WO2024038516A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2024038516A1
WO2024038516A1 PCT/JP2022/031057 JP2022031057W WO2024038516A1 WO 2024038516 A1 WO2024038516 A1 WO 2024038516A1 JP 2022031057 W JP2022031057 W JP 2022031057W WO 2024038516 A1 WO2024038516 A1 WO 2024038516A1
Authority
WO
WIPO (PCT)
Prior art keywords
prach
rar
information
pdcch
repetitions
Prior art date
Application number
PCT/JP2022/031057
Other languages
French (fr)
Japanese (ja)
Inventor
尚哉 芝池
祐輝 松村
聡 永田
チーピン ピ
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/031057 priority Critical patent/WO2024038516A1/en
Publication of WO2024038516A1 publication Critical patent/WO2024038516A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 is a specification for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel. 8, 9). was made into
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the random access procedure for improving coverage is not clear. If such a random access procedure is not clear, communication throughput may decrease.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that improve the coverage of random access procedures.
  • a terminal includes a control unit that controls one or more contention resolution windows for a plurality of repetitions of a physical random access channel (PRACH); and a receiving unit that receives the above downlink control information format.
  • PRACH physical random access channel
  • FIG. 1 shows an example of a RACH configuration information element.
  • 2A and 2B illustrate an example of PRACH occasion and beam association.
  • FIG. 3 shows an example of a plurality of PUCCH resource sets before individual PUCCH resources are configured.
  • 4A and 4B show an example of problem 1/2.
  • Figures 5A and 5B show an example of problem 2/4.
  • FIG. 6 shows an example of problem 5.
  • 7A and 7B illustrate an example of a random access procedure according to option 1 of embodiment #1.
  • FIG. 8 shows another example of the random access procedure according to option 1 of embodiment #1.
  • FIG. 9 shows an example of a random access procedure according to option 2 of embodiment #1.
  • FIG. 10 shows an example of a random access procedure according to embodiment #5.
  • 11A and 11B show an example of a random access procedure according to embodiment #6.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 14 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 15 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 16 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the UE performs reception processing (e.g., reception, demapping, demodulation, Controlling at least one of decoding), transmission processing (eg, at least one of transmission, mapping, precoding, modulation, and encoding) is being considered.
  • reception processing e.g., reception, demapping, demodulation, Controlling at least one of decoding
  • transmission processing e.g, at least one of transmission, mapping, precoding, modulation, and encoding
  • the TCI states may represent those that apply to downlink signals/channels. What corresponds to the TCI state applied to uplink signals/channels may be expressed as a spatial relation.
  • the TCI state is information regarding quasi-co-location (QCL) of signals/channels, and may also be called spatial reception parameters, spatial relation information, etc.
  • the TCI state may be set in the UE on a per-channel or per-signal basis.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, the Doppler shift, Doppler spread, and average delay are calculated between these different signals/channels. ), delay spread, and spatial parameters (e.g., spatial Rx parameters) can be assumed to be the same (QCL with respect to at least one of these). You may.
  • the spatial reception parameters may correspond to the UE's reception beam (eg, reception analog beam), and the beam may be identified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be defined for QCL.
  • QCL types A-D may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be referred to as QCL parameters) are shown below: ⁇ QCL type A (QCL-A): Doppler shift, Doppler spread, average delay and delay spread, ⁇ QCL type B (QCL-B): Doppler shift and Doppler spread, ⁇ QCL type C (QCL-C): Doppler shift and average delay, - QCL type D (QCL-D): Spatial reception parameters.
  • Control Resource Set CORESET
  • channel or reference signal is in a particular QCL (e.g. QCL type D) relationship with another CORESET, channel or reference signal, It may also be called a QCL assumption.
  • QCL Control Resource Set
  • the UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for the signal/channel based on the TCI state or QCL assumption of the signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information regarding the QCL between a target channel (in other words, a reference signal (RS) for the channel) and another signal (for example, another RS). .
  • the TCI state may be set (indicated) by upper layer signaling, physical layer signaling, or a combination thereof.
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • Channels for which TCI states or spatial relationships are set are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), and Uplink Shared Channel (Physical Uplink Shared Channel).
  • the channel may be at least one of a physical uplink control channel (PUCCH) and a physical uplink control channel (PUCCH).
  • the RS that has a QCL relationship with the channel is, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding
  • the signal may be at least one of a tracking reference signal (SRS), a tracking CSI-RS (also referred to as a tracking reference signal (TRS)), and a QCL detection reference signal (also referred to as a QRS).
  • SRS tracking reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • the SSB is a signal block that includes at least one of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • An RS of QCL type X in a TCI state may mean an RS that has a QCL type It's okay.
  • the UE receives SS/PBCH blocks (SSB), Msg. 1 (PRACH/random access preamble/preamble) transmission, Msg. 2 (PDCCH, PDSCH including random access response (RAR)), Msg. 3 (PUSCH scheduled by RAR UL grant) transmission, Msg. 4 (PDCCH, PDSCH including UE contention resolution identity).
  • SSB SS/PBCH blocks
  • Msg. 1 PRACH/random access preamble/preamble
  • Msg. 2 PDCCH, PDSCH including random access response (RAR)
  • Msg. 3 PUSCH scheduled by RAR UL grant
  • Msg. 4 (PDCCH, PDSCH including UE contention resolution identity).
  • SSB reception includes PSS detection, SSS detection, PBCH-DMRS detection, and PBCH reception.
  • PSS detection performs detection of part of the physical cell ID (PCI), detection (synchronization) of OFDM symbol timing, and (coarse) frequency synchronization.
  • SSS detection includes detection of physical cell ID.
  • PBCH-DMRS detection involves detection of (part of) the SSB index within a half radio frame (5ms).
  • PBCH reception involves detecting the system frame number (SFN) and radio frame timing (SSB index), receiving configuration information for receiving remaining minimum system information (RMSI, SIB1), and allowing the UE to camp in that cell (carrier). including the recognition of whether or not.
  • the SSB has a band of 20 RB and a time of 4 symbols.
  • the SSB transmission cycle can be set from ⁇ 5, 10, 20, 40, 80, 160 ⁇ ms.
  • a plurality of SSB symbol positions are defined based on the frequency range (FR1, FR2).
  • PBCH has a 56-bit payload. N repetitions of the PBCH are transmitted within a period of 80ms. N depends on the SSB transmission period.
  • SIB1 includes information for performing RACH settings and RACH procedures.
  • the time/frequency resource relationship between the SSB and the PDCCH monitoring resource for SIB1 is set by the PBCH.
  • a base station that uses beam correspondence transmits multiple SSBs using multiple beams in each SSB transmission period.
  • Each of the plurality of SSBs has a plurality of SSB indexes.
  • a UE that detects one SSB transmits a PRACH in the RACH occasion associated with that SSB index and receives a RAR in the RAR window.
  • beam and coverage In high frequency bands, if beamforming is not applied to the synchronization signal/reference signal, the coverage will be narrow and it will be difficult for the UE to discover the base station. On the other hand, if beamforming is applied to the synchronization signal/reference signal to ensure coverage, a strong signal will reach in a specific direction, but it will be more difficult for the signal to reach in other directions. If the direction in which the UE exists is unknown at the base station before the UE is connected, it is impossible to transmit synchronization signals/reference signals using beams directed only in appropriate directions. A possible method is that the base station transmits multiple synchronization signals/reference signals, each having beams in different directions, and the UE recognizes which beam it has discovered. Using thin (narrow) beams for coverage requires transmitting many synchronization/reference signals, which may increase overhead and reduce spectrum efficiency.
  • Coverage extension including PRACH extension for frequency range (FR) 2 is being considered. For example, PRACH repetition using the same beam or different beams is being considered. This PRACH extension may be applied to the 4-step RACH procedure or to FR1.
  • PRACH extension may be applied to the short PRACH format or to other formats.
  • the common RACH configuration (RACH-ConfigCommon) includes the general RACH configuration (rach-ConfigGeneric), the total number of RA preambles (totalNumberOfRA-Preambles), the SSB for each RACH occasion, and the contention-based (CB) for each SSB. ) preamble (ssb-perRACH-OccasionAndCB-PreamblesPerSSB).
  • the rach-ConfigGeneric may include a PRACH configuration index (prach-ConfigurationIndex) and a message 1FDM (msg1-FDM, number of PRACH occasions to be FDMed within one time instance).
  • ssb-perRACH-OccasionAndCB-PreamblesPerSSB may include the number of CB preambles for each SSB for the number of SSBs for each RACH occasion 1/8 (oneEighth, one SSB is associated with eight RACH occasions).
  • the UE determines the number N of SS/PBCH blocks associated with one PRACH occasion and the SS /The number R of CB preambles per PBCH block may be applied by ssb-perRACH-OccasionAndCB-PreamblesPerSSB.
  • N_preamble ⁇ total is given by totalNumberOfRA-Preambles for type 1 random access procedure and msgA-TotalNumberOfRA-Preambles for type 2 random access procedure with configuration of PRACH occasion independent of type 1 random access procedure. given by. N_preamble ⁇ total is a multiple of N.
  • the association period for mapping SS/PBCH blocks to PRACH occasions is such that N Tx SSB SS/PBCH block indexes are mapped to a PRACH occasion at least once within the association period. is the minimum value in the set determined by the PRACH configuration period according to the relationship between the PRACH configuration period and the association period (number of PRACH configuration periods) (the relationship defined in the specification).
  • the UE obtains N Tx SSB from the value of SSB positions in bursts (ssb-PositionsInBurst) in SIB1 or in the common serving cell configuration (ServingCellConfigCommon).
  • the association pattern period includes one or more association periods and is determined such that the pattern between PRACH occasion and SS/PBCH block index repeats at most every 160 ms. If there is a PRACH occasion that is not associated with an SS/PBCH block index after an integer number of association periods, that PRACH occasion is not used for PRACH.
  • the PRACH mask index is indicated by ra-ssb-OccasionMaskIndex.
  • the ra-ssb-OccasionMaskIndex indicates the PRACH occasion for the PRACH transmission that is associated with the selected SS/PBCH block index.
  • PRACH occasions are mapped consecutively for each corresponding SS/PBCH block index.
  • the PRACH occasion indexing indicated by the mask index value is reset every SS/PBCH block index and every successive PRACH occasion mapping cycle.
  • the UE selects the PRACH occasion indicated by the PRACH mask index value for the indicated SS/PBCH block index for PRACH transmission in the first available mapping cycle.
  • the order of PRACH occasions is as follows. - First, increasing order of frequency resource index for frequency multiplexed PRACH occasions. - Second, increasing order of time resource index for time multiplexed PRACH occasions within a PRACH slot. - Third, ascending order of PRACH slot index.
  • the value of ra-OccasionList indicates the list of PRACH occasions for PRACH transmissions, and the PRACH occasions are csi-RS is associated with the selected CSI-RS index indicated by .
  • the indexing of PRACH occasions indicated by ra-OccasionList is reset every association pattern period.
  • the association period is ⁇ 1, 2, 4, 8, 16 ⁇ , ⁇ 1, 2, 4, 8 ⁇ , ⁇ 1, 2, 4 ⁇ , ⁇ 1, 2 ⁇ , and ⁇ 1 ⁇ .
  • the value of the PRACH mask index value (msgA-SSB-SharedRO-MaskIndex) is associated with the allowed PRACH occasions of the SSB (the value of the PRACH occasion index).
  • Preamble indexes 0 to 15 are associated with SSB0, preamble indexes 15 to 31 are associated with SSB1, preamble indexes 32 to 47 are associated with SSB2 and SSB3 is associated with preamble indexes 48 to 63, and SSB3 is associated with SSB3.
  • the same RO is associated with different SS/PBCH block indices and different preambles use different SS/PBCH block indices.
  • the base station can distinguish the associated SS/PBCH block index by the received PRACH.
  • the random access preamble can only be transmitted on the time resources specified in the random access configuration of the specification, whether it is FR1 or FR2, and the spectrum type (paired spectrum/supplementary uplink (SUL)/unpaired spectrum). (unpaired) spectrum).
  • the PRACH configuration index is given by the upper layer parameter prach-ConfigurationIndex or, if configured, by msgA-PRACH-ConfigurationIndex.
  • the type of RACH procedure may be at least one of the following: ⁇ Contention-free random access (CFRA), PDCCH ordered RA (PDCCH ordered RA, RA initiated by PDCCH order), CFRA for beam failure recovery (BFR), CFRA for system information (SI) request, synchronization CFRA for reconfiguration with sync, etc. - contention-based random access (CBRA), RA triggered by MAC entity, RA triggered by RRC with event, CBRA for BFR, etc. ⁇ 4 step RACH. ⁇ 2 step RACH.
  • DCI format 1_0 includes a DCI format identifier field, a bit field that is always set to 1, and a frequency domain resource assignment field. If the cyclic redundancy check (CRC) of DCI format 1_0 is scrambled by C-RNTI and the frequency domain resource allocation field is all ones, then that DCI format 1_0 is for random access procedure initiated by PDCCH order and the rest
  • the fields are random access preamble, UL/supplementary Uplink (SUL) indicator, SS/PBCH index (SSB index), PRACH mask index, and reserved bits (12 bits).
  • the PRACH mask index field specifies that if the value of the Random Access Preamble Index field is non-zero, the PRACH occasion is the SS/PBCH block index indicated by the SS/PBCH block index field of the PDCCH order. Indicates the PRACH occasion of the PRACH transmission associated with.
  • Random access procedure in MAC entity The random access procedure is initiated by the PDCCH order, by the MAC entity itself, or by RRC for specification compliant events. Only one random access procedure is ongoing within a MAC entity at any given time.
  • the SCell random access procedure is initiated only by PDCCH orders with ra-PreambleIndex different from 0b000000.
  • the MAC entity When a random access procedure is initiated on the serving cell, the MAC entity does the following: - If a random access procedure is initiated by a PDCCH order and the ra-PreambleIndex explicitly provided by the PDCCH is not 0b000000, or if a random access procedure is initiated for reconfiguration with synchronization, If contention-free random access resources of step RA type are explicitly provided by rach-ConfigDedicated for the BWP selected for the random access procedure, set RA_TYPE to 4-stepRA.
  • the MAC entity does the following: - If ra-PreambleIndex is explicitly provided by PDCCH and ra-PreambleIndex is not 0b000000, set PREAMBLE_INDEX to the notified ra-PreambleIndex and select the SSB notified by PDCCH.
  • MAC next available PRACH occasion from the PRACH occasions allowed by the restriction given by ra-ssb-OccasionMaskIndex and corresponding to the selected SSB (MAC).
  • the entity randomly selects a PRACH occasion among consecutive PRACH occasions with equal probability, corresponding to the selected SSB, according to the specification.
  • the MAC entity selects the next available PRACH corresponding to the selected SSB.
  • the possibility of measurement gaps may be considered).
  • N_(T,2) is the duration of N_2 symbols corresponding to the PUSCH preparation time of UE processing capability 1. It is assumed that ⁇ corresponds to the minimum SCS setting between the subcarrier spacing (SCS) setting of the PDCCH order and that of the corresponding PRACH transmission.
  • SCS subcarrier spacing
  • ⁇ _BWPSwitching 0, otherwise ⁇ _BWPSwitching is defined in the specification.
  • ⁇ _delay 0.5 msec
  • ⁇ _delay 0.25 msec
  • T_switch is the switching gap duration defined in the specification.
  • PRACH occasion valid/invalid conditions All PRACH occasions are valid in paired spectrum (FDD) or SUL bands. In unpaired spectrum (TDD), PRACH occasions may comply with regulations 1 and 2 below.
  • PRACH occasion In case the UE is not provided with tdd-UL-DL-ConfigurationCommon, the PRACH occasion within the PRACH slot does not precede the SS/PBCH block within the PRACH slot and is at least N_gap symbols from the last SS/PBCH block received symbol. If it starts later, the PRACH occasion is valid.
  • the candidate SS/PBCH block index of the SS/PBCH block corresponds to the SS/PBCH block index provided by ssb-PositionsInBurst in SIB1 or in ServingCellConfigCommon.
  • the PRACH occasion within the PRACH slot is valid in the following cases: - The PRACH occasion is within the UL symbol. Or - The PRACH occasion does not precede the SS/PBCH block in the PRACH slot, but starts at least N_gap symbols after the last DL symbol and at least N_gap symbols after the last SS/PBCH block symbol.
  • N_gap is defined in the specifications.
  • the candidate SS/PBCH block index of the SS/PBCH block corresponds to the SS/PBCH block index provided by ssb-PositionsInBurst in SIB1 or in ServingCellConfigCommon, as described in the specification.
  • the RA response window (ra-ResponseWindow) is a time window for monitoring the RA response (RAR) (special cell (SpCell) only).
  • the RA contention resolution timer (ra-ContentionResolutionTimer) is a timer for RA contention resolution (SpCell only).
  • Msg. B response window is a time window for monitoring RA response (RAR) for two-step RA type (SpCell only).
  • SpCell primary cell
  • PCell primary cell
  • PSCell primary secondary cell
  • the MAC entity performs actions 1 to 3 below, regardless of the possibility that a measurement gap may occur.
  • the MAC entity performs the following actions 2-1 and 2-2.
  • the MAC entity starts the ra-ResponseWindow configured in the common RACH configuration (RACH-ConfigCommon) in the first PDCCH occasion from the end of the RA preamble transmission.
  • the MAC entity monitors the PDCCH transmission of the SpCell for RAR identified by the RA-RNTI while the ra-ResponseWindow is operating.
  • the MAC entity may stop ra-ResponseWindow (may stop monitoring for RARs) after successful reception of RARs containing RA preamble identifiers matching the transmitted PREAMBLE_INDEX.
  • PDCCH monitoring within the RA response window There are two cases for PDCCH monitoring within the RA response window: PDCCH for base station response to BFR and PDCCH for RAR. The following may apply to both cases.
  • the MAC entity performs actions 4 to 6 below, regardless of the possibility of a measurement gap occurring.
  • msgB-ResponseWindow is the first of the earliest CORESET the UE is configured to receive a PDCCH for type 1-PDCCH CSS set that is at least one symbol after the last symbol of the PRACH occasion corresponding to the PRACH transmission. It may start at the symbol.
  • the length of msgB-ResponseWindow may correspond to the SCS for Type 1-PDCCH CSS set.
  • the MAC entity monitors the PDCCH transmission of the SpCell for the RAR identified by the MSGB-RNTI while the msgB-ResponseWindow is active.
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id
  • the subcarrier spacing (SCS) for determining t_id is based on the value of ⁇ .
  • ul_carrier_id is the UL carrier used for RA preamble transmission (0 for normal uplink (NUL) carriers, 1 for supplementary uplink (SUL) carriers).
  • RA-RNTI is calculated according to specifications.
  • RA-RNTI is an RNTI for 4-step RACH.
  • MSGB-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2
  • the subcarrier spacing (SCS) for determining t_id is based on the value of ⁇ .
  • ul_carrier_id is the UL carrier used for RA preamble transmission (0 for normal uplink (NUL) carriers, 1 for supplementary uplink (SUL) carriers).
  • MSGB-RNTI is an RNTI for 2-step RACH.
  • the UE In response to the PRACH transmission, the UE attempts to detect DCI format 1_0 with the CRC scrambled by the corresponding RA-RNTI during the window controlled by the above-mentioned upper layers.
  • the window Start In the first symbol of the earliest CORESET in which the UE is configured to receive a PDCCH for a type 1-PDCCH CSS set, i.e. at least one symbol after the last symbol of the PRACH occasion corresponding to the PRACH transmission, the window Start.
  • the symbol period corresponds to the SCS for Type 1-PDCCH CSS set.
  • the length of the window is based on the SCS for type 1-PDCCH CSS set and is provided by ra-responseWindow as the number of slots.
  • the UE If the UE has a CRC scrambled by the corresponding RA-RNTI and the LSBs of the SFN field in the DCI format are the same as the least significant bits (LSBs) of the system frame number (SFN) for which the UE sent the PRACH. If the UE detects the DCI format 1_0 and receives the transport block in the corresponding PDSCH, the UE determines the TCI state (TCI-State) for the CORESET in which the UE receives the PDCCH with the DCI format 1_0. The UE may assume the same DMRS antenna port QCL properties for the SS/PBCH block or CSI-RS resources that the UE uses for PRACH association, whether provided or not.
  • the UE attempts to detect a DCI format 1_0 with a CRC scrambled by the corresponding RA-RNTI in response to a PRACH transmission initiated by a PDCCH order triggering a CFRA procedure for the SpCell, the UE detects that DCI format It may be assumed that the PDCCH including 1_0 and its PDCCH order have the same DMRS antenna port QCL properties.
  • the UE attempts to detect a DCI format 1_0 with a CRC scrambled by the corresponding RA-RNTI in response to a PRACH transmission initiated by a PDCCH order that triggers a CFRA procedure for the secondary cell, the UE
  • the DMRS antenna port QCL properties of the CORESET associated with the Type 1-PDCCH CSS set for reception of PDCCHs including format 1_0 may be assumed.
  • the RAR UL grant includes a frequency hopping flag field, a PUSCH frequency resource allocation field, a PUSCH time resource allocation field, a modulation and coding scheme (MCS) field, a PUSCH TPC command field, a CSI request field, Channel access may include at least one of a cyclic prefix extension (CPext) field.
  • MCS modulation and coding scheme
  • CPext cyclic prefix extension
  • the qcl-Type set in the 'typeD' properties of the DMRS for monitoring PDCCH in the Type 1-PDCCH CSS set is Type 0/0A/0B/2/3-PDCCH is not set the same as the qcl-Type set in the 'typeD' characteristic of the DMRS for PDCCH monitoring in the CSS set or in the USS set, and , if its PDCCH or associated PDSCH overlaps in at least one symbol with the PDCCH or associated PDSCH monitored by the UE in the Type 1-PDCCH CSS set, the UE /2/3-PDCCH It is not assumed that the PDCCH in the CSS set or in the USS set is monitored.
  • the UE is provided with one or more search space sets by corresponding one or more of searchSpaceZero, searchSpaceSIB1, searchSpaceOtherSystemInformation, pagingSearchSpace, peiSearchSpace, ra-SearchSpace, CSS set by PDCCH-Config. , and SI-RNTI, P-RNTI, PEI-RNTI, RA-RNTI, MsgB-RNTI, SFI-RNTI, INT-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, or TPC-SRS-RNTI If provided, for an RNTI from any of these RNTIs, the UE does not assume that it processes information from more than one DCI format with scrambled CRC with that RNTI per slot.
  • the UE sends transport blocks on the PUSCH scheduled by the RAR UL grant in the corresponding RAR message.
  • the UE transmits its PUSCH within slot n+k 2 + ⁇ +2 ⁇ ⁇ K cell,offset .
  • k2 is the slot offset, determined based on the row index m+1 of the allocation table provided by the PUSCH time resource allocation field value m of the RAR UL grant, and the PUSCH subcarrier spacing ⁇ PUSCH. . ⁇ is the additional subcarrier spacing specific slot delay time value for the first transmission of the PUSCH scheduled by the RAR, which is specific to the PUSCH subcarrier spacing ⁇ PUSCH and is applied in addition to K 2 .
  • N PUSCH repeat is the MCS in RAR UL grant or DCI format 0_0 from the set of 4 values provided by numberOfMsg3Repetitions or from ⁇ 1,2,3,4 ⁇ if numberOfMsg3Repetitions is not provided. Indicated by the 2MSB of the field.
  • the UE determines whether to apply Msg3 repetition based on RSRP. If Msg repetition is configured and the RSRP of DL path loss reference is less than rsrp-ThresholdMsg3, the MAC entity assumes that Msg3 repetition is applicable to the current random access (RA) procedure.
  • RA random access
  • the UE can request Msg3PUSCH repetition via a separate PRACH resource. If there is one or more sets of RA resources available, and one of the one or more sets is used to direct all functions that trigger this RA procedure, and all functions that trigger this RA procedure.
  • the MAC entity selects an RA resource if and when there is one or more sets of available RA resources configured with instructions for a subset of the functionality of the MAC entity. If Msg3 repetition indication is configured for a set of RA resources, and Msg3 repetition is not available, the MAC entity considers that set of RA resources not available for RACH procedures.
  • RA resources may be partitioned for each function.
  • the functionality may include at least one of Msg3 repetition, reduced capacity (RedCap), small data transmission (SDT), and RAN slicing.
  • FeatureCombinationPreambles a feature that is mapped to more than one FeatureCombinationPreambles.
  • the configuration includes available capabilities (which may be associated with multiple capabilities), RA resources (eg, preamble index), and a mask index for distinguishing ROs.
  • the UE decides which RO to use depending on its capabilities.
  • SIB1 includes ServingCellConfigCommonSIB. It includes UplinkConfigCommonSIB. It includes BWP-UplinkCommon (UL BWP common settings).
  • BWP-UplinkCommon may include RACH common settings (RACH-ConfigCommon or MsgA-ConfigCommon) and additionalRACH-ConfigList-r17 (additional RACH configuration list).
  • additionalRACH-ConfigList-r17 may include rsrp-ThresholdMsg3-r17 (threshold).
  • the RACH common settings may include FeatureCombinationPreambles.
  • FeatureCombinationPreambles associates one set (partition) of preambles with one feature combination.
  • FeatureCombinationPreambles may include FeatureCombination (feature combination setting), startPreambleForThisPartition (index of first preamble), numberOfPreamblesPerSSB-ForThisPartition (number of preambles), and ssb-SharedRO-MaskIndex-r17 (PRACH mask index).
  • FeatureCombination includes at least one of redCap (RedCap), smallData (SDT), sliceGroup (RAN slicing), and msg3-Repetition (Msg3 repetition). The partition is given by the index of the first preamble and the preamble number.
  • At least one of the PRACH occasion indexes 1 to 8 may be set using the relationship between the PRACH mask index and the allowed PRACH occasions (ROs) of the SSB (MAC protocol specification/PRACH mask index value table). can.
  • the number of Msg3 repetitions is indicated by the 2 most significant bits (MSB) (upper 2 bits) of the modulation and coding scheme (MCS) field in the RAR UL grant.
  • MSB most significant bits
  • MCS modulation and coding scheme
  • PUSCH repetition type A when transmitting a PUSCH scheduled by a RAR UL grant, the 2MSBs of the MCS information field of the RAR UL grant are set based on whether the upper layer parameter numberOfMsg3Repetitions is set.
  • Code points for determining the number of repetitions K are provided according to the relationship (table) between the values (code points) and the number of repetitions K.
  • the number of slots N used for transport block size (TBS) determination is equal to one.
  • the 2MSB of the MCS information field of that DCI format determines whether the upper layer parameter numberOfMsg3Repetitions is set or not. Based on the relationship (table) between the 2MSB value (code point) of the MCS information field and the repetition number K, code points for determining the repetition number K are provided.
  • the number of slots N used for TBS determination is equal to 1.
  • Msg3 (contention resolution)
  • the MAC entity follows actions 1 to 4 below.
  • the MAC entity starts or restarts the ra-ContentionResolutionTimer within the first symbol after the end of its Msg3 transmission.
  • the MAC entity monitors the PDCCH while the ra-ContentionResolutionTimer is running, regardless of the possibility of a measurement gap occurring.
  • Step 4 (Msg4) in the RA procedure of 16 NR follows the following Step 4 operation.
  • DCI format in response to a PUSCH transmission scheduled by RAR UL grant or in response to a corresponding PUSCH retransmission scheduled by DCI format 0_0 with CRC scrambled by TC-RNTI provided in the corresponding RAR message. If the UE detects that the PDCCH carrying that DCI format is used by the UE for PRACH association, regardless of whether the UE is provided with TCI status for the CORESET in which the UE received the PDCCH with that DCI format.
  • the same DM-RS antenna port QCL properties as the DM-RS antenna port quasi co-location (QCL) properties for the SS/PBCH block may be assumed.
  • PUCCH before individual PUCCH resource configuration If the UE does not have a separate PUCCH resource configuration provided by the PUCCH-ResourceSet in the PUCCH-Config, for the transmission of HARQ-ACK information on the PUCCH in the initial UL BWP of N BWP size PRBs.
  • the PUCCH resource set (default PUCCH resource) is provided by pucch-ResourceCommon through an index to the row of the table of multiple PUCCH resource sets (default PUCCH resource table, Figure 3) before individual PUCCH resource configuration specified in the specification. be done.
  • pucch-ResourceCommon included in SIB1 indicates index values 0 to 15.
  • a default PUCCH resource table associates an index with a PUCCH resource set.
  • Each PUCCH resource set includes a PUCCH format 0/1, a PUCCH first symbol, a PUCCH symbol number, a PUCCH PRB offset, and a set of initial cyclic shift indexes.
  • the UE determines the PUCCH resource in the PUCCH resource set indicated by the index based on the PDCCH (first CCE of that PDCCH, PUCCH resource indicator field in DCI) on which to schedule the PDSCH.
  • the UE transmits the PUSCH using the same spatial domain transmit filter as the PUSCH transmission scheduled by the RAR UL grant.
  • the UE If the UE is not provided with pdsch-HARQ-ACK-Codebook, pdsch-HARQ-ACK-Codebook-r16, pdsch-HARQ-ACK-OneShotFeedback, the UE generates at most one HARQ-ACK information bit. do.
  • the UE transmits PRACH repetitions (Msg1 #1 to #4) and starts a RAR window after each repetition.
  • the UE does not support more than one HARQ-ACK information bit per PUCCH before dedicated PUCCH resource (RRC) configuration.
  • RRC PUCCH resource
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages RRC messages
  • upper layer parameters information elements (IEs), settings, etc.
  • IEs information elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • spatial relationship group spatial relationship group, code division multiplexing (CDM) group, reference signal group, CORESET group, Physical Uplink Control Channel (PUCCH) group, PUCCH resource group), resource (e.g., reference signal resource, SRS resource) , resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI state (unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • TCI state downlink Transmission Configuration Indication state
  • DL TCI state uplink TCI state
  • UL TCI state uplink TCI state
  • unified TCI state unified TCI state
  • common TCI state common TCI state
  • QCL quasi-co-location
  • QCL assumption etc.
  • the SSB/CSI-RS index/indicator, beam index, TCI state, spatial domain transmit filter, and spatial domain receive filter may be read interchangeably.
  • RAR window ra-ResponseWindow
  • time window time window
  • RAR timer ra-ContentionResolutionTimer
  • operation period of the conflict resolution timer may be read interchangeably.
  • contention resolution identity contention resolution ID, contention resolution ID, and UE contention resolution identity may be interchanged.
  • port antenna port
  • DMRS port DMRS antenna port
  • DMRS antenna port may be read interchangeably.
  • the terms that a port is QCLed with the reception of the RS and that the port uses the same spatial domain (transmission/reception) filter as the reception of the RS may be read interchangeably.
  • DCI (format)/PDCCH (candidate) with a CRC scrambled by a specific RNTI, DCI (format)/PDCCH (candidate) using a specific RNTI, DCI (format)/PDCCH (candidate) monitored using a specific RNTI, PDCCH (candidate) may be read interchangeably.
  • RACH resource, RA resource, PRACH preamble, occasion, RACH occasion (RO), PRACH occasion, repetition resource, repetition configuration resource, resource configured for RO/repetition, time instance and frequency instance, time Resources and frequency resources, RO/preamble resources, and repetition may be read interchangeably.
  • period, period, frame, subframe, slot, symbol, occasion, and RO may be read interchangeably.
  • PDCCH order, PDCCH order DCI, DCI format 1_0, and message (Msg) 0 may be read interchangeably.
  • PRACH, preamble, PRACH preamble, sequence, preamble format, and Msg1 may be read interchangeably.
  • a response to PRACH, RAR, Msg2, MsgB, Msg4, a base station response to BFR, and DCI scheduling response (RAR) may be read interchangeably.
  • transmissions other than PRACH in the random access procedure, Msg3, PUSCH scheduled by RAR, HARQ-ACK/PUCCH for Msg4, and MsgA PUSCH may be interchanged.
  • Msg3, PUSCH scheduled by RAR UL grant, and RRC connection request may be interchanged.
  • Msg4 contention resolution, RRC connection setup, and PDSCH with UE contention resolution identity may be interchanged.
  • RAR DCI that schedules RAR (PDCCH), PDSCH with UE contention resolution ID, and DCI that schedules PDSCH with UE contention resolution ID may be read interchangeably.
  • beam, SSB, SSB index, CSI-RS, CSI-RS resource, CSI-RS resource index, and RS may be read interchangeably.
  • a random access (RA) procedure CFRA/CBRA, 4-step RACH/2-step RACH, a specific type of random access procedure, a random access procedure using a specific PRACH format, a random access procedure initiated by a PDCCH order.
  • a random access procedure not initiated by a PDCCH order and a random access procedure initiated by an upper layer may be interchanged.
  • time resources Msg1, Msg2, Msg3, Msg4, HARQ-ACK information, RAR window, conflict resolution window, DCI that schedules Msg2, and DCI that schedules Msg4 may be read interchangeably.
  • the earlier time resource may be a time resource earlier than the operation among a plurality of time resources corresponding to a plurality of repetitions of PRACH, or an index (time domain index), it may be a time resource that has a smaller index than the index of its operation.
  • a later time resource may be a time resource later than the operation among a plurality of time resources corresponding to a plurality of repetitions of PRACH, or an index (time domain index), it may be a time resource that has a larger index than the index of its operation.
  • ra-ResponseWindow Only one RAR window (ra-ResponseWindow) is maintained. A common ra-ResponseWindow may be maintained for multiple iterations. The UE may follow any of several options below.
  • the UE does not assume overlapping (in the time domain) of multiple RAR windows for multiple PRACH repetitions.
  • the UE transmits multiple repetitions of PRACH (Msg1 #1 to #4). For each iteration, start a RAR window.
  • the UE may follow at least one of several examples below. [[Example 1]] The UE does not (does not assume to send) (later) PRACH repetitions when ra-ResponseWindow is operating. [Example 2] The UE does not transmit (is not expected to transmit) a later PRACH repetition before detection of the RAR for the earlier PRACH transmission.
  • the RAR may include a preamble identifier that matches the transmitted preamble index. [[Example 3]] The UE does not assume that the length of the ra-ResponseWindow is longer than the gap of two PRACH repetitions.
  • ra-ResponseWindow If ra-ResponseWindow is active and the UE sends a later PRACH repetition, the UE sends a message from the first PDCCH occasion after the later PRACH repetition or from the start of the later PRACH repetition. /Restart ra-ResponseWindow from the end.
  • the UE transmits multiple repetitions of the PRACH (Msg1 #1 to #4) and starts a RAR window after each repetition. If the UE transmits the next Msg1 while the RAR window is in operation, the UE may stop the RAR window in operation.
  • RAR monitoring operations may follow any of several options below.
  • the UE assumes that the DMRS antenna port is QCLed with reception of SSB/CSI-RS for multiple PRACH repetitions before the PDCCH monitoring occasion and for PRACH repetitions where no corresponding RAR is detected. RAR using RA-RNTI may be monitored. This option may be applicable for PRACH repetitions using the same beam.
  • the UE performs RAR with RA-RNTI for the last PRACH repetition assuming the DMRS antenna port is QCLed with the reception of SSB/CSI-RS for that last PRACH repetition. Monitor. This option may be applicable to PRACH repetitions with the same beam and PRACH repetitions with different beams.
  • the base station is not aware that the RAR window is shorter than the configured length. It may be possible for the base station to send an RAR for a previous PRACH repetition after a later PRACH repetition. In such cases, the UE may fail to receive RARs for previous PRACH repetitions.
  • the UE resumes the ra-ResponseWindow for the later PRACH repetition after successfully receiving the RAR for the earlier PRACH repetition or after the expiration of the ra-ResponseWindow.
  • the UE transmits multiple repetitions of the PRACH (Msg1 #1 to #4) and starts a RAR window after each repetition.
  • the UE After successfully receiving the RAR for Msg1#1, the UE starts the next ra-ResponseWindow for Msg1#2.
  • the UE restarts the ra-ResponseWindow for Msg1#3.
  • the UE starts the next ra-ResponseWindow for Msg1#4.
  • the UE transmits a later PRACH repetition before the detection of the RAR (containing a preamble identifier matching the transmitted preamble index) for the earlier PRACH repetition and before the expiration of the ra-ResponseWindow.
  • the UE may follow at least one of several actions below.
  • the UE Before restarting the ra-ResponseWindow, the UE performs RAR using RA-RNTI for the previous PRACH repetition, assuming the DMRS antenna port is QCLed with reception of SSB/CSI-RS for that PRACH repetition. may be monitored. - After restarting the ra-ResponseWindow, the UE performs RAR with RA-RNTI for a later PRACH repetition, assuming the DMRS antenna port is QCLed with the reception of SSB/CSI-RS for that PRACH repetition. May be monitored.
  • the base station is not aware that the RAR window starts later than expected. It may be possible for the base station to send the RAR for a later PRACH repetition before the end of the RAR window for the earlier PRACH repetition. In such cases, the UE may fail to receive RARs for later PRACH repetitions.
  • the UE needs to keep track of how many windows are maintained/reserved. For example, the UE sends three PRACH repetitions before the end of the RAR window for the first PRACH repetition.
  • RAR window (ra-ResponseWindow) is maintained for each PRACH repetition.
  • Multiple RAR windows for multiple PRACH repetitions may follow any of several options below.
  • Overlapping (in the time domain) of multiple RAR windows is not allowed. It may be specified that the UE does not assume overlapping of multiple RAR windows.
  • the UE may follow at least one of several examples below. [Example 1] The UE does not (assumes not to) send later PRACH repetitions if any ra-ResponseWindow is active. [Example 2] The UE does not (assumes not to) transmit a later PRACH repetition before detection of the RAR for the earlier PRACH repetition.
  • the RAR may include a preamble identifier that matches the transmitted preamble index. [Example 3] The UE does not assume that the start of a later PRACH repetition (or RAR window for a later PRACH repetition) is before the end of the previous RAR window.
  • Option 2-2 Overlapping (in the time domain) of multiple RAR windows is allowed.
  • the UE transmits multiple repetitions of the PRACH (Msg1 #1 to #4) and starts a RAR window after each repetition.
  • the UE may use only one QCL assumption for receiving RARs in multiple RAR windows that overlap with each other.
  • the UE monitors PDCCH candidates with RA-RNTI, assuming the DMRS antenna port is QCLed with reception of one of several options below: You may. [[Option 2-2a]] Reception of SSB/CSI-RS corresponding to the PRACH repetition corresponding to the first/last RAR window of the multiple RAR windows. [[Option 2-2b]] One SSB/CSI-RS (or randomly selected (or one SSB/CSI-RS selected based on a method that depends on the UE implementation).
  • the base station may set/indicate different values (number of symbols/slots) of the RAR window length corresponding to different repetition indices.
  • the RAR window length may be set individually for each iteration. For example, length 1 may be set for the first repetition, and length 2 may be set for the second repetition.
  • the RAR window length for the first/last PRACH repetition may be longer/shorter than the RAR window length for other PRACH repetitions.
  • This example may be applicable for cases where the base station can identify the first/last PRACH repetition.
  • the case may be that the RACH resources for the first PRACH repetition are configured independently from the RACH resources for other PRACH repetitions.
  • the case may be that multiple RACH resources for multiple PRACH repetitions are configured individually and in fixed/unique locations for each PRACH repetition.
  • the UE can maintain one or more RAR windows appropriately.
  • the UE may process/monitor up to X (X ⁇ 1) DCI formats with CRC scrambled by RA-RNTI per slot.
  • X maximum number
  • X maximum number
  • X may be greater than 1.
  • X may be defined in the specification or may be reported by the UE as a UE capability. The specification may define possible values for X for UE capability reporting.
  • UE behavior for RAR monitoring when there is more than one PDCCH monitoring occasion of type 1 CSS within one slot may follow at least one of several options below.
  • Option 1 of Embodiment #1 and Option 1 of Embodiment #2-1 at least one of the following examples may be followed.
  • the UE does not transmit (or is not expected to transmit) (later) PRACH repetitions within the slot in which ra-ResponseWindow is operating.
  • the UE does not transmit (or is not expected to transmit) (later) PRACH repetitions within the slot in which the ra-ResponseWindow is started/restarted X'(X' ⁇ 1) times.
  • the UE does not transmit (sends) a (later) PRACH repetition in the slot in which it has detected X'(X' ⁇ 1) RAR messages for one or more earlier PRACH repetitions. (not assumed).
  • the RAR message may include a preamble identifier that matches the transmitted preamble index.
  • the RAR window for a later PRACH repetition starts from the slot after the slot in which X'(X' ⁇ 1) RAR messages for one or more earlier PRACH repetitions were successfully detected. .
  • Option 2 of Embodiment #1 and Option 1 of Embodiment #2-1 at least one of the following examples may be followed.
  • the UE does not transmit (or is not expected to transmit) (later) PRACH repetitions within the slot in which at least N (N ⁇ 1) ra-ResponseWindows are operating.
  • the UE may follow at least one of several options: [[Option 2-1]] The UE does not assume multiple PDCCH monitoring occasions of type 1 CSS in more than X RAR windows within one slot. [[Option 2-2]] If the UE successfully detects X RARs on multiple PDCCH monitoring occasions within an earlier RAR window within one slot, the UE shall - Do not monitor RAR on later type 1 CSS PDCCH monitoring occasions using RNTI. [[Option 2-3]] The UE monitors PDCCH monitoring occasions of type 1 CSS with RA-RNTI in up to X RAR windows within its slot.
  • the X RAR windows may be the first/last X RAR windows corresponding to the reception of Y SSB/CSI-RSs from the maximum RSRP among the multiple receptions of SSB/CSI-RSs for the detected multiple RARs. It may be a RAR window of [[Option 2-4]]
  • the UE monitors all type 1 CSS PDCCH monitoring occasions using RA-RNTI within one slot and processes only X RARs among the detected multiple RARs. do.
  • the X RARs may be the first/last detected RARs, the randomly selected X detected RARs, or the The reception of Y SSB/CSI-RSs from the maximum RSRP among the multiple receptions of SSB/CSI-RSs for multiple detected RARs. may be X RARs corresponding to .
  • the maximum number may define a maximum number of possible values for UE capability reporting.
  • Option 1/2 may be applicable for the case where X>1 with UE capability expansion.
  • the UE processes/processes one or more DCI formats with up to Y (Y ⁇ 1) different beams and CRC scrambled by RA-RNTI per slot. May be monitored.
  • Y maximum number
  • Y may be defined in the specification, may be configured/indicated by the SIB/RRC IE, or may be reported by the UE as a UE capability.
  • the specification may define possible values for Y for UE capability reporting.
  • UE behavior for RAR monitoring when there is more than one PDCCH monitoring occasion of type 1 CSS within one slot may follow at least one of several options below.
  • Option 1 of Embodiment #1 and Option 1 of Embodiment #2-2 at least one of the following examples may be followed.
  • the UE does not transmit (or is not expected to transmit) (later) PRACH repetitions using different beams within the slot in which ra-ResponseWindow is operating.
  • the UE does not transmit (later) PRACH repetitions using different beams within the slot in which ra-ResponseWindow is started/restarted Y'(Y' ⁇ 1) times (assuming that it does) do not).
  • the UE does not transmit (sends) a (later) PRACH repetition within the slot in which it has detected Y'(Y' ⁇ 1) RAR messages for one or more earlier PRACH repetitions. (not assumed).
  • the RAR message may include a preamble identifier that matches the transmitted preamble index.
  • the RAR window for a later PRACH repetition starts from the slot after the slot in which X'(X' ⁇ 1) RAR messages for one or more earlier PRACH repetitions were successfully detected. .
  • the maximum number X'/maximum number Y' may be defined in the specifications, may be set/instructed by the SIB/RRC IE, or may be reported by the UE as a UE capability.
  • the specification may define a maximum number of possible values for UE capability reporting.
  • Option 2 of Embodiment #1 and Option 1 of Embodiment #2-2 at least one of the following examples may be followed.
  • the UE does not transmit (or is not expected to transmit) (later) PRACH repetitions within the slot in which at least N (N ⁇ 1) ra-ResponseWindows are operating.
  • the UE may follow at least one of several options: [[Option 2-1]] The UE does not assume multiple PDCCH monitoring occasions of type 1 CSS in more than Y RAR windows within one slot. [[Option 2-2]] If the UE successfully detects Y RARs on multiple PDCCH monitoring occasions within an earlier RAR window within one slot, the UE shall detect Y RARs on multiple PDCCH monitoring occasions within the same slot. - Do not monitor RAR on later type 1 CSS PDCCH monitoring occasions using RNTI.
  • the UE monitors PDCCH monitoring occasions of type 1 CSS with RA-RNTI in up to Y RAR windows within its slot.
  • the Y RAR windows may be the first/last Y RAR windows, or may be randomly selected Y RAR windows, or may be selected based on a method that is up to the UE implementation.
  • the UE monitors all Type 1 CSS PDCCH monitoring occasions using RA-RNTI within one slot and processes only Y RARs among the detected RARs. do.
  • the Y RARs may be the first/last Y detected RARs, the randomly selected Y detected RARs, or in a manner that depends on the UE implementation.
  • the reception of Y SSB/CSI-RSs from the maximum RSRP among the multiple receptions of SSB/CSI-RSs for multiple detected RARs may be selected based on the Y detected RARs. may be Y RARs corresponding to .
  • the UE can appropriately monitor/process PDCCH candidates for RAR.
  • the UE may follow any of several options below.
  • the UE transmits each Msg3 PUSCH.
  • X maximum number
  • X maximum number
  • Up to X Msg3 PUSCHs may be one of several options below. [[Option 1-2A]] First/last Msg3 PUSCH among multiple Msg3 PUSCHs in that slot/slot group. [[Option 1-2B]] X Msg3 PUSCHs scheduled by the first/last detected X RARs among the RARs for Msg3 PUSCHs in that slot/slot group.
  • the multiple Msg3 PUSCHs overlap in the time domain, or the gap between the multiple Msg3 PUSCHs is shorter than the gap (time) required for beam switching.
  • the UE may transmit one of multiple Msg3 PUSCHs that overlap with each other.
  • the UE may follow any of several options below.
  • the UE selects the first/last Msg3 PUSCH among multiple Msg3 PUSCHs that overlap each other in the time domain, or the Msg3 PUSCH scheduled by the first/last received RAR. Scheduled by the first/last Msg3 PUSCH or first/last received RAR of two non-overlapping PUSCHs with a gap shorter than that required for beam switching. Transmit Msg3 PUSCH.
  • the UE transmits Msg3 PUSCH corresponding to reception of the SSB/CSI-RS with the highest RSRP.
  • the UE transmits Msg3 PUSCH scheduled by RAR indicating the minimum number of Msg3 repetitions.
  • the UE transmits a Msg3 PUSCH that is randomly selected from among multiple Msg3 PUSCHs that overlap each other in the time domain, or a Msg3 PUSCH that is selected by a method that depends on the UE implementation. .
  • the UE can appropriately transmit one or more Msg3 to multiple received RARs.
  • ⁇ Option 1 ⁇ Only one conflict resolution window is maintained.
  • a common contention resolution timer (ra-ContentionResolutionTimer) may be maintained for multiple iterations.
  • the UE may follow at least one of several options below.
  • the UE does not assume overlapping (in the time domain) of multiple contention resolution windows for multiple Msg3 PUSCHs scheduled by multiple RARs.
  • the UE may follow at least one of several examples below.
  • the UE does not transmit (or does not assume to transmit) (later) Msg3 PUSCH when the ra-ContentionResolutionTimer is operating.
  • the UE schedules a PDSCH that includes the UE Contention Resolution ID and does not transmit (later) Msg3 PUSCH before detecting DCI format 1_0 with CRC scrambled by the corresponding TC-RNTI (Not intended to be sent).
  • conflict resolution ID monitoring operations may follow any of several options below.
  • the ra-ContentionResolutionTimer If the ra-ContentionResolutionTimer is operational, the UE assumes that the DMRS antenna port is QCLed with reception of SSB/CSI-RS for multiple PRACH repetitions before the PDCCH monitoring occasion. monitor DCI format 1_0 with scrambled CRC by TC-RNTI, with no corresponding PDCCH detected. This option may be applicable for PRACH repetitions using the same beam.
  • the ra-ContentionResolutionTimer If the ra-ContentionResolutionTimer is operational, the UE assumes the DMRS antenna port is QCLed with reception of SSB/CSI-RS for that last Msg3 PUSCH. DCI format 1_0 with CRC scrambled by TC-RNTI. This option may be applicable to PRACH repetitions with the same beam or to PRACH repetitions with different beams.
  • the base station is not aware that the contention resolution window is shorter than the configured length. It may be possible for the base station to send a PDCCH that schedules Msg4 for an earlier Msg3 PUSCH after a later Msg3 PUSCH.
  • the contention resolution window for the later Msg3 PUSCH starts after the UE successfully detects the PDCCH for the earlier Msg3 PUSCH or after the ra-ContentionResolutionTimer expires (the UE does not detect the contention for the later Msg3 PUSCH (starts the resolution window).
  • the UE may follow the example below.
  • the UE transmits a later Msg3 PUSCH before the detection of a PDCCH with a CRC scrambled by TC-RNTI for an earlier Msg3 PUSCH and before the expiry of its ra-ContentionResolutionTimer, then The UE restarts the ra-ContentionResolutionTimer after expiration of the ra-ContentionResolutionTimer or after detection of a PDCCH with CRC scrambled by TC-RNTI for an earlier Msg3 PUSCH.
  • the UE Before restarting the ra-ContentionResolutionTimer, the UE sets the TC-RNTI for the previous Msg3 PUSCH assuming the DMRS antenna port is QCLed with the reception of SSB/CSI-RS for the previous Msg3 PUSCH. Monitor the PDCCH candidates to be used. - After restarting the ra-ContentionResolutionTimer, the UE uses TC-RNTI for the later Msg3 PUSCH assuming the DMRS antenna port is QCLed with the reception of SSB/CSI-RS for the later Msg3 PUSCH. Monitor PDCCH candidates.
  • the base station is not aware that the contention resolution window is shorter than the configured length. It may be possible for the base station to send a PDCCH that schedules Msg4 for an earlier Msg3 PUSCH after a later Msg3 PUSCH.
  • the UE needs to keep track of how many windows are maintained/reserved. For example, the UE transmits three Msg3 PUSCHs before the end of the contention resolution window for the first Msg3 PUSCH.
  • a separate contention resolution window is maintained for each Msg3 PUSCH (or each PRACH iteration).
  • a separate ra-ContentionResolutionTimer may be maintained for each PRACH repetition.
  • Multiple conflict resolution windows for multiple PRACH iterations may follow any of several options below.
  • Option 2-2 Overlapping (in the time domain) of multiple conflict resolution windows is allowed.
  • the UE may start another ra-ContentionResolutionTimer if there is any ra-ContentionResolutionTimer running.
  • the UE may use TC-RNTI, assuming the DMRS antenna port is QCLed with reception of reference signals indicated in one of several options below. PDCCH candidates using PDCCH may be monitored. [[Option 2-2A]] Reception of SSB/CSI-RS corresponding to Msg3 PUSCH corresponding to the first/last contention resolution window of multiple contention resolution windows.
  • the UE can maintain one or more contention resolution windows appropriately.
  • Overlapping of conflict resolution windows and RAR windows is not allowed. It may be specified that the UE does not assume overlapping contention resolution window and RAR window.
  • the UE may follow at least one of several examples below. [[Example]] The UE does not (assumes not to) send later PRACH repetitions if the (optional) ra-ContentionResolutionTimer is running. [[Example]] After the UE detects a PDCCH that schedules a PDSCH with a UE contention resolution ID, or after a PUCCH transmission of HARQ-ACK information reported by the UE for a PDSCH with a UE contention resolution ID, Stop any ra-ResponseWindow.
  • the UE does not initiate an ra-ResponseWindow for a later PRACH repetition until the ra-ContentionResolutionTimer expires or until it detects a PDCCH that schedules a PDSCH with a UE Contention Resolution ID.
  • the UE transmits multiple repetitions of PRACH (Msg1 #1 to #4) and starts a RAR window after each repetition.
  • the conflict resolution window for Msg1#1 overlaps the RAR window for Msg1#3.
  • Msg3#1 for Msg1#1 overlaps with Msg1#3, but Msg3#1 for Msg1#1 does not need to overlap with Msg1#3.
  • the UE may follow at least one of the following several cases.
  • the UE may follow at least one of several options below.
  • Priority is given to monitoring PDCCH scheduling Msg4 with UE contention resolution ID.
  • the UE may monitor PDCCH candidates using TC-RNTI, assuming a DMRS antenna port that is QCLed with reception of SSB/CSI-RS corresponding to the RAR window. If multiple Type 1 PDCCH monitoring occasions are within multiple contention resolution windows, option 2-2 of embodiment #4 may be utilized.
  • RAR monitoring is prioritized.
  • the UE may monitor PDCCH candidates using RA-RNTI, assuming a DMRS antenna port that is QCLed with reception of SSB/CSI-RS corresponding to the RAR window. If multiple Type 1 PDCCH monitoring occasions are within multiple RAR windows, option 2-2 of embodiment #2 may be utilized.
  • the UE can appropriately determine the contention resolution window and the RAR window.
  • the UE reports only one HARQ-ACK information bit for the PDSCHs in the earliest PUCCH slot of the PUCCH slots for the PDSCHs. If the UE transmits HARQ-ACK information for any PDSCH that includes the UE contention resolution ID, it may not report HARQ-ACK information for other PDSCHs that include the UE contention resolution ID.
  • the UE transmits multiple repetitions of PRACH (Msg1 #1, #2).
  • Msg1 #1, #2 When the UE transmits HARQ-ACK information for Msg4#1 based on Msg#1 on the PUCCH, the UE does not transmit HARQ-ACK information for Msg4#2 based on Msg1#2.
  • the UE reports HARQ-ACK information for each PDSCH in the corresponding PUCCH slot.
  • the UE transmits multiple repetitions of PRACH (Msg1 #1, #2).
  • the UE transmits HARQ-ACK information for Msg4#1 based on Msg#1 on PUCCH, and transmits HARQ-ACK information for Msg4#2 based on Msg1#2 on PUCCH.
  • the PUCCH (slot) of HARQ-ACK information for Msg4#2 is different from the PUCCH (slot) of HARQ-ACK information for Msg4#1, but the PUCCH (slot) of HARQ-ACK information for Msg4#1 is ) may be the same as
  • the UE may follow any of several options below.
  • the UE does not expect more than one PDSCH (multi-PDSCH) with (corresponding) UE contention resolution IDs mapped to the same PUCCH slot.
  • the UE reports only 1 bit of HARQ-ACK information for its multiple PDSCHs.
  • the 1-bit information is selected by the first/last PDCCH/PDSCH (or randomly selected PDCCH/PDSCH, or by a method depending on the UE implementation) among the plurality of PDCCH/PDSCHs corresponding to the PUCCH slot.
  • the ACK/NACK may be an ACK/NACK for a PDCCH/PDSCH), or may be obtained from a plurality of ACK/NACK bits for the plurality of PDSCHs using a logical product or a logical sum operation.
  • the UE may report up to X HARQ-ACK information bits for multiple PDSCHs.
  • the default PUCCH resource before individual PUCCH resource configuration may be expanded. PUCCH resources with PF2/3/4 may be added in the default PUCCH resource table.
  • the maximum number may define a maximum number of possible values for UE capability reporting.
  • the UE can appropriately report HARQ-ACK information for multiple PDSCHs including the UE contention resolution ID.
  • the different multiple cases may include, for example, a case where multiple PRACH repetitions use the same beam, and a case where multiple PRACH repetitions use different multiple beams.
  • Embodiment #2-2 replaces "RAR Window” with “Conflict Resolution Window”, replaces "RA-RNTI” with “TC-RNTI”, and replaces "RAR” with "Schedule PDSCH with UE Contention Resolution ID”.
  • DCI can be used in cases where multiple conflict resolution windows overlap.
  • Embodiment #2-2 replaces "RAR window” with “RAR window/conflict resolution window”, replaces "RA-RNTI” with “RA-RNTI/TC-RNTI”, and replaces "RAR” with “RAR”.
  • a DCI that schedules a PDSCH with a UE contention resolution ID can be used in the case where the contention resolution window and the RAR window overlap.
  • Notification of information to UE is performed using physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/channels (e.g. PDCCH, PDSCH, reference signals), or a combination thereof. It's okay.
  • NW Network
  • BS Base Station
  • the MAC CE may be identified by including a new logical channel ID (LCID), which is not specified in the existing standard, in the MAC subheader.
  • LCID logical channel ID
  • the above notification When the above notification is performed by a DCI, the above notification includes a specific field of the DCI, a radio network temporary identifier (Radio Network Temporary Identifier (RNTI)), the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • notification of any information to the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
  • the notification of any information from the UE (to the NW) in the above embodiments is performed using physical layer signaling (e.g. UCI), upper layer signaling (e.g. , RRC signaling, MAC CE), specific signals/channels (eg, PUCCH, PUSCH, PRACH, reference signals), or a combination thereof.
  • physical layer signaling e.g. UCI
  • upper layer signaling e.g. , RRC signaling, MAC CE
  • specific signals/channels eg, PUCCH, PUSCH, PRACH, reference signals
  • the MAC CE may be identified by including a new LCID that is not defined in the existing standard in the MAC subheader.
  • the above notification may be transmitted using PUCCH or PUSCH.
  • notification of arbitrary information from the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the embodiments described above may be applied if certain conditions are met.
  • the specific conditions may be specified in the standard, or may be notified to the UE/BS using upper layer signaling/physical layer signaling.
  • At least one of the embodiments described above may be applied only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: - Support for multiple RARs for multiple PRACH repetitions with same beam/different beams. - Support for common/individual ra-ResponseWindow for multiple PRACH repetitions. - Support for transmission of multiple Msg3 PUSCH for multiple RARs. - Support for common/individual ra-ContentionResolutionTimer for multiple Msg3 PUSCH (or multiple PRACH repeats). - Support for overlapping RAR and conflict resolution windows. - Support for handling more than one DCI format with CRC scrambled by RA-RNTI within one slot. - Maximum number of DCI formats with CRC scrambled by RA-RNTI that the UE can process within one slot.
  • the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency) or a capability that is applied across all frequencies (e.g., cell, band, band combination, BWP, component carrier, etc.). or a combination thereof), or it may be a capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2). Alternatively, it may be a capability for each subcarrier spacing (SCS), or a capability for each Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • SCS subcarrier spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • the UE configures/activates specific information related to the embodiment described above (or performs the operation of the embodiment described above) by upper layer signaling/physical layer signaling. / May be applied when triggered.
  • the specific information may be information indicating that the functions of each embodiment are enabled, arbitrary RRC parameters for a specific release (for example, Rel. 18/19), or the like.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
  • a receiving unit that receives a plurality of random access responses (RARs) for a plurality of repetitions of a physical random access channel (PRACH), respectively;
  • a terminal comprising: a control unit that controls transmission of a plurality of physical uplink shared channels (PUSCH) scheduled by the plurality of RARs.
  • PUSCH physical uplink shared channels
  • the control unit receives a plurality of physical downlink shared channels corresponding to the plurality of repetitions, and reports one or more Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) information for the plurality of physical downlink shared channels.
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the core network 30 includes, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management Function (SMF), Unified Data Management (UDM), Application Function (AF), Data Network (DN), and Location. It may also include network functions (NF) such as Management Function (LMF) and Operation, Administration and Maintenance (Management) (OAM). Note that multiple functions may be provided by one network node. Further, communication with an external network (eg, the Internet) may be performed via the DN.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AF Application Function
  • DN Data Network
  • NF network functions
  • NF network functions
  • LMF Management Function
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 13 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 is the receiving power (for example, the Reference Signal Received Power (RSRP)), the receiving quality (eg, the Reference Signal Received Quality (RSRQ), Signal To Interference Plus noisy. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20.
  • signals backhaul signaling
  • devices included in the core network 30 for example, network nodes providing NF, other base stations 10, etc.
  • User data user plane data
  • control plane data etc. may be acquired and transmitted.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may control reception of a plurality of repetitions of a physical random access channel (PRACH) and one or more random access response (RAR) windows based on at least one of the plurality of repetitions.
  • the transmitter/receiver 120 may transmit RAR in the one or more RAR windows.
  • the transmitting/receiving unit 120 may transmit multiple random access responses (RAR) for multiple repetitions of the physical random access channel (PRACH), respectively.
  • the control unit 110 may control reception of a plurality of physical uplink shared channels (PUSCH) scheduled by the plurality of RARs.
  • PUSCH physical uplink shared channels
  • the control unit 110 may control one or more contention resolution windows for multiple repetitions of the physical random access channel (PRACH).
  • the transceiver 120 may transmit one or more downlink control information formats in the one or more conflict resolution windows.
  • FIG. 14 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the control unit 210 may control transmission of a plurality of repetitions of a physical random access channel (PRACH) and one or more random access response (RAR) windows based on at least one of the plurality of repetitions.
  • the transmitter/receiver 220 may receive RAR in the one or more RAR windows (Embodiment #1/#2).
  • the control unit 210 may operate one RAR window for the plurality of repetitions.
  • the control unit 210 may operate a plurality of RAR windows for each of the plurality of repetitions.
  • the receiving unit 220 may monitor a specific number or less of downlink control information formats within one slot.
  • the transmitter/receiver 220 may receive multiple random access responses (RARs) for multiple repetitions of the physical random access channel (PRACH), respectively.
  • the control unit 210 may control transmission of a plurality of physical uplink shared channels (PUSCH) scheduled by the plurality of RARs (Embodiment #3).
  • PUSCH physical uplink shared channels
  • the plurality of PUSCHs may not overlap in the time domain, or the gap between the plurality of PUSCHs may be longer than the time required for beam switching.
  • the plurality of PUSCHs may not overlap in the time domain, or the gap between the plurality of PUSCHs may be shorter than the time required for beam switching.
  • the control unit 210 may control transmission of a specific PUSCH among the plurality of PUSCHs.
  • the control unit 210 may control one or more contention resolution windows for multiple repetitions of the physical random access channel (PRACH).
  • the transmitter/receiver 220 may receive one or more downlink control information formats in the one or more conflict resolution windows (Embodiment #4/#5/#6).
  • a plurality of conflict resolution windows corresponding to the plurality of repetitions may be allowed to overlap in the time domain.
  • the one or more conflict resolution windows and a random access response (RAR) window may be allowed to overlap in the time domain.
  • the control unit 210 receives a plurality of physical downlink shared channels corresponding to the plurality of repetitions, and receives one or more Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) information for the plurality of physical downlink shared channels. Reporting and may be controlled.
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 15 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • slot etc.
  • TTI that is shorter than a normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each of which is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 16 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices for providing (outputting) various information such as driving information, traffic information, and entertainment information, such as car navigation systems, audio systems, speakers, displays, televisions, and radios, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, (display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, (display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified,
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • the i-th (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest” can be interpreted as “the i-th highest”). may be read interchangeably).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to one aspect of the present disclosure comprises: a control unit which controls one or more competition resolution windows with respect to a plurality of repetitions of a physical random access channel (PRACH); and a reception unit which receives one or more downlink control information formats in the one or more competition resolution windows. According to one aspect of the present disclosure, the coverage of a random access procedure can be improved.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates, lower delays, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) is a specification for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel. 8, 9). was made into
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (for example, also referred to as 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 or later) are also being considered. .
 将来の無線通信システム(例えば、NR)において、カバレッジの改善が検討されている。 Improving coverage is being considered in future wireless communication systems (for example, NR).
 しかしながら、カバレッジ改善のためのランダムアクセス手順が明らかでない。このようなランダムアクセス手順が明らかでなければ、通信スループットが低下するおそれがある。 However, the random access procedure for improving coverage is not clear. If such a random access procedure is not clear, communication throughput may decrease.
 そこで、本開示は、ランダムアクセス手順のカバレッジを改善する端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that improve the coverage of random access procedures.
 本開示の一態様に係る端末は、物理ランダムアクセスチャネル(PRACH)の複数の繰り返しに対し、1つ以上の競合解決ウィンドウを制御する制御部と、前記1つ以上の競合解決ウィンドウにおいて、1つ以上の下りリンク制御情報フォーマットを受信する受信部と、を有する。 A terminal according to an aspect of the present disclosure includes a control unit that controls one or more contention resolution windows for a plurality of repetitions of a physical random access channel (PRACH); and a receiving unit that receives the above downlink control information format.
 本開示の一態様によれば、ランダムアクセス手順のカバレッジを改善できる。 According to one aspect of the present disclosure, coverage of random access procedures can be improved.
図1は、RACH設定情報要素の一例を示す。FIG. 1 shows an example of a RACH configuration information element. 図2A及び2Bは、PRACHオケージョン及びビームの関連付けの一例を示す。2A and 2B illustrate an example of PRACH occasion and beam association. 図3は、個別のPUCCHリソース設定前の複数PUCCHリソースセットの一例を示す。FIG. 3 shows an example of a plurality of PUCCH resource sets before individual PUCCH resources are configured. 図4A及び4Bは、問題1/2の一例を示す。4A and 4B show an example of problem 1/2. 図5A及び5Bは、問題2/4の一例を示す。Figures 5A and 5B show an example of problem 2/4. 図6は、問題5の一例を示す。FIG. 6 shows an example of problem 5. 図7A及び7Bは、実施形態#1のオプション1に係るランダムアクセス手順の一例を示す。7A and 7B illustrate an example of a random access procedure according to option 1 of embodiment #1. 図8は、実施形態#1のオプション1に係るランダムアクセス手順の別の一例を示す。FIG. 8 shows another example of the random access procedure according to option 1 of embodiment #1. 図9は、実施形態#1のオプション2に係るランダムアクセス手順の一例を示す。FIG. 9 shows an example of a random access procedure according to option 2 of embodiment #1. 図10は、実施形態#5に係るランダムアクセス手順の一例を示す。FIG. 10 shows an example of a random access procedure according to embodiment #5. 図11A及び11Bは、実施形態#6に係るランダムアクセス手順の一例を示す。11A and 11B show an example of a random access procedure according to embodiment #6. 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図13は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of the configuration of a base station according to an embodiment. 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. 図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 15 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. 図16は、一実施形態に係る車両の一例を示す図である。FIG. 16 is a diagram illustrating an example of a vehicle according to an embodiment.
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
(TCI, spatial relations, QCL)
In NR, the UE performs reception processing (e.g., reception, demapping, demodulation, Controlling at least one of decoding), transmission processing (eg, at least one of transmission, mapping, precoding, modulation, and encoding) is being considered.
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。 The TCI states may represent those that apply to downlink signals/channels. What corresponds to the TCI state applied to uplink signals/channels may be expressed as a spatial relation.
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。 The TCI state is information regarding quasi-co-location (QCL) of signals/channels, and may also be called spatial reception parameters, spatial relation information, etc. The TCI state may be set in the UE on a per-channel or per-signal basis.
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。 QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, the Doppler shift, Doppler spread, and average delay are calculated between these different signals/channels. ), delay spread, and spatial parameters (e.g., spatial Rx parameters) can be assumed to be the same (QCL with respect to at least one of these). You may.
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。 Note that the spatial reception parameters may correspond to the UE's reception beam (eg, reception analog beam), and the beam may be identified based on the spatial QCL. QCL (or at least one element of QCL) in the present disclosure may be read as sQCL (spatial QCL).
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
A plurality of types (QCL types) may be defined for QCL. For example, four QCL types A-D may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be referred to as QCL parameters) are shown below:
・QCL type A (QCL-A): Doppler shift, Doppler spread, average delay and delay spread,
・QCL type B (QCL-B): Doppler shift and Doppler spread,
・QCL type C (QCL-C): Doppler shift and average delay,
- QCL type D (QCL-D): Spatial reception parameters.
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。 For the UE to assume that one Control Resource Set (CORESET), channel or reference signal is in a particular QCL (e.g. QCL type D) relationship with another CORESET, channel or reference signal, It may also be called a QCL assumption.
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。 The UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for the signal/channel based on the TCI state or QCL assumption of the signal/channel.
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。 The TCI state may be, for example, information regarding the QCL between a target channel (in other words, a reference signal (RS) for the channel) and another signal (for example, another RS). . The TCI state may be set (indicated) by upper layer signaling, physical layer signaling, or a combination thereof.
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。 The physical layer signaling may be, for example, downlink control information (DCI).
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。 Channels for which TCI states or spatial relationships are set (specified) are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), and Uplink Shared Channel (Physical Uplink Shared Channel). The channel may be at least one of a physical uplink control channel (PUCCH) and a physical uplink control channel (PUCCH).
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。 In addition, the RS that has a QCL relationship with the channel is, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding The signal may be at least one of a tracking reference signal (SRS), a tracking CSI-RS (also referred to as a tracking reference signal (TRS)), and a QCL detection reference signal (also referred to as a QRS).
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。 The SSB is a signal block that includes at least one of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH). SSB may be called SS/PBCH block.
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。 An RS of QCL type X in a TCI state may mean an RS that has a QCL type It's okay.
(初期アクセス手順)
 初期アクセス手順において、UE(RRC_IDLEモード)は、SS/PBCHブロック(SSB)の受信、Msg.1(PRACH/ランダムアクセスプリアンブル/プリアンブル)の送信、Msg.2(PDCCH、random access response(RAR)を含むPDSCH)の受信、Msg.3(RAR ULグラントによってスケジュールされるPUSCH)の送信、Msg.4(PDCCH、UE contention resolution identityを含むPDSCH)の受信、を行う。その後、UEから基地局(ネットワーク)によってMsg.4に対するACKが送信されるとRRC接続が確立される(RRC_CONNECTEDモード)。
(Initial access procedure)
In the initial access procedure, the UE (RRC_IDLE mode) receives SS/PBCH blocks (SSB), Msg. 1 (PRACH/random access preamble/preamble) transmission, Msg. 2 (PDCCH, PDSCH including random access response (RAR)), Msg. 3 (PUSCH scheduled by RAR UL grant) transmission, Msg. 4 (PDCCH, PDSCH including UE contention resolution identity). After that, Msg. When an ACK for 4 is sent, an RRC connection is established (RRC_CONNECTED mode).
 SSBの受信は、PSS検出、SSS検出、PBCH-DMRS検出、PBCH受信、を含む。PSS検出は、物理セルID(PCI)の一部の検出と、OFDMシンボルタイミングの検出(同期)と、(粗い)周波数同期と、を行う。SSS検出は、物理セルIDの検出を含む。PBCH-DMRS検出は、ハーフ無線フレーム(5ms)内におけるSSBインデックス(の一部)の検出を含む。PBCH受信は、system frame number(SFN)及び無線フレームタイミング(SSBインデックス)の検出と、remaining minimum system information(RMSI、SIB1)受信用の設定情報の受信と、UEがそのセル(キャリア)にキャンプできるか否かの認識と、を含む。 SSB reception includes PSS detection, SSS detection, PBCH-DMRS detection, and PBCH reception. PSS detection performs detection of part of the physical cell ID (PCI), detection (synchronization) of OFDM symbol timing, and (coarse) frequency synchronization. SSS detection includes detection of physical cell ID. PBCH-DMRS detection involves detection of (part of) the SSB index within a half radio frame (5ms). PBCH reception involves detecting the system frame number (SFN) and radio frame timing (SSB index), receiving configuration information for receiving remaining minimum system information (RMSI, SIB1), and allowing the UE to camp in that cell (carrier). including the recognition of whether or not.
 SSBは、20RBの帯域と4シンボルの時間を有する。SSBの送信周期は、{5、10、20、40、80、160}msから設定可能である。ハーフフレームにおいて、周波数レンジ(FR1、FR2)に基づき、SSBの複数のシンボル位置が規定されている。 SSB has a band of 20 RB and a time of 4 symbols. The SSB transmission cycle can be set from {5, 10, 20, 40, 80, 160} ms. In a half frame, a plurality of SSB symbol positions are defined based on the frequency range (FR1, FR2).
 PBCHは、56ビットのペイロードを有する。80msの周期内にPBCHのN個の繰り返しが送信される。NはSSB送信周期に依存する。 PBCH has a 56-bit payload. N repetitions of the PBCH are transmitted within a period of 80ms. N depends on the SSB transmission period.
 システム情報は、PBCHによって運ばれるMIBと、RMSI(SIB1)と、other system information(OSI)と、からなる。SIB1は、RACH設定、RACH手順を行うための情報を含む。SSBとSIB1用PDCCHモニタリングリソースとの間の時間/周波数のリソースの関係は、PBCHによって設定される。 System information consists of MIB carried by PBCH, RMSI (SIB1), and other system information (OSI). SIB1 includes information for performing RACH settings and RACH procedures. The time/frequency resource relationship between the SSB and the PDCCH monitoring resource for SIB1 is set by the PBCH.
 ビームコレスポンデンスを用いる基地局は、SSB送信周期毎に複数のSSBを複数のビームを用いてそれぞれ送信する。複数のSSBは、複数のSSBインデックスをそれぞれ有する。1つのSSBを検出したUEは、そのSSBインデックスに関連付けられたRACHオケージョンにおいて、PRACHを送信し、RARウィンドウにおいて、RARを受信する。 A base station that uses beam correspondence transmits multiple SSBs using multiple beams in each SSB transmission period. Each of the plurality of SSBs has a plurality of SSB indexes. A UE that detects one SSB transmits a PRACH in the RACH occasion associated with that SSB index and receives a RAR in the RAR window.
(ビームとカバレッジ)
 高周波数帯においては、同期信号/参照信号に対してビームフォーミングを適用しなければ、カバレッジが狭くなり、UEが基地局を発見することが難しくなる。一方、カバレッジを確保するために、同期信号/参照信号にビームフォーミングを適用すると、特定の方向には強い信号が届くようになるが、それ以外の方向にはさらに信号が届きにくくなる。UEの接続前の基地局において、UEが存在する方向が不明であるとすると、適切な方向のみへのビームを用いて、同期信号/参照信号を送信することは不可能である。基地局が、異なる方向のビームをそれぞれ有する複数の同期信号/参照信号を送信し、UEが、どのビームを発見したかを認識する方法が考えられる。カバレッジのために細い(狭い)ビームを用いると、多くの同期信号/参照信号を送信する必要があるため、オーバーヘッドが増加し、周波数利用効率が低下するおそれがある。
(beam and coverage)
In high frequency bands, if beamforming is not applied to the synchronization signal/reference signal, the coverage will be narrow and it will be difficult for the UE to discover the base station. On the other hand, if beamforming is applied to the synchronization signal/reference signal to ensure coverage, a strong signal will reach in a specific direction, but it will be more difficult for the signal to reach in other directions. If the direction in which the UE exists is unknown at the base station before the UE is connected, it is impossible to transmit synchronization signals/reference signals using beams directed only in appropriate directions. A possible method is that the base station transmits multiple synchronization signals/reference signals, each having beams in different directions, and the UE recognizes which beam it has discovered. Using thin (narrow) beams for coverage requires transmitting many synchronization/reference signals, which may increase overhead and reduce spectrum efficiency.
 ビーム(同期信号/参照信号)の数を減らしてオーバーヘッドを抑えるために、太い(広い)ビームを用いると、カバレッジが狭くなる。 If thicker (wider) beams are used to reduce the number of beams (synchronization signals/reference signals) and suppress overhead, the coverage will become narrower.
 将来の無線通信システム(例えば、6G)においては、ミリ波やテラヘルツ波などの周波数帯の利用がさらに進むと考えられる。多数の細いビームを用いて、セルのエリア/カバレッジを構築することによって、通信サービスを提供することが考えられる。 In future wireless communication systems (for example, 6G), it is thought that the use of frequency bands such as millimeter waves and terahertz waves will further advance. It is conceivable to provide communication services by building the area/coverage of cells using a large number of narrow beams.
 既存のFR2を用い、エリアを拡大すること、既存のFR2よりも高い周波数帯を用いること、が考えられる。これらの実現のために、マルチTRP、reconfigurable intelligent surface(RIS)などに加え、ビーム管理の改善が好ましい。 It is possible to use the existing FR2 and expand the area, or to use a higher frequency band than the existing FR2. To realize these, improvements in beam management are preferred in addition to multi-TRP, reconfigurable intelligent surfaces (RIS), etc.
 frequency range(FR)2用のPRACH拡張を含むカバレッジ拡張が検討されている。例えば、同じビーム又は異なる複数ビームを用いるPRACH繰り返し(repetition)が検討されている。このPRACH拡張は、4ステップRACH手順に適用されてもよいし、FR1に適用されてもよい。 Coverage extension including PRACH extension for frequency range (FR) 2 is being considered. For example, PRACH repetition using the same beam or different beams is being considered. This PRACH extension may be applied to the 4-step RACH procedure or to FR1.
 PRACH拡張が、短PRACHフォーマットに適用されてもよいし、他のフォーマットに適用されてもよい。 PRACH extension may be applied to the short PRACH format or to other formats.
(PRACH)
 図1のように、共通RACH設定(RACH-ConfigCommon)は、一般RACH設定(rach-ConfigGeneric)と、RAプリアンブル総数(totalNumberOfRA-Preambles)と、RACHオケージョン毎のSSB及びSSB毎のcontention-based(CB)プリアンブル(ssb-perRACH-OccasionAndCB-PreamblesPerSSB)と、を含んでもよい。rach-ConfigGenericは、PRACH設定インデックス(prach-ConfigurationIndex)と、メッセージ1FDM(msg1-FDM、1つの時間インスタンス内においてFDMされるPRACHオケージョンの数)と、を含んでもよい。ssb-perRACH-OccasionAndCB-PreamblesPerSSBは、RACHオケージョン毎のSSB数1/8(oneEighth、8個のRACHオケージョンに1つのSSBが関連付けられること)に対し、SSB毎のCBプリアンブルの数を含んでもよい。
(PRACH)
As shown in Figure 1, the common RACH configuration (RACH-ConfigCommon) includes the general RACH configuration (rach-ConfigGeneric), the total number of RA preambles (totalNumberOfRA-Preambles), the SSB for each RACH occasion, and the contention-based (CB) for each SSB. ) preamble (ssb-perRACH-OccasionAndCB-PreamblesPerSSB). The rach-ConfigGeneric may include a PRACH configuration index (prach-ConfigurationIndex) and a message 1FDM (msg1-FDM, number of PRACH occasions to be FDMed within one time instance). ssb-perRACH-OccasionAndCB-PreamblesPerSSB may include the number of CB preambles for each SSB for the number of SSBs for each RACH occasion 1/8 (oneEighth, one SSB is associated with eight RACH occasions).
 タイプ1ランダムアクセス手順(4ステップランダムアクセス手順、メッセージ1/2/3/4)に対し、UEは、1つのPRACHオケージョンに関連付けられるSS/PBCHブロックの数Nと、有効なPRACHオケージョン毎、SS/PBCHブロック毎のCBプリアンブルの数Rとを、ssb-perRACH-OccasionAndCB-PreamblesPerSSBによって適用されてもよい。 For type 1 random access procedure (4-step random access procedure, messages 1/2/3/4), the UE determines the number N of SS/PBCH blocks associated with one PRACH occasion and the SS /The number R of CB preambles per PBCH block may be applied by ssb-perRACH-OccasionAndCB-PreamblesPerSSB.
 タイプ1ランダムアクセス手順に対し、又は、タイプ1ランダムアクセス手順と独立したPRACHオケージョンの設定を伴うタイプ2ランダムアクセス手順(2ステップランダムアクセス手順、メッセージA/B)に対し、もしN<1の場合、1つのSS/PBCHブロックが1/N個の連続する有効なRACHオケージョンにマップされ、有効なPRACHオケージョン毎にSS/PBCHブロックインデックスに関連付けられた連続インデックスを伴うR個のCBプリアンブルが、プリアンブルインデックス0から始まる。もしN>=1の場合、有効なPRACHオケージョン毎にSS/PBCHブロックインデックスn(0<=n<-N-1)に関連付けられた連続インデックスを伴うR個のCBプリアンブルが、プリアンブルインデックスn・N_preamble^total/Nから始まる。ここで、N_preamble^totalは、タイプ1ランダムアクセス手順に対し、totalNumberOfRA-Preamblesによって与えられ、タイプ1ランダムアクセス手順と独立したPRACHオケージョンの設定を伴うタイプ2ランダムアクセス手順に対し、msgA-TotalNumberOfRA-Preamblesによって与えられる。N_preamble^totalは、Nの倍数である。 For a type 1 random access procedure or for a type 2 random access procedure (two-step random access procedure, message A/B) with setting of a PRACH occasion independent of the type 1 random access procedure, if N < 1. , one SS/PBCH block is mapped to 1/N consecutive valid RACH occasions, and for each valid PRACH occasion, R CB preambles with consecutive indexes associated with the SS/PBCH block index are preambled. Starting from index 0. If N>=1, then for each valid PRACH occasion R CB preambles with consecutive indexes associated with SS/PBCH block index n (0<=n<-N-1) are created with preamble index n. N_preamble^total/Starts with N. Here, N_preamble^total is given by totalNumberOfRA-Preambles for type 1 random access procedure and msgA-TotalNumberOfRA-Preambles for type 2 random access procedure with configuration of PRACH occasion independent of type 1 random access procedure. given by. N_preamble^total is a multiple of N.
 フレーム0から始まり、SS/PBCHブロックをPRACHオケージョンにマップするための、関連付け期間(association period)は、NTx SSB個のSS/PBCHブロックインデックスがその関連付け期間内において少なくとも1回、PRACHオケージョンにマップされるように、PRACH設定期間(configuration period)と関連付け期間(PRACH設定期間の数)との関係(仕様に規定される関係)に従ってPRACH設定期間によって決定されるセット内の最小値である。ここで、UEは、SIB1内の、又は、共通サービングセル設定(ServingCellConfigCommon)内の、バースト内SSB位置(ssb-PositionsInBurst)の値からNTx SSBを得る。もし関連付け期間内のSS/PBCHブロックインデックスからPRACHオケージョンへの整数回のマッピングサイクルの後、NTx SSB個のSS/PBCHブロックインデックスへマップされない、PRACHオケージョン又はPRACHプリアンブルのセットがある場合、1つのSS/PBCHブロックインデックスも、PRACHオケージョン又はPRACHプリアンブルのそのセットへマップされない。関連付けパターン期間は、1つ以上の関連付け期間を含み、PRACHオケージョン及びSS/PBCHブロックインデックスの間のパターンが多くとも160ms毎に繰り返すように決定される。整数回の関連付け期間の後の、SS/PBCHブロックインデックスに関連付けられないPRACHオケージョンがあれば、そのPRACHオケージョンはPRACHに用いられない。 Starting from frame 0, the association period for mapping SS/PBCH blocks to PRACH occasions is such that N Tx SSB SS/PBCH block indexes are mapped to a PRACH occasion at least once within the association period. is the minimum value in the set determined by the PRACH configuration period according to the relationship between the PRACH configuration period and the association period (number of PRACH configuration periods) (the relationship defined in the specification). Here, the UE obtains N Tx SSB from the value of SSB positions in bursts (ssb-PositionsInBurst) in SIB1 or in the common serving cell configuration (ServingCellConfigCommon). If there is a set of PRACH occasions or PRACH preambles that are not mapped to N Tx SSB SS/PBCH block indices after an integer number of mapping cycles from SS/PBCH block index to PRACH occasion within the association period The SS/PBCH block index is also not mapped to a PRACH occasion or its set of PRACH preambles. The association pattern period includes one or more association periods and is determined such that the pattern between PRACH occasion and SS/PBCH block index repeats at most every 160 ms. If there is a PRACH occasion that is not associated with an SS/PBCH block index after an integer number of association periods, that PRACH occasion is not used for PRACH.
 上位レイヤによってトリガされたPRACH送信(PDCCHオーダによってトリガされないPRACH送信)の場合、もしssb-ResourceListが提供されると、PRACHマスクインデックスはra-ssb-OccasionMaskIndexによって示される。そのra-ssb-OccasionMaskIndexは、PRACHオケージョンが、選択されたSS/PBCHブロックインデックスに関連付けられているPRACH送信のための、そのPRACHオケージョンを示す。 For PRACH transmissions triggered by higher layers (PRACH transmissions not triggered by PDCCH order), if ssb-ResourceList is provided, the PRACH mask index is indicated by ra-ssb-OccasionMaskIndex. The ra-ssb-OccasionMaskIndex indicates the PRACH occasion for the PRACH transmission that is associated with the selected SS/PBCH block index.
 PRACHオケージョンは、対応するSS/PBCHブロックインデックス毎に連続してマッピングされる。マスクインデックス値によって示されるPRACHオケージョンのインデックス付けは、SS/PBCHブロックインデックス毎、連続するPRACHオケージョンのマッピングサイクル毎に、リセットされる。UEは、利用可能な最初のマッピングサイクルにおいて、指示されたSS/PBCHブロックインデックスに対するPRACHマスクインデックス値によって示されるPRACHオケージョンを、PRACH送信用に選択する。 PRACH occasions are mapped consecutively for each corresponding SS/PBCH block index. The PRACH occasion indexing indicated by the mask index value is reset every SS/PBCH block index and every successive PRACH occasion mapping cycle. The UE selects the PRACH occasion indicated by the PRACH mask index value for the indicated SS/PBCH block index for PRACH transmission in the first available mapping cycle.
 指示されたプリアンブルインデックスに対し、PRACHオケージョンの順序は、以下である。
・第1に、周波数多重されたPRACHオケージョンのための周波数リソースインデックスの増加順。
・第2に、PRACHスロット内の時間多重されたPRACHオケージョンのための時間リソースインデックスの増加順。
・第3に、PRACHスロットのインデックスの昇順。
For the indicated preamble index, the order of PRACH occasions is as follows.
- First, increasing order of frequency resource index for frequency multiplexed PRACH occasions.
- Second, increasing order of time resource index for time multiplexed PRACH occasions within a PRACH slot.
- Third, ascending order of PRACH slot index.
 上位レイヤからの要求に応じてトリガされるPRACH送信に対し、もしcsirs-ResourceListが提供されている場合、ra-OccasionListの値は、PRACH送信のPRACHオケージョンのリストを示し、PRACHオケージョンはcsi-RSによって示された選択されたCSI-RSインデックスに関連付けられる。ra-OccasionListによって示されるPRACHオケージョンのインデックス付けは、関連付けパターン期間毎にリセットされる。 For PRACH transmissions triggered in response to requests from upper layers, if csirs-ResourceList is provided, the value of ra-OccasionList indicates the list of PRACH occasions for PRACH transmissions, and the PRACH occasions are csi-RS is associated with the selected CSI-RS index indicated by . The indexing of PRACH occasions indicated by ra-OccasionList is reset every association pattern period.
 PRACH設定期間10、20、40、80、160[msec]に対し、関連付け期間は、それぞれ{1,2,4,8,16}、{1,2,4,8}、{1,2,4}、{1,2}、{1}である。 For the PRACH setting period 10, 20, 40, 80, 160 [msec], the association period is {1, 2, 4, 8, 16}, {1, 2, 4, 8}, {1, 2, 4}, {1, 2}, and {1}.
 PRACHマスクインデックス値(msgA-SSB-SharedRO-MaskIndex)の値は、SSBの許容されるPRACHオケージョン(PRACHオケージョンインデックスの値)に関連付けられる。 The value of the PRACH mask index value (msgA-SSB-SharedRO-MaskIndex) is associated with the allowed PRACH occasions of the SSB (the value of the PRACH occasion index).
 図2Aは、上位レイヤパラメータssb-perRACH-OccasionAndCB-PreamblesPerSSBに基づく、PRACHオケージョン(RACHオケージョン(RO))とビーム(SSB/CSI-RS)の関連付けの一例(マッピング1)を示す。ssb-perRACH-OccasionAndCB-PreamblesPerSSBがoneHalf,n16を示し(N=1/2、R=16)、msg1-FDMが4である場合、1つの時間インスタンスに4つのROがFDMされ、1つのSSBが2つのROにマップされる。2つのROにプリアンブルインデックス0から15が関連付けられ、プリアンブルインデックス0から15がSS0Bに関連付けられる。このように、N<1の場合、1つのSSBが複数のROにマップされる。これによって、ビーム毎のROの容量が高められる。 FIG. 2A shows an example (mapping 1) of association between a PRACH occasion (RACH occasion (RO)) and a beam (SSB/CSI-RS) based on the upper layer parameter ssb-perRACH-OccasionAndCB-PreamblesPerSSB. If ssb-perRACH-OccasionAndCB-PreamblesPerSSB indicates oneHalf,n16 (N=1/2, R=16) and msg1-FDM is 4, then 4 ROs are FDMed and 1 SSB is Mapped to two ROs. Two ROs are associated with preamble indices 0 to 15, and preamble indices 0 to 15 are associated with SSOB. Thus, if N<1, one SSB is mapped to multiple ROs. This increases the capacity of the RO per beam.
 図2Bは、上位レイヤパラメータssb-perRACH-OccasionAndCB-PreamblesPerSSBに基づく、ROとビームの関連付けの別の一例(マッピング2)を示す。ssb-perRACH-OccasionAndCB-PreamblesPerSSBがn4,n16を示し(N=4、R=16)、msg1-FDMが4、N_preamble^totalが64である場合、1つの時間インスタンスに4つのROがFDMされ、4つのSSBが1つのROにマップされる。1つのROにSSB0から3に関連付けられる。SSB0にプリアンブルインデックス0から15が関連付けられ、SSB1にプリアンブルインデックス15から31が関連付けられ、SSB2にプリアンブルインデックス32から47がSSB2が関連付けられ、SSB3にプリアンブルインデックス48から63がSSB3が関連付けられる。このように、同じROが異なるSS/PBCHブロックインデックスに関連付けられ、異なるプリアンブルが異なるSS/PBCHブロックインデックスを用いる。基地局は、受信したPRACHによって、関連付けられたSS/PBCHブロックインデックスを区別できる。 FIG. 2B shows another example (mapping 2) of the association between RO and beam based on the upper layer parameter ssb-perRACH-OccasionAndCB-PreamblesPerSSB. If ssb-perRACH-OccasionAndCB-PreamblesPerSSB indicates n4,n16 (N=4, R=16), msg1-FDM is 4, and N_preamble^total is 64, then 4 ROs are FDMed in one time instance, Four SSBs are mapped to one RO. One RO is associated with SSBs 0 to 3. Preamble indexes 0 to 15 are associated with SSB0, preamble indexes 15 to 31 are associated with SSB1, preamble indexes 32 to 47 are associated with SSB2 and SSB3 is associated with preamble indexes 48 to 63, and SSB3 is associated with SSB3. In this way, the same RO is associated with different SS/PBCH block indices and different preambles use different SS/PBCH block indices. The base station can distinguish the associated SS/PBCH block index by the received PRACH.
 ランダムアクセスプリアンブルは、仕様のランダムアクセス設定に規定された時間リソースのみにおいて送信されることができ、FR1であるかFR2であるかと、スペクトラムタイプ(ペアード(paired)スペクトラム/supplementary uplink(SUL)/アンペアード(unpaired)スペクトラム)と、に依存する。PRACH設定インデックスは、上位レイヤパラメータprach-ConfigurationIndexによって、又は、もし設定されればmsgA-PRACH-ConfigurationIndexによって、与えられる。仕様において、PRACH設定インデックスの各値に対し、プリアンブルフォーマット、n_f(フレーム番号) mod x = yにおけるx及びy、サブフレーム番号、開始シンボル、サブフレーム内のPRACHスロット数、PRACHスロット内の時間ドメインPRACHオケージョン数N_t^RA,slot、PRACH継続時間N_dur^RA、の少なくとも1つに関連付けられている。 The random access preamble can only be transmitted on the time resources specified in the random access configuration of the specification, whether it is FR1 or FR2, and the spectrum type (paired spectrum/supplementary uplink (SUL)/unpaired spectrum). (unpaired) spectrum). The PRACH configuration index is given by the upper layer parameter prach-ConfigurationIndex or, if configured, by msgA-PRACH-ConfigurationIndex. In the specification, for each value of the PRACH configuration index, the preamble format, n_f (frame number) mod x and y at y, subframe number, starting symbol, number of PRACH slots in the subframe, time domain in the PRACH slot It is associated with at least one of the PRACH occasion number N_t^RA,slot and the PRACH duration N_dur^RA.
 PRACH繰り返しがシナリオへ適用できるかどうか、異なる目的によってトリガされるRACH手順のタイプは異なる。RACH手順のタイプは、以下の少なくとも1つであってもよい。
・contention-free random access(CFRA)、PDCCHオーダRA(PDCCH ordered RA、PDCCHオーダによって開始される(initiated)RA)、beam failure recovery(BFR)用CFRA、system information(SI)要求用CFRA、同期を伴う再設定(reconfiguration with sync)用CFRAなど。
・contention-based random access(CBRA)、MACエンティティによってトリガされたRA、イベントを伴うRRCによってトリガされたRA、BFR用CBRAなど。
・4ステップRACH。
・2ステップRACH。
Whether PRACH repetition is applicable to the scenarios, the types of RACH procedures triggered by different purposes are different. The type of RACH procedure may be at least one of the following:
・Contention-free random access (CFRA), PDCCH ordered RA (PDCCH ordered RA, RA initiated by PDCCH order), CFRA for beam failure recovery (BFR), CFRA for system information (SI) request, synchronization CFRA for reconfiguration with sync, etc.
- contention-based random access (CBRA), RA triggered by MAC entity, RA triggered by RRC with event, CBRA for BFR, etc.
・4 step RACH.
・2 step RACH.
(PDCCHオーダ)
 DCIフォーマット1_0は、DCIフォーマットの識別子フィールドと、常に1にセットされたビットフィールドと、周波数ドメインリソース割り当て(frequency domain resource assignment)フィールドと、を含む。DCIフォーマット1_0のcyclic redundancy check(CRC)がC-RNTIによってスクランブルされ、周波数ドメインリソース割り当てフィールドが全て1である場合、そのDCIフォーマット1_0は、PDCCHオーダによって開始されるランダムアクセス手順用であり、残りのフィールドは、ランダムアクセスプリアンブル、UL/supplementary Uplink(SUL)インジケータ、SS/PBCHインデックス(SSBインデックス)、PRACHマスクインデックス、予約(reserved)ビット(12ビット)、である。
(PDCCH order)
DCI format 1_0 includes a DCI format identifier field, a bit field that is always set to 1, and a frequency domain resource assignment field. If the cyclic redundancy check (CRC) of DCI format 1_0 is scrambled by C-RNTI and the frequency domain resource allocation field is all ones, then that DCI format 1_0 is for random access procedure initiated by PDCCH order and the rest The fields are random access preamble, UL/supplementary Uplink (SUL) indicator, SS/PBCH index (SSB index), PRACH mask index, and reserved bits (12 bits).
 PDCCHオーダによってトリガされたPRACH送信の場合、PRACHマスクインデックスフィールドは、ランダムアクセスプリアンブルインデックスフィールドの値がゼロでない場合、PRACHオケージョンが、PDCCHオーダのSS/PBCHブロックインデックスフィールドによって示されるSS/PBCHブロックインデックスに関連付けられているPRACH送信のPRACHオケージョンを示す。 For PRACH transmissions triggered by a PDCCH order, the PRACH mask index field specifies that if the value of the Random Access Preamble Index field is non-zero, the PRACH occasion is the SS/PBCH block index indicated by the SS/PBCH block index field of the PDCCH order. Indicates the PRACH occasion of the PRACH transmission associated with.
(MACエンティティにおけるランダムアクセス手順)
 ランダムアクセス手順は、PDCCHオーダ、MACエンティティ自身、又は、仕様に準拠したイベントのためのRRCによって開始される。MACエンティティ内において、任意の時点において進行中のランダムアクセス手順は1つだけである。SCellのランダムアクセス手順は、0b000000と異なるra-PreambleIndexを伴うPDCCHオーダによってのみ開始される。
(Random access procedure in MAC entity)
The random access procedure is initiated by the PDCCH order, by the MAC entity itself, or by RRC for specification compliant events. Only one random access procedure is ongoing within a MAC entity at any given time. The SCell random access procedure is initiated only by PDCCH orders with ra-PreambleIndex different from 0b000000.
 サービングセル上においてランダムアクセス手順が開始された場合、MACエンティティは、以下のことを行う。
・ランダムアクセス手順がPDCCHオーダによって開始され、且つ、PDCCHによって明示的に提供されたra-PreambleIndexが0b000000でない場合、又は、ランダムアクセス手順が同期を伴う再設定(reconfiguration)のために開始され、4ステップRAタイプのコンテンションフリーのランダムアクセスリソースが、ランダムアクセス手順のために選択されたBWPに対し、rach-ConfigDedicatedによって明示的に提供されている場合、RA_TYPEを4-stepRAに設定する。
When a random access procedure is initiated on the serving cell, the MAC entity does the following:
- If a random access procedure is initiated by a PDCCH order and the ra-PreambleIndex explicitly provided by the PDCCH is not 0b000000, or if a random access procedure is initiated for reconfiguration with synchronization, If contention-free random access resources of step RA type are explicitly provided by rach-ConfigDedicated for the BWP selected for the random access procedure, set RA_TYPE to 4-stepRA.
 選択されたRA_TYPEが4-stepRAに設定されている場合、MACエンティティは次のことを行う。
・ra-PreambleIndexがPDCCHから明示的に提供され、且つ、ra-PreambleIndexが0b000000ではない場合、PREAMBLE_INDEXを通知されたra-PreambleIndexにセットし、PDCCHによって通知されたSSBを選択する。
・上記のようにSSBが選択された場合、ra-ssb-OccasionMaskIndexによって与えられた制限によって許可され、選択されたSSBに対応する、PRACHオケージョンから、次に利用可能なPRACHオケージョンを決定する(MACエンティティは、仕様に従って、選択されたSSBに対応して、連続するPRACHオケージョンの中から等確率でランダムにPRACHオケージョンを選択する。MACエンティティは、選択されたSSBに対応する次に利用可能なPRACHオケージョンを決定する場合、測定ギャップの発生の可能性を考慮してもよい)。
If the selected RA_TYPE is set to 4-stepRA, the MAC entity does the following:
- If ra-PreambleIndex is explicitly provided by PDCCH and ra-PreambleIndex is not 0b000000, set PREAMBLE_INDEX to the notified ra-PreambleIndex and select the SSB notified by PDCCH.
- If an SSB is selected as above, determine the next available PRACH occasion from the PRACH occasions allowed by the restriction given by ra-ssb-OccasionMaskIndex and corresponding to the selected SSB (MAC The entity randomly selects a PRACH occasion among consecutive PRACH occasions with equal probability, corresponding to the selected SSB, according to the specification.The MAC entity selects the next available PRACH corresponding to the selected SSB. When determining occasions, the possibility of measurement gaps may be considered).
(PDCCHオーダ受信とPRACH送信の間の時間)
 もしPDCCHオーダによってランダムアクセス手順が開始された場合、UEは、上位レイヤによって要求されれば、仕様に記述されたように、PDCCHオーダ受信の最後のシンボルとPRACH送信の最初のシンボルとの間の時間が、N_(T,2)+Δ_BWPSwitching+Δ_Delay+T_switch[msec]以上である場合(時間条件)の、選択されたPRACHオケージョン内においてPRACHを送信する。ここで、N_(T,2)は、UE処理能力1(UE processing capability 1)のPUSCH準備時間に対応するN_2シンボルの継続時間である。μは、PDCCHオーダのサブキャリア間隔(SCS)設定と、それに対応するPRACH送信のSCS設定と、の間の最小SCS設定に対応すると仮定する。アクティブUL BWPが変化しない場合、Δ_BWPSwitching=0であり、そうでない場合、Δ_BWPSwitchingは仕様に定義される。FR1においてΔ_delay=0.5msecであり、FR2においてΔ_delay=0.25msecである。T_switchは、仕様に定義されているスイッチングギャップ継続時間である。
(Time between PDCCH order reception and PRACH transmission)
If a random access procedure is initiated by a PDCCH order, the UE, if requested by higher layers, PRACH is transmitted within the selected PRACH occasion when the time is greater than or equal to N_(T,2)+Δ_BWPSwitching+Δ_Delay+T_switch [msec] (time condition). Here, N_(T,2) is the duration of N_2 symbols corresponding to the PUSCH preparation time of UE processing capability 1. It is assumed that μ corresponds to the minimum SCS setting between the subcarrier spacing (SCS) setting of the PDCCH order and that of the corresponding PRACH transmission. If the active UL BWP does not change, Δ_BWPSwitching=0, otherwise Δ_BWPSwitching is defined in the specification. In FR1, Δ_delay=0.5 msec, and in FR2, Δ_delay=0.25 msec. T_switch is the switching gap duration defined in the specification.
(PRACHオケージョンの有効(valid)/無効(invalid)の条件(有効条件))
 ペアード(paired)スペクトラム(FDD)又はSULバンドにおいて、全てのPRACHオケージョンが有効である。アンペアード(unpaired)スペクトラム(TDD)において、PRACHオケージョンは、以下の規定1及び2に従ってもよい。
[規定1]
 UEがtdd-UL-DL-ConfigurationCommonを提供されていない場合において、PRACHスロット内のPRACHオケージョンが、PRACHスロット内のSS/PBCHブロックに先行せず、最後のSS/PBCHブロック受信シンボルから少なくともN_gapシンボル後に開始する場合、そのPRACHオケージョンは有効である。ここで、N_gapは仕様において規定されている。channelAccessMode=semistaticが提供された場合、UEが送信しない次のチャネル占有時間の開始前の連続するシンボルのセットと重複しない。SS/PBCHブロックの候補(candidate)SS/PBCHブロックインデックスは、SIB1内の又はServingCellConfigCommon内のssb-PositionsInBurstによって提供されるSS/PBCHブロックインデックスに対応する。
[規定2]
 UEがtdd-UL-DL-ConfigurationCommonを提供されている場合、PRACHスロット内のPRACHオケージョンは、以下の場合に有効である。
・そのPRACHオケージョンがULシンボル内にある。又は、
・そのPRACHオケージョンがPRACHスロット内のSS/PBCHブロックに先行せず、最後のDLシンボルから少なくともN_gapシンボル後、且つ、最後のSS/PBCHブロックシンボルから少なくともN_gapシンボル後に、開始する。ここで、N_gapは仕様に規定される。もしchannelAccessMode=semistaticが提供された場合、そのPRACHオケージョンは、仕様に記載されているように、いかなる送信もあってはならない次のチャネル占有時間の開始前の連続するシンボルのセットと重複しない。SS/PBCHブロックの候補SS/PBCHブロックインデックスは、仕様に記載されているように、SIB1内の又はServingCellConfigCommon内のssb-PositionsInBurstによって提供されるSS/PBCHブロックインデックスに対応する。
(PRACH occasion valid/invalid conditions (valid conditions))
All PRACH occasions are valid in paired spectrum (FDD) or SUL bands. In unpaired spectrum (TDD), PRACH occasions may comply with regulations 1 and 2 below.
[Regulation 1]
In case the UE is not provided with tdd-UL-DL-ConfigurationCommon, the PRACH occasion within the PRACH slot does not precede the SS/PBCH block within the PRACH slot and is at least N_gap symbols from the last SS/PBCH block received symbol. If it starts later, the PRACH occasion is valid. Here, N_gap is defined in the specifications. If channelAccessMode=semistatic is provided, there is no overlap with the set of consecutive symbols before the start of the next channel occupation time that the UE does not transmit. The candidate SS/PBCH block index of the SS/PBCH block corresponds to the SS/PBCH block index provided by ssb-PositionsInBurst in SIB1 or in ServingCellConfigCommon.
[Regulation 2]
If the UE is provided with tdd-UL-DL-ConfigurationCommon, the PRACH occasion within the PRACH slot is valid in the following cases:
- The PRACH occasion is within the UL symbol. Or
- The PRACH occasion does not precede the SS/PBCH block in the PRACH slot, but starts at least N_gap symbols after the last DL symbol and at least N_gap symbols after the last SS/PBCH block symbol. Here, N_gap is defined in the specifications. If channelAccessMode=semistatic is provided, the PRACH occasion does not overlap with the set of consecutive symbols before the start of the next channel occupation time, where there should be no transmission, as stated in the specification. The candidate SS/PBCH block index of the SS/PBCH block corresponds to the SS/PBCH block index provided by ssb-PositionsInBurst in SIB1 or in ServingCellConfigCommon, as described in the specification.
(RARウィンドウ)
 RA応答ウィンドウ(ra-ResponseWindow)は、RA応答(RAR)をモニタするための時間ウィンドウである(special cell(SpCell)のみ)。RA競合解決タイマ(ra-ContentionResolutionTimer)は、RA競合解決のタイマである(SpCellのみ)。Msg.B応答ウィンドウは、2ステップRAタイプのためのRA応答(RAR)をモニタするための時間ウィンドウである(SpCellのみ)。
(RAR window)
The RA response window (ra-ResponseWindow) is a time window for monitoring the RA response (RAR) (special cell (SpCell) only). The RA contention resolution timer (ra-ContentionResolutionTimer) is a timer for RA contention resolution (SpCell only). Msg. B response window is a time window for monitoring RA response (RAR) for two-step RA type (SpCell only).
 本開示において、SpCell、primary cell(PCell)、primary secondary cell(PSCell)、は互いに読み替えられてもよい。 In the present disclosure, SpCell, primary cell (PCell), and primary secondary cell (PSCell) may be read interchangeably.
 RAプリアンブルが送信されると、測定ギャップが発生する可能性に関わらず、MACエンティティは、以下の動作1から3を行う。 Once the RA preamble is transmitted, the MAC entity performs actions 1 to 3 below, regardless of the possibility that a measurement gap may occur.
[動作1]
 もしBFRリクエスト用のコンテンションフリーRAプリアンブルがそのMACエンティティによって送信された場合、そのMACエンティティは、以下の動作1-1及び1-2を行う。
[[動作1-1]]そのMACエンティティは、RAプリアンブル送信の終了からの最初のPDCCHオケージョンにおいて、BFR設定(BeamFailureRecoveryConfig)内に設定されたra-ResponseWindowを開始する。
[[動作1-2]]そのMACエンティティは、ra-ResponseWindowが動作している間、C-radio network temporary identifier(RNTI)によって識別されるSpCellのBFR用サーチスペースID(recoverySearchSpaceId)によって指示されたサーチスペースにおいてPDCCH送信をモニタする。
[Operation 1]
If a contention-free RA preamble for a BFR request is sent by the MAC entity, the MAC entity performs the following actions 1-1 and 1-2.
[[Operation 1-1]] The MAC entity starts the ra-ResponseWindow configured in the BFR configuration (BeamFailureRecoveryConfig) in the first PDCCH occasion from the end of the RA preamble transmission.
[[Operation 1-2]] While the ra-ResponseWindow is operating, the MAC entity is indicated by the search space ID (recoverySearchSpaceId) for BFR of the SpCell identified by the C-radio network temporary identifier (RNTI). Monitor PDCCH transmission in the search space.
[動作2]
 そうでない場合、そのMACエンティティは、以下の動作2-1及び2-2を行う。
[[動作2-1]]そのMACエンティティは、RAプリアンブル送信の終了からの最初のPDCCHオケージョンにおいて、共通RACH設定(RACH-ConfigCommon)内に設定されたra-ResponseWindowを開始する。
[[動作2-2]]そのMACエンティティは、ra-ResponseWindowが動作している間、RA-RNTIによって識別されるRAR用のSpCellのPDCCH送信をモニタする。
[Operation 2]
Otherwise, the MAC entity performs the following actions 2-1 and 2-2.
[[Operation 2-1]] The MAC entity starts the ra-ResponseWindow configured in the common RACH configuration (RACH-ConfigCommon) in the first PDCCH occasion from the end of the RA preamble transmission.
[[Operation 2-2]] The MAC entity monitors the PDCCH transmission of the SpCell for RAR identified by the RA-RNTI while the ra-ResponseWindow is operating.
[動作3]
 もしBeamFailureRecoveryConfig内に設定されたra-ResponseWindowが満了し、且つ、C-RNTI宛のrecoverySearchSpaceIdによって指示されたサーチスペース上のPDCCH送信がそのプリアンブルが送信されたサービングセル上において受信された場合、又は、もしRACH-ConfigCommon内に設定されたra-ResponseWindowが満了し、且つ、送信されたプリアンブルインデックス(PREAMBLE_INDEX)に一致するRAプリアンブル識別子(identifiers)を含むRARが受信された場合、そのMACエンティティは、そのRAR受信を失敗と見なし、プリアンブル送信カウンタ(PREAMBLE_TRANSMISSION_COUNTER)を1によってインクリメントする。
[Operation 3]
If the ra-ResponseWindow configured in BeamFailureRecoveryConfig expires and the PDCCH transmission on the search space indicated by recoverySearchSpaceId destined for the C-RNTI is received on the serving cell from which its preamble was transmitted, or if If the ra-ResponseWindow configured in RACH-ConfigCommon expires and a RAR containing RA preamble identifiers matching the transmitted preamble index (PREAMBLE_INDEX) is received, the MAC entity The reception is considered a failure and the preamble transmission counter (PREAMBLE_TRANSMISSION_COUNTER) is incremented by 1.
 そのMACエンティティは、送信されたPREAMBLE_INDEXに一致するRAプリアンブル識別子(identifiers)を含むRARの受信成功の後のra-ResponseWindowを停止してもよい(RAR用のモニタリングを停止してもよい)。 The MAC entity may stop ra-ResponseWindow (may stop monitoring for RARs) after successful reception of RARs containing RA preamble identifiers matching the transmitted PREAMBLE_INDEX.
 RA応答ウィンドウ内のPDCCHモニタリングに対し、BFRに対する基地局の応答のためのPDCCHと、RARのためのPDCCHと、の2つのケースがある。以下の内容は、両方のケースに適用されてもよい。 There are two cases for PDCCH monitoring within the RA response window: PDCCH for base station response to BFR and PDCCH for RAR. The following may apply to both cases.
 MSGA(Msg.A)プリアンブルが送信されると、測定ギャップが発生する可能性に関わらず、MACエンティティは、以下の動作4から6を行う。 Once the MSGA (Msg.A) preamble is transmitted, the MAC entity performs actions 4 to 6 below, regardless of the possibility of a measurement gap occurring.
[動作4]
 そのMACエンティティは、仕様に規定されたPDCCHモニタリングウィンドウにおいて、Msg.B応答ウィンドウ(msgB-ResponseWindow)を開始する。
[Operation 4]
The MAC entity performs Msg. Start the B response window (msgB-ResponseWindow).
 msgB-ResponseWindowは、UEが、PRACH送信に対応するPRACHオケージョンの最後のシンボルの後の少なくとも1つのシンボルであるタイプ1-PDCCH CSSセットに対するPDCCHを受信することを設定された、最も早いCORESETの最初のシンボルにおいて開始してもよい。msgB-ResponseWindowの長さは、タイプ1-PDCCH CSSセット用のSCSに対応してもよい。 msgB-ResponseWindow is the first of the earliest CORESET the UE is configured to receive a PDCCH for type 1-PDCCH CSS set that is at least one symbol after the last symbol of the PRACH occasion corresponding to the PRACH transmission. It may start at the symbol. The length of msgB-ResponseWindow may correspond to the SCS for Type 1-PDCCH CSS set.
[動作5]
 そのMACエンティティは、msgB-ResponseWindowが動作している間、MSGB-RNTIによって識別されるRAR用のSpCellのPDCCH送信をモニタする。
[Operation 5]
The MAC entity monitors the PDCCH transmission of the SpCell for the RAR identified by the MSGB-RNTI while the msgB-ResponseWindow is active.
[動作6]
 もしC-RNTI MAC CEが、そのMSGA内に含まれた場合、そのMACエンティティは、msgB-ResponseWindowが動作している間、C-RNTIによって識別されるRAR用のSpCellのPDCCH送信をモニタする。
[Operation 6]
If the C-RNTI MAC CE is included in its MSGA, the MAC entity monitors the PDCCH transmission of the SpCell for the RAR identified by the C-RNTI while the msgB-ResponseWindow is active.
 RAプリアンブルが送信されるPRACHオケージョンに関連付けられたRA-RNTIは、以下のように計算される。
 RA-RNTI = 1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id
The RA-RNTI associated with the PRACH occasion where the RA preamble is sent is calculated as follows.
RA-RNTI = 1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id
 ここで、s_idは、PRACHオケージョンの最初のOFDMシンボルのインデックスである(0<=s_id<14)。t_idは、システムフレーム内のPRACHオケージョンの最初のスロットのインデックスである(0<=t_id<80)。t_idの決定のためのサブキャリア間隔(SCS)は、μの値に基づく。f_idは、周波数ドメインにおけるPRACHオケージョンのインデックスである(0<=f_id<8)。ul_carrier_idは、RAプリアンブル送信に用いられるULキャリアである(normal uplink(NUL)キャリアに対して0、supplementary uplink(SUL)キャリアに対して1)。RA-RNTIは、仕様に従って計算される。RA-RNTIは、4ステップRACH用のRNTIである。 Here, s_id is the index of the first OFDM symbol of the PRACH occasion (0<=s_id<14). t_id is the index of the first slot of the PRACH occasion within the system frame (0<=t_id<80). The subcarrier spacing (SCS) for determining t_id is based on the value of μ. f_id is the index of the PRACH occasion in the frequency domain (0<=f_id<8). ul_carrier_id is the UL carrier used for RA preamble transmission (0 for normal uplink (NUL) carriers, 1 for supplementary uplink (SUL) carriers). RA-RNTI is calculated according to specifications. RA-RNTI is an RNTI for 4-step RACH.
 RAプリアンブルが送信されるPRACHオケージョンに関連付けられたMSGB-RNTIは、以下のように計算される。
 MSGB-RNTI = 1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2
The MSGB-RNTI associated with the PRACH occasion where the RA preamble is sent is calculated as follows.
MSGB-RNTI = 1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2
 ここで、s_idは、PRACHオケージョンの最初のOFDMシンボルのインデックスである(0<=s_id<14)。t_idは、システムフレーム内のPRACHオケージョンの最初のスロットのインデックスである(0<=t_id<80)。t_idの決定のためのサブキャリア間隔(SCS)は、μの値に基づく。f_idは、周波数ドメインにおけるPRACHオケージョンのインデックスである(0<=f_id<8)。ul_carrier_idは、RAプリアンブル送信に用いられるULキャリアである(normal uplink(NUL)キャリアに対して0、supplementary uplink(SUL)キャリアに対して1)。MSGB-RNTIは、2ステップRACH用のRNTIである。 Here, s_id is the index of the first OFDM symbol of the PRACH occasion (0<=s_id<14). t_id is the index of the first slot of the PRACH occasion within the system frame (0<=t_id<80). The subcarrier spacing (SCS) for determining t_id is based on the value of μ. f_id is the index of the PRACH occasion in the frequency domain (0<=f_id<8). ul_carrier_id is the UL carrier used for RA preamble transmission (0 for normal uplink (NUL) carriers, 1 for supplementary uplink (SUL) carriers). MSGB-RNTI is an RNTI for 2-step RACH.
(RARモニタリング)
 PRACH送信に応じて、UEは、前述の上位レイヤによって制御されるウィンドウ中において、対応するRA-RNTIによってスクランブルされたCRCを伴うDCIフォーマット1_0の検出を試みる。UEがタイプ1-PDCCH CSSセットに対するPDCCHを受信することを設定された最も早いCORESETの最初のシンボルにおいて、すなわち、PRACH送信に対応するPRACHオケージョンの最後のシンボルの少なくとも1シンボル後において、そのウィンドウは開始する。そのシンボル期間は、タイプ1-PDCCH CSSセットに対するSCSに対応する。そのウィンドウの長さは、タイプ1-PDCCH CSSセットに対するSCSに基づき、ra-responseWindowによってスロット数として提供される。
(RAR monitoring)
In response to the PRACH transmission, the UE attempts to detect DCI format 1_0 with the CRC scrambled by the corresponding RA-RNTI during the window controlled by the above-mentioned upper layers. In the first symbol of the earliest CORESET in which the UE is configured to receive a PDCCH for a type 1-PDCCH CSS set, i.e. at least one symbol after the last symbol of the PRACH occasion corresponding to the PRACH transmission, the window Start. The symbol period corresponds to the SCS for Type 1-PDCCH CSS set. The length of the window is based on the SCS for type 1-PDCCH CSS set and is provided by ra-responseWindow as the number of slots.
 もしUEが、対応するRA-RNTIによってスクランブルされたCRCと、UEがPRACHを送信したsystem frame number(SFN)のleast significant bits(LSBs)と同じ、DCIフォーマット内のSFNフィールドのLSBsと、を伴うそのDCIフォーマット1_0を検出し、且つ、UEが、対応するPDSCH内のトランスポートブロックを受信した場合、UEが、そのDCIフォーマット1_0を伴うPDCCHを受信するCORESET用のTCI状態(TCI-State)を提供されるか否かに関わらず、UEがPRACHの関連付けに用いる、SS/PBCHブロック又はCSI-RSリソースに関して、UEは、同じDMRSアンテナポートQCL特性(properties)を想定してもよい。 If the UE has a CRC scrambled by the corresponding RA-RNTI and the LSBs of the SFN field in the DCI format are the same as the least significant bits (LSBs) of the system frame number (SFN) for which the UE sent the PRACH. If the UE detects the DCI format 1_0 and receives the transport block in the corresponding PDSCH, the UE determines the TCI state (TCI-State) for the CORESET in which the UE receives the PDCCH with the DCI format 1_0. The UE may assume the same DMRS antenna port QCL properties for the SS/PBCH block or CSI-RS resources that the UE uses for PRACH association, whether provided or not.
 もしUEが、SpCellに対するCFRA手順をトリガするPDCCHオーダによって開始されるPRACH送信に応じて、対応するRA-RNTIによってスクランブルされたCRCを伴うDCIフォーマット1_0の検出を試みる場合、UEは、そのDCIフォーマット1_0を含むPDCCHと、そのPDCCHオーダと、が同じDMRSアンテナポートQCL特性(properties)を有すると想定してもよい。もしUEが、セカンダリセルに対するCFRA手順をトリガするPDCCHオーダによって開始されるPRACH送信に応じて、対応するRA-RNTIによってスクランブルされたCRCを伴うDCIフォーマット1_0の検出を試みる場合、UEは、そのDCIフォーマット1_0を含むPDCCHの受信のためのタイプ1-PDCCH CSSセットに関連付けられたCORESETのDMRSアンテナポートQCL特性(properties)を想定してもよい。 If the UE attempts to detect a DCI format 1_0 with a CRC scrambled by the corresponding RA-RNTI in response to a PRACH transmission initiated by a PDCCH order triggering a CFRA procedure for the SpCell, the UE detects that DCI format It may be assumed that the PDCCH including 1_0 and its PDCCH order have the same DMRS antenna port QCL properties. If the UE attempts to detect a DCI format 1_0 with a CRC scrambled by the corresponding RA-RNTI in response to a PRACH transmission initiated by a PDCCH order that triggers a CFRA procedure for the secondary cell, the UE The DMRS antenna port QCL properties of the CORESET associated with the Type 1-PDCCH CSS set for reception of PDCCHs including format 1_0 may be assumed.
 RAR ULグラントは、周波数ホッピングフラグフィールドと、PUSCH周波数リソース配置(allocation)フィールドと、PUSCH時間リソース配置フィールドと、modulation and coding scheme(MCS)フィールドと、PUSCH用TPCコマンドフィールドと、CSIリクエストフィールドと、チャネルアクセス-cyclic prefix延長(CPext)フィールドと、の少なくとも1つを含んでもよい。 The RAR UL grant includes a frequency hopping flag field, a PUSCH frequency resource allocation field, a PUSCH time resource allocation field, a modulation and coding scheme (MCS) field, a PUSCH TPC command field, a CSI request field, Channel access may include at least one of a cyclic prefix extension (CPext) field.
 シングルセル動作、又は、同じ周波数バンド内のキャリアアグリゲーションを伴う動作において、もしタイプ1-PDCCH CSSセット内のPDCCHのモニタリング用のDMRSの'typeD'特性(properties)にセットされたqcl-Typeが、タイプ0/0A/0B/2/3-PDCCH CSSセット内の、又は、USSセット内の、PDCCHのモニタリング用のDMRSの'typeD'特性にセットされたqcl-Typeと同じに設定されず、且つ、そのPDCCH又は関連付けられたPDSCHが、タイプ1-PDCCH CSSセット内においてそのUEがモニタするPDCCH又は関連付けられたPDSCHと、少なくとも1シンボルにいてオーバーラップする場合、UEは、タイプ0/0A/0B/2/3-PDCCH CSSセット内の、又は、USSセット内の、PDCCHをモニタすると想定しない。 In single cell operation or operation with carrier aggregation within the same frequency band, if the qcl-Type set in the 'typeD' properties of the DMRS for monitoring PDCCH in the Type 1-PDCCH CSS set is Type 0/0A/0B/2/3-PDCCH is not set the same as the qcl-Type set in the 'typeD' characteristic of the DMRS for PDCCH monitoring in the CSS set or in the USS set, and , if its PDCCH or associated PDSCH overlaps in at least one symbol with the PDCCH or associated PDSCH monitored by the UE in the Type 1-PDCCH CSS set, the UE /2/3-PDCCH It is not assumed that the PDCCH in the CSS set or in the USS set is monitored.
 もしUEが、PDCCH-Configによって、searchSpaceZeroと、searchSpaceSIB1と、searchSpaceOtherSystemInformationと、pagingSearchSpaceと、peiSearchSpaceと、ra-SearchSpaceと、CSSセットと、の対応する1つ以上によって1つ以上のサーチスペースセットを提供され、且つ、SI-RNTI、P-RNTI、PEI-RNTI、RA-RNTI、MsgB-RNTI、SFI-RNTI、INT-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、又はTPC-SRS-RNTIを提供される場合、これらのRNTIのいずれかからのRNTIに対し、UEは、スロット当たり、そのRNTIを用いてスクランブルされたCRCを伴う1つより多いDCIフォーマットからの情報を処理すると想定しない。 If the UE is provided with one or more search space sets by corresponding one or more of searchSpaceZero, searchSpaceSIB1, searchSpaceOtherSystemInformation, pagingSearchSpace, peiSearchSpace, ra-SearchSpace, CSS set by PDCCH-Config. , and SI-RNTI, P-RNTI, PEI-RNTI, RA-RNTI, MsgB-RNTI, SFI-RNTI, INT-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, or TPC-SRS-RNTI If provided, for an RNTI from any of these RNTIs, the UE does not assume that it processes information from more than one DCI format with scrambled CRC with that RNTI per slot.
(Msg3 PUSCH)
 UEは対応するRARメッセージ内のRAR ULグラントによってスケジュールされるPUSCHにおいてトランスポートブロックを送信する。UEは、スロットn+k2+Δ+2μ・Kcell,offset内において、そのPUSCHを送信する。Kcell,offset内はCellSpecific_Koffsetによって提供され、もし提供されない場合、Kcell,offset=0である。
(Msg3 PUSCH)
The UE sends transport blocks on the PUSCH scheduled by the RAR UL grant in the corresponding RAR message. The UE transmits its PUSCH within slot n+k 2 +Δ+2 μ ·K cell,offset . K cell,offset is provided by CellSpecific_Koffset, if not provided, K cell,offset =0.
 k2は、スロットオフセットであり、RAR ULグラントのPUSCH時間リソース配置(allocation)フィールド値mによって提供される配置テーブルの行インデックスm+1と、PUSCHサブキャリア間隔μPUSCHと、に基づいて決定される。Δは、RARによってスケジュールされるPUSCHの最初の送信のための追加サブキャリア間隔固有スロット遅延時間値であり、PUSCHサブキャリア間隔μPUSCHに固有であり、K2に加えて適用される。 k2 is the slot offset, determined based on the row index m+1 of the allocation table provided by the PUSCH time resource allocation field value m of the RAR UL grant, and the PUSCH subcarrier spacing μPUSCH. . Δ is the additional subcarrier spacing specific slot delay time value for the first transmission of the PUSCH scheduled by the RAR, which is specific to the PUSCH subcarrier spacing μPUSCH and is applied in addition to K 2 .
 もしUEがPUSCH送信に対する繰り返しを要求する場合、そのUEは、NPUSCH repeat個のスロットにわたってPUSCHを送信する。ここで、NPUSCH repeatは、numberOfMsg3Repetitionsによって提供される4つの値のセットから、又は、もしnumberOfMsg3Repetitionsが提供されない場合に{1,2,3,4}から、RAR ULグラント又はDCIフォーマット0_0内のMCSフィールドの2MSBによって指示される。 If a UE requests repeat for PUSCH transmission, the UE transmits PUSCH for N PUSCH repeat slots. Here, N PUSCH repeat is the MCS in RAR UL grant or DCI format 0_0 from the set of 4 values provided by numberOfMsg3Repetitions or from {1,2,3,4} if numberOfMsg3Repetitions is not provided. Indicated by the 2MSB of the field.
 UEは、RSRPに基づいて、Msg3繰り返しを適用するかを決定する。Msg繰り返しが設定され、且つ、DLパスロス参照のRSRPがrsrp-ThresholdMsg3(閾値)より小さい場合、MACエンティティは、現在のランダムアクセス(RA)手順にMsg3繰り返しが適用可能であると想定する。 The UE determines whether to apply Msg3 repetition based on RSRP. If Msg repetition is configured and the RSRP of DL path loss reference is less than rsrp-ThresholdMsg3, the MAC entity assumes that Msg3 repetition is applicable to the current random access (RA) procedure.
 UEは、個別のPRACHリソースを介してMsg3PUSCH繰り返しを要求できる。利用可能なRAリソースの1つ以上のセットがあり、且つ、その1つ以上のセットの1つが、このRA手順をトリガする全ての機能の指示に用いられる場合と、このRA手順をトリガする全ての機能のサブセットに対する指示を設定される、利用可能なRAリソースの1つ以上のセットがある場合と、において、MACエンティティは、RAリソースを選択する。Msg3繰り返し指示がRAリソースのセットのために設定される場合において、Msg3繰り返しが利用可能でない場合、MACエンティティは、そのRAリソースのセットを、RACH手順に利用可能でないと見なす。 The UE can request Msg3PUSCH repetition via a separate PRACH resource. If there is one or more sets of RA resources available, and one of the one or more sets is used to direct all functions that trigger this RA procedure, and all functions that trigger this RA procedure The MAC entity selects an RA resource if and when there is one or more sets of available RA resources configured with instructions for a subset of the functionality of the MAC entity. If Msg3 repetition indication is configured for a set of RA resources, and Msg3 repetition is not available, the MAC entity considers that set of RA resources not available for RACH procedures.
 機能ごとにRAリソースが分割され(partitioned)てもよい。機能は、Msg3繰り返し、reduced capacity(RedCap)、small data transmission(SDT)、RAN slicing、の少なくとも1つを含んでもよい。 RA resources may be partitioned for each function. The functionality may include at least one of Msg3 repetition, reduced capacity (RedCap), small data transmission (SDT), and RAN slicing.
 基地局によって送られるSIB1内において、以下が通知される。
・各機能の優先度(priority、featurePriorities-r17)。この優先度は、ある機能が1つより多いFeatureCombinationPreambles(機能組み合わせプリアンブル設定)へマップされる場合にUEがどのFeatureCombinationPreamblesを用いるかの決定に用いられる。
・追加RO設定。その設定は、利用可能な機能(それは、複数の機能に関連付けられてもよい)、RAリソース(例えば、プリアンブルインデックス)、ROを区別するためのマスクインデックス、を含む。
In SIB1 sent by the base station, the following is announced:
-Priority of each feature (priority, featurePriorities-r17). This priority is used to determine which FeatureCombinationPreambles the UE uses if a feature is mapped to more than one FeatureCombinationPreambles.
・Additional RO settings. The configuration includes available capabilities (which may be associated with multiple capabilities), RA resources (eg, preamble index), and a mask index for distinguishing ROs.
 UEは、その機能に依存して、使用するROを決定する。 The UE decides which RO to use depending on its capabilities.
 SIB1は、ServingCellConfigCommonSIBを含む。それは、UplinkConfigCommonSIBを含む。それは、BWP-UplinkCommon(UL BWP共通設定)を含む。 SIB1 includes ServingCellConfigCommonSIB. It includes UplinkConfigCommonSIB. It includes BWP-UplinkCommon (UL BWP common settings).
 BWP-UplinkCommonは、RACH共通設定(RACH-ConfigCommon又はMsgA-ConfigCommon)、additionalRACH-ConfigList-r17(追加RACH設定リスト)を含んでもよい。additionalRACH-ConfigList-r17は、rsrp-ThresholdMsg3-r17(閾値)を含んでもよい。 BWP-UplinkCommon may include RACH common settings (RACH-ConfigCommon or MsgA-ConfigCommon) and additionalRACH-ConfigList-r17 (additional RACH configuration list). additionalRACH-ConfigList-r17 may include rsrp-ThresholdMsg3-r17 (threshold).
 RACH共通設定は、FeatureCombinationPreamblesを含んでもよい。FeatureCombinationPreamblesは、プリアンブルの1つのセット(パーティション)を1つの機能組み合わせに関連付ける。FeatureCombinationPreamblesは、FeatureCombination(機能組み合わせ設定)、startPreambleForThisPartition(最初のプリアンブルのインデックス)、numberOfPreamblesPerSSB-ForThisPartition(プリアンブル数)、ssb-SharedRO-MaskIndex-r17(PRACHマスクインデックス)、を含んでもよい。FeatureCombinationは、redCap(RedCap)、smallData(SDT)、sliceGroup(RAN slicing)、msg3-Repetition(Msg3繰り返し)、の少なくとも1つを含む。パーティションは、最初のプリアンブルのインデックスと、プリアンブル数と、によって与えられる。 The RACH common settings may include FeatureCombinationPreambles. FeatureCombinationPreambles associates one set (partition) of preambles with one feature combination. FeatureCombinationPreambles may include FeatureCombination (feature combination setting), startPreambleForThisPartition (index of first preamble), numberOfPreamblesPerSSB-ForThisPartition (number of preambles), and ssb-SharedRO-MaskIndex-r17 (PRACH mask index). FeatureCombination includes at least one of redCap (RedCap), smallData (SDT), sliceGroup (RAN slicing), and msg3-Repetition (Msg3 repetition). The partition is given by the index of the first preamble and the preamble number.
 PRACHマスクインデックスによって、利用可能なROが明示的に設定される。PRACHマスクインデックスと、SSBの許可されるPRACHオケージョン(RO)と、の関係(MACプロトコル仕様/PRACHマスクインデックス値のテーブル)を用いて、PRACHオケージョンインデックス1から8の少なくとも1つが設定されることができる。 Available ROs are explicitly set by the PRACH mask index. At least one of the PRACH occasion indexes 1 to 8 may be set using the relationship between the PRACH mask index and the allowed PRACH occasions (ROs) of the SSB (MAC protocol specification/PRACH mask index value table). can.
 Msg3繰り返しの数は、RAR ULグラント内のmodulation and coding scheme(MCS)フィールドの2 most significant bit(MSB)(上位2ビット)によって指示される。 The number of Msg3 repetitions is indicated by the 2 most significant bits (MSB) (upper 2 bits) of the modulation and coding scheme (MCS) field in the RAR UL grant.
 PUSCH繰り返しタイプAにおいて、RAR ULグラントによってスケジュールされるPUSCHを送信する場合、そのRAR ULグラントのMCS情報フィールドの2MSBは、上位レイヤパラメータnumberOfMsg3Repetitionsが設定されたか否かに基づき、MCS情報フィールドの2MSBの値(コードポイント)と、繰り返し数Kと、の関係(テーブル)に従って、繰り返し数Kの決定のためのコードポイントを提供する。transport block size(TBS)決定に用いられるスロット数Nは1に等しい。 In PUSCH repetition type A, when transmitting a PUSCH scheduled by a RAR UL grant, the 2MSBs of the MCS information field of the RAR UL grant are set based on whether the upper layer parameter numberOfMsg3Repetitions is set. Code points for determining the number of repetitions K are provided according to the relationship (table) between the values (code points) and the number of repetitions K. The number of slots N used for transport block size (TBS) determination is equal to one.
 PUSCH繰り返しタイプBにおいて、TC-RNTIによってスクランブルされるCRCを伴うDCIフォーマット0_0によってスケジュールされるPUSCHを送信する場合、そのDCIフォーマットのMCS情報フィールドの2MSBは、上位レイヤパラメータnumberOfMsg3Repetitionsが設定されたか否かに基づき、MCS情報フィールドの2MSBの値(コードポイント)と、繰り返し数Kと、の関係(テーブル)に従って、繰り返し数Kの決定のためのコードポイントを提供する。TBS決定に用いられるスロット数Nは1に等しい。 In PUSCH repetition type B, when transmitting a PUSCH scheduled by DCI format 0_0 with CRC scrambled by TC-RNTI, the 2MSB of the MCS information field of that DCI format determines whether the upper layer parameter numberOfMsg3Repetitions is set or not. Based on the relationship (table) between the 2MSB value (code point) of the MCS information field and the repetition number K, code points for determining the repetition number K are provided. The number of slots N used for TBS determination is equal to 1.
(競合解決(contention resolution))
 Msg3が送信されると、MACエンティティは、以下の動作1から4に従う。
[動作1]もしMsg3が非地上ネットワーク上において送信される場合、そのMACエンティティは、ra-ContentionResolutionTimerを開始し、Msg3の終了にUE-gNB RTTのUE推定を加えた後の最初のシンボル内の各HARQ再送において再開する。
[動作2]そうでなく、もしそのMsg3送信(初送又はHARQ再送)がタイプA PUSCH繰り返しを伴ってスケジュールされる場合、そのMACエンティティは、そのMsg3送信の全ての繰り返しの終了の後の最初のシンボル内において、ra-ContentionResolutionTimerを開始又は再開する。
[動作3]そうでない場合、そのMACエンティティは、そのMsg3送信の終了の後の最初のシンボル内において、ra-ContentionResolutionTimerを開始又は再開する。
[動作4]そのMACエンティティは、ra-ContentionResolutionTimerが動作している間、測定ギャップの発生の可能性に関わらず、PDCCHをモニタする。
(contention resolution)
Once Msg3 is sent, the MAC entity follows actions 1 to 4 below.
[Action 1] If Msg3 is transmitted on a non-terrestrial network, its MAC entity starts an ra-ContentionResolutionTimer and specifies the content in the first symbol after the end of Msg3 plus the UE estimate of the UE-gNB RTT. Resume at each HARQ retransmission.
[Action 2] Otherwise, if the Msg3 transmission (first transmission or HARQ retransmission) is scheduled with type A PUSCH repetitions, the MAC entity Start or restart the ra-ContentionResolutionTimer within the symbol.
[Operation 3] Otherwise, the MAC entity starts or restarts the ra-ContentionResolutionTimer within the first symbol after the end of its Msg3 transmission.
[Action 4] The MAC entity monitors the PDCCH while the ra-ContentionResolutionTimer is running, regardless of the possibility of a measurement gap occurring.
 Rel.16 NRのRA手順におけるステップ4(Msg4)は、以下のステップ4動作に従う。 Rel. Step 4 (Msg4) in the RA procedure of 16 NR follows the following Step 4 operation.
[ステップ4動作]
 UEにC-RNTIが提供されていない場合、RAR ULグラントによってスケジュールされたPUSCH送信に応じて、UEは、UE contention resolution identityを含むPDSCHをスケジュールし対応するTCI-RNTIによってスクランブルされたCRCを伴うDCIフォーマット1_0の検出を試みる。UE contention resolution identityを含むPDSCHの受信に応じて、UEは、PUCCH内においてHARQ-ACK情報を送信する。PUCCH送信は、PUSCH送信と同じアクティブUL BWP内である。PDSCH受信の最後のシンボルと、HARQ-ACK情報を含み対応するPUCCH送信の最初のシンボルと、の間の最小時間は、N_T,1[msec]に等しい。N_T,1は、追加PDSCH DM-RSが設定されている場合のUE処理能力1のPDSCH処理時間に相当するN_T,1シンボルの継続時間である。μ=0に対し、UEは、N_T,1=14を想定する。
[Step 4 operation]
If the UE is not provided with a C-RNTI, in response to the PUSCH transmission scheduled by the RAR UL grant, the UE shall schedule a PDSCH containing the UE contention resolution identity with a CRC scrambled by the corresponding TCI-RNTI. Attempt to detect DCI format 1_0. In response to receiving the PDSCH including the UE contention resolution identity, the UE transmits HARQ-ACK information in the PUCCH. PUCCH transmissions are within the same active UL BWP as PUSCH transmissions. The minimum time between the last symbol of PDSCH reception and the first symbol of the corresponding PUCCH transmission containing HARQ-ACK information is equal to N_T,1 [msec]. N_T,1 is the duration of N_T,1 symbol corresponding to the PDSCH processing time of UE processing capacity 1 when additional PDSCH DM-RS is configured. For μ=0, the UE assumes N_T,1=14.
 RAR ULグラントによってスケジュールされたPUSCH送信に応じて、又は、対応するRARメッセージに提供されたTC-RNTIによってスクランブルされたCRCを伴うDCIフォーマット0_0によってスケジュールされ対応するPUSCH再送に応じて、DCIフォーマットを検出する場合、UEがそのDCIフォーマットを伴うPDCCHを受信したCORESETに対するTCI状態がUEに提供されているか否かに関わらず、UEは、そのDCIフォーマットを運ぶPDCCHが、UEによってPRACH関連付けに用いられたSS/PBCHブロックに対するDM-RSアンテナポートquasi co-location(QCL)特性(properties)と同じDM-RSアンテナポートQCL特性を想定してもよい。 DCI format in response to a PUSCH transmission scheduled by RAR UL grant or in response to a corresponding PUSCH retransmission scheduled by DCI format 0_0 with CRC scrambled by TC-RNTI provided in the corresponding RAR message. If the UE detects that the PDCCH carrying that DCI format is used by the UE for PRACH association, regardless of whether the UE is provided with TCI status for the CORESET in which the UE received the PDCCH with that DCI format. The same DM-RS antenna port QCL properties as the DM-RS antenna port quasi co-location (QCL) properties for the SS/PBCH block may be assumed.
(個別PUCCHリソース設定前のPUCCH)
 もしUEが、PUCCH-Config内のPUCCH-ResourceSetによって提供される個別PUCCHリソース設定を有していない場合、NBWP size個のPRBの初期UL BWP内のPUCCH上のHARQ-ACK情報の送信のためのPUCCHリソースセット(デフォルトPUCCHリソース)は、仕様に規定された個別のPUCCHリソース設定前の複数PUCCHリソースセットのテーブル(デフォルトPUCCHリソーステーブル、図3)の行へのインデックスを通して、pucch-ResourceCommonによって提供される。
(PUCCH before individual PUCCH resource configuration)
If the UE does not have a separate PUCCH resource configuration provided by the PUCCH-ResourceSet in the PUCCH-Config, for the transmission of HARQ-ACK information on the PUCCH in the initial UL BWP of N BWP size PRBs. The PUCCH resource set (default PUCCH resource) is provided by pucch-ResourceCommon through an index to the row of the table of multiple PUCCH resource sets (default PUCCH resource table, Figure 3) before individual PUCCH resource configuration specified in the specification. be done.
 SIB1に含まれるpucch-ResourceCommonは、インデックスの値0から15を示す。デフォルトPUCCHリソーステーブルは、インデックスと、PUCCHリソースセットを関連付ける。各PUCCHリソースセットは、PUCCHフォーマット0/1と、PUCCHの最初のシンボルと、PUCCHのシンボル数と、PUCCHのPRBオフセットと、初期サイクリックシフトインデックスのセットと、を含む。UEは、PDSCHをスケジュールするPDCCH(そのPDCCHの最初のCCE、DCI内のPUCCHリソースインディケータフィールド)に基づいて、インデックスによって指示されたPUCCHリソースセット内のPUCCHリソースを決定する。 pucch-ResourceCommon included in SIB1 indicates index values 0 to 15. A default PUCCH resource table associates an index with a PUCCH resource set. Each PUCCH resource set includes a PUCCH format 0/1, a PUCCH first symbol, a PUCCH symbol number, a PUCCH PRB offset, and a set of initial cyclic shift indexes. The UE determines the PUCCH resource in the PUCCH resource set indicated by the index based on the PDCCH (first CCE of that PDCCH, PUCCH resource indicator field in DCI) on which to schedule the PDSCH.
 そのUEは、RAR ULグラントによってスケジュールされたPUSCH送信と同じ空間ドメイン送信フィルタを用いてPUSCHを送信する。 The UE transmits the PUSCH using the same spatial domain transmit filter as the PUSCH transmission scheduled by the RAR UL grant.
 もしUEがpdsch-HARQ-ACK-Codebook、pdsch-HARQ-ACK-Codebook-r16、pdsch-HARQ-ACK-OneShotFeedbackのいずれも提供されない場合、そのUEは、多くとも1つHARQ-ACK情報ビットを生成する。 If the UE is not provided with pdsch-HARQ-ACK-Codebook, pdsch-HARQ-ACK-Codebook-r16, pdsch-HARQ-ACK-OneShotFeedback, the UE generates at most one HARQ-ACK information bit. do.
(問題)
 以下の問題のための図4A、4B、5A、5B、6の例において、UEは、PRACHの繰り返し(Msg1#1から#4)を送信し、各繰り返しの後にRARウィンドウを開始する。
(problem)
In the examples of FIGS. 4A, 4B, 5A, 5B, 6 for the following problems, the UE transmits PRACH repetitions (Msg1 #1 to #4) and starts a RAR window after each repetition.
 複数のMsg2/3/4を伴う複数PRACH繰り返しにおいて、以下のいくつかの問題が考えられる。 In multiple PRACH repetitions involving multiple Msg2/3/4, the following several problems can be considered.
・複数RARウィンドウのオーバーラッピング。
 [問題1]RARウィンドウの維持、オーバーラップするRARウィンドウ内のPDCCHのモニタリング/処理(図4A)が明らかでない。
- Overlapping of multiple RAR windows.
[Problem 1] Maintenance of RAR window, monitoring/processing of PDCCH within overlapping RAR windows (FIG. 4A) is not clear.
・複数RARによってそれぞれスケジュールされる複数Msg3のオーバーラッピング。
 [問題2]Msg3 PUSCH送信動作(図4B)が明らかでない。
- Overlapping of multiple Msg3s each scheduled by multiple RARs.
[Problem 2] Msg3 PUSCH transmission operation (Fig. 4B) is not clear.
・複数競合解決ウィンドウのオーバーラッピング。
 [問題3]複数競合解決ウィンドウの維持、オーバーラップする競合解決ウィンドウ内のPDCCHのモニタリング(図5A)が明らかでない。
- Overlapping multiple conflict resolution windows.
[Problem 3] Maintenance of multiple contention resolution windows and monitoring of PDCCHs within overlapping contention resolution windows (FIG. 5A) are not clear.
・1つ以上のRARウィンドウと1つ以上の競合解決ウィンドウとのオーバーラッピング。
 [問題4]オーバーラップするRARウィンドウ/競合解決ウィンドウ内のPDCCHのモニタリング/処理(図5B)が明らかでない。
- Overlapping one or more RAR windows with one or more conflict resolution windows.
[Problem 4] Monitoring/processing of PDCCH within overlapping RAR windows/conflict resolution windows (FIG. 5B) is not clear.
・複数Msg4に対するHARQ-ACKフィードバック。
 [問題5]既存の仕様において、UEは、個別PUCCHリソース(RRC)設定前に、PUCCH当たり、1つより多いHARQ-ACK情報ビットをサポートしていない。もし複数Msg4 PDSCHに対する複数HARQ-ACK情報ビットが同じスロット内にある場合(図6)の、UE動作が明らかでない。
- HARQ-ACK feedback for multiple Msg4.
[Problem 5] In the existing specifications, the UE does not support more than one HARQ-ACK information bit per PUCCH before dedicated PUCCH resource (RRC) configuration. The UE behavior is not clear if multiple HARQ-ACK information bits for multiple Msg4 PDSCHs are in the same slot (FIG. 6).
 このような動作が明らかでなければ、通信品質の低下などを招くおそれがある。 If such operations are not clear, there is a risk of deterioration in communication quality.
 そこで、本発明者らは、PRACH繰り返しに伴う動作を着想した。 Therefore, the present inventors came up with an idea for the operation associated with PRACH repetition.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。なお、以下の各実施形態(例えば、各ケース)はそれぞれ単独で用いられてもよいし、少なくとも2つを組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. Note that each of the following embodiments (for example, each case) may be used alone, or may be applied in combination of at least two.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably. Furthermore, in the present disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In the present disclosure, "activate", "deactivate", "indicate", "select", "configure", "update", "determine", etc. may be read interchangeably. In this disclosure, supporting, controlling, being able to control, operating, capable of operating, etc. may be read interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In the present disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, upper layer parameters, information elements (IEs), settings, etc. may be read interchangeably. In the present disclosure, the terms Medium Access Control Element (CE), update command, activation/deactivation command, etc. may be read interchangeably.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like. Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, an index, an identifier (ID), an indicator, a resource ID, etc. may be read interchangeably. In this disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
 本開示において、パネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。 In the present disclosure, a panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, a spatial relation information (SRI), Spatial relationship, SRS resource indicator (SRI), control resource set (CONtrol REsource SET (CORESET)), Physical Downlink Shared Channel (PDSCH), codeword (CW), transport block (Transport) Block (TB)), reference signal (RS), antenna port (e.g. demodulation reference signal (DMRS) port), antenna port group (e.g. DMRS port group), group (e.g. , spatial relationship group, code division multiplexing (CDM) group, reference signal group, CORESET group, Physical Uplink Control Channel (PUCCH) group, PUCCH resource group), resource (e.g., reference signal resource, SRS resource) , resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI state (unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
 本開示において、「…の能力を有する」は、「…の能力をサポートする/報告する」と互いに読み替えられてもよい。 In this disclosure, "having the ability to..." may be interchanged with "supporting/reporting the ability to...".
 本開示において、SSB/CSI-RSのインデックス/インディケータ、ビームインデックス、TCI状態、空間ドメイン送信フィルタ、空間ドメイン受信フィルタ、は互いに読み替えられてもよい。 In the present disclosure, the SSB/CSI-RS index/indicator, beam index, TCI state, spatial domain transmit filter, and spatial domain receive filter may be read interchangeably.
 本開示において、RARウィンドウ、ra-ResponseWindow、時間ウィンドウ、RARタイマ、タイマの動作期間、は互いに読み替えられてもよい。本開示において、競合解決ウィンドウ、競合ウィンドウ、競合解決タイマ、ra-ContentionResolutionTimer、競合解決タイマの動作期間、は互いに読み替えられてもよい。本開示において、競合解決アイデンティティ、競合解決ID、UE contention resolution identity、は互いに読み替えられてもよい。 In the present disclosure, the terms RAR window, ra-ResponseWindow, time window, RAR timer, and timer operation period may be read interchangeably. In this disclosure, the terms conflict resolution window, conflict window, conflict resolution timer, ra-ContentionResolutionTimer, and operation period of the conflict resolution timer may be read interchangeably. In this disclosure, contention resolution identity, contention resolution ID, and UE contention resolution identity may be interchanged.
 本開示において、ポート、アンテナポート、DMRSポート、DMRSアンテナポート、は互いに読み替えられてもよい。本開示において、ポートがRSの受信とQCLされること、ポートがRSの受信と同じ空間ドメイン(送信/受信)フィルタを用いること、は互いに読み替えられてもよい。 In the present disclosure, the terms port, antenna port, DMRS port, and DMRS antenna port may be read interchangeably. In this disclosure, the terms that a port is QCLed with the reception of the RS and that the port uses the same spatial domain (transmission/reception) filter as the reception of the RS may be read interchangeably.
 本開示において、特定RNTIによってスクランブルされたCRCを伴うDCI(フォーマット)/PDCCH(候補)、特定RNTIを用いるDCI(フォーマット)/PDCCH(候補)、特定RNTIを用いてモニタされるDCI(フォーマット)/PDCCH(候補)、は互いに読み替えられてもよい。 In this disclosure, DCI (format)/PDCCH (candidate) with a CRC scrambled by a specific RNTI, DCI (format)/PDCCH (candidate) using a specific RNTI, DCI (format)/PDCCH (candidate) monitored using a specific RNTI, PDCCH (candidate) may be read interchangeably.
(無線通信方法)
 各実施形態において、RACHリソース、RAリソース、PRACHプリアンブル、オケージョン、RACHオケージョン(RO)、PRACHオケージョン、繰り返しリソース、繰り返し設定リソース、RO/繰り返しのために設定されたリソース、時間インスタンス及び周波数インスタンス、時間リソース及び周波数リソース、RO/プリアンブルのリソース、繰り返し、は互いに読み替えられてもよい。各実施形態において、期間、周期、フレーム、サブフレーム、スロット、シンボル、オケージョン、RO、は互いに読み替えられてもよい。
(Wireless communication method)
In each embodiment, RACH resource, RA resource, PRACH preamble, occasion, RACH occasion (RO), PRACH occasion, repetition resource, repetition configuration resource, resource configured for RO/repetition, time instance and frequency instance, time Resources and frequency resources, RO/preamble resources, and repetition may be read interchangeably. In each embodiment, period, period, frame, subframe, slot, symbol, occasion, and RO may be read interchangeably.
 各実施形態において、PDCCHオーダ、PDCCHオーダDCI、DCIフォーマット1_0、メッセージ(Msg)0、は互いに読み替えられてもよい。各実施形態において、PRACH、プリアンブル、PRACHプリアンブル、系列、プリアンブルフォーマット、Msg1、は互いに読み替えられてもよい。各実施形態において、PRACHに対する応答、RAR、Msg2、MsgB、Msg4、BFRに対する基地局応答、応答(RAR)をスケジュールするDCI、は互いに読み替えられてもよい。各実施形態において、ランダムアクセス手順におけるPRACH以外の送信、Msg3、RARによってスケジュールされるPUSCH、Msg4に対するHARQ-ACK/PUCCH、MsgA PUSCH、は互いに読み替えられてもよい。各実施形態において、Msg3、RAR ULグラントによってスケジュールされるPUSCH、RRC connection request、は互いに読み替えられてもよい。各実施形態において、Msg4、contention resolution、RRC connection setup、UE contention resolution identityを伴うPDSCH、は互いに読み替えられてもよい。 In each embodiment, PDCCH order, PDCCH order DCI, DCI format 1_0, and message (Msg) 0 may be read interchangeably. In each embodiment, PRACH, preamble, PRACH preamble, sequence, preamble format, and Msg1 may be read interchangeably. In each embodiment, a response to PRACH, RAR, Msg2, MsgB, Msg4, a base station response to BFR, and DCI scheduling response (RAR) may be read interchangeably. In each embodiment, transmissions other than PRACH in the random access procedure, Msg3, PUSCH scheduled by RAR, HARQ-ACK/PUCCH for Msg4, and MsgA PUSCH may be interchanged. In each embodiment, Msg3, PUSCH scheduled by RAR UL grant, and RRC connection request may be interchanged. In each embodiment, Msg4, contention resolution, RRC connection setup, and PDSCH with UE contention resolution identity may be interchanged.
 各実施形態において、RAR、RARをスケジュールするDCI(PDCCH)、UE競合解決IDを伴うPDSCH、UE競合解決IDを伴うPDSCHをスケジュールするDCI、は互いに読み替えられてもよい。 In each embodiment, RAR, DCI that schedules RAR (PDCCH), PDSCH with UE contention resolution ID, and DCI that schedules PDSCH with UE contention resolution ID may be read interchangeably.
 各実施形態において、ビーム、SSB、SSBインデックス、CSI-RS、CSI-RSリソース、CSI-RSリソースインデックス、RS、は互いに読み替えられてもよい。 In each embodiment, beam, SSB, SSB index, CSI-RS, CSI-RS resource, CSI-RS resource index, and RS may be read interchangeably.
 各実施形態において、ランダムアクセス(RA)手順、CFRA/CBRA、4ステップRACH/2ステップRACH、特定種類のランダムアクセス手順、特定のPRACHフォーマットを用いるランダムアクセス手順、PDCCHオーダによって開始されるランダムアクセス手順、PDCCHオーダによって開始されないランダムアクセス手順、上位レイヤによって開始されるランダムアクセス手順、は互いに読み替えられてもよい。 In each embodiment, a random access (RA) procedure, CFRA/CBRA, 4-step RACH/2-step RACH, a specific type of random access procedure, a random access procedure using a specific PRACH format, a random access procedure initiated by a PDCCH order. , a random access procedure not initiated by a PDCCH order, and a random access procedure initiated by an upper layer may be interchanged.
 各実施形態において、時間リソース、Msg1、Msg2、Msg3、Msg4、HARQ-ACK情報、RARウィンドウ、競合解決ウィンドウ、Msg2をスケジュールするDCI、Msg4をスケジュールするDCI、は互いに読み替えられてもよい。各実施形態の動作において、より前の時間リソースは、PRACHの複数繰り返しに対応する複数の時間リソースの内、その動作よりも前の時間リソースであってもよいし、繰り返しに対応するインデックス(時間ドメインインデックス)に関し、その動作のインデックスよりも小さいインデックスを有する時間リソースであってもよい。各実施形態の動作において、より後の時間リソースは、PRACHの複数繰り返しに対応する複数の時間リソースの内、その動作よりも後の時間リソースであってもよいし、繰り返しに対応するインデックス(時間ドメインインデックス)に関し、その動作のインデックスよりも大きいインデックスを有する時間リソースであってもよい。 In each embodiment, time resources, Msg1, Msg2, Msg3, Msg4, HARQ-ACK information, RAR window, conflict resolution window, DCI that schedules Msg2, and DCI that schedules Msg4 may be read interchangeably. In the operation of each embodiment, the earlier time resource may be a time resource earlier than the operation among a plurality of time resources corresponding to a plurality of repetitions of PRACH, or an index (time domain index), it may be a time resource that has a smaller index than the index of its operation. In the operation of each embodiment, a later time resource may be a time resource later than the operation among a plurality of time resources corresponding to a plurality of repetitions of PRACH, or an index (time domain index), it may be a time resource that has a larger index than the index of its operation.
<実施形態#1>
 この実施形態は、問題1に関する。同じビーム/異なる複数ビームを伴う複数PRACH繰り返しに対する1つ以上のRARは、以下のいくつかのオプションのいずれかに従ってもよい。
<Embodiment #1>
This embodiment relates to problem 1. One or more RARs for multiple PRACH repetitions with same/different beams may follow any of several options below.
《オプション1》
 1つのみのRARウィンドウ(ra-ResponseWindow)が維持される。複数繰り返しに対して共通のra-ResponseWindowが維持されてもよい。UEは、以下のいくつかのオプションのいずれかに従ってもよい。
Option 1》
Only one RAR window (ra-ResponseWindow) is maintained. A common ra-ResponseWindow may be maintained for multiple iterations. The UE may follow any of several options below.
[オプション1-1]
 UEは、複数PRACH繰り返しに対する複数RARウィンドウの(時間ドメインにおける)オーバーラッピングを想定しない。図7Aの例において、UEは、PRACHの複数繰り返し(Msg1#1から#4)を送信する。各繰り返しに対し、RARウィンドウを開始する。UEは、以下のいくつかの例の少なくとも1つに従ってもよい。
[[例1]]UEは、ra-ResponseWindowが動作している場合において、(より後の)PRACH繰り返しを送信しない(送信することを想定しない)。
[[例2]]UEは、より前のPRACH送信に対するRARの検出の前に、より後のPRACH繰り返しを送信しない(送信することを想定しない)。そのRARは、送信されたプリアンブルインデックスに一致するプリアンブル識別子を含んでもよい。
[[例3]]UEは、ra-ResponseWindowの長さが、2つのPRACH繰り返しのギャップよりも長いことを想定しない。
[Option 1-1]
The UE does not assume overlapping (in the time domain) of multiple RAR windows for multiple PRACH repetitions. In the example of FIG. 7A, the UE transmits multiple repetitions of PRACH (Msg1 #1 to #4). For each iteration, start a RAR window. The UE may follow at least one of several examples below.
[[Example 1]] The UE does not (does not assume to send) (later) PRACH repetitions when ra-ResponseWindow is operating.
[Example 2] The UE does not transmit (is not expected to transmit) a later PRACH repetition before detection of the RAR for the earlier PRACH transmission. The RAR may include a preamble identifier that matches the transmitted preamble index.
[[Example 3]] The UE does not assume that the length of the ra-ResponseWindow is longer than the gap of two PRACH repetitions.
[オプション1-2]
 ra-ResponseWindowが動作しており、且つ、UEが、より後のPRACH繰り返しを送信する場合、UEは、より後のPRACH繰り返しの後の最初のPDCCHオケージョンから、又は、より後のPRACH繰り返しの開始/終了から、ra-ResponseWindowを再開する。図7Bの例において、UEは、PRACHの複数繰り返し(Msg1#1から#4)を送信し、各繰り返しの後にRARウィンドウを開始する。UEは、RARウィンドウの動作中に次のMsg1を送信する場合、動作中のRARウィンドウを停止してもよい。
[Option 1-2]
If ra-ResponseWindow is active and the UE sends a later PRACH repetition, the UE sends a message from the first PDCCH occasion after the later PRACH repetition or from the start of the later PRACH repetition. /Restart ra-ResponseWindow from the end. In the example of FIG. 7B, the UE transmits multiple repetitions of the PRACH (Msg1 #1 to #4) and starts a RAR window after each repetition. If the UE transmits the next Msg1 while the RAR window is in operation, the UE may stop the RAR window in operation.
 ra-ResponseWindowが動作している場合、RARモニタリング動作は、以下のいくつかのオプションのいずれかに従ってもよい。
[[オプション1-2a]]UEは、PDCCHモニタリングオケージョンの前であり且つ対応するRARが検出されないPRACH繰り返しに対し、複数PRACH繰り返しに対するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、RA-RNTIを用いるRARをモニタしてもよい。このオプションは、同じビームを用いるPRACH繰り返しに適用可能であってもよい。
[[オプション1-2b]]UEは、最後のPRACH繰り返しに対し、その最後のPRACH繰り返しに対するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、RA-RNTIを用いるRARをモニタする。このオプションは、同じビームを用いるPRACH繰り返しと、異なる複数ビームを用いるPRACH繰り返しと、に適用可能であってもよい。
When ra-ResponseWindow is running, RAR monitoring operations may follow any of several options below.
[[Option 1-2a]] The UE assumes that the DMRS antenna port is QCLed with reception of SSB/CSI-RS for multiple PRACH repetitions before the PDCCH monitoring occasion and for PRACH repetitions where no corresponding RAR is detected. RAR using RA-RNTI may be monitored. This option may be applicable for PRACH repetitions using the same beam.
[[Option 1-2b]] The UE performs RAR with RA-RNTI for the last PRACH repetition assuming the DMRS antenna port is QCLed with the reception of SSB/CSI-RS for that last PRACH repetition. Monitor. This option may be applicable to PRACH repetitions with the same beam and PRACH repetitions with different beams.
[[分析]]
 基地局の観点から、基地局は、RARウィンドウが設定された長さよりも短いことを認識していない。基地局が、より後のPRACH繰り返しの後に、以前のPRACH繰り返しに対するRARを送ることが可能であってもよい。このようなケースにおいて、UEは、以前のPRACH繰り返しに対するRARの受信を失敗する可能性がある。
[[analysis]]
From the base station's perspective, the base station is not aware that the RAR window is shorter than the configured length. It may be possible for the base station to send an RAR for a previous PRACH repetition after a later PRACH repetition. In such cases, the UE may fail to receive RARs for previous PRACH repetitions.
[オプション1-3]
 UEは、より前のPRACH繰り返しに対するRARの受信に成功した後に、又は、ra-ResponseWindowの満了の後に、より後のPRACH繰り返しに対するra-ResponseWindowを再開する。図8の例において、UEは、PRACHの複数繰り返し(Msg1#1から#4)を送信し、各繰り返しの後にRARウィンドウを開始する。UEは、Msg1#1に対するRARの受信に成功した後に、次のMsg1#2に対するra-ResponseWindowを開始する。UEは、Msg1#2に対するra-ResponseWindowの満了の後に、Msg1#3に対するra-ResponseWindowを再開する。UEは、Msg1#3に対するRARの受信に成功した後に、次のMsg1#4に対するra-ResponseWindowを開始する。
[Option 1-3]
The UE resumes the ra-ResponseWindow for the later PRACH repetition after successfully receiving the RAR for the earlier PRACH repetition or after the expiration of the ra-ResponseWindow. In the example of FIG. 8, the UE transmits multiple repetitions of the PRACH (Msg1 #1 to #4) and starts a RAR window after each repetition. After successfully receiving the RAR for Msg1#1, the UE starts the next ra-ResponseWindow for Msg1#2. After the ra-ResponseWindow for Msg1#2 expires, the UE restarts the ra-ResponseWindow for Msg1#3. After successfully receiving the RAR for Msg1#3, the UE starts the next ra-ResponseWindow for Msg1#4.
[[例]]
 もしUEが、より前のPRACH繰り返しに対する(送信されたプリアンブルインデックスに一致するプリアンブル識別子を含む)RARの検出の前に、且つ、ra-ResponseWindowの満了の前に、より後のPRACH繰り返しを送信し、ra-ResponseWindowの満了の後に、又は、より前のPRACH繰り返しに対するRARの検出の後に、ra-ResponseWindowを再開する場合、UEは、以下のいくつかの動作の少なくとも1つに従ってもよい。
・ra-ResponseWindowの再開の前に、UEは、より前のPRACH繰り返しに対し、そのPRACH繰り返しに対するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、RA-RNTIを用いるRARをモニタしてもよい。
・ra-ResponseWindowの再開の後に、UEは、より後のPRACH繰り返しに対し、そのPRACH繰り返しに対するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、RA-RNTIを用いるRARをモニタしてもよい。
[[example]]
If the UE transmits a later PRACH repetition before the detection of the RAR (containing a preamble identifier matching the transmitted preamble index) for the earlier PRACH repetition and before the expiration of the ra-ResponseWindow. When restarting the ra-ResponseWindow after expiration of the ra-ResponseWindow, or after detection of an RAR for an earlier PRACH repetition, the UE may follow at least one of several actions below.
- Before restarting the ra-ResponseWindow, the UE performs RAR using RA-RNTI for the previous PRACH repetition, assuming the DMRS antenna port is QCLed with reception of SSB/CSI-RS for that PRACH repetition. may be monitored.
- After restarting the ra-ResponseWindow, the UE performs RAR with RA-RNTI for a later PRACH repetition, assuming the DMRS antenna port is QCLed with the reception of SSB/CSI-RS for that PRACH repetition. May be monitored.
[[分析]]
 基地局の観点から、基地局は、RARウィンドウが想定されるよりも後に開始することを認識していない。基地局が、より前のPRACH繰り返しに対するRARウィンドウの終了の前に、より後のPRACH繰り返しに対するRARを送ることが可能であってもよい。このようなケースにおいて、UEは、より後のPRACH繰り返しに対するRARの受信を失敗する可能性がある。
[[analysis]]
From the base station's perspective, the base station is not aware that the RAR window starts later than expected. It may be possible for the base station to send the RAR for a later PRACH repetition before the end of the RAR window for the earlier PRACH repetition. In such cases, the UE may fail to receive RARs for later PRACH repetitions.
[[分析]]
 UEは、幾つのウィンドウが維持/予約されるかを記録する必要がある。例えば、UEは、最初のPRACH繰り返しに対するRARウィンドウの終了の前に3つのPRACH繰り返しを送信する。
[[analysis]]
The UE needs to keep track of how many windows are maintained/reserved. For example, the UE sends three PRACH repetitions before the end of the RAR window for the first PRACH repetition.
《オプション2》
 各PRACH繰り返しに対して個別のRARウィンドウ(ra-ResponseWindow)が維持される。複数PRACH繰り返しに対する複数RARウィンドウは、以下のいくつかのオプションのいずれかに従ってもよい。
Option 2》
A separate RAR window (ra-ResponseWindow) is maintained for each PRACH repetition. Multiple RAR windows for multiple PRACH repetitions may follow any of several options below.
[オプション2-1]
 複数RARウィンドウの(時間ドメインにおける)オーバーラッピングは許容されない。UEは、複数RARウィンドウのオーバーラッピングを想定しない、と規定されてもよい。UEは、以下のいくつかの例の少なくとも1つに従ってもよい。
[[例1]]UEは、任意のra-ResponseWindowが動作している場合に、より後のPRACH繰り返しを送信しない(送信すると想定しない)。
[[例2]]UEは、より前のPRACH繰り返しに対するRARの検出の前に、より後のPRACH繰り返しを送信しない(送信すると想定しない)。そのRARは、送信されたプリアンブルインデックスに一致するプリアンブル識別子を含んでもよい。
[[例3]]UEは、より後のPRACH繰り返し(又は、より後のPRACH繰り返しに対するRARウィンドウ)の開始が、以前のRARウィンドウの終了の前であると想定しない。
[Option 2-1]
Overlapping (in the time domain) of multiple RAR windows is not allowed. It may be specified that the UE does not assume overlapping of multiple RAR windows. The UE may follow at least one of several examples below.
[Example 1] The UE does not (assumes not to) send later PRACH repetitions if any ra-ResponseWindow is active.
[Example 2] The UE does not (assumes not to) transmit a later PRACH repetition before detection of the RAR for the earlier PRACH repetition. The RAR may include a preamble identifier that matches the transmitted preamble index.
[Example 3] The UE does not assume that the start of a later PRACH repetition (or RAR window for a later PRACH repetition) is before the end of the previous RAR window.
[[分析]]
 もし複数RARウィンドウのオーバーラッピングがない場合、UEは、各PRACH繰り返しに対して個別のra-ResponseWindowのタイマを維持する必要がない。
[[analysis]]
If there is no overlapping of multiple RAR windows, the UE does not need to maintain a separate ra-ResponseWindow timer for each PRACH repetition.
[オプション2-2]
 複数RARウィンドウの(時間ドメインにおける)オーバーラッピングは許容される。図9の例において、UEは、PRACHの複数繰り返し(Msg1#1から#4)を送信し、各繰り返しの後にRARウィンドウを開始する。UEは、互いにオーバーラップしている複数RARウィンドウ内のRARの受信に1つのみのQCL想定を用いてもよい。
[Option 2-2]
Overlapping (in the time domain) of multiple RAR windows is allowed. In the example of FIG. 9, the UE transmits multiple repetitions of the PRACH (Msg1 #1 to #4) and starts a RAR window after each repetition. The UE may use only one QCL assumption for receiving RARs in multiple RAR windows that overlap with each other.
 複数RARウィンドウのためのタイプ1CSSの複数PDCCHモニタリングオケージョンにおいて、UEは、以下のいくつかのオプションのいずれかの受信とQCLされるDMRSアンテナポートを想定して、RA-RNTIを用いるPDCCH候補をモニタしてもよい。
[[オプション2-2a]]その複数RARウィンドウの最初/最後のRARウィンドウに対応するPRACH繰り返しに対応するSSB/CSI-RSの受信。
[[オプション2-2b]]その複数RARウィンドウに対応する複数PRACH繰り返しに対応するSSB/CSI-RSの複数受信の内の最大RSRPを伴う1つのSSB/CSI-RS(又は、ランダムに選択される1つのSSB/CSI-RS、又は、UE実装次第の方法に基づいて選択される1つのSSB/CSI-RS)の受信。
In multiple PDCCH monitoring scenarios of type 1 CSS for multiple RAR windows, the UE monitors PDCCH candidates with RA-RNTI, assuming the DMRS antenna port is QCLed with reception of one of several options below: You may.
[[Option 2-2a]] Reception of SSB/CSI-RS corresponding to the PRACH repetition corresponding to the first/last RAR window of the multiple RAR windows.
[[Option 2-2b]] One SSB/CSI-RS (or randomly selected (or one SSB/CSI-RS selected based on a method that depends on the UE implementation).
《オプション2のバリエーション》
 基地局は、異なる繰り返しインデックスに対応するRARウィンドウ長の異なる値(シンボル/スロットの数)を設定/指示してもよい。
《Variation of option 2》
The base station may set/indicate different values (number of symbols/slots) of the RAR window length corresponding to different repetition indices.
[[例]]
 RARウィンドウ長は、各繰り返しに対して個別に設定されてもよい。例えば、1番目の繰り返しに対して長さ1が設定され、2番目の繰り返しに対して長さ2が設定されてもよい。
[[example]]
The RAR window length may be set individually for each iteration. For example, length 1 may be set for the first repetition, and length 2 may be set for the second repetition.
[[例]]
 最初/最後のPRACH繰り返しに対するRARウィンドウ長が、他のPRACH繰り返しに対するRARウィンドウ長よりも長く/短くてもよい。基地局が最初/最後のPRACH繰り返しを識別できるケースに対して、この例が適用可能であってもよい。例えば、そのケースは、最初のPRACH繰り返しに対するRACHリソースが、他のPRACH繰り返しに対するRACHリソースから独立して設定されるケースであってもよい。例えば、そのケースは、複数PRACH繰り返しに対する複数RACHリソースが、個別に設定され、各PRACH繰り返しに対して固定/固有の位置であるケースであってもよい。
[[example]]
The RAR window length for the first/last PRACH repetition may be longer/shorter than the RAR window length for other PRACH repetitions. This example may be applicable for cases where the base station can identify the first/last PRACH repetition. For example, the case may be that the RACH resources for the first PRACH repetition are configured independently from the RACH resources for other PRACH repetitions. For example, the case may be that multiple RACH resources for multiple PRACH repetitions are configured individually and in fixed/unique locations for each PRACH repetition.
[[分析]]
 基地局が、受信されたMsg1がどの繰り返しかを認識できない場合には、このバリエーションは有用ではないと考えられる。
[[analysis]]
This variation may not be useful if the base station does not know which repetition the received Msg1 is.
 この実施形態によれば、UEは、1つ以上のRARウィンドウを適切に維持できる。 According to this embodiment, the UE can maintain one or more RAR windows appropriately.
<実施形態#2>
 この実施形態は、問題1に関する。RARをスケジュールするPDCCHのモニタリングは、以下のいくつかの実施形態のいずれかに従ってもよい。
<Embodiment #2>
This embodiment relates to problem 1. Monitoring of PDCCH to schedule RAR may follow any of several embodiments below.
《実施形態#2-1》
 1つのスロット内のRARのモニタリング/処理において、UEは、スロット当たり、RA-RNTIによってスクランブルされたCRCを伴うX(X≧1)個までのDCIフォーマットを処理/モニタしてもよい。X(最大数)は、以下のいくつかの選択肢のいずれかに従ってもよい。
[選択肢a]Rel.15/16/17から拡張されない。すなわち、X=1。Rel.15/16/17の制限は、UEが、スロット当たり、SI-RNTI、P-RNTI、PEI-RNTI、RA-RNTI、MsgB-RNTI、SFI-RNTI、INT-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、又はTPC-SRS-RNTIによってスクランブルされたCRCを伴う1つより多いDCIフォーマットに対する情報を処理すると想定しないこと、であってもよい。
[選択肢b]Xは1より大きくてもよい。Xは、仕様に定義されてもよいし、UEによってUE能力として報告されてもよい。仕様は、UE能力報告のためのXに可能な値を定義してもよい。
《Embodiment #2-1》
In monitoring/processing RAR within one slot, the UE may process/monitor up to X (X≧1) DCI formats with CRC scrambled by RA-RNTI per slot. X (maximum number) may follow any of several options below.
[Choice a] Rel. It will not be expanded from 15/16/17. That is, X=1. Rel. The restrictions for 15/16/17 are that the UE can use SI-RNTI, P-RNTI, PEI-RNTI, RA-RNTI, MsgB-RNTI, SFI-RNTI, INT-RNTI, TPC-PUSCH-RNTI, TPC - It may not be assumed to process information for more than one DCI format with CRC scrambled by PUCCH-RNTI or TPC-SRS-RNTI.
[Option b] X may be greater than 1. X may be defined in the specification or may be reported by the UE as a UE capability. The specification may define possible values for X for UE capability reporting.
 1つのスロット内においてタイプ1 CSSのPDCCHモニタリングオケージョンが1つより多い場合のRARモニタリングのUE動作は、以下のいくつかのオプションの少なくとも1つに従ってもよい。 UE behavior for RAR monitoring when there is more than one PDCCH monitoring occasion of type 1 CSS within one slot may follow at least one of several options below.
[オプション1]
 UEは、異なる複数PRACH繰り返しに対するX個より多いRARウィンドウとオーバーラップするスロットがあると想定しない。
[Option 1]
The UE does not assume that there are slots that overlap with more than X RAR windows for different PRACH repetitions.
 実施形態#1のオプション1と、実施形態#2-1のオプション1と、の組み合わせにおいて、以下のいくつかの例の少なくとも1つに従ってもよい。
[[例]]UEは、ra-ResponseWindowが動作しているスロット内において、(より後の)PRACH繰り返しを送信しない(送信することを想定しない)。
[[例]]UEは、ra-ResponseWindowがX’(X’≧1)回開始/再開されたスロット内において、(より後の)PRACH繰り返しを送信しない(送信することを想定しない)。
[[例]]UEは、より前の1つ以上のPRACH繰り返しに対するX’(X’≧1)個のRARメッセージを検出したスロット内において、(より後の)PRACH繰り返しを送信しない(送信することを想定しない)。そのRARメッセージは、送信されたプリアンブルインデックスに一致するプリアンブル識別子を含んでもよい。
[[例]]より後のPRACH繰り返しに対するRARウィンドウは、より前の1つ以上のPRACH繰り返しに対するX’(X’≧1)個のRARメッセージの検出に成功したスロットの後のスロットから開始する。
In a combination of Option 1 of Embodiment #1 and Option 1 of Embodiment #2-1, at least one of the following examples may be followed.
[[Example]] The UE does not transmit (or is not expected to transmit) (later) PRACH repetitions within the slot in which ra-ResponseWindow is operating.
[[Example]] The UE does not transmit (or is not expected to transmit) (later) PRACH repetitions within the slot in which the ra-ResponseWindow is started/restarted X'(X'≧1) times.
[[Example]] The UE does not transmit (sends) a (later) PRACH repetition in the slot in which it has detected X'(X' ≧ 1) RAR messages for one or more earlier PRACH repetitions. (not assumed). The RAR message may include a preamble identifier that matches the transmitted preamble index.
[[Example]] The RAR window for a later PRACH repetition starts from the slot after the slot in which X'(X'≧1) RAR messages for one or more earlier PRACH repetitions were successfully detected. .
 実施形態#1のオプション2と、実施形態#2-1のオプション1と、の組み合わせにおいて、以下のいくつかの例の少なくとも1つに従ってもよい。
[[例]]UEは、少なくともN(N≧1)個のra-ResponseWindowが動作しているスロット内において、(より後の)PRACH繰り返しを送信しない(送信することを想定しない)。
In a combination of Option 2 of Embodiment #1 and Option 1 of Embodiment #2-1, at least one of the following examples may be followed.
[Example] The UE does not transmit (or is not expected to transmit) (later) PRACH repetitions within the slot in which at least N (N≧1) ra-ResponseWindows are operating.
[オプション2]
 X個より多いRARウィンドウとオーバーラップするスロットがある場合、UEは、以下のいくつかのオプションの少なくとも1つに従ってもよい。
[[オプション2-1]]UEは、1つのスロット内において、X個より多いRARウィンドウ内のタイプ1 CSSの複数PDCCHモニタリングオケージョンを想定しない。
[[オプション2-2]]UEは、1つのスロット内において、より前のRARウィンドウ内の複数PDCCHモニタリングオケージョン上のX個のRARの検出に成功した場合、UEは、同じスロット内において、RA-RNTIを用いる、より後のタイプ1 CSSのPDCCHモニタリングオケージョン上のRARをモニタしない。
[[オプション2-3]]UEは、そのスロット内のX個までのRARウィンドウ内において、RA-RNTIを用いるタイプ1 CSSのPDCCHモニタリングオケージョンをモニタする。そのX個のRARウィンドウは、最初/最後のX個のRARウィンドウであってもよいし、ランダムに選択されるX個のRARウィンドウであってもよいし、UE実装次第の方法に基づいて選択されるX個のRARウィンドウであってもよいし、検出された複数RARに対するSSB/CSI-RSの複数受信の内の、最大RSRPからY個のSSB/CSI-RSの受信に対応するX個のRARウィンドウであってもよい。
[[オプション2-4]]UEは、1つのスロット内において、RA-RNTIを用いる全てのタイプ1 CSSのPDCCHモニタリングオケージョンをモニタし、検出された複数RARの内のX個のRARのみを処理する。そのX個のRARは、最初/最後に検出されたX個のRARであってもよいし、ランダムに選択されるX個の検出されたRARであってもよいし、UE実装次第の方法に基づいて選択されるX個の検出されたRARであってもよいし、検出された複数RARに対するSSB/CSI-RSの複数受信の内の、最大RSRPからY個のSSB/CSI-RSの受信に対応するX個のRARであってもよい。
[Option 2]
If there are slots that overlap with more than X RAR windows, the UE may follow at least one of several options:
[[Option 2-1]] The UE does not assume multiple PDCCH monitoring occasions of type 1 CSS in more than X RAR windows within one slot.
[[Option 2-2]] If the UE successfully detects X RARs on multiple PDCCH monitoring occasions within an earlier RAR window within one slot, the UE shall - Do not monitor RAR on later type 1 CSS PDCCH monitoring occasions using RNTI.
[[Option 2-3]] The UE monitors PDCCH monitoring occasions of type 1 CSS with RA-RNTI in up to X RAR windows within its slot. The X RAR windows may be the first/last X RAR windows corresponding to the reception of Y SSB/CSI-RSs from the maximum RSRP among the multiple receptions of SSB/CSI-RSs for the detected multiple RARs. It may be a RAR window of
[[Option 2-4]] The UE monitors all type 1 CSS PDCCH monitoring occasions using RA-RNTI within one slot and processes only X RARs among the detected multiple RARs. do. The X RARs may be the first/last detected RARs, the randomly selected X detected RARs, or the The reception of Y SSB/CSI-RSs from the maximum RSRP among the multiple receptions of SSB/CSI-RSs for multiple detected RARs. may be X RARs corresponding to .
 最大数X/最大数Yは、仕様に定義されてもよいし、SIB/RRC IEによって設定/指示されてもよいし、UEによってUE能力として報告されてもよい。仕様は、UE能力報告のために、最大数に可能な値を定義してもよい。 The maximum number The specification may define a maximum number of possible values for UE capability reporting.
 UE能力の拡張がないX=1のケースに対し、オプション1/2が適用可能であってもよい。UE能力の拡張があるX>1のケースに対し、オプション1/2が適用可能であってもよい。 Option 1/2 may be applicable for the case of X=1 where there is no UE capability expansion. Option 1/2 may be applicable for the case where X>1 with UE capability expansion.
《実施形態#2-2》
 異なる複数ビームを用いる複数PRACH繰り返しに対し、UEは、スロット当たり、Y(Y≧1)個までの異なるビームを用い、RA-RNTIによってスクランブルされたCRCを伴う1つ以上のDCIフォーマットを処理/モニタしてもよい。Y(最大数)は、仕様に定義されてもよいし、SIB/RRC IEによって設定/指示されてもよいし、UEによってUE能力として報告されてもよい。仕様は、UE能力報告のために、Yに可能な値を定義してもよい。
《Embodiment #2-2》
For multiple PRACH repetitions with different beams, the UE processes/processes one or more DCI formats with up to Y (Y≧1) different beams and CRC scrambled by RA-RNTI per slot. May be monitored. Y (maximum number) may be defined in the specification, may be configured/indicated by the SIB/RRC IE, or may be reported by the UE as a UE capability. The specification may define possible values for Y for UE capability reporting.
 1つのスロット内においてタイプ1 CSSのPDCCHモニタリングオケージョンが1つより多い場合のRARモニタリングのUE動作は、以下のいくつかのオプションの少なくとも1つに従ってもよい。 UE behavior for RAR monitoring when there is more than one PDCCH monitoring occasion of type 1 CSS within one slot may follow at least one of several options below.
[オプション1]
 UEは、異なる複数ビームを用いる異なる複数PRACH繰り返しに対するY個より多いRARウィンドウと(時間ドメインにおいて)オーバーラップするスロットがあると想定しない。
[Option 1]
The UE does not assume that there are slots that overlap (in the time domain) with more than Y RAR windows for different PRACH repetitions with different beams.
 実施形態#1のオプション1と、実施形態#2-2のオプション1と、の組み合わせにおいて、以下のいくつかの例の少なくとも1つに従ってもよい。
[[例]]UEは、ra-ResponseWindowが動作しているスロット内において、異なるビームを用いる(より後の)PRACH繰り返しを送信しない(送信することを想定しない)。
[[例]]UEは、ra-ResponseWindowがY’(Y’≧1)回開始/再開されたスロット内において、異なるビームを用いる(より後の)PRACH繰り返しを送信しない(送信することを想定しない)。
[[例]]UEは、より前の1つ以上のPRACH繰り返しに対するY’(Y’≧1)個のRARメッセージを検出したスロット内において、(より後の)PRACH繰り返しを送信しない(送信することを想定しない)。そのRARメッセージは、送信されたプリアンブルインデックスに一致するプリアンブル識別子を含んでもよい。
[[例]]より後のPRACH繰り返しに対するRARウィンドウは、より前の1つ以上のPRACH繰り返しに対するX’(X’≧1)個のRARメッセージの検出に成功したスロットの後のスロットから開始する。
In a combination of Option 1 of Embodiment #1 and Option 1 of Embodiment #2-2, at least one of the following examples may be followed.
[[Example]] The UE does not transmit (or is not expected to transmit) (later) PRACH repetitions using different beams within the slot in which ra-ResponseWindow is operating.
[[Example]] The UE does not transmit (later) PRACH repetitions using different beams within the slot in which ra-ResponseWindow is started/restarted Y'(Y' ≧ 1) times (assuming that it does) do not).
[[Example]] The UE does not transmit (sends) a (later) PRACH repetition within the slot in which it has detected Y'(Y' ≧ 1) RAR messages for one or more earlier PRACH repetitions. (not assumed). The RAR message may include a preamble identifier that matches the transmitted preamble index.
[[Example]] The RAR window for a later PRACH repetition starts from the slot after the slot in which X'(X'≧1) RAR messages for one or more earlier PRACH repetitions were successfully detected. .
 最大数X’/最大数Y’は、仕様に定義されてもよいし、SIB/RRC IEによって設定/指示されてもよいし、UEによってUE能力として報告されてもよい。仕様は、UE能力報告のために、最大数に可能な値を定義してもよい。 The maximum number X'/maximum number Y' may be defined in the specifications, may be set/instructed by the SIB/RRC IE, or may be reported by the UE as a UE capability. The specification may define a maximum number of possible values for UE capability reporting.
 実施形態#1のオプション2と、実施形態#2-2のオプション1と、の組み合わせにおいて、以下のいくつかの例の少なくとも1つに従ってもよい。
[[例]]UEは、少なくともN(N≧1)個のra-ResponseWindowが動作しているスロット内において、(より後の)PRACH繰り返しを送信しない(送信することを想定しない)。
In a combination of Option 2 of Embodiment #1 and Option 1 of Embodiment #2-2, at least one of the following examples may be followed.
[Example] The UE does not transmit (or is not expected to transmit) (later) PRACH repetitions within the slot in which at least N (N≧1) ra-ResponseWindows are operating.
[オプション2]
 異なる複数ビームを用いる異なる複数PRACH繰り返しに対するY個より多いRARウィンドウと(時間ドメインにおいて)オーバーラップするスロットがある場合、UEは、以下のいくつかのオプションの少なくとも1つに従ってもよい。
[[オプション2-1]]UEは、1つのスロット内において、Y個より多いRARウィンドウ内のタイプ1 CSSの複数PDCCHモニタリングオケージョンを想定しない。
[[オプション2-2]]UEは、1つのスロット内において、より前のRARウィンドウ内の複数PDCCHモニタリングオケージョン上のY個のRARの検出に成功した場合、UEは、同じスロット内において、RA-RNTIを用いる、より後のタイプ1 CSSのPDCCHモニタリングオケージョン上のRARをモニタしない。
[[オプション2-3]]UEは、そのスロット内のY個までのRARウィンドウ内において、RA-RNTIを用いるタイプ1 CSSのPDCCHモニタリングオケージョンをモニタする。そのY個のRARウィンドウは、最初/最後のY個のRARウィンドウであってもよいし、ランダムに選択されるY個のRARウィンドウであってもよいし、UE実装次第の方法に基づいて選択されるY個のRARウィンドウであってもよいし、検出された複数RARに対するSSB/CSI-RSの複数受信の内の、最大RSRPからY個のSSB/CSI-RSの受信に対応するY個のRARウィンドウであってもよい。
[[オプション2-4]]UEは、1つのスロット内において、RA-RNTIを用いる全てのタイプ1 CSSのPDCCHモニタリングオケージョンをモニタし、検出された複数RARの内のY個のRARのみを処理する。そのY個のRARは、最初/最後に検出されたY個のRARであってもよいし、ランダムに選択されるY個の検出されたRARであってもよいし、UE実装次第の方法に基づいて選択されるY個の検出されたRARであってもよいし、検出された複数RARに対するSSB/CSI-RSの複数受信の内の、最大RSRPからY個のSSB/CSI-RSの受信に対応するY個のRARであってもよい。
[Option 2]
If there are slots that overlap (in the time domain) with more than Y RAR windows for different PRACH repetitions with different beams, the UE may follow at least one of several options:
[[Option 2-1]] The UE does not assume multiple PDCCH monitoring occasions of type 1 CSS in more than Y RAR windows within one slot.
[[Option 2-2]] If the UE successfully detects Y RARs on multiple PDCCH monitoring occasions within an earlier RAR window within one slot, the UE shall detect Y RARs on multiple PDCCH monitoring occasions within the same slot. - Do not monitor RAR on later type 1 CSS PDCCH monitoring occasions using RNTI.
[[Option 2-3]] The UE monitors PDCCH monitoring occasions of type 1 CSS with RA-RNTI in up to Y RAR windows within its slot. The Y RAR windows may be the first/last Y RAR windows, or may be randomly selected Y RAR windows, or may be selected based on a method that is up to the UE implementation. may be Y RAR windows corresponding to the reception of Y SSB/CSI-RSs from the maximum RSRP among the multiple receptions of SSB/CSI-RSs for the detected multiple RARs. It may be a RAR window of
[[Option 2-4]] The UE monitors all Type 1 CSS PDCCH monitoring occasions using RA-RNTI within one slot and processes only Y RARs among the detected RARs. do. The Y RARs may be the first/last Y detected RARs, the randomly selected Y detected RARs, or in a manner that depends on the UE implementation. The reception of Y SSB/CSI-RSs from the maximum RSRP among the multiple receptions of SSB/CSI-RSs for multiple detected RARs may be selected based on the Y detected RARs. may be Y RARs corresponding to .
 この実施形態によれば、UEは、RARのためのPDCCH候補を適切にモニタ/処理できる。 According to this embodiment, the UE can appropriately monitor/process PDCCH candidates for RAR.
<実施形態#3>
 この実施形態は、問題2に関する。受信された複数RARに対応する複数Msg3 PUSCHは、以下のいくつかのケースの少なくとも1つに従ってもよい。
<Embodiment #3>
This embodiment relates to problem 2. The Msg3 PUSCH corresponding to the received RARs may follow at least one of the following several cases.
《ケース1》
 その複数Msg3 PUSCHが、時間ドメインにおいてオーバーラップしない、又は、その複数Msg3 PUSCHの間のギャップが、ビームスイッチングに必要とされるギャップ(時間)以上であるケース。
Case 1》
The case where the multiple Msg3 PUSCHs do not overlap in the time domain or the gap between the multiple Msg3 PUSCHs is greater than or equal to the gap (time) required for beam switching.
 このケースにおいて、UEは、以下のいくつかのオプションのいずれかに従ってもよい。 In this case, the UE may follow any of several options below.
[オプション1-1]UEは、各Msg3 PUSCHを送信する。 [Option 1-1] The UE transmits each Msg3 PUSCH.
[オプション1-2]UEは、1つのスロットにおいて、X個(X=1又はX>1)までのMsg3 PUSCHを送信する。X(最大数)は、仕様に定義されてもよいし、SIB/RRC IEによって設定/指示されてもよいし、UE能力としてUEによって報告されてもよい。X個までのMsg3 PUSCHは、以下のいくつかのオプションの1つであってもよい。
[[オプション1-2A]]そのスロット/スロットグループ内の複数Msg3 PUSCHの内の、最初/最後のMsg3 PUSCH。
[[オプション1-2B]]そのスロット/スロットグループ内の複数Msg3 PUSCHに対する複数RARの内の、最初/最後に検出されたX個のRARによってスケジュールされるX個のMsg3 PUSCH。
[[オプション1-2C]]そのスロット/スロットグループ内の複数Msg3 PUSCHに対するSSB/CSI-RSの複数受信の内の、最大のRSRPからSSB/CSI-RSのX個の受信に対応するX個のMsg3 PUSCH。
[[オプション1-2D]]そのスロット/スロットグループ内の複数Msg3 PUSCHの内の、ランダムに選択されるX個のMsg3 PUSCH、又は、UE実装次第の方法によって選択されるX個のMsg3 PUSCH。
[Option 1-2] The UE transmits up to X (X=1 or X>1) Msg3 PUSCH in one slot. X (maximum number) may be defined in the specification, may be configured/indicated by the SIB/RRC IE, or may be reported by the UE as a UE capability. Up to X Msg3 PUSCHs may be one of several options below.
[[Option 1-2A]] First/last Msg3 PUSCH among multiple Msg3 PUSCHs in that slot/slot group.
[[Option 1-2B]] X Msg3 PUSCHs scheduled by the first/last detected X RARs among the RARs for Msg3 PUSCHs in that slot/slot group.
[[Option 1-2C]] X corresponding to X receptions of SSB/CSI-RS from the highest RSRP among multiple receptions of SSB/CSI-RS for multiple Msg3 PUSCH in that slot/slot group Msg3 PUSCH.
[[Option 1-2D]] X Msg3 PUSCHs randomly selected among multiple Msg3 PUSCHs in that slot/slot group, or X Msg3 PUSCHs selected by a method that depends on the UE implementation.
《ケース2》
 その複数Msg3 PUSCHは、時間ドメインにおいてオーバーラップする、又は、その複数Msg3 PUSCHの間のギャップが、ビームスイッチングに必要とされるギャップ(時間)よりも短いケース。
Case 2》
The multiple Msg3 PUSCHs overlap in the time domain, or the gap between the multiple Msg3 PUSCHs is shorter than the gap (time) required for beam switching.
 このケースにおいて、UEは、互いにオーバーラップしている複数Msg3 PUSCHの1つを送信してもよい。 In this case, the UE may transmit one of multiple Msg3 PUSCHs that overlap with each other.
 このケースにおいて、UEは、以下のいくつかのオプションのいずれかに従ってもよい。 In this case, the UE may follow any of several options below.
[オプション2-1]UEは、時間ドメインにおいて互いにオーバーラップしている複数Msg3 PUSCHの内の、最初/最後のMsg3 PUSCH、又は、最初/最後に受信されたRARによってスケジュールされるMsg3 PUSCH、を送信する、又は、ビームスイッチングに必要なギャップよりも短いギャップを有してオーバーラップしない2つのPUSCHの内の、最初/最後のMsg3 PUSCH、又は、最初/最後に受信されたRARによってスケジュールされるMsg3 PUSCH、を送信する。 [Option 2-1] The UE selects the first/last Msg3 PUSCH among multiple Msg3 PUSCHs that overlap each other in the time domain, or the Msg3 PUSCH scheduled by the first/last received RAR. Scheduled by the first/last Msg3 PUSCH or first/last received RAR of two non-overlapping PUSCHs with a gap shorter than that required for beam switching. Transmit Msg3 PUSCH.
[オプション2-2]UEは、最大のRSRPを有するSSB/CSI-RSの受信に対応するMsg3 PUSCHを送信する。 [Option 2-2] The UE transmits Msg3 PUSCH corresponding to reception of the SSB/CSI-RS with the highest RSRP.
[オプション2-3]UEは、Msg3繰り返しの最小数を指示するRARによってスケジュールされるMsg3 PUSCHを送信する。 [Option 2-3] The UE transmits Msg3 PUSCH scheduled by RAR indicating the minimum number of Msg3 repetitions.
[オプション2-4]UEは、時間ドメインにおいて互いにオーバーラップしている複数Msg3 PUSCHの内の、ランダムに選択されるMsg3 PUSCH、又は、UE実装次第の方法によって選択されるMsg3 PUSCH、を送信する。 [Option 2-4] The UE transmits a Msg3 PUSCH that is randomly selected from among multiple Msg3 PUSCHs that overlap each other in the time domain, or a Msg3 PUSCH that is selected by a method that depends on the UE implementation. .
 この実施形態によれば、UEは、受信された複数RARに対し、1つ以上のMsg3を適切に送信できる。 According to this embodiment, the UE can appropriately transmit one or more Msg3 to multiple received RARs.
<実施形態#4>
 この実施形態は、問題3に関する。同じビーム/異なる複数ビームを用いるPRACH繰り返しに対するMsg3 PUSCHに対し、1つ以上の競合解決ウィンドウは、以下のいくつかのオプションのいずれかに従ってもよい。
<Embodiment #4>
This embodiment relates to problem 3. For Msg3 PUSCH for PRACH repetitions with same beam/different beams, one or more contention resolution windows may follow any of several options below.
《オプション1》
 1つのみの競合解決ウィンドウが維持される。複数繰り返しに対して共通の競合解決タイマ(ra-ContentionResolutionTimer)が維持されてもよい。UEは、以下のいくつかのオプションの少なくとも1つに従ってもよい。
Option 1》
Only one conflict resolution window is maintained. A common contention resolution timer (ra-ContentionResolutionTimer) may be maintained for multiple iterations. The UE may follow at least one of several options below.
[オプション1-1]
 UEは、複数RARによってスケジュールされる複数Msg3 PUSCHに対する複数競合解決ウィンドウの(時間ドメインにおける)オーバーラッピングを想定しない。UEは、以下のいくつかの例の少なくとも1つに従ってもよい。
[[例1]]UEは、ra-ContentionResolutionTimerが動作している場合に(より後の)Msg3 PUSCHを送信しない(送信することを想定しない)。
[[例2]]UEは、UE競合解決IDを含むPDSCHをスケジュールし、対応するTC-RNTIによってスクランブルされたCRCを伴うDCIフォーマット1_0を検出する前に(より後の)Msg3 PUSCHを送信しない(送信することを想定しない)。
[Option 1-1]
The UE does not assume overlapping (in the time domain) of multiple contention resolution windows for multiple Msg3 PUSCHs scheduled by multiple RARs. The UE may follow at least one of several examples below.
[[Example 1]] The UE does not transmit (or does not assume to transmit) (later) Msg3 PUSCH when the ra-ContentionResolutionTimer is operating.
[[Example 2]] The UE schedules a PDSCH that includes the UE Contention Resolution ID and does not transmit (later) Msg3 PUSCH before detecting DCI format 1_0 with CRC scrambled by the corresponding TC-RNTI (Not intended to be sent).
[オプション1-2]
 ra-ContentionResolutionTimerが動作している場合、UEは、より後のMsg3 PUSCHの後の最初のシンボルから、又は、より後のMsg3 PUSCHの最初のシンボルから、ra-ContentionResolutionTimerを再開する。
[Option 1-2]
If the ra-ContentionResolutionTimer is running, the UE restarts the ra-ContentionResolutionTimer from the first symbol after the later Msg3 PUSCH or from the first symbol after the later Msg3 PUSCH.
 競合解決IDモニタリング動作は、以下のいくつかのオプションのいずれかに従ってもよい。
[[オプション1-2a]]ra-ContentionResolutionTimerが動作している場合、UEは、複数PRACH繰り返しに対するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、PDCCHモニタリングオケージョンの前にあり、対応するPDCCHが検出されていない、TC-RNTIによってスクランブルされたCRCを伴うDCIフォーマット1_0をモニタする。このオプションは、同じビームを用いるPRACH繰り返しに適用可能であってもよい。
[[オプション1-2b]]ra-ContentionResolutionTimerが動作している場合、UEは、最後のMsg3 PUSCHに対するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、その最後のMsg3 PUSCHに対する、TC-RNTIによってスクランブルされたCRCを伴うDCIフォーマット1_0をモニタする。このオプションは、同じビームを用いるPRACH繰り返しに適用可能であってもよいし、異なる複数ビームを用いるPRACH繰り返しに適用可能であってもよい。
Conflict resolution ID monitoring operations may follow any of several options below.
[[Option 1-2a]] If the ra-ContentionResolutionTimer is operational, the UE assumes that the DMRS antenna port is QCLed with reception of SSB/CSI-RS for multiple PRACH repetitions before the PDCCH monitoring occasion. monitor DCI format 1_0 with scrambled CRC by TC-RNTI, with no corresponding PDCCH detected. This option may be applicable for PRACH repetitions using the same beam.
[[Option 1-2b]] If the ra-ContentionResolutionTimer is operational, the UE assumes the DMRS antenna port is QCLed with reception of SSB/CSI-RS for that last Msg3 PUSCH. DCI format 1_0 with CRC scrambled by TC-RNTI. This option may be applicable to PRACH repetitions with the same beam or to PRACH repetitions with different beams.
[[分析]]
 基地局の観点から、基地局は、競合解決ウィンドウが設定された長さよりも短いことを認識していない。基地局が、より後のMsg3 PUSCHの後に、以前のMsg3 PUSCHに対するMsg4をスケジュールするPDCCHを送ることが可能であってもよい。
[[analysis]]
From the base station's perspective, the base station is not aware that the contention resolution window is shorter than the configured length. It may be possible for the base station to send a PDCCH that schedules Msg4 for an earlier Msg3 PUSCH after a later Msg3 PUSCH.
[オプション1-3]
 UEが、より前のMsg3 PUSCHに対するPDCCHの検出に成功した後に、又は、ra-ContentionResolutionTimerが満了した後に、より後のMsg3 PUSCHに対する競合解決ウィンドウが開始する(UEは、より後のMsg3 PUSCHに対する競合解決ウィンドウを開始する)。UEは、以下の例に従ってもよい。
[Option 1-3]
The contention resolution window for the later Msg3 PUSCH starts after the UE successfully detects the PDCCH for the earlier Msg3 PUSCH or after the ra-ContentionResolutionTimer expires (the UE does not detect the contention for the later Msg3 PUSCH (starts the resolution window). The UE may follow the example below.
[[例]]
 もしUEが、より前のMsg3 PUSCHに対する、TC-RNTIによってスクランブルされたCRCを伴うPDCCHの検出の前、且つ、そのra-ContentionResolutionTimerの満了の前に、より後のMsg3 PUSCHを送信する場合、そのUEは、ra-ContentionResolutionTimerの満了の後に、又は、より前のMsg3 PUSCHに対する、TC-RNTIによってスクランブルされたCRCを伴うPDCCHの検出の後に、ra-ContentionResolutionTimerを再開する。
・ra-ContentionResolutionTimerの再開の前に、UEは、より前のMsg3 PUSCHに対するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、より前のMsg3 PUSCHに対してTC-RNTIを用いるPDCCH候補をモニタする。
・ra-ContentionResolutionTimerの再開の後に、UEは、より後のMsg3 PUSCHに対するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、より後のMsg3 PUSCHに対してTC-RNTIを用いるPDCCH候補をモニタする。
[[example]]
If the UE transmits a later Msg3 PUSCH before the detection of a PDCCH with a CRC scrambled by TC-RNTI for an earlier Msg3 PUSCH and before the expiry of its ra-ContentionResolutionTimer, then The UE restarts the ra-ContentionResolutionTimer after expiration of the ra-ContentionResolutionTimer or after detection of a PDCCH with CRC scrambled by TC-RNTI for an earlier Msg3 PUSCH.
- Before restarting the ra-ContentionResolutionTimer, the UE sets the TC-RNTI for the previous Msg3 PUSCH assuming the DMRS antenna port is QCLed with the reception of SSB/CSI-RS for the previous Msg3 PUSCH. Monitor the PDCCH candidates to be used.
- After restarting the ra-ContentionResolutionTimer, the UE uses TC-RNTI for the later Msg3 PUSCH assuming the DMRS antenna port is QCLed with the reception of SSB/CSI-RS for the later Msg3 PUSCH. Monitor PDCCH candidates.
[[分析]]
 基地局の観点から、基地局は、競合解決ウィンドウが設定された長さよりも短いことを認識していない。基地局が、より後のMsg3 PUSCHの後に、以前のMsg3 PUSCHに対するMsg4をスケジュールするPDCCHを送ることが可能であってもよい。
[[analysis]]
From the base station's perspective, the base station is not aware that the contention resolution window is shorter than the configured length. It may be possible for the base station to send a PDCCH that schedules Msg4 for an earlier Msg3 PUSCH after a later Msg3 PUSCH.
[[分析]]
 UEは、幾つのウィンドウが維持/予約されるかを記録する必要がある。例えば、UEは、最初のMsg3 PUSCHに対する競合解決ウィンドウの終了の前に3つのMsg3 PUSCHを送信する。
[[analysis]]
The UE needs to keep track of how many windows are maintained/reserved. For example, the UE transmits three Msg3 PUSCHs before the end of the contention resolution window for the first Msg3 PUSCH.
《オプション2》
 各Msg3 PUSCH(又は各PRACH繰り返し)に対して個別の競合解決ウィンドウが維持される。各PRACH繰り返しに対して個別のra-ContentionResolutionTimerが維持されてもよい。複数PRACH繰り返しに対する複数競合解決ウィンドウは、以下のいくつかのオプションのいずれかに従ってもよい。
Option 2》
A separate contention resolution window is maintained for each Msg3 PUSCH (or each PRACH iteration). A separate ra-ContentionResolutionTimer may be maintained for each PRACH repetition. Multiple conflict resolution windows for multiple PRACH iterations may follow any of several options below.
[オプション2-1]
 複数競合解決ウィンドウの(時間ドメインにおける)オーバーラッピングは許容されない。UEは、複数Msg3 PUSCHに対する複数競合解決ウィンドウのオーバーラッピングを想定しない、と規定されてもよい。UEは、以下のいくつかの例の少なくとも1つに従ってもよい。
[[例1]]UEは、動作している任意のra-ContentionResolutionTimerがある場合に、より後のMsg3 PUSCHを送信しない(送信すると想定しない)。
[[例2]]UEは、より前のMsg3 PUSCHに対するUE競合解決IDを含むPDSCHをスケジュールするPDCCHを検出する前に、より後のMsg3 PUSCHを送信しない(送信すると想定しない)。
[Option 2-1]
Overlapping (in the time domain) of multiple conflict resolution windows is not allowed. It may be specified that the UE does not assume overlapping of multiple contention resolution windows for multiple Msg3 PUSCHs. The UE may follow at least one of several examples below.
[[Example 1]] The UE does not transmit (does not assume to transmit) later Msg3 PUSCH if there is any ra-ContentionResolutionTimer operating.
[[Example 2]] The UE does not (assumes not to) transmit a later Msg3 PUSCH before detecting a PDCCH that schedules a PDSCH that includes the UE Contention Resolution ID for the earlier Msg3 PUSCH.
[[分析]]
 もし複数競合解決ウィンドウのオーバーラッピングがない場合、UEは、各Msg3 PUSCHに対して個別のra-ContentionResolutionTimerのタイマを維持する必要がない。
[[analysis]]
If there is no overlapping of multiple contention resolution windows, the UE does not need to maintain a separate ra-ContentionResolutionTimer timer for each Msg3 PUSCH.
[オプション2-2]
 複数競合解決ウィンドウの(時間ドメインにおける)オーバーラッピングは許容される。UEは、動作している任意のra-ContentionResolutionTimerがある場合に、別のra-ContentionResolutionTimerを開始してもよい。
[Option 2-2]
Overlapping (in the time domain) of multiple conflict resolution windows is allowed. The UE may start another ra-ContentionResolutionTimer if there is any ra-ContentionResolutionTimer running.
 複数競合解決ウィンドウ内の複数タイプ1-PDCCHモニタリングオケージョンにおいて、UEは、以下のいくつかのオプションのいずれかに示された参照信号の受信とQCLされるDMRSアンテナポートを想定して、TC-RNTIを用いるPDCCH候補をモニタしてもよい。
[[オプション2-2A]]複数競合解決ウィンドウの内の最初/最後の競合解決ウィンドウに対応するMsg3 PUSCHに対応するSSB/CSI-RSの受信。
[[オプション2-2B]]複数競合解決ウィンドウに対応する複数Msg3 PUSCHに対応するSSB/CSI-RSの複数受信の内の、最大RSRPを伴うSSB/CSI-RSの受信、又は、ランダムに選択されるSSB/CSI-RSの受信、又は、UE実装次第の方法によって選択されるSSB/CSI-RSの受信。
In multiple Type 1-PDCCH monitoring situations within multiple contention resolution windows, the UE may use TC-RNTI, assuming the DMRS antenna port is QCLed with reception of reference signals indicated in one of several options below. PDCCH candidates using PDCCH may be monitored.
[[Option 2-2A]] Reception of SSB/CSI-RS corresponding to Msg3 PUSCH corresponding to the first/last contention resolution window of multiple contention resolution windows.
[[Option 2-2B]] Reception of SSB/CSI-RS with maximum RSRP among multiple reception of SSB/CSI-RS corresponding to multiple Msg3 PUSCH corresponding to multiple conflict resolution windows, or randomly selected reception of SSB/CSI-RSs that are selected or selected in a manner that depends on the UE implementation.
 この実施形態によれば、UEは、1つ以上の競合解決ウィンドウを適切に維持できる。 According to this embodiment, the UE can maintain one or more contention resolution windows appropriately.
<実施形態#5>
 この実施形態は、問題4に関する。競合解決ウィンドウ及びRARウィンドウの(時間ドメインにおける)オーバーラッピングは、以下のいくつかのオプションのいずれかに従ってもよい。
<Embodiment #5>
This embodiment relates to problem 4. The overlapping (in the time domain) of the conflict resolution window and the RAR window may follow any of several options below.
《オプション1》
 競合解決ウィンドウ及びRARウィンドウのオーバーラッピングは許容されない。UEは、競合解決ウィンドウ及びRARウィンドウのオーバーラッピングを想定しない、と規定されてもよい。UEは、以下のいくつかの例の少なくとも1つに従ってもよい。
[[例]]UEは、(任意の)ra-ContentionResolutionTimerが動作している場合に、より後のPRACH繰り返しを送信しない(送信すると想定しない)。
[[例]]UEは、UE競合解決IDを伴うPDSCHをスケジュールするPDCCHを検出した後に、又は、UE競合解決IDを伴うPDSCHに対してUEが報告するHARQ-ACK情報のPUCCH送信の後に、任意のra-ResponseWindowを停止する。
[[例]]UEは、ra-ContentionResolutionTimerが満了するまで、又は、UE競合解決IDを伴うPDSCHをスケジュールするPDCCHを検出するまで、より後のPRACH繰り返しに対するra-ResponseWindowを開始しない。
Option 1》
Overlapping of conflict resolution windows and RAR windows is not allowed. It may be specified that the UE does not assume overlapping contention resolution window and RAR window. The UE may follow at least one of several examples below.
[[Example]] The UE does not (assumes not to) send later PRACH repetitions if the (optional) ra-ContentionResolutionTimer is running.
[[Example]] After the UE detects a PDCCH that schedules a PDSCH with a UE contention resolution ID, or after a PUCCH transmission of HARQ-ACK information reported by the UE for a PDSCH with a UE contention resolution ID, Stop any ra-ResponseWindow.
[Example] The UE does not initiate an ra-ResponseWindow for a later PRACH repetition until the ra-ContentionResolutionTimer expires or until it detects a PDCCH that schedules a PDSCH with a UE Contention Resolution ID.
《オプション2》
 競合解決ウィンドウ及びRARウィンドウのオーバーラッピングは可能である。図10の例において、UEは、PRACHの複数繰り返し(Msg1#1から#4)を送信し、各繰り返しの後にRARウィンドウを開始する。Msg1#1に対する競合解決ウィンドウは、Msg1#3に対するRARウィンドウとオーバーラップしている。この例において、Msg1#1に対するMsg3#1は、Msg1#3とオーバーラップしているが、Msg1#1に対するMsg3#1は、Msg1#3とオーバーラップしなくてもよい。
Option 2》
Overlapping of conflict resolution windows and RAR windows is possible. In the example of FIG. 10, the UE transmits multiple repetitions of PRACH (Msg1 #1 to #4) and starts a RAR window after each repetition. The conflict resolution window for Msg1#1 overlaps the RAR window for Msg1#3. In this example, Msg3#1 for Msg1#1 overlaps with Msg1#3, but Msg3#1 for Msg1#1 does not need to overlap with Msg1#3.
 UEは、以下のいくつかのケースの少なくとも1つに従ってもよい。 The UE may follow at least one of the following several cases.
[ケース1]
 同じビームを用いる複数PRACH繰り返しに対する、競合解決ウィンドウ/RARウィンドウの内のタイプ1-CSS PDCCHモニタリングオケージョンに対し、UEは、以下のいくつかのオプションの少なくとも1つに従ってもよい。
[[オプション2-1A]]UEは、複数PRACH繰り返しに対応するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、RA-RNTI及びTC-RNTIの両方を用いて、PDCCH候補をモニタする。
[[オプション2-1B]]UEは、複数PRACH繰り返しに対応するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、RA-RNTIを用いてPDCCH候補をモニタする。
[[オプション2-1C]]UEは、複数PRACH繰り返しに対応するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、TC-RNTIを用いてPDCCH候補をモニタする。
[Case 1]
For type 1-CSS PDCCH monitoring occasions within the contention resolution window/RAR window for multiple PRACH repetitions with the same beam, the UE may follow at least one of several options below.
[[Option 2-1A]] The UE uses both the RA-RNTI and TC-RNTI to transmit the Monitor candidates.
[[Option 2-1B]] The UE monitors PDCCH candidates using RA-RNTI, assuming a DMRS antenna port that is QCLed for reception of SSB/CSI-RS corresponding to multiple PRACH repetitions.
[[Option 2-1C]] The UE monitors PDCCH candidates using TC-RNTI, assuming a DMRS antenna port that is QCLed to receive SSB/CSI-RS corresponding to multiple PRACH repetitions.
[ケース2]
 異なる複数ビームを用いる複数PRACH繰り返しに対する、競合解決ウィンドウ/RARウィンドウの内のタイプ1-CSS PDCCHモニタリングオケージョンに対し、UEは、以下のいくつかのオプションの少なくとも1つに従ってもよい。
[Case 2]
For type 1-CSS PDCCH monitoring occasions within the contention resolution window/RAR window for multiple PRACH repetitions with different multiple beams, the UE may follow at least one of several options below.
[[オプション2-2A]]
 UE競合解決IDを伴うMsg4をスケジュールするPDCCHのモニタリングが優先される。UEは、RARウィンドウに対応するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、TC-RNTIを用いてPDCCH候補をモニタしてもよい。もし複数タイプ1 PDCCHモニタリングオケージョンが複数競合解決ウィンドウ内にある場合、実施形態#4のオプション2-2が利用されてもよい。
[[Option 2-2A]]
Priority is given to monitoring PDCCH scheduling Msg4 with UE contention resolution ID. The UE may monitor PDCCH candidates using TC-RNTI, assuming a DMRS antenna port that is QCLed with reception of SSB/CSI-RS corresponding to the RAR window. If multiple Type 1 PDCCH monitoring occasions are within multiple contention resolution windows, option 2-2 of embodiment #4 may be utilized.
[[オプション2-2B]]
 RARのモニタリングが優先される。UEは、RARウィンドウに対応するSSB/CSI-RSの受信とQCLされるDMRSアンテナポートを想定して、RA-RNTIを用いてPDCCH候補をモニタしてもよい。もし複数タイプ1 PDCCHモニタリングオケージョンが複数RARウィンドウ内にある場合、実施形態#2のオプション2-2が利用されてもよい。
[[Option 2-2B]]
RAR monitoring is prioritized. The UE may monitor PDCCH candidates using RA-RNTI, assuming a DMRS antenna port that is QCLed with reception of SSB/CSI-RS corresponding to the RAR window. If multiple Type 1 PDCCH monitoring occasions are within multiple RAR windows, option 2-2 of embodiment #2 may be utilized.
 この実施形態によれば、UEは、競合解決ウィンドウ及びRARウィンドウを適切に決定できる。 According to this embodiment, the UE can appropriately determine the contention resolution window and the RAR window.
<実施形態#6>
 この実施形態は、問題5に関する。もしUEが、UE競合解決IDを含む複数PDSCHを受信した場合、UEは、以下のいくつかのオプションのいずれかに従ってもよい。
<Embodiment #6>
This embodiment relates to problem 5. If the UE receives multiple PDSCHs containing UE contention resolution IDs, the UE may follow any of several options below.
《オプション1》
 UEは、その複数PDSCHに対する複数PUCCHスロットの内の最も早いPUCCHスロットにおいて、その複数PDSCHに対する1つのみのHARQ-ACK情報ビットを報告する。UEは、UE競合解決IDを含む任意のPDSCHに対するHARQ-ACK情報を送信した場合、UE競合解決IDを含む他のPDSCHに対するHARQ-ACK情報を報告しなくてもよい。
Option 1》
The UE reports only one HARQ-ACK information bit for the PDSCHs in the earliest PUCCH slot of the PUCCH slots for the PDSCHs. If the UE transmits HARQ-ACK information for any PDSCH that includes the UE contention resolution ID, it may not report HARQ-ACK information for other PDSCHs that include the UE contention resolution ID.
 図11Aの例において、UEは、PRACHの複数繰り返し(Msg1#1、#2)を送信する。UEは、Msg#1に基づくMsg4#1に対するHARQ-ACK情報をPUCCH上において送信した場合、Msg1#2に基づくMsg4#2に対するHARQ-ACK情報を送信しない。 In the example of FIG. 11A, the UE transmits multiple repetitions of PRACH (Msg1 #1, #2). When the UE transmits HARQ-ACK information for Msg4#1 based on Msg#1 on the PUCCH, the UE does not transmit HARQ-ACK information for Msg4#2 based on Msg1#2.
《オプション2》
 UEは、各PDSCHに対するHARQ-ACK情報を、対応するPUCCHスロット内において報告する。
Option 2》
The UE reports HARQ-ACK information for each PDSCH in the corresponding PUCCH slot.
 図11Bの例において、UEは、PRACHの複数繰り返し(Msg1#1、#2)を送信する。UEは、Msg#1に基づくMsg4#1に対するHARQ-ACK情報をPUCCH上において送信し、Msg1#2に基づくMsg4#2に対するHARQ-ACK情報をPUCCH上において送信する。この例において、Msg4#2に対するHARQ-ACK情報のPUCCH(スロット)は、Msg4#1に対するHARQ-ACK情報のPUCCH(スロット)と異なっているが、Msg4#1に対するHARQ-ACK情報のPUCCH(スロット)と同じであってもよい。 In the example of FIG. 11B, the UE transmits multiple repetitions of PRACH (Msg1 #1, #2). The UE transmits HARQ-ACK information for Msg4#1 based on Msg#1 on PUCCH, and transmits HARQ-ACK information for Msg4#2 based on Msg1#2 on PUCCH. In this example, the PUCCH (slot) of HARQ-ACK information for Msg4#2 is different from the PUCCH (slot) of HARQ-ACK information for Msg4#1, but the PUCCH (slot) of HARQ-ACK information for Msg4#1 is ) may be the same as
 UEは、以下のいくつかのオプションのいずれかに従ってもよい。 The UE may follow any of several options below.
[オプション2-1]
 UEは、同じPUCCHスロットにマップされた(対応する)UE競合解決IDを含む1つより多いPDSCH(複数PDSCH)を想定しない。
[Option 2-1]
The UE does not expect more than one PDSCH (multi-PDSCH) with (corresponding) UE contention resolution IDs mapped to the same PUCCH slot.
[オプション2-2]
 同じPUCCHスロットにマップされた(対応する)UE競合解決IDを含む1つより多いPDSCH(複数PDSCH)がある場合、UEは、以下のいくつかのオプションのいずれかに従ってもよい。
[Option 2-2]
If there is more than one PDSCH (multi-PDSCH) with (corresponding) UE contention resolution IDs mapped to the same PUCCH slot, the UE may follow any of several options below.
[[オプション2-2A]]
 UEは、その複数PDSCHに対する1ビットのみのHARQ-ACK情報を報告する。その1ビット情報は、そのPUCCHスロットに対応する複数のPDCCH/PDSCHの内の、最初/最後のPDCCH/PDSCH(又は、ランダムに選択されるPDCCH/PDSCH、又は、UE実装次第の方法によって選択されるPDCCH/PDSCH)に対するACK/NACKであってもよいし、その複数PDSCHに対する複数ACK/NACKビットから、論理積又は論理和の演算を用いて得られてもよい。
[[Option 2-2A]]
The UE reports only 1 bit of HARQ-ACK information for its multiple PDSCHs. The 1-bit information is selected by the first/last PDCCH/PDSCH (or randomly selected PDCCH/PDSCH, or by a method depending on the UE implementation) among the plurality of PDCCH/PDSCHs corresponding to the PUCCH slot. The ACK/NACK may be an ACK/NACK for a PDCCH/PDSCH), or may be obtained from a plurality of ACK/NACK bits for the plurality of PDSCHs using a logical product or a logical sum operation.
[[オプション2-2B]]
 UEは、複数PDSCHに対するX個までのHARQ-ACK情報ビットを報告してもよい。既存の仕様において、UEは、個別PUCCHリソース設定の前に1つのPUCCH内の1つまでのHARQ-ACK情報ビットが送信できるため、UE能力が拡張されてもよい。個別PUCCHリソース設定の前のPUCCHリソースに対してPUCCHフォーマット(PF)0/1のみが規定されているため、X(最大数)に関し、X=2が可能であってもよい。X(最大数)に関し、X>2が可能であってもよい。この場合、個別PUCCHリソース設定の前のデフォルトPUCCHリソースが拡張されてもよい。デフォルトPUCCHリソーステーブル内に、PF2/3/4を伴うPUCCHリソースが追加されてもよい。
[[Option 2-2B]]
The UE may report up to X HARQ-ACK information bits for multiple PDSCHs. In existing specifications, the UE capability may be expanded as the UE can send up to one HARQ-ACK information bit in one PUCCH before dedicated PUCCH resource configuration. Since only PUCCH format (PF) 0/1 is defined for PUCCH resources before individual PUCCH resource configuration, regarding X (maximum number), X=2 may be possible. Regarding X (maximum number), it may be possible that X>2. In this case, the default PUCCH resource before individual PUCCH resource configuration may be expanded. PUCCH resources with PF2/3/4 may be added in the default PUCCH resource table.
 最大数Xは、仕様に定義されてもよいし、SIB/RRC IEによって設定/指示されてもよいし、UEによってUE能力として報告されてもよい。仕様は、UE能力報告のために、最大数に可能な値を定義してもよい。 The maximum number The specification may define a maximum number of possible values for UE capability reporting.
 この実施形態によれば、UEは、UE競合解決IDを含む複数PDSCHに対するHARQ-ACK情報を適切に報告できる。 According to this embodiment, the UE can appropriately report HARQ-ACK information for multiple PDSCHs including the UE contention resolution ID.
<補足>
[バリエーション]
 各実施形態において、異なる複数ケースに対して異なる複数オプションが用いられてもよい。異なる複数ケースは、例えば、複数PRACH繰り返しが同じビームを用いるケースと、複数PRACH繰り返しが異なる複数ビームを用いるケースと、を含んでもよい。
<Supplement>
[variation]
In each embodiment, different options may be used for different cases. The different multiple cases may include, for example, a case where multiple PRACH repetitions use the same beam, and a case where multiple PRACH repetitions use different multiple beams.
 実施形態#2-2は、「RARウィンドウ」を「競合解決ウィンドウ」に置き換え、「RA-RNTI」を「TC-RNTI」に置き換え、「RAR」を「UE競合解決IDを伴うPDSCHをスケジュールするDCI」に置き換えることによって、複数競合解決ウィンドウがオーバーラップしているケースに利用できる。 Embodiment #2-2 replaces "RAR Window" with "Conflict Resolution Window", replaces "RA-RNTI" with "TC-RNTI", and replaces "RAR" with "Schedule PDSCH with UE Contention Resolution ID". DCI” can be used in cases where multiple conflict resolution windows overlap.
 実施形態#2-2は、「RARウィンドウ」を「RARウィンドウ/競合解決ウィンドウ」に置き換え、「RA-RNTI」を「RA-RNTI/TC-RNTI」に置き換え、「RAR」を「RARと、UE競合解決IDを伴うPDSCHをスケジュールするDCIと、の少なくとも1つ」に置き換えることによって、競合解決ウィンドウとRARウィンドウがオーバーラップしているケースに利用できる。 Embodiment #2-2 replaces "RAR window" with "RAR window/conflict resolution window", replaces "RA-RNTI" with "RA-RNTI/TC-RNTI", and replaces "RAR" with "RAR". A DCI that schedules a PDSCH with a UE contention resolution ID can be used in the case where the contention resolution window and the RAR window overlap.
[UEへの情報の通知]
 上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Notification of information to UE]
Notification of any information (from the Network (NW) (e.g., Base Station (BS)) to the UE (in other words, reception of any information from the BS at the UE) in the above embodiments ) is performed using physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/channels (e.g. PDCCH, PDSCH, reference signals), or a combination thereof. It's okay.
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。 When the above notification is performed by a MAC CE, the MAC CE may be identified by including a new logical channel ID (LCID), which is not specified in the existing standard, in the MAC subheader.
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。 When the above notification is performed by a DCI, the above notification includes a specific field of the DCI, a radio network temporary identifier (Radio Network Temporary Identifier (RNTI)), the format of the DCI, etc.
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Additionally, notification of any information to the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Notification of information from UE]
The notification of any information from the UE (to the NW) in the above embodiments (in other words, the transmission/reporting of any information to the BS in the UE) is performed using physical layer signaling (e.g. UCI), upper layer signaling (e.g. , RRC signaling, MAC CE), specific signals/channels (eg, PUCCH, PUSCH, PRACH, reference signals), or a combination thereof.
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。 When the above notification is performed by a MAC CE, the MAC CE may be identified by including a new LCID that is not defined in the existing standard in the MAC subheader.
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。 When the above notification is performed by UCI, the above notification may be transmitted using PUCCH or PUSCH.
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Further, notification of arbitrary information from the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
[About application of each embodiment]
At least one of the embodiments described above may be applied if certain conditions are met. The specific conditions may be specified in the standard, or may be notified to the UE/BS using upper layer signaling/physical layer signaling.
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。 At least one of the embodiments described above may be applied only to UEs that have reported or support a particular UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
・同じビーム/異なる複数ビームを伴う複数PRACH繰り返しに対する複数RARのサポート。
・複数PRACH繰り返しに対する共通/個別のra-ResponseWindowのサポート。
・複数RARに対する複数Msg3 PUSCHの送信のサポート。
・複数Msg3 PUSCH(又は複数PRACH繰り返し)に対する共通/個別のra-ContentionResolutionTimerのサポート。
・RARウィンドウ及び競合解決ウィンドウのオーバーラッピングのサポート。
・1つのスロット内においてRA-RNTIによってスクランブルされたCRCを伴う1つより多いDCIフォーマットの処理のサポート。
・1つのスロット内においてUEが処理できる、RA-RNTIによってスクランブルされたCRCを伴うDCIフォーマットの最大数。
・複数Msg4受信に対する1つのHARQ-ACK PUCCHの報告のサポート。
・各Msg4受信に対するHARQ-ACK PUCCHの報告のサポート。
・個別PUCCHりソース設定前の、1つのPUCCH内の1つ/2つのHARQ-ACK情報ビットの報告のサポート。
・1つのスロット内の異なるQCL想定を用いて、RA-RNTI/TC-RNTIによってスクランブルされたCRCを伴う1つより多いDCIフォーマットをモニタすることのサポート。
・UEが、RA-RNTI/TC-RNTIによってスクランブルされたCRCを伴うDCIフォーマットを、異なるQCL想定を用いて1つのスロット内においてモニタできる最大数。
The particular UE capability may indicate at least one of the following:
- Support for multiple RARs for multiple PRACH repetitions with same beam/different beams.
- Support for common/individual ra-ResponseWindow for multiple PRACH repetitions.
- Support for transmission of multiple Msg3 PUSCH for multiple RARs.
- Support for common/individual ra-ContentionResolutionTimer for multiple Msg3 PUSCH (or multiple PRACH repeats).
- Support for overlapping RAR and conflict resolution windows.
- Support for handling more than one DCI format with CRC scrambled by RA-RNTI within one slot.
- Maximum number of DCI formats with CRC scrambled by RA-RNTI that the UE can process within one slot.
- Support for reporting one HARQ-ACK PUCCH for multiple Msg4 receptions.
- Support for reporting HARQ-ACK PUCCH for each Msg4 reception.
- Support for reporting one/two HARQ-ACK information bits in one PUCCH before individual PUCCH source configuration.
- Support for monitoring more than one DCI format with CRC scrambled by RA-RNTI/TC-RNTI with different QCL assumptions within one slot.
- Maximum number of DCI formats with CRC scrambled by RA-RNTI/TC-RNTI that the UE can monitor within one slot with different QCL assumptions.
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。 Further, the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency) or a capability that is applied across all frequencies (e.g., cell, band, band combination, BWP, component carrier, etc.). or a combination thereof), or it may be a capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2). Alternatively, it may be a capability for each subcarrier spacing (SCS), or a capability for each Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex). The capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、各実施形態の機能を有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。 In addition, at least one of the embodiments described above may be configured such that the UE configures/activates specific information related to the embodiment described above (or performs the operation of the embodiment described above) by upper layer signaling/physical layer signaling. / May be applied when triggered. For example, the specific information may be information indicating that the functions of each embodiment are enabled, arbitrary RRC parameters for a specific release (for example, Rel. 18/19), or the like.
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。 If the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
(付記A)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 物理ランダムアクセスチャネル(PRACH)の複数の繰り返しの送信と、前記複数の繰り返しの少なくとも1つに基づく1つ以上のランダムアクセス応答(RAR)ウィンドウと、を制御する制御部と、
 前記1つ以上のRARウィンドウにおいて、RARを受信する受信部と、を有する端末。
[付記2]
 前記制御部は、前記複数の繰り返しに対し、1つのRARウィンドウを動作させる、付記1に記載の端末。
[付記3]
 前記制御部は、前記複数の繰り返しに対し、複数のRARウィンドウをそれぞれ動作させる、付記1又は付記2に記載の端末。
[付記4]
 前記受信部は、1つのスロット内において、特定数以下の下りリンク制御情報フォーマットをモニタする、付記1から付記3のいずれかに記載の端末。
(Appendix A)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Additional note 1]
a controller that controls transmission of a plurality of repetitions of a physical random access channel (PRACH) and one or more random access response (RAR) windows based on at least one of the plurality of repetitions;
a receiving unit that receives RAR in the one or more RAR windows.
[Additional note 2]
The terminal according to supplementary note 1, wherein the control unit operates one RAR window for the plurality of repetitions.
[Additional note 3]
The terminal according to Supplementary Note 1 or 2, wherein the control unit operates a plurality of RAR windows for each of the plurality of repetitions.
[Additional note 4]
The terminal according to any one of appendices 1 to 3, wherein the receiving unit monitors a specific number or less of downlink control information formats within one slot.
(付記B)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 物理ランダムアクセスチャネル(PRACH)の複数の繰り返しに対する複数のランダムアクセス応答(RAR)をそれぞれ受信する受信部と、
 前記複数のRARによってそれぞれスケジュールされる複数の物理上り共有チャネル(PUSCH)の送信を制御する制御部と、を有する端末。
[付記2]
 前記複数のPUSCHは、時間ドメインにおいてオーバーラップしない、又は、前記複数のPUSCHの間のギャップが、ビームスイッチングに必要とされる時間以上である、付記1に記載の端末。
[付記3]
 前記複数のPUSCHは、時間ドメインにおいてオーバーラップしない、又は、前記複数のPUSCHの間のギャップが、ビームスイッチングに必要とされる時間よりも短い、付記1又は付記2に記載の端末。
[付記4]
 前記制御部は、前記複数のPUSCHの内の特定のPUSCHを送信することを制御する、付記1から付記3のいずれかに記載の端末。
(Appendix B)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Additional note 1]
a receiving unit that receives a plurality of random access responses (RARs) for a plurality of repetitions of a physical random access channel (PRACH), respectively;
A terminal comprising: a control unit that controls transmission of a plurality of physical uplink shared channels (PUSCH) scheduled by the plurality of RARs.
[Additional note 2]
The terminal according to supplementary note 1, wherein the plurality of PUSCHs do not overlap in the time domain, or the gap between the plurality of PUSCHs is longer than the time required for beam switching.
[Additional note 3]
The terminal according to Appendix 1 or 2, wherein the plurality of PUSCHs do not overlap in the time domain, or the gap between the plurality of PUSCHs is shorter than the time required for beam switching.
[Additional note 4]
The terminal according to any one of Supplementary Notes 1 to 3, wherein the control unit controls transmission of a specific PUSCH among the plurality of PUSCHs.
(付記C)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 物理ランダムアクセスチャネル(PRACH)の複数の繰り返しに対し、1つ以上の競合解決ウィンドウを制御する制御部と、
 前記1つ以上の競合解決ウィンドウにおいて、1つ以上の下りリンク制御情報フォーマットを受信する受信部と、を有する端末。
[付記2]
 前記複数の繰り返しにそれぞれ対応する複数の競合解決ウィンドウが、時間ドメインにおいてオーバーラップすることが許容される、付記1に記載の端末。
[付記3]
 前記1つ以上の競合解決ウィンドウと、ランダムアクセス応答(RAR)ウィンドウとが、時間ドメインにおいてオーバーラップすることが許容される、付記1又は付記2に記載の端末。
[付記4]
 前記制御部は、前記複数の繰り返しにそれぞれ対応する複数の物理下りリンク共有チャネルの受信と、前記複数の物理下りリンク共有チャネルに対する1つ以上のHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)情報の報告と、を制御する、付記1から付記3のいずれかに記載の端末。
(Appendix C)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Additional note 1]
a controller that controls one or more contention resolution windows for multiple iterations of a physical random access channel (PRACH);
a receiving unit that receives one or more downlink control information formats in the one or more contention resolution windows.
[Additional note 2]
The terminal according to supplementary note 1, wherein a plurality of conflict resolution windows respectively corresponding to the plurality of repetitions are allowed to overlap in a time domain.
[Additional note 3]
The terminal according to appendix 1 or 2, wherein the one or more conflict resolution windows and a random access response (RAR) window are allowed to overlap in the time domain.
[Additional note 4]
The control unit receives a plurality of physical downlink shared channels corresponding to the plurality of repetitions, and reports one or more Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) information for the plurality of physical downlink shared channels. The terminal according to any one of Supplementary Notes 1 to 3, which controls .
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (also simply referred to as system 1) uses Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). It may also be a system that realizes communication using
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Additionally, the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare. User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。 The core network 30 includes, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management Function (SMF), Unified Data Management (UDM), Application Function (AF), Data Network (DN), and Location. It may also include network functions (NF) such as Management Function (LMF) and Operation, Administration and Maintenance (Management) (OAM). Note that multiple functions may be provided by one network node. Further, communication with an external network (eg, the Internet) may be performed via the DN.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A wireless access method may also be called a waveform. Note that in the wireless communication system 1, other wireless access methods (for example, other single carrier transmission methods, other multicarrier transmission methods) may be used as the UL and DL radio access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the wireless communication system 1, uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, upper layer control information, etc. may be transmitted by PUSCH. Furthermore, a Master Information Block (MIB) may be transmitted via the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlinks, uplinks, etc. may be expressed without adding "link". Furthermore, various channels may be expressed without adding "Physical" at the beginning.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In addition, in the wireless communication system 1, measurement reference signals (Sounding Reference Signal (SRS)), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS). good. Note that DMRS may be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図13は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 13 is a diagram illustrating an example of the configuration of a base station according to an embodiment. The base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like. The control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140. The control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120. The control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123. The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212. The transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 1211 and an RF section 122. The reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted. A baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 120 (RF section 122) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may perform measurements regarding the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 is the receiving power (for example, the Reference Signal Received Power (RSRP)), the receiving quality (eg, the Reference Signal Received Quality (RSRQ), Signal To Interference Plus Noi. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured. The measurement results may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20. User data (user plane data), control plane data, etc. may be acquired and transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
 制御部110は、物理ランダムアクセスチャネル(PRACH)の複数の繰り返しの受信と、前記複数の繰り返しの少なくとも1つに基づく1つ以上のランダムアクセス応答(RAR)ウィンドウと、を制御してもよい。送受信部120は、前記1つ以上のRARウィンドウにおいて、RARを送信してもよい。 The control unit 110 may control reception of a plurality of repetitions of a physical random access channel (PRACH) and one or more random access response (RAR) windows based on at least one of the plurality of repetitions. The transmitter/receiver 120 may transmit RAR in the one or more RAR windows.
 送受信部120は、物理ランダムアクセスチャネル(PRACH)の複数の繰り返しに対する複数のランダムアクセス応答(RAR)をそれぞれ送信してもよい。制御部110は、前記複数のRARによってそれぞれスケジュールされる複数の物理上り共有チャネル(PUSCH)の受信を制御してもよい。 The transmitting/receiving unit 120 may transmit multiple random access responses (RAR) for multiple repetitions of the physical random access channel (PRACH), respectively. The control unit 110 may control reception of a plurality of physical uplink shared channels (PUSCH) scheduled by the plurality of RARs.
 制御部110は、物理ランダムアクセスチャネル(PRACH)の複数の繰り返しに対し、1つ以上の競合解決ウィンドウを制御してもよい。送受信部120は、前記1つ以上の競合解決ウィンドウにおいて、1つ以上の下りリンク制御情報フォーマットを送信してもよい。 The control unit 110 may control one or more contention resolution windows for multiple repetitions of the physical random access channel (PRACH). The transceiver 120 may transmit one or more downlink control information formats in the one or more conflict resolution windows.
(ユーザ端末)
 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 14 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. The user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223. The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212. The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 2211 and an RF section 222. The reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Note that whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (for example, PUSCH), the transmitting/receiving unit 220 (transmission processing unit 2211) performs the above processing in order to transmit the channel using the DFT-s-OFDM waveform. DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving unit 220 (measuring unit 223) may perform measurements regarding the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement results may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
 制御部210は、物理ランダムアクセスチャネル(PRACH)の複数の繰り返しの送信と、前記複数の繰り返しの少なくとも1つに基づく1つ以上のランダムアクセス応答(RAR)ウィンドウと、を制御してもよい。送受信部220は、前記1つ以上のRARウィンドウにおいて、RARを受信してもよい(実施形態#1/#2)。 The control unit 210 may control transmission of a plurality of repetitions of a physical random access channel (PRACH) and one or more random access response (RAR) windows based on at least one of the plurality of repetitions. The transmitter/receiver 220 may receive RAR in the one or more RAR windows (Embodiment #1/#2).
 前記制御部210は、前記複数の繰り返しに対し、1つのRARウィンドウを動作させてもよい。 The control unit 210 may operate one RAR window for the plurality of repetitions.
 前記制御部210は、前記複数の繰り返しに対し、複数のRARウィンドウをそれぞれ動作させてもよい。 The control unit 210 may operate a plurality of RAR windows for each of the plurality of repetitions.
 前記受信部220は、1つのスロット内において、特定数以下の下りリンク制御情報フォーマットをモニタしてもよい。 The receiving unit 220 may monitor a specific number or less of downlink control information formats within one slot.
 送受信部220は、物理ランダムアクセスチャネル(PRACH)の複数の繰り返しに対する複数のランダムアクセス応答(RAR)をそれぞれ受信してもよい。制御部210は、前記複数のRARによってそれぞれスケジュールされる複数の物理上り共有チャネル(PUSCH)の送信を制御してもよい(実施形態#3)。 The transmitter/receiver 220 may receive multiple random access responses (RARs) for multiple repetitions of the physical random access channel (PRACH), respectively. The control unit 210 may control transmission of a plurality of physical uplink shared channels (PUSCH) scheduled by the plurality of RARs (Embodiment #3).
 前記複数のPUSCHは、時間ドメインにおいてオーバーラップしない、又は、前記複数のPUSCHの間のギャップが、ビームスイッチングに必要とされる時間以上であってもよい。 The plurality of PUSCHs may not overlap in the time domain, or the gap between the plurality of PUSCHs may be longer than the time required for beam switching.
 前記複数のPUSCHは、時間ドメインにおいてオーバーラップしない、又は、前記複数のPUSCHの間のギャップが、ビームスイッチングに必要とされる時間よりも短くてもよい。 The plurality of PUSCHs may not overlap in the time domain, or the gap between the plurality of PUSCHs may be shorter than the time required for beam switching.
 前記制御部210は、前記複数のPUSCHの内の特定のPUSCHを送信することを制御してもよい。 The control unit 210 may control transmission of a specific PUSCH among the plurality of PUSCHs.
 制御部210は、物理ランダムアクセスチャネル(PRACH)の複数の繰り返しに対し、1つ以上の競合解決ウィンドウを制御してもよい。送受信部220は、前記1つ以上の競合解決ウィンドウにおいて、1つ以上の下りリンク制御情報フォーマットを受信してもよい(実施形態#4/#5/#6)。 The control unit 210 may control one or more contention resolution windows for multiple repetitions of the physical random access channel (PRACH). The transmitter/receiver 220 may receive one or more downlink control information formats in the one or more conflict resolution windows (Embodiment #4/#5/#6).
 前記複数の繰り返しにそれぞれ対応する複数の競合解決ウィンドウが、時間ドメインにおいてオーバーラップすることが許容されてもよい。 A plurality of conflict resolution windows corresponding to the plurality of repetitions may be allowed to overlap in the time domain.
 前記1つ以上の競合解決ウィンドウと、ランダムアクセス応答(RAR)ウィンドウとが、時間ドメインにおいてオーバーラップすることが許容されてもよい。 The one or more conflict resolution windows and a random access response (RAR) window may be allowed to overlap in the time domain.
 前記制御部210は、前記複数の繰り返しにそれぞれ対応する複数の物理下りリンク共有チャネルの受信と、前記複数の物理下りリンク共有チャネルに対する1つ以上のHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)情報の報告と、を制御してもよい。 The control unit 210 receives a plurality of physical downlink shared channels corresponding to the plurality of repetitions, and receives one or more Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) information for the plurality of physical downlink shared channels. Reporting and may be controlled.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 15 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in this disclosure, words such as apparatus, circuit, device, section, unit, etc. can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, the processing may be performed by one processor, or the processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Note that the processor 1001 may be implemented using one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a portion of the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include. For example, the above-described transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modified example)
Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal may be interchanged. Also, the signal may be a message. The reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard. Further, a component carrier (CC) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Additionally, an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier. Good too. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are not in any way exclusive designations. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Additionally, information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer. Information, signals, etc. may be input and output via multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like. Further, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, notification of prescribed information (for example, notification of "X") is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (such as infrared, microwave, etc.) to , a server, or other remote source, these wired and/or wireless technologies are included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may refer to devices (eg, base stations) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, "precoding", "precoder", "weight (precoding weight)", "quasi-co-location (QCL)", "Transmission Configuration Indication state (TCI state)", "space "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", and "panel" are interchangeable. can be used.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "Base Station (BS)", "Wireless base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , "cell," "sector," "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each of which is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In the present disclosure, a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" are used interchangeably. can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 図16は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 16 is a diagram illustrating an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49. The electronic control section 49 may be called an electronic control unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52. air pressure signals of the front wheels 46/rear wheels 47, a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor. 56, a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service department 59 includes various devices for providing (outputting) various information such as driving information, traffic information, and entertainment information, such as car navigation systems, audio systems, speakers, displays, televisions, and radios, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, (display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40. Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the base station 10, user terminal 20, etc. described above. Further, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 The communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions that the base station 10 described above has. Further, words such as "uplink" and "downlink" may be replaced with words corresponding to inter-terminal communication (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be replaced with sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 10 may have the functions that the user terminal 20 described above has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, the operations performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is an integer or decimal number, for example)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods. The present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these systems. Furthermore, a combination of multiple systems (for example, a combination of LTE or LTE-A and 5G) may be applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment" can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be "determining", such as accessing data in memory (eg, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment" is considered to mean "judging" resolving, selecting, choosing, establishing, comparing, etc. Good too. In other words, "judgment (decision)" may be considered to be "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Furthermore, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected", "coupled", or any variations thereof refer to any connection or coupling, direct or indirect, between two or more elements. can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access."
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising". It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In the present disclosure, "less than or equal to", "less than", "more than", "more than", "equal to", etc. may be read interchangeably. In addition, in this disclosure, "good", "bad", "large", "small", "high", "low", "early", "slow", "wide", "narrow", etc. The words are not limited to the original, comparative, and superlative, and may be interpreted interchangeably. In addition, in this disclosure, words meaning "good", "bad", "large", "small", "high", "low", "early", "slow", "wide", "narrow", etc. may be interpreted as an expression with "the i-th" (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest" can be interpreted as "the i-th highest"). may be read interchangeably).
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, "of", "for", "regarding", "related to", "associated with", etc. are used to refer to each other. It may be read differently.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the invention as determined based on the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and does not have any limiting meaning on the invention according to the present disclosure.

Claims (6)

  1.  物理ランダムアクセスチャネル(PRACH)の複数の繰り返しに対し、1つ以上の競合解決ウィンドウを制御する制御部と、
     前記1つ以上の競合解決ウィンドウにおいて、1つ以上の下りリンク制御情報フォーマットを受信する受信部と、を有する端末。
    a controller that controls one or more contention resolution windows for multiple iterations of a physical random access channel (PRACH);
    a receiving unit that receives one or more downlink control information formats in the one or more contention resolution windows.
  2.  前記複数の繰り返しにそれぞれ対応する複数の競合解決ウィンドウが、時間ドメインにおいてオーバーラップすることが許容される、請求項1に記載の端末。 The terminal according to claim 1, wherein a plurality of conflict resolution windows respectively corresponding to the plurality of repetitions are allowed to overlap in the time domain.
  3.  前記1つ以上の競合解決ウィンドウと、ランダムアクセス応答(RAR)ウィンドウとが、時間ドメインにおいてオーバーラップすることが許容される、請求項1に記載の端末。 The terminal of claim 1, wherein the one or more contention resolution windows and a random access response (RAR) window are allowed to overlap in the time domain.
  4.  前記制御部は、前記複数の繰り返しにそれぞれ対応する複数の物理下りリンク共有チャネルの受信と、前記複数の物理下りリンク共有チャネルに対する1つ以上のHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)情報の報告と、を制御する、請求項1に記載の端末。 The control unit receives a plurality of physical downlink shared channels corresponding to the plurality of repetitions, and reports one or more Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) information for the plurality of physical downlink shared channels. The terminal according to claim 1, wherein the terminal controls:
  5.  物理ランダムアクセスチャネル(PRACH)の複数の繰り返しに対し、1つ以上の競合解決ウィンドウを制御するステップと、
     前記1つ以上の競合解決ウィンドウにおいて、1つ以上の下りリンク制御情報フォーマットを受信するステップと、を有する、端末の無線通信方法。
    controlling one or more contention resolution windows for multiple iterations of a physical random access channel (PRACH);
    receiving one or more downlink control information formats in the one or more contention resolution windows.
  6.  物理ランダムアクセスチャネル(PRACH)の複数の繰り返しに対し、1つ以上の競合解決ウィンドウを制御する制御部と、
     前記1つ以上の競合解決ウィンドウにおいて、1つ以上の下りリンク制御情報フォーマットを送信する送信部と、を有する基地局。
    a controller that controls one or more contention resolution windows for multiple iterations of a physical random access channel (PRACH);
    a transmitter configured to transmit one or more downlink control information formats in the one or more contention resolution windows.
PCT/JP2022/031057 2022-08-17 2022-08-17 Terminal, wireless communication method, and base station WO2024038516A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031057 WO2024038516A1 (en) 2022-08-17 2022-08-17 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031057 WO2024038516A1 (en) 2022-08-17 2022-08-17 Terminal, wireless communication method, and base station

Publications (1)

Publication Number Publication Date
WO2024038516A1 true WO2024038516A1 (en) 2024-02-22

Family

ID=89941571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031057 WO2024038516A1 (en) 2022-08-17 2022-08-17 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2024038516A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133357A1 (en) * 2020-12-18 2022-06-23 Ofinno, Llc Random access identifier for reduced capability device
JP2022531004A (en) * 2019-05-03 2022-07-05 華為技術有限公司 Random access method and equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022531004A (en) * 2019-05-03 2022-07-05 華為技術有限公司 Random access method and equipment
WO2022133357A1 (en) * 2020-12-18 2022-06-23 Ofinno, Llc Random access identifier for reduced capability device

Similar Documents

Publication Publication Date Title
WO2024038516A1 (en) Terminal, wireless communication method, and base station
WO2024038515A1 (en) Terminal, wireless communication method, and base station
WO2024038514A1 (en) Terminal, wireless communication method, and base station
WO2024009401A1 (en) Terminal, radio communication method, and base station
WO2024009402A1 (en) Terminal, wireless communication method, and base station
WO2023223551A1 (en) Terminal, radio communication method, and base station
WO2024009400A1 (en) Terminal, radio communication method, and base station
WO2024009403A1 (en) Terminal, radio communication method, and base station
WO2023223552A1 (en) Terminal, wireless communication method, and base station
WO2024029076A1 (en) Terminal, wireless communication method, and base station
WO2023135754A1 (en) Terminal, wireless communication method, and base station
WO2023135755A1 (en) Terminal, wireless communication method, and base station
WO2023119647A1 (en) Terminal, wireless communication method, and base station
WO2023119646A1 (en) Terminal, wireless communication method, and base station
WO2023119649A1 (en) Terminal, wireless communication method, and base station
WO2023105755A1 (en) Terminal, radio communication method, and base station
WO2023105756A1 (en) Terminal, wireless communication method, and base station
WO2023119648A1 (en) Terminal, wireless communication method and base station
WO2023095272A1 (en) Terminal, radio communication method, and base station
WO2023095273A1 (en) Terminal, wireless communication method, and base station
WO2023095270A1 (en) Terminal, wireless communication method, and base station
WO2023105754A1 (en) Terminal, wireless communication method, and base station
WO2024069840A1 (en) Terminal, wireless communication method, and base station
WO2023095269A1 (en) Terminal, wireless communication method, and base station
WO2023095271A1 (en) Terminal, radio communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955690

Country of ref document: EP

Kind code of ref document: A1