WO2024038521A1 - Wireless communication system, wireless terminal device, wireless base station, controller, and wireless communication method - Google Patents

Wireless communication system, wireless terminal device, wireless base station, controller, and wireless communication method Download PDF

Info

Publication number
WO2024038521A1
WO2024038521A1 PCT/JP2022/031090 JP2022031090W WO2024038521A1 WO 2024038521 A1 WO2024038521 A1 WO 2024038521A1 JP 2022031090 W JP2022031090 W JP 2022031090W WO 2024038521 A1 WO2024038521 A1 WO 2024038521A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
upper limit
limit value
wireless terminal
terminal devices
Prior art date
Application number
PCT/JP2022/031090
Other languages
French (fr)
Japanese (ja)
Inventor
花絵 大谷
ヒランタ アベセカラ
裕介 淺井
泰司 鷹取
朗 岸田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/031090 priority Critical patent/WO2024038521A1/en
Publication of WO2024038521A1 publication Critical patent/WO2024038521A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present disclosure relates to a wireless communication system, a wireless terminal device, a wireless base station, a controller, and a wireless communication method related to frame control of wireless communication.
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • Non-Patent Document 1 discloses a method of implementing identification information called QoS color (Quality of Service color, hereinafter referred to as high priority frame) in a frame according to traffic priority in CSMA/CA.
  • QoS color Quality of Service color
  • CSMA/CA Carrier Sense Multiple Access/CA
  • IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016). “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standard for Information technology ⁇ Telecommunications and information exchange between systems. Local and metropolitan area networks — Specific requirements.
  • MAC Medium Access Control
  • PHY Physical Layer
  • each terminal transmits as many high-priority frames as it wants, a problem arises in that the channel becomes saturated with high-priority frames and opportunities to transmit low-priority frames are no longer secured.
  • the channel is saturated with high-priority frames, a problem arises in that priority control between terminals cannot be realized because all frames have the same priority.
  • the present disclosure can provide a transmission opportunity to a terminal that transmits a low-priority frame without saturating the channel with high-priority frames in wireless communication, and realizes priority frame control between terminals.
  • the primary objective is to provide a wireless communication system that can
  • the present disclosure provides a wireless communication system that can provide a transmission opportunity to a terminal that transmits a low priority frame without saturating the channel with high priority frames in wireless communication, and can realize priority frame control between terminals.
  • the second purpose is to provide a terminal device.
  • the present disclosure provides a wireless communication system that can provide a transmission opportunity to a terminal that transmits a low priority frame without saturating the channel with high priority frames in wireless communication, and can realize priority frame control between terminals.
  • the third purpose is to provide base stations.
  • the present disclosure provides a controller that can provide a transmission opportunity to a terminal that transmits a low priority frame without saturating the channel with high priority frames in wireless communication, and can realize priority frame control between terminals.
  • the fourth purpose is to provide
  • the present disclosure provides a wireless communication system that can provide a transmission opportunity to a terminal that transmits a low priority frame without saturating the channel with high priority frames in wireless communication, and can realize priority frame control between terminals.
  • the fifth purpose is to provide a communication method.
  • a first aspect of the present disclosure provides an opportunity to transmit and receive a radio frame preferentially to a radio terminal device that should perform radio communication with a radio base station among a plurality of radio terminal devices according to the priority of the radio frame.
  • a wireless communication system that provides The wireless base station that performs wireless communication with the plurality of wireless terminal devices, Upper limit determination processing for determining, for each of the plurality of wireless terminal devices, an upper limit value of the number of times the wireless frame with the high priority can be transmitted by the wireless terminal device; upper limit notification processing for notifying each of the plurality of wireless terminal devices of the upper limit value of the number of transmissions; is configured to run The plurality of wireless terminal devices transmit the high-priority wireless frames until the upper limit of the number of transmissions is reached; a counting process for counting the number of times the high-priority wireless frame is transmitted;
  • the system is configured to perform the following steps.
  • a second aspect is a wireless terminal device that performs wireless communication using a wireless frame having identification information indicating priority, a process of receiving information on an upper limit value of the number of times the radio frame with a high priority can be transmitted from another radio station; a process of transmitting the radio frame with the high priority until the upper limit is reached;
  • the system is configured to perform the following steps.
  • a third aspect is a wireless base station that performs wireless communication with a plurality of wireless terminal devices using a wireless frame having identification information indicating priority, Upper limit value determination processing for determining and notifying, to each of the plurality of wireless terminal devices, an upper limit value for the number of times the wireless frame with a high priority can be transmitted by the wireless terminal device; or, a second upper limit value determination process for determining, for each of the plurality of wireless terminal devices, an upper limit value of the number of times the wireless frame with high priority can be received by the wireless terminal device; do at least one, When the second upper limit value determination process is executed, for each of the plurality of wireless terminal devices, the number of reception times reaches the upper limit value determined in the second upper limit value determination process.
  • the wireless communication device is configured to further execute processing for transmitting a radio frame with a high priority.
  • a fourth aspect is a controller that controls a wireless base station that performs wireless communication with a plurality of wireless terminal devices using a wireless frame having identification information indicating priority, at least an upper limit value of the number of times of transmission and reception of high-priority radio frames that each of the plurality of wireless terminal devices can transmit or receive, or a sum of the upper limit value of the number of times of transmission and reception in each of the plurality of wireless terminal devices;
  • the wireless base station is configured to determine one of the two and to notify the wireless base station.
  • the fifth aspect is to give a wireless frame transmitting/receiving opportunity preferentially to a wireless terminal device that should wirelessly communicate with a wireless base station among the plurality of wireless terminal devices according to the priority of the wireless frame.
  • a wireless communication method The wireless base station that performs wireless communication with the plurality of wireless terminal devices, a process of determining, for each of the plurality of wireless terminal devices, an upper limit value for the number of times the wireless frame with a high priority can be transmitted by the wireless terminal device; a process of notifying each of the plurality of wireless terminal devices of the upper limit value of the number of times of transmission; Run The plurality of wireless terminal devices transmit the high-priority wireless frames until the upper limit of the number of transmissions is reached; a process of counting the number of times the high-priority radio frame has been transmitted; It is preferable to carry out.
  • the first to fifth aspects of the present disclosure it is possible to give a transmission opportunity to a terminal that transmits a low-priority frame without saturating a channel with high-priority frames in wireless communication, and to control priority frames between terminals. It becomes possible to provide a wireless communication system, a wireless terminal device, a wireless base station, a controller, and a wireless communication method that can realize the following.
  • FIG. 2 is a diagram illustrating a configuration example of a conventional wireless communication system according to a comparative example. 2 is an example of a wireless communication sequence in a conventional wireless communication system according to a comparative example.
  • 1 is a diagram showing a configuration of a wireless communication system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a block diagram showing an example of the functional configuration of a terminal and a base station.
  • FIG. 2 is a block diagram illustrating a detailed functional configuration example of a MAC section of a base station when transmitting a wireless signal.
  • FIG. 2 is a block diagram illustrating a detailed functional configuration example of a MAC section of a base station when receiving a wireless signal.
  • FIG. 1 is a diagram showing a configuration of a wireless communication system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a block diagram showing an example of the functional configuration of a terminal and a base station.
  • FIG. 2 is a block diagram illustrating a
  • FIG. 2 is a block diagram illustrating a detailed functional configuration example of a MAC section of a terminal when transmitting a wireless signal.
  • FIG. 2 is a block diagram illustrating a detailed functional configuration example of a MAC section of a terminal when receiving a wireless signal.
  • FIG. 2 is a block diagram illustrating a detailed functional configuration example of a PHY transmitter of a base station.
  • FIG. 2 is a flowchart of processing performed by a terminal when transmitting a high-priority frame according to Embodiment 1 of the present disclosure.
  • 1 is an example of a wireless communication sequence in a wireless communication system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram showing the configuration of a wireless communication system according to Embodiment 2 of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of a controller, a base station, and a terminal according to Embodiment 2 of the present disclosure.
  • 12 is a flowchart of a process for notifying a BSS total value from a controller to a base station according to Embodiment 2 of the present disclosure.
  • FIG. 11 is a flowchart of a process in which a base station, which has been notified of a BSS total value from a controller, notifies terminals under its control of an upper limit value of a counter based on that information, according to Embodiment 2 of the present disclosure.
  • FIG. 1 is a diagram showing a configuration example of a conventional wireless communication system according to a comparative example.
  • a conventional wireless communication system 100 includes a plurality of wireless terminal devices (hereinafter referred to as terminals) 110(1), 110(2), and 110(3).
  • the terminal 110 performs wireless communication with the wireless base station 120 based on the IEEE 802.11 standard.
  • the terminal 110 is a general-purpose terminal such as a smartphone. Alternatively, it may be a terminal installed in a factory or the like and used for a special purpose such as monitoring and controlling machines.
  • a radio base station 120 receives radio waves from the terminal 110 and connects to the core network, or conversely, converts signals from the core network into radio waves and transmits them to the terminal 110. It is a wireless base station. Note that when the applied wireless communication system is Wi-Fi (registered trademark), the base station 120 corresponds to an access point.
  • Wi-Fi registered trademark
  • FIG. 2 is an example of a wireless communication sequence in a conventional wireless communication system according to a comparative example.
  • the plurality of terminals 110(1), 110(2), 110(3) and base station 120 each access a channel and transmit data based on the CSMA/CA algorithm.
  • the radio frames transmitted by the terminal 110 are prioritized.
  • terminal 110(1) transmits high priority frame 103(1) to base station 120.
  • the base station 120 Upon receiving the high priority frame 103(1), the base station 120 returns an ACK frame 104(1) to the terminal 110(1) as proof that the data has been received normally.
  • the other terminals 110(2) and 110(3) detect that a terminal other than themselves is performing data communication, they set themselves to a busy state 105 and wait until the current communication ends. do.
  • terminal 110(2) When the data communication of terminal 110(1) ends, terminal 110(2) then transmits high priority frame 103(2). Base station 120 returns an ACK frame 104(2) to terminal 110(2). Meanwhile, other terminals 110(1), 110(3) are in a busy state 105.
  • the terminal 110 that transmitted the high priority frame 103 accesses the channel preferentially and transmits data to the base station 120.
  • each terminal transmits high-priority frames without limit
  • terminals like terminal 110 (3) that try to transmit frames that are not high-priority transmit their own data while remaining in the busy state 105. I can't.
  • a terminal attempting to transmit a low-priority wireless frame is not given an opportunity to transmit.
  • FIG. 3 is a diagram showing the configuration of a wireless communication system according to Embodiment 1 of the present disclosure.
  • the wireless communication system 200 includes a plurality of terminals 110 and a base station 120, similarly to the comparative example. Further, in the wireless communication system 200 of the present embodiment, frame counters 130(1), 130(2), and 130(3) are respectively set in the terminal 110, unlike the comparative example.
  • the frame counter 130 is a part that performs processing related to the number of times the terminal 110 transmits a high priority frame. Each terminal 110 transmits the high priority frame 103 until the count value of the counter 130 reaches the upper limit.
  • the upper limit value is set from the base station 120 to each terminal 110 under its control. For example, in the example of FIG. 3, upper limit values a, b, and c are set for the counters 130 of terminals 110(1), 110(2), and 110(3), respectively.
  • the upper limit values a, b, and c of the counter 130 are set so that the sum (a+b+c) does not exceed a predetermined value A. That is, the settings are made so that the following conditional expression is satisfied. a+b+c ⁇ A (Formula 1)
  • the number of times each terminal 110 can transmit the high priority frame 103 is limited.
  • the upper limit value of the counter 130 may be set only for a single channel, or may be set across multiple channels, links, or frequency bands. By setting across multiple channels and links, the count value can be increased fairly even when the number of transmissions of the high priority frame 103 is insufficient on a single link and multiple channels and frequency bands are also used for transmission. be able to.
  • FIG. 4 is a block diagram showing an example of the functional configuration of a terminal and a base station. However, here, for the sake of explanation, it is assumed that there is one terminal 110, but in reality, a plurality of terminals 110 are provided.
  • the functions of the base station 120 during wireless signal transmission will be described.
  • a packet is input to the base station 120 from the upper layer 140.
  • the upper layer 140 refers to a layer higher than the physical (PHY) layer and the data link layer among the layers defined in the OSI (Open Systems Interconnection) reference model.
  • the upper layer 140 is, for example, an application layer.
  • the base station 120 For packets input from the upper layer 140, the base station 120 performs frame processing such as adding or deleting information to the physical layer and data link layer frames based on the IEEE802.11 frame format.
  • the data link layer further includes an LLC (Logical Link Control) sublayer and a MAC (Media Access Control) sublayer, and the base station 120 processes each sublayer.
  • LLC Logical Link Control
  • MAC Media Access Control
  • the LLC unit 150 is an interface with the upper layer 140, and is a part that performs LLC layer processing on packets input from the upper layer 140. Specifically, a process is performed in which a header such as DSAP (Destination Service Access Point) or SSAP (Source Service Access Point) is added to the packet and the packet is input to the MAC unit 160.
  • DSAP Disposination Service Access Point
  • SSAP Source Service Access Point
  • the MAC unit 160 is a part that performs MAC layer processing.
  • the MAC unit 160 sends a MAC address to the packet input from the LLC unit 150, including a destination address, a source address, a sequence number, a traffic type (Traffic Identifier, TID) indicating data priority, an error detection code, etc. Add header.
  • TID Traffic Identifier
  • the upper limit value determination unit 163 included in the MAC unit 160 performs processing to implement upper limit information in the MAC frame of the packet.
  • the MAC section 160 performs carrier sensing based on the CSMA/CA algorithm based on the received power input from the PHY receiving section 180 to determine whether frame transmission is possible. If transmission is possible, the data input into the MAC frame is output to the PHY transmitter 170.
  • the PHY transmitter 170 is a part that performs PHY layer processing.
  • a wireless signal is generated by adding a PHY header, a preamble, etc. to the frame.
  • the preamble includes a BSS (Basic Service Set) color, which is identification information of the base station 120 as the communication destination, a QoS color, which is identification information of frame priority, and the like.
  • the radio signal generated in the PHY transmitter 170 is transmitted from the antenna 190 and sent to the terminal 110.
  • the base station 120 performs frame processing on the data input from the upper layer 140 by the LLC section 150, the MAC section 160, and the PHY transmitting section 170, and generates a wireless signal directed to the terminal 110.
  • the base station 120 when receiving a wireless signal, the base station 120 receives the wireless signal via its own antenna 190.
  • the PHY receiving unit 180 demodulates the PHY header, preamble, etc. of the received radio signal.
  • the MAC unit 160 performs processing such as demodulating the MAC header when a packet is input from the PHY receiving unit 180, and inputting it to the LLC unit 150 when the data is addressed to its own station.
  • the LLC unit 150 When a packet is input from the MAC unit 160, the LLC unit 150 deletes the above-mentioned header and then inputs the packet to the upper layer 140.
  • the PHY receiving section 180, MAC section 160, and LLC section 150 perform frame processing, and input the extracted data to the upper layer 140.
  • the terminal 110 includes an LLC section 250, a MAC section 260, a PHY transmitting section 270, a PHY receiving section 280, and an antenna 290.
  • the functions of the LLC section 250, PHY transmitting section 270, PHY receiving section 280, and antenna 290 are the same as those of the base station 120 described above, so the description thereof will be omitted.
  • the MAC unit 260 of the terminal 110 performs processing to increase the count of the counter 130 based on the transmission information of the high priority frame 103 or CCA (Channel Clear Assessment) threshold information.
  • CCA Channel Clear Assessment
  • the base station 120 implements information on the upper limit of the number of transmissions of the high priority frame 103 that each terminal can transmit in a MAC frame, and notifies each terminal 110 of the information. do. Furthermore, when the terminal 110 transmits the high-priority frame 103 to the base station 120, the counter 130 in the MAC unit 260 of the terminal performs a process of increasing the count.
  • the processing functions in the PHY layer are divided into transmission and reception, and are shown separately as a PHY transmitter 170 and a PHY receiver 180, respectively. However, these functions are originally performed in the processing section of one PHY layer. It should be noted that base station 120 and terminal 110 do not have multiple PHY layer processing units with different functions.
  • FIG. 5 is a block diagram illustrating a detailed functional configuration example of the MAC unit of the base station during wireless signal transmission.
  • the data processing unit 161 After a packet is input from the LLC unit 150, the data processing unit 161 adds a MAC header in which information such as a destination address or TID indicating the priority of data is written to the packet. Furthermore, the data with the MAC header added is output to the MAC frame processing unit 162.
  • the MAC frame processing unit 162 performs carrier sensing over a random period of time based on the CSMA/CA algorithm, and receives notifications regarding channel conditions such as received power received by the PHY receiving unit 180. If the channel is found to be in an idle state by comparison with the CCA threshold, the data input from the data processing section 161 is output to the PHY transmission section 170.
  • the CCA threshold is determined according to the combination of BSS color and QoS color values included in the frame of the radio signal received during carrier sensing. You may.
  • the upper limit value determination unit 163 determines the upper limit value of the counter 130 for each of the terminals 110 under its control, and implements the information in the MAC frame.
  • the upper limit value of the counter 130 is determined according to the communication load of each terminal 110, such as the load data rate of each terminal 110. Thereby, the opportunity to transmit the high priority frame 103 can be distributed more fairly to each terminal 110.
  • the upper limit value can be biased so that more high-priority frames 103 can be transmitted to at least one terminal depending on the priority of the terminal.
  • the upper limit value of the counter 130 can be determined according to changes in the number of subordinate terminals 110, changes in the communication environment, and increases and decreases in communication resources.
  • the upper limit value of the counter 130 is determined to satisfy the above (Formula 1) in any of the above-described determination methods.
  • the base station 120 determines the upper limit value of the counter 130 for each terminal 110 in the upper limit value determining section 163 in the MAC section 160. This makes it possible to control the fairness of the number of times the high priority frame 103 is transmitted.
  • FIG. 6 is a block diagram showing a detailed functional configuration example of the MAC section of the base station when receiving a wireless signal.
  • a frame addressed to the own BSS is detected in the PHY receiving unit 180, and a MAC frame is input from the PHY receiving unit 180. Then, the MAC frame processing unit 162 demodulates the MAC header. Further, the demodulated data is output to the data processing section 161.
  • the data processing unit 161 refers to the MAC header of the input data, extracts the data, and inputs it to the LLC unit 150.
  • the MAC unit 160 of the base station 120 performs MAC layer processing when receiving a wireless signal, and passes the packet to the LLC unit 150 if the destination address included in the MAC header indicates the own station.
  • FIG. 7 is a block diagram illustrating a detailed functional configuration example of the MAC unit of the terminal during wireless signal transmission.
  • the MAC section 260 includes a data processing section 261 and a MAC frame processing section 262. These functions at the time of wireless signal transmission are the same as those of the base station 120, so a description thereof will be omitted.
  • the MAC unit 260 of the terminal 110 includes a counter 130.
  • the counter 130 counts the high-priority frames 103 based on the transmission information of the high-priority frames 103 used by the MAC frame processing unit 262 during carrier sensing, or the selection information of the CCA threshold used for determining the channel state.
  • the count value is increased by 1 each time the high priority frame 103 is transmitted.
  • the count number is weighted according to the communication control method implemented by the terminal 110 to transmit the high priority frame 103.
  • the communication control method is a method of controlling the transmission of the high priority frame 103 using transmission power, a CCA threshold, an MCS (Modulation and Coding Scheme) value, the number of frame retransmissions, and the like.
  • the terminal 110 increases the transmission power value and transmits the high-priority frame 103, it will be more easily received by the base station 120 than other terminals. Increase the value counted.
  • the transmission time is lengthened and the time to occupy the channel is lengthened to reduce transmission opportunities for other terminals 110, so the frame can be transmitted without lowering the MCS value.
  • processing such as multiplying the count number by the reciprocal of the MCS value or the reciprocal of the MCS value multiplied by a constant is performed.
  • FIG. 8 is a block diagram showing a detailed functional configuration example of the MAC section of the terminal when receiving a wireless signal.
  • the MAC section 260 includes a data processing section 261 and a MAC frame processing section 262. These functions when receiving a radio signal are the same as those of the base station 120, so a description thereof will be omitted.
  • FIG. 9 is a block diagram showing a detailed functional configuration example of the PHY transmitter of the base station.
  • carrier sensing is performed in the MAC unit 160, and when a frame transmission right is acquired by determining that the channel is in an idle state, a MAC frame is input from the MAC unit 160 to the PHY transmitting unit 170.
  • the PHY header processing unit 171 receives the MAC frame from the MAC unit 160.
  • the PHY header processing unit 171 generates a frame in which a PHY header including information such as BSS color and QoS color, a preamble, etc. are added to the MAC frame.
  • a PHY header including information such as BSS color and QoS color, a preamble, etc.
  • the TID information of the MAC header or the like may be referred to.
  • the wireless signal processing unit 172 converts the frame input from the PHY header processing unit 171 into a wireless signal. There, encoding 173, deinterleaver 174, modulation 175, Inverse Fast Fourier Transform (IFFT) 176, OFDM (Orthogonal Frequency Division Multiply) signal processing such as exing) modulation 177 and frequency conversion 178 in sequence. It will be done. Thereafter, radio frame transmission is performed from the antenna 190 regarding the converted radio signal.
  • IFFT Inverse Fast Fourier Transform
  • OFDM Orthogonal Frequency Division Multiply
  • the PHY transmitter 170 of the base station 120 can add information to the frame input from the upper layer, convert it into a wireless signal, and transmit it to the terminal 110.
  • the functional configuration example of the PHY transmitter 270 of the terminal 110 is also the same as that of the base station 120 in FIG. 9, so the description thereof will be omitted.
  • FIG. 10 is a block diagram showing a detailed functional configuration example of the PHY receiving section of the base station. Note that the functions described here are performed not only during frame reception but also during carrier sense before frame transmission.
  • the radio signal processing unit 182 decodes the radio signal received by the antenna 190. There, signal processing is performed in the reverse order to that at the time of transmission. That is, signal processing including frequency conversion 188, OFDM modulation 187, fast Fourier transform (FFT) 186, demodulation 185, deinterleaver 184, decoding 183, etc. is performed in order. Thereafter, the obtained frame is output to the PHY header processing section 181.
  • signal processing including frequency conversion 188, OFDM modulation 187, fast Fourier transform (FFT) 186, demodulation 185, deinterleaver 184, decoding 183, etc. is performed in order. Thereafter, the obtained frame is output to the PHY header processing section 181.
  • FFT fast Fourier transform
  • the PHY header processing unit 181 receives the radio frame from the radio signal processing unit 182, and identifies information such as BSS color and QoS color included in the preamble of the radio frame. Note that the information on the BSS color and QoS color identified by the PHY header processing unit 181 may be input to the MAC unit 160 together with the payload without being deleted.
  • the PHY receiving unit 180 of the base station 120 can decode the wireless signal transmitted from another wireless base station and extract the information included in the frame.
  • the functional configuration example of the PHY receiving unit 280 of the terminal 110 is also the same as that of the base station 120, so a description thereof will be omitted.
  • FIG. 11 is a flowchart of a process in which a base station notifies terminals under its control of the upper limit value of a counter, according to Embodiment 1 of the present disclosure.
  • the base station 120 starts processing (step 210). Next, a process is performed to determine whether a certain period of time has elapsed (step 211). If it is determined that a certain period of time has elapsed, the base station 120 determines the upper limit value of the counter 130 for each of the terminals 110 under its control (step 212). Information on the determined upper limit value of the counter 130 is notified to each terminal (step 213). Thereafter, the process ends (step 214).
  • the base station 120 notifies the subordinate terminal 110 of the upper limit value of the counter 130 every predetermined period of time.
  • the MAC unit 160 of the base station 120 may periodically evaluate the fairness of the upper limit value between the terminals 110 under its control using the Fairness index.
  • the Fairness index is calculated based on the communication quality of wireless communication in each terminal 110.
  • Communication quality includes, for example, the count number of the counter 130 allocated to each terminal 110, transmission air time, throughput, delay time, PER (Packet Error Rate), MCS value, number of retransmitted packets, and RSSI (Received Signal Strength Indicator). ), SINR (Signal-to-Interference plus Noise power Ratio), etc.
  • transmission air time and throughput values are used as standards, it is evaluated whether communication opportunities are provided to each terminal 110 so that these values are equal.
  • RSSI when using RSSI as a reference, it is evaluated whether there is any bias in the degree of control of transmission power.
  • the MAC unit 160 of the base station 120 periodically calculates the Fairness index. If the calculation result exceeds the allowable value, fairness is controlled by changing the upper limit value of the counter 130, the transmission power value, or the CCA threshold value allocated to each terminal 110.
  • the trigger for re-notifying the upper limit value is the passage of a certain period of time.
  • the time point when it is found that the desired fairness cannot be achieved may be used as a trigger.
  • another example is a request for a count value that the terminal 110 makes to the base station when the upper limit of allocation is smaller than the number of high-priority frames that the terminal 110 should transmit. may be used as a trigger.
  • FIG. 12 is a flowchart of processing performed by a terminal when transmitting a high priority frame according to Embodiment 1 of the present disclosure.
  • the terminal 110 starts processing (step 220).
  • the terminal 110 receives traffic from the upper layer 140 (step 221).
  • it is determined whether the traffic has a high priority (step 222). If the priority is not determined to be high, an attempt is made to transmit the frame as a low priority frame 106 (step 223).
  • step 222 if it is determined in step 222 that the priority is high, the counter 130 is referred to and a process is performed to determine whether the current count value is less than the upper limit value (step 224). If it is not less than the upper limit, it means that the count value has already reached the upper limit. Therefore, frame transmission is attempted as the low priority frame 106 (step 223). On the other hand, if the count value is less than the upper limit, 1 is added to the count of the counter 130, and frame transmission is attempted as the high priority frame 103 (step 225). Finally, the process ends (step 226).
  • the terminal 110 can transmit the high priority frame 103 within a certain period of time until the counter 130 reaches the upper limit. After the counter 130 reaches the upper limit value, the frame is transmitted not as a high priority frame 103 but as a normal low priority frame 106.
  • step 225 a method was described in which the count is increased by 1 each time the high priority frame 103 is transmitted.
  • the counting method may be weighted according to the communication control method implemented by the terminal 110 to transmit the high priority frame 103, as described in FIG.
  • step 225 the method of adding the count value of the counter 130 even in the case of failure is shown, but if the transmission of the high priority frame 103 fails, it is not necessary to add the count value.
  • FIG. 13 is an example of a wireless communication sequence in the wireless communication system according to Embodiment 1 of the present disclosure.
  • the counters 130 of the terminals 110(1), 110(2), and 110(3) are set with upper limit values a, b, and c for a certain period of time, respectively.
  • the terminal 110(1) transmits the high priority frame 103(1), and as a result, the counter 130(1) reaches the upper limit value a.
  • terminal 110(2) also transmits high priority frame 103(2). Similarly, it is assumed that the counter 130(2) of the terminal 110(2) has also reached the upper limit value b.
  • terminal 110(1) and terminal 110(2) cannot transmit any more high-priority frames 103 until a certain period of time has elapsed. Then, the terminal 110(3), which had been in the busy state 105 until then, is given an opportunity to transmit the low priority frame 106.
  • the terminal 110 that transmits the low priority frame 106 is also given a transmission opportunity.
  • the base station 120 autonomously performs band limitation by limiting the transmission opportunity of the high priority frame 103. Furthermore, transmission opportunities are distributed according to the load data rate of each terminal 110. As a result, it is possible to avoid saturation of the channel with only the high priority frame 103. In this way, in Embodiment 1 of the present disclosure, it is possible to distribute frame transmission opportunities more fairly than in the prior art.
  • the base station 120 determines the upper limit of the number of times the high priority frame 103 can be received by each terminal 110 under its control.
  • the base station 120 can transmit the high priority frame 103 to the terminal 110 until the upper limit of the number of receptions is reached. Note that this point is also common to Embodiment 2 below.
  • the base station 120 itself counts the number of times the high priority frame 103 has been transmitted, so there is no need to provide the counter 130 in the terminal 110.
  • the MAC unit 160 of the base station 120 includes a counter 130 for each of the terminals 110 under its control, in addition to the functional configuration example described in FIG.
  • the base station 120 implements information on the upper limit of the number of transmissions of the high priority frame 103 that each terminal can transmit in the MAC frame. did.
  • the upper limit information does not necessarily need to be implemented in the MAC frame, and may be implemented in other frames. Therefore, the processing of the upper limit determining section 163 is not limited to the MAC section 160. Note that this point is also common to Embodiment 2 below.
  • the MAC unit 260 of the terminal 110 increases the count of the counter 130 based on the transmission information of the high priority frame 103 or the CCA threshold information.
  • the function of the counter 130 is not limited to the processing within the MAC unit 260.
  • the processing performed by the base station 120 and the terminal 110 of the present disclosure may be executed by a program using a computer equipped with a CPU and a memory and storing a program in the memory.
  • the program may be executed using an integrated circuit such as an FPGA (Field Programmable Gate Array).
  • the program may be provided recorded on a storage medium or may be provided through a network. Note that this point also applies to the processing performed by the controller 310 described in the second embodiment.
  • the process described in this embodiment, in which the base station 120 determines the upper limit of the number of transmissions of the high-priority frame 103 that can be transmitted by each of the terminals 110 under its control, is referred to as an upper limit determination process.
  • the upper limit value determination process is, for example, the process of step 212.
  • the process by which the base station 120 determines the upper limit of the number of times the high-priority frame 103 can be received by each of the terminals 110 under its control is called the second upper limit determination process.
  • the upper limit value notification process is, for example, the process of step 213.
  • the process of counting the number of times the terminal 110 transmits the high priority frame 103 is called a count process.
  • FIG. 14 is a diagram showing the configuration of a wireless communication system according to Embodiment 2 of the present disclosure.
  • Wireless communication system 300 includes a controller 310, a plurality of terminals 110, and a base station 120.
  • a BSS 360 is configured from one base station 120 and a plurality of terminals 110 under its control.
  • three base stations 120(1), 120(2), and 120(3) each have a subordinate terminal 110, and three base stations 120(1), BSS(2), and BSS(3) Configure.
  • the number of base stations may be one or more.
  • the controller 310 notifies each base station 120 of the sum of the upper limit values of the counters 130 in each terminal 110 under the control of the base station (hereinafter referred to as the BSS sum value). For example, in the example of FIG. 14, the controller 310 notifies the base stations 120(1), 120(2), and 130(3) of the BSS total values A, B, and C, respectively.
  • the base station 120 includes a storage unit 330.
  • the base station 120 stores information on the BSS total value given from the controller 310 in the storage unit 330. Further, based on the stored BSS total value, each subordinate terminal 110 is notified of the number of times the high priority frame 103 has been transmitted. For example, in the example of FIG. 14, base station 120(1) sets upper limit values a, b, and c for counters 130 of terminals 110(1), 110(2), and 110(3) under its control, respectively. Notice.
  • the upper limit values a, b, and c of the counters 130 of the terminals 110(1), 110(2), and 110(3) are determined to satisfy (Formula 1) as in the first embodiment.
  • the predetermined value A is the sum of the upper limit values of the counter 130.
  • the controller 310 that aggregates the base stations 120 controls the number of times the high priority frame 103 is transmitted by the terminals 110 under the control of the base stations. This makes it possible to control each BSS 360.
  • the BSS total value determined by the controller 310 may be set only for a single channel, or may be determined across multiple channels, links, or frequency bands.
  • FIG. 15 is a block diagram showing an example of the functional configuration of a controller, a base station, and a terminal according to Embodiment 2 of the present disclosure. Note that, for the sake of explanation, here, a case is described in which there is only one each as the minimum unit of the functional configuration example, but in reality, it is assumed that there are a plurality of terminals 110 within one BSS 360. It is also assumed that there may be a plurality of base stations 120 that are aggregated by the controller 310.
  • the controller 310 determines the BSS summation value. Furthermore, the determined information is implemented in a packet and input to the base station 120 through the upper layer 140.
  • the BSS total value is determined according to the data rate of the terminal 110 within each BSS 360 and the communication load of the terminal 110. Thereby, the opportunity to transmit the high priority frame 103 can be more fairly distributed to each BSS 360.
  • the BSS total value can be biased so that more high-priority frames 103 can be transmitted to at least one BSS 360 according to the priority of the terminal 110 within each BSS 360.
  • information regarding the BSS total value is input from the controller 310 to the LLC unit 150 of the base station 120 via the upper layer 140.
  • the MAC unit 160 stores information on the BSS total value notified from the controller 310 in the storage unit 330. Further, based on the stored BSS total value, the upper limit value of the counter 130 is determined for each of the subordinate terminals 110. Further, processing is performed to implement information on the determined upper limit value of the counter 130 into the MAC frame.
  • the functions of the terminal 110 are also similar to those in the first embodiment.
  • the value counted by the counter 130 of the MAC unit 260 at the time of transmitting the high priority frame 103 may be directly notified from the terminal 110 to the controller 310.
  • the counting method in the counter 130 is the same as in the first embodiment, for example, the count value is incremented by 1 each time the high priority frame 103 is transmitted.
  • the count number is weighted according to the communication control method performed by the terminal 110 to transmit the high-priority frame 103, that is, the control method using transmission power, CCA threshold, MCS value, number of frame retransmissions, etc. It's okay.
  • the BSS total value is notified from the controller 310 to the base station 120.
  • the base station 120 performs frame processing by the LLC section 150, the MAC section 160, and the PHY transmitting section 170 on the packet in which the information of the BSS total value inputted from the upper layer 140 is implemented, and generates a wireless signal.
  • the terminal 110 that has received this wireless signal can transmit the high priority frame 103 within a range that does not exceed the upper limit value of the counter 130 assigned to itself.
  • FIG. 16 is a flowchart of a process for notifying a BSS total value from a controller to a base station according to Embodiment 2 of the present disclosure.
  • controller 310 starts processing (step 340). Next, a process is performed to determine whether a certain period of time has elapsed (step 341). If it is determined that a certain period of time has elapsed, controller 310 determines a BSS summation value for each base station 120 (step 342). Furthermore, the BSS total value is notified to each base station 120 (step 343). Thereafter, the process ends (step 344).
  • the controller 310 calculates the fairness index based on the communication quality such as the average value calculated based on the transmission air time, RSSI, delay time, throughput, and number of frame transmissions of each transmitting terminal and each BSS 360, and calculates the fairness index. You may also perform an evaluation. This point is also similar to Embodiment 1, but the fairness index may be other than the fairness index.
  • the controller 310 notifies the base station 120 of the BSS total value every predetermined period of time. Thereby, the base station 120 can determine the upper limit value of the counter 130 in the terminal 110 under its control based on the BSS total value assigned to itself.
  • the trigger for re-notifying the BSS total value is the passage of a certain period of time.
  • the trigger may be the time when it is determined that the desired fairness is not achieved by calculating the Fairness index.
  • the trigger may be the time when a count value is requested from the terminal 110. This point is similar to the first embodiment.
  • FIG. 17 is a flowchart of a process in which a base station, which has been notified of the BSS total value from the controller, notifies subordinate terminals of the upper limit value of the counter based on that information, according to Embodiment 2 of the present disclosure. be.
  • the base station 120 starts processing (step 350).
  • a process is performed to determine whether the BSS total value set by the controller has been updated (step 351). If it is determined that the update has been made, the upper limit value of the counter 130 of each terminal is determined based on the BSS total value (step 352). Furthermore, information on the determined upper limit value of the counter 130 is notified to each terminal (step 353). Thereafter, the process ends (step 354).
  • the base station 120 determines the upper limit value of the counter 130 for each of the terminals 110 under its control based on the BSS total value notified from the controller 310, and notifies each terminal of this information. do. This allows the terminal 110 to transmit high priority frames 103 until the counter 130 reaches the upper limit.
  • the wireless communication sequence performed for each BSS 360 is the same as that shown in FIG. 13 of the first embodiment, so a description thereof will be omitted.
  • the wireless communication system 300 performs transmission opportunity control of the high priority frame 103 using the controller 310 for each BSS 360.
  • the controller 310 for each BSS 360.
  • it is possible to avoid a decrease in transmission opportunities due to the influence of other BSSs. Can be done. That is, it can be said that it is particularly suitable for outdoor use where the usable frequency band is limited or in an OBSS (Overlapping-Basic Service Set) environment where wireless cells overlap due to the dense arrangement of base stations 120.
  • OBSS Overlapping-Basic Service Set
  • the controller 310 determines the BSS summation value for each of the base stations 120 (step 342).
  • the upper limit value of the counter 130 for each terminal 110 under the control of the base station may be directly determined.
  • controller 310 when the controller 310 directly determines the upper limit value of the counter 130, it may directly notify each terminal 110 without going through the base station 120, as in step 343.
  • the controller 310 directly determines the upper limit value of the counter 130, it is determined according to the communication load of each terminal 110, such as the load data rate of each terminal 110, as in the first embodiment.
  • the upper limit value is determined to be biased so that more high priority frames 103 can be transmitted to at least one terminal.
  • the upper limit value of the counter 130 is determined so as to satisfy (Equation 1) as in the first embodiment.
  • the controller 310 determines the upper limit of the number of times each terminal 110 under each base station can receive the high priority frame 103, or the sum of the upper limits for each terminal for each base station. Decide and notify each base station. This allows the base station 120 to transmit high priority frames 103 to the terminals 110 under its control until this upper limit is reached.
  • Embodiment 2 The process described in Embodiment 2 in which the controller 310 determines and notifies the BSS total value or the upper limit value of the counter 130 of each terminal 110 under the control of the base station is referred to as an upper limit value determination notification process.
  • the upper limit value determination notification process is, for example, a series of steps 342 and 343.

Abstract

The present disclosure relates to a wireless communication system, the purpose of the present disclosure being to enable a terminal transmitting low-priority frames to be granted a transmission opportunity without causing a channel to be saturated with high-priority frames in wireless communication and realize priority frame control between terminals. A wireless communication system according to the present disclosure grants, in accordance with the priority of wireless frames, wireless frame transmission/reception opportunities preferentially to a wireless terminal device that should wirelessly communicate with a wireless base station from among a plurality of wireless terminal devices, the wireless communication system comprising the wireless base station that wirelessly communicates with the plurality of wireless terminal devices. The wireless base station is configured to execute a process for determining, for each of the plurality of wireless terminal devices, an upper-limit value representing the number of times that wireless frames having high priority can be transmitted, and issuing notification of the upper-limit value. The plurality of wireless terminal devices are configured to execute a process for transmitting wireless frames having high priority until the upper-limit value is reached, and furthermore counting the number of instances of transmission.

Description

無線通信システム、無線端末装置、無線基地局、コントローラ、および無線通信方法Wireless communication system, wireless terminal device, wireless base station, controller, and wireless communication method
 本開示は、無線通信のフレーム制御に係る、無線通信システム、無線端末装置、無線基地局、コントローラ、および無線通信方法に関する。 The present disclosure relates to a wireless communication system, a wireless terminal device, a wireless base station, a controller, and a wireless communication method related to frame control of wireless communication.
 スマートフォン等、無線を活用してインターネットに接続する端末台数は、近年増加傾向にある。さらには、アプリケーション等の利用も増加している。その結果、テキストメッセージ送信からAR/VRに至るまで、トラヒックの品質要件の多様化、ひいてはトラヒック優先度の多様化が進んでいる。 The number of devices such as smartphones that connect to the Internet wirelessly has been on the rise in recent years. Furthermore, the use of applications and the like is also increasing. As a result, from text messaging to AR/VR, traffic quality requirements, and thus traffic priorities, are becoming more diverse.
 無線LAN(Local Area Network)通信においては、標準的な規格である、IEEE 802.11が広く普及している。そこでは、CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)アルゴリズムを用いた無線アクセス制御が行われる。CSMA/CAは、複数の端末が同じ周波数チャネルを共有する場合に、端末自身がフレーム送信のタイミングを自立制御することで、他の端末と同時にフレームを送信するのを防ぐ仕組みである。 In wireless LAN (Local Area Network) communication, the standard IEEE 802.11 is widely used. There, wireless access control is performed using a CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) algorithm. CSMA/CA is a mechanism in which when multiple terminals share the same frequency channel, each terminal independently controls the frame transmission timing to prevent the terminals from transmitting frames at the same time as other terminals.
 非特許文献1では、CSMA/CAにおいて、トラヒック優先度に応じて、フレームにQoS Color(Quality of Service color、以下、高優先フレームと称する)と呼ばれる識別情報を実装する方法が開示されている。フレームが優先度に関する情報を備えることで、高優先のフレームの送信を試みた端末に対して優先的にチャネルへのアクセス権を与えることができる。その結果、トラヒックの要求品質を満たすための干渉制御を実施することができる。 Non-Patent Document 1 discloses a method of implementing identification information called QoS color (Quality of Service color, hereinafter referred to as high priority frame) in a frame according to traffic priority in CSMA/CA. By providing the frame with information regarding the priority, it is possible to give preferential access to the channel to a terminal that attempts to transmit a high-priority frame. As a result, interference control can be performed to satisfy the required quality of traffic.
 しかしながら、各々の端末が好きなだけ高優先フレーム送信を行うと、チャネルが高優先フレームで飽和し、低優先フレームの送信機会が確保されなくなるといった課題が生じる。加えて、チャネルが高優先フレームで飽和した場合には、全フレームの優先度が同じとなるため端末間の優先制御が実現できなくなるといった課題が生じる。 However, if each terminal transmits as many high-priority frames as it wants, a problem arises in that the channel becomes saturated with high-priority frames and opportunities to transmit low-priority frames are no longer secured. In addition, if the channel is saturated with high-priority frames, a problem arises in that priority control between terminals cannot be realized because all frames have the same priority.
 本開示は上述の課題を解決するため、無線通信においてチャネルが高優先フレームで飽和することなく、低優先フレームを送信する端末に送信機会を与えることができ、端末間における優先フレーム制御を実現することができる無線通信システムを提供することを第一の目的とする。 In order to solve the above-mentioned problems, the present disclosure can provide a transmission opportunity to a terminal that transmits a low-priority frame without saturating the channel with high-priority frames in wireless communication, and realizes priority frame control between terminals. The primary objective is to provide a wireless communication system that can
 更に、本開示は、無線通信においてチャネルが高優先フレームで飽和することなく、低優先フレームを送信する端末に送信機会を与えることができ、端末間における優先フレーム制御を実現することができる、無線端末装置を提供することを第二の目的とする。 Further, the present disclosure provides a wireless communication system that can provide a transmission opportunity to a terminal that transmits a low priority frame without saturating the channel with high priority frames in wireless communication, and can realize priority frame control between terminals. The second purpose is to provide a terminal device.
 更に、本開示は、無線通信においてチャネルが高優先フレームで飽和することなく、低優先フレームを送信する端末に送信機会を与えることができ、端末間における優先フレーム制御を実現することができる、無線基地局を提供することを第三の目的とする。 Further, the present disclosure provides a wireless communication system that can provide a transmission opportunity to a terminal that transmits a low priority frame without saturating the channel with high priority frames in wireless communication, and can realize priority frame control between terminals. The third purpose is to provide base stations.
 更に、本開示は、無線通信においてチャネルが高優先フレームで飽和することなく、低優先フレームを送信する端末に送信機会を与えることができ、端末間における優先フレーム制御を実現することができる、コントローラを提供することを第四の目的とする。 Further, the present disclosure provides a controller that can provide a transmission opportunity to a terminal that transmits a low priority frame without saturating the channel with high priority frames in wireless communication, and can realize priority frame control between terminals. The fourth purpose is to provide
 更に、本開示は、無線通信においてチャネルが高優先フレームで飽和することなく、低優先フレームを送信する端末に送信機会を与えることができ、端末間における優先フレーム制御を実現することができる、無線通信方法を提供することを第五の目的とする。 Further, the present disclosure provides a wireless communication system that can provide a transmission opportunity to a terminal that transmits a low priority frame without saturating the channel with high priority frames in wireless communication, and can realize priority frame control between terminals. The fifth purpose is to provide a communication method.
 本開示の第一の態様は、無線フレームの優先度に応じて、複数の無線端末装置のうち、無線基地局と無線通信を
すべき無線端末装置に対し、優先的に無線フレームの送受信機会を与える無線通信システムであって、
 前記複数の無線端末装置と無線通信を行う前記無線基地局は、
 前記複数の無線端末装置のそれぞれに対して、前記無線端末装置が送信することのできる前記優先度の高い無線フレームの送信回数の上限値を決定する上限値決定処理と、
 前記複数の無線端末装置のそれぞれに対して、前記送信回数の上限値を通知する上限値通知処理と、
 を実行するように構成され、
 前記複数の無線端末装置は、前記送信回数の上限値に達するまで前記優先度の高い無線フレームを送信する処理と、
 前記優先度の高い無線フレームを送信した回数を数えるカウント処理と、
 を実行するように構成されることが好ましい。
A first aspect of the present disclosure provides an opportunity to transmit and receive a radio frame preferentially to a radio terminal device that should perform radio communication with a radio base station among a plurality of radio terminal devices according to the priority of the radio frame. A wireless communication system that provides
The wireless base station that performs wireless communication with the plurality of wireless terminal devices,
Upper limit determination processing for determining, for each of the plurality of wireless terminal devices, an upper limit value of the number of times the wireless frame with the high priority can be transmitted by the wireless terminal device;
upper limit notification processing for notifying each of the plurality of wireless terminal devices of the upper limit value of the number of transmissions;
is configured to run
The plurality of wireless terminal devices transmit the high-priority wireless frames until the upper limit of the number of transmissions is reached;
a counting process for counting the number of times the high-priority wireless frame is transmitted;
Preferably, the system is configured to perform the following steps.
 また、第二の態様は、優先度を示す識別情報を備えた無線フレームを用いて無線通信を行う無線端末装置であって、
 優先度の高い前記無線フレームを送信できる回数の上限値の情報を、他の無線局から受信する処理と、
 前記上限値に達するまで、前記優先度が高い前記無線フレームを送信する処理と、
 を実行するように構成されることが好ましい。
Further, a second aspect is a wireless terminal device that performs wireless communication using a wireless frame having identification information indicating priority,
a process of receiving information on an upper limit value of the number of times the radio frame with a high priority can be transmitted from another radio station;
a process of transmitting the radio frame with the high priority until the upper limit is reached;
Preferably, the system is configured to perform the following steps.
 また、第三の態様は、優先度を示す識別情報を備えた無線フレームを用いて複数の無線端末装置と無線通信を行う無線基地局であって、
 前記複数の無線端末装置のそれぞれに対して、前記無線端末装置が送信することのできる優先度の高い無線フレームの送信回数の上限値を決定し通知する上限値決定処理、
 もしくは、
 前記複数の無線端末装置のそれぞれに対して、前記無線端末装置が受信することのできる優先度の高い無線フレームの受信回数の上限値を決定する第二上限値決定処理の、
 少なくとも一方を実行し、
 前記第二上限値決定処理を実行した場合には、前記複数の無線端末装置の各々に対して、前記第二上限値決定処理で決定された各々の前記受信回数の上限値に達するまで、前記優先度の高い無線フレームを送信する処理をさらに実行するように構成されることが好ましい。
Further, a third aspect is a wireless base station that performs wireless communication with a plurality of wireless terminal devices using a wireless frame having identification information indicating priority,
Upper limit value determination processing for determining and notifying, to each of the plurality of wireless terminal devices, an upper limit value for the number of times the wireless frame with a high priority can be transmitted by the wireless terminal device;
or,
a second upper limit value determination process for determining, for each of the plurality of wireless terminal devices, an upper limit value of the number of times the wireless frame with high priority can be received by the wireless terminal device;
do at least one,
When the second upper limit value determination process is executed, for each of the plurality of wireless terminal devices, the number of reception times reaches the upper limit value determined in the second upper limit value determination process. Preferably, the wireless communication device is configured to further execute processing for transmitting a radio frame with a high priority.
 また、第四の態様は、優先度を示す識別情報を備えた無線フレームを用いて複数の無線端末装置と無線通信を行う無線基地局の制御を行うコントローラであって、
 前記複数の無線端末装置のそれぞれが送信または受信することのできる優先度の高い無線フレームの送受信回数の上限値、または前記複数の無線端末装置の各々における前記送受信回数の上限値の総和、の少なくとも一方を決定し、前記無線基地局に対して通知する
処理を実行するように構成されることが好ましい。
Further, a fourth aspect is a controller that controls a wireless base station that performs wireless communication with a plurality of wireless terminal devices using a wireless frame having identification information indicating priority,
at least an upper limit value of the number of times of transmission and reception of high-priority radio frames that each of the plurality of wireless terminal devices can transmit or receive, or a sum of the upper limit value of the number of times of transmission and reception in each of the plurality of wireless terminal devices; Preferably, the wireless base station is configured to determine one of the two and to notify the wireless base station.
 また、第五の態様は、無線フレームの優先度に応じて、複数の無線端末装置のうち、無線基地局と無線通信をすべき無線端末装置に対し、優先的に無線フレームの送受信機会を与える無線通信方法であって、
 前記複数の無線端末装置と無線通信を行う前記無線基地局は、
 前記複数の無線端末装置のそれぞれに対して、前記無線端末装置が送信することのできる優先度の高い無線フレームの送信回数の上限値を決定する処理と、
 前記複数の無線端末装置のそれぞれに対して、前記送信回数の上限値を通知する処理と、
 を実行し、
 前記複数の無線端末装置は、前記送信回数の上限値に達するまで前記優先度の高い無線フレームを送信する処理と、
 前記優先度の高い無線フレームを送信した回数を数える処理と、
 を実行することが好ましい。
Furthermore, the fifth aspect is to give a wireless frame transmitting/receiving opportunity preferentially to a wireless terminal device that should wirelessly communicate with a wireless base station among the plurality of wireless terminal devices according to the priority of the wireless frame. A wireless communication method,
The wireless base station that performs wireless communication with the plurality of wireless terminal devices,
a process of determining, for each of the plurality of wireless terminal devices, an upper limit value for the number of times the wireless frame with a high priority can be transmitted by the wireless terminal device;
a process of notifying each of the plurality of wireless terminal devices of the upper limit value of the number of times of transmission;
Run
The plurality of wireless terminal devices transmit the high-priority wireless frames until the upper limit of the number of transmissions is reached;
a process of counting the number of times the high-priority radio frame has been transmitted;
It is preferable to carry out.
 本開示の第一から第五の態様によれば、無線通信においてチャネルが高優先フレームで飽和することなく、低優先フレームを送信する端末に送信機会を与えることができ、端末間における優先フレーム制御を実現することができる、無線通信システム、無線端末装置、無線基地局、コントローラ、および無線通信方法を提供することが可能となる。 According to the first to fifth aspects of the present disclosure, it is possible to give a transmission opportunity to a terminal that transmits a low-priority frame without saturating a channel with high-priority frames in wireless communication, and to control priority frames between terminals. It becomes possible to provide a wireless communication system, a wireless terminal device, a wireless base station, a controller, and a wireless communication method that can realize the following.
比較例に係る、従来の無線通信システムの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a conventional wireless communication system according to a comparative example. 比較例に係る、従来の無線通信システムにおける無線通信シーケンスの例である。2 is an example of a wireless communication sequence in a conventional wireless communication system according to a comparative example. 本開示の実施の形態1に係る、無線通信システムの構成を示す図である。1 is a diagram showing a configuration of a wireless communication system according to Embodiment 1 of the present disclosure. 端末および基地局の機能構成例を示すブロック図である。FIG. 2 is a block diagram showing an example of the functional configuration of a terminal and a base station. 無線信号送信時における基地局のMAC部の詳細な機能構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a detailed functional configuration example of a MAC section of a base station when transmitting a wireless signal. 無線信号受信時における基地局のMAC部の詳細な機能構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a detailed functional configuration example of a MAC section of a base station when receiving a wireless signal. 無線信号送信時における端末のMAC部の詳細な機能構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a detailed functional configuration example of a MAC section of a terminal when transmitting a wireless signal. 無線信号受信時における端末のMAC部の詳細な機能構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a detailed functional configuration example of a MAC section of a terminal when receiving a wireless signal. 基地局のPHY送信部の詳細な機能構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a detailed functional configuration example of a PHY transmitter of a base station. 基地局のPHY受信部の詳細な機能構成例を示すブロック図である。FIG. 2 is a block diagram showing a detailed functional configuration example of a PHY receiving section of a base station. 本開示の実施の形態1に係る、基地局が配下の端末にカウンタの上限値を通知する処理のフローチャートである。2 is a flowchart of a process in which a base station notifies terminals under its control of an upper limit value of a counter according to Embodiment 1 of the present disclosure. 本開示の実施の形態1に係る、端末が高優先フレーム送信時に行う処理のフローチャートである。2 is a flowchart of processing performed by a terminal when transmitting a high-priority frame according to Embodiment 1 of the present disclosure. 本開示の実施の形態1に係る、無線通信システムにおける無線通信シーケンスの例である。1 is an example of a wireless communication sequence in a wireless communication system according to Embodiment 1 of the present disclosure. 本開示の実施の形態2に係る、無線通信システムの構成を示す図である。FIG. 2 is a diagram showing the configuration of a wireless communication system according to Embodiment 2 of the present disclosure. 本開示の実施の形態2に係る、コントローラ、基地局、および端末の機能構成例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a functional configuration of a controller, a base station, and a terminal according to Embodiment 2 of the present disclosure. 本開示の実施の形態2に係る、コントローラから基地局に対し、BSS総和値を通知する処理のフローチャートである。12 is a flowchart of a process for notifying a BSS total value from a controller to a base station according to Embodiment 2 of the present disclosure. 本開示の実施の形態2に係る、コントローラからBSS総和値を通知された基地局が、その情報をもとに配下の端末に対してカウンタの上限値を通知する処理のフローチャートである。11 is a flowchart of a process in which a base station, which has been notified of a BSS total value from a controller, notifies terminals under its control of an upper limit value of a counter based on that information, according to Embodiment 2 of the present disclosure.
比較例
 ここではまず、比較例として従来技術について説明する。図1は比較例に係る、従来の無線通信システムの構成例を示す図である。従来の無線通信システム100は、複数の無線端末装置(以下、端末と称する)110(1)、110(2)、110(3)を備える。
Comparative Example First, a conventional technique will be described as a comparative example. FIG. 1 is a diagram showing a configuration example of a conventional wireless communication system according to a comparative example. A conventional wireless communication system 100 includes a plurality of wireless terminal devices (hereinafter referred to as terminals) 110(1), 110(2), and 110(3).
 端末110は、IEEE 802.11規格に基づき、無線基地局120と無線通信を行う。端末110は、たとえばスマートフォン等などの汎用の端末である。もしくは、工場等に設置され、機械の監視制御を行うなど、専用の用途で使用される端末であってもよい。 The terminal 110 performs wireless communication with the wireless base station 120 based on the IEEE 802.11 standard. The terminal 110 is a general-purpose terminal such as a smartphone. Alternatively, it may be a terminal installed in a factory or the like and used for a special purpose such as monitoring and controlling machines.
 無線基地局(以下、基地局と称する)120は、端末110からの無線電波を受信してコアネットワークに接続する、もしくは反対に、コアネットワークからの信号を無線電波に変換して端末110に送信する無線基地局である。なお、適用する無線通信システムがWi-Fi(登録商標)である場合、基地局120はアクセスポイントに対応する。 A radio base station (hereinafter referred to as a base station) 120 receives radio waves from the terminal 110 and connects to the core network, or conversely, converts signals from the core network into radio waves and transmits them to the terminal 110. It is a wireless base station. Note that when the applied wireless communication system is Wi-Fi (registered trademark), the base station 120 corresponds to an access point.
 図2は、比較例に係る、従来の無線通信システムにおける無線通信シーケンスの例である。 FIG. 2 is an example of a wireless communication sequence in a conventional wireless communication system according to a comparative example.
 複数の端末110(1)、110(2)、110(3)および基地局120はCSMA/CAアルゴリズムに基づき、各々がチャネルにアクセスしデータを送信する。 The plurality of terminals 110(1), 110(2), 110(3) and base station 120 each access a channel and transmit data based on the CSMA/CA algorithm.
 端末110が送信する無線フレームには、優先度がつけられている。図2の例においては、まず、端末110(1)が高優先フレーム103(1)を基地局120に送信する。基地局120は高優先フレーム103(1)を受信すると、データを正常に受信したという証としてACKフレーム104(1)を端末110(1)に返送する。 The radio frames transmitted by the terminal 110 are prioritized. In the example of FIG. 2, first, terminal 110(1) transmits high priority frame 103(1) to base station 120. Upon receiving the high priority frame 103(1), the base station 120 returns an ACK frame 104(1) to the terminal 110(1) as proof that the data has been received normally.
 他の端末110(2)および端末110(3)は、自分以外の端末がデータ通信を行っているのを検知すると、自身をビジー状態105に設定し、現在行われている通信が終わるまで待機する。 When the other terminals 110(2) and 110(3) detect that a terminal other than themselves is performing data communication, they set themselves to a busy state 105 and wait until the current communication ends. do.
 端末110(1)のデータ通信が終了すると、今度は、端末110(2)が高優先フレーム103(2)を送信する。基地局120はACKフレーム104(2)を端末110(2)に返す。その間、他の端末110(1)、110(3)はビジー状態105である。 When the data communication of terminal 110(1) ends, terminal 110(2) then transmits high priority frame 103(2). Base station 120 returns an ACK frame 104(2) to terminal 110(2). Meanwhile, other terminals 110(1), 110(3) are in a busy state 105.
 このように、従来技術においては、高優先フレーム103を送信した端末110が優先的にチャネルにアクセスし、基地局120にデータを送信する。ところが、各端末から高優先フレームが制限なく送信されるため、端末110(3)のように高優先でないフレームを送信しようとする端末は、ビジー状態105が続いたまま、自身のデータを送信することができない。 As described above, in the conventional technology, the terminal 110 that transmitted the high priority frame 103 accesses the channel preferentially and transmits data to the base station 120. However, since each terminal transmits high-priority frames without limit, terminals like terminal 110 (3) that try to transmit frames that are not high-priority transmit their own data while remaining in the busy state 105. I can't.
 以上説明したように、従来の無線通信システム100においては、低優先の無線フレームを送信しようとする端末に対して、送信の機会が与えられなかった。 As explained above, in the conventional wireless communication system 100, a terminal attempting to transmit a low-priority wireless frame is not given an opportunity to transmit.
 なお、図2の例では端末110から基地局120に向けてデータを送信するアップリンクの場合を説明した。しかしながら、基地局120から端末110に向けてデータを送信する、すなわちダウンリンクの場合であってもよい。 Note that in the example of FIG. 2, an uplink case in which data is transmitted from the terminal 110 to the base station 120 has been described. However, data may be transmitted from the base station 120 to the terminal 110, that is, in the case of downlink.
実施の形態1
 図3は本開示の実施の形態1に係る、無線通信システムの構成を示す図である。無線通信システム200は、比較例と同様に、複数の端末110、および基地局120を備える。また、本実施形態の無線通信システム200は、比較例と異なり、端末110にフレームカウンタ130(1)、130(2)、130(3)がそれぞれ設定されている。
Embodiment 1
FIG. 3 is a diagram showing the configuration of a wireless communication system according to Embodiment 1 of the present disclosure. The wireless communication system 200 includes a plurality of terminals 110 and a base station 120, similarly to the comparative example. Further, in the wireless communication system 200 of the present embodiment, frame counters 130(1), 130(2), and 130(3) are respectively set in the terminal 110, unlike the comparative example.
 フレームカウンタ(以下、カウンタと称する)130は、端末110が送信する高優先フレームの送信回数に関する処理を行う部分である。カウンタ130のカウント値が、上限に達するまで、各端末110は高優先フレーム103の送信を行う。上限値は、基地局120から配下の各端末110に対して設定される。例えば、図3の例では、端末110(1)、110(2)、110(3)のカウンタ130に対して、上限値a、b、cがそれぞれ設定される。 The frame counter (hereinafter referred to as a counter) 130 is a part that performs processing related to the number of times the terminal 110 transmits a high priority frame. Each terminal 110 transmits the high priority frame 103 until the count value of the counter 130 reaches the upper limit. The upper limit value is set from the base station 120 to each terminal 110 under its control. For example, in the example of FIG. 3, upper limit values a, b, and c are set for the counters 130 of terminals 110(1), 110(2), and 110(3), respectively.
 カウンタ130の上限値a、b、cは、その合計(a+b+c)が、所定値Aを超えないように設定されている。すなわち、以下の条件式を満たすように設定されている。
a+b+c≦A      (式1)
The upper limit values a, b, and c of the counter 130 are set so that the sum (a+b+c) does not exceed a predetermined value A. That is, the settings are made so that the following conditional expression is satisfied.
a+b+c≦A (Formula 1)
 このように、本実施形態の無線通信システム200では、各端末110が高優先フレーム103を送信できる回数が制限されている。 In this way, in the wireless communication system 200 of this embodiment, the number of times each terminal 110 can transmit the high priority frame 103 is limited.
 なお、カウンタ130の上限値は、単独のチャネルのみに設定してもよく、複数のチャネル、リンク、または周波数帯にまたがって設定してもよい。複数のチャネルやリンクにまたがって設定することで、単一リンクでは高優先フレーム103の送信回数が足りず、複数のチャネルや周波数帯も利用して送信を行う場合でも、公平にカウント値を増やすことができる。 Note that the upper limit value of the counter 130 may be set only for a single channel, or may be set across multiple channels, links, or frequency bands. By setting across multiple channels and links, the count value can be increased fairly even when the number of transmissions of the high priority frame 103 is insufficient on a single link and multiple channels and frequency bands are also used for transmission. be able to.
 図4は、端末および基地局の機能構成例を示すブロック図である。ただし、ここでは説明のため端末110は一個とするが、実際は複数を備えるものとする。 FIG. 4 is a block diagram showing an example of the functional configuration of a terminal and a base station. However, here, for the sake of explanation, it is assumed that there is one terminal 110, but in reality, a plurality of terminals 110 are provided.
 ここではまず、無線信号送信時における基地局120の機能について説明する。始めに、基地局120に上位層140からパケットが入力される。ここで、上位層140とは、OSI(Open Systems Interconnection)参照モデルにおいて定義された階層のうち、物理(Physical:PHY)層およびデータリンク層よりも上位の層を指す。上位層140は、例えばアプリケーション層である。 First, the functions of the base station 120 during wireless signal transmission will be described. First, a packet is input to the base station 120 from the upper layer 140. Here, the upper layer 140 refers to a layer higher than the physical (PHY) layer and the data link layer among the layers defined in the OSI (Open Systems Interconnection) reference model. The upper layer 140 is, for example, an application layer.
 上位層140から入力されるパケットに対して、基地局120はIEEE802.11のフレームフォーマットに基づき、物理層とデータリンク層のフレームに対して、情報の追加または削除等のフレーム処理を行う。なお、データリンク層は、LLC(Logical Link Control)副層とMAC(Media Access Control)副層をさらに含むが、基地局120は各々の副層に対して処理を行う。 For packets input from the upper layer 140, the base station 120 performs frame processing such as adding or deleting information to the physical layer and data link layer frames based on the IEEE802.11 frame format. Note that the data link layer further includes an LLC (Logical Link Control) sublayer and a MAC (Media Access Control) sublayer, and the base station 120 processes each sublayer.
 LLC部150は、上位層140とのインタフェースであり、上位層140から入力されたパケットに対してLLC層の処理を行う部分である。具体的には、パケットにDSAP(Destination Service Access Point)またはSSAP(Source Service Access Point)等のヘッダを付加してMAC部160に入力する処理を行う。 The LLC unit 150 is an interface with the upper layer 140, and is a part that performs LLC layer processing on packets input from the upper layer 140. Specifically, a process is performed in which a header such as DSAP (Destination Service Access Point) or SSAP (Source Service Access Point) is added to the packet and the packet is input to the MAC unit 160.
 MAC部160は、MAC層の処理を行う部分である。MAC部160は、LLC部150から入力されたパケットに対し、送信先アドレス、送信元アドレス、シーケンス番号、データの優先度を表すトラヒック種別(Traffic Identifier、TID)、および誤り検出符号等を含むMACヘッダを付与する。 The MAC unit 160 is a part that performs MAC layer processing. The MAC unit 160 sends a MAC address to the packet input from the LLC unit 150, including a destination address, a source address, a sequence number, a traffic type (Traffic Identifier, TID) indicating data priority, an error detection code, etc. Add header.
 また、MAC部160内に含まれる上限値決定部163は、端末110へのカウンタ130の上限値の通知時には、パケットのMACフレームに上限値の情報を実装する処理を行う。 Furthermore, when notifying the terminal 110 of the upper limit value of the counter 130, the upper limit value determination unit 163 included in the MAC unit 160 performs processing to implement upper limit information in the MAC frame of the packet.
 また、MAC部160は、PHY受信部180から入力される受信電力に基づいてCSMA/CAアルゴリズムに基づくキャリアセンスを行ってフレーム送信の可否を判定する。送信可能である場合は、MACフレームに入力したデータをPHY送信部170に出力する。 Furthermore, the MAC section 160 performs carrier sensing based on the CSMA/CA algorithm based on the received power input from the PHY receiving section 180 to determine whether frame transmission is possible. If transmission is possible, the data input into the MAC frame is output to the PHY transmitter 170.
 PHY送信部170は、PHY層の処理を行う部分である。MAC部160からフレームが入力された場合、これにPHYヘッダ、プリアンブル等を付加した無線信号を生成する。プリアンブルには通信先の基地局120の識別情報であるBSS(Basic Service Set) color、およびフレーム優先度の識別情報であるQoS color等が含まれる。 The PHY transmitter 170 is a part that performs PHY layer processing. When a frame is input from the MAC unit 160, a wireless signal is generated by adding a PHY header, a preamble, etc. to the frame. The preamble includes a BSS (Basic Service Set) color, which is identification information of the base station 120 as the communication destination, a QoS color, which is identification information of frame priority, and the like.
 PHY送信部170において生成された無線信号は、アンテナ190から送信され、端末110に送られる。 The radio signal generated in the PHY transmitter 170 is transmitted from the antenna 190 and sent to the terminal 110.
 このように、基地局120は、上位層140から入力されたデータに対して、LLC部150、MAC部160、PHY送信部170によるフレーム処理を行い、端末110に向けた無線信号を生成する。 In this way, the base station 120 performs frame processing on the data input from the upper layer 140 by the LLC section 150, the MAC section 160, and the PHY transmitting section 170, and generates a wireless signal directed to the terminal 110.
 つぎに、無線信号受信時において、基地局120は自身のアンテナ190を介して無線信号を受信する。PHY受信部180は、受信した無線信号に対して、PHYヘッダ、プリアンブル等の復調を行う。 Next, when receiving a wireless signal, the base station 120 receives the wireless signal via its own antenna 190. The PHY receiving unit 180 demodulates the PHY header, preamble, etc. of the received radio signal.
 MAC部160は、PHY受信部180からパケットが入力された場合はMACヘッダを復調し、自局宛てのデータであった場合はLLC部150に入力する等の処理を行う。 The MAC unit 160 performs processing such as demodulating the MAC header when a packet is input from the PHY receiving unit 180, and inputting it to the LLC unit 150 when the data is addressed to its own station.
 LLC部150は、MAC部160からパケットが入力された場合は、上述のヘッダの削除を行ったうえで、上位層140に入力する。 When a packet is input from the MAC unit 160, the LLC unit 150 deletes the above-mentioned header and then inputs the packet to the upper layer 140.
 このように、基地局120は、自局宛ての無線信号を受信した場合に、PHY受信部180、MAC部160、LLC部150によるフレーム処理を行い、抽出したデータを上位層140に入力する。 In this way, when the base station 120 receives a wireless signal addressed to itself, the PHY receiving section 180, MAC section 160, and LLC section 150 perform frame processing, and input the extracted data to the upper layer 140.
 一方、端末110は、基地局120と同様に、LLC部250、MAC部260、PHY送信部270、およびPHY受信部280、およびアンテナ290を備える。なお、LLC部250、PHY送信部270、PHY受信部280、およびアンテナ290の機能については上述の基地局120の場合と同様であるため、説明は省略する。 On the other hand, like the base station 120, the terminal 110 includes an LLC section 250, a MAC section 260, a PHY transmitting section 270, a PHY receiving section 280, and an antenna 290. Note that the functions of the LLC section 250, PHY transmitting section 270, PHY receiving section 280, and antenna 290 are the same as those of the base station 120 described above, so the description thereof will be omitted.
 一方、端末110のMAC部260は、高優先フレーム103送信時には、高優先フレーム103の送信情報、またはCCA(Channel Clear Assesment)閾値情報に基づき、カウンタ130のカウントを増やす処理を行う。 On the other hand, when transmitting the high priority frame 103, the MAC unit 260 of the terminal 110 performs processing to increase the count of the counter 130 based on the transmission information of the high priority frame 103 or CCA (Channel Clear Assessment) threshold information.
 以上、図4を用いて説明したように、基地局120は、各端末が送信することのできる高優先フレーム103の送信回数の上限値の情報を、MACフレームに実装して各端末110に通知する。また、端末110が基地局120へ高優先フレーム103を送信する際には、端末のMAC部260内のカウンタ130において、カウントを増やす処理が実施される。 As described above using FIG. 4, the base station 120 implements information on the upper limit of the number of transmissions of the high priority frame 103 that each terminal can transmit in a MAC frame, and notifies each terminal 110 of the information. do. Furthermore, when the terminal 110 transmits the high-priority frame 103 to the base station 120, the counter 130 in the MAC unit 260 of the terminal performs a process of increasing the count.
 ここで、図4においては、説明のためにPHY層における処理機能を送信時と受信時とに分け、それぞれPHY送信部170とPHY受信部180として分離して示した。しかしながら、これらは本来一つのPHY層の処理部において行われる機能である。基地局120および端末110において、異なる機能を有するPHY層の処理部が複数あるわけではないことに留意されたい。 Here, in FIG. 4, for the sake of explanation, the processing functions in the PHY layer are divided into transmission and reception, and are shown separately as a PHY transmitter 170 and a PHY receiver 180, respectively. However, these functions are originally performed in the processing section of one PHY layer. It should be noted that base station 120 and terminal 110 do not have multiple PHY layer processing units with different functions.
 図5は、無線信号送信時における基地局のMAC部の詳細な機能構成例を示すブロック図である。 FIG. 5 is a block diagram illustrating a detailed functional configuration example of the MAC unit of the base station during wireless signal transmission.
 データ処理部161はLLC部150からパケットが入力された後、パケットに送信先アドレス、またはデータの優先度を表すTID等の情報が記されたMACヘッダの付与を行う。さらに、MACヘッダを付与したデータをMACフレーム処理部162に出力する。 After a packet is input from the LLC unit 150, the data processing unit 161 adds a MAC header in which information such as a destination address or TID indicating the priority of data is written to the packet. Furthermore, the data with the MAC header added is output to the MAC frame processing unit 162.
 MACフレーム処理部162は、CSMA/CAアルゴリズムに基づきランダム時間にわたってキャリアセンスを行い、PHY受信部180が受信した受信電力等、チャネル状態に関する通知をうける。CCA閾値との比較によりチャネルがidle状態であると認められる場合は、データ処理部161から入力されたデータをPHY送信部170に出力する。 The MAC frame processing unit 162 performs carrier sensing over a random period of time based on the CSMA/CA algorithm, and receives notifications regarding channel conditions such as received power received by the PHY receiving unit 180. If the channel is found to be in an idle state by comparison with the CCA threshold, the data input from the data processing section 161 is output to the PHY transmission section 170.
 なお、さらし端末問題への対処および高優先フレーム103の低遅延性確保のため、キャリアセンス時に受信した無線信号のフレームに含まれるBSS color及びQoS colorの値の組み合わせに応じて、CCA閾値を決定してもよい。 In addition, in order to deal with the exposed terminal problem and ensure low delay of the high-priority frame 103, the CCA threshold is determined according to the combination of BSS color and QoS color values included in the frame of the radio signal received during carrier sensing. You may.
 上限値決定部163は、配下の端末110のそれぞれに対してカウンタ130の上限値を決定し、その情報をMACフレームに実装する。 The upper limit value determination unit 163 determines the upper limit value of the counter 130 for each of the terminals 110 under its control, and implements the information in the MAC frame.
 カウンタ130の上限値の決定においては、各々の端末110の負荷データレート等、各端末110の通信負荷に応じて決定する。これにより、それぞれの端末110に対し、高優先フレーム103を送信する機会をより公平に分配することができる。 The upper limit value of the counter 130 is determined according to the communication load of each terminal 110, such as the load data rate of each terminal 110. Thereby, the opportunity to transmit the high priority frame 103 can be distributed more fairly to each terminal 110.
 あるいは、端末の優先度に応じて少なくとも一つの端末に対してはより多く高優先フレーム103を送信できるように、上限値に偏りを持たせることもできる。さらには、配下の端末110の数の変動、通信環境の変動、通信リソースの増減に応じて、カウンタ130の上限値を決定することができる。 Alternatively, the upper limit value can be biased so that more high-priority frames 103 can be transmitted to at least one terminal depending on the priority of the terminal. Furthermore, the upper limit value of the counter 130 can be determined according to changes in the number of subordinate terminals 110, changes in the communication environment, and increases and decreases in communication resources.
 なお、カウンタ130の上限値は、上述の決定方法のいずれにおいても、上記の(式1)を満たすように決定される。 Note that the upper limit value of the counter 130 is determined to satisfy the above (Formula 1) in any of the above-described determination methods.
 以上説明したように、基地局120はMAC部160内の上限値決定部163において、各々の端末110に対するカウンタ130の上限値の決定を行う。これにより、高優先フレーム103の送信回数の公平性を制御することができる。 As explained above, the base station 120 determines the upper limit value of the counter 130 for each terminal 110 in the upper limit value determining section 163 in the MAC section 160. This makes it possible to control the fairness of the number of times the high priority frame 103 is transmitted.
 図6は、無線信号受信時における基地局のMAC部の詳細な機能構成例を示すブロック図である。 FIG. 6 is a block diagram showing a detailed functional configuration example of the MAC section of the base station when receiving a wireless signal.
 始めに、PHY受信部180において自BSS宛てのフレームが検出され、PHY受信部180からMACフレームが入力される。すると、MACフレーム処理部162は、MACヘッダを復調する。さらに、復調したデータをデータ処理部161へ出力する。 First, a frame addressed to the own BSS is detected in the PHY receiving unit 180, and a MAC frame is input from the PHY receiving unit 180. Then, the MAC frame processing unit 162 demodulates the MAC header. Further, the demodulated data is output to the data processing section 161.
 データ処理部161は、入力されたデータのMACヘッダを参照してデータを取り出し、これをLLC部150へ入力する。 The data processing unit 161 refers to the MAC header of the input data, extracts the data, and inputs it to the LLC unit 150.
 このように、基地局120のMAC部160は、無線信号受信時にMAC層の処理を行い、MACヘッダに含まれる送信先アドレスが自局を示す場合、パケットをLLC部150に受け渡す。 In this way, the MAC unit 160 of the base station 120 performs MAC layer processing when receiving a wireless signal, and passes the packet to the LLC unit 150 if the destination address included in the MAC header indicates the own station.
 図7は、無線信号送信時における端末のMAC部の詳細な機能構成例を示すブロック図である。基地局120の場合と同様に、MAC部260は、データ処理部261、MACフレーム処理部262を備える。無線信号送信時におけるこれらの機能については基地局120の場合と同様であるので、説明は省略する。 FIG. 7 is a block diagram illustrating a detailed functional configuration example of the MAC unit of the terminal during wireless signal transmission. As in the case of the base station 120, the MAC section 260 includes a data processing section 261 and a MAC frame processing section 262. These functions at the time of wireless signal transmission are the same as those of the base station 120, so a description thereof will be omitted.
 一方、端末110のMAC部260は、基地局120とは異なり、カウンタ130を備える。 On the other hand, unlike the base station 120, the MAC unit 260 of the terminal 110 includes a counter 130.
 カウンタ130は、キャリアセンス時にMACフレーム処理部262が使用した高優先フレーム103の送信情報、もしくはチャネル状態の判定に用いたCCA閾値の選択情報等をもとに高優先フレーム103をカウントする。 The counter 130 counts the high-priority frames 103 based on the transmission information of the high-priority frames 103 used by the MAC frame processing unit 262 during carrier sensing, or the selection information of the CCA threshold used for determining the channel state.
 カウンタ130におけるカウント方法については、例えば、高優先フレーム103を送信するたびにカウント値を1増やすようにカウントする。あるいは、端末110が高優先フレーム103を送信するために実施した通信制御方法に応じて、カウント数の重みづけを行う。なお、通信制御方法とは、送信電力、CCA閾値、MCS(Modulation and Coding Scheme)値、フレーム再送数などを用いた高優先フレーム103の送信制御方法である。 Regarding the counting method in the counter 130, for example, the count value is increased by 1 each time the high priority frame 103 is transmitted. Alternatively, the count number is weighted according to the communication control method implemented by the terminal 110 to transmit the high priority frame 103. Note that the communication control method is a method of controlling the transmission of the high priority frame 103 using transmission power, a CCA threshold, an MCS (Modulation and Coding Scheme) value, the number of frame retransmissions, and the like.
 例えば、端末110が送信電力値を上げて高優先フレーム103を送信した場合は、基地局120において他の端末よりも受信され易くなることから、送信電力を上げずに送信した場合に比べて一度にカウントする値を大きくする。 For example, if the terminal 110 increases the transmission power value and transmits the high-priority frame 103, it will be more easily received by the base station 120 than other terminals. Increase the value counted.
 また、CCA閾値を上げて送信した場合は、チャネルがidle状態であると判定しやすくした上で、送信機会を得たことから、CCA閾値を上げずに送信した場合に比べて一度にカウントする値を大きくする。 Also, when transmitting with a raised CCA threshold, it is easier to determine that the channel is in an idle state, and since the opportunity to transmit has been obtained, the count is counted at once compared to when transmitting without raising the CCA threshold. Increase the value.
 同様に、MSC値を下げてフレームを送った場合も、送信時間を長くしチャネルを占有する時間を長くして他の端末110の送信機会を減らしたことから、MCS値を下げずに送信した場合に比べて一度にカウントする値を大きくする。あるいは、MCS値の逆数や、MCS値の逆数を定数倍したものをカウント数に乗算する等の処理を行う。 Similarly, when transmitting a frame with a lowered MSC value, the transmission time is lengthened and the time to occupy the channel is lengthened to reduce transmission opportunities for other terminals 110, so the frame can be transmitted without lowering the MCS value. Increase the value to be counted at one time compared to the case. Alternatively, processing such as multiplying the count number by the reciprocal of the MCS value or the reciprocal of the MCS value multiplied by a constant is performed.
 このように、端末110が高優先フレーム103を送信するために実施した通信制御方法に応じて、カウント数に重みづけを行うことで、各端末110間においてより公平性の高い送信機会制御を行うことができる。 In this way, by weighting the count number according to the communication control method implemented by the terminal 110 to transmit the high-priority frame 103, more fair transmission opportunity control is performed between the terminals 110. be able to.
 図8は、無線信号受信時における端末のMAC部の詳細な機能構成例を示すブロック図である。基地局120の場合と同様に、MAC部260は、データ処理部261、MACフレーム処理部262を備える。無線信号受信時におけるこれらの機能については基地局120の場合と同様であるので説明は省略する。 FIG. 8 is a block diagram showing a detailed functional configuration example of the MAC section of the terminal when receiving a wireless signal. As in the case of the base station 120, the MAC section 260 includes a data processing section 261 and a MAC frame processing section 262. These functions when receiving a radio signal are the same as those of the base station 120, so a description thereof will be omitted.
 図9は、基地局のPHY送信部の詳細な機能構成例を示すブロック図である。 FIG. 9 is a block diagram showing a detailed functional configuration example of the PHY transmitter of the base station.
 始めに、MAC部160においてキャリアセンスが実施され、チャネルがidle状態と判定されたことによりフレーム送信権が獲得されると、MAC部160からPHY送信部170にMACフレームが入力される。 First, carrier sensing is performed in the MAC unit 160, and when a frame transmission right is acquired by determining that the channel is in an idle state, a MAC frame is input from the MAC unit 160 to the PHY transmitting unit 170.
 PHYヘッダ処理部171は、MAC部160からMACフレームを受け取る。PHYヘッダ処理部171は、MACフレームにBSS color及びQoS colorなどの情報を含むPHYヘッダ、プリアンブル等を付与したフレームを生成する。ここで、QoS colorの付与においては、MACヘッダのTID情報等を参考にしてもよい。 The PHY header processing unit 171 receives the MAC frame from the MAC unit 160. The PHY header processing unit 171 generates a frame in which a PHY header including information such as BSS color and QoS color, a preamble, etc. are added to the MAC frame. Here, in assigning the QoS color, the TID information of the MAC header or the like may be referred to.
 無線信号処理部172では、PHYヘッダ処理部171から入力されたフレームを無線信号へ変換する。そこでは、符号化173、デインタリーバ174、変調175、逆高速フーリエ変換(IFFT;Inverse Fast Fourier Transform)176、OFDM(Orthogonal Frequency Division Multiplexing)変調177、及び周波数変換178等の信号処理が順々に行われる。その後、変換された無線信号について、アンテナ190から無線フレーム送信を実施する。 The wireless signal processing unit 172 converts the frame input from the PHY header processing unit 171 into a wireless signal. There, encoding 173, deinterleaver 174, modulation 175, Inverse Fast Fourier Transform (IFFT) 176, OFDM (Orthogonal Frequency Division Multiply) signal processing such as exing) modulation 177 and frequency conversion 178 in sequence. It will be done. Thereafter, radio frame transmission is performed from the antenna 190 regarding the converted radio signal.
 このように、基地局120のPHY送信部170は、上位層から入力されたフレームにさらに情報の追加を行い、無線信号に変換することで端末110へ送信することができる。 In this way, the PHY transmitter 170 of the base station 120 can add information to the frame input from the upper layer, convert it into a wireless signal, and transmit it to the terminal 110.
 なお、端末110のPHY送信部270の機能構成例についても、図9の基地局120の場合と共通であるので、説明は省略する。 Note that the functional configuration example of the PHY transmitter 270 of the terminal 110 is also the same as that of the base station 120 in FIG. 9, so the description thereof will be omitted.
 図10は、基地局のPHY受信部の詳細な機能構成例を示すブロック図である。なお、ここで説明する機能は、フレーム受信時だけでなく、フレーム送信前のキャリアセンス時にも実施されるものである。 FIG. 10 is a block diagram showing a detailed functional configuration example of the PHY receiving section of the base station. Note that the functions described here are performed not only during frame reception but also during carrier sense before frame transmission.
 始めに、無線信号処理部182において、アンテナ190で受信された無線信号に対し、無線信号の復号化を行う。そこでは、送信時とは逆の手順の信号処理が行われる。すなわち、周波数変換188、OFDM変調187、高速フーリエ変換(FFT;Fast Fourier Transform)186、復調185、デインタリーバ184、復号化183等を含む信号処理が順々に行われる。その後、得られたフレームをPHYヘッダ処理部181に出力する。 First, the radio signal processing unit 182 decodes the radio signal received by the antenna 190. There, signal processing is performed in the reverse order to that at the time of transmission. That is, signal processing including frequency conversion 188, OFDM modulation 187, fast Fourier transform (FFT) 186, demodulation 185, deinterleaver 184, decoding 183, etc. is performed in order. Thereafter, the obtained frame is output to the PHY header processing section 181.
 PHYヘッダ処理部181は、無線信号処理部182から無線フレームを受け取り、無線フレームのプリアンブルに含まれるBSS colorおよびQoS color等の情報を識別する。なお、PHYヘッダ処理部181にて識別したBSS color及びQoS colorの情報は、削除せずに、ペイロードとともにMAC部160に入力してもよい。 The PHY header processing unit 181 receives the radio frame from the radio signal processing unit 182, and identifies information such as BSS color and QoS color included in the preamble of the radio frame. Note that the information on the BSS color and QoS color identified by the PHY header processing unit 181 may be input to the MAC unit 160 together with the payload without being deleted.
 このように、基地局120のPHY受信部180は、他の無線基地局から送信された無線信号を復号化し、フレームに含まれる情報を抽出することができる。 In this way, the PHY receiving unit 180 of the base station 120 can decode the wireless signal transmitted from another wireless base station and extract the information included in the frame.
 なお、端末110のPHY受信部280の機能構成例についても、基地局120の場合と共通であるので、説明は省略する。 Note that the functional configuration example of the PHY receiving unit 280 of the terminal 110 is also the same as that of the base station 120, so a description thereof will be omitted.
 図11は、本開示の実施の形態1に係る、基地局が配下の端末にカウンタの上限値を通知する処理のフローチャートである。 FIG. 11 is a flowchart of a process in which a base station notifies terminals under its control of the upper limit value of a counter, according to Embodiment 1 of the present disclosure.
 まず、基地局120が処理を開始する(ステップ210)。次に、一定時間が経過したか否かを判定する処理を行う(ステップ211)。一定時間が経過したと認められた場合、基地局120は配下の端末110のそれぞれに対してカウンタ130の上限値を決定する(ステップ212)。決定したカウンタ130の上限値の情報を、各端末に通知する(ステップ213)。その後、処理を終了する(ステップ214)。 First, the base station 120 starts processing (step 210). Next, a process is performed to determine whether a certain period of time has elapsed (step 211). If it is determined that a certain period of time has elapsed, the base station 120 determines the upper limit value of the counter 130 for each of the terminals 110 under its control (step 212). Information on the determined upper limit value of the counter 130 is notified to each terminal (step 213). Thereafter, the process ends (step 214).
 以上、フローチャートで説明したように、基地局120から配下の端末110への、カウンタ130上限値の通知は、一定時間の経過ごとに行われる。 As explained above using the flowchart, the base station 120 notifies the subordinate terminal 110 of the upper limit value of the counter 130 every predetermined period of time.
 ここで、カウンタ130上限値の通知に伴い、基地局120のMAC部160において、Fairness indexを用いて、配下の端末110間における上限値の公平度を定期的に評価してもよい。 Here, upon notification of the upper limit value of the counter 130, the MAC unit 160 of the base station 120 may periodically evaluate the fairness of the upper limit value between the terminals 110 under its control using the Fairness index.
 Fairness indexの算出は、各端末110における無線通信の通信品質を基準に行う。通信品質とは、例えば、端末110のそれぞれに割り振られたカウンタ130のカウント数、送信エアタイム、スループット、遅延時間、PER(Packet Error Rate)、MCS値、再送パケット回数、RSSI(Received Signal Strength Indicator)、SINR(Signal―to―Interference plus Noise power Ratio)等である。 The Fairness index is calculated based on the communication quality of wireless communication in each terminal 110. Communication quality includes, for example, the count number of the counter 130 allocated to each terminal 110, transmission air time, throughput, delay time, PER (Packet Error Rate), MCS value, number of retransmitted packets, and RSSI (Received Signal Strength Indicator). ), SINR (Signal-to-Interference plus Noise power Ratio), etc.
 例えば、送信エアタイムやスループット値を基準とする場合は、これらが平等となるような通信機会が各端末110に対して提供できているかを評価する。 For example, if transmission air time and throughput values are used as standards, it is evaluated whether communication opportunities are provided to each terminal 110 so that these values are equal.
 あるいは、RSSIを基準とする場合には、送信電力の制御度合に偏りがないかを評価する。 Alternatively, when using RSSI as a reference, it is evaluated whether there is any bias in the degree of control of transmission power.
 このように、基地局120のMAC部160において、Fairness indexの算出を定期的に行う。算出結果が許容値を超えている場合は、各々の端末110に割り振るカウンタ130の上限値、送信電力値、またはCCA閾値を変更することで公平性を制御する。 In this way, the MAC unit 160 of the base station 120 periodically calculates the Fairness index. If the calculation result exceeds the allowable value, fairness is controlled by changing the upper limit value of the counter 130, the transmission power value, or the CCA threshold value allocated to each terminal 110.
 なお、再び図11のフローチャートに戻ると、そこでは、上限値を再通知するためのトリガーが一定時間の経過である場合を説明した。しかしながら、例えば、Fairness indexを用いて、所望公平性が実現されないことが判明した時点をトリガーにしてもよい。 Note that returning to the flowchart of FIG. 11 again, the case where the trigger for re-notifying the upper limit value is the passage of a certain period of time has been described. However, for example, using the Fairness index, the time point when it is found that the desired fairness cannot be achieved may be used as a trigger.
 さらに、図11のトリガーについて、他の例としては、端末110が送信すべき高優先フレーム数に対して、割り当ての上限値が小さい場合に、端末110が基地局に対して行うカウント値の要求をトリガーにしてもよい。 Furthermore, regarding the trigger in FIG. 11, another example is a request for a count value that the terminal 110 makes to the base station when the upper limit of allocation is smaller than the number of high-priority frames that the terminal 110 should transmit. may be used as a trigger.
 図12は、本開示の実施の形態1に係る、端末が高優先フレーム送信時に行う処理のフローチャートである。まず、端末110が処理を開始する(ステップ220)。次に、端末110が上位層140からトラヒックを受け取る(ステップ221)。次に、トラヒックの優先度が高いか否かの判断を行う(ステップ222)。優先度が高いと判断されない場合は、低優先フレーム106としてフレーム送信を試みる(ステップ223)。 FIG. 12 is a flowchart of processing performed by a terminal when transmitting a high priority frame according to Embodiment 1 of the present disclosure. First, the terminal 110 starts processing (step 220). Next, the terminal 110 receives traffic from the upper layer 140 (step 221). Next, it is determined whether the traffic has a high priority (step 222). If the priority is not determined to be high, an attempt is made to transmit the frame as a low priority frame 106 (step 223).
 一方、ステップ222において優先度が高いと判断された場合は、カウンタ130を参照し、現在のカウント値が上限値未満であるかを判定する処理を行う(ステップ224)。上限値未満でない場合は、すでにカウント値が上限に達していることを意味する。そのため、低優先フレーム106としてフレーム送信を試みる(ステップ223)。一方、カウント値が上限値未満である場合は、カウンタ130のカウントを1追加し、高優先フレーム103としてフレーム送信を試みる(ステップ225)。最後に、処理を終了する(ステップ226)。 On the other hand, if it is determined in step 222 that the priority is high, the counter 130 is referred to and a process is performed to determine whether the current count value is less than the upper limit value (step 224). If it is not less than the upper limit, it means that the count value has already reached the upper limit. Therefore, frame transmission is attempted as the low priority frame 106 (step 223). On the other hand, if the count value is less than the upper limit, 1 is added to the count of the counter 130, and frame transmission is attempted as the high priority frame 103 (step 225). Finally, the process ends (step 226).
 このように、端末110は、一定時間内において、カウンタ130が上限に到達するまで高優先フレーム103を送信することができる。カウンタ130が上限値に達した以降は、高優先フレーム103としてではなく、通常の低優先フレーム106としてフレーム送信を行う。 In this way, the terminal 110 can transmit the high priority frame 103 within a certain period of time until the counter 130 reaches the upper limit. After the counter 130 reaches the upper limit value, the frame is transmitted not as a high priority frame 103 but as a normal low priority frame 106.
 なお、ステップ225では、高優先フレーム103を送信するたびにカウントを1増やす方法を説明した。しかしながら、カウントの方法は、図7で説明したように、端末110が高優先フレーム103を送信するために実施した通信制御方法に応じた重みづけを行ってもよい。 Note that in step 225, a method was described in which the count is increased by 1 each time the high priority frame 103 is transmitted. However, the counting method may be weighted according to the communication control method implemented by the terminal 110 to transmit the high priority frame 103, as described in FIG.
 なお、ステップ225において高優先フレーム103を送信しても、のちに失敗することもあり得る。ステップ225においては、失敗した場合も含めて、カウンタ130のカウント値を追加する方法を示したが、高優先フレーム103の送信に失敗した場合はカウント値を追加しなくともよい。 Note that even if the high priority frame 103 is transmitted in step 225, it may fail later. In step 225, the method of adding the count value of the counter 130 even in the case of failure is shown, but if the transmission of the high priority frame 103 fails, it is not necessary to add the count value.
 図13は、本開示の実施の形態1に係る、無線通信システムにおける無線通信シーケンスの例である。 FIG. 13 is an example of a wireless communication sequence in the wireless communication system according to Embodiment 1 of the present disclosure.
 端末110(1)、110(2)、110(3)のカウンタ130には、一定時間当たりの上限値a、b、cがそれぞれ設定されている。 The counters 130 of the terminals 110(1), 110(2), and 110(3) are set with upper limit values a, b, and c for a certain period of time, respectively.
 始めに、端末110(1)が高優先フレーム103(1)送信を行うが、それに伴い、カウンタ130(1)が、上限値aに達したとする。 First, it is assumed that the terminal 110(1) transmits the high priority frame 103(1), and as a result, the counter 130(1) reaches the upper limit value a.
 次に、端末110(1)の通信後、今度は端末110(2)も高優先フレーム103(2)を送信する。同様に、端末110(2)のカウンタ130(2)も上限値bに達したとする。 Next, after terminal 110(1) communicates, terminal 110(2) also transmits high priority frame 103(2). Similarly, it is assumed that the counter 130(2) of the terminal 110(2) has also reached the upper limit value b.
 このような場合、端末110(1)と端末110(2)は、一定時間が経過するまでは、これ以上高優先フレーム103を送信することができない。すると、それまでビジー状態105が続いていた端末110(3)に、低優先フレーム106を送信する機会が与えられる。 In such a case, terminal 110(1) and terminal 110(2) cannot transmit any more high-priority frames 103 until a certain period of time has elapsed. Then, the terminal 110(3), which had been in the busy state 105 until then, is given an opportunity to transmit the low priority frame 106.
 このように、本実施形態に係る無線通信システム200で実施される無線通信シーケンスにおいては、低優先フレーム106を送信する端末110に対しても送信機会が与えられる。 In this way, in the wireless communication sequence implemented in the wireless communication system 200 according to the present embodiment, the terminal 110 that transmits the low priority frame 106 is also given a transmission opportunity.
 以上説明したように、本開示の実施の形態1の無線通信システム200において、基地局120は自律して高優先フレーム103の送信機会制限による帯域制限を行う。また、各端末110の負荷データレートに応じた送信機会の分配を行う。その結果、チャネルが高優先フレーム103のみで飽和することを避けることができる。このようにして、本開示の実施の形態1においては、従来技術に比べてより公平なフレーム送信機会の分配が可能となる。 As described above, in the wireless communication system 200 according to the first embodiment of the present disclosure, the base station 120 autonomously performs band limitation by limiting the transmission opportunity of the high priority frame 103. Furthermore, transmission opportunities are distributed according to the load data rate of each terminal 110. As a result, it is possible to avoid saturation of the channel with only the high priority frame 103. In this way, in Embodiment 1 of the present disclosure, it is possible to distribute frame transmission opportunities more fairly than in the prior art.
[変形例]
 なお、本実施形態では、主に端末110から基地局120へ高優先フレーム103を送信するアップリンクの場合を説明した。しかしながら、本実施形態の無線通信システム200は、基地局120から端末110に向けて高優先フレーム103を送信する、ダウンリンクの場合にも適用可能である。
[Modified example]
In addition, in this embodiment, the case of the uplink in which the high priority frame 103 is mainly transmitted from the terminal 110 to the base station 120 has been described. However, the wireless communication system 200 of this embodiment is also applicable to the downlink case where the high priority frame 103 is transmitted from the base station 120 to the terminal 110.
 ダウンリンクの場合、基地局120は、配下の端末110それぞれが受信することのできる高優先フレーム103の受信回数の上限値を決定する。基地局120は、受信回数の上限値に達するまで、端末110に高優先フレーム103を送信することができる。なお、この点は以下の実施の形態2においても共通である。 In the case of downlink, the base station 120 determines the upper limit of the number of times the high priority frame 103 can be received by each terminal 110 under its control. The base station 120 can transmit the high priority frame 103 to the terminal 110 until the upper limit of the number of receptions is reached. Note that this point is also common to Embodiment 2 below.
 また、ダウンリンクの場合は、基地局120自身が、高優先フレーム103を送信した回数を数えるため、端末110にカウンタ130を備える必要がない。代わりに、基地局120のMAC部160は、図5で説明した機能構成例に加えて、配下の端末110それぞれについてのカウンタ130を備える。 Furthermore, in the case of downlink, the base station 120 itself counts the number of times the high priority frame 103 has been transmitted, so there is no need to provide the counter 130 in the terminal 110. Instead, the MAC unit 160 of the base station 120 includes a counter 130 for each of the terminals 110 under its control, in addition to the functional configuration example described in FIG.
 また、本実施形態では、基地局120が、各端末が送信することのできる高優先フレーム103の送信回数の上限値の情報を、MACフレームに実装することを図4および図5を用いて説明した。しかしながら、上限値の情報は必ずしもMACフレームに対して実装する必要はなく、他のフレームに実装してもよい。したがって、上限値決定部163の処理は、MAC部160内に限定されるものではない。なおこの点は以下の実施の形態2においても共通である。 Furthermore, in this embodiment, it will be explained with reference to FIGS. 4 and 5 that the base station 120 implements information on the upper limit of the number of transmissions of the high priority frame 103 that each terminal can transmit in the MAC frame. did. However, the upper limit information does not necessarily need to be implemented in the MAC frame, and may be implemented in other frames. Therefore, the processing of the upper limit determining section 163 is not limited to the MAC section 160. Note that this point is also common to Embodiment 2 below.
 同様に、図7において、端末110のMAC部260が、高優先フレーム103の送信情報、またはCCA閾値情報に基づき、カウンタ130のカウントを増やす方法を説明した。しかしながら、これらの情報を使用しない等の場合においては、カウンタ130の機能はMAC部260内の処理に限定されるものではない。 Similarly, in FIG. 7, a method has been described in which the MAC unit 260 of the terminal 110 increases the count of the counter 130 based on the transmission information of the high priority frame 103 or the CCA threshold information. However, in cases where such information is not used, the function of the counter 130 is not limited to the processing within the MAC unit 260.
 なお、本開示の基地局120、端末110が行う処理は、CPUとメモリを備え、メモリにプログラムを格納したコンピュータを用いて、プログラムで実行するようにしてもよい。もしくはFPGA(Field Programmable Gate Array)などの集積回路を用いて、プログラムで実行するようにしてもよい。尚、プログラムは、記憶媒体に記録して提供されてもよいし、ネットワークを通して提供されてもよい。なお、この点は、実施の形態2において説明するコントローラ310が行う処理においても同様である。 Note that the processing performed by the base station 120 and the terminal 110 of the present disclosure may be executed by a program using a computer equipped with a CPU and a memory and storing a program in the memory. Alternatively, the program may be executed using an integrated circuit such as an FPGA (Field Programmable Gate Array). Note that the program may be provided recorded on a storage medium or may be provided through a network. Note that this point also applies to the processing performed by the controller 310 described in the second embodiment.
[請求項で使用する用語との対応]
 本実施形態において説明した、基地局120による、配下の端末110それぞれが送信することのできる高優先フレーム103の送信回数の上限値を決定する処理を上限値決定処理と呼ぶ。上限値決定処理は、例えばステップ212の処理である。
[Correspondence with terms used in claims]
The process described in this embodiment, in which the base station 120 determines the upper limit of the number of transmissions of the high-priority frame 103 that can be transmitted by each of the terminals 110 under its control, is referred to as an upper limit determination process. The upper limit value determination process is, for example, the process of step 212.
 ダウンリンクの場合にも同様に、基地局120による、配下の端末110それぞれが受信することのできる高優先フレーム103の受信回数の上限値を決定する処理を第二上限値決定処理と呼ぶ。 Similarly, in the case of downlink, the process by which the base station 120 determines the upper limit of the number of times the high-priority frame 103 can be received by each of the terminals 110 under its control is called the second upper limit determination process.
 さらに、本実施形態において説明した、基地局120が配下の端末110それぞれに対して高優先フレーム103の送信回数の上限値を通知する処理を上限値通知処理と呼ぶ。上限値通知処理は、例えばステップ213の処理である。 Further, the process described in this embodiment in which the base station 120 notifies each of the terminals 110 under its control of the upper limit value of the number of times the high priority frame 103 is transmitted is referred to as an upper limit notification process. The upper limit value notification process is, for example, the process of step 213.
 さらに、端末110が高優先フレーム103を送信した回数を数える処理を、カウント処理と呼ぶ。 Further, the process of counting the number of times the terminal 110 transmits the high priority frame 103 is called a count process.
実施の形態2
 図14は本開示の実施の形態2に係る、無線通信システムの構成を示す図である。無線通信システム300は、コントローラ310、複数の端末110、および基地局120を備える。さらに、一つの基地局120とその配下にある複数の端末110から、BSS360が構成される。例えば、図14では、3台の基地局120(1)、120(2)、120(3)がそれぞれ配下の端末110を備え、3つのBSS(1)、BSS(2)、BSS(3)を構成する。ただし、ここでは基地局が3台ある場合を説明するが、台数は1以上あればよいとする。
Embodiment 2
FIG. 14 is a diagram showing the configuration of a wireless communication system according to Embodiment 2 of the present disclosure. Wireless communication system 300 includes a controller 310, a plurality of terminals 110, and a base station 120. Furthermore, a BSS 360 is configured from one base station 120 and a plurality of terminals 110 under its control. For example, in FIG. 14, three base stations 120(1), 120(2), and 120(3) each have a subordinate terminal 110, and three base stations 120(1), BSS(2), and BSS(3) Configure. However, although the case where there are three base stations will be described here, it is assumed that the number of base stations may be one or more.
 コントローラ310は、各基地局120に対して、基地局配下にある各端末110におけるカウンタ130の上限値の総和(以下、BSS総和値と称する)を通知する。例えば、図14の例では、コントローラ310は基地局120(1)、120(2)、130(3)に対して、BSS総和値A、B、Cをそれぞれ通知する。 The controller 310 notifies each base station 120 of the sum of the upper limit values of the counters 130 in each terminal 110 under the control of the base station (hereinafter referred to as the BSS sum value). For example, in the example of FIG. 14, the controller 310 notifies the base stations 120(1), 120(2), and 130(3) of the BSS total values A, B, and C, respectively.
 基地局120は、格納部330を備える。基地局120はコントローラ310から与えられた、BSS総和値の情報を、格納部330に格納する。さらに、格納したBSS総和値をもとに、配下の端末110の各々に対し、高優先フレーム103の送信回数を通知する。例えば、図14の例において、基地局120(1)は、自身の配下の端末110(1)、110(2)、110(3)のカウンタ130に対して上限値a、b、cをそれぞれ通知する。 The base station 120 includes a storage unit 330. The base station 120 stores information on the BSS total value given from the controller 310 in the storage unit 330. Further, based on the stored BSS total value, each subordinate terminal 110 is notified of the number of times the high priority frame 103 has been transmitted. For example, in the example of FIG. 14, base station 120(1) sets upper limit values a, b, and c for counters 130 of terminals 110(1), 110(2), and 110(3) under its control, respectively. Notice.
 なお、端末110(1)、110(2)、110(3)のカウンタ130の上限値a、b、cは、実施の形態1と同様、(式1)を満たすように決定される。ただし、ここでは所定値Aはカウンタ130の上限値の総和である。 Note that the upper limit values a, b, and c of the counters 130 of the terminals 110(1), 110(2), and 110(3) are determined to satisfy (Formula 1) as in the first embodiment. However, here, the predetermined value A is the sum of the upper limit values of the counter 130.
 このように、本実施形態の無線通信システム300では、基地局120を集約するコントローラ310が、基地局配下の端末110による高優先フレーム103の送信回数を制御する。これにより、BSS360ごとの制御が可能となる。 In this manner, in the wireless communication system 300 of the present embodiment, the controller 310 that aggregates the base stations 120 controls the number of times the high priority frame 103 is transmitted by the terminals 110 under the control of the base stations. This makes it possible to control each BSS 360.
 なお、実施の形態1と同様に、コントローラ310が決定する、BSS総和値は、単独のチャネルのみに設定してもよく、複数のチャネル、リンク、または周波数帯にまたがって決定してもよい。 Note that, similarly to Embodiment 1, the BSS total value determined by the controller 310 may be set only for a single channel, or may be determined across multiple channels, links, or frequency bands.
 図15は、本開示の実施の形態2に係る、コントローラ、基地局、および端末の機能構成例を示すブロック図である。なお、ここでは説明のため、機能構成例の最小単位としてそれぞれが1個のみである場合を記載しているが、実際には、1つのBSS360内において端末110は複数あるものとする。またコントローラ310が集約する基地局120も複数あってもよいとする。 FIG. 15 is a block diagram showing an example of the functional configuration of a controller, a base station, and a terminal according to Embodiment 2 of the present disclosure. Note that, for the sake of explanation, here, a case is described in which there is only one each as the minimum unit of the functional configuration example, but in reality, it is assumed that there are a plurality of terminals 110 within one BSS 360. It is also assumed that there may be a plurality of base stations 120 that are aggregated by the controller 310.
 コントローラ310は、BSS総和値を決定する。さらに、決定した情報をパケットに実装し、上位層140を通して基地局120に入力する。 The controller 310 determines the BSS summation value. Furthermore, the determined information is implemented in a packet and input to the base station 120 through the upper layer 140.
 なお、BSS総和値の決定においては、各々のBSS360内における端末110のデータレート等、端末110通信負荷に応じて決定する。これにより、それぞれのBSS360に対し、高優先フレーム103を送信する機会をより公平に分配することができる。 Note that the BSS total value is determined according to the data rate of the terminal 110 within each BSS 360 and the communication load of the terminal 110. Thereby, the opportunity to transmit the high priority frame 103 can be more fairly distributed to each BSS 360.
 あるいは、各々のBSS360内における端末110の優先度に応じて、少なくとも一つのBSS360に対してはより多く高優先フレーム103を送信できるように、BSS総和値に偏りを持たせることもできる。 Alternatively, the BSS total value can be biased so that more high-priority frames 103 can be transmitted to at least one BSS 360 according to the priority of the terminal 110 within each BSS 360.
 一方、図15において、基地局120のLLC部150には、コントローラ310からBSS総和値に関する情報が上位層140を介して入力される。 On the other hand, in FIG. 15, information regarding the BSS total value is input from the controller 310 to the LLC unit 150 of the base station 120 via the upper layer 140.
 また、MAC部160はコントローラ310から通知されたBSS総和値の情報を、格納部330に格納する。さらに、格納したBSS総和値をもとに、配下の端末110の各々に対して、カウンタ130の上限値を決定する。また、決定したカウンタ130の上限値の情報をMACフレームに実装する処理を行う。 Additionally, the MAC unit 160 stores information on the BSS total value notified from the controller 310 in the storage unit 330. Further, based on the stored BSS total value, the upper limit value of the counter 130 is determined for each of the subordinate terminals 110. Further, processing is performed to implement information on the determined upper limit value of the counter 130 into the MAC frame.
 なお、基地局120のPHY送信部170、PHY受信部180の機能は実施の形態1の図4と同様であるので説明は省略する。 Note that the functions of the PHY transmitting section 170 and the PHY receiving section 180 of the base station 120 are the same as those in FIG. 4 of Embodiment 1, so a description thereof will be omitted.
 一方、端末110の機能も実施の形態1と同様である。ただし、高優先フレーム103の送信時にMAC部260のカウンタ130においてカウントした値を、端末110からコントローラ310に直接通知してもよいとする。 On the other hand, the functions of the terminal 110 are also similar to those in the first embodiment. However, the value counted by the counter 130 of the MAC unit 260 at the time of transmitting the high priority frame 103 may be directly notified from the terminal 110 to the controller 310.
 なお、カウンタ130におけるカウント方法については、実施の形態1と同様に、例えば、高優先フレーム103を送信するたびにカウント値を1増やすようにカウントする。あるいは、端末110が高優先フレーム103を送信するために実施した通信制御方法、すなわち送信電力、CCA閾値、MCS値、フレーム再送数などを用いた制御方法に応じた、カウント数の重みづけを行ってもよい。 Note that the counting method in the counter 130 is the same as in the first embodiment, for example, the count value is incremented by 1 each time the high priority frame 103 is transmitted. Alternatively, the count number is weighted according to the communication control method performed by the terminal 110 to transmit the high-priority frame 103, that is, the control method using transmission power, CCA threshold, MCS value, number of frame retransmissions, etc. It's okay.
 以上図15を用いて説明したように、BSS総和値は、コントローラ310から基地局120に対して通知される。基地局120は、上位層140から入力されたBSS総和値の情報が実装されたパケットに対して、LLC部150、MAC部160、PHY送信部170によるフレーム処理を行い、無線信号を生成する。この無線信号を受け取った端末110は、自身に割り当てられたカウンタ130の上限値に基づき、これを超えない範囲で高優先フレーム103を送信することができる。 As described above using FIG. 15, the BSS total value is notified from the controller 310 to the base station 120. The base station 120 performs frame processing by the LLC section 150, the MAC section 160, and the PHY transmitting section 170 on the packet in which the information of the BSS total value inputted from the upper layer 140 is implemented, and generates a wireless signal. The terminal 110 that has received this wireless signal can transmit the high priority frame 103 within a range that does not exceed the upper limit value of the counter 130 assigned to itself.
 図16は、本開示の実施の形態2に係る、コントローラから基地局に対し、BSS総和値を通知する処理のフローチャートである。 FIG. 16 is a flowchart of a process for notifying a BSS total value from a controller to a base station according to Embodiment 2 of the present disclosure.
 まず、コントローラ310が、処理を開始する(ステップ340)。次に、一定時間が経過したか否かを判定する処理を行う(ステップ341)。一定時間が経過したと認められた場合、コントローラ310は、基地局120のそれぞれに対してBSS総和値を決定する(ステップ342)。さらに、BSS総和値を各基地局120に対して通知する(ステップ343)。その後、処理を終了する(ステップ344)。 First, the controller 310 starts processing (step 340). Next, a process is performed to determine whether a certain period of time has elapsed (step 341). If it is determined that a certain period of time has elapsed, controller 310 determines a BSS summation value for each base station 120 (step 342). Furthermore, the BSS total value is notified to each base station 120 (step 343). Thereafter, the process ends (step 344).
 このように、コントローラ310によるBSS総和値の通知は、実施の形態1と同様に、一定時間の経過ごとに行われる。それに伴い、コントローラ310において、各送信端末や各BSS360の送信エアタイム、RSSI、遅延時間、スループットやフレーム送信回数を基に算出した平均値等の通信品質に基づき、Fairness indexを算出し公平度の評価を行ってもよい。この点も実施の形態1と同様であるが、公平性の指標は、Fairness index以外であってもよい。 In this way, the notification of the BSS total value by the controller 310 is performed every predetermined period of time, as in the first embodiment. Accordingly, the controller 310 calculates the fairness index based on the communication quality such as the average value calculated based on the transmission air time, RSSI, delay time, throughput, and number of frame transmissions of each transmitting terminal and each BSS 360, and calculates the fairness index. You may also perform an evaluation. This point is also similar to Embodiment 1, but the fairness index may be other than the fairness index.
 なお、Fairness indexまたはそれ以外の公平性の指標の算出結果が許容値を超えている場合は、各端末110に割り振るカウント値、送信電力値、またはチャネル状態を判定する際のCCA閾値を変更して公平性を制御してもよい。この点についても実施の形態1と同様である。 Note that if the calculation result of the Fairness index or other fairness index exceeds the allowable value, the count value allocated to each terminal 110, the transmission power value, or the CCA threshold value when determining the channel state may be changed. Fairness may be controlled by This point is also similar to the first embodiment.
 以上、フローチャートで説明したように、コントローラ310は基地局120に対して、BSS総和値の通知を一定時間の経過ごとに行う。これにより基地局120は、自身に割り当てられたBSS総和値をもとに、配下の端末110におけるカウンタ130の上限値を決定することができる As explained above using the flowchart, the controller 310 notifies the base station 120 of the BSS total value every predetermined period of time. Thereby, the base station 120 can determine the upper limit value of the counter 130 in the terminal 110 under its control based on the BSS total value assigned to itself.
 なお、上記のフローチャートでは、BSS総和値を再通知するためのトリガーが一定時間の経過である場合を説明した。しかしながら、Fairness indexの算出により、所望公平性が実現されないことが判明した時点をトリガーにしてもよい。もしくは、端末110からカウント値の要求があった時点をトリガーにしてもよい。この点については、実施の形態1と同様である。 Note that in the above flowchart, the case where the trigger for re-notifying the BSS total value is the passage of a certain period of time has been described. However, the trigger may be the time when it is determined that the desired fairness is not achieved by calculating the Fairness index. Alternatively, the trigger may be the time when a count value is requested from the terminal 110. This point is similar to the first embodiment.
 図17は、本開示の実施の形態2に係る、コントローラからBSS総和値を通知された基地局が、その情報をもとに配下の端末に対してカウンタの上限値を通知する処理のフローチャートである。 FIG. 17 is a flowchart of a process in which a base station, which has been notified of the BSS total value from the controller, notifies subordinate terminals of the upper limit value of the counter based on that information, according to Embodiment 2 of the present disclosure. be.
 まず、基地局120が処理を開始する(ステップ350)。次に、コントローラから設定されるBSS総和値が更新されたかを判定する処理を行う(ステップ351)。更新されたと認められた場合、BSS総和値に基づき各端末のカウンタ130の上限値を決定する(ステップ352)。さらに、決定したカウンタ130の上限値の情報を各端末に通知する(ステップ353)。その後、処理を終了する(ステップ354)。 First, the base station 120 starts processing (step 350). Next, a process is performed to determine whether the BSS total value set by the controller has been updated (step 351). If it is determined that the update has been made, the upper limit value of the counter 130 of each terminal is determined based on the BSS total value (step 352). Furthermore, information on the determined upper limit value of the counter 130 is notified to each terminal (step 353). Thereafter, the process ends (step 354).
 以上、フローチャートで説明したように、基地局120はコントローラ310から通知されたBSS総和値に基づき、配下の端末110の各々に対してカウンタ130の上限値を決定し、その情報を各端末に通知する。これにより端末110は、カウンタ130が上限に達するまで、高優先フレーム103を送信することができる。 As explained above in the flowchart, the base station 120 determines the upper limit value of the counter 130 for each of the terminals 110 under its control based on the BSS total value notified from the controller 310, and notifies each terminal of this information. do. This allows the terminal 110 to transmit high priority frames 103 until the counter 130 reaches the upper limit.
 なお、本実施形態において端末110が高優先フレーム103送信時に行う処理のフローチャートは、実施の形態1の図12と共通であるので、説明は省略する。 Note that the flowchart of the process that the terminal 110 performs when transmitting the high priority frame 103 in this embodiment is the same as that in FIG. 12 of the first embodiment, so a description thereof will be omitted.
 同様に、本実施形態に係る無線通信システム300において、BSS360ごとに行われる無線通信シーケンスは、実施の形態1の図13と同様であるので説明は省略する。 Similarly, in the wireless communication system 300 according to the present embodiment, the wireless communication sequence performed for each BSS 360 is the same as that shown in FIG. 13 of the first embodiment, so a description thereof will be omitted.
 以上説明したように、本実施形態に係る無線通信システム300は、コントローラ310を用いた高優先フレーム103の送信機会制御をBSS360ごとに行う。これにより、実施の形態1で説明した効果に加えて、各基地局120同士の無線通信の干渉が問題となるような場合であっても、他BSSの影響による送信機会の減少を回避することができる。すなわち、利用周波数帯に制限がある屋外使用時、または基地局120の稠密配置により無線セルが重複するOBSS(Overlapping-Basic Service Set)環境下において、特に好適であるといえる。 As described above, the wireless communication system 300 according to the present embodiment performs transmission opportunity control of the high priority frame 103 using the controller 310 for each BSS 360. As a result, in addition to the effects described in Embodiment 1, even if interference in wireless communication between base stations 120 becomes a problem, it is possible to avoid a decrease in transmission opportunities due to the influence of other BSSs. Can be done. That is, it can be said that it is particularly suitable for outdoor use where the usable frequency band is limited or in an OBSS (Overlapping-Basic Service Set) environment where wireless cells overlap due to the dense arrangement of base stations 120.
[実施の形態2の変形例] [Modification of Embodiment 2]
 本実施形態においては、コントローラ310が基地局120のそれぞれに対してBSS総和値を決定した(ステップ342)。しかしながら、BSS総和値に代えて、基地局配下にある端末110それぞれに対するカウンタ130の上限値を直接決定してもよい。 In this embodiment, the controller 310 determines the BSS summation value for each of the base stations 120 (step 342). However, instead of the BSS total value, the upper limit value of the counter 130 for each terminal 110 under the control of the base station may be directly determined.
 このように、コントローラ310がカウンタ130の上限値を直接決定する場合は、ステップ343のように、基地局120を経由せず、各々の端末110に対して直接通知してもよい。 In this way, when the controller 310 directly determines the upper limit value of the counter 130, it may directly notify each terminal 110 without going through the base station 120, as in step 343.
 なお、コントローラ310がカウンタ130の上限値を直接決定する場合にも、実施の形態1と同様に、各々の端末110の負荷データレート等、各端末110の通信負荷に応じて決定する。あるいは、少なくとも一つの端末に対してはより多く高優先フレーム103を送信できるように、上限値に偏りを持たせるように決定する。 Note that even when the controller 310 directly determines the upper limit value of the counter 130, it is determined according to the communication load of each terminal 110, such as the load data rate of each terminal 110, as in the first embodiment. Alternatively, the upper limit value is determined to be biased so that more high priority frames 103 can be transmitted to at least one terminal.
 なお、カウンタ130の上限値は、上述の決定方法のいずれにおいても、実施の形態1と同じく(式1)を満たすように決定される。 Note that in any of the above-described determination methods, the upper limit value of the counter 130 is determined so as to satisfy (Equation 1) as in the first embodiment.
 また、本実施形態では、主に端末110から基地局120へ高優先フレーム103を送信するアップリンクの場合を説明した。しかしながら、ダウンリンクの場合にも適用可能である。ダウンリンクの場合は、コントローラ310は、各基地局の配下にある端末110それぞれが受信することのできる高優先フレーム103の受信回数の上限値、もしくは各端末における上限値の基地局ごとの総和を決定し、各基地局に通知する。これにより基地局120はこの上限値に達するまで配下の端末110に対して高優先フレーム103を送信することができる。 Additionally, in this embodiment, the case of uplink in which the high priority frame 103 is mainly transmitted from the terminal 110 to the base station 120 has been described. However, it is also applicable in the downlink case. In the case of downlink, the controller 310 determines the upper limit of the number of times each terminal 110 under each base station can receive the high priority frame 103, or the sum of the upper limits for each terminal for each base station. Decide and notify each base station. This allows the base station 120 to transmit high priority frames 103 to the terminals 110 under its control until this upper limit is reached.
 以上説明したように、本開示によれば、無線通信においてチャネルが高優先フレームで飽和することなく、低優先フレームを送信する端末に送信機会を与えることができ、端末間における優先フレーム制御を実現することができる、無線通信システム、無線端末装置、無線基地局、コントローラ、および無線通信方法を提供することが可能となる。 As described above, according to the present disclosure, it is possible to provide a transmission opportunity to a terminal that transmits a low-priority frame without saturating the channel with high-priority frames in wireless communication, thereby realizing priority frame control between terminals. It becomes possible to provide a wireless communication system, a wireless terminal device, a wireless base station, a controller, and a wireless communication method that can perform the following steps.
[請求項で使用する用語との対応]
 実施の形態2において説明した、コントローラ310が、BSS総和値、または基地局配下にある端末110それぞれのカウンタ130の上限値を決定し通知する処理を上限値決定通知処理と呼ぶ。上限値決定通知処理は、例えばステップ342とステップ343の一連の処理である。
[Correspondence with terms used in claims]
The process described in Embodiment 2 in which the controller 310 determines and notifies the BSS total value or the upper limit value of the counter 130 of each terminal 110 under the control of the base station is referred to as an upper limit value determination notification process. The upper limit value determination notification process is, for example, a series of steps 342 and 343.
 100、200、300 無線通信システム
 103 高優先フレーム
 104 ACKフレーム
 105 ビジー状態
 106 低優先フレーム
 110 無線端末装置
 120 無線基地局
 130 フレームカウンタ
 140 上位層
 150、250 LLC部
 160、260 MAC部
 170、270 PHY送信部
 180、280 PHY受信部
 190、290 アンテナ
 161、261 データ処理部
 162、262 MACフレーム処理部
 163 上限値決定部
 171 PHYヘッダ処理部
 172 無線信号処理部
 173 符号化
 174、184 デインタリーバ
 175 変調
 176 IFFT
 177、187 OFDM変調
 178、188 周波数変換
 181 PHYヘッダ処理部
 182 無線信号処理部
 183 復号化
 185 復調
 186 FFT
 330 格納部
 360 BSS
100, 200, 300 wireless communication system 103 high priority frame 104 ACK frame 105 busy state 106 low priority frame 110 wireless terminal device 120 wireless base station 130 frame counter 140 upper layer 150, 250 LLC section 160, 260 MAC section 170, 270 PHY Transmitting section 180, 280 PHY receiving section 190, 290 Antenna 161, 261 Data processing section 162, 262 MAC frame processing section 163 Upper limit determining section 171 PHY header processing section 172 Radio signal processing section 173 Encoding 174, 184 Deinterleaver 175 Modulation 176 IFFT
177, 187 OFDM modulation 178, 188 Frequency conversion 181 PHY header processing section 182 Radio signal processing section 183 Decoding 185 Demodulation 186 FFT
330 Storage section 360 BSS

Claims (17)

  1.  無線フレームの優先度に応じて、複数の無線端末装置のうち、無線基地局と無線通信を
    すべき無線端末装置に対し、優先的に無線フレームの送受信機会を与える無線通信システムであって、
     前記複数の無線端末装置と無線通信を行う前記無線基地局は、
     前記複数の無線端末装置のそれぞれに対して、前記無線端末装置が送信することのできる前記優先度の高い無線フレームの送信回数の上限値を決定する上限値決定処理と、
     前記複数の無線端末装置のそれぞれに対して、前記送信回数の上限値を通知する上限値通知処理と、
     を実行するように構成され、
     前記複数の無線端末装置は、前記送信回数の上限値に達するまで前記優先度の高い無線フレームを送信する処理と、
     前記優先度の高い無線フレームを送信した回数を数えるカウント処理と、
     を実行するように構成される無線通信システム。
    A wireless communication system that gives a wireless frame transmitting/receiving opportunity preferentially to a wireless terminal device that should wirelessly communicate with a wireless base station among a plurality of wireless terminal devices according to the priority of the wireless frame,
    The wireless base station that performs wireless communication with the plurality of wireless terminal devices,
    Upper limit determination processing for determining, for each of the plurality of wireless terminal devices, an upper limit value of the number of times the wireless frame with the high priority can be transmitted by the wireless terminal device;
    upper limit notification processing for notifying each of the plurality of wireless terminal devices of the upper limit value of the number of transmissions;
    is configured to run
    The plurality of wireless terminal devices transmit the high-priority wireless frames until the upper limit of the number of transmissions is reached;
    a counting process for counting the number of times the high-priority wireless frame is transmitted;
    A wireless communications system configured to perform.
  2.  請求項1に記載の無線通信システムは、コントローラをさらに備え、
     前記コントローラは、前記複数の無線端末装置の各々に対する前記送信回数の上限値、または前記複数の無線端末装置の各々における前記送信回数の上限値の総和、の少なくとも一方を決定し、前記無線基地局に対して通知する上限値決定通知処理を実行するように構成され、
     前記無線基地局は、前記上限値決定処理においては、前記コントローラからから通知された、前記複数の無線端末装置の各々に対する前記送信回数の上限値、または前記複数の無線端末装置の各々における前記送信回数の上限値の総和、の少なくとも一方に基づき前記送信回数の上限値を決定する、請求項1に記載の無線通信システム。
    The wireless communication system according to claim 1 further includes a controller,
    The controller determines at least one of the upper limit value of the number of transmissions for each of the plurality of wireless terminal devices, or the sum of the upper limit value of the number of transmissions for each of the plurality of wireless terminal devices, and determines at least one of the upper limit value of the number of transmissions for each of the plurality of wireless terminal devices, and is configured to execute upper limit determination notification processing to notify the
    In the upper limit value determination process, the wireless base station determines the upper limit value of the number of times of transmission for each of the plurality of wireless terminal devices, or the upper limit value of the number of times of transmission for each of the plurality of wireless terminal devices, which is notified from the controller. The wireless communication system according to claim 1, wherein the upper limit value of the number of transmissions is determined based on at least one of: a sum of upper limit values of the number of times.
  3.  前記無線基地局は、
     前記複数の無線端末装置のそれぞれに対して、前記無線端末装置が受信することのできる前記優先度の高い無線フレームの受信回数の上限値を決定する第二上限値決定処理と、
     前記複数の無線端末装置の各々に対して、前記第二上限値決定処理で決定された各々の前記受信回数の上限値に達するまで前記優先度の高い無線フレームを送信する処理と、
     をさらに実行するように構成される請求項1に記載の無線通信システム。
    The wireless base station is
    a second upper limit value determination process of determining, for each of the plurality of wireless terminal devices, an upper limit value of the number of times the wireless frame with the high priority can be received by the wireless terminal device;
    A process of transmitting the high-priority radio frame to each of the plurality of wireless terminal devices until each of the reception frequency reaches an upper limit determined in the second upper limit determination process;
    The wireless communication system of claim 1, further configured to perform.
  4.  前記コントローラは、
     前記複数の無線端末装置のそれぞれに対して、前記無線端末装置が受信することのできる前記優先度の高い無線フレームの受信回数の上限値、または前記複数の無線端末装置の各々における前記受信回数の上限値の総和、の少なくとも一方を決定し、前記無線基地局に対して通知する処理をさらに実行するように構成され、
     前記無線基地局は、
     前記コントローラから通知された、前記複数の無線端末装置の各々に対する前記受信回数の上限値、または前記複数の無線端末装置の各々における前記受信回数の上限値の総和、の少なくとも一方に基づき、前記複数の無線端末装置の各々に対する前記受信回数の上限値を決定する処理と、
     前記複数の無線端末装置の各々に対して、各々の前記受信回数の上限値に達するまで前記優先度の高い無線フレームを送信する処理と、
     をさらに実行するように構成される請求項2に記載の無線通信システム。
    The controller includes:
    For each of the plurality of wireless terminal devices, an upper limit value of the number of receptions of the high-priority radio frame that the wireless terminal device can receive, or an upper limit of the number of times the wireless frame is received by each of the plurality of wireless terminal devices. further configured to determine at least one of the total sum of upper limit values and to notify the radio base station,
    The wireless base station is
    Based on at least one of the upper limit value of the number of receptions for each of the plurality of wireless terminal devices, or the sum of the upper limit value of the number of receptions for each of the plurality of wireless terminal devices, notified from the controller, a process of determining an upper limit value of the number of receptions for each of the wireless terminal devices;
    a process of transmitting the high-priority radio frame to each of the plurality of wireless terminal devices until an upper limit value of the number of receptions is reached for each;
    3. The wireless communication system of claim 2, further configured to perform.
  5.  前記無線基地局は、一定時間の経過ごとに、前記上限値決定処理と前記上限値通知処理を実行する、請求項1に記載の無線通信システム。 The wireless communication system according to claim 1, wherein the wireless base station executes the upper limit value determination process and the upper limit value notification process every predetermined period of time.
  6.  前記コントローラは、一定時間の経過ごとに、前記上限値決定通知処理を実行する、請求項2に記載の無線通信システム。 The wireless communication system according to claim 2, wherein the controller executes the upper limit value determination notification process every predetermined period of time.
  7.  前記無線基地局は、前記複数の無線端末装置の各々における前記送信回数の上限値の合計が、所定値を超えないように前記送信回数の上限値を決定する、請求項1に記載の無線通信システム。 The wireless communication according to claim 1, wherein the wireless base station determines the upper limit value of the number of transmissions such that the total of the upper limit value of the number of transmissions in each of the plurality of wireless terminal devices does not exceed a predetermined value. system.
  8.  前記コントローラは、前記複数の無線端末装置の各々に対する前記送信回数の上限値を決定する場合には、前記送信回数の上限値の合計が、所定値を超えないように前記送信回数の上限値を決定する、請求項2に記載の無線通信システム。 When determining the upper limit value of the number of transmissions for each of the plurality of wireless terminal devices, the controller sets the upper limit value of the number of transmissions so that the total of the upper limit value of the number of transmissions does not exceed a predetermined value. The wireless communication system according to claim 2, wherein the wireless communication system determines.
  9.  前記無線基地局または前記コントローラの少なくとも一方は、前記複数の無線端末装置それぞれの通信負荷に基づき、前記複数の無線端末装置間で前記優先度の高い無線フレームを送信する機会が公平となるように前記送信回数の上限値を決定する、請求項7または8に記載の無線通信システム。 At least one of the wireless base station or the controller is configured to provide a fair opportunity to transmit the high-priority wireless frame among the plurality of wireless terminal devices based on the communication load of each of the plurality of wireless terminal devices. The wireless communication system according to claim 7 or 8, wherein an upper limit value of the number of transmissions is determined.
  10.  前記無線基地局または前記コントローラの少なくとも一方は、前記無線端末装置の通信品質に基づき、前記複数の無線端末装置における前記送信回数の上限値の公平性を定期的に評価する処理をさらに含む請求項9に記載の無線通信システム。 At least one of the wireless base station or the controller further includes processing for periodically evaluating the fairness of the upper limit value of the number of transmissions in the plurality of wireless terminal devices based on the communication quality of the wireless terminal devices. 9. The wireless communication system according to 9.
  11.  前記無線基地局または前記コントローラの少なくとも一方は、前記複数の無線端末装置のうち、無線端末装置の優先度に応じて少なくとも一つの無線端末装置に前記優先度の高い無線フレームを送信する機会がより多く与えられるように前記送信回数の上限値を決定する、請求項7または8に記載の無線通信システム。 At least one of the wireless base station or the controller has a higher chance of transmitting the high-priority wireless frame to at least one wireless terminal device among the plurality of wireless terminal devices according to the priority of the wireless terminal device. The wireless communication system according to claim 7 or 8, wherein the upper limit value of the number of transmissions is determined so that a large number of transmissions is given.
  12.  前記無線基地局または前記コントローラの少なくとも一方は、複数のチャネルもしくは複数の周波数帯にまたがって前記送信回数の上限値を決定し、
     前記無線端末装置は、前記送信回数の上限値に達するまで、前記複数のチャネルもしくは前記複数の周波数帯を利用して前記優先度が高い無線フレームを送信する処理を実行するように構成される請求項1または2に記載の無線通信システム。
    At least one of the wireless base station or the controller determines an upper limit value of the number of transmissions across multiple channels or multiple frequency bands,
    The wireless terminal device is configured to execute a process of transmitting the high-priority wireless frame using the plurality of channels or the plurality of frequency bands until the upper limit value of the number of transmissions is reached. 3. The wireless communication system according to item 1 or 2.
  13.  前記無線端末装置は、前記カウント処理においては、前記優先度の高い無線フレームを送信するための通信制御方法に応じて、前記優先度の高い無線フレームを送信した回数に重みづけを行う、請求項1に記載の無線通信システム。 2. The wireless terminal device, in the counting process, weights the number of times the high-priority wireless frame is transmitted according to a communication control method for transmitting the high-priority wireless frame. 1. The wireless communication system according to 1.
  14.  優先度を示す識別情報を備えた無線フレームを用いて無線通信を行う無線端末装置であって、
     優先度の高い前記無線フレームを送信できる回数の上限値の情報を、他の無線局から受信する処理と、
     前記上限値に達するまで、前記優先度が高い前記無線フレームを送信する処理と、
     を実行するように構成される、無線端末装置。
    A wireless terminal device that performs wireless communication using a wireless frame having identification information indicating priority, the wireless terminal device comprising:
    a process of receiving information on an upper limit value of the number of times the radio frame with a high priority can be transmitted from another radio station;
    a process of transmitting the radio frame with the high priority until the upper limit is reached;
    A wireless terminal device configured to perform.
  15.  優先度を示す識別情報を備えた無線フレームを用いて複数の無線端末装置と無線通信を行う無線基地局であって、
     前記複数の無線端末装置のそれぞれに対して、前記無線端末装置が送信することのできる優先度の高い無線フレームの送信回数の上限値を決定し通知する上限値決定処理、
     もしくは、
     前記複数の無線端末装置のそれぞれに対して、前記無線端末装置が受信することのできる優先度の高い無線フレームの受信回数の上限値を決定する第二上限値決定処理の、
     少なくとも一方を実行し、
     前記第二上限値決定処理を実行した場合には、前記複数の無線端末装置の各々に対して、前記第二上限値決定処理で決定された各々の前記受信回数の上限値に達するまで、前記優先度の高い無線フレームを送信する処理をさらに実行するように構成される、無線基地局。
    A wireless base station that performs wireless communication with a plurality of wireless terminal devices using a wireless frame having identification information indicating priority, the wireless base station comprising:
    Upper limit value determination processing for determining and notifying, to each of the plurality of wireless terminal devices, an upper limit value for the number of times the wireless frame with a high priority can be transmitted by the wireless terminal device;
    or,
    a second upper limit value determination process for determining, for each of the plurality of wireless terminal devices, an upper limit value of the number of times the wireless frame with high priority can be received by the wireless terminal device;
    do at least one,
    When the second upper limit value determination process is executed, for each of the plurality of wireless terminal devices, the number of reception times reaches the upper limit value determined in the second upper limit value determination process. A wireless base station further configured to perform processing for transmitting high priority wireless frames.
  16.  優先度を示す識別情報を備えた無線フレームを用いて複数の無線端末装置と無線通信を行う無線基地局の制御を行うコントローラであって、
     前記複数の無線端末装置のそれぞれが送信または受信することのできる優先度の高い無線フレームの送受信回数の上限値、または前記複数の無線端末装置の各々における前記送受信回数の上限値の総和、の少なくとも一方を決定し、前記無線基地局に対して通知する
    処理を実行するように構成される、コントローラ。
    A controller that controls a wireless base station that performs wireless communication with a plurality of wireless terminal devices using a wireless frame having identification information indicating priority, the controller comprising:
    at least an upper limit value of the number of times of transmission and reception of high-priority radio frames that each of the plurality of wireless terminal devices can transmit or receive, or a sum of the upper limit value of the number of times of transmission and reception in each of the plurality of wireless terminal devices; A controller configured to perform a process of determining one and notifying the wireless base station.
  17.  無線フレームの優先度に応じて、複数の無線端末装置のうち、無線基地局と無線通信を
    すべき無線端末装置に対し、優先的に無線フレームの送受信機会を与える無線通信方法であって、
     前記複数の無線端末装置と無線通信を行う前記無線基地局は、
     前記複数の無線端末装置のそれぞれに対して、前記無線端末装置が送信することのできる優先度の高い無線フレームの送信回数の上限値を決定する処理と、
     前記複数の無線端末装置のそれぞれに対して、前記送信回数の上限値を通知する処理と、
     を実行し、
     前記複数の無線端末装置は、前記送信回数の上限値に達するまで前記優先度の高い無線フレームを送信する処理と、
     前記優先度の高い無線フレームを送信した回数を数える処理と、
     を実行する無線通信方法。
    A wireless communication method that gives a wireless frame transmitting/receiving opportunity preferentially to a wireless terminal device that should wirelessly communicate with a wireless base station among a plurality of wireless terminal devices according to the priority of the wireless frame, the method comprising:
    The wireless base station that performs wireless communication with the plurality of wireless terminal devices,
    a process of determining, for each of the plurality of wireless terminal devices, an upper limit value for the number of times the wireless frame with a high priority can be transmitted by the wireless terminal device;
    a process of notifying each of the plurality of wireless terminal devices of the upper limit value of the number of times of transmission;
    Run
    The plurality of wireless terminal devices transmit the high-priority wireless frames until the upper limit of the number of transmissions is reached;
    a process of counting the number of times the high-priority radio frame has been transmitted;
    A wireless communication method that performs.
PCT/JP2022/031090 2022-08-17 2022-08-17 Wireless communication system, wireless terminal device, wireless base station, controller, and wireless communication method WO2024038521A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031090 WO2024038521A1 (en) 2022-08-17 2022-08-17 Wireless communication system, wireless terminal device, wireless base station, controller, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031090 WO2024038521A1 (en) 2022-08-17 2022-08-17 Wireless communication system, wireless terminal device, wireless base station, controller, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2024038521A1 true WO2024038521A1 (en) 2024-02-22

Family

ID=89941458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031090 WO2024038521A1 (en) 2022-08-17 2022-08-17 Wireless communication system, wireless terminal device, wireless base station, controller, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2024038521A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525697A (en) * 2003-08-21 2006-11-09 サムスン エレクトロニクス カンパニー リミテッド Method for controlling reverse link in a mobile communication system
JP2016535534A (en) * 2013-09-05 2016-11-10 華為技術有限公司Huawei Technologies Co.,Ltd. Multi-channel based data transmission method and data transmission apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525697A (en) * 2003-08-21 2006-11-09 サムスン エレクトロニクス カンパニー リミテッド Method for controlling reverse link in a mobile communication system
JP2016535534A (en) * 2013-09-05 2016-11-10 華為技術有限公司Huawei Technologies Co.,Ltd. Multi-channel based data transmission method and data transmission apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大谷花絵,岸田朗,井上保彦,永田健悟,淺井裕介,鷹取泰司. IEEE802.11ax無線LANにおける高優先フレーム保護手法. 電子情報通信学会2021年総合大会講演論文集 通信1. p. 395, (OHTANI, Hanae, KISHIDA, Akira, INOUE, Yasuhiko, NAGATA, Kengo, ASAI, Yusuke, TAKATORI, Yasushi. A Protection Method for Prioritized Frames in OBSS Environment for IEEE 802.11ax Wireless LANs. Proceedings of the 2021 IEICE General Conference.) *

Similar Documents

Publication Publication Date Title
RU2702273C1 (en) Methods and device for selecting expanded distributed access parameters for a channel for different stations
US9839025B2 (en) Systems and methods for downlink frequency domain multiplexing transmissions
KR101499705B1 (en) Methods and apparatuses for scheduling uplink request spatial division multiple access(rsdma) messages in an sdma capable wireless lan
US20220060929A1 (en) Method and Apparatus for Congestion Control in a Telecommunications Network
KR102407944B1 (en) Congestion control method and device
WO2011119249A1 (en) Uplink power control for channel aggregation in a communication network
WO2021076316A1 (en) Profile-based client steering in multiple access point (ap) networks
CN107615869B (en) Wireless device, access point and method using different Clear Channel Assessment (CCA) thresholds
Chakraborty et al. Alleviating hidden and exposed nodes in high-throughput wireless mesh networks
US20160037363A1 (en) Interference management in a bursty-interference environment
Hosseinabadi et al. Token-DCF: An opportunistic MAC protocol for wireless networks
US20230209591A1 (en) Systems and methods for prioritizing bi-directional traffic flows
Selinis et al. Damysus: A practical IEEE 802.11 ax BSS color aware rate control algorithm
CN105474736B (en) Method and device for transmitting data
WO2017033788A1 (en) Radio communication system and radio communication method
WO2016156768A1 (en) Dynamic sensitivity control in 802.11 stations
Wen et al. Throughput-aware dynamic sensitivity control algorithm for next generation WLAN system
WO2024038521A1 (en) Wireless communication system, wireless terminal device, wireless base station, controller, and wireless communication method
KR20050064267A (en) Data transmitting method for wireless network using access point
Kim et al. MASTaR: MAC protocol for access points in simultaneous transmit and receive mode
US20220132331A1 (en) Systems and methods for minimizing latency and contention using qos frame scheduling information
Yazdani et al. A fair access mechanism based on TXOP in IEEE 802.11 e wireless networks
KR102648538B1 (en) Method for scheduling orthogonal frequency division multiple access based on quality of service in wireless local area network
Miyamoto et al. Wide-area centralized radio resource management for DCF-based multi-hop ad hoc wireless networks
Zhou et al. Novel Listen-Before-Talk Access Scheme with Adaptive Backoff Procedure for Uplink Centric Broadband Communication