WO2024037919A1 - Laundry composition - Google Patents
Laundry composition Download PDFInfo
- Publication number
- WO2024037919A1 WO2024037919A1 PCT/EP2023/071858 EP2023071858W WO2024037919A1 WO 2024037919 A1 WO2024037919 A1 WO 2024037919A1 EP 2023071858 W EP2023071858 W EP 2023071858W WO 2024037919 A1 WO2024037919 A1 WO 2024037919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition according
- perfume
- laundry composition
- laundry
- salt
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 138
- 239000002304 perfume Substances 0.000 claims abstract description 68
- 239000000416 hydrocolloid Substances 0.000 claims abstract description 37
- 150000003839 salts Chemical class 0.000 claims abstract description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 230000008901 benefit Effects 0.000 claims abstract description 32
- 239000003921 oil Substances 0.000 claims abstract description 31
- 239000004744 fabric Substances 0.000 claims abstract description 30
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 27
- 239000003094 microcapsule Substances 0.000 claims abstract description 24
- 229920000642 polymer Polymers 0.000 claims abstract description 21
- 229920000728 polyester Polymers 0.000 claims abstract description 15
- 102000004190 Enzymes Human genes 0.000 claims abstract description 12
- 108090000790 Enzymes Proteins 0.000 claims abstract description 12
- 239000003112 inhibitor Substances 0.000 claims abstract description 10
- 239000005905 Hydrolysed protein Substances 0.000 claims abstract description 8
- 239000003242 anti bacterial agent Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 26
- 239000002245 particle Substances 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 17
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 235000010443 alginic acid Nutrition 0.000 claims description 7
- 229920000615 alginic acid Polymers 0.000 claims description 7
- 235000010418 carrageenan Nutrition 0.000 claims description 7
- 239000000679 carrageenan Substances 0.000 claims description 7
- 229920001525 carrageenan Polymers 0.000 claims description 7
- 229940113118 carrageenan Drugs 0.000 claims description 7
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 7
- 239000001103 potassium chloride Substances 0.000 claims description 5
- 235000011164 potassium chloride Nutrition 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 4
- 229920001817 Agar Polymers 0.000 claims description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 4
- 108010010803 Gelatin Proteins 0.000 claims description 4
- 229920000161 Locust bean gum Polymers 0.000 claims description 4
- 241001465754 Metazoa Species 0.000 claims description 4
- 235000010419 agar Nutrition 0.000 claims description 4
- 229940072056 alginate Drugs 0.000 claims description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 4
- 239000008273 gelatin Substances 0.000 claims description 4
- 229920000159 gelatin Polymers 0.000 claims description 4
- 235000019322 gelatine Nutrition 0.000 claims description 4
- 235000011852 gelatine desserts Nutrition 0.000 claims description 4
- 235000010420 locust bean gum Nutrition 0.000 claims description 4
- 239000000711 locust bean gum Substances 0.000 claims description 4
- 235000010987 pectin Nutrition 0.000 claims description 4
- 239000001814 pectin Substances 0.000 claims description 4
- 229920001277 pectin Polymers 0.000 claims description 4
- 235000013311 vegetables Nutrition 0.000 claims description 4
- 229920001285 xanthan gum Polymers 0.000 claims description 4
- 235000010493 xanthan gum Nutrition 0.000 claims description 4
- 239000000230 xanthan gum Substances 0.000 claims description 4
- 229940082509 xanthan gum Drugs 0.000 claims description 4
- 244000215068 Acacia senegal Species 0.000 claims description 3
- 241000416162 Astragalus gummifer Species 0.000 claims description 3
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 claims description 3
- 229920001353 Dextrin Polymers 0.000 claims description 3
- 239000004375 Dextrin Substances 0.000 claims description 3
- 229920000084 Gum arabic Polymers 0.000 claims description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 3
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 229920001615 Tragacanth Polymers 0.000 claims description 3
- 235000010489 acacia gum Nutrition 0.000 claims description 3
- 239000000205 acacia gum Substances 0.000 claims description 3
- 239000008272 agar Substances 0.000 claims description 3
- 229940023476 agar Drugs 0.000 claims description 3
- 230000001580 bacterial effect Effects 0.000 claims description 3
- 239000005018 casein Substances 0.000 claims description 3
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 claims description 3
- 235000021240 caseins Nutrition 0.000 claims description 3
- 229920003086 cellulose ether Polymers 0.000 claims description 3
- 235000019425 dextrin Nutrition 0.000 claims description 3
- 235000013312 flour Nutrition 0.000 claims description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 3
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 3
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 235000010487 tragacanth Nutrition 0.000 claims description 3
- 239000000196 tragacanth Substances 0.000 claims description 3
- 229940116362 tragacanth Drugs 0.000 claims description 3
- 244000303965 Cyamopsis psoralioides Species 0.000 claims 1
- 239000000463 material Substances 0.000 description 32
- 235000019198 oils Nutrition 0.000 description 29
- -1 montmorillonites Chemical class 0.000 description 28
- 235000018102 proteins Nutrition 0.000 description 23
- 102000004169 proteins and genes Human genes 0.000 description 23
- 108090000623 proteins and genes Proteins 0.000 description 23
- 239000000243 solution Substances 0.000 description 21
- 150000004665 fatty acids Chemical class 0.000 description 19
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 15
- 239000004615 ingredient Substances 0.000 description 15
- 235000014113 dietary fatty acids Nutrition 0.000 description 14
- 239000000194 fatty acid Substances 0.000 description 14
- 229930195729 fatty acid Natural products 0.000 description 14
- 125000000217 alkyl group Chemical group 0.000 description 13
- 239000000975 dye Substances 0.000 description 13
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 13
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 13
- 125000003342 alkenyl group Chemical group 0.000 description 12
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 11
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 11
- 239000010696 ester oil Substances 0.000 description 10
- 229920001296 polysiloxane Polymers 0.000 description 10
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 229910052740 iodine Inorganic materials 0.000 description 9
- 239000011630 iodine Substances 0.000 description 9
- 239000003531 protein hydrolysate Substances 0.000 description 9
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 8
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 8
- 150000002148 esters Chemical class 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 7
- 238000009835 boiling Methods 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 108010009736 Protein Hydrolysates Proteins 0.000 description 6
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 229920005862 polyol Polymers 0.000 description 6
- 125000001453 quaternary ammonium group Chemical group 0.000 description 6
- 235000021307 Triticum Nutrition 0.000 description 5
- 241000209140 Triticum Species 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000003599 detergent Substances 0.000 description 5
- 150000005690 diesters Chemical class 0.000 description 5
- 239000002979 fabric softener Substances 0.000 description 5
- 150000004676 glycans Chemical class 0.000 description 5
- 239000010773 plant oil Substances 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 235000013339 cereals Nutrition 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 4
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 4
- 235000015112 vegetable and seed oil Nutrition 0.000 description 4
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 3
- 229920001634 Copolyester Polymers 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 229920003180 amino resin Polymers 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- 235000013772 propylene glycol Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000005691 triesters Chemical class 0.000 description 3
- ZMLPKJYZRQZLDA-UHFFFAOYSA-N 1-(2-phenylethenyl)-4-[4-(2-phenylethenyl)phenyl]benzene Chemical group C=1C=CC=CC=1C=CC(C=C1)=CC=C1C(C=C1)=CC=C1C=CC1=CC=CC=C1 ZMLPKJYZRQZLDA-UHFFFAOYSA-N 0.000 description 2
- 102100032487 Beta-mannosidase Human genes 0.000 description 2
- 241001474374 Blennius Species 0.000 description 2
- 240000002791 Brassica napus Species 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 2
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000004431 Linum usitatissimum Nutrition 0.000 description 2
- 240000006240 Linum usitatissimum Species 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 108010055059 beta-Mannosidase Proteins 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 239000004464 cereal grain Substances 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 230000007071 enzymatic hydrolysis Effects 0.000 description 2
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 229940093476 ethylene glycol Drugs 0.000 description 2
- 150000002194 fatty esters Chemical class 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 235000004426 flaxseed Nutrition 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 239000011487 hemp Substances 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 235000004252 protein component Nutrition 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 2
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- MJYQFWSXKFLTAY-OVEQLNGDSA-N (2r,3r)-2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol;(2r,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O.C1=C(O)C(OC)=CC(C[C@@H](CO)[C@H](CO)CC=2C=C(OC)C(O)=CC=2)=C1 MJYQFWSXKFLTAY-OVEQLNGDSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- ZMLPKJYZRQZLDA-PHEQNACWSA-N 1-[(e)-2-phenylethenyl]-4-[4-[(e)-2-phenylethenyl]phenyl]benzene Chemical group C=1C=CC=CC=1/C=C/C(C=C1)=CC=C1C(C=C1)=CC=C1\C=C\C1=CC=CC=C1 ZMLPKJYZRQZLDA-PHEQNACWSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- SFHBJXIEBWOOFA-UHFFFAOYSA-N 5-methyl-3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical compound O=C1OC(C)COC(=O)C2=CC=C1C=C2 SFHBJXIEBWOOFA-UHFFFAOYSA-N 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 244000125300 Argania sideroxylon Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 240000005343 Azadirachta indica Species 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 108700038091 Beta-glucanases Proteins 0.000 description 1
- 235000007689 Borago officinalis Nutrition 0.000 description 1
- 240000004355 Borago officinalis Species 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 244000174111 Brassica adpressa Species 0.000 description 1
- 244000056139 Brassica cretica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 244000188595 Brassica sinapistrum Species 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 235000016401 Camelina Nutrition 0.000 description 1
- 244000197813 Camelina sativa Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 240000006162 Chenopodium quinoa Species 0.000 description 1
- 108010023736 Chondroitinases and Chondroitin Lyases Proteins 0.000 description 1
- 102000011413 Chondroitinases and Chondroitin Lyases Human genes 0.000 description 1
- 235000010523 Cicer arietinum Nutrition 0.000 description 1
- 244000045195 Cicer arietinum Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 240000007154 Coffea arabica Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241001329133 Cuphea viscosissima Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 241000522215 Dipteryx odorata Species 0.000 description 1
- 235000001950 Elaeis guineensis Nutrition 0.000 description 1
- 244000127993 Elaeis melanococca Species 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 101001061807 Homo sapiens Rab-like protein 6 Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 241000221089 Jatropha Species 0.000 description 1
- 108010029541 Laccase Proteins 0.000 description 1
- 240000004322 Lens culinaris Species 0.000 description 1
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 241000208467 Macadamia Species 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 235000013500 Melia azadirachta Nutrition 0.000 description 1
- 235000011347 Moringa oleifera Nutrition 0.000 description 1
- 244000179886 Moringa oleifera Species 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 235000014643 Orbignya martiana Nutrition 0.000 description 1
- 244000021150 Orbignya martiana Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000008753 Papaver somniferum Nutrition 0.000 description 1
- 235000010678 Paulownia tomentosa Nutrition 0.000 description 1
- 240000002834 Paulownia tomentosa Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 235000004347 Perilla Nutrition 0.000 description 1
- 244000124853 Perilla frutescens Species 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 241000893896 Physaria fendleri Species 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102100029618 Rab-like protein 6 Human genes 0.000 description 1
- 108091007187 Reductases Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 235000012377 Salvia columbariae var. columbariae Nutrition 0.000 description 1
- 240000005481 Salvia hispanica Species 0.000 description 1
- 235000001498 Salvia hispanica Nutrition 0.000 description 1
- 244000057114 Sapium sebiferum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 244000044822 Simmondsia californica Species 0.000 description 1
- 235000004433 Simmondsia californica Nutrition 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 241001135917 Vitellaria paradoxa Species 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- ZNOZWUKQPJXOIG-XSBHQQIPSA-L [(2r,3s,4r,5r,6s)-6-[[(1r,3s,4r,5r,8s)-3,4-dihydroxy-2,6-dioxabicyclo[3.2.1]octan-8-yl]oxy]-4-[[(1r,3r,4r,5r,8s)-8-[(2s,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-sulfonatooxyoxan-2-yl]oxy-4-hydroxy-2,6-dioxabicyclo[3.2.1]octan-3-yl]oxy]-5-hydroxy-2-( Chemical compound O[C@@H]1[C@@H](O)[C@@H](OS([O-])(=O)=O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H]2OC[C@H]1O[C@H](O[C@H]1[C@H]([C@@H](CO)O[C@@H](O[C@@H]3[C@@H]4OC[C@H]3O[C@H](O)[C@@H]4O)[C@@H]1O)OS([O-])(=O)=O)[C@@H]2O ZNOZWUKQPJXOIG-XSBHQQIPSA-L 0.000 description 1
- LPGFSDGXTDNTCB-UHFFFAOYSA-N [3-(16-methylheptadecanoyloxy)-2,2-bis(16-methylheptadecanoyloxymethyl)propyl] 16-methylheptadecanoate Chemical compound CC(C)CCCCCCCCCCCCCCC(=O)OCC(COC(=O)CCCCCCCCCCCCCCC(C)C)(COC(=O)CCCCCCCCCCCCCCC(C)C)COC(=O)CCCCCCCCCCCCCCC(C)C LPGFSDGXTDNTCB-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000003855 acyl compounds Chemical class 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 108010084650 alpha-N-arabinofuranosidase Proteins 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000001153 anti-wrinkle effect Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 235000014167 chia Nutrition 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 108010005400 cutinase Proteins 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 150000002190 fatty acyls Chemical class 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 108010011519 keratan-sulfate endo-1,4-beta-galactosidase Proteins 0.000 description 1
- 108010062085 ligninase Proteins 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229920001427 mPEG Polymers 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 108091005573 modified proteins Chemical class 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000019488 nut oil Nutrition 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 108010087558 pectate lyase Proteins 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- UMSVPCYSAUKCAZ-UHFFFAOYSA-N propane;hydrochloride Chemical compound Cl.CCC UMSVPCYSAUKCAZ-UHFFFAOYSA-N 0.000 description 1
- 230000007065 protein hydrolysis Effects 0.000 description 1
- 235000021251 pulses Nutrition 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 125000005624 silicic acid group Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 235000020238 sunflower seed Nutrition 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 108010038851 tannase Proteins 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-O triethanolammonium Chemical compound OCC[NH+](CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-O 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229940030186 xpect Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/0013—Liquid compositions with insoluble particles in suspension
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
- C11D17/042—Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
- C11D17/043—Liquid or thixotropic (gel) compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/046—Salts
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/228—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with phosphorus- or sulfur-containing groups
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
- C11D3/502—Protected perfumes
- C11D3/505—Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/12—Soft surfaces, e.g. textile
Definitions
- the present invention is in the field of laundry compositions, particularly ancillary compositions suitable for delivering a benefit agent during the laundry process.
- Ancillary compositions are compositions designed to be used supplementary to traditional laundry detergents and fabric conditioners, to provide the desired additional benefits.
- hydrocolloid gel matrix cured with salt can be used to deliver perfume during the laundry process.
- inclusion of salt leads to improved stability of the perfume containing laundry compositions.
- a laundry composition comprising; a. Hydrocolloid; b. 0.5 to 51 wt.% benefit agent, comprising; i. 1 to 50 wt.% perfume; and ii. additional benefit agent selected from perfume microcapsules, film forming polymers selected from polymers comprising: hydrolysed proteins or polyesters, fluorescers, dye-transfer inhibitors, natural oils, fabric softening actives, enzymes, antibacterial agents and combinations thereof; c. Salt; and d. Water;
- compositions are in the form of particles having a maximum linear dimension in any direction of 1 to 50 mm or unit dose.
- composition described herein to deliver perfume during the laundry process.
- the laundry composition is an ancillary laundry composition.
- Ancillary compositions are compositions designed to be used supplementary to traditional laundry detergents and fabric conditioners, to provide the desired additional benefits.
- the laundry composition comprises a hydrocolloid.
- Hydrocolloids are polymers characterised by their property of forming viscous dispersions and/or gels when dispersed in water.
- Hydrocolloid (“hydrophilic colloids”) are macromolecules that have a largely linear shape and have intermolecular interaction forces that provide for secondary and main valence bonds between the individual molecules and thus provide for the formation of a net-like structure.
- the hydrocolloid comprises a polysaccharide, protein, modified polysaccharide, modified protein, or combinations thereof.
- Hydrocolloids are natural or synthetic polymers that form gels or viscous solutions in aqueous systems. Hydrocolloids increase the viscosity of the water by either binding water molecules (hydration) or absorbing and enveloping the water in their interconnected macromolecules, while at the same time restricting the mobility of the water.
- hydrocoloids examples include: fully synthetic compounds, such as polyacrylic and polymethacrylic compounds, vinyl polymers, polycarboxylic acids, polyethers, polyimines and polyamides, natural compounds, such as agar-agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, alginate, locust bean gum, starch, dextrins, gelatin, xanthan gum and casein, modified natural substances, such as carboxymethyl cellulose and other cellulose ethers, hydroxyethyl and hydroxypropyl cellulose, and inorganic compounds, such as polysilicic acids, clay minerals such as montmorillonites, zeolites and silicic acids.
- fully synthetic compounds such as polyacrylic and polymethacrylic compounds, vinyl polymers, polycarboxylic acids, polyethers, polyimines and polyamides
- natural compounds such as agar-agar, carrageenan, tragacanth, gum
- the hydrocolloid of the present invention is derived from a natural source (modified or unmodified), i.e. vegetable (including seaweeds), animal or microbial derived polymers.
- the hydrocolloid is isolated from vegetable sources (including seaweeds), animal sources or bacterial sources.
- the hydrocolloid comprises natural polymers selected from: agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, alginate, locust bean gum, starch, dextrins, gelatin and/or casein, xanthan gum, carboxymethyl cellulose and other cellulose ethers, hydroxyethyl and hydroxypropyl cellulose and combinations thereof.
- the hydrocolloids comprises a material selected from: agar, gelatin, carrageenan, alginate, locust bean gum, pectin, xanthan gum, carboxymethyl cellulose, micorcrystaline cellulose and combinations thereof.
- the hydrocolloid comprises carrageenan, more preferably the hydrocolloid comprises kappa carrageenan.
- the laundry compositions of the present invention preferably comprise 0.5 to 5 wt.% hydrocolloid by weight of the laundry composition, more preferably 1 to 3 wt.% hydrocolloid, most preferably 1.25 wt.% to 2.5 wt.% hydrocolloid by weight of the laundry composition.
- compositions described herein comprise salt.
- the salt preferably comprises monovalent salt.
- the cation is selected from sodium, potassium, calcium, lithium and combinations thereof.
- the anion comprises chloride. More preferably the salt comprises salt selected from: sodium chloride, potassium chloride, calcium chloride, lithium chloride and combinations thereof. Most preferably the salt comprises salt selected from sodium chloride and/or potassium chloride. The combination of sodium chloride and potassium chloride provide the optimal dissolution and product robustness.
- the salt may be added directly to the composition neat or in a solution for example a salt water solution.
- the composition maybe dropped into a curing bath comprising the salt wherein the salt ‘cures’ the composition and becomes part of the composition.
- the laundry compositions preferably comprise 0.00001 to 3 wt. % salt by weight of the laundry composition, more preferably 0.00005 to 2 wt.% salt, even more preferably 0.0001 to 1 wt.% salt, most preferably 0.0005 to 0.5 wt.% salt.
- compositions described herein comprise benefit agent(s).
- the benefit agent comprises perfume and further benefit agents.
- the benefit agents are ingredients which provide a beneficial effect to fabrics when delivered to the fabric during the laundry process.
- the benefit agents may aid in the cleaning of fabrics, may protect the fabrics from any form of damage (such a colour fade or abrasion to the fabrics) or may impart benefits to the fabrics such as anti-wrinkle, softening or perfuming.
- Preferred benefit agent may be selected from perfume microcapsules, film forming polymers selected from polymers comprising: hydrolysed proteins or polyesters, fluorescers, dye-transfer inhibitors, natural oils, fabric softening actives, enzymes, antibacterial agents and combinations thereof.
- the laundry compositions comprise 0.5 to 51 wt.% benefit agent, more preferably 1 to 40 wt.% benefit agent, even more preferably 1.25 to 26 wt.%, most preferably 1.5 to 21 wt.% benefit agent by weight of the laundry composition.
- the laundry compositions comprise 1to 50 wt.% perfume, more preferably 1 to 35 wt.% perfume, even more preferably 1.25 to 25 wt.%, most preferably 1.5 to 20 wt.% perfume by weight of the laundry composition.
- the perfume and any additional benefit agent may be dispersed through the laundry composition described herein.
- the perfume and additional benefit agent maybe encapsulated the hydrocolloid matrix. This may be preferable when the benefit agent is an oil or is in an organic solvent or carrier.
- Useful perfume components may include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA). These substances are well known to the person skilled in the art of perfuming, flavouring, and/or aromatizing consumer products.
- Particularly preferred perfume components are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP or greater than 2.5. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Boiling point is measured at standard pressure (760 mm Hg).
- a perfume composition will comprise a mixture of blooming and substantive perfume components.
- the perfume composition may comprise other perfume components. It is commonplace for a plurality of perfume components to be present in a free oil perfume composition. In the compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components. An upper limit of 300 perfume components may be applied.
- the laundry compositions preferably comprise perfume microcapsules, suitable encapsulating materials, preferably comprise; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof.
- Perfume microcapsules for use in the laundry compositions can be friable microcapsules and/or moisture activated microcapsules.
- friable it is meant that the perfume microcapsule will rupture when a force is exerted.
- moisture activated it is meant that the perfume is released in the presence of water.
- the laundry compositions preferably comprises friable microcapsules.
- Moisture activated microcapsules may additionally be present. Examples of a microcapsules which can be friable include aminoplast microcapsules.
- Perfume components contained in a microcapsule may comprise odiferous materials and/or pro-fragrance materials. Particularly preferred perfume components contained in a microcapsule are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP greater than 2.5. Preferably the encapsulated perfume compositions comprises at least 20 wt.% blooming perfume ingredients, more preferably at least 30 wt.% and most preferably at least 40 wt.% blooming perfume ingredients. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5.
- the encapsulated perfume compositions comprises at least 10 wt.% substantive perfume ingredients, more preferably at least 20 wt.% and most preferably at least 30 wt.% substantive perfume ingredients. Boiling point is measured at standard pressure (760 mm Hg).
- a perfume composition will comprise a mixture of blooming and substantive perfume components.
- the perfume composition may comprise other perfume components.
- perfume components it is commonplace for a plurality of perfume components to be present in a microcapsule.
- the laundry compositions it is preferable to have three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components in a microcapsule.
- An upper limit of 300 perfume components may be applied.
- the microcapsules may comprise perfume components and a carrier for the perfume ingredients, such as zeolites or cyclodextrins.
- compositions comprise 0.2 wt.% to 25 wt.% perfume microcapsules, more preferably 0.35 wt.% to 20 wt.% perfume microcapsules, and most preferably 0.5 to 15 wt.% perfume microcapsules by weight of the laundry composition.
- the laundry compositions comprise film forming polymers selected from polymers comprising: hydrolysed proteins or polyesters, including co-polyesters, more preferably selected from polyesters.
- Protein hydrolysates for use in the present invention are proteins which are obtainable by hydrolysis of proteins. Hydrolysis can be achieved by chemical reactions, in particular by alkaline hydrolysis, acid hydrolysis, enzymatic hydrolysis or combinations thereof. For alkaline or acid hydrolysis, methods such as prolonged boiling in a strong acid or strong base may be employed. For enzymatic hydrolysis, all hydrolytic enzymes are suitable, for example alkaline proteases.
- the production of protein hydrolysates are described, for example, by G. Schuster and A. Domsch in soaps and oils Fette Wachse 108, (1982) 177 and Cosm.Toil, respectively. 99, (1984) 63, by H.W. Steisslinger in Parf.Kosm. 72, (1991) 556 and F. Aurich et al. in Tens. Surf. Det. 29, (1992) 389 appeared.
- the hydrolysed proteins of the present invention may come from a variety of sources.
- the proteins may be naturally sourced, e.g. from plants or animal sources, or they may be synthetic proteins.
- the protein is a naturally sourced protein or a synthetic equivalent of a naturally sourced protein.
- a preferred class of proteins are plant proteins, i.e. proteins obtained from a plant or synthetic equivalents thereof.
- the protein is obtained from a plant.
- Preferred plant sources include nuts, seeds, beans, and grains.
- Particularly preferred plant sources are grains.
- grains include cereal grains (e.g. millet, maize, barley, oats, rice and wheat), pseudoceral grains (e.g. buckwheat and quinoa), pulses (e.g. chickpeas, lentils and soybeans) and oilseeds (e.g. mustard, rapeseed, sunflower seed, hemp seed, poppy seed, flax seed).
- cereal grains e.g. millet, maize, barley, oats, rice and wheat
- pseudoceral grains e.g. buckwheat and quinoa
- pulses e.g. chickpeas, lentils and soybeans
- oilseeds e.g. mustard, rapeseed, sunflower seed, hemp seed, poppy seed, flax seed.
- Most preferred are cereal grains, in particular wheat proteins or synthetic equivalents to wheat proteins.
- the protein hydrolyzate is cationically modified.
- a cationically modified wheat protein hydrolysate Preferably, the hydrolyses protein is a quaternised protein.
- the hydrolysed protein contains at least one radical of the formula:
- R1 is an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 1 to 30 carbon atoms, or a hydroxyalkyl group having 1 to 30 carbon atoms.
- R1 is preferably selected from, a methyl group, a C 10-18 alkyl, or a C 10-13 alkenyl group,
- X is O, N or S
- R represents the protein residue.
- protein residue is to be understood as meaning the backbone of the corresponding protein hydrolyzate formed by the linking of amino acids, to which the cationic group is bound.
- the cationization of the protein hydrolysates with the above-described residues can be achieved by reacting the protein hydrolyzates, in particular the reactive groups of the amino acids of the protein hydrolysates, with halides which otherwise correspond to compounds of the above formula (wherein the X-R moiety is replaced by a halogen).
- the hydrolysed protein may be protein-silicone copolymer.
- the silicone component may be covalently bonded to amino groups of the protein groups. Silicone components may form crosslinks between different protein chains.
- the protein component of a protein-silicone copolymer may represent from 5 to 98% by weight of the copolymer, more preferably from 50 to 90%.
- the silicone component is organofunctional silane/silicone compounds.
- the protein- silicone copolymer may be prepared by covalently attaching organofunctional silane/silicone compounds to the protein amino groups to form larger polymer molecules including protein cross-linking. In addition, further polymerisation may occur through condensation of silanol groups and such further polymerisation increases the amount of cross-linking.
- the organofunctional silicone compounds used for reaction with the protein component to form the copolymer must contain a functional group capable of reacting with the chain terminal and/or side chain amino groups of the protein. Suitable reactive groups include, for example, acyl halide, sulphonyl halide, anhydride, aldehyde and epoxide groups.
- the silicone component may be any compound which contains a siloxane group (Si-O-Si) or any silane capable of forming a siloxane in situ by condensation of silanol (Si-OH) groups or any alkoxysilane or halosilane which hydrolyses to form a corresponding silanol and then condenses to form a siloxane group.
- Wheat protein hydrolysates are commercially available, for example, from Croda under the trade name Coltide Radiance.
- Polyester polymers for use in the invention may include a variety of charged (e.g. anionic) as well as non-charged monomer units and structures may be linear, branched or star-shaped.
- the polyester structure may also include capping groups to control molecular weight or to alter polymer properties such as surface activity.
- Polyesters for use in the invention may suitably be selected from copolyesters of dicarboxylic acids (for example adipic acid, phthalic acid or terephthalic acid), diols (for example ethylene glycol or propylene glycol) and polydiols (for example polyethylene glycol or polypropylene glycol).
- the copolyester may also include monomeric units substituted with anionic groups, such as for example sulfonated isophthaloyl units.
- Such materials include oligomeric esters produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, dimethyl terephthalate (“DMT”), propylene glycol (“PG”) and poly(ethyleneglycol) (“PEG”); partly- and fully-anionic-end-capped oligomeric esters such as oligomers from ethylene glycol (“EG”), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; nonionic-capped block polyester oligomeric compounds such as those produced from DMT, Me-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate, and copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate.
- Suitable polyesters can be obtained from Clariant under the trade
- Preferred polyesters for use in the invention include copolyesters formed by condensation of terephthalic acid ester and diol, preferably 1 ,2 propanediol, and further comprising an end cap formed from repeat units of alkylene oxide capped with an alkyl group.
- Examples of such materials have a structure corresponding to general formula: in which R 1 and R 2 independently of one another are X-(OC2H4)n-(OC3H6) m ; in which X is CM alkyl and preferably methyl; n is a number from 12 to 120, preferably from 40 to 50; m is a number from 1 to 10, preferably from 1 to 7; and a is a number from 4 to 9.
- n, n and a are not necessarily whole numbers for the polymer in bulk.
- the laundry composition comprises a fluorescer. More preferably, the fluorescer comprises a sulphonated distyrylbiphenyl fluoscers such as those discussed in Chapter 7 of Industrial Dyes (K. Hunger ed, Wiley VCH 2003).
- the fluorescer contains 2 SO3- groups.
- fluorescer is of the structure:
- X is suitable counter ion, preferably selected from metal ions, ammonium ions, or amine salt ions, more preferably alkali metal ions, ammonium ions or amine salt ions, most preferably Na or K.
- the composition preferably comprises 0.0001 to 10 wt.% fluorescer, more preferably 0.001 to 5 wt.%, most preferably 0.005 to 2 wt.% fluorescer by weight of the composition.
- the laundry compositions preferably comprise dye transfer inhibitors.
- the dye transfer inhibitor is more preferably selected from the group comprising polyvinyl pyrrolidone (PVP), polyvinyl imidazole (PVI), copolymers of vinyl pyrrolidone and vinyl imidazole (PVP/PVI), polyvinylpyridine-N oxide, poly-N-carboxymethyl-4-wnylpyndium chloride, polyethylene glycol- modified copolymers of vinyl pyrrolidone and vinyl imidazole, 25 and mixtures thereof.
- PVP polyvinyl pyrrolidone
- PV polyvinyl imidazole
- PV/PVI copolymers of vinyl pyrrolidone and vinyl imidazole
- polyvinylpyridine-N oxide poly-N-carboxymethyl-4-wnylpyndium chloride
- polyethylene glycol- modified copolymers of vinyl pyrrolidone and vinyl imidazole 25 and mixtures thereof.
- the dye transfer inhibitor is preferably a polymer or copolymer of cyclic amines, such as vinyl pyrrolidone and/or vinyl imidazole.
- suitable polymers include polyvinyl pyrrolidone (PVP), polyvinylimidazole (PVI), copolymers of vinyl pyrrolidone and vinyl imidazole (PVP/PVI), polyvinylpyridine-N-oxide, poly-N- carboxymethyl-4-vinylpyridium chloride, polyethylene glycol-modified copolymers of vinyl pyrrolidone and vinyl imidazole, and mixtures thereof.
- Polyvinyl pyrrolidone (PVP), polyvinylimidazole (PVI) or copolymers of vinyl pyrrolidone and vinyl imidazole (PVP/PVI) are particularly preferably used as dye transfer inhibitor.
- the used polyvinyl pyrrolidones (PVP) preferably have an average molecular weight from 2,500 to 400,000, and are commercially available from ISP Chemicals as PVP K 15, PVP K 30, PVP K 60 or PVP K 90, or from BASF as Sokalan(R) HP 50 or Sokalan(R) HP 53.
- the used copolymers of vinyl pyrrolidone and vinyl imidazole (PVP/PVI) preferably have a molecular weight in the range from 5,000 to 100,000.
- a PVP/PVI copolymer is commercially available by way of example from BASF under the name Sokalan(R) HP 56.
- a further dye transfer inhibitor that can be used in an extremely preferred manner is provided by polyethylene glycolmodified copolymers of vinyl pyrrolidone and vinyl imidazole, which for example are obtainable under the name Sokalan(R) HP 66 from BASF
- the laundry compositions preferably comprise natural oils.
- Natural oils preferably comprise plant oils or the esterified fatty acids of plant oils. Natural oils exclude mineral oils derived from petroleum. Preferably the natural oil is a liquid or soft solid.
- Plant oils include vegetable (e.g. olive oil), nut and seed oils. Plant oils also include microbial oils, which are oils produced by microbes or other organisms, including algal oils and including genetically modified or engineered microbes that produce oils. Plant oils preferably include triglycerides, free fatty acids, or a combination of both.
- the natural oil comprises seed oils or the esterified fatty acids thereof.
- Seed oils include almond, argan, babassu, borage, camelina, canola ®, castor, chia, cherry, coconut, corn, cotton, coffee, Cuphea Viscosissima , flax (linseed), grape, hemp, hepar, jatropha, jojoba, Lesquerella Fendleri oil, Moringa Oleifera oil, macadamia, mango, mustard, neem, oil palm, perilla, rapeseed, safflower, sesame, shea, stillingia, soybean, sunflower, tonka bean, tung.
- the natural oil may comprise a triglyceride or mixtures of triglycerides with varying degrees of alkyl chain length and unsaturation.
- Each triglyceride comprises one or two or more, preferably three fatty acids, bonded by a glycerol bridge.
- the natural oil comprises an ester oil.
- Ester oils are the esterified fatty acids of any of the above oils.
- the glycerides (of the above oils) are first hydrolysed to release fatty acids from the glycerol moiety, and then the fatty acids are then reacted with alcohols (mono-, di-, tri-, tetra, etc.,) to form an ester oil.
- the natural oil comprises esterified fatty acids of seed oils.
- the ester oil is a polyol ester (i.e. more than one alcohol group is reacted to form the polyol ester).
- the polyol ester is formed by esterification of a polyol (i.e. reacting a molecule comprising more than one alcohol group with acids).
- the polyol ester comprises at least two ester linkages.
- the polyol ester comprises no hydroxyl groups.
- the ester oil is a pentaerythritol e.g. a pentaerythritol tetraisostearate. Exemplary structures of the compound are (I) and (II) below:
- ester oil is saturated.
- the ester oils are esters containing straight or branched, saturated or unsaturated carboxylic acids.
- Suitable ester oils are the fatty ester of a mono or polyhydric alcohol having from 1 to about 24 carbon atoms in the hydrocarbon chain and mono or polycarboxylic acids having from 1 to about 24 carbon atoms in the hydrocarbon chain with the proviso that the total number of carbon atoms in the ester oil is equal to or greater than 16 and that at least one of the hydrocarbon radicals in the ester oil has 12 or more carbon atoms.
- the viscosity of the natural oil is from 2 mPa. s to 400 mPa. s at a temperature of 25 C, more preferably a viscosity from 2 to 150 mPa. s, most preferably a viscosity from 10 to 100 mPa. s.
- the refractive index of the natural oil is from 1.445 to 1.490, more preferred from 1.460 to 1.485.
- the natural oil of the current invention may be in the form of a free oil or an emulsion.
- the natural oil may be encapsulated.
- Suitable encapsulating materials may comprise, but are not limited to; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof.
- the laundry compositions preferably comprise fabric softening actives.
- the fabric softening actives may be any material known to soften fabrics. These may be polymeric materials or compounds known to soften materials. Examples of suitable fabric softening actives include: quaternary ammonium compounds, silicone polymers, polysaccharides, clays, amines, fatty esters, dispersible polyolefins, polymer latexes and mixtures thereof.
- the fabric softening actives may preferably be cationic or non-ionic materials.
- the fabric softening actives of the present invention are cationic materials. Suitable cationic fabric softening actives are described herein.
- the preferred softening actives for use in fabric conditioner compositions of the invention are quaternary ammonium compounds (QAC).
- the QAC preferably comprises at least one chain derived from fatty acids, more preferably at least two chains derived from a fatty acid.
- fatty acids are defined as aliphatic monocarboxylic acids having a chain of 4 to 28 carbons.
- Fatty acids may be derived from various sources such as tallow or plant sources.
- the fatty acid chains are derived from plants.
- the fatty acid chains of the QAC comprise from 10 to 50 wt. % of saturated C18 chains and from 5 to 40 wt. % of monounsaturated C18 chains by weight of total fatty acid chains.
- the fatty acid chains of the QAC comprise from 20 to 40 wt. %, preferably from 25 to 35 wt. % of saturated C18 chains and from 10 to 35 wt. %, preferably from 15 to 30 wt. % of monounsaturated C18 chains, by weight of total fatty acid chains.
- the preferred quaternary ammonium fabric softening actives for use in compositions of the present invention are ester linked quaternary ammonium compounds or so called "ester quats".
- Particularly preferred materials are the ester-linked triethanolamine (TEA) quaternary ammonium compounds comprising a mixture of mono-, di- and tri-ester linked components.
- TAA ester-linked triethanolamine
- TEA-based fabric softening compounds comprise a mixture of mono, di- and tri ester forms of the compound where the di-ester linked component comprises no more than 70 wt.% of the fabric softening compound, preferably no more than 60 wt.% e.g. no more than 55%, or even no more that 45% of the fabric softening compound and at least 10 wt.% of the monoester linked component.
- a first group of quaternary ammonium compounds (QACs) suitable for use in the present invention is represented by formula: wherein each R is independently selected from a C5 to C35 alkyl or alkenyl group; R1 represents a C1 to C4 alkyl, C2 to C4 alkenyl or a C1 to C4 hydroxyalkyl group; T may be either O-CO. (i.e. an ester group bound to R via its carbon atom), or may alternatively be CO-O (i.e.
- a second group of QACs suitable for use in the invention is represented by formula: wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and wherein n, T, and X- are as defined above.
- Preferred materials of this second group include 1,2 bis[tallowoyloxy]-3- trimethylammonium propane chloride, 1,2 bis[hardened tallowoyloxy]-3- trimethylammonium propane chloride, 1 ,2- bis[oleoyloxy]-3-trimethylammonium propane chloride, and 1,2 bis[stearoyloxy]-3- trimethylammonium propane chloride.
- Such materials are described in US 4, 137,180 (Lever Brothers).
- these materials also comprise an amount of the corresponding monoester.
- a third group of QACs suitable for use in the invention is represented by formula: wherein each R1 group is independently selected from C1 to C4 alkyl, or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and n, T, and X- are as defined above.
- Preferred materials of this third group include bis(2-tallowoyloxyethyl)dimethyl ammonium chloride, partially hardened and hardened versions thereof.
- a particular example of the fourth group of QACs is represented the by the formula:
- a fourth group of QACs suitable for use in the invention are represented by formula:
- R1 and R2 are independently selected from C10 to C22 alkyl or alkenyl groups, preferably C14 to C20 alkyl or alkenyl groups.
- X- is as defined above.
- the iodine value of the quaternary ammonium fabric conditioning material is preferably from 0 to 80, more preferably from 0 to 60, and most preferably from 0 to 45.
- the iodine value may be chosen as appropriate.
- Essentially saturated material having an iodine value of from 0 to 5, preferably from 0 to 1 may be used in the compositions of the invention. Such materials are known as "hardened" quaternary ammonium compounds.
- a further preferred range of iodine values is from 20 to 60, preferably 25 to 50, more preferably from 30 to 45.
- a material of this type is a "soft" triethanolamine quaternary ammonium compound, preferably triethanolamine di-alkylester methylsulfate. Such ester-linked triethanolamine quaternary ammonium compounds comprise unsaturated fatty chains.
- the iodine value represents the mean iodine value of the parent fatty acyl compounds or fatty acids of all of the quaternary ammonium materials present.
- the iodine value represents the mean iodine value of the parent acyl compounds of fatty acids of all of the quaternary ammonium materials present.
- Iodine value refers to, the fatty acid used to produce the QAC, the measurement of the degree of unsaturation present in a material by a method of nmr spectroscopy as described in Anal. Chem., 34, 1136 (1962) Johnson and Shoolery.
- a further type of softening compound may be a non-ester quaternary ammonium material represented by formula: wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; R2 group is independently selected from C8 to C28 alkyl or alkenyl groups, and X- is as defined above.
- the laundry composition preferably comprise one or more enzyme.
- suitable enzymes include, but are not limited to mannase, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, beta -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, xantanase, carrageenases, pectate lyases, nucleases, phosphodiesterases, and amylases, or mixtures thereof.
- Preferred enzymes maybe selected from protease, lipase, amalayse, mannase,
- Examples of preferred enzymes are sold under the following trade names Purafect Prime®, Purafect®, Preferenz® (DuPont), Savinase®, Pectawash®, Mannaway®, Lipex ®, Lipoclean ®, Whitzyme ® Stainzyme®, Stainzyme Plus®, Natalase ®, Mannaway ®, Amplify ® Xpect ®, Celluclean ® (Novozymes), Biotouch (AB Enzymes), Lavergy ® (BASF).
- the level of an enzyme is from 0.1 to 200, more preferably from 0.5 to 150, even more preferably 1 to 120, most preferably from 5 to 110 mg active enzyme protein per 100g laundry composition.
- composition preferably comprise antibacterial agents. These ingredients provide reduction or prevention of bacterial on surfaces.
- the laundry compositions described herein may comprise a dye for colouring the composition.
- Such dyes are commonly used in laundry compositions, examples include dyes marketed under the Liquitint tradename ex. Milliken.
- the laundry compositions described here preferably comprise 50 to 99 wt.% water, by weight of the laundry composition. More preferably 65 to 98 wt.% water, more preferably 70 to 97 wt.% water, even more preferably 75 to 96 wt.% water, even more preferably 80 to 95 wt.% water, most preferably 85 to 95 wt.% water, by weight of the laundry composition.
- compositions are in the form of particles having a maximum linear dimension in any direction of 1 to 50 mm or unit dose.
- Preferred unit dose packages comprise a water-soluble film such as PVOH or a non-soluble pack from which the consumer dispenses the contents.
- Particles are defined as objects having a maximum linear dimension in any direction of 1 to 50 mm.
- the particles may be any suitable shape, for example spheres, hemispheres, cubes, oblongs, elliptical, or recognisable shapes such as leaves or flowers, such shapes are obtained from different shaped moulds.
- the laundry composition is in the form of particles, the particles may be free flowing or packaged within a unit dose package.
- the particles have a maximum linear dimension in any direction of 1 to 40 mm, more preferably 1.5 mm to 30 mm and most preferably 2 mm to 20mm.
- the laundry compositions described herein may be used in any stage of the laundry process and may be used in hand washing or in a washing machine. Preferably the compositions are used in the wash stage of the laundry process.
- laundry comparisons dissolve in water in less than 25 minutes.
- compositions described herein may be made by any suitable method.
- the composition may be made by: i) mixing a salt curing composition with the other ingredients in the composition; or ii) preparing a composition containing all ingredients other than the salt, then exposing this mixture to a salt curing solution.
- a curing composition is prepared.
- the curing composition may simply comprise salt.
- the curing composition comprises water and salt.
- the solution preferably comprises salt in a concentration of 0.01 to 10 Molar, more preferably 0.05 to 5 Molar, even more preferably 0.01 to 4 Molar and most preferably 0.01 to 2.5 Molar.
- the hydrocolloid may be dispersed in water.
- the hydrocolloid solution is preferably prepared by dispersing the hydrocolloid in water.
- the hydrocolloid may be dispersed in water before heating, during heating the water or once the water has reached maximum heating temperature.
- the water or water and hydrocolloid are preferably heated to 40°C to 100°C, more preferably 45°C to 95°C and most preferably 50°C to 80°C.
- the concentration of hydrocolloid in water is preferably 0.1 to 10 wt.% by weight of the solution, more preferably 0.25 to 5 wt.% by weight of the solution, most preferably 1 to 2 wt.% by weight of the solution.
- hydrocolloid solution All remaining ingredients maybe added to the solution, for example microcapsules, softening agents, dyes, etc. and thoroughly mixed. This mix is referred to as the hydrocolloid solution. It is preferred to disperse the hydrocolloid in water before adding any other ingredients, however the alternate order of addition is possible.
- the curing composition is mixed into the hydrocolloid solution.
- the curing composition may be added at any stage, however it is preferred that the curing composition is the last ingredient to be added.
- the curing composition is added to deliver the preferred quantity of salt.
- the mixture is dispensed (preferably dripped or poured) onto a surface or into a mould, where the solution solidifies and forms a particle.
- the mixture is at a temperature of 35°C to 70°C, more preferably 40°C to 60°C and most preferably 45°C to 50°C when dropped onto a surface or into a mould.
- the temperature of the surface or mould is preferably 15°C to 30°C, more preferably 17°C to 27°C.
- the solidified composition is allowed to dry.
- Process i) described herein may be carried out using any suitable equipment. On a small scale the method may be carried out manually using a pipette to dispense droplets of the composition onto a surface or into moulds. On a larger scale, traditional casting methods may be applied.
- the hydrocolloid solution is dripped into the curing salt solution.
- the hydrocolloid solution is at a temperature of 35°C to 70°C, more preferably 40°C to 60°C and most preferably 45°C to 50°C when dropped into the curing composition.
- the temperature of the curing composition is preferably 15°C to 30°C, more preferably 17°C to 27°C.
- the solidified beads are then removed from the curing composition and allowed to dry.
- Process ii) described herein may be carried out using any suitable equipment.
- the method On a small scale the method may be carried out manually using a pipette to dispense droplets of the hydrocolloid solution into the curing composition.
- the droplet formation On a larger scale, the droplet formation may be by co-axial air flow, vibration such as a vibrating membrane, electrostatic interactions or mechanical cutting to break a liquid jet into droplets such as a cutting wheel.
- suitable equipment include Nisco Engineering, geniaLab, and Maag Group under the trade name DROPPO®.
- Processes i) and ii) may be used in compositions where the benefit agent is dispersed in the hydrocolloid solution.
- the benefit agent may be encapsulated by the hydrocolloid matrix. This may be preferable when the benefit agent is an oil or is in an organic solvent or carrier.
- suitable encapsulation machines are available from Joysun, Fuji Capsule Co. and Sanco Technology.
- a curing solution was prepared comprising 0.5 Molar potassium chloride and 0.5 Molar Sodium Chloride and 30g poured into a petri dish.
- a 1.5 % carrageenan solution was prepared by mixing the carrageenan with water and heating to 50-60°C. The perfume microcapsules, perfume oil and dye where then added to the mixture with stirring. The mixture was stirred until a homogeneous solution was obtained. The mixture was cooled to 45-50°C and with a plastic pipet, dropped into the curing solution in the petri dish (composition 1) or water (composition A), the particles were left in the curing solution for up to 2 minutes. The particles were then removed from the petri dish with a fine sieve and laid on filter paper to remove excess water. Initial observations were made of the particles.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
A laundry composition comprising; Hydrocolloid; 0.5 to 51 wt.% benefit agent, comprising; i) 1 to 50 wt.% perfume; and ii) additional benefit agent selected from perfume microcapsules, film forming polymers selected from polymers comprising: hydrolysed proteins or polyesters, fluorescers, dye-transfer inhibitors, natural oils, fabric softening actives, enzymes, antibacterial agents and combinations thereof; Salt; and water.
Description
LAUNDRY COMPOSITION
Field of the Invention
The present invention is in the field of laundry compositions, particularly ancillary compositions suitable for delivering a benefit agent during the laundry process.
Background of the Invention
Consumers traditionally expect laundry detergents to clean their fabric and fabric conditioners to soften their fabrics. However, some consumers desire new or higher levels of benefit agents, such as perfumes or fabric care ingredients. At the same time, the fabrics in a consumers laundry baskets are becoming increasingly varied. Different fabrics require different benefit agents to keep them looking new and smelling fresh. Ancillary compositions are compositions designed to be used supplementary to traditional laundry detergents and fabric conditioners, to provide the desired additional benefits.
There is a need for an ancillary composition which can be used in addition to a traditional detergent or fabric conditioner, to delivery additional benefits, in particular perfume. Previous applications disclose perfume particles comprising polyethylene glycol carrier materials. However, these particles have limited high temperature stability. Ancillary compositions which are stable, particularly at high temperatures are desired. Additionally, there is a need for improved delivery of benefit agents to fabrics. Additionally, there is a need for improved stability of ancillary benefit agent delivery compositions.
Summary of the Invention
It has been found that a hydrocolloid gel matrix cured with salt can be used to deliver perfume during the laundry process. In particular the inclusion of salt leads to improved stability of the perfume containing laundry compositions.
Accordingly in a first aspect of the present invention is provided a laundry composition comprising;
a. Hydrocolloid; b. 0.5 to 51 wt.% benefit agent, comprising; i. 1 to 50 wt.% perfume; and ii. additional benefit agent selected from perfume microcapsules, film forming polymers selected from polymers comprising: hydrolysed proteins or polyesters, fluorescers, dye-transfer inhibitors, natural oils, fabric softening actives, enzymes, antibacterial agents and combinations thereof; c. Salt; and d. Water;
Wherein the compositions are in the form of particles having a maximum linear dimension in any direction of 1 to 50 mm or unit dose.
In a further aspect of the present invention is provided a method of delivering perfume to fabric during the laundry process, wherein the laundry composition described herein is added to the laundry process.
In an additional aspect of the present invention is provided a use of the composition described herein to deliver perfume during the laundry process.
Detailed Description of the Invention
These and other aspects, features and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims. For the avoidance of doubt, any feature of one aspect of the present invention may be utilised in any other aspect of the invention. The word “comprising” is intended to mean “including” but not necessarily “consisting of” or “composed of.” In other words, the listed steps or options need not be exhaustive. It is noted that the examples given in the description below are intended to clarify the invention and are not intended to limit the invention to those examples per se.
Similarly, all percentages are weight/weight percentages unless otherwise indicated. Except in the operating and comparative examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts of material or conditions of reaction, physical properties of materials and/or use are to be understood as modified by the word “about”. Numerical ranges
expressed in the format "from x to y" are understood to include x and y. When for a specific feature multiple preferred ranges are described in the format "from x to y", it is understood that all ranges combining the different endpoints are also contemplated.
When the “laundry composition” is referred to this is the final, cured product comprising the salt. The laundry composition is an ancillary laundry composition. Ancillary compositions are compositions designed to be used supplementary to traditional laundry detergents and fabric conditioners, to provide the desired additional benefits.
The laundry composition comprises a hydrocolloid. Hydrocolloids are polymers characterised by their property of forming viscous dispersions and/or gels when dispersed in water.
“Hydrocolloids” (“hydrophilic colloids”) are macromolecules that have a largely linear shape and have intermolecular interaction forces that provide for secondary and main valence bonds between the individual molecules and thus provide for the formation of a net-like structure. Preferably the hydrocolloid comprises a polysaccharide, protein, modified polysaccharide, modified protein, or combinations thereof.
Hydrocolloids are natural or synthetic polymers that form gels or viscous solutions in aqueous systems. Hydrocolloids increase the viscosity of the water by either binding water molecules (hydration) or absorbing and enveloping the water in their interconnected macromolecules, while at the same time restricting the mobility of the water.
Examples of suitable hydrocoloids include: fully synthetic compounds, such as polyacrylic and polymethacrylic compounds, vinyl polymers, polycarboxylic acids, polyethers, polyimines and polyamides, natural compounds, such as agar-agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, alginate, locust bean gum, starch, dextrins, gelatin, xanthan gum and casein, modified natural substances, such as carboxymethyl cellulose and other cellulose ethers, hydroxyethyl and hydroxypropyl cellulose, and inorganic compounds, such as polysilicic acids, clay minerals such as montmorillonites, zeolites and silicic acids.
Preferably the hydrocolloid of the present invention is derived from a natural source (modified or unmodified), i.e. vegetable (including seaweeds), animal or microbial derived polymers. In other words the hydrocolloid is isolated from vegetable sources (including seaweeds), animal sources or bacterial sources.
Preferably the hydrocolloid comprises natural polymers selected from: agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, alginate, locust bean gum, starch, dextrins, gelatin and/or casein, xanthan gum, carboxymethyl cellulose and other cellulose ethers, hydroxyethyl and hydroxypropyl cellulose and combinations thereof.
More preferably the hydrocolloids comprises a material selected from: agar, gelatin, carrageenan, alginate, locust bean gum, pectin, xanthan gum, carboxymethyl cellulose, micorcrystaline cellulose and combinations thereof. Most preferably the hydrocolloid comprises carrageenan, more preferably the hydrocolloid comprises kappa carrageenan.
The laundry compositions of the present invention preferably comprise 0.5 to 5 wt.% hydrocolloid by weight of the laundry composition, more preferably 1 to 3 wt.% hydrocolloid, most preferably 1.25 wt.% to 2.5 wt.% hydrocolloid by weight of the laundry composition.
The compositions described herein comprise salt. The salt preferably comprises monovalent salt. Preferably the cation is selected from sodium, potassium, calcium, lithium and combinations thereof. Preferably the anion comprises chloride. More preferably the salt comprises salt selected from: sodium chloride, potassium chloride, calcium chloride, lithium chloride and combinations thereof. Most preferably the salt comprises salt selected from sodium chloride and/or potassium chloride. The combination of sodium chloride and potassium chloride provide the optimal dissolution and product robustness.
The salt may be added directly to the composition neat or in a solution for example a salt water solution. Alternatively, the composition maybe dropped into a curing bath comprising the salt wherein the salt ‘cures’ the composition and becomes part of the composition.
The laundry compositions preferably comprise 0.00001 to 3 wt. % salt by weight of the laundry composition, more preferably 0.00005 to 2 wt.% salt, even more preferably 0.0001 to 1 wt.% salt, most preferably 0.0005 to 0.5 wt.% salt.
The compositions described herein comprise benefit agent(s). The benefit agent comprises perfume and further benefit agents.
The benefit agents are ingredients which provide a beneficial effect to fabrics when delivered to the fabric during the laundry process. The benefit agents may aid in the cleaning of fabrics, may protect the fabrics from any form of damage (such a colour fade or abrasion to the fabrics) or
may impart benefits to the fabrics such as anti-wrinkle, softening or perfuming. Preferred benefit agent may be selected from perfume microcapsules, film forming polymers selected from polymers comprising: hydrolysed proteins or polyesters, fluorescers, dye-transfer inhibitors, natural oils, fabric softening actives, enzymes, antibacterial agents and combinations thereof.
The laundry compositions comprise 0.5 to 51 wt.% benefit agent, more preferably 1 to 40 wt.% benefit agent, even more preferably 1.25 to 26 wt.%, most preferably 1.5 to 21 wt.% benefit agent by weight of the laundry composition.
The laundry compositions comprise 1to 50 wt.% perfume, more preferably 1 to 35 wt.% perfume, even more preferably 1.25 to 25 wt.%, most preferably 1.5 to 20 wt.% perfume by weight of the laundry composition.
The perfume and any additional benefit agent may be dispersed through the laundry composition described herein. Alternatively, the perfume and additional benefit agent maybe encapsulated the hydrocolloid matrix. This may be preferable when the benefit agent is an oil or is in an organic solvent or carrier.
Useful perfume components may include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA). These substances are well known to the person skilled in the art of perfuming, flavouring, and/or aromatizing consumer products.
Particularly preferred perfume components are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP or greater than 2.5. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Boiling point is measured at standard pressure (760 mm Hg). Preferably a perfume composition will comprise a mixture of blooming and substantive perfume components. The perfume composition may comprise other perfume components.
It is commonplace for a plurality of perfume components to be present in a free oil perfume composition. In the compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components. An upper limit of 300 perfume components may be applied.
The laundry compositions preferably comprise perfume microcapsules, suitable encapsulating materials, preferably comprise; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof.
Perfume microcapsules for use in the laundry compositions can be friable microcapsules and/or moisture activated microcapsules. By friable, it is meant that the perfume microcapsule will rupture when a force is exerted. By moisture activated, it is meant that the perfume is released in the presence of water. The laundry compositions preferably comprises friable microcapsules. Moisture activated microcapsules may additionally be present. Examples of a microcapsules which can be friable include aminoplast microcapsules.
Perfume components contained in a microcapsule may comprise odiferous materials and/or pro-fragrance materials. Particularly preferred perfume components contained in a microcapsule are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP greater than 2.5. Preferably the encapsulated perfume compositions comprises at least 20 wt.% blooming perfume ingredients, more preferably at least 30 wt.% and most preferably at least 40 wt.% blooming perfume ingredients. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Preferably the encapsulated perfume compositions comprises at least 10 wt.% substantive perfume ingredients, more preferably at least 20 wt.% and most preferably at least 30 wt.% substantive perfume ingredients. Boiling point is measured at standard pressure (760 mm Hg). Preferably a perfume composition will comprise a mixture of blooming and substantive perfume components. The perfume composition may comprise other perfume components.
It is commonplace for a plurality of perfume components to be present in a microcapsule. In the laundry compositions it is preferable to have three or more, preferably four or more, more
preferably five or more, most preferably six or more different perfume components in a microcapsule. An upper limit of 300 perfume components may be applied.
The microcapsules may comprise perfume components and a carrier for the perfume ingredients, such as zeolites or cyclodextrins.
Preferably the compositions comprise 0.2 wt.% to 25 wt.% perfume microcapsules, more preferably 0.35 wt.% to 20 wt.% perfume microcapsules, and most preferably 0.5 to 15 wt.% perfume microcapsules by weight of the laundry composition.
Preferably the laundry compositions comprise film forming polymers selected from polymers comprising: hydrolysed proteins or polyesters, including co-polyesters, more preferably selected from polyesters.
Protein hydrolysates for use in the present invention are proteins which are obtainable by hydrolysis of proteins. Hydrolysis can be achieved by chemical reactions, in particular by alkaline hydrolysis, acid hydrolysis, enzymatic hydrolysis or combinations thereof. For alkaline or acid hydrolysis, methods such as prolonged boiling in a strong acid or strong base may be employed. For enzymatic hydrolysis, all hydrolytic enzymes are suitable, for example alkaline proteases. The production of protein hydrolysates are described, for example, by G. Schuster and A. Domsch in soaps and oils Fette Wachse 108, (1982) 177 and Cosm.Toil, respectively. 99, (1984) 63, by H.W. Steisslinger in Parf.Kosm. 72, (1991) 556 and F. Aurich et al. in Tens. Surf. Det. 29, (1992) 389 appeared.
The hydrolysed proteins of the present invention may come from a variety of sources. The proteins may be naturally sourced, e.g. from plants or animal sources, or they may be synthetic proteins. Preferably the protein is a naturally sourced protein or a synthetic equivalent of a naturally sourced protein. A preferred class of proteins are plant proteins, i.e. proteins obtained from a plant or synthetic equivalents thereof. Preferably the protein is obtained from a plant. Preferred plant sources include nuts, seeds, beans, and grains.
Particularly preferred plant sources are grains. Examples of grains include cereal grains (e.g. millet, maize, barley, oats, rice and wheat), pseudoceral grains (e.g. buckwheat and quinoa), pulses (e.g. chickpeas, lentils and soybeans) and oilseeds (e.g. mustard, rapeseed, sunflower
seed, hemp seed, poppy seed, flax seed). Most preferred are cereal grains, in particular wheat proteins or synthetic equivalents to wheat proteins.
It is preferred that the protein hydrolyzate is cationically modified. Preferably, a cationically modified wheat protein hydrolysate. Preferably the hydrolyses protein is a quaternised protein. Preferably the hydrolysed protein contains at least one radical of the formula:
R1-N+(CH3)2-CH2-CH(OH)-CH2 -XR
R1 is an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 1 to 30 carbon atoms, or a hydroxyalkyl group having 1 to 30 carbon atoms. R1 is preferably selected from, a methyl group, a C 10-18 alkyl, or a C 10-13 alkenyl group, X is O, N or S
R represents the protein residue. The term "protein residue" is to be understood as meaning the backbone of the corresponding protein hydrolyzate formed by the linking of amino acids, to which the cationic group is bound.
The cationization of the protein hydrolysates with the above-described residues can be achieved by reacting the protein hydrolyzates, in particular the reactive groups of the amino acids of the protein hydrolysates, with halides which otherwise correspond to compounds of the above formula (wherein the X-R moiety is replaced by a halogen).
The hydrolysed protein may be protein-silicone copolymer. The silicone component may be covalently bonded to amino groups of the protein groups. Silicone components may form crosslinks between different protein chains. The protein component of a protein-silicone copolymer may represent from 5 to 98% by weight of the copolymer, more preferably from 50 to 90%. Preferably, the silicone component is organofunctional silane/silicone compounds. The protein- silicone copolymer may be prepared by covalently attaching organofunctional silane/silicone compounds to the protein amino groups to form larger polymer molecules including protein cross-linking. In addition, further polymerisation may occur through condensation of silanol groups and such further polymerisation increases the amount of cross-linking. The organofunctional silicone compounds used for reaction with the protein component to form the copolymer must contain a functional group capable of reacting with the chain terminal and/or side chain amino groups of the protein. Suitable reactive groups include, for example, acyl halide, sulphonyl halide, anhydride, aldehyde and epoxide groups. The silicone component may be any compound which contains a siloxane group (Si-O-Si) or any silane capable of forming a
siloxane in situ by condensation of silanol (Si-OH) groups or any alkoxysilane or halosilane which hydrolyses to form a corresponding silanol and then condenses to form a siloxane group. Wheat protein hydrolysates are commercially available, for example, from Croda under the trade name Coltide Radiance.
Polyester polymers for use in the invention may include a variety of charged (e.g. anionic) as well as non-charged monomer units and structures may be linear, branched or star-shaped. The polyester structure may also include capping groups to control molecular weight or to alter polymer properties such as surface activity.
Polyesters for use in the invention may suitably be selected from copolyesters of dicarboxylic acids (for example adipic acid, phthalic acid or terephthalic acid), diols (for example ethylene glycol or propylene glycol) and polydiols (for example polyethylene glycol or polypropylene glycol). The copolyester may also include monomeric units substituted with anionic groups, such as for example sulfonated isophthaloyl units. Examples of such materials include oligomeric esters produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, dimethyl terephthalate (“DMT”), propylene glycol (“PG”) and poly(ethyleneglycol) (“PEG”); partly- and fully-anionic-end-capped oligomeric esters such as oligomers from ethylene glycol (“EG”), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; nonionic-capped block polyester oligomeric compounds such as those produced from DMT, Me-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate, and copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate. Suitable polyesters can be obtained from Clariant under the trade name Texcare®.
Preferred polyesters for use in the invention include copolyesters formed by condensation of terephthalic acid ester and diol, preferably 1 ,2 propanediol, and further comprising an end cap formed from repeat units of alkylene oxide capped with an alkyl group. Examples of such materials have a structure corresponding to general formula:
in which R1 and R2 independently of one another are X-(OC2H4)n-(OC3H6)m ; in which X is CM alkyl and preferably methyl; n is a number from 12 to 120, preferably from 40 to 50; m is a number from 1 to 10, preferably from 1 to 7; and a is a number from 4 to 9.
Because they are averages, m, n and a are not necessarily whole numbers for the polymer in bulk.
Mixtures of any of the above described materials may also be used.
Preferably, the laundry composition comprises a fluorescer. More preferably, the fluorescer comprises a sulphonated distyrylbiphenyl fluoscers such as those discussed in Chapter 7 of Industrial Dyes (K. Hunger ed, Wiley VCH 2003).
Sulfonated distyrylbiphenyl fluorescer are discussed in LIS5145991 (Ciba Geigy).
4,4’- distyrylbiphenyl are preferred. Preferably the fluorescer contains 2 SO3- groups.
Where X is suitable counter ion, preferably selected from metal ions, ammonium ions, or amine salt ions, more preferably alkali metal ions, ammonium ions or amine salt ions, most preferably Na or K.
Where present, the composition preferably comprises 0.0001 to 10 wt.% fluorescer, more preferably 0.001 to 5 wt.%, most preferably 0.005 to 2 wt.% fluorescer by weight of the composition.
The laundry compositions preferably comprise dye transfer inhibitors. The dye transfer inhibitor is more preferably selected from the group comprising polyvinyl pyrrolidone (PVP), polyvinyl imidazole (PVI), copolymers of vinyl pyrrolidone and vinyl imidazole (PVP/PVI), polyvinylpyridine-N oxide, poly-N-carboxymethyl-4-wnylpyndium chloride, polyethylene glycol-
modified copolymers of vinyl pyrrolidone and vinyl imidazole, 25 and mixtures thereof. These compounds form particularly stable complexes with the dyes detached from the textiles and can also be easily incorporated in a stable manner into a liquid detergent or cleaning agent with a low content of water.
The dye transfer inhibitor is preferably a polymer or copolymer of cyclic amines, such as vinyl pyrrolidone and/or vinyl imidazole. As dye transfer inhibitor, suitable polymers include polyvinyl pyrrolidone (PVP), polyvinylimidazole (PVI), copolymers of vinyl pyrrolidone and vinyl imidazole (PVP/PVI), polyvinylpyridine-N-oxide, poly-N- carboxymethyl-4-vinylpyridium chloride, polyethylene glycol-modified copolymers of vinyl pyrrolidone and vinyl imidazole, and mixtures thereof. Polyvinyl pyrrolidone (PVP), polyvinylimidazole (PVI) or copolymers of vinyl pyrrolidone and vinyl imidazole (PVP/PVI) are particularly preferably used as dye transfer inhibitor. The used polyvinyl pyrrolidones (PVP) preferably have an average molecular weight from 2,500 to 400,000, and are commercially available from ISP Chemicals as PVP K 15, PVP K 30, PVP K 60 or PVP K 90, or from BASF as Sokalan(R) HP 50 or Sokalan(R) HP 53. The used copolymers of vinyl pyrrolidone and vinyl imidazole (PVP/PVI) preferably have a molecular weight in the range from 5,000 to 100,000. A PVP/PVI copolymer is commercially available by way of example from BASF under the name Sokalan(R) HP 56. A further dye transfer inhibitor that can be used in an extremely preferred manner is provided by polyethylene glycolmodified copolymers of vinyl pyrrolidone and vinyl imidazole, which for example are obtainable under the name Sokalan(R) HP 66 from BASF
The laundry compositions preferably comprise natural oils. Natural oils preferably comprise plant oils or the esterified fatty acids of plant oils. Natural oils exclude mineral oils derived from petroleum. Preferably the natural oil is a liquid or soft solid.
Plant oils include vegetable (e.g. olive oil), nut and seed oils. Plant oils also include microbial oils, which are oils produced by microbes or other organisms, including algal oils and including genetically modified or engineered microbes that produce oils. Plant oils preferably include triglycerides, free fatty acids, or a combination of both.
Preferably the natural oil comprises seed oils or the esterified fatty acids thereof. Seed oils include almond, argan, babassu, borage, camelina, canola ®, castor, chia, cherry, coconut, corn, cotton, coffee, Cuphea Viscosissima , flax (linseed), grape, hemp, hepar, jatropha, jojoba,
Lesquerella Fendleri oil, Moringa Oleifera oil, macadamia, mango, mustard, neem, oil palm, perilla, rapeseed, safflower, sesame, shea, stillingia, soybean, sunflower, tonka bean, tung. The natural oil may comprise a triglyceride or mixtures of triglycerides with varying degrees of alkyl chain length and unsaturation. Each triglyceride comprises one or two or more, preferably three fatty acids, bonded by a glycerol bridge.
Preferably the natural oil comprises an ester oil. Ester oils are the esterified fatty acids of any of the above oils. The glycerides (of the above oils) are first hydrolysed to release fatty acids from the glycerol moiety, and then the fatty acids are then reacted with alcohols (mono-, di-, tri-, tetra, etc.,) to form an ester oil. Preferably the natural oil comprises esterified fatty acids of seed oils.
Preferably, the ester oil is a polyol ester (i.e. more than one alcohol group is reacted to form the polyol ester). Preferably the polyol ester is formed by esterification of a polyol (i.e. reacting a molecule comprising more than one alcohol group with acids). Preferably the polyol ester comprises at least two ester linkages. Preferably the polyol ester comprises no hydroxyl groups. Preferably the ester oil is a pentaerythritol e.g. a pentaerythritol tetraisostearate. Exemplary structures of the compound are (I) and (II) below:
Preferably the ester oil is saturated.
Preferably, the ester oils are esters containing straight or branched, saturated or unsaturated carboxylic acids.
Suitable ester oils are the fatty ester of a mono or polyhydric alcohol having from 1 to about 24 carbon atoms in the hydrocarbon chain and mono or polycarboxylic acids having from 1 to about 24 carbon atoms in the hydrocarbon chain with the proviso that the total number of carbon atoms in the ester oil is equal to or greater than 16 and that at least one of the hydrocarbon radicals in the ester oil has 12 or more carbon atoms.
Preferably the viscosity of the natural oil is from 2 mPa. s to 400 mPa. s at a temperature of 25 C, more preferably a viscosity from 2 to 150 mPa. s, most preferably a viscosity from 10 to 100 mPa. s.
Preferably the refractive index of the natural oil is from 1.445 to 1.490, more preferred from 1.460 to 1.485.
The natural oil of the current invention may be in the form of a free oil or an emulsion.
The natural oil may be encapsulated. Suitable encapsulating materials, may comprise, but are not limited to; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof.
The laundry compositions preferably comprise fabric softening actives. The fabric softening actives may be any material known to soften fabrics. These may be polymeric materials or compounds known to soften materials. Examples of suitable fabric softening actives include: quaternary ammonium compounds, silicone polymers, polysaccharides, clays, amines, fatty esters, dispersible polyolefins, polymer latexes and mixtures thereof.
The fabric softening actives may preferably be cationic or non-ionic materials. Preferably, the fabric softening actives of the present invention are cationic materials. Suitable cationic fabric softening actives are described herein.
The preferred softening actives for use in fabric conditioner compositions of the invention are quaternary ammonium compounds (QAC).
The QAC preferably comprises at least one chain derived from fatty acids, more preferably at least two chains derived from a fatty acid. Generally fatty acids are defined as aliphatic monocarboxylic acids having a chain of 4 to 28 carbons. Fatty acids may be derived from
various sources such as tallow or plant sources. Preferably the fatty acid chains are derived from plants. Preferably the fatty acid chains of the QAC comprise from 10 to 50 wt. % of saturated C18 chains and from 5 to 40 wt. % of monounsaturated C18 chains by weight of total fatty acid chains. In a further preferred embodiment, the fatty acid chains of the QAC comprise from 20 to 40 wt. %, preferably from 25 to 35 wt. % of saturated C18 chains and from 10 to 35 wt. %, preferably from 15 to 30 wt. % of monounsaturated C18 chains, by weight of total fatty acid chains.
The preferred quaternary ammonium fabric softening actives for use in compositions of the present invention are ester linked quaternary ammonium compounds or so called "ester quats". Particularly preferred materials are the ester-linked triethanolamine (TEA) quaternary ammonium compounds comprising a mixture of mono-, di- and tri-ester linked components.
Typically, TEA-based fabric softening compounds comprise a mixture of mono, di- and tri ester forms of the compound where the di-ester linked component comprises no more than 70 wt.% of the fabric softening compound, preferably no more than 60 wt.% e.g. no more than 55%, or even no more that 45% of the fabric softening compound and at least 10 wt.% of the monoester linked component.
A first group of quaternary ammonium compounds (QACs) suitable for use in the present invention is represented by formula:
wherein each R is independently selected from a C5 to C35 alkyl or alkenyl group; R1 represents a C1 to C4 alkyl, C2 to C4 alkenyl or a C1 to C4 hydroxyalkyl group; T may be either O-CO. (i.e. an ester group bound to R via its carbon atom), or may alternatively be CO-O (i.e. an ester group bound to R via its oxygen atom); n is a number selected from 1 to 4; m is a number selected from 1, 2, or 3; and X- is an anionic counter-ion, such as a halide or alkyl sulphate, e.g. chloride or methylsulfate. Di-esters variants of formula I (i.e. m = 2) are preferred and typically have mono- and tri-ester analogues associated with them. Such materials are particularly suitable for use in the present invention.
Also suitable are actives rich in the di-esters of triethanolammonium methylsulfate, otherwise referred to as "TEA ester quats".
A second group of QACs suitable for use in the invention is represented by formula:
wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and wherein n, T, and X- are as defined above.
Preferred materials of this second group include 1,2 bis[tallowoyloxy]-3- trimethylammonium propane chloride, 1,2 bis[hardened tallowoyloxy]-3- trimethylammonium propane chloride, 1 ,2- bis[oleoyloxy]-3-trimethylammonium propane chloride, and 1,2 bis[stearoyloxy]-3- trimethylammonium propane chloride. Such materials are described in US 4, 137,180 (Lever Brothers). Preferably, these materials also comprise an amount of the corresponding monoester.
A third group of QACs suitable for use in the invention is represented by formula:
wherein each R1 group is independently selected from C1 to C4 alkyl, or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and n, T, and X- are as defined above. Preferred materials of this third group include bis(2-tallowoyloxyethyl)dimethyl ammonium chloride, partially hardened and hardened versions thereof.
A particular example of the fourth group of QACs is represented the by the formula:
A fourth group of QACs suitable for use in the invention are represented by formula:
R1 and R2 are independently selected from C10 to C22 alkyl or alkenyl groups, preferably C14 to C20 alkyl or alkenyl groups. X- is as defined above.
The iodine value of the quaternary ammonium fabric conditioning material is preferably from 0 to 80, more preferably from 0 to 60, and most preferably from 0 to 45. The iodine value may be chosen as appropriate. Essentially saturated material having an iodine value of from 0 to 5, preferably from 0 to 1 may be used in the compositions of the invention. Such materials are known as "hardened" quaternary ammonium compounds.
A further preferred range of iodine values is from 20 to 60, preferably 25 to 50, more preferably from 30 to 45. A material of this type is a "soft" triethanolamine quaternary ammonium compound, preferably triethanolamine di-alkylester methylsulfate. Such ester-linked triethanolamine quaternary ammonium compounds comprise unsaturated fatty chains.
If there is a mixture of quaternary ammonium materials present in the composition, the iodine value, referred to above, represents the mean iodine value of the parent fatty acyl compounds or fatty acids of all of the quaternary ammonium materials present. Likewise, if there is any saturated quaternary ammonium materials present in the composition, the iodine value represents the mean iodine value of the parent acyl compounds of fatty acids of all of the quaternary ammonium materials present.
Iodine value as used in the context of the present invention refers to, the fatty acid used to produce the QAC, the measurement of the degree of unsaturation present in a material by a method of nmr spectroscopy as described in Anal. Chem., 34, 1136 (1962) Johnson and Shoolery.
A further type of softening compound may be a non-ester quaternary ammonium material represented by formula:
wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; R2 group is independently selected from C8 to C28 alkyl or alkenyl groups, and X- is as defined above.
The laundry composition preferably comprise one or more enzyme. Examples of suitable enzymes include, but are not limited to mannase, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, beta -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, xantanase, carrageenases, pectate lyases, nucleases, phosphodiesterases, and amylases, or mixtures thereof. Preferred enzymes maybe selected from protease, lipase, amalayse, mannase, cellulase, and combinations thereof.
Examples of preferred enzymes are sold under the following trade names Purafect Prime®, Purafect®, Preferenz® (DuPont), Savinase®, Pectawash®, Mannaway®, Lipex ®, Lipoclean ®, Whitzyme ® Stainzyme®, Stainzyme Plus®, Natalase ®, Mannaway ®, Amplify ® Xpect ®, Celluclean ® (Novozymes), Biotouch (AB Enzymes), Lavergy ® (BASF).
Preferably the level of an enzyme is from 0.1 to 200, more preferably from 0.5 to 150, even more preferably 1 to 120, most preferably from 5 to 110 mg active enzyme protein per 100g laundry composition.
The composition preferably comprise antibacterial agents. These ingredients provide reduction or prevention of bacterial on surfaces.
The laundry compositions described herein may comprise a dye for colouring the composition. Such dyes are commonly used in laundry compositions, examples include dyes marketed under the Liquitint tradename ex. Milliken.
The laundry compositions described here preferably comprise 50 to 99 wt.% water, by weight of the laundry composition. More preferably 65 to 98 wt.% water, more preferably 70 to 97 wt.% water, even more preferably 75 to 96 wt.% water, even more preferably 80 to 95 wt.% water, most preferably 85 to 95 wt.% water, by weight of the laundry composition.
The compositions are in the form of particles having a maximum linear dimension in any direction of 1 to 50 mm or unit dose. Preferred unit dose packages comprise a water-soluble film such as PVOH or a non-soluble pack from which the consumer dispenses the contents. Particles are defined as objects having a maximum linear dimension in any direction of 1 to 50 mm. The particles may be any suitable shape, for example spheres, hemispheres, cubes, oblongs, elliptical, or recognisable shapes such as leaves or flowers, such shapes are obtained from different shaped moulds.
Preferably the laundry composition is in the form of particles, the particles may be free flowing or packaged within a unit dose package. Preferably the particles have a maximum linear dimension in any direction of 1 to 40 mm, more preferably 1.5 mm to 30 mm and most preferably 2 mm to 20mm.
The laundry compositions described herein may be used in any stage of the laundry process and may be used in hand washing or in a washing machine. Preferably the compositions are used in the wash stage of the laundry process.
Preferably the laundry comparisons dissolve in water in less than 25 minutes.
The compositions described herein may be made by any suitable method. Generally, the composition may be made by: i) mixing a salt curing composition with the other ingredients in the composition; or ii) preparing a composition containing all ingredients other than the salt, then exposing this mixture to a salt curing solution.
When preparing particles, the following method may be followed.
Preferably a curing composition is prepared. For process i) the curing composition may simply comprise salt. Preferably the curing composition comprises water and salt. The solution preferably comprises salt in a concentration of 0.01 to 10 Molar, more preferably 0.05 to 5 Molar, even more preferably 0.01 to 4 Molar and most preferably 0.01 to 2.5 Molar.
Separately the hydrocolloid may be dispersed in water. The hydrocolloid solution is preferably prepared by dispersing the hydrocolloid in water. The hydrocolloid may be dispersed in water before heating, during heating the water or once the water has reached maximum heating temperature. The water or water and hydrocolloid are preferably heated to 40°C to 100°C, more preferably 45°C to 95°C and most preferably 50°C to 80°C. The concentration of hydrocolloid in water is preferably 0.1 to 10 wt.% by weight of the solution, more preferably 0.25 to 5 wt.% by weight of the solution, most preferably 1 to 2 wt.% by weight of the solution. All remaining ingredients maybe added to the solution, for example microcapsules, softening agents, dyes, etc. and thoroughly mixed. This mix is referred to as the hydrocolloid solution. It is preferred to disperse the hydrocolloid in water before adding any other ingredients, however the alternate order of addition is possible.
Following process i) the curing composition is mixed into the hydrocolloid solution. The curing composition may be added at any stage, however it is preferred that the curing composition is the last ingredient to be added. The curing composition is added to deliver the preferred quantity of salt. Once all ingredients are mixed, the mixture is dispensed (preferably dripped or poured) onto a surface or into a mould, where the solution solidifies and forms a particle. Preferably the mixture is at a temperature of 35°C to 70°C, more preferably 40°C to 60°C and most preferably 45°C to 50°C when dropped onto a surface or into a mould. The temperature of the surface or mould is preferably 15°C to 30°C, more preferably 17°C to 27°C.The solidified composition is allowed to dry.
Process i) described herein may be carried out using any suitable equipment. On a small scale the method may be carried out manually using a pipette to dispense droplets of the composition onto a surface or into moulds. On a larger scale, traditional casting methods may be applied.
Following process ii) the hydrocolloid solution is dripped into the curing salt solution. Preferably the hydrocolloid solution is at a temperature of 35°C to 70°C, more preferably 40°C to 60°C and most preferably 45°C to 50°C when dropped into the curing composition. The temperature of
the curing composition is preferably 15°C to 30°C, more preferably 17°C to 27°C. The solidified beads are then removed from the curing composition and allowed to dry.
Process ii) described herein may be carried out using any suitable equipment. On a small scale the method may be carried out manually using a pipette to dispense droplets of the hydrocolloid solution into the curing composition. On a larger scale, the droplet formation may be by co-axial air flow, vibration such as a vibrating membrane, electrostatic interactions or mechanical cutting to break a liquid jet into droplets such as a cutting wheel. Manufacturers of suitable equipment include Nisco Engineering, geniaLab, and Maag Group under the trade name DROPPO®.
Processes i) and ii) may be used in compositions where the benefit agent is dispersed in the hydrocolloid solution. Alternatively the benefit agent may be encapsulated by the hydrocolloid matrix. This may be preferable when the benefit agent is an oil or is in an organic solvent or carrier. For compositions where the oil is encapsulated in an aqueous phase, suitable encapsulation machines are available from Joysun, Fuji Capsule Co. and Sanco Technology.
Examples
Example 1 :
A curing solution was prepared comprising 0.5 Molar potassium chloride and 0.5 Molar Sodium Chloride and 30g poured into a petri dish. A 1.5 % carrageenan solution was prepared by mixing the carrageenan with water and heating to 50-60°C. The perfume microcapsules, perfume oil and dye where then added to the mixture with stirring. The mixture was stirred until
a homogeneous solution was obtained. The mixture was cooled to 45-50°C and with a plastic pipet, dropped into the curing solution in the petri dish (composition 1) or water (composition A), the particles were left in the curing solution for up to 2 minutes. The particles were then removed from the petri dish with a fine sieve and laid on filter paper to remove excess water. Initial observations were made of the particles.
A sample of particles were then placed in a 50°C store for 1 weeks, removed and observed. Photographs of the samples are provided in Figure 1. The particles cured in a salt solution remained stable at 50°C, while those cured in water were not stable at high temperatures.
Claims
1. An ancillary laundry composition comprising; a. Hydrocolloid; b. 0.5 to 51 wt.% benefit agent, comprising; i. 1 to 50 wt.% perfume; and ii. additional benefit agent selected from perfume microcapsules, film forming polymers selected from polymers comprising: hydrolysed proteins or polyesters, fluorescers, dye-transfer inhibitors, natural oils, fabric softening actives, enzymes, antibacterial agents and combinations thereof; c. Salt; and d. Water;
Wherein the compositions are in the form of particles having a maximum linear dimension in any direction of 1 to 50 mm or unit dose.
2. An ancillary laundry composition according to claim 1, wherein the benefit agent further comprises 0.1 to 20 wt.% perfume microcapsules.
3. An ancillary laundry composition according to any preceding claim, wherein the composition comprises 0.5 to 5 wt.% hydrocolloid.
4. An ancillary laundry composition according to any preceding claim, wherein the hydrocolloid comprises polymers derived from animal sources, vegetable sources, bacterial sources and combination thereof.
5. An ancillary laundry composition according to any preceding claim, wherein the hydrocolloid comprises polymers selected from: agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, alginate, locust bean gum, starch, dextrins, gelatin and/or casein, xanthan gum, carboxymethyl cellulose and other cellulose ethers, hydroxyethyl and hydroxypropyl cellulose and combinations thereof.
6. An ancillary laundry composition according to any preceding claim, wherein the composition comprises 0.00001 to 3 wt. % salt.
An ancillary laundry composition according to any preceding claim, wherein the salt comprises monovalent salt. An ancillary laundry composition according to any preceding claim, wherein the salt comprises sodium chloride. An ancillary laundry composition according to any preceding claim, wherein the salt comprises potassium chloride. An ancillary laundry composition according to any preceding claim, wherein the laundry composition comprises 50 to 99 wt.% water. An ancillary laundry composition according to any proceeding claim, wherein the composition is in the form of particles, sheet, or unit dose. An ancillary laundry composition according to any proceeding claim, wherein the composition is in the form of particles having a maximum linear dimension in any direction of 1 to 50 mm. A method of delivering perfume to fabric during the laundry process, wherein the ancillary laundry composition according to any preceding claim is added to the laundry process. A use of the composition according to claims 1 to 12 to deliver perfume during the laundry process.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22190638.1 | 2022-08-16 | ||
EP22190638 | 2022-08-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024037919A1 true WO2024037919A1 (en) | 2024-02-22 |
Family
ID=82940039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/071858 WO2024037919A1 (en) | 2022-08-16 | 2023-08-07 | Laundry composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024037919A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4137180A (en) | 1976-07-02 | 1979-01-30 | Lever Brothers Company | Fabric treatment materials |
US5145991A (en) | 1988-10-13 | 1992-09-08 | Ciba-Geigy Corporation | Distyrylbiphenyl compounds |
WO2000036066A1 (en) * | 1998-12-16 | 2000-06-22 | Unilever N.V. | Polymer-containing particle and process for the preparation thereof |
WO2000046337A1 (en) * | 1999-02-02 | 2000-08-10 | Quest International B.V. | Detergent composition |
WO2006088980A1 (en) * | 2005-02-17 | 2006-08-24 | The Procter & Gamble Company | Fabric care composition |
WO2009126960A2 (en) * | 2008-04-11 | 2009-10-15 | Amcol International Corporation | Multilayer fragrance encapsulation |
WO2012075086A2 (en) * | 2010-12-01 | 2012-06-07 | The Procter & Gamble Company | Fabric care composition |
EP3926029A1 (en) * | 2020-06-18 | 2021-12-22 | The Procter & Gamble Company | Treatment compositions comprising cationic poly alpha-1,6-glucan ethers |
-
2023
- 2023-08-07 WO PCT/EP2023/071858 patent/WO2024037919A1/en active Search and Examination
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4137180A (en) | 1976-07-02 | 1979-01-30 | Lever Brothers Company | Fabric treatment materials |
US5145991A (en) | 1988-10-13 | 1992-09-08 | Ciba-Geigy Corporation | Distyrylbiphenyl compounds |
WO2000036066A1 (en) * | 1998-12-16 | 2000-06-22 | Unilever N.V. | Polymer-containing particle and process for the preparation thereof |
WO2000046337A1 (en) * | 1999-02-02 | 2000-08-10 | Quest International B.V. | Detergent composition |
WO2006088980A1 (en) * | 2005-02-17 | 2006-08-24 | The Procter & Gamble Company | Fabric care composition |
WO2009126960A2 (en) * | 2008-04-11 | 2009-10-15 | Amcol International Corporation | Multilayer fragrance encapsulation |
WO2012075086A2 (en) * | 2010-12-01 | 2012-06-07 | The Procter & Gamble Company | Fabric care composition |
EP3926029A1 (en) * | 2020-06-18 | 2021-12-22 | The Procter & Gamble Company | Treatment compositions comprising cationic poly alpha-1,6-glucan ethers |
Non-Patent Citations (3)
Title |
---|
"Handbook of Hydrocolloids (Second edition)", 1 January 2009, WOODHEAD PUBLISHING, article A P IMESON: "7 - Carrageenan and furcellaran", pages: 164 - 185, XP055703973, DOI: 10.1533/9781845695873.164 * |
CARRAGEENAN GRINDSTED (TM): "Introduction to GRINDSTED (TM) Carrageenan TM 29-2e", 1 January 2001 (2001-01-01), XP093015848, Retrieved from the Internet <URL:https://www.aditiva-concepts.ch/download/Carrageenan.pdf> [retrieved on 20230119] * |
JOHNSONSHOOLERY, ANAL. CHEM., vol. 34, 1962, pages 1136 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6821827B2 (en) | Fabric softener composition | |
JP7216116B2 (en) | Liquid fabric enhancer containing branched polyester molecules | |
ES2390086T3 (en) | Improvements related to perfume particles | |
ES2380376T3 (en) | Improvements related to textile material treatment compositions | |
ES2398404T5 (en) | Textile Material Treatment Compositions | |
JP7235768B2 (en) | Liquid fabric enhancer containing branched polyester molecules | |
EP3006548B1 (en) | Fabric enhancer composition | |
MX2012015190A (en) | Rinse added aminosilicone containing compositions and methods of using same. | |
CA3169694A1 (en) | Compositions comprising cationic poly alpha-1,3-glucan ethers | |
CN104662143A (en) | Fabric care composition | |
WO2024037919A1 (en) | Laundry composition | |
WO2023099593A1 (en) | Fabric conditioner | |
WO2024037921A1 (en) | Laundry composition comprising carrageenan, benefit agent and sodium chloride | |
WO2024037920A1 (en) | Method of producing a laundry composition | |
WO2024037918A1 (en) | Method of producing laundry composition | |
JP2023548362A (en) | Liquid conditioning composition comprising esterquats derived in part from trans fatty acids | |
WO2022082188A2 (en) | Liquid fabric care compositions comprising capsules | |
US6555516B1 (en) | Laundry product | |
WO2023099595A1 (en) | Fabric softening composition | |
WO2022152644A1 (en) | Benefit agent delivery particles | |
EP4363546A1 (en) | Benefit agent delivery particles | |
WO2022152689A1 (en) | Benefit agent delivery particles | |
WO2024056278A1 (en) | Washing machine and washing method | |
JP6334468B2 (en) | Stable polymers including two-phase systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23751981 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) |