WO2024037554A1 - 导管泵 - Google Patents

导管泵 Download PDF

Info

Publication number
WO2024037554A1
WO2024037554A1 PCT/CN2023/113206 CN2023113206W WO2024037554A1 WO 2024037554 A1 WO2024037554 A1 WO 2024037554A1 CN 2023113206 W CN2023113206 W CN 2023113206W WO 2024037554 A1 WO2024037554 A1 WO 2024037554A1
Authority
WO
WIPO (PCT)
Prior art keywords
flushing
catheter
liquid
flushing liquid
pump
Prior art date
Application number
PCT/CN2023/113206
Other languages
English (en)
French (fr)
Inventor
张家良
托马斯·乔治罗根
徐嘉颢
Original Assignee
心擎医疗(苏州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 心擎医疗(苏州)股份有限公司 filed Critical 心擎医疗(苏州)股份有限公司
Publication of WO2024037554A1 publication Critical patent/WO2024037554A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/157Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel mechanically acting upon the inside of the patient's blood vessel structure, e.g. contractile structures placed inside a vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/237Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • A61M60/411Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
    • A61M60/414Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor transmitted by a rotating cable, e.g. for blood pumps mounted on a catheter

Definitions

  • This application relates to a catheter pump.
  • Heart disease is a health problem with a high mortality rate, and doctors are increasingly using mechanical circulatory support systems to treat heart failure. Treatment of acute heart failure requires a device that can quickly support patients, and doctors want to be able to deploy treatments quickly and minimally invasively.
  • MCS Mechanical circulatory support
  • VAD ventricular assist devices
  • MI myocardial infarction
  • PCI percutaneous coronary intervention
  • An example of an MCS system is a rotary catheter pump placed percutaneously through a catheter.
  • a catheter pump is inserted into the body and connected to the cardiovascular system (for example, to the left ventricle and ascending aorta) to assist the heart's pumping function.
  • cardiovascular system for example, to the left ventricle and ascending aorta
  • Other known applications include pumping venous blood from the right ventricle to the pulmonary artery to support the right side of the heart.
  • acute circulatory support devices are used to reduce the load on the myocardium over a period of time, to stabilize the patient prior to heart transplantation, or for ongoing support.
  • the known embodiment with publication number CN113856036A provides a catheter pump that achieves a small intervention size, that is, using an external motor.
  • the general working principle of the catheter pump is: the external motor transmits rotational power to the distal impeller through the drive shaft threaded in the catheter.
  • the rotation of the impeller provides flow power to the blood and pumps the blood from the left ventricle to the aorta. .
  • non-contact power transmission mechanisms including magnetic coupling solutions such as those provided by the announcement number CN101820933B and those provided by the publication number CN114452527A and the announcement number CN216061675U.
  • Eddy current coupling solution A liquid isolation wall is set between the driving part and the driven part (in the magnetic coupling scheme, both are magnets. In the eddy current coupling scheme, they are magnets and conductors respectively) to achieve sealing against the flushing fluid. , so that the flushing fluid can only flow to the distal end, scouring the drive shaft and near-distal bearings without entering the motor.
  • the driving part is driven to rotate by the motor
  • the driven part is arranged on the rotor shaft and supported by the rotor shaft, and the rotor shaft is circumferentially fixedly connected to the proximal end of the driving shaft.
  • the rotation of the motor is transmitted to the rotor shaft and further to the driving shaft and impeller.
  • the rotor which includes a driven part and a rotor shaft, is provided in a drive conduit handle detachably connected to the motor.
  • the rotor also includes a protective layer covering the driven part and an end cap that limits the driven part in the axial direction.
  • the rotor shaft is rotatably supported in the drive tube handle via two bearings.
  • the flushing fluid interface is located on the drive catheter handle. In this way, the flushing fluid first enters the handle of the driving catheter and then enters the catheter. Therefore, the rotor is immersed in the rinse fluid. Therefore, the flushing fluid also lubricates and cools the two bearings that support the rotor shaft.
  • the torque of the non-contact power transmission mechanism is inversely related to the distance between the driving part and the driven part. This is especially evident in the eddy current coupling solution. Therefore, in order to increase the torque of power transmission, it is a feasible solution to compress the distance between the driving part and the driven part by increasing the diameter of the rotor.
  • embodiments of the present invention provide a catheter pump to at least partially solve the above problems.
  • the catheter pump includes a driving component, a working component, a cooling circulation module and a pressure maintenance module.
  • the drive assembly includes a motor.
  • the working component includes a catheter, a driving shaft passed through the catheter, a follower connected to the proximal end of the driving shaft, a driving catheter handle and a pump head respectively connected to the proximal and distal ends of the catheter.
  • the pump head includes a pump casing connected to the distal end of the catheter and an impeller housed in the pump casing. The impeller is connected to the distal end of the drive shaft so as to be driven to rotate to pump blood.
  • the drive catheter handle includes a coupling housing connected to the proximal end of the catheter and detachably connected to a motor, a rotor that can be driven by the motor, and the proximal end of the drive shaft is connected to the rotor.
  • An accommodating cavity in which the rotor is rotatably supported is formed in the coupling casing.
  • the coupling casing is provided with a flushing liquid inlet and a rinsing liquid outlet connected to the accommodating cavity, and the accommodating cavity is connected to the conduit.
  • the flushing fluid inlet is connected to the flushing fluid source.
  • the flushing fluid entering the accommodation cavity through the flushing fluid inlet is divided into two parts: the first part enters the conduit, and the second part passes through the flushing fluid through the rotor and is discharged from the flushing fluid outlet.
  • the first part of the flushing fluid will eventually be discharged from the pump head to the human body. This also means that there is no reflux of the first part of the irrigation fluid entering through the catheter, but all of it enters the human body.
  • the so-called reflux means that the irrigation fluid flows back from the distal end (roughly where the pump head is) to the proximal end (specifically where the handle of the drive catheter is) through the catheter or the drive shaft.
  • the first part of the flushing fluid is mainly discharged from two locations at the distal end (pump head): the distal end of the catheter and the distal end of the drive shaft.
  • the catheter pump includes a first flow path for supplying the flow of the first part of the flushing fluid.
  • the first flow path is defined by the internal space of the flushing fluid inlet, accommodating cavity, catheter, pump head and other structures. Therefore, the flow path of the first part of the flushing fluid is from the flushing fluid inlet into the accommodation chamber, then from the accommodation chamber into the conduit, and finally outflows from the pump head.
  • the catheter pump also includes a second flow path for supplying the flow of the second part of the flushing fluid.
  • the second flow path is defined by the internal space of the flushing fluid inlet, the accommodation chamber, the flushing fluid outlet and other structures. Therefore, the flow path of the second part of the flushing fluid is from the flushing fluid inlet into the accommodation cavity, and then flows out from the flushing fluid outlet.
  • the flushing fluid that finally enters the catheter is defined as the first part of the flushing fluid
  • the flushing fluid that is finally discharged from the flushing fluid outlet is defined as the second part of the flushing fluid.
  • the technical solution of the present disclosure enables the flushing liquid to be diverted within the driving catheter handle.
  • the flushing liquid entering the first part of the catheter can lubricate and cool rotating parts such as the drive shaft and bearings while flowing to the position of the distal pump head.
  • the second part of the flushing fluid flowing out from the flushing fluid outlet can take away the high temperature caused by the high speed of the rotor and avoid the high temperature of the flushing fluid.
  • the cooling cycle module includes a flushing liquid inlet pipe connected with the flushing liquid inlet, and a flushing liquid outlet pipe connected with the flushing liquid outlet.
  • the flushing liquid outlet pipe is connected with the flushing liquid inlet pipe.
  • the flushing liquid outlet pipe, the flushing liquid inlet pipe, and the accommodation cavity form a cooling cycle. loop.
  • the cooling circulation module also includes a circulation driving component provided on the cooling circulation loop to drive the flushing liquid to flow.
  • the pressure maintenance module is connected to the cooling circulation circuit to maintain the flushing fluid pressure in the cooling circulation circuit to be greater than the environmental pressure of the pump head during operation.
  • the pressure maintenance module maintains the flushing fluid pressure in the cooling circulation circuit to be greater than the environmental pressure of the pump head, so that the flushing fluid can enter the human body through the catheter. Since the high temperature of the flushing fluid is resolved, the flushing fluid entering the human body will not cause discomfort.
  • the circulation driving component is a first pump located on the flushing liquid inlet pipe and/or the flushing liquid outlet pipe.
  • part of the flushing fluid enters the conduit and part flows out from the flushing fluid outlet during the flow process. Furthermore, the amount of flushing fluid entering the catheter (the first portion of the flushing fluid) is less than the amount of the flushing fluid flowing out from the flushing fluid outlet (the second portion of the flushing fluid).
  • amount can refer to either volume or flow rate. This article uses traffic as an explanation.
  • the distribution of the above-mentioned liquid flow can be achieved by controlling the pressure maintenance module to maintain the flushing fluid pressure in the cooling circulation circuit to be greater than the environmental pressure of the pump head during the working process.
  • the pressure maintenance module includes a flushing liquid source connected to the cooling circulation loop through a supplementary pipeline, and a second pump disposed on the supplementary pipeline to supplement flushing liquid provided by the flushing liquid source into the cooling circulation loop. In this way, the power required to circulate the flushing fluid and the pressure required to maintain the flushing fluid pressure are completed by the circulation driver and the second pump respectively.
  • the first pump and the second pump respectively provide the power required for the flushing fluid circulation and the flushing fluid maintenance pressure, which can prevent the flushing fluid from entering the human body. Precise control of flow.
  • the cooling cycle module also includes a buffer container.
  • the flushing liquid inlet pipe, flushing liquid outlet pipe and supplementary pipeline are all connected to the buffer container through Luer heads.
  • buffering in order to offset to a certain extent the flushing fluid pressure that may occur due to the expansion of the diameter of the flushing fluid inlet pipe and flushing fluid outlet tube when a hose is used, resulting in unstable (decreased) flushing fluid pressure, which ultimately leads to unstable flushing fluid flow into the human body, buffering
  • the container must at least be able to withstand the pressure compensation of the pressure maintenance module without changing the volume. It is preferred to use a solid tank or a tee joint whose volume does not change.
  • a bubble filter is provided on the cooling cycle to capture or filter the above-mentioned precipitated bubbles.
  • the bubble filter is preferably located on the flushing fluid inlet pipe, which can basically prevent bubbles from entering the human body through the catheter.
  • Figure 1 is a schematic three-dimensional structural diagram of a catheter pump according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the front-end pump head part of the working assembly in Figure 1;
  • Figure 3 is a cross-sectional view of the driving assembly and the driving catheter handle in a separated state
  • Figure 4 is a schematic structural diagram of a high-temperature flushing solution solution corresponding to the third embodiment and the circulation driving member is a pump.
  • proximal As used herein, the terms “proximal”, “posterior” and “distal”, “anterior” are relative to the clinician operating the catheter pump.
  • the terms “near” and “posterior” refer to the part relatively close to the clinician, and the terms “distal” and “anterior” refer to the part relatively far away from the clinician.
  • the driving components are at the proximal and rear ends, and the working components are at the far and front ends.
  • the proximal end of a certain part/assembly represents the end relatively close to the driving component, and the far end represents the end relatively close to the working component.
  • catheter pumps can be used in many orientations and positions, so these terms expressing relative positional relationships are not restrictive and absolute.
  • the catheter pump according to the embodiment of the present invention can at least partially assist the pumping function of the heart and achieve the effect of at least partially reducing the burden on the heart.
  • the catheter pump can be used as a left ventricular assist, and its working part (specifically referred to as the pump head below) can be inserted into the left ventricle.
  • the pump head When the pump head is running, the blood in the left ventricle can be pumped. sent to the ascending aorta.
  • the catheter pump can also be used as a right ventricular assist, and the pump head can be inserted into the right ventricle. When the pump head is running, blood in the veins is pumped into the right ventricle.
  • the catheter pump 1000 includes a driving component 100 and a working component 200 .
  • the driving assembly 100 includes a motor housing 101 , a motor 102 accommodated in the motor housing 101 , and an active member 103 driven by the motor 102 .
  • the working assembly 200 includes a catheter 201 , a drive shaft 202 that passes through the catheter 201 , a follower 203 connected to the proximal end of the drive shaft 202 , and drives connected to the proximal and distal ends of the catheter 201 respectively.
  • Catheter handle 204 and pump head 205 are examples of the catheter 201 .
  • the pump head 205 includes a pump housing 2051 having an inlet 2051a and an outlet 2051b, an impeller 2052 received in the pump housing 2051, and the impeller 2052 is connected to the distal end of the drive shaft 202.
  • the impeller 2052 rotates, blood is sucked into the pump housing 2051 from the inlet 2051a, and then pumped out of the pump housing 2051 through the outlet 2051b.
  • the pump housing 2051 includes a bracket 20511 and an elastic coating 20512 covering the bracket 20511.
  • the metal lattice of the bracket 20511 has a mesh design.
  • the coating 20512 covers the middle and rear end portions of the bracket 20511.
  • the mesh of the front end of the bracket 20511 that is not covered by the coating 20512 forms an entrance 2051a.
  • the rear end of the coating 20512 is wrapped around the outside of the distal end of the catheter, and the outlet 2051b is an opening formed at the rear end of the coating 20512.
  • the impeller 2052 includes a hub 20521 and blades 20522 supported on the outer wall of the hub 20521.
  • the blade 20522 is made of flexible material, and is further combined with the above-mentioned bracket 20511 and coating 20512 made of nickel and titanium memory alloy to form a foldable pump head 205.
  • the pump head 205 may also be non-foldable.
  • the pump shell 2051 can be a metal sleeve, which cannot radially fold or self-expand.
  • Impeller 2052 is also made of a hard but biocompatible material.
  • the drive shaft 202 includes a flexible flexible shaft 2021 and a hard shaft 2022 connected to the distal end of the flexible shaft 2021.
  • the flexible shaft 2021 is threaded in the catheter 201
  • the hard shaft 2022 is threaded in the hollow channel of the hub 20521
  • the outer wall of the hard shaft 2022 It is fixed with the inner wall of the hollow channel of the hub 20521 by bonding.
  • the proximal end and the distal end of the bracket 20511 are respectively connected to the proximal bearing chamber 206 and the distal bearing chamber 207.
  • the proximal bearing 208 and the distal bearing 209 are respectively provided in the proximal bearing chamber 206 and the distal bearing chamber 207.
  • the proximal end and the distal end of the hard shaft 2022 are respectively inserted into the proximal bearing 208 and the distal bearing 209. In this way, both ends of the hard shaft 2022 are supported by the bearings 208 and 209, and coupled with the higher rigidity of the hard shaft 2022, the impeller 2052 is better kept in the pump casing 2051.
  • the driving catheter handle 204 includes a coupling housing 2045 , a flushing bracket 2041 is disposed in the coupling housing 2045 , and the flushing bracket 2041 defines a flushing chamber 2042 .
  • the proximal end of the catheter 201 passes through the coupling housing 2045 and is connected to the irrigation bracket 2041 and communicates with the irrigation chamber 2042.
  • the driving catheter handle 204 is provided with a flushing liquid inlet 2043 that penetrates the side wall of the coupling housing 2045, and the inner end of the flushing liquid inlet 2043 is connected to the flushing chamber 2042.
  • a liquid isolation wall 2048 can be set between the two or outside the driven member 203 to seal the flushing liquid and prevent The flushing fluid enters the motor 102.
  • the liquid isolation wall 2048 limits the flow direction of the flushing liquid, so that the flushing liquid can only flow toward the far end, that is, the working component 200, thereby lubricating and cooling the above-mentioned rotating components in the working component 200, such as the drive shaft 202, bearings, etc. .
  • the drive catheter handle 204 also includes a rotor 2046 rotatably provided in the coupling housing 2045 .
  • the rotor 2046 includes a rotor shaft 2047 disposed with the driven member 203 and to which the proximal end of the drive shaft 202 is connected.
  • the liquid isolation wall 2048 is provided on the coupling housing 2045 and is located at the rear end of the flushing bracket 2041. The liquid isolation wall 2048 is docked with the flushing bracket 2041 and jointly define a receiving cavity 2049 in which the rotor 2046 is received.
  • the accommodation chamber 2049 includes a flushing chamber 2042 defined by the flushing bracket 2041, and a liquid isolation chamber 2050 defined by the liquid isolation wall 2048.
  • the flushing chamber 2042 is in communication with the liquid isolation chamber 2050.
  • the flushing chamber 2042 is connected to the flushing fluid source 602 (flush saline, glucose solution, anticoagulant, or any combination of the above) through the flushing fluid inlet 2043 , and the flushing fluid enters the flushing chamber through the flushing fluid inlet 2043
  • the accommodating cavity 2049 is refilled, enters through the proximal end of the catheter 201 connected to the flushing stent 2041, and then flows to the distal end through the catheter 201.
  • the drive shaft 202 is lubricated.
  • the flexible shaft 2021 has a braided structure, and liquid can penetrate into the flexible shaft.
  • the flushing liquid flowing out of the flexible shaft 2021 washes the proximal bearing 208 and flows out from the gap between the proximal bearing 208 and the hard shaft 2022, thereby achieving lubrication and cooling of the proximal bearing 208.
  • the flushing fluid flowing forward in the flexible shaft 2021 enters the hard shaft 2022 and flows out from the distal end of the hard shaft 2022. It is blocked by the seal 213 located in the distal bearing chamber 207 and located at the distal end of the hard shaft 2022. , the flushing liquid flows out in the reverse direction and flows out from the gap between the hard shaft 2022 and the distal bearing 209 to lubricate and cool the distal bearing 209.
  • the coupling housing 2045 is also provided with a flushing fluid outlet 246 connected to the accommodation cavity 2049 .
  • the flushing liquid outlet 246 is specifically connected to the liquid isolation wall 2048 .
  • the catheter pump 100 includes a cooling circulation module 500 that circulates most of the irrigation fluid outside the body and a pressure maintenance module 600 that maintains the pressure of the irrigation fluid in the cooling circulation circuit.
  • the cooling cycle module 500 includes a flushing liquid inlet pipe 501 connected with the flushing liquid inlet 2043 and a flushing liquid outlet pipe 502 connected with the flushing liquid outlet 246 .
  • the flushing liquid outlet pipe 502 is connected with the flushing liquid inlet pipe 501, and they form a cooling circulation loop with the accommodation cavity 2049.
  • the cooling circulation loop is provided with a circulation driving component 503 that drives the flushing liquid to flow.
  • the pressure maintenance module 600 is connected to the cooling circulation circuit and maintains the flushing fluid pressure in the cooling circulation circuit to be greater than the ambient pressure of the pump head 205 during operation. In this way, the flushing liquid in the cooling circulation circuit can partially enter the human body through the conduit 201 to achieve cooling and lubrication of the rotating parts in the working assembly 200 . At the same time, under the driving action of the circulation driving member 503, the flushing fluid continues to circulate in the cooling circulation loop, taking away the high temperature of the flushing fluid caused by the high-speed rotation of the rotor 2046, thereby cooling the flushing fluid.
  • the front end (blood inlet 2051a) of the pump head 205 is inserted into the left ventricle during operation of the catheter pump 1000, and the rear end (blood outlet 2051b) is located in the aorta. Moreover, since the impeller 2052 rotates to pump blood, the distal end of the catheter 201 is in a positive blood pressure zone. Therefore, the environmental pressure of the pump head 205 during operation includes ventricular pressure, aortic pressure, positive blood pressure, etc. The resistance of the flushing fluid entering the conduit 201 is greater than that of flowing out from the flushing fluid outlet 246 . This means that in order for the irrigation fluid to enter the human body through the catheter 201, it must overcome the above-mentioned environmental pressure.
  • the bearing gap is specifically the gap between the outer wall of the hard shaft 2022 and the inner wall of the proximal bearing 208, and the gap between the outer wall of the hard shaft 2022 and the inner wall of the distal bearing 209.
  • the forward flow of the first part of the flushing fluid will encounter flow resistance at the bearing gap, and the flow resistance is inversely related to the size of the bearing gap. That is, the larger the bearing clearance, the smaller the flow resistance of the flushing fluid. On the contrary, the smaller the bearing clearance, the greater the flow resistance of the flushing fluid.
  • the flow resistance due to bearing clearance also constitutes at least part of the above-mentioned environmental pressure.
  • the amount of flushing fluid entering the human body through the catheter 201 should not be too much and should be less than the amount flowing out from the flushing fluid outlet 246.
  • the flushing fluid pressure in the cooling circulation circuit is maintained by the pressure maintenance module 600 and is greater than the ambient pressure of the pump head 205 in the working state, which is the reason why the flushing fluid can enter the conduit 201 with greater resistance. Therefore, by controlling the flushing fluid pressure in the cooling circulation circuit through the pressure maintenance module 600, the flushing fluid can be distributed in compliance with the above flow rate.
  • the flushing fluid pressure in the cooling circulation circuit is controlled by the pressure maintenance module 600 to be slightly greater than the ambient pressure of the pump head 205 during operation.
  • the rotor shaft 2047 has an axially penetrating channel 2053.
  • the flushing chamber 2042 and the liquid isolation chamber 2050 are connected through the channel 2053 (the proximal end of the channel 2053 is located in the flushing chamber 2042, and the distal end is located in the liquid isolation chamber.
  • the conduit 202, the flushing fluid inlet 2043 are connected to the flushing chamber 2042, and the flushing fluid outlet 2046 is connected to the liquid isolation chamber 2050.
  • the flushing fluid entering the flushing chamber 2042 flows backward to the liquid isolation chamber 2050 through the channel 2053, and finally flows out from the flushing fluid outlet 2046, so that the flushing fluid can continuously circulate and cool the rotor 2046.
  • the accommodation cavity 2049 is provided with a first bearing 235 for rotationally supporting the distal end of the rotor shaft 2047.
  • the first bearing 235 partially isolates the flushing chamber 2042 from the liquid isolation chamber 2050.
  • the flushing liquid inlet 2043 and the flushing fluid inlet 2043 are Liquid outlets 2046 are located on both sides of bearing 235 .
  • the diameter of the rotor shaft 2047 is smaller than the inner diameter of the first bearing 235, and there is a first gap 2351 between the two.
  • the flushing fluid can pass through the first gap 2351 to lubricate the first bearing 235.
  • the cross-sectional area of the first gap 2351 is smaller than the cross-sectional area of the channel 2053, so the flushing fluid mainly flows backward through the channel 2053 with a larger cross-sectional area to ensure the flushing fluid flow for circulating cooling.
  • the accommodating cavity 2049 is also provided with a second bearing 236 for rotationally supporting the proximal end of the rotor shaft 2047.
  • the second bearing 236 is located at the proximal end of the first bearing 235 and cooperates with the first bearing 235 to achieve double rotation of the rotor 2046.
  • the end rotation support is beneficial to maintaining the stability of the rotation of the rotor 2046.
  • the diameter of the rotor shaft 2047 is smaller than the inner diameter of the second bearing 236, and there is a second gap 2362 between the two. The flushing liquid can pass through the second gap 2362 to lubricate the second bearing 236.
  • the second bearing 236 is provided with an overflow hole 2361 penetrating in the axial direction, and the cross-sectional area of the overflow hole 2361 is larger than the cross-sectional area of the second gap 2362. In this way, the hole channel area for the forward return flow of the flushing fluid can be increased, the resistance of the flushing fluid can be reduced, and a large circulation flow rate can be achieved.
  • the pressure maintenance module 600 includes a flushing liquid source 602 connected to the cooling cycle through a replenishing pipeline 601, and is provided on the replenishing pipeline 601 to replenish the flushing liquid provided by the flushing liquid source 602 to the cooling cycle. Pump 603 in.
  • the flushing fluid consumed due to entering the conduit 201 is replenished by an additional liquid source, that is, the flushing fluid source 602 .
  • the pressure of the flushing liquid in the cooling circuit is maintained by another driving structure, that is, the pump 603.
  • the flushing fluid circulation and flushing fluid pressure maintenance are completed by the circulation driver 503 and the pump 603 respectively, and the pressure required for flushing fluid circulation and the pressure required for flushing fluid pressure maintenance are different (generally, the pressure required for flushing fluid circulation less than the flushing fluid pressure required to maintain the pressure). Therefore, the flushing fluid circulation and pressure maintenance are driven separately, which can simplify the control of the circulation driving member 503 and the pump 603, and make the flushing fluid pressure control and flushing fluid flow control more accurate.
  • the cooling cycle module 600 also includes a buffer container 504.
  • the flushing liquid inlet pipe 501, the flushing liquid outlet pipe 502 and the supplementary pipeline 603 are all connected with the buffer container 504.
  • the pipeline can use a Luer head to connect with the cache container 504, and the pipeline connection is convenient.
  • the buffer container 504 can at least withstand the pressure compensation of the pressure maintaining module 600 without changing the volume.
  • the cache container 504 is a solid tank with high pressure resistance and constant volume under normal pressure.
  • the cache container 504 can directly use a tee joint, the three ports of which are respectively connected to the flushing liquid inlet pipe 501, the flushing liquid outlet pipe 502 and the replenishment pipeline 603, and are connected by the internal chamber of the tee joint. To construct the above-mentioned chamber whose volume remains constant when under pressure. Therefore, constructing the buffer container 504 with a tee joint greatly simplifies the flushing pipeline.
  • the flushing liquid inlet pipe 501 and the flushing liquid outlet pipe 502 that construct the cooling circulation loop are generally hoses.
  • the diameter of the hose will expand under the action of high flushing liquid pressure, thereby causing the cooling cycle.
  • Change in volume of the circuit If the volume of the cooling circulation circuit changes, but the pressure maintenance module 600 still operates according to the original state (such as the rotation speed of the pump), it may cause the pressure of the flushing fluid in the cooling circulation loop to change (decrease), thereby causing the flushing fluid to enter the conduit 201
  • the quantity is unstable.
  • a buffer container 504 with a constant volume is provided in the cooling cycle (the volume of the buffer container 504 constitutes a part of the cooling cycle), although the flushing liquid inlet pipe 501 and the flushing liquid outlet pipe 502 will not change, the pipe diameters will expand. However, compared with the volumes of the flushing liquid inlet pipe 501 and the flushing liquid outlet pipe 502, the volume of the buffer container 504 is larger, and the volume of the buffer container 504 is not easy to change. In this way, the volume change rate of the cooling circuit can be significantly reduced.
  • a pump 603 which maintains the pressure of the cooling circulation circuit, is connected to the buffer container 504 through a supplementary pipeline 601 .
  • the pumping pressure of the pump 603 directly acts on the buffer container 504 and does not act on the flushing liquid inlet pipe 501 and flushing liquid outlet pipe 502, which can also slow down the flushing liquid inlet pipe 501 and flushing liquid outlet pipe 502 to a certain extent.
  • the effect of pipe diameter changes.
  • the buffer container 504 by arranging the buffer container 504 with a constant volume in the cooling cycle, the problem of volume changes in the cooling cycle is at least partially solved, thereby improving the flushing fluid pressure maintenance or control accuracy.
  • the circulation driving member 503 is a pump provided on the flushing liquid inlet pipe 501 and/or the flushing liquid outlet pipe 502 and is different from the pump 603 (for distinction, this pump is defined as the third pump).
  • this pump is defined as the third pump.
  • the cooling circulation circuit is provided with a bubble filter 258 (Filter Bubble), which is used to filter or capture bubbles to prevent them from entering the human body through the conduit 201. Further, the bubble filter 258 is provided on the flushing liquid inlet pipe 501 . This design facilitates the placement of the bubble filter 258 and avoids interference with other structures.
  • a bubble filter 258 Frter Bubble
  • the bubble filter 258 is provided on the flushing liquid inlet pipe 501 . This design facilitates the placement of the bubble filter 258 and avoids interference with other structures.
  • bubbles are mainly generated in the liquid isolation chamber 2050, and then flow out with the flushing liquid through the flushing liquid outlet 246. After circulating in the flushing liquid outlet pipe 502 and the flushing liquid inlet pipe 501, they re-enter the flushing chamber 2042 through the flushing liquid inlet 2043. . It can be seen that from the time the bubbles are generated until they re-enter the flushing chamber 2042 through the flushing liquid inlet 2043, they will not enter the human body through the catheter 201. This means that as long as the bubbles enter the flushing chamber 2042, the bubbles can be basically prevented from entering the human body. Therefore, disposing the bubble filter 258 on the flushing liquid inlet pipe 501 can achieve the above purpose.
  • the bubble filter 258 can adopt any suitable existing structure, such as a filter net or a filter membrane, which is not limited in this embodiment.
  • the filter screen or filter membrane is stored in the shell structure.
  • the flow area of the filter screen or filter membrane can be increased as much as possible, and the shell of the filter screen or filter membrane can be accommodated.
  • a flat expanded structure can be used.
  • the motor shaft 1021 is provided with a rotating bracket 105
  • the driving member 103 is arranged on the inner wall of the rotating bracket 105 .
  • the motor housing 101 is provided with a bearing chamber 109.
  • the bearing chamber 109 is connected to the motor 102 through a flange 111.
  • the bearing chamber 109 is provided with a bearing 110 for rotationally supporting the rotating bracket 105. Therefore, the rotating components in the driving assembly 100 such as the motor 102, the driving member 103 and the bearing 110 are parts that generate large amounts of heat.
  • the motor 102 is in contact with the bearing chamber 109 through the flange 111 .
  • the driving part 103, the rotating bracket 105, the bearing 110, the bearing chamber 109, the flange 111 and the motor 102 are connected and in physical contact.
  • a motor 102, flange, bearing chamber 109, The heat conduction path from the bearing 110, the rotating bracket 105 to the active part 103 allows the heat of the motor 102, the main heat-generating component of the driving assembly 110, the bearing 110 and the active part 103 to be taken away by the large flow of flushing fluid circulating in the drive catheter handle 204, and Further, when the flushing fluid participates in the extracorporeal circulation, it is dissipated into the outside air to achieve cooling of the above components.
  • the active component 103 is the component closest to the flushing liquid.
  • the heat of the active component 103 is transferred to the flushing fluid in the liquid isolation chamber 2050 through the liquid isolation wall 2048, thereby being cooled and forming a relatively low temperature, so that the heat of other physically contacting components is It is transmitted to the active part 103 and transmitted to the liquid isolation chamber 2050 through the liquid isolation wall 2048 to achieve cooling.
  • the motor case 101 is made of plastic material. Compared with the casing made of metal, the plastic motor casing 101 is lower in cost, lighter in weight, and feels better, but has worse heat dissipation effect. Among them, the worse the heat dissipation effect, the better the clinical effect. The reason is that the outer surface of the motor housing 101 is inevitably contacted by the human body.
  • the motor shell 101 is made of a material with good thermal conductivity such as metal.

Abstract

一种导管泵(1000),其驱动导管手柄(204)包括与马达(102)可拆卸连接的耦合壳体(2045),驱动轴(202)的近端连接至转子(2046),转子(2046)将马达(102)的旋转动力传递至驱动轴(202),进而驱动泵头(205)的叶轮(2052)旋转。耦合壳体(2045)内形成将转子(2046)支撑在其内并与导管(201)连通的容置腔(2049),并设有与容置腔(2049)连通的冲洗液入口(2043)和冲洗液出口(246)。冲洗液入口(2043)和冲洗液出口(246)分别连通冲洗液入管(501)和冲洗液出管(502),冲洗液出管(502)与冲洗液入管(501)连通,冲洗液出管(502)与冲洗液入管(501)、容置腔(2049)形成冷却循环回路,冷却循环回路上设有循环驱动件(503),冷却循环回路连接用以维持冷却循环回路内冲洗液压力的压力维持模块(600)。

Description

导管泵 技术领域
本申请涉及一种导管泵。
背景技术
心脏病是一种死亡率很高的健康问题,医生越来越多地使用机械循环支持系统来治疗心力衰竭。急性心力衰竭的治疗需要一种能够迅速为患者提供支持的设备,医生希望能够快速、微创地部署治疗方案。
机械循环支持(MCS)系统和心室辅助设备(VAD)在治疗急性心力衰竭方面被越来越多的接受。例如,在治疗急性心肌梗塞(MI)或代偿性心力衰竭时,使心源性休克后的患者稳定下来,或在高危经皮冠状动脉介入治疗(PCI)期间为患者提供支持。MCS系统的一个例子是经由导管经皮放置的旋转式导管泵。
在常规方法中,将导管泵插入体内并连接至心血管系统(例如,连接左心室和升主动脉),以辅助心脏的泵功能。其他已知的应用包括从右心室向肺动脉泵送静脉血以支持心脏的右侧。通常,急性循环支持设备用于在一段时间内减少心肌的负荷,在心脏移植之前稳定患者或用于持续支持。
如公开号为CN113856036A的已知实施例,提供了一种实现小的介入尺寸的导管泵,即采用外置马达。该导管泵的大致工作原理是:外置马达通过穿设在导管中的驱动轴将旋转动力传递至远侧的叶轮,叶轮旋转对血液提供流动动力,将血液从左心室泵输至主动脉中。在叶轮的动力传递过程中,由于存在多个转动部件,例如驱动轴、以及支撑叶轮的近远端轴承等。因此,在导管泵工作过程中,需要向导管中灌注冲洗液,以润滑冷却上述转动部件。
为避免冲洗液渗漏,尤其是防止冲洗液进入马达,目前的导管泵采用非接触式动力传递机构,包括如公告号为CN101820933B提供的磁耦合方案以及如公开号为CN114452527A和公告号为CN216061675U提供的涡流联轴器方案。在驱动件与被驱动件(在磁耦合方案中,两者都是磁体。在涡流联轴器方案中,两者分别为磁体和导体)之间设置液体隔离的壁,实现对冲洗液的密封,使冲洗液只能向远端流动,冲刷驱动轴和近远端轴承,而不会进入马达。
驱动件被马达带动旋转,被驱动件设在转子轴上被转子轴支撑,转子轴与驱动轴近端周向固定连接。这样,借助驱动件与被驱动件的磁力耦合作用,马达的旋转被传递至转子轴,并进一步传递至驱动轴和叶轮。
包括被驱动件和转子轴的转子设在与马达可拆卸连接的驱动导管手柄中,转子还包括包覆在被驱动件外的保护层、以及将被驱动件沿轴向限定的端盖。转子轴通过两个轴承被转动支撑在驱动导管手柄中。冲洗液接口设在驱动导管手柄上。这样,冲洗液先进入驱动导管手柄内,再进入导管中。因此,转子被浸泡在冲洗液中。因此,冲洗液也会对支撑转子轴的两个轴承起润滑和冷却作用。
值得注意的是,非接触式动力传递机构的扭矩与驱动件和被驱动件之间的距离反相关。这一点,在涡流联轴器方案中表现的尤其明显。因此,为增大动力传递的扭矩,通过增大转子的直径来压缩驱动件和被驱动件之间的距离,是一种可行的方案。
不过,增大转子的直径会同时压缩转子外壁与驱动导管手柄内壁之间的距离。实践中发现,由于转子被浸泡在冲洗液中,因此转子高速旋转时,冲洗液在驱动导管手柄内狭小的空间中,会由于液体的粘滞而被转子带动,产生巨大的涡流损耗,进而使冲洗液产生较大的温升。由于冲洗液会至少部分的经导管进入人体,因此冲洗液的较大温升对人体产生不利影响。
因此,如何解决冲洗液温升,是亟待解决的技术问题。
发明内容
有鉴于此,本发明实施例提供一种导管泵,用于至少部分的解决上述问题。
为实现上述目的,本发明提供了如下技术方案:
导管泵包括驱动组件、工作组件、冷却循环模块和压力维持模块。
驱动组件包括马达。
工作组件包括导管、穿设在导管中的驱动轴、连接至驱动轴近端的从动件、分别连接至导管近端和远端的驱动导管手柄和泵头。泵头包括连接至导管远端的泵壳、收纳在泵壳中的叶轮。叶轮连接至驱动轴的远端,以被驱动旋转进行泵血。驱动导管手柄包括连接至导管近端并与马达可拆卸连接的耦合壳体、可被马达驱动的转子,驱动轴的近端连接至转子。耦合壳体内形成有将转子可转动的支撑在其内的容置腔,耦合壳体上设有与容置腔连通的冲洗液入口和冲洗液出口,容置腔与导管连通。冲洗液入口与冲洗液源连通,经冲洗液入口进入到容置腔中的冲洗液分成两部分:第一部分进入导管,第二部分经冲洗液经过转子,再从冲洗液出口排出。
第一部分的冲洗液最终会从泵头处全部排出至人体。这也意味着,经导管进入的第一部分的冲洗液并不存在返流,而是全部进入人体。所谓返流是指冲洗液经导管或者驱动轴又重新从远端(大致为泵头所在位置处)回流至近端(具体可以为驱动导管手柄所在处)。
第一部分的冲洗液主要在远端(泵头)的两处部位排出:导管的远端、驱动轴的远端。
导管泵包括第一流动路径,用于供第一部分的冲洗液的流动,第一流动路径由冲洗液入口、容置腔、导管和泵头等结构的内部空间限定而成。从而,第一部分的冲洗液的流动路径是从冲洗液入口进入容置腔中,再从容置腔进入导管,最终从泵头流出。
导管泵还包括第二流动路径,用于供第二部分的冲洗液的流动,第二流动路径由冲洗液入口、容置腔、冲洗液出口等结构的内部空间限定而成。从而,第二部分的冲洗液的流动路径是从冲洗液入口进入容置腔中,再从冲洗液出口流出。
值得注意的是,第一部分的冲洗液和第二部分的冲洗液在流动过程中,并未明显的分界面。本申请采用这种描述,仅是出于简便之目的。为方便起见,将最终进入导管的冲洗液定义为第一部分冲洗液,将最终从冲洗液出口排出的冲洗液定义为第二部分冲洗液。
本公开的技术方案,使得冲洗液在驱动导管手柄内进行分流。其中,进入导管的第一部分的冲洗液在向远端泵头所在位置处流动的过程中,可以对驱动轴、轴承等转动部分进行润滑和冷却。而从冲洗液出口流出的第二部分的冲洗液可以将转子由于高速而引发的高温带走,避免冲洗液高温。
冷却循环模块包括与冲洗液入口连通的冲洗液入管、与冲洗液出口连通的冲洗液出管,冲洗液出管与冲洗液入管连通,冲洗液出管与冲洗液入管、容置腔形成冷却循环回路。冷却循环模块还包括设在冷却循环回路上用以驱动冲洗液流动的循环驱动件。
压力维持模块与冷却循环回路连接,用以维持冷却循环回路内的冲洗液压力大于泵头在工作过程中所处的环境压力。
通过冲洗液入管、出管与容置腔建立的冷却循环回路,借助循环驱动件使大部分冲洗液在冷却循环回路中循环,避免冲洗液在容置腔中形成流动死区,进而避免了转子在容置腔内高速旋转由于冲洗液的涡流损耗而引发的高温。同时,压力维持模块维持冷却循环回路中的冲洗液压力大于泵头所处环境压力,使得冲洗液能够经导管进入人体。由于冲洗液的高温被解决,因此进入人体的冲洗液不会引发不适。
循环驱动件为设在冲洗液入管和/或冲洗液出管上的第一泵。
如上述,冲洗液在流动过程中部分进入导管、部分从冲洗液出口流出。并且,进入导管的冲洗液(第一部分冲洗液)的量小于从冲洗液出口流出(第二部分冲洗液)的量。上述“量”既可以是指体积,也可以是指流量。本文以流量进行说明。
上述液体流量的分配,可通过控制压力维持模块维持冷却循环回路内的冲洗液压力大于泵头在工作过程中所处的环境压力的大小来实现。
压力维持模块包括通过补充管路与冷却循环回路连通的冲洗液源、设在补充管路上用以将冲洗液源提供的冲洗液补充至冷却循环回路中的第二泵。这样,冲洗液循环所需动力和维持冲洗液压力所需压力分别由循环驱动件和第二泵完成。
由于对泵的控制技术比较成熟,在循环驱动件采用第一泵的情况下,分别由第一泵和第二泵提供冲洗液循环所需动力和冲洗液维持压力,可实现对冲洗液进入人体流量的精确控制。
为方便管路的连接,冷却循环模块还包括缓存容器,冲洗液入管、冲洗液出管和补充管路均与缓存容器通过鲁尔头连通。并且,为一定程度抵消由于冲洗液入管、冲洗液出管在采用软管的情形下可能发生管径膨胀而导致冲洗液压力不稳定(下降),最终导致进入人体的冲洗液流量不稳定,缓存容器至少能承受压力维持模块的补压而不发生容积变化,优选采用容积不发生变化的固体罐(Solid Tank)或者三通接头。
为防止转子高速旋转使冲洗液中析出的气体进入人体,在冷却循环回路上设有气泡过滤器,用于捕捉或过滤上述析出的气泡。气泡过滤器优选设在冲洗液入管上,可基本避免气泡经导管进入人体。
附图说明
图1为本发明实施例的导管泵的立体结构示意图;
图2为图1中的工作组件的前端泵头部分的剖视图;
图3为驱动组件与驱动导管手柄处于分离状态的剖视图;
图4为对应第三实施例的冲洗液高温解决方案且循环驱动件为泵的结构简图。
实施方式
本发明所用术语“近”、“后”和“远”、“前”是相对于操纵用于导管泵的临床医生而言的。术语“近”、“后”是指相对靠近临床医生的部分,术语“远”、“前”则是指相对远离临床医生的部分。例如,驱动组件在近端及后端,工作组件在远端及前端。再例如,某个部件/组件的近端表示相对靠近驱动组件的一端,远端则表示相对靠近工作组件的一端。
需要理解的是,“近”、“远”、“后”、“前”这些方位是为了方便描述而进行的定义。然而,导管泵可以在许多方向和位置使用,因此这些表达相对位置关系的术语并不是受限和绝对的。
本发明实施例的导管泵可至少部分地辅助心脏的泵血功能,实现至少部分地减轻心脏负担的作用。在一种示意性的场景中,导管泵可以为用作为左心室辅助,其工作部分(具体指下文的泵头)可被介入至左心室中,泵头运转时可将左心室中的血液泵送至升主动脉中。
值得注意的是,上述举例的被用作为左心室辅助仅是本导管泵一种可行的适用场景。在其他可行且不可被明确排除的场景中,导管泵也可以用作为右心室辅助,泵头可被介入至右心室中,泵头运转时将静脉中的血液泵送至右心室中。
下文主要以本导管泵用作左心室辅助为主述场景来阐述的。但基于上文描述可知,本发明实施例的保护范围并不因此而受到限定。
如图1所示,导管泵1000包括驱动组件100、工作组件200。结合图3所示,驱动组件100包括马达壳101、收纳在马达壳101内的马达102、以及由马达102驱动的主动件103。结合图2所示,工作组件200包括导管201、穿设在导管201中的驱动轴202、连接至驱动轴202近端的从动件203、以及分别连接至导管201近端和远端的驱动导管手柄204和泵头205。泵头205包括具有入口2051a和出口2051b的泵壳2051、收纳在泵壳2051中的叶轮2052,叶轮2052连接至驱动轴202的远端。叶轮2052旋转时,将血液从入口2051a吸入泵壳2051,再从出口2051b泵出泵壳2051。
在一个实施例中,泵壳2051包括支架20511和覆盖在支架20511上的弹性覆膜20512。支架20511的金属格构具有网孔设计,覆膜20512覆盖支架20511的中部及后端部分,支架20511前端未被覆膜20512覆盖的部分的网孔形成入口2051a。覆膜20512的后端包覆在导管远端外部,出口2051b为形成在覆膜20512后端的开口。叶轮2052包括轮毂20521及支撑在轮毂20521外壁的叶片20522。叶片20522由柔性材料制成,进而与上述由镍、钛记忆合金制作的支架20511和覆膜20512形成可折叠式泵头205。
当然,在其他实施例中,泵头205也可以为不可折叠式。则相应的,泵壳2051可以为金属制套管,不可发生径向折叠和自膨胀。叶轮2052也由硬质但符合生物相容性的材料制成。
驱动轴202包括可弯曲的软轴2021和连接至软轴2021远端的硬轴2022,软轴2021穿设在导管201中,硬轴2022穿设在轮毂20521的中空通道中,硬轴2022外壁与轮毂20521的中空通道内壁之间通过粘接实现固定。
支架20511的近端和远端分别连接近端轴承室206和远端轴承室207,近端轴承室206和远端轴承室207中分别设有近端轴承208和远端轴承209。硬轴2022的近端和远端分别穿设在近端轴承208和远端轴承209中。这样,硬轴2022两端被轴承208、209支撑,再加上硬轴2022较高的刚性,使得叶轮2052被较佳的保持在泵壳2051内。
如图3所示,驱动导管手柄204包括耦合壳体2045,耦合壳体2045内设有冲洗支架2041,冲洗支架2041限定冲洗腔2042。导管201的近端穿过耦合壳体2045连接至冲洗支架2041并与冲洗腔2042连通。驱动导管手柄204设有贯穿耦合壳体2045侧壁的冲洗液入口2043,冲洗液入口2043内端与冲洗腔2042连通。
如上述,主动件103和从动件203之间的磁力耦合实现非接触式动力传递,进而可在两者之间或者从动件203外设置液体隔离壁2048,用于对冲洗液密封,防止冲洗液进入马达102。另外,液体隔离壁2048限定了冲洗液的流动方向,使冲洗液只能向远端也就是工作组件200流动,从而对工作组件200中的上述转动部件例如驱动轴202、轴承等进行润滑和冷却。
如图3所示,驱动导管手柄204还包括可转动的设在耦合壳体2045内的转子2046。转子2046包括设置从动件203的转子轴2047,驱动轴202的近端连接至转子轴2047。液体隔离壁2048设在耦合壳体2045并位于冲洗支架2041的后端,液体隔离壁2048与冲洗支架2041对接,并共同限定将转子2046收纳在其内的容置腔2049。
容置腔2049包括由冲洗支架2041限定而成的冲洗腔2042,以及由液体隔离壁2048限定而成的液体隔离腔2050。冲洗腔2042与液体隔离腔2050连通。结合图4所示,冲洗腔2042通过冲洗液入口2043与冲洗液源602(冲洗液生理盐水、葡萄糖溶液、抗凝剂,或者上述任意的组合)连通,冲洗液经由冲洗液入口2043进入冲洗腔2042后再充注容置腔2049,并经与冲洗支架2041连通的导管201的近端进入,再经导管201向远端流动。在此过程中,润滑驱动轴202。同时,软轴2021为编织结构,液体可渗透至软轴内。这样,在软轴2021外流出的冲洗液冲刷近端轴承208并从近端轴承208与硬轴2022之间的缝隙流出,实现对近端轴承208的润滑和冷却。在软轴2021内向前流动的冲洗液进入硬轴2022,并从硬轴2022的远端流出,在设于远端轴承室207内并位于硬轴2022远端远侧的密封件213的封堵下,冲洗液反向流出,从硬轴2022与远端轴承209之间的缝隙流出,实现对远端轴承209的润滑和冷却。
如图4所示,为解决转子2046高速旋转而引发的冲洗液高温的问题,耦合壳体2045还设有与容置腔2049连通的冲洗液出口246。冲洗液出口246具体为与液体隔离壁2048连通。导管泵100包括可使冲洗液大部分在体外循环的冷却循环模块500以及维持冷却循环回路中冲洗液压力的压力维持模块600。
冷却循环模块500包括与冲洗液入口2043连通的冲洗液入管501、与冲洗液出口246连通的冲洗液出管502。其中,冲洗液出管502与冲洗液入管501连通,两者与容置腔2049形成冷却循环回路,冷却循环回路设有驱动冲洗液流动的循环驱动件503。
压力维持模块600与冷却循环回路连接,维持冷却循环回路内的冲洗液压力大于泵头205在工作过程中所处的环境压力。这样,冷却循环回路中的冲洗液可部分经导管201进入人体,实现对工作组件200中的转动部件的冷却和润滑。同时,在循环驱动件503的驱动作用下,冲洗液在冷却循环回路中持续循环,将转子2046高速旋转引发的冲洗液高温带走,实现对冲洗液的冷却。
泵头205的前端(血液入口2051a)在导管泵1000工作过程中被介入至左心室,后端(血液出口2051b)位于主动脉中。且,由于叶轮2052旋转泵血时,导管201远端处于血液正压区。因此,泵头205在工作中的环境压力包括心室压力、主动脉压力以及血液正压力等。相较于从冲洗液出口246流出,冲洗液进入导管201的阻力更大。这也就意味着,冲洗液欲经导管201进入人体,需克服上述环境压力。
此外,第一部分的冲洗液在从导管201向前流动至近端轴承208时,需要穿过轴承间隙后继续向前流动。该轴承间隙具体为硬轴2022外壁与近端轴承208内壁之间的缝隙,以及硬轴2022外壁与远端轴承209内壁之间的缝隙。第一部分的冲洗液向前流动会在该轴承间隙处受到流动阻力,且该流动阻力与轴承间隙的大小呈反相关关系。即,轴承间隙越大,冲洗液的流动阻力越小。反之,轴承间隙越小,冲洗液的流动阻力越大。由于轴承间隙导致的流动阻力,也构成上述环境压力的至少一部分。
进一步地,第一部分的冲洗液在导管201内向前流动、在驱动轴202内向前流动的过程中,也会存在流动阻力,该流动阻力同样构成上述环境压力的至少一部分。
为避免对人体造成不适,经导管201进入人体的冲洗液的量不宜过多,应小于从冲洗液出口246流出的量。基于上述,冷却循环回路中的冲洗液压力被压力维持模块600维持而大于泵头205在工作状态下所处的环境压力,是冲洗液能进入阻力较大的导管201的原因。因此,通过压力维持模块600控制冷却循环回路中的冲洗液压力,可实现冲洗液符合上述的流量分配。
虽然不同临床状况下,需要经导管201进入人体的冲洗液的量是不同的。但各种场景下,经导管201进入人体的冲洗液的量一般都远小于从冲洗液出口246流出的量。因此,通过压力维持模块600控制冷却循环回路中的冲洗液压力,略大于泵头205在工作中的环境压力即可。
如图3和图4所示,转子轴2047具有沿轴向贯穿的通道2053,冲洗腔2042和液体隔离腔2050通过通道2053连通(通道2053的近端位于冲洗腔2042内,远端位于液体隔离腔2050内),导管202、冲洗液入口2043与冲洗腔2042连通,冲洗液出口2046与液体隔离腔2050连通。这样,进入冲洗腔2042中的冲洗液通过通道2053向后流动至液体隔离腔2050,并最终从冲洗液出口2046流出,使冲洗液实现对转子2046持续的循环冷却。
容置腔2049内设有用于对转子轴2047的远端进行转动支撑的第一轴承235,第一轴承235将冲洗腔2042和液体隔离腔2050进行部分程度的液体隔离,冲洗液入口2043和冲洗液出口2046位于轴承235的两侧。通过第一轴承235对液体的隔离作用,避免进入冲洗腔2043中的冲洗液直接流向冲洗液出口2046,限定冲洗液主要通过通道2053向后流动,以实现对转子2046的冷却。
转子轴2047的直径小于第一轴承235的内径,两者之间存在第一间隙2351,冲洗液可经过第一间隙2351,实现对第一轴承235的润滑。第一间隙2351的截面积小于通道2053的截面积,因此冲洗液主要通过截面积较大的通道2053向后流动,以保证循环冷却的冲洗液流量。
容置腔2049内还设有用于对转子轴2047的近端进行转动支撑的第二轴承236,第二轴承236位于第一轴承235的近端,与第一轴承235配合实现对转子2046的双端旋转支撑,利于保持转子2046旋转的稳定性。同样的,转子轴2047的直径小于第二轴承236的内径,两者之间存在第二间隙2362,冲洗液可经过第二间隙2362,实现对第二轴承236的润滑。
第二轴承236设有沿轴向贯穿的过流孔2361,过流孔2361的截面积大于第二间隙2362的截面积。这样,可增大冲洗液向前回流的孔道面积,降低冲洗液阻力,利于实现大的循环流量。
如图4所示,压力维持模块600包括通过补充管路601与冷却循环回路连通的冲洗液源602、设在补充管路601上用以将冲洗液源602提供的冲洗液补充至冷却循环回路中的泵603。
在该实施例中,由于进入导管201而导致冲洗液被消耗由额外设置的液源也就是冲洗液源602补充。冷却循环回路中的冲洗液的压力,则由另一个驱动结构也就是泵603来维持。这样,冲洗液循环以及冲洗液压力维持分别由循环驱动件503和泵603完成,且冲洗液循环所需压力和冲洗液压力维持所需压力是不同的(一般情况下,冲洗液循环所需压力小于冲洗液压力维持所需压力)。因此,冲洗液循环和压力维持分开驱动,可以简化对循环驱动件503和泵603的控制,并且,使得冲洗液压力控制以及冲洗液流量控制更加精准。
为方便管路连接,冷却循环模块600还包括缓存容器504,冲洗液入管501、冲洗液出管502和补充管路603均与缓存容器504连通。管路可以采用鲁尔头与缓存容器504连通,管路连接方便。
为进一步提高冲洗液压力维持或控制精度,缓存容器504至少能承受压力维持模块600的补压而不发生容积变化。进一步地,缓存容器504为耐压度较高、一般压力下容积不变的固体罐(Solid Tank)。或者,在某些实施例中,缓存容器504可以直接采用三通接头,其三个端口分别连接冲洗液入管501、冲洗液出管502和补充管路603,并由三通接头的内部腔室来构造上述在承压时容积不变的腔室。因此,用三通接头来构造缓存容器504,使冲洗管路得到极大的简化。
实践证明,通过在冷却循环回路设置容积不变的缓存容器504,冲洗液压力维持或控制精度得到大大提升。这一效果是令人惊喜的,因为在采用该设计之前,冲洗液入管501、冲洗液出管502和补充管路603是采用软接头连接的,研发人员在多轮测试后,始终发现冲洗液压力的控制难以达到稳定和预期的效果。
发明人试图探寻该设计引起上述效果的原因,但目前尚不清楚,猜测可能的原理如下:
为方便临床管路部署和理线,构建冷却循环回路的冲洗液入管501和冲洗液出管502一般为软管,软管在高的冲洗液压力作用下会发生管径扩张,进而引起冷却循环回路的容积变化。冷却循环回路的容积生变化,而压力维持模块600仍按照原来的状态(例如泵的转速)运行,就有可能导致冷却循环回路的冲洗液压力变化(降低),进而导致冲洗液进入导管201的量不稳定。
而在冷却循环回路设置容积不变的缓存容器504(缓存容器504的容积构成冷却循环回路的一部分),尽管不会改变冲洗液入管501和冲洗液出管502发生管径扩张。但是,相较于的冲洗液入管501和冲洗液出管502容积,缓存容器504的容积更大,且缓存容器504的容积不易变化。这样,可大幅降低冷却循环回路的容积变化率。在如图4所示意的实施例中,对冷却循环回路起到压力维持作用的泵603,通过补充管路601连接至缓存容器504。这样,泵603的泵注压力直接作用在缓存容器504上,而不作用在冲洗液入管501和冲洗液出管502上,一定程度上也可以起到减缓冲洗液入管501和冲洗液出管502管径变化的作用。
综合上述,通过在冷却循环回路设置容积不变的缓存容器504,至少部分的解决了冷却循环回路容积变化的问题,进而使得冲洗液压力维持或控制精度得以提升。
如图4所示,在一个实施例中,循环驱动件503为设在冲洗液入管501和/或冲洗液出管502上且不同于泵603的泵(为示区分,将该泵定义为第一泵,将泵603定义为第二泵)。由于对泵的控制技术较为成熟,使用泵作为循环驱动件503,可简化控制。
研究发现,转子2046在浸泡冲洗液的环境中高速旋转,会产生气泡,气泡可能是原本融在冲洗液中的气体由于被转子2046搅动和温升而析出所产生的。临床上是不希望该气泡进入人体的,因此有必要对产生的气泡进行捕捉。
在一个可选的实施例中,冷却循环回路设有气泡过滤器258(Filter Bubble),用于对气泡进行过滤或捕捉,防止气泡经导管201进入人体。进一步地,气泡过滤器258设在冲洗液入管501上。该设计有利于气泡过滤器258的设置,避开与其他结构的干涉。
此外,气泡主要在液体隔离腔2050内产生,随后气泡随冲洗液经冲洗液出口246流出,再在冲洗液出管502和冲洗液入管501中循环后,经冲洗液入口2043重新进入冲洗腔2042。由此可见,在气泡产生直至经冲洗液入口2043重新进入冲洗腔2042之前,均不会经导管201进入人体。这也就意味着,只要在气泡进入冲洗腔2042之前,即可基本避免气泡进入人体。因此,将气泡过滤器258设在冲洗液入管501上,可实现上述目的。
气泡过滤器258可采用任意合适的现有构造,例如过滤网或过滤膜,本实施例对此不作限定。过滤网或过滤膜收纳在壳体结构内,为减小过滤网或过滤膜对冲洗液流动的阻力,可尽量增大过滤网或过滤膜的过流面积,收纳过滤网或过滤膜的壳体可采用扁平的膨大结构。
实践表明,采用本实施例的冲洗方案,不仅能大幅降低冲洗液的高温,而且还能对驱动组件100起冷却作用。具体而言,如图3所示,马达轴1021设有旋转支架105,主动件103设在旋转支架105的内壁。马达壳101内设有轴承室109,轴承室109通过法兰111与马达102连接,轴承室109内设有用于对旋转支架105进行转动支撑的轴承110。因此,驱动组件100内的旋转部件例如马达102、主动件103和轴承110是发热量较大的部分。为解决这些高产热部件的散热问题,马达102通过法兰111与轴承室109接触。这样,在工作过程中,主动件103、旋转支架105、轴承110、轴承室109、法兰111和马达102连接并物理接触,借助上述物理接触,形成由马达102、法兰、轴承室109、轴承110、旋转支架105至主动件103的导热路径,使得驱动组件110的主要产热部件马达102、轴承110和主动件103的热量被驱动导管手柄204内循环的大流量冲洗液带走,并进一步在冲洗液参与体外循环时耗散到外界空气中,实现对上述部件的冷却。主动件103为距离冲洗液最近的部件,因此,主动件103的热量通过液体隔离壁2048传递至液体隔离腔2050内的冲洗液,从而被冷却并形成相对低温,使得其他物理接触的部件的热量向主动件103传递,并通过液体隔离壁2048传递至液体隔离腔2050,实现降温。
由于驱动组件100的主要发热部件被驱动导管手柄204内的冲洗液冷却,因此,驱动组件100可简化散热设计。如图3所示,马达壳101由塑料材质制作。相对于金属制作的壳体,塑料马达壳101的成本更低、重量更轻、手感更好,但散热效果更差。其中,散热效果更差对于临床而言效果反而更佳。原因在于:马达壳101外表面不可避免的被人体接触。采用金属等导热性较好的材质制作马达壳101,在人体部位例如手接触时,热量会快速传导至人体,进而可能烫伤人体部位。反之,在表面温度相同的情况下,塑料马达壳101由于导热性差,即便被人体触碰,也不会形成伤害。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。
出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。

Claims (17)

  1. 一种导管泵,包括:
    马达;
    导管;
    驱动轴,可转动的穿设在所述导管中;
    泵头,包括:连接至所述导管远端的泵壳、收纳在所述泵壳中的叶轮;所述叶轮连接至所述驱动轴的远端,以被驱动旋转进行泵血;
    驱动导管手柄,包括:连接至所述导管近端并与所述马达可拆卸连接的耦合壳体、可被所述马达驱动的转子;所述驱动轴的近端连接至所述转子,所述耦合壳体内形成有将所述转子可转动的支撑在其内的容置腔;所述导管与所述容置腔连通,所述耦合壳体设有与所述容置腔连通的冲洗液入口和冲洗液出口;
    冷却循环模块,包括:与所述冲洗液入口连通的冲洗液入管、与所述冲洗液出口连通的冲洗液出管;所述冲洗液入管、所述容置腔与所述冲洗液出管形成冷却循环回路,在所述冷却循环回路上设有用以驱动冲洗液流动的第一泵;
    压力维持模块,包括:通过补充管路与所述冷却循环回路连通的冲洗液源、设在所述补充管路上用以将所述冲洗液源提供的冲洗液补充至所述冷却循环回路中的第二泵。
  2. 如权利要求1所述的导管泵,所述第二泵用以维持所述冷却循环回路内的冲洗液压力大于所述泵头在工作过程中所处的环境压力。
  3. 如权利要求1或2所述的导管泵,经所述冲洗液入口进入到所述容置腔中的冲洗液,一部分进入所述导管并在所述泵头处全部排出至人体,另一部分经过所述转子再从所述冲洗液出口排出。
  4. 如权利要求3所述的导管泵,进入所述导管的冲洗液的量小于从所述冲洗液出口排出的冲洗液的量。
  5. 如权利要求1所述的导管泵,所述冷却循环模块还包括缓存容器,所述冲洗液入管、冲洗液出管和补充管路均与所述缓存容器连通;所述缓存容器至少能承受所述压力维持模块的补压而不发生容积变化。
  6. 如权利要求5所述的导管泵,所述缓存容器包括固体罐或三通接头。
  7. 如权利要求1所述的导管泵,所述冷却循环回路设有气泡过滤器。
  8. 如权利要求7所述的导管泵,所述气泡过滤器设在所述冲洗液入管上。
  9. 如权利要求1所述的导管泵,所述转子包括连接至所述驱动轴近端的转子轴,所述转子轴具有沿轴向贯穿的通道;所述驱动导管手柄还包括设在所述耦合壳体内的冲洗支架和液体隔离壁,所述洗支架限定冲洗腔,所述液体隔离壁限定液体隔离腔;所述冲洗腔和液体隔离腔通过所述通道连通;所述导管、冲洗液入口与所述冲洗腔连通,所述冲洗液出口与所述液体隔离腔连通。
  10. 如权利要求9所述的导管泵,所述马达驱动主动件,以将所述马达的旋转动力传递至与所述主动件耦合的从动件,所述液体隔离壁位于所述主动件与所述从动件之间,所述主动件的热量通过所述液体隔离壁传递至所述液体隔离腔内的冲洗液。
  11. 如权利要求10所述的导管泵,所述马达的马达轴连接旋转支架,所述主动件设在所述旋转支架的内壁;所述马达收纳在马达壳内,所述马达壳内设有轴承室,所述轴承室通过法兰与马达连接,所述轴承室内设有用于对所述旋转支架进行转动支撑的轴承。
  12. 如权利要求10或11所述的导管泵,所述马达壳的材质为塑料。
  13. 如权利要求9所述的导管泵,所述容置腔内设有用于对所述转子轴的远端进行转动支撑的第一轴承,所述第一轴承将冲洗腔和液体隔离腔进行部分液体隔离,所述冲洗液入口和冲洗液出口位于所述第一轴承的两侧。
  14. 如权利要求13所述的导管泵,所述第一轴承与转子轴之间存在第一间隙。
  15. 如权利要求14所述的导管泵,所述第一间隙的截面积小于所述通道的截面积。
  16. 如权利要求13所述的导管泵,所述容置腔内设有用于对所述转子轴的近端进行转动支撑的第二轴承,所述第二轴承与转子轴之间存在第二间隙。
  17. 如权利要求16所述的导管泵,所述第二轴承设有沿轴向贯穿的过流孔,所述过流孔的截面积大于所述第二间隙的截面积。
PCT/CN2023/113206 2022-08-15 2023-08-15 导管泵 WO2024037554A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210976332 2022-08-15
CN202210976332.8 2022-08-15
CN202211578294 2022-12-09
CN202211578294.7 2022-12-09

Publications (1)

Publication Number Publication Date
WO2024037554A1 true WO2024037554A1 (zh) 2024-02-22

Family

ID=89940718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113206 WO2024037554A1 (zh) 2022-08-15 2023-08-15 导管泵

Country Status (1)

Country Link
WO (1) WO2024037554A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011110447U1 (de) * 2011-12-22 2014-01-24 Ecp Entwicklungsgesellschaft Mbh Schleuseneinrichtung zum Einführen eines Katheters
US20170319764A1 (en) * 2015-01-22 2017-11-09 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
CN110290825A (zh) * 2017-02-13 2019-09-27 卡迪奥布里奇有限公司 具有驱动单元和导管的导管泵
CN110325228A (zh) * 2017-02-13 2019-10-11 卡迪奥布里奇有限公司 具有驱动单元和导管的导管泵
CN111375096A (zh) * 2018-12-28 2020-07-07 上海微创心力医疗科技有限公司 一种冷却系统和导管泵系统
CN211132606U (zh) * 2019-08-01 2020-07-31 杨礼瑾 动力源可置于人体内的旋转传动导管
US20200345337A1 (en) * 2019-05-01 2020-11-05 Tc1 Llc Introducer sheath assembly for catheter systems and methods of using same
CN112654389A (zh) * 2018-08-07 2021-04-13 开迪恩有限公司 用于心脏支持系统的轴承装置和冲洗用于心脏支持系统的轴承装置中的中间空间的方法
CN215461410U (zh) * 2021-06-18 2022-01-11 苏州心擎医疗技术有限公司 心室辅助装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011110447U1 (de) * 2011-12-22 2014-01-24 Ecp Entwicklungsgesellschaft Mbh Schleuseneinrichtung zum Einführen eines Katheters
US20170319764A1 (en) * 2015-01-22 2017-11-09 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
CN110290825A (zh) * 2017-02-13 2019-09-27 卡迪奥布里奇有限公司 具有驱动单元和导管的导管泵
CN110325228A (zh) * 2017-02-13 2019-10-11 卡迪奥布里奇有限公司 具有驱动单元和导管的导管泵
CN112654389A (zh) * 2018-08-07 2021-04-13 开迪恩有限公司 用于心脏支持系统的轴承装置和冲洗用于心脏支持系统的轴承装置中的中间空间的方法
CN111375096A (zh) * 2018-12-28 2020-07-07 上海微创心力医疗科技有限公司 一种冷却系统和导管泵系统
US20200345337A1 (en) * 2019-05-01 2020-11-05 Tc1 Llc Introducer sheath assembly for catheter systems and methods of using same
CN211132606U (zh) * 2019-08-01 2020-07-31 杨礼瑾 动力源可置于人体内的旋转传动导管
CN215461410U (zh) * 2021-06-18 2022-01-11 苏州心擎医疗技术有限公司 心室辅助装置

Similar Documents

Publication Publication Date Title
US11759612B2 (en) Reduced rotational mass motor assembly for catheter pump
US11633586B2 (en) Motor assembly with heat exchanger for catheter pump
US11918800B2 (en) Gas-filled chamber for catheter pump motor assembly
JP6345113B2 (ja) 補助人工心臓システム
Topilsky et al. Focused review on transthoracic echocardiographic assessment of patients with continuous axial left ventricular assist devices
CN115459507B (zh) 导管泵电机
CN216061675U (zh) 用于对心脏在发生功能衰竭时进行辅助的装置
CN215309683U (zh) 一种血管内心脏辅助装置
CN114215792A (zh) 一种带全封闭清洗液循环系统的微型泵
CN115282468A (zh) 一种介入式血泵
WO2024037554A1 (zh) 导管泵
CN114082098A (zh) 一种柔性传动系统及血泵
CN113926074A (zh) 导流传动装置以及血泵系统
Litton Demystifying ventricular assist devices
US20230201559A1 (en) Moisture absorbing seal for catheter fluid system
CN218833390U (zh) 心室辅助装置
CN111375096A (zh) 一种冷却系统和导管泵系统
CN114392476B (zh) 一种高温超导磁悬浮轴流式血泵
CN219355088U (zh) 一种血管壁支撑式主动脉泵血装置
US20230211146A1 (en) Impeller seal assembly for a percutaneous heart pump
US20230096277A1 (en) Catheter pump motor assembly including lubricated rotor chamber
Qian et al. Use of aortic valvo-pumps placed in valve annulus for long-term left ventricular assist
US20230211141A1 (en) Filter for particles in catheter pump system
US20230211142A1 (en) Filter for particles in catheter pump system
Patel et al. Extracorporeal mechanical circulatory assist

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854454

Country of ref document: EP

Kind code of ref document: A1