environment from the position obtained by the GPS receiver of the vehicle 3 by referring to data that associates the position and the environment. Further, the selection unit 24 may specify the environment of the vehicle 3 while it is running using other methods.
  • the selection process by the selection unit 24 will be described with reference to FIG. 6.
  • the selection process shown in FIG. 6 is executed every time the control cost 14 is set by the detection unit 23.
  • the selection unit 24 may refer to the control cost 14 at a predetermined timing, and execute the process shown in FIG. 5 when the control cost 14 is not zero.
  • the selection unit 24 may receive a notification from the detection unit 23 that the control cost 14 has been set, and may execute the process shown in FIG. 5 .
  • the selection unit 24 when selecting control from the control costs 14, the selection unit 24 initializes the control costs 14 (clears them to zero).
  • step S151 the selection unit 24 identifies the environment in the video data 13 in which the detection unit 23 has detected deterioration.
  • step S152 the selection unit 24 selects control from the control cost range and the control cost 14 associated with the environment specified in step S151 in the profile data 12.
  • the selection unit 24 After generating the control signal 15 for executing the selected control, the selection unit 24 clears the control cost 14 to zero in step S153.
  • the instruction unit 25 instructs the control selected by the selection unit 24.
  • the instruction section 25 transmits the control signal 15 output by the selection section 24 to the vehicle 3 via the communication section 21. Vehicle 3 is driven according to control signal 15 received from processing device 1 .
  • the control selected by the selection unit 24 is “none”
  • the instruction unit 25 does not perform any control.
  • the control selected by the selection unit 24 does not include an instruction to the vehicle 3 such as “warning to the supervisor”
  • the instruction unit 25 instructs the vehicle 3 to perform the control without transmitting any control signal. It's okay.
  • the instruction unit 25 warns the monitor to draw the monitor's attention, for example, by sounding a warning sound or displaying an alert.
  • the display unit 26 displays the decoded video data 13 to the observer.
  • a supervisor refers to the video data 13 and detects deterioration of the video data 13, he or she inputs a warning, deceleration, or other control to avoid trouble into the processing device 1.
  • the processing device 1 generates a control signal 15 for controlling the vehicle as input by the supervisor, and inputs it to the instruction section 25 .
  • the instruction unit 25 transmits the input control signal 15 to the vehicle 3.
  • the learning unit 27 learns the control cost range for each control in the profile data 12.
  • the learning unit 27 refers to the learning video data and teacher data (not shown) that associates the control input by the supervisor to the learning video data, and selects the selection unit 24 for the learning video data.
  • the control cost range for each control is calculated so that the selected control is the control input by the supervisor.
  • the learning unit 27 generates profile data 12 by associating control cost ranges for each control.
  • the learning unit 27 calculates the control cost range for each environment and control by referring to the teacher data prepared for each environment. The learning process by the learning unit 27 will be described in detail later.
  • the processing device 1 can select the control of the vehicle 3 depending on the accuracy of the method by which the detection unit 23 detects the deterioration of the video data 13. For example, when deterioration is detected using a highly accurate deterioration detection method, the processing device 1 selects a control that has a large effect, and when deterioration is detected using a low precision deterioration detection method, it selects a control that has a small effect.
  • the processing device 1 can support safe automatic driving of a vehicle by taking into account image deterioration.
  • constant data 11a associates true positive values, which are constants set for true positives, with respect to each of a plurality of methods for detecting deterioration of video data 13.
  • the constant data 11a further includes, for each of the plurality of methods, a false positive value that is a constant set for false positives, a false negative value that is a constant set for false negatives, and a set for true negatives.
  • True negative values, which are constants may also be associated.
  • constant data 11a shown in FIG. 6 associates true positive values, false positive values, false negative values, and true negative values with respect to six deterioration detection methods.
  • False negative values are also referred to as False Negative (fn).
  • the false negative value corresponds to the ratio at which the quality of the video data 13 actually deteriorates when the deterioration detection method used by the detection unit 23a does not detect the deterioration of the quality of the video data 13.
  • a true negative value is also called a true negative (tn).
  • the true negative value corresponds to the ratio at which the quality of the video data 13 is not actually degraded when the deterioration detection method used by the detection unit 23a does not detect any deterioration in the quality of the video data 13.
  • the detection unit 23a detects deterioration of the video data 13 using each of a plurality of methods.
  • the control cost 14 is calculated, for example, as shown in Equation (3), from a value obtained by adding true positive values set for the method in which deterioration is detected among a plurality of methods. In this case, the control cost 14 has a positive correlation with the true positive value in each deterioration detection method that detects deterioration.
  • the control cost 14 may be calculated not only from true positive values but also from false positive values.
  • the detection unit 23a may calculate the control cost 14 from a value obtained by subtracting the sum of false positive values from the sum of true positive values of the deterioration detection method that detected deterioration, as shown in equation (4). good.
  • the control cost 14 has a positive correlation with the true positive value in each deterioration detection method that detected deterioration, and has a negative correlation with the false positive value.
  • control cost 14 is (0.1+0.8)- It is calculated as 0 from (0.2+0.7).
  • the control cost 14 may be calculated not only from the true positive values and false positive values of a method that detects deterioration, but also from the false negative values and true negative values of a method that does not detect deterioration. For example, as shown in equation (5), the control cost 14 is calculated by subtracting the sum of false positive values from the sum of true positive values of each deterioration detection method that detected deterioration, plus the value of each deterioration detection method that did not detect deterioration. It is calculated from the value obtained by subtracting the sum of false negative values from the sum of true negative values of the method and adding it.
  • control cost 14 has a positive correlation with the true positive value of each deterioration detection method that detected deterioration and the true negative value of each deterioration detection method that did not detect deterioration. It has a negative correlation with the false positive value of the deterioration detection method and the false negative value of each deterioration detection method that did not detect deterioration.
  • Detection processing by the detection unit 23a according to the first modification will be described with reference to FIG. 7.
  • the control cost 14 is calculated from the sum of true positive values of each deterioration detection method that detects deterioration according to equation (3).
  • step S201 the detection unit 23a determines deterioration in the video data 13 to be processed using each deterioration detection method employed by the detection unit 23a.
  • the process advances to step S202.
  • step S202 it is determined whether deterioration has been detected using any one of the deterioration detection methods employed by the detection unit 23a. If no deterioration is detected using all of the methods, the detection unit 23a processes step S201 for the video data 13 to be processed next.
  • step S203 the detection unit 23a calculates the control cost 14 from the sum of true positive values of the deterioration detection methods that have detected deterioration. is calculated and the process ends.
  • the detection unit 23a processes step S201 for the video data 13 to be processed next.
  • Detection processing by the selection unit 24a according to the first modification will be described with reference to FIG. 8.
  • the selection unit 24a selects control from the control costs 14, the selection unit 24a initializes the control costs 14.
  • step S251 the selection unit 24a determines whether the control cost 14 is zero. If it is zero, the selection unit 24a waits for a predetermined time such as 100 ms in step S255, and then executes step S251 again.
  • step S251 the selection unit 24a identifies the environment in the video data 13 in which the detection unit 23a has detected deterioration in step S252. In step S253, the selection unit 24a selects control from the control cost range and the control cost 14 associated with the environment specified in step S252 in the profile data 12.
  • step S255 the selection unit 24a waits for a predetermined time, such as 100 ms, and then executes step S251 again.
  • the detection unit 23a detects deterioration of the video data 13 using a plurality of deterioration detection methods, so deterioration in the video data 13 can be detected more appropriately from a plurality of viewpoints. Since control for safe driving of the vehicle 3 can be selected according to the accuracy of each of the plurality of deterioration detection methods, safe driving of the vehicle 3 can be supported more appropriately.
  • the detection unit 23b detects deterioration of the video data 13 every unit time.
  • the detection unit 23b detects deterioration of the video data 13 every unit time, such as every second. Every time the detection unit 23b detects deterioration, it updates the control cost 14 by adding a value that takes into account the accuracy of the detection method that detected the deterioration to the current control cost 14.
  • the value added to the current control cost 14 may be the true positive value of the detection method that detected the deterioration, as shown on the right side of equation (1), or the value added to the current control cost 14 may be the true positive value of the detection method that detected the deterioration, as shown on the right side of equation It may be the value obtained by subtracting the false positive value from the true positive value of the detection method that detected.
  • the detection unit 23b does not detect deterioration in the video data 13, it clears the control cost 14 to zero.
  • the detection unit 23b according to the second modification may detect the deterioration of the video data 13 for each unit time using a plurality of detection methods, similarly to the first modification.
  • the value added to the current control cost 14 may be the sum of the true positive values of each detection method that detects deterioration, as shown on the right side of equation (3), or the value added to the current control cost 14 may be the sum of true positive values of each detection method that detects deterioration, as shown on the right side of equation (3), or As shown on the right side, the value may be the value obtained by subtracting the false positive value from the true positive value of each detection method that detected deterioration.
  • the value added to the current control cost 14 is the value obtained by subtracting the false positive value from the true positive value of each detection method that detected deterioration, as shown on the right side of equation (5), and the value obtained by subtracting the false positive value from the true positive value of each detection method that detected deterioration. It may be the sum of the true negative value of each detection method minus the false negative value.
  • Detection processing by the detection unit 23b according to the second modification will be described with reference to FIG. 9.
  • FIG. 9 a case will be described in which the sum of true positive values of each deterioration detection method that detects deterioration is added to the current control cost 14 according to the right side of equation (3).
  • step S301 the detection unit 23b determines deterioration in the video data 13 to be processed using each deterioration detection method employed by the detection unit 23b.
  • the process advances to step S302.
  • step S302 it is determined whether deterioration has been detected using any one of the deterioration detection methods employed by the detection unit 23b.
  • step S303 the detection unit 23b calculates the sum of true positive values of each deterioration detection method that detected deterioration based on the current control Add cost 14. If no deterioration is detected using all of the methods, the detection unit 23b clears the current control cost 14 to zero in step S304.
  • step S303 or step S304 the detection unit 23b waits for a predetermined time such as 1 s in step S305, and then processes step S301 again.
  • the selection unit 24b selects the control associated with the lower limit. For example, when the current control cost 14 is 0.06, the selection unit 24b selects the control "warning around the vehicle” as the control for the vehicle 3 from the profile data 12 shown in FIG. 3, and generates the control signal 15. do. Thereafter, when the control cost 14 is updated to 0.08, the selection unit 24b does nothing because it has already generated the control signal 15 for the control "warning around the vehicle". When the control cost 14 is updated to 1.2, the selection unit 24b selects the control "deceleration (small)" as the control for the vehicle 3 from the profile data 12 shown in FIG. 3, and generates the control signal 15.
  • control cost 14 is initialized by the detection unit 23b, so even if the selection unit 24b selects control from the control costs 14 in FIG. 10, the selection unit 24b does not initialize the control cost 14.
  • step S351 the selection unit 24b determines whether the control cost 14 has been updated. If it has not been updated, specifically, if the control cost 14 referenced this time is the same as the control cost referenced last time, the process of step S351 is performed again.
  • step S351 If it is determined in step S351 that the control cost 14 has been updated, the selection unit 24b identifies the environment in the video data 13 in which the detection unit 23b has detected deterioration in step S352. In step S353, the selection unit 24b determines whether the updated control cost 14 in the profile data 12 has reached the next range of the control cost associated with the environment specified in step S352. do. If the next range has not been reached, the process returns to step S351.
  • step S354 the selection unit 24b selects the control corresponding to the next range of the environment specified in step S352.
  • the selection unit 24b generates a control signal 15 for executing the selected control.
  • the vehicle 3 when the deterioration of the video data 13 is continuously detected, it is possible to select a control that has a larger influence, so that even in a situation where the video data 13 has deteriorated, the vehicle 3 can support safe driving.
  • the learning video data to which the supervisor associates control as teaching data is a surrounding video of the vehicle 3, and is decoded data. It is preferable that the learning video data includes video quality deterioration and has as many variations as possible. Further, the video data for learning by the learning unit 27 is a peripheral video of the vehicle 3, and is video data in a format that follows the deterioration detection method adopted by the detection unit 23. For example, when detecting from packet capture data, the video data may be a packet of video data before decoding. When detected from a bitstream, video data is decoded data.
  • an initial value is set for the control cost.
  • the initial value may be randomly set within the range of possible values of the control cost set for each control.
  • the initial value may be determined by ranking the effects of each control on the surroundings subjectively, and then equally allocating the control costs according to the order. Specifically, when the control cost takes a value from 0 to 1, for each of the five types of control, in order of decreasing influence on the surroundings, it is 0.2, 0.4, 0.6, 0.8 and set an initial position of 1.0.
  • the initial value may be a control cost optimized under similar circumstances.
  • the plurality of deterioration detection methods adopted by the detection unit 23 include a method of detecting from packet capture data and a method of detecting from a bitstream.
  • the video data for learning be v(1), v(2) ...v(n).
  • the packet capture data corresponding to these training video data be p(1), p(2) ...p(n)
  • the bitstream data be b(1), b(2) ...b(n).
  • the learning unit 27 selects the control using the same selection method as the selection unit 24, using the training data of v(1) as a reference and inputting p(1) and b(1) and the initial value of the control cost. . The selection process is repeated until v(n). If the control of the teacher data and the control selected in the selection process by the selection unit 24 are the same, the control is set to 1, and if the control is incorrect, it is set to 0, and the sum of the results of repeating up to v(n) is calculated.
  • the learning unit 27 performs the same process as in (1) by changing the combination of control cost values.
  • the combination of control cost values may be changed randomly or by an integer programming problem approach.
  • control cost optimization solution If there is a combination of control costs that completely matches the control in the teacher data and the control selected in the selection process, set that as the control cost optimization solution. The process (2) is repeated until a control cost solution in which the control of the teacher data and the control selected in the selection process completely match is obtained. Alternatively, if an optimal solution cannot be obtained even after sufficient trials such as 1 million combinations, the combination with the largest sum, specifically the combination closest to the supervisor's selection, is set as the optimal solution for control costs. do.
  • the learning unit 27 obtains an optimized solution for one environment, it repeats the same process for other environments to obtain optimized solutions.
  • processing by the learning unit 27 shown individually is an example and is not limited to this.
  • the processing device 1 of the present embodiment described above includes, for example, a CPU (Central Processing Unit, processor) 901, a memory 902, a storage 903 (HDD: Hard Disk Drive, SSD: Solid State Drive), and a communication device 904. , a general-purpose computer system including an input device 905 and an output device 906 is used. In this computer system, each function of the processing device 1 is realized by the CPU 901 executing a program loaded onto the memory 902.
  • a CPU Central Processing Unit, processor
  • processing device 1 may be implemented by one computer or by multiple computers. Further, the processing device 1 may be a virtual machine implemented in a computer.
  • the program of the processing unit 1 can be stored in a computer-readable recording medium such as an HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc), or can be distributed via a network. You can also.
  • a computer-readable recording medium such as an HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc), or can be distributed via a network. You can also.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A processing device 1 is provided with: a storage device that stores profile data 12 in which a range of control costs 14 indexing the influence of each type of control for safe traveling of a vehicle 3 is associated with the type of control; a detection unit 23 that detects, by means of a prescribed method, degradation of video data 13 capturing the surroundings of the vehicle 3; a selection unit 24 that selects, from the profile data 12, a type of control including, in the range thereof, the control cost 14 determined in consideration of the detection accuracy of the method; and an instruction unit 25 that issues an instruction to perform the selected type of control.

Description

処理装置、処理方法およびプログラムProcessing equipment, processing method and program
 本発明は、処理装置、処理方法およびプログラムに関する。 The present invention relates to a processing device, a processing method, and a program.
 農機、建機、乗用車などの自動化が進みつつあり、遠隔監視制御の開発および導入の検討が進められつつある。遠隔監視制御において、操縦者が車両に搭乗しない遠隔監視型の車両、ロボット等の走行を、遠隔の監視者が、車両周辺の映像で監視する。監視者は、危険な状況を認識した際、遠隔から停止指示を送るなどにより車両を制御する。 Automation of agricultural machinery, construction machinery, passenger cars, etc. is progressing, and consideration is being given to the development and introduction of remote monitoring and control. In remote monitoring and control, a remote observer monitors the running of a remotely monitored vehicle, robot, etc. without an operator onboard the vehicle, using images of the surroundings of the vehicle. When the supervisor recognizes a dangerous situation, he or she takes control of the vehicle by remotely commanding the vehicle to stop.
 遠隔監視制御において、無線ネットワークを通じて、車両周辺の監視映像が遠隔地に伝送され、遠隔値からから緊急停止などの指示が送信される。現在の無線通信技術において、最適な映像データの継続的な伝送を担保することは、困難である。一時的な映像停止や映像劣化によって、遠隔監視制御が適切に行えない状況が発生する。 In remote monitoring and control, monitoring images around the vehicle are transmitted to a remote location via a wireless network, and instructions such as emergency stop are sent from the remote location. With current wireless communication technology, it is difficult to ensure continuous transmission of optimal video data. Temporary video stoppage or video deterioration may cause situations in which remote monitoring and control cannot be performed properly.
 遠隔監視制御が適切に行えない状況下での車両の自動走行は、危険を伴う。例えば車両周辺の映像が適切に伝送されない状況を迅速に把握して、自動走行中の車両を停止させるなどの措置が必要となる。例えば、遠隔者が車両周辺の映像を目視で監視し、映像の停止または劣化を検知した際に、遠隔者が車掌に停止を指示する方法がある。 Automated driving of vehicles under conditions where remote monitoring and control cannot be performed appropriately is dangerous. For example, it is necessary to quickly identify situations where images around the vehicle are not being transmitted properly and take measures such as stopping the vehicle while it is driving automatically. For example, there is a method in which a remote person visually monitors images around the vehicle, and when the image stops or deteriorates, the remote person instructs the conductor to stop.
 一方、映像伝送が適切に行われていない状況を把握する複数の手法が存在する。手法によって、監視映像の停止や劣化が発生を検出するまでの時間、検出精度などで特性が異なる。 On the other hand, there are multiple methods for understanding situations where video transmission is not being performed properly. Depending on the method, characteristics differ, such as the time it takes to detect stoppage or deterioration of surveillance video and detection accuracy.
 例えば、ICMP(INTERNET CONTROL MESSAGE PROTOCOL)(非特許文献1)などの通信ネットワークの正常性を確認する信号を発出する方法がある。このような信号を定期的に発出し、その応答の変化、具体的には遅延時間または損失率の変化から、監視映像の劣化を検知し、車両に停止を指示する方法がある。 For example, there is a method of emitting a signal to confirm the normality of a communication network, such as ICMP (INTERNET CONTROL MESSAGE PROTOCOL) (Non-Patent Document 1). There is a method of periodically emitting such a signal, detecting deterioration of the surveillance video from changes in the response, specifically changes in delay time or loss rate, and instructing the vehicle to stop.
 MDI(Proposed Media Delivery Index)(非特許文献2)などの、ネットワークに影響を与えることなくパケットの遅延またはジッタなどのネットワーク特性を測定する方法がある。MDIなどの手段を用いて、映像パケットの損失率またはジッタを監視し、それらの値が閾値を超えると、車両に停止を指示する方法がある。 There are methods such as MDI (Proposed Media Delivery Index) (Non-Patent Document 2) that measure network characteristics such as packet delay or jitter without affecting the network. There is a method of monitoring the loss rate or jitter of video packets using means such as MDI, and instructing the vehicle to stop when these values exceed thresholds.
 遠隔者が車両周辺の映像を目視で監視し、映像の停止または劣化を検知する方法は、監視者が常に映像の正常性に注意を払わなければならず、人的コストが高い。また、人間が映像劣化を認知し車両を停止するまでに、数秒~10秒程度の時間を要することから、制御の即時性の点で問題がある。 The method in which a remote person visually monitors the video around the vehicle and detects stoppage or deterioration of the video requires the monitor to constantly pay attention to the normality of the video, resulting in high human costs. Furthermore, since it takes a few seconds to about 10 seconds for a human to recognize image deterioration and stop the vehicle, there is a problem in the immediacy of control.
 ICMPなどの通信ネットワークの正常性を確認する信号を発出する方法は、映像パケットを直接監視する対象ではないので、劣化検知精度が低い問題がある。監視映像の情報がパケット化され転送されている区間の問題検知に限定されることから、それ以外の区間で生じた問題を検知できない問題がある。さらに狭帯域の無線ネットワークにおいて、正常性を確認する信号を発出することは好適ではない。 Methods such as ICMP that emit signals to confirm the normality of communication networks have a problem with low deterioration detection accuracy because video packets are not directly monitored. Since the detection of problems is limited to sections where surveillance video information is packetized and transferred, there is a problem in that problems occurring in other sections cannot be detected. Furthermore, in a narrowband wireless network, it is not suitable to emit a signal for confirming normality.
 MDIなどのネットワーク特性を測定する方法は、映像品質の一基準に過ぎず、制御の見過ごしが生じる問題がある。またパケット化され転送されている区間の問題検知に限定される問題がある。 The method of measuring network characteristics such as MDI is only one standard for video quality, and there is a problem that control may be overlooked. There is also a problem that is limited to detecting problems in sections that are packetized and transferred.
 このように、映像の劣化を適切に検知できる技術がない。劣化の有無を判別できない映像を参照した遠隔監視制御により、走行と停止を繰り返すなどの円滑さに欠ける走行を引き起こす可能性、または、周囲の車両または人物に対する危険性が高まる可能性がある。 As described above, there is no technology that can appropriately detect video deterioration. Remote monitoring and control that refers to images that cannot determine the presence or absence of deterioration may cause the vehicle to run unsmoothly, such as repeatedly starting and stopping, or may increase the danger to surrounding vehicles or people.
 本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、映像の劣化を考慮して、安全な車両の自動走行を支援可能な技術を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technology that can support safe automatic driving of a vehicle by taking into account image deterioration.
 本発明の一態様の処理装置は、車両の安全走行のための制御毎に、前記制御による影響を指標化した制御コストの範囲を対応づけるプロファイルデータを記憶する記憶装置と、所定の手法で、前記車両の周辺を撮影する映像データの劣化を検知する検知部と、前記プロファイルデータから、前記手法における検知の精度を考慮して決定される制御コストを前記範囲に含む制御を選択する選択部と、選択された制御を指示する指示部を備える。 A processing device according to one aspect of the present invention includes a storage device that stores profile data that associates, for each control for safe driving of a vehicle, a control cost range that indexes the influence of the control, and a predetermined method. a detection unit that detects deterioration of video data photographing the surroundings of the vehicle; and a selection unit that selects a control that includes a control cost determined in consideration of detection accuracy in the method from the profile data within the range. , an instruction section for instructing the selected control.
 本発明の一態様の処理方法は、コンピュータが、車両の安全走行のための制御毎に、前記制御による影響を指標化した制御コストの範囲を対応づけるプロファイルデータを、記憶装置に記憶し、前記コンピュータが、所定の手法で、前記車両の周辺を撮影する映像データの劣化を検知し、
 前記コンピュータが、前記プロファイルデータから、前記手法における検知の精度を考慮して決定される制御コストを範囲に含む制御を選択し、前記コンピュータが、選択された制御を指示する。
In a processing method according to one aspect of the present invention, a computer stores, in a storage device, profile data that associates, for each control for safe driving of a vehicle, a control cost range that indexes the influence of the control, and a computer detects deterioration of video data photographing the surroundings of the vehicle using a predetermined method;
The computer selects, from the profile data, a control that includes a control cost determined in consideration of detection accuracy in the method, and instructs the selected control.
 本発明の一態様は、上記処理装置として、コンピュータを機能させるプログラムである。 One aspect of the present invention is a program that causes a computer to function as the processing device.
 本発明によれば、映像の劣化を考慮して、安全な車両の自動走行を支援可能な技術を提供することができる。 According to the present invention, it is possible to provide a technology that can support safe automatic driving of a vehicle while taking into account image deterioration.
図1は、本発明の実施の形態に係る処理システムのシステム構成と処理装置の機能ブロックを説明する図である。FIG. 1 is a diagram illustrating the system configuration of a processing system and functional blocks of a processing device according to an embodiment of the present invention. 図2は、実施の形態に係る定数データのデータ構造とデータの一例を説明する図である。FIG. 2 is a diagram illustrating an example of the data structure and data of constant data according to the embodiment. 図3は、プロファイルデータのデータ構造とデータの一例を説明する図である。FIG. 3 is a diagram illustrating an example of the data structure and data of profile data. 図4は、実施の形態に係る検知部による検知処理の一例を説明するフローチャートである。FIG. 4 is a flowchart illustrating an example of detection processing by the detection unit according to the embodiment. 図5は、実施の形態に係る選択部による選択処理の一例を説明するフローチャートである。FIG. 5 is a flowchart illustrating an example of selection processing by the selection unit according to the embodiment. 図6は、変形例に係る定数データのデータ構造とデータの一例を説明する図である。FIG. 6 is a diagram illustrating an example of a data structure and data of constant data according to a modification. 図7は、第1の変形例に係る検知部による検知処理の一例を説明するフローチャートである。FIG. 7 is a flowchart illustrating an example of detection processing by the detection unit according to the first modification. 図8は、第1の変形例に係る選択部による選択処理の一例を説明するフローチャートである。FIG. 8 is a flowchart illustrating an example of selection processing by the selection unit according to the first modification. 図9は、第2の変形例に係る検知部による検知処理の一例を説明するフローチャートである。FIG. 9 is a flowchart illustrating an example of detection processing by the detection unit according to the second modification. 図10は、第2の変形例に係る選択部による選択処理の一例を説明するフローチャートである。FIG. 10 is a flowchart illustrating an example of selection processing by the selection unit according to the second modification. 図11は、処理装置に用いられるコンピュータのハードウエア構成を説明する図である。FIG. 11 is a diagram illustrating the hardware configuration of a computer used in the processing device.
 以下、図面を参照して、本発明の実施形態を説明する。図面の記載において同一部分には同一符号を付し説明を省略する。またフローチャート等を参照して説明する処理の順序は一例であってこれに限るものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals and explanations will be omitted. Further, the order of processing described with reference to flowcharts and the like is an example, and is not limited to this.
 (処理システム)
 本発明の実施の形態に係る処理システム5は、処理装置1と車両3を備える。処理装置1と車両3は、無線ネットワークにより相互に通信可能に接続される。車両3は、処理装置1による遠隔監視の対象である。図1に示す処理システム5は、複数の車両3を備え、処理装置1が複数の車両3を遠隔監視しても良い。
(processing system)
A processing system 5 according to an embodiment of the present invention includes a processing device 1 and a vehicle 3. The processing device 1 and the vehicle 3 are connected to be able to communicate with each other via a wireless network. The vehicle 3 is a target of remote monitoring by the processing device 1 . The processing system 5 shown in FIG. 1 includes a plurality of vehicles 3, and the processing device 1 may remotely monitor the plurality of vehicles 3.
 車両3は、GPS(Global Positioning System)受信機(図示せず)を備え、GPS衛星から受信した信号から車両の位置を特定し、予め与えられたプログラムに従って駆動する。車両3は、処理装置1から受信した制御信号に従って、警告、減速など、障害を回避する場合もある。 The vehicle 3 is equipped with a GPS (Global Positioning System) receiver (not shown), pinpoints the vehicle's position from signals received from GPS satellites, and drives according to a pre-given program. The vehicle 3 may issue a warning, decelerate, or otherwise avoid an obstacle in accordance with the control signal received from the processing device 1 .
 車両3は、図1に示すように、カメラ31、エンコード部32、通信部33、制御部34および駆動部35を備える。カメラ31は、車両3の周辺を動画で撮影する映像データをエンコード部32に入力する。エンコード部32は、カメラ31から入力された映像データをエンコードして、通信部33を介して処理装置1に送信する。通信部33は、エンコードされた映像データを処理装置1に送信し、処理装置1から車両3に対する制御信号を受信して、制御部34に入力する。制御部34は、処理装置1から受信した制御信号15に従って、駆動部35を駆動する。駆動部35は、車両3を減速したり周辺に警告したりするための装置であって、制御部34による制御に従って駆動する。 As shown in FIG. 1, the vehicle 3 includes a camera 31, an encoding section 32, a communication section 33, a control section 34, and a drive section 35. The camera 31 inputs video data for capturing a video of the surroundings of the vehicle 3 to the encoding unit 32. The encoding unit 32 encodes video data input from the camera 31 and transmits it to the processing device 1 via the communication unit 33. The communication unit 33 transmits encoded video data to the processing device 1 , receives a control signal for the vehicle 3 from the processing device 1 , and inputs it to the control unit 34 . The control section 34 drives the drive section 35 according to the control signal 15 received from the processing device 1 . The drive unit 35 is a device for decelerating the vehicle 3 and warning the surrounding area, and is driven under control by the control unit 34.
 (処理装置)
 図1に示すように処理装置1は、定数データ11、プロファイルデータ12、映像データ13、制御コスト14および制御信号15の各データと、通信部21、デコード部22、検知部23、選択部24、指示部25、学習部27および表示部26の各機能を備える。各データは、メモリ902またはストレージ903等の記憶装置に記憶される。各機能は、CPU901に実装される。
(processing equipment)
As shown in FIG. 1, the processing device 1 includes constant data 11, profile data 12, video data 13, control cost 14, and control signal 15, a communication section 21, a decoding section 22, a detection section 23, and a selection section 24. , an instruction section 25, a learning section 27, and a display section 26. Each data is stored in a storage device such as memory 902 or storage 903. Each function is implemented in the CPU 901.
 定数データ11は、処理装置1による映像データ13の処理に先駆けて、予め処理装置1に記憶されるデータである。定数データ11は、後述の検知部23が映像データ13における劣化を検知する検知手法の精度を考慮した定数を格納する。定数データ11の定数に、劣化検知手法の信頼度が高い場合に高い値が設定され、信頼性が低い場合に低い値が設定される。 The constant data 11 is data that is stored in advance in the processing device 1 prior to the processing of the video data 13 by the processing device 1. The constant data 11 stores constants that take into account the accuracy of a detection method by which a detection unit 23 (described later) detects deterioration in the video data 13. A high value is set to the constant of the constant data 11 when the reliability of the deterioration detection method is high, and a low value is set when the reliability is low.
 例えば本発明の実施の形態において定数データ11は、真陽性に対して設定された定数である真陽性値と、偽陽性に対して設定された定数である偽陽性値が対応づける。真陽性値は、True Positive(tp)とも称される。真陽性値は、検知部23が用いる劣化検出手法が、映像データ13の品質の劣化を検知する際に、映像データ13の品質が実際に劣化している比に対応する。偽陽性値は、False Positive(fp)とも称される。偽陽性値は、検知部23が用いる劣化検出手法が、映像データ13の品質の劣化を検知する際に、映像データ13の品質が実際に劣化していない比に対応する。 For example, in the embodiment of the present invention, the constant data 11 associates a true positive value, which is a constant set for true positives, with a false positive value, which is a constant set for false positives. The true positive value is also referred to as True Positive (tp). The true positive value corresponds to the ratio at which the quality of the video data 13 actually deteriorates when the deterioration detection method used by the detection unit 23 detects the deterioration of the quality of the video data 13. False positive values are also referred to as False Positive (fp). The false positive value corresponds to the ratio at which the quality of the video data 13 is not actually degraded when the deterioration detection method used by the detection unit 23 detects deterioration in the quality of the video data 13.
 プロファイルデータ12は、処理装置1による映像データ13の処理に先駆けて、予め処理装置1に記憶されるデータである。プロファイルデータ12は、車両3の安全走行のための制御毎に、制御による影響を指標化した制御コストの範囲を対応づけるデータである。プロファイルデータ12は、図3に示すように、大きい制御コストに、車両3または車両3の周囲に与える影響が大きい制御を対応づけ、小さい制御コストに影響が小さい制御を対応づける。 The profile data 12 is data that is stored in advance in the processing device 1 prior to the processing of the video data 13 by the processing device 1. The profile data 12 is data that associates each control for safe driving of the vehicle 3 with a control cost range that indexes the influence of the control. As shown in FIG. 3, the profile data 12 associates a large control cost with a control that has a large influence on the vehicle 3 or the surroundings of the vehicle 3, and associates a small control cost with a control that has a small influence.
 プロファイルデータ12が定義する制御種別は、車両3の安全走行のために処理装置1が選択する制御であって、車両3への制御に限らない。例えば、図2に示すように、「制御なし」など、プロファイルデータ12は、制御種別として、制御コストが低い場合になにも制御をしないことを定義しても良い。また処理装置1による映像データ13の劣化検知に平行して、映像データ13が監視者の目視によって映像データ13が監視される場合、制御種別として、その監視者への通知を定義しても良い。例えば、プロファイルデータ12が制御種別として「監視者への警告」を定義する場合、その監視者に映像の劣化が生じている可能性を知らせ、監視者に映像データ13への注視を促すことが可能になる。 The control type defined by the profile data 12 is control selected by the processing device 1 for safe driving of the vehicle 3, and is not limited to control on the vehicle 3. For example, as shown in FIG. 2, the profile data 12 may define, as a control type, that no control is performed when the control cost is low, such as "no control." Further, in parallel with the detection of deterioration of the video data 13 by the processing device 1, when the video data 13 is visually monitored by a supervisor, notification to the supervisor may be defined as the control type. . For example, when the profile data 12 defines "warning to the supervisor" as the control type, it is possible to notify the supervisor of the possibility of video deterioration and urge the supervisor to pay close attention to the video data 13. It becomes possible.
 プロファイルデータ12は、車両3が走行する環境毎に制御コストの範囲を設定しても良い。プロファイルデータ12は、図3に示すように、都市部、農村部、高速道路などの車両が走行する環境毎に、各制御コストの範囲が対応づけられても良い。 The profile data 12 may set a control cost range for each environment in which the vehicle 3 travels. In the profile data 12, as shown in FIG. 3, each control cost range may be associated with each environment in which the vehicle travels, such as urban areas, rural areas, and expressways.
 映像データ13は、車両3において撮影された映像データであって、検知部23による劣化検知の対象となる。本発明の実施の形態において検知部23に入力される映像データ13は、通信部21から受信したエンコードされた映像データである場合もあれば、デコード部22によりデコードされた映像データである場合もある。 The video data 13 is video data photographed in the vehicle 3, and is subject to deterioration detection by the detection unit 23. In the embodiment of the present invention, the video data 13 input to the detection unit 23 may be encoded video data received from the communication unit 21 or may be video data decoded by the decoding unit 22. be.
 映像データ13は、検知部23の劣化検知手法が処理可能な形態で、検知部23に逐次入力される。後述の検知部23は、エンコードされデコードされていない映像データ13から、パケットキャプチャデータなどのデコード前のデータの劣化を検知する手法によって、劣化を検知する。検知部23は、デコードされた映像データ13から、ビットストリームの劣化を検知する手法によって、劣化を検知する。 The video data 13 is sequentially input to the detection unit 23 in a form that can be processed by the deterioration detection method of the detection unit 23. The detection unit 23, which will be described later, detects deterioration from encoded but undecoded video data 13 by a method of detecting deterioration of data before decoding, such as packet capture data. The detection unit 23 detects deterioration from the decoded video data 13 using a method of detecting deterioration of a bit stream.
 制御コスト14は、検知部23において映像データ13の劣化が検知された際に、劣化を検知した手法における検知の精度を考慮して決定されるデータである。本発明の実施の形態において制御コスト14は、処理対象の映像データ13に対して、検知部23が用いた劣化検知手法の精度から算出される。 The control cost 14 is data that is determined when the detection unit 23 detects deterioration of the video data 13, taking into consideration the detection accuracy of the method used to detect the deterioration. In the embodiment of the present invention, the control cost 14 is calculated from the accuracy of the deterioration detection method used by the detection unit 23 for the video data 13 to be processed.
 制御信号15は、制御コスト14とプロファイルデータ12から選択部24が選択した制御を、車両3で行うための信号データである。制御信号15は、選択部24によって生成された後、車両3に送信されて、制御部34によって処理される。 The control signal 15 is signal data for the vehicle 3 to perform the control selected by the selection unit 24 from the control cost 14 and the profile data 12. After the control signal 15 is generated by the selection section 24 , it is transmitted to the vehicle 3 and processed by the control section 34 .
 通信部21は、車両3と通信するためのインタフェースである。通信部21は、車両3からエンコードされた映像データ13を受信し、車両3に制御信号15を送信する。 The communication unit 21 is an interface for communicating with the vehicle 3. The communication unit 21 receives encoded video data 13 from the vehicle 3 and transmits a control signal 15 to the vehicle 3.
 デコード部22は、車両においてエンコードされた映像データをデコードして、画像として確認可能な映像データ13を出力する。デコードされた映像データ13は、検知部23に入力されたり、表示部26に入力されたりする。 The decoding unit 22 decodes the video data encoded in the vehicle and outputs video data 13 that can be confirmed as an image. The decoded video data 13 is input to the detection section 23 or the display section 26.
 検知部23は、所定の手法で、車両3の周辺を撮影する映像データ13の劣化を検知する。本発明の実施の形態において検知部23が採用する劣化検知手法は、1つである。劣化検知手法は、パケットキャプチャデータなどのデコード前のデータの劣化を検知する手法でも良いし、ビットストリームの劣化を検知する手法でも良いし、パケットキャプチャデータとビットストリームの両方から劣化を検知する手法でも良い。検知部23が採用する劣化検知手法の精度に関する情報、具体的には、その劣化検知方法の真陽性値および偽陽性値が、定数データ11に設定される。 The detection unit 23 detects deterioration of the video data 13 capturing the surroundings of the vehicle 3 using a predetermined method. In the embodiment of the present invention, the detection unit 23 employs one deterioration detection method. The deterioration detection method may be a method of detecting deterioration of data before decoding such as packet capture data, a method of detecting deterioration of a bitstream, or a method of detecting deterioration from both packet capture data and bitstream. But it's okay. Information regarding the accuracy of the deterioration detection method employed by the detection unit 23, specifically, the true positive value and false positive value of the deterioration detection method, is set in the constant data 11.
 検知部23は、劣化検知手法により映像データ13の劣化を検知すると、劣化を検知した劣化検知手法における検知の精度を考慮して決定される制御コスト14を算出する。検知部23は、例えば式(1)に示すように、定数データ11に設定された真陽性値から、制御コスト14を算出する。この場合、制御コスト14は、劣化を検知した劣化検知手法における真陽性値と正の相関を有する。 When the detection unit 23 detects deterioration of the video data 13 using the deterioration detection method, it calculates the control cost 14 that is determined by taking into account the detection accuracy of the deterioration detection method that detected the deterioration. The detection unit 23 calculates the control cost 14 from the true positive value set in the constant data 11, for example, as shown in equation (1). In this case, the control cost 14 has a positive correlation with the true positive value in the deterioration detection method that detects deterioration.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 他の実施例として検知部23は、例えば式(2)に示すように、真陽性値から偽陽性値を減算した値から、制御コスト14を算出しても良い。この場合、制御コスト14は、劣化を検知した劣化検知手法における真陽性値と正の相関を有し、偽陽性値と負の相関を有する。 As another example, the detection unit 23 may calculate the control cost 14 from a value obtained by subtracting a false positive value from a true positive value, as shown in equation (2), for example. In this case, the control cost 14 has a positive correlation with the true positive value in the deterioration detection method that detected the deterioration, and a negative correlation with the false positive value.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図4を参照して、本発明の実施の形態に係る検知部23による検知処理を説明する。 Detection processing by the detection unit 23 according to the embodiment of the present invention will be described with reference to FIG. 4.
 ステップS101において検知部23は、処理対象となる映像データ13における劣化を判定する。ステップS102において劣化が検知されないと判定された場合、検知部23は、次の処理対象となる映像データ13についてステップS101を処理する。 In step S101, the detection unit 23 determines deterioration in the video data 13 to be processed. If it is determined in step S102 that no deterioration is detected, the detection unit 23 processes step S101 for the video data 13 to be processed next.
 ステップS102において劣化が検知されると判定された場合、ステップS103において検知部23は、真陽性値から制御コスト14を算出して処理を終了する。検知部23は、次の処理対象となる映像データ13についてステップS101を処理する。 If it is determined in step S102 that deterioration is detected, the detection unit 23 calculates the control cost 14 from the true positive value in step S103, and ends the process. The detection unit 23 processes step S101 for the video data 13 to be processed next.
 選択部24は、プロファイルデータ12から、制御コスト14を範囲に含む制御を選択する。制御部34は、選択した制御を行うための制御信号15を生成する。 The selection unit 24 selects a control that includes the control cost 14 from the profile data 12. The control unit 34 generates a control signal 15 for performing the selected control.
 例えば、本発明の実施の形態において、制御コスト14が真陽性値である場合、図2に示す真陽性値は0.1なので、検知部23は、制御コスト14に0.1を設定する。選択部24は、図3のプロファイルデータ12から、制御コスト0.1を範囲に含む制御「減速(小)」を選択する。 For example, in the embodiment of the present invention, when the control cost 14 is a true positive value, the true positive value shown in FIG. 2 is 0.1, so the detection unit 23 sets the control cost 14 to 0.1. The selection unit 24 selects the control "deceleration (small)" whose range includes the control cost of 0.1 from the profile data 12 of FIG.
 他の例として、制御コスト14が真陽性値から偽陽性値を減算した値である場合、図2に示す真陽性値0.1から偽陽性値0.2を減算して、検知部23は、制御コスト14に-0.1を設定する。選択部24は、図3のプロファイルデータ12から、制御コスト-0.1を範囲に含む制御「なし」を選択する。なお、制御「なし」は、何も制御しないことを意味するので、選択部24は、制御信号15を生成しなくても良い。 As another example, when the control cost 14 is the value obtained by subtracting the false positive value from the true positive value, the detection unit 23 subtracts the false positive value 0.2 from the true positive value 0.1 shown in FIG. , set the control cost 14 to -0.1. The selection unit 24 selects the control “none” whose range includes the control cost −0.1 from the profile data 12 of FIG. Note that "no control" means no control, so the selection unit 24 does not need to generate the control signal 15.
 プロファイルデータ12において各制御コストの範囲が、車両3が走行中の環境に応じて設けられる場合、選択部24は、車両3が走行する環境に対して設けられた範囲から、制御を選択する。選択部24は、周辺画像と環境を対応づける学習済モデルを参照して、映像データ13の車両3の周辺の画像から、車両3が走行中の環境を特定しても良い。選択部24は、位置と環境を対応づけたデータを参照して、車両3のGPS受信機が得た位置から、環境を特定しても良い。また選択部24はその他の方法で、走行中の車両3の環境を特定しても良い。 When the range of each control cost is provided in the profile data 12 according to the environment in which the vehicle 3 is traveling, the selection unit 24 selects the control from the range provided for the environment in which the vehicle 3 is traveling. The selection unit 24 may identify the environment in which the vehicle 3 is traveling from the images around the vehicle 3 in the video data 13 by referring to a learned model that associates surrounding images with the environment. The selection unit 24 may identify the environment from the position obtained by the GPS receiver of the vehicle 3 by referring to data that associates the position and the environment. Further, the selection unit 24 may specify the environment of the vehicle 3 while it is running using other methods.
 図6を参照して、選択部24による選択処理を説明する。図6に示す選択処理は、検知部23によって制御コスト14が設定される度に実行される。例えば選択部24は、所定のタイミングで制御コスト14を参照し、制御コスト14がゼロでない場合に、図5の処理を実行しても良い。あるいは選択部24は、検知部23から制御コスト14が設定された通知を受けて、図5の処理を実行しても良い。図6において選択部24は、制御コスト14から制御を選択すると、制御コスト14を初期化(ゼロクリア)する。 The selection process by the selection unit 24 will be described with reference to FIG. 6. The selection process shown in FIG. 6 is executed every time the control cost 14 is set by the detection unit 23. For example, the selection unit 24 may refer to the control cost 14 at a predetermined timing, and execute the process shown in FIG. 5 when the control cost 14 is not zero. Alternatively, the selection unit 24 may receive a notification from the detection unit 23 that the control cost 14 has been set, and may execute the process shown in FIG. 5 . In FIG. 6, when selecting control from the control costs 14, the selection unit 24 initializes the control costs 14 (clears them to zero).
 ステップS151において選択部24は、検知部23が劣化を検知した映像データ13における環境を特定する。ステップS152において選択部24は、プロファイルデータ12において、ステップS151で特定した環境に対応づけられた制御コストの範囲と、制御コスト14から、制御を選択する。 In step S151, the selection unit 24 identifies the environment in the video data 13 in which the detection unit 23 has detected deterioration. In step S152, the selection unit 24 selects control from the control cost range and the control cost 14 associated with the environment specified in step S151 in the profile data 12.
 選択部24は、選択した制御を実行するための制御信号15を生成した後、ステップS153において制御コスト14をゼロクリアする。 After generating the control signal 15 for executing the selected control, the selection unit 24 clears the control cost 14 to zero in step S153.
 指示部25は、選択部24によって選択された制御を指示する。選択された制御が車両3に対する制御の場合、指示部25は、選択部24が出力した制御信号15を、通信部21を介して車両3に送信する。車両3は、処理装置1から受信した制御信号15に従って駆動する。一方、選択部24が選択する制御が「なし」の場合、指示部25は、何ら制御しない。また選択部24が選択する制御が「監視者への警告」など車両3への指示を含まない場合、指示部25は、車両3に対して何ら制御信号を送信することなく、制御を指示しても良い。指示部25は例えば、監視者に対して、警告音を鳴らす、アラートを表示するなど、監視者の注意を引くように警告する。 The instruction unit 25 instructs the control selected by the selection unit 24. When the selected control is control for the vehicle 3, the instruction section 25 transmits the control signal 15 output by the selection section 24 to the vehicle 3 via the communication section 21. Vehicle 3 is driven according to control signal 15 received from processing device 1 . On the other hand, when the control selected by the selection unit 24 is “none”, the instruction unit 25 does not perform any control. Further, when the control selected by the selection unit 24 does not include an instruction to the vehicle 3 such as “warning to the supervisor”, the instruction unit 25 instructs the vehicle 3 to perform the control without transmitting any control signal. It's okay. The instruction unit 25 warns the monitor to draw the monitor's attention, for example, by sounding a warning sound or displaying an alert.
 表示部26は、デコードされた映像データ13を監視者に表示する。監視者は、映像データ13を参照して、映像データ13の劣化を検知した際に、警告、減速などの障害を回避するための制御を、処理装置1に入力する。処理装置1は、監視者から入力された制御を車両で行うための制御信号15を生成して、指示部25に入力する。指示部25は、入力された制御信号15を、車両3に送信する。 The display unit 26 displays the decoded video data 13 to the observer. When a supervisor refers to the video data 13 and detects deterioration of the video data 13, he or she inputs a warning, deceleration, or other control to avoid trouble into the processing device 1. The processing device 1 generates a control signal 15 for controlling the vehicle as input by the supervisor, and inputs it to the instruction section 25 . The instruction unit 25 transmits the input control signal 15 to the vehicle 3.
 学習部27は、プロファイルデータ12における制御毎の制御コストの範囲を学習する。学習部27は、学習用映像データと、学習用映像データに対して監視者が入力した制御を対応づける教師データ(図示せず)を参照して、学習用映像データに対して選択部24が選択した制御が、監視者が入力した制御となるように、制御毎の制御コストの範囲を算出する。学習部27は、制御毎の制御コストの範囲を対応づけて、プロファイルデータ12を生成する。プロファイルデータ12が環境毎に制御コストの範囲を対応づける場合、学習部27は、環境毎に用意された教師データを参照して、環境および制御毎の制御コストの範囲を算出する。学習部27による学習処理は、後に詳述する。 The learning unit 27 learns the control cost range for each control in the profile data 12. The learning unit 27 refers to the learning video data and teacher data (not shown) that associates the control input by the supervisor to the learning video data, and selects the selection unit 24 for the learning video data. The control cost range for each control is calculated so that the selected control is the control input by the supervisor. The learning unit 27 generates profile data 12 by associating control cost ranges for each control. When the profile data 12 associates the control cost range for each environment, the learning unit 27 calculates the control cost range for each environment and control by referring to the teacher data prepared for each environment. The learning process by the learning unit 27 will be described in detail later.
 本発明の実施の形態に係る処理装置1は、検知部23が映像データ13の劣化を検知した手法の精度に応じて、車両3の制御を選択することができる。例えば処理装置1は、精度の高い劣化検知手法によって劣化が検知された場合、影響の大きい制御を選択し、精度の低い劣化検知手法によって劣化が検知された場合、影響の小さい制御を選択する。処理装置1は、映像の劣化を考慮して、安全な車両の自動走行を支援することができる。 The processing device 1 according to the embodiment of the present invention can select the control of the vehicle 3 depending on the accuracy of the method by which the detection unit 23 detects the deterioration of the video data 13. For example, when deterioration is detected using a highly accurate deterioration detection method, the processing device 1 selects a control that has a large effect, and when deterioration is detected using a low precision deterioration detection method, it selects a control that has a small effect. The processing device 1 can support safe automatic driving of a vehicle by taking into account image deterioration.
 (第1の変形例)
 本発明の実施の形態において、検知部23が採用する劣化検知手法が1つの場合を説明した。第1の変形例において検知部23aが、複数の劣化検知手法により、映像データ13の劣化を検知する場合を説明する。
(First modification)
In the embodiment of the present invention, a case has been described in which the detection unit 23 employs one deterioration detection method. A case will be described in which the detection unit 23a detects deterioration of the video data 13 using a plurality of deterioration detection methods in the first modification.
 第1の変形例において定数データ11aは、映像データ13の劣化を検知する複数の手法のそれぞれについて、真陽性に対して設定された定数である真陽性値を対応づける。定数データ11aはさらに、複数の手法のそれぞれについて、偽陽性に対して設定された定数である偽陽性値、偽陰性に対して設定された定数である偽陰性値、および真陰性に対して設定された定数である真陰性値も対応づけても良い。例えば図6に示す定数データ11aは、6つの劣化検知手法について、真陽性値、偽陽性値、偽陰性値および真陰性値を対応づける。 In the first modification, constant data 11a associates true positive values, which are constants set for true positives, with respect to each of a plurality of methods for detecting deterioration of video data 13. The constant data 11a further includes, for each of the plurality of methods, a false positive value that is a constant set for false positives, a false negative value that is a constant set for false negatives, and a set for true negatives. True negative values, which are constants, may also be associated. For example, constant data 11a shown in FIG. 6 associates true positive values, false positive values, false negative values, and true negative values with respect to six deterioration detection methods.
 ここで、定数データ11の偽陰性値および真陰性値を説明する。偽陰性値は、False Negative(fn)とも称される。偽陰性値は、検知部23aが用いる劣化検出手法が、映像データ13の品質の劣化を検知しない際に、映像データ13の品質が実際に劣化している比に対応する。真陰性値は、True Negative(tn)とも称される。真陰性値は、検知部23aが用いる劣化検出手法が、映像データ13の品質の劣化を検知しない際に、映像データ13の品質が実際に劣化していない比に対応する。 Here, the false negative value and true negative value of the constant data 11 will be explained. False negative values are also referred to as False Negative (fn). The false negative value corresponds to the ratio at which the quality of the video data 13 actually deteriorates when the deterioration detection method used by the detection unit 23a does not detect the deterioration of the quality of the video data 13. A true negative value is also called a true negative (tn). The true negative value corresponds to the ratio at which the quality of the video data 13 is not actually degraded when the deterioration detection method used by the detection unit 23a does not detect any deterioration in the quality of the video data 13.
 第1の変形例に係る検知部23aは、複数の手法のそれぞれで映像データ13の劣化を検知する。制御コスト14は、例えば式(3)に示すように、複数の手法のうち劣化ありと検知した手法について設定された真陽性値を加算した値から算出される。この場合、制御コスト14は、劣化を検知した各劣化検知手法における真陽性値と正の相関を有する。 The detection unit 23a according to the first modification detects deterioration of the video data 13 using each of a plurality of methods. The control cost 14 is calculated, for example, as shown in Equation (3), from a value obtained by adding true positive values set for the method in which deterioration is detected among a plurality of methods. In this case, the control cost 14 has a positive correlation with the true positive value in each deterioration detection method that detects deterioration.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 検知部23aが、図6に示す6つの劣化検知手法のうち、NR-P(1)およびNR-B(5)で劣化を検知する場合、制御コスト14は、0.1+0.8から0.9と算出される。選択部24aは、図3に示すプロファイルデータ12から、制御コスト14=0.9を範囲に含む制御「減速(大)」を車両3に対する制御として選択する。 When the detection unit 23a detects deterioration using NR-P (1) and NR-B (5) among the six deterioration detection methods shown in FIG. It is calculated as 9. The selection unit 24a selects the control “deceleration (large)” whose range includes the control cost 14=0.9 as the control for the vehicle 3 from the profile data 12 shown in FIG.
 制御コスト14が、真陽性値のみならず、偽陽性値から算出されても良い。例えば検知部23aは、例えば式(4)に示すように、劣化を検知した劣化検知手法の真陽性値の和から、偽陽性値の和を減算した値から、制御コスト14を算出しても良い。この場合、制御コスト14は、劣化を検知した各劣化検知手法における真陽性値と正の相関を有し、偽陽性値と負の相関を有する。 The control cost 14 may be calculated not only from true positive values but also from false positive values. For example, the detection unit 23a may calculate the control cost 14 from a value obtained by subtracting the sum of false positive values from the sum of true positive values of the deterioration detection method that detected deterioration, as shown in equation (4). good. In this case, the control cost 14 has a positive correlation with the true positive value in each deterioration detection method that detected deterioration, and has a negative correlation with the false positive value.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 検知部23aが、図6に示す6つの劣化検知手法のうち、NR-P(1)およびNR-B(5)で劣化を検知する場合、制御コスト14は、(0.1+0.8)-(0.2+0.7)から0と算出される。選択部24aは、制御コスト14=0を範囲に含む制御「なし」を選択する。 When the detection unit 23a detects deterioration using NR-P(1) and NR-B(5) among the six deterioration detection methods shown in FIG. 6, the control cost 14 is (0.1+0.8)- It is calculated as 0 from (0.2+0.7). The selection unit 24a selects "none" control that includes the control cost 14=0 in the range.
 制御コスト14は、劣化を検知した手法の真陽性値および偽陽性値のみならず、劣化を検知しない手法の偽陰性値および真陰性値から算出されても良い。制御コスト14は、例えば式(5)に示すように、劣化を検知した各劣化検知手法の真陽性値の和から偽陽性値の和を減算した値に、劣化を検知しなかった各劣化検知手法の真陰性値の和から偽陰性値の和を減算した値を加算した値から算出される。この場合、制御コスト14は、劣化を検知した各劣化検知手法における真陽性値と劣化を検知しなかった各劣化検知手法における真陰性値のそれぞれと正の相関を有し、劣化を検知した各劣化検知手法の偽陽性値と劣化を検知しなかった各劣化検知手法の偽陰性値のそれぞれと負の相関を有する。 The control cost 14 may be calculated not only from the true positive values and false positive values of a method that detects deterioration, but also from the false negative values and true negative values of a method that does not detect deterioration. For example, as shown in equation (5), the control cost 14 is calculated by subtracting the sum of false positive values from the sum of true positive values of each deterioration detection method that detected deterioration, plus the value of each deterioration detection method that did not detect deterioration. It is calculated from the value obtained by subtracting the sum of false negative values from the sum of true negative values of the method and adding it. In this case, the control cost 14 has a positive correlation with the true positive value of each deterioration detection method that detected deterioration and the true negative value of each deterioration detection method that did not detect deterioration. It has a negative correlation with the false positive value of the deterioration detection method and the false negative value of each deterioration detection method that did not detect deterioration.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 図7を参照して、第1の変形例に係る検知部23aによる検知処理を説明する。図7では、式(3)に従って、劣化を検知した各劣化検知手法の真陽性値の和から制御コスト14を算出する場合を説明する。 Detection processing by the detection unit 23a according to the first modification will be described with reference to FIG. 7. In FIG. 7, a case will be described in which the control cost 14 is calculated from the sum of true positive values of each deterioration detection method that detects deterioration according to equation (3).
 ステップS201において検知部23aは、処理対象となる映像データ13における劣化を、検知部23aが採用する各劣化検知手法で判定する。各劣化検知手法による判定が終了すると、ステップS202に進む。 In step S201, the detection unit 23a determines deterioration in the video data 13 to be processed using each deterioration detection method employed by the detection unit 23a. When the determination by each deterioration detection method is completed, the process advances to step S202.
 ステップS202において、検知部23aが採用する各劣化検知手法のいずれかの手法で、劣化を検知したか否かを判定する。各手法の全てで劣化を検知しなかった場合、検知部23aは、次の処理対象となる映像データ13について、ステップS201を処理する。 In step S202, it is determined whether deterioration has been detected using any one of the deterioration detection methods employed by the detection unit 23a. If no deterioration is detected using all of the methods, the detection unit 23a processes step S201 for the video data 13 to be processed next.
 検知部23aが採用する各劣化検知手法のいずれかの手法で、劣化を検知した場合、ステップS203において検知部23aは、劣化を検知した各劣化検知手法の真陽性値の和から、制御コスト14を算出して処理を終了する。検知部23aは、次の処理対象となる映像データ13について、ステップS201を処理する。 When deterioration is detected by any one of the deterioration detection methods employed by the detection unit 23a, in step S203, the detection unit 23a calculates the control cost 14 from the sum of true positive values of the deterioration detection methods that have detected deterioration. is calculated and the process ends. The detection unit 23a processes step S201 for the video data 13 to be processed next.
 図8を参照して、第1の変形例に係る選択部24aによる検知処理を説明する。図8において選択部24aは、制御コスト14から制御を選択すると、制御コスト14を初期化する。 Detection processing by the selection unit 24a according to the first modification will be described with reference to FIG. 8. In FIG. 8, when the selection unit 24a selects control from the control costs 14, the selection unit 24a initializes the control costs 14.
 ステップS251において選択部24aは、制御コスト14がゼロであるか否かを判定する。ゼロである場合、ステップS255において選択部24aは、100msなどの所定時間を待機した後、再びステップS251を実行する。 In step S251, the selection unit 24a determines whether the control cost 14 is zero. If it is zero, the selection unit 24a waits for a predetermined time such as 100 ms in step S255, and then executes step S251 again.
 ステップS251において制御コスト14がゼロでない場合、選択部24aは、ステップS252において、検知部23aが劣化を検知した映像データ13における環境を特定する。ステップS253において選択部24aは、プロファイルデータ12において、ステップS252で特定した環境に対応づけられた制御コストの範囲と、制御コスト14から、制御を選択する。 If the control cost 14 is not zero in step S251, the selection unit 24a identifies the environment in the video data 13 in which the detection unit 23a has detected deterioration in step S252. In step S253, the selection unit 24a selects control from the control cost range and the control cost 14 associated with the environment specified in step S252 in the profile data 12.
 選択部24aは、選択した制御を実行するための制御信号15を生成した後、ステップS254において制御コスト14をゼロクリアする。ステップS255において選択部24aは、100msなどの所定時間を待機した後、再びステップS251を実行する。 After generating the control signal 15 for executing the selected control, the selection unit 24a clears the control cost 14 to zero in step S254. In step S255, the selection unit 24a waits for a predetermined time, such as 100 ms, and then executes step S251 again.
 第1の変形例において、検知部23aが、複数の劣化検知手法により、映像データ13の劣化を検知するので、映像データ13における劣化を複数の視点でより適切に検知することができる。複数の劣化検知方法それぞれの精度に従って、車両3の安全走行のための制御を選択することができるので、より適切に車両3の安全走行を支援することができる。 In the first modification, the detection unit 23a detects deterioration of the video data 13 using a plurality of deterioration detection methods, so deterioration in the video data 13 can be detected more appropriately from a plurality of viewpoints. Since control for safe driving of the vehicle 3 can be selected according to the accuracy of each of the plurality of deterioration detection methods, safe driving of the vehicle 3 can be supported more appropriately.
 (第2の変形例)
 本発明の実施の形態において、検知部23が採用する劣化検知手法が1つであって、検知部23が映像データ13の劣化を検知する度に車両3に対する制御を決定する場合を説明した。第2の変形例において、検知部23bが、複数の劣化検知手法により、映像データ13の劣化を検知し、選択部24bが、映像データ13における劣化の連続的な検知を考慮して、車両3の安全制御のための制御を決定する場合を説明する。
(Second modification)
In the embodiment of the present invention, a case has been described in which the detection unit 23 employs one deterioration detection method and each time the detection unit 23 detects deterioration of the video data 13, the control for the vehicle 3 is determined. In the second modification, the detection unit 23b detects the deterioration of the video data 13 using a plurality of deterioration detection methods, and the selection unit 24b selects the vehicle 3 The case of determining control for safety control will be explained.
 検知部23bは、単位時間毎の映像データ13の劣化を検知する。検知部23bは、例えば1秒毎などの単位時間毎の映像データ13の劣化を検知する。検知部23bは、劣化を検知する度に、現在の制御コスト14に、劣化を検知した検知手法の精度を考慮した値を加算して、制御コスト14を更新する。現在の制御コスト14に加算される値は、式(1)の右辺のように、劣化を検知した検知手法の真陽性値であっても良いし、式(2)の右辺のように、劣化を検知した検知手法の真陽性値から偽陽性値を引いた値であっても良い。検知部23bは、映像データ13における劣化を検知しない場合、制御コスト14をゼロにクリアする。 The detection unit 23b detects deterioration of the video data 13 every unit time. The detection unit 23b detects deterioration of the video data 13 every unit time, such as every second. Every time the detection unit 23b detects deterioration, it updates the control cost 14 by adding a value that takes into account the accuracy of the detection method that detected the deterioration to the current control cost 14. The value added to the current control cost 14 may be the true positive value of the detection method that detected the deterioration, as shown on the right side of equation (1), or the value added to the current control cost 14 may be the true positive value of the detection method that detected the deterioration, as shown on the right side of equation It may be the value obtained by subtracting the false positive value from the true positive value of the detection method that detected. When the detection unit 23b does not detect deterioration in the video data 13, it clears the control cost 14 to zero.
 第2の変形例に係る検知部23bは、第1の変形例と同様に、複数の検知手法で、単位時間毎の映像データ13の劣化を検知しても良い。その場合、現在の制御コスト14に加算される値は、式(3)の右辺のように、劣化を検知した各検知手法の真陽性値の和であっても良いし、式(4)の右辺のように、劣化を検知した各検知手法の真陽性値から偽陽性値を引いた値であっても良い。また現在の制御コスト14に加算される値は、式(5)の右辺のように、劣化を検知した各検知手法の真陽性値から偽陽性値を引いた値と、劣化を検知しなかった各検知手法の真陰性値から偽陰性値を引いた値との和であっても良い。 The detection unit 23b according to the second modification may detect the deterioration of the video data 13 for each unit time using a plurality of detection methods, similarly to the first modification. In that case, the value added to the current control cost 14 may be the sum of the true positive values of each detection method that detects deterioration, as shown on the right side of equation (3), or the value added to the current control cost 14 may be the sum of true positive values of each detection method that detects deterioration, as shown on the right side of equation (3), or As shown on the right side, the value may be the value obtained by subtracting the false positive value from the true positive value of each detection method that detected deterioration. In addition, the value added to the current control cost 14 is the value obtained by subtracting the false positive value from the true positive value of each detection method that detected deterioration, as shown on the right side of equation (5), and the value obtained by subtracting the false positive value from the true positive value of each detection method that detected deterioration. It may be the sum of the true negative value of each detection method minus the false negative value.
 図9を参照して、第2の変形例に係る検知部23bによる検知処理を説明する。図9では、式(3)の右辺に従って、劣化を検知した各劣化検知手法の真陽性値の和を現在の制御コスト14に加算する場合を説明する。 Detection processing by the detection unit 23b according to the second modification will be described with reference to FIG. 9. In FIG. 9, a case will be described in which the sum of true positive values of each deterioration detection method that detects deterioration is added to the current control cost 14 according to the right side of equation (3).
 ステップS301において検知部23bは、処理対象となる映像データ13における劣化を、検知部23bが採用する各劣化検知手法で判定する。各劣化検知手法による判定が終了すると、ステップS302に進む。 In step S301, the detection unit 23b determines deterioration in the video data 13 to be processed using each deterioration detection method employed by the detection unit 23b. When the determination by each deterioration detection method is completed, the process advances to step S302.
 ステップS302において、検知部23bが採用する各劣化検知手法のいずれかの手法で、劣化を検知したか否かを判定する。 In step S302, it is determined whether deterioration has been detected using any one of the deterioration detection methods employed by the detection unit 23b.
 検知部23bが採用する各劣化検知手法のいずれかの手法で、劣化を検知した場合、ステップS303において検知部23bは、劣化を検知した各劣化検知手法の真陽性値の和を、現在の制御コスト14を加算する。各手法の全てで劣化を検知しなかった場合、ステップS304において検知部23bは、現在の制御コスト14をゼロクリアする。 When deterioration is detected by any one of the deterioration detection methods adopted by the detection unit 23b, in step S303, the detection unit 23b calculates the sum of true positive values of each deterioration detection method that detected deterioration based on the current control Add cost 14. If no deterioration is detected using all of the methods, the detection unit 23b clears the current control cost 14 to zero in step S304.
 ステップS303またはステップS304の処理が終了すると、ステップS305において検知部23bは、1sなどの所定時間を待機した後、再びステップS301を処理する。 When the processing in step S303 or step S304 is completed, the detection unit 23b waits for a predetermined time such as 1 s in step S305, and then processes step S301 again.
 選択部24bは、制御コスト14が、プロファイルデータ12の制御コストの範囲の下限値に達すると、下限値に対応づけられた制御を選択する。例えば、現在の制御コスト14が0.06の場合、選択部24bは、図3に示すプロファイルデータ12から、制御「車両周辺への警告」を車両3に対する制御として選択して制御信号15を生成する。その後、制御コスト14が0.08に更新された場合、選択部24bは、既に制御「車両周辺への警告」について制御信号15を生成しているので、何もしない。制御コスト14が1.2に更新されると、選択部24bは、図3に示すプロファイルデータ12から、制御「減速(小)」を車両3に対する制御として選択して制御信号15を生成する。 When the control cost 14 reaches the lower limit of the control cost range of the profile data 12, the selection unit 24b selects the control associated with the lower limit. For example, when the current control cost 14 is 0.06, the selection unit 24b selects the control "warning around the vehicle" as the control for the vehicle 3 from the profile data 12 shown in FIG. 3, and generates the control signal 15. do. Thereafter, when the control cost 14 is updated to 0.08, the selection unit 24b does nothing because it has already generated the control signal 15 for the control "warning around the vehicle". When the control cost 14 is updated to 1.2, the selection unit 24b selects the control "deceleration (small)" as the control for the vehicle 3 from the profile data 12 shown in FIG. 3, and generates the control signal 15.
 図10を参照して、第2の変形例に係る選択部24bによる検知処理を説明する。第2の変形例において、制御コスト14は、検知部23bによって初期化されるので、図10において選択部24bは、制御コスト14から制御を選択しても、制御コスト14を初期化しない。 Detection processing by the selection unit 24b according to the second modification will be described with reference to FIG. 10. In the second modification, the control cost 14 is initialized by the detection unit 23b, so even if the selection unit 24b selects control from the control costs 14 in FIG. 10, the selection unit 24b does not initialize the control cost 14.
 ステップS351において選択部24bは、制御コスト14が更新されているか否かを判定する。更新されていない場合、具体的には今回参照した制御コスト14が前回参照した制御コストと同じ場合、ステップS351の処理を再び行う。 In step S351, the selection unit 24b determines whether the control cost 14 has been updated. If it has not been updated, specifically, if the control cost 14 referenced this time is the same as the control cost referenced last time, the process of step S351 is performed again.
 ステップS351において制御コスト14が更新されていると判定された場合、選択部24bは、ステップS352において、検知部23bが劣化を検知した映像データ13における環境を特定する。ステップS353において選択部24bは、プロファイルデータ12において、ステップS353において、更新後の制御コスト14が、ステップS352で特定した環境に対応づけられた制御コストの次の範囲に達しているか否かを判定する。次の範囲に達していない場合、ステップS351に戻る。 If it is determined in step S351 that the control cost 14 has been updated, the selection unit 24b identifies the environment in the video data 13 in which the detection unit 23b has detected deterioration in step S352. In step S353, the selection unit 24b determines whether the updated control cost 14 in the profile data 12 has reached the next range of the control cost associated with the environment specified in step S352. do. If the next range has not been reached, the process returns to step S351.
 次の範囲に達している場合、ステップS354において選択部24bは、ステップS352で特定した環境の次の範囲に対応する制御を選択する。選択部24bは、選択した制御を実行するための制御信号15を生成する。 If the next range has been reached, in step S354 the selection unit 24b selects the control corresponding to the next range of the environment specified in step S352. The selection unit 24b generates a control signal 15 for executing the selected control.
 第2の変形例において、映像データ13の劣化が連続的に検知される場合に、より影響の大きい制御を選択することができるので、映像データ13の劣化が生じている状況においても、車両3の安全走行を支援することができる。 In the second modification, when the deterioration of the video data 13 is continuously detected, it is possible to select a control that has a larger influence, so that even in a situation where the video data 13 has deteriorated, the vehicle 3 can support safe driving.
 (学習部)
 ここで、学習部27による学習処理を説明する。
(Study Department)
Here, the learning process by the learning section 27 will be explained.
 教師データとして監視者が制御を対応づける学習用映像データは、車両3の周辺映像であって、デコードされたデータである。学習用映像データは、映像の品質劣化が含まれており、かつ、なるべく多くのバリエーションがあることが好ましい。また学習部27による学習用の映像データは、車両3の周辺映像であって、検知部23が採用する劣化検知手法に従った形式の映像データである。例えば、パケットキャプチャデータから検知する場合、映像データは、デコード前の映像データのパケットでよい。ビットストリームから検知する場合、映像データは、デコードされたデータである。 The learning video data to which the supervisor associates control as teaching data is a surrounding video of the vehicle 3, and is decoded data. It is preferable that the learning video data includes video quality deterioration and has as many variations as possible. Further, the video data for learning by the learning unit 27 is a peripheral video of the vehicle 3, and is video data in a format that follows the deterioration detection method adopted by the detection unit 23. For example, when detecting from packet capture data, the video data may be a packet of video data before decoding. When detected from a bitstream, video data is decoded data.
 学習部27による学習において、まず、制御コストに初期値が設定される。初期値は、各制御に対して設定される制御コストがとりうる値の範囲でランダムに設定されても良い。初期値は、各制御が周囲に与える影響を主観に基づいて順位付けし、順序に応じて制御コストを均等割り当てしても良い。具体的には、制御コストが0から1の値を取る場合、5種の制御のそれぞれに対して、周囲に与える影響が小さい順に、0.2、0.4、0.6、0.8および1.0の初期位置を設定する。初期値は、類似する環境下で最適化された制御コストであっても良い。 In learning by the learning unit 27, first, an initial value is set for the control cost. The initial value may be randomly set within the range of possible values of the control cost set for each control. The initial value may be determined by ranking the effects of each control on the surroundings subjectively, and then equally allocating the control costs according to the order. Specifically, when the control cost takes a value from 0 to 1, for each of the five types of control, in order of decreasing influence on the surroundings, it is 0.2, 0.4, 0.6, 0.8 and set an initial position of 1.0. The initial value may be a control cost optimized under similar circumstances.
 学習部27による学習処理の一例を説明する。ここでは、検知部23が採用する複数の劣化検知手法が、パケットキャプチャデータから検知する手法と、ビットストリームから検知する手法を含む場合を説明する。学習用の映像データを、v(1), v(2) …v(n)とする。これらの学習用の映像データに対応したパケットキャプチャデータをp(1), p(2) …p(n)とし、ビットストリームデータをb(1), b(2) …b(n)とする。 An example of the learning process by the learning unit 27 will be explained. Here, a case will be described in which the plurality of deterioration detection methods adopted by the detection unit 23 include a method of detecting from packet capture data and a method of detecting from a bitstream. Let the video data for learning be v(1), v(2) ...v(n). Let the packet capture data corresponding to these training video data be p(1), p(2) ...p(n), and the bitstream data be b(1), b(2) ...b(n). .
 (1) 学習部27は、v(1)の教師データを参考に、p(1)およびb(1)と制御コストの初期値を入力に、選択部24と同じ選択方法により制御を選択する。選択処理をv(n)まで繰り返す。教師データの制御と、選択部24による選択処理で選択された制御が同じであれば1、間違っていれば0として、v(n)まで繰り返した結果の総和を求める。 (1) The learning unit 27 selects the control using the same selection method as the selection unit 24, using the training data of v(1) as a reference and inputting p(1) and b(1) and the initial value of the control cost. . The selection process is repeated until v(n). If the control of the teacher data and the control selected in the selection process by the selection unit 24 are the same, the control is set to 1, and if the control is incorrect, it is set to 0, and the sum of the results of repeating up to v(n) is calculated.
 (2) 学習部27は、制御コストの値の組合せを変更して、(1)と同じ処理を行う。制御コストの値の組み合わせは、ランダムに変更しても良いし、整数計画問題アプローチなどによって変更しても良い。 (2) The learning unit 27 performs the same process as in (1) by changing the combination of control cost values. The combination of control cost values may be changed randomly or by an integer programming problem approach.
 (3) 教師データの制御と、選択処理で選択された制御が完全一致した制御コストの組合せがあれば、それを制御コストの最適化解として設定する。教師データの制御と、選択処理で選択された制御が完全一致した制御コストの解が出るまで(2)の処理を繰り返す。あるいは、100万通りの組合せなど十分な試行を行っても最適化解が得られない場合、総和が最大の組合せ、具体的には監視者の選択と最も近い組み合わせを、制御コストの最適化解として設定する。 (3) If there is a combination of control costs that completely matches the control in the teacher data and the control selected in the selection process, set that as the control cost optimization solution. The process (2) is repeated until a control cost solution in which the control of the teacher data and the control selected in the selection process completely match is obtained. Alternatively, if an optimal solution cannot be obtained even after sufficient trials such as 1 million combinations, the combination with the largest sum, specifically the combination closest to the supervisor's selection, is set as the optimal solution for control costs. do.
 学習部27は、1つの環境について最適化解を得ると、他の環境についても同様の処理を繰り返して、最適化解を得る。 Once the learning unit 27 obtains an optimized solution for one environment, it repeats the same process for other environments to obtain optimized solutions.
 なお、個々に示す学習部27による処理は一例であってこれに限るものではない。 Note that the processing by the learning unit 27 shown individually is an example and is not limited to this.
 上記説明した本実施形態の処理装置1は、例えば、CPU(Central Processing Unit、プロセッサ)901と、メモリ902と、ストレージ903(HDD:Hard Disk Drive、SSD:Solid State Drive)と、通信装置904と、入力装置905と、出力装置906とを備える汎用的なコンピュータシステムが用いられる。このコンピュータシステムにおいて、CPU901がメモリ902上にロードされたプログラムを実行することにより、処理装置1の各機能が実現される。 The processing device 1 of the present embodiment described above includes, for example, a CPU (Central Processing Unit, processor) 901, a memory 902, a storage 903 (HDD: Hard Disk Drive, SSD: Solid State Drive), and a communication device 904. , a general-purpose computer system including an input device 905 and an output device 906 is used. In this computer system, each function of the processing device 1 is realized by the CPU 901 executing a program loaded onto the memory 902.
 なお、処理装置1は、1つのコンピュータで実装されてもよく、あるいは複数のコンピュータで実装されても良い。また処理装置1は、コンピュータに実装される仮想マシンであっても良い。 Note that the processing device 1 may be implemented by one computer or by multiple computers. Further, the processing device 1 may be a virtual machine implemented in a computer.
 処理装置1のプログラムは、HDD、SSD、USB(Universal Serial Bus)メモリ、CD (Compact Disc)、DVD (Digital Versatile Disc)などのコンピュータ読取り可能な記録媒体に記憶することも、ネットワークを介して配信することもできる。 The program of the processing unit 1 can be stored in a computer-readable recording medium such as an HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc), or can be distributed via a network. You can also.
 なお、本発明は上記実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。 Note that the present invention is not limited to the above-described embodiments, and many modifications can be made within the scope of the invention.
 1 処理装置
 3 車両
 5 処理システム
 11 定数データ
 12 プロファイルデータ
 13 映像データ
 14 制御コスト
 15 制御信号
 21、33 通信部
 22 デコード部
 23 検知部
 24 選択部
 25 指示部
 26 表示部
 27 学習部
 31 カメラ
 32 エンコード部
 34 制御部
 35 駆動部
 901 CPU
 902 メモリ
 903 ストレージ
 904 通信装置
 905 入力装置
 906 出力装置
1 processing device 3 vehicle 5 processing system 11 constant data 12 profile data 13 video data 14 control cost 15 control signal 21, 33 communication section 22 decoding section 23 detection section 24 selection section 25 instruction section 26 display section 27 learning section 31 camera 32 encoding Section 34 Control section 35 Drive section 901 CPU
902 Memory 903 Storage 904 Communication device 905 Input device 906 Output device

Claims (8)

  1.  車両の安全走行のための制御毎に、前記制御による影響を指標化した制御コストの範囲を対応づけるプロファイルデータを記憶する記憶装置と、
     所定の手法で、前記車両の周辺を撮影する映像データの劣化を検知する検知部と、
     前記プロファイルデータから、前記手法における検知の精度を考慮して決定される制御コストを前記範囲に含む制御を選択する選択部と、
     選択された制御を指示する指示部
     を備える処理装置。
    a storage device that stores profile data that associates each control for safe driving of a vehicle with a control cost range that indexes the influence of the control;
    a detection unit that detects deterioration of video data photographing the surroundings of the vehicle using a predetermined method;
    a selection unit that selects, from the profile data, a control that includes a control cost in the range, which is determined by taking into account the detection accuracy in the method;
    A processing device including an instruction section that instructs selected control.
  2.  前記記憶装置はさらに、前記手法に、真陽性に対して設定された定数である真陽性値と、偽陽性に対して設定された定数である偽陽性値が対応づける定数データを記憶し、
     前記制御コストは、真陽性値から偽陽性値を減算した値から算出される
     請求項1に記載の処理装置。
    The storage device further stores constant data that associates a true positive value, which is a constant set for true positives, with a false positive value, which is a constant set for false positives, in the method,
    The processing device according to claim 1, wherein the control cost is calculated from a value obtained by subtracting a false positive value from a true positive value.
  3.  前記記憶装置は、前記映像データの劣化を検知する複数の手法のそれぞれについて、真陽性に対して設定された定数である真陽性値が対応づけられた定数データを記憶し、
     前記検知部は、前記複数の手法のそれぞれで前記映像データの劣化を検知し、
     前記制御コストは、前記複数の手法のうち劣化ありと検知した手法について設定された真陽性値を加算した値から算出される
     請求項1に記載の処理装置。
    The storage device stores constant data associated with true positive values, which are constants set for true positives, for each of the plurality of methods for detecting deterioration of the video data,
    The detection unit detects deterioration of the video data using each of the plurality of methods,
    The processing device according to claim 1, wherein the control cost is calculated from a value obtained by adding true positive values set for a method detected as having deterioration among the plurality of methods.
  4.  前記検知部は、単位時間毎の映像データの劣化を検知し、劣化を検知する度に、前記制御コストに、劣化を検知した検知手法の精度を考慮した値を加算し、
     前記選択部は、前記制御コストが、前記範囲の下限値に達すると、前記下限値に対応づけられた制御を選択する
     請求項1に記載の処理装置。
    The detection unit detects deterioration of video data for each unit time, and each time deterioration is detected, adds a value that takes into account the accuracy of the detection method that detected the deterioration to the control cost,
    The processing device according to claim 1, wherein when the control cost reaches the lower limit of the range, the selection unit selects the control associated with the lower limit.
  5.  前記プロファイルデータは、前記車両が走行する環境毎に制御コストの範囲を設定し、
     前記選択部は、前記車両が走行する環境に対して設けられた範囲から、前記制御を選択する
     請求項1に記載の処理装置。
    The profile data sets a control cost range for each environment in which the vehicle runs,
    The processing device according to claim 1, wherein the selection unit selects the control from a range provided for an environment in which the vehicle travels.
  6.  学習用映像データと、前記学習用映像データに対して監視者が入力した制御を対応づける教師データを参照して、前記学習用映像データに対して前記選択部が選択した制御が、前記監視者が入力した制御となるように、前記制御毎の制御コストの範囲を算出して、前記プロファイルデータを生成する学習部
     をさらに備える請求項1に記載の処理装置。
    The control selected by the selection unit for the learning video data is determined by the supervisor by referring to the training data that associates the learning video data with the control input by the supervisor to the learning video data. The processing device according to claim 1, further comprising: a learning unit that calculates a control cost range for each control and generates the profile data so that the input control becomes the input control.
  7.  コンピュータが、車両の安全走行のための制御毎に、前記制御による影響を指標化した制御コストの範囲を対応づけるプロファイルデータを、記憶装置に記憶し、
     前記コンピュータが、所定の手法で、前記車両の周辺を撮影する映像データの劣化を検知し、
     前記コンピュータが、前記プロファイルデータから、前記手法における検知の精度を考慮して決定される制御コストを範囲に含む制御を選択し、
     前記コンピュータが、選択された制御を指示する
     処理方法。
    a computer stores in a storage device profile data associating a range of control costs indexing the influence of the control with each control for safe driving of the vehicle;
    the computer detects deterioration of video data photographing the surroundings of the vehicle using a predetermined method;
    the computer selects, from the profile data, a control that includes a control cost determined in consideration of detection accuracy in the method;
    A processing method in which the computer directs selected control.
  8.  コンピュータを、請求項1ないし請求項6のいずれか1項に記載の処理装置として機能させるためのプログラム。 A program for causing a computer to function as the processing device according to any one of claims 1 to 6.
PCT/JP2022/031112 2022-08-17 2022-08-17 Processing device, processing method, and program WO2024038525A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031112 WO2024038525A1 (en) 2022-08-17 2022-08-17 Processing device, processing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031112 WO2024038525A1 (en) 2022-08-17 2022-08-17 Processing device, processing method, and program

Publications (1)

Publication Number Publication Date
WO2024038525A1 true WO2024038525A1 (en) 2024-02-22

Family

ID=89941511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031112 WO2024038525A1 (en) 2022-08-17 2022-08-17 Processing device, processing method, and program

Country Status (1)

Country Link
WO (1) WO2024038525A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168840A (en) * 2018-03-22 2019-10-03 パナソニックIpマネジメント株式会社 Information notification device mountable on vehicle, and vehicle thereof
JP2021157716A (en) * 2020-03-30 2021-10-07 本田技研工業株式会社 Vehicle controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168840A (en) * 2018-03-22 2019-10-03 パナソニックIpマネジメント株式会社 Information notification device mountable on vehicle, and vehicle thereof
JP2021157716A (en) * 2020-03-30 2021-10-07 本田技研工業株式会社 Vehicle controller

Similar Documents

Publication Publication Date Title
US11539727B2 (en) Abnormality detection apparatus and abnormality detection method
JP2019182425A (en) Control method and control device for automatic drive vehicle, and computer readable storage medium
US11741828B2 (en) Vehicle to everything communication management according to a vulnerable roadside user device configuration
JP6415696B2 (en) Driving support information generation device, driving support information generation method, driving support device, and driving support method
JP2019003403A (en) Monitoring control system, monitoring control device, and monitoring control method
CN105404266B (en) A kind of method and device of monitoring area
JP2015164027A (en) Electronic equipment, control method and control program of electronic equipment
JP6293013B2 (en) Video transmission device, video transmission method, and video transmission program
CN105262979A (en) Method and device for multi-channel video playback
US20190261109A1 (en) Mobile and Autonomous Audio Sensing and Analytics System and Method
CN112540555A (en) Method for remotely controlling a motor vehicle
US11910271B2 (en) Communication between autonomous vehicles and operations personnel
WO2024038525A1 (en) Processing device, processing method, and program
JP3838784B2 (en) Image transmission system
WO2019131388A1 (en) Drive assistance device, drive assistance system, drive assistance method, and recording medium in which drive assistance program is stored
JP2011186727A (en) Monitoring apparatus and program
JP6803663B2 (en) Terminal device, contact system, transmission method and transmission program
KR20210009151A (en) System Operating Method For Broadcast Control And System of Thereof
US8669869B2 (en) Method and device for detecting and reporting activity
US20220207203A1 (en) Construction Model Data Evaluation Server, Construction Model Data Evaluation Method, and Construction Model Data Evaluation System
CN114407910A (en) Fault processing method and device for intelligent driving vehicle and storage medium
KR20130011350A (en) Method for guiding safe driving of car, apparatus and system for the same
JP2022549260A (en) Robot remote control method
EP4357872A1 (en) Information-generating method, information-generating device, and program
CN114475653B (en) Vehicle emergency steering simulation scene configuration method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955699

Country of ref document: EP

Kind code of ref document: A1