WO2024037543A1 - Positive pressure type respiratory protective apparatus - Google Patents

Positive pressure type respiratory protective apparatus Download PDF

Info

Publication number
WO2024037543A1
WO2024037543A1 PCT/CN2023/113143 CN2023113143W WO2024037543A1 WO 2024037543 A1 WO2024037543 A1 WO 2024037543A1 CN 2023113143 W CN2023113143 W CN 2023113143W WO 2024037543 A1 WO2024037543 A1 WO 2024037543A1
Authority
WO
WIPO (PCT)
Prior art keywords
hose
airflow
positive pressure
pressure type
detection module
Prior art date
Application number
PCT/CN2023/113143
Other languages
French (fr)
Inventor
Chengfa Fan
Original Assignee
Tecmen Electronics Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecmen Electronics Co., Ltd filed Critical Tecmen Electronics Co., Ltd
Publication of WO2024037543A1 publication Critical patent/WO2024037543A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/006Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort with pumps for forced ventilation
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/08Component parts for gas-masks or gas-helmets, e.g. windows, straps, speech transmitters, signal-devices
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/10Respiratory apparatus with filter elements
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/12Respiratory apparatus with fresh-air hose
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • A62B9/04Couplings; Supporting frames
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B17/00Protective clothing affording protection against heat or harmful chemical agents or for use at high altitudes
    • A62B17/04Hoods

Definitions

  • the present disclosure generally relates to a positive pressure type respiratory protective apparatus, especially a positive pressure type portable respiratory protective apparatus which can be worn by a user.
  • the respiratory protective apparatus can comprise a blower unit capable of being worn on the user's waist, and a protective suit and/or a respiratory mask and/or a helmet capable of being worn by the user, wherein an airtight hose is connected between the blower unit and the protective suit and/or the respiratory mask and/or the helmet.
  • An air filter and a blower are provided in the blower unit such that when the blower is energized, ambient air can be sucked into the blower unit by the blower and filtered by the air filter. Thereafter, the filtered air can be conveyed though the airtight hose into the protective suit and/or the respiratory mask and/or the helmet. Because the filtered air output by the blower unit has a positive pressure, the respiratory protective apparatus sometimes can be called as a positive pressure type respiratory protective apparatus.
  • the blower unit of the positive pressure type respiratory protective apparatus is usually switchable between several pre-defined levels (such as two or three air velocity adjustment levels) , such that the filtered air can be output by the blower unit via the airtight hose at different air velocities as required.
  • pre-defined levels such as two or three air velocity adjustment levels
  • the blower unit before leaving the factory will be pre-calibrated such that activation currents used for operation of the blower of the blower unit at different levels of the blower unit can correspond to positive pressure volumes of air output by the blower unit at the respective levels.
  • the pre-calibrating manner according to the prior art is very labor-consuming. Even if the blower unit can be pre-calibrated, subsequent operation of the blower unit can be affected by factors such as service temperature variation, blower aging, airflow multipath. Therefore, it is very difficult to pre-calibrate a blower unit having three or more levels such that airflow oscillation negatively affecting user experience will occur because less levels can be available to adjust the rate of airflow discharged by the blower. Furthermore, the pre-calibrating manner according to the prior art cannot guarantee parameter consistency for batch products.
  • the present disclosure aims at propose an improved positive pressure type respiratory protective apparatus such that the rate of airflow discharged by a blower unit of the apparatus is controllable simply, high precisely, and in such a manner that the control of the blower unit is less disturbed by environmental factors, especially airflow discharged by a blower unit of the apparatus can be continuously controlled in a closed-loop mode.
  • a positive pressure type respiratory protective apparatus comprising:
  • a blower unit configured to be worn and include a housing in which a filter and an electric blower are disposed;
  • the positive pressure type respiratory protective apparatus also comprises a detection module, outside the housing of the blower unit, the detection module is disposed at a connection between the hose and the blower unit or at a connection between the hose and the personal protective module, the detection module comprises a MEMS flow sensor configured to detect airflow flowing through the hose, and the operating power of the electric blower can be regulated linearly depending on the detected airflow.
  • the detection module is disposed on an outer side of the hose.
  • the detection module is disposed on an inner side of the hose.
  • the hose comprises a first joint configured to be releasably connected to the housing of the blower unit and a second joint configured to be releasably connected to the personal protective module, and the detection module is disposed in the first or second joint.
  • the hose comprises a first joint configured to be releasably connected to the housing of the blower unit and a second joint configured to be releasably connected to the personal protective module, and the detection module is disposed in the second joint.
  • the personal protective module comprises a protective suit configured to be worn by a user and be filled with gas, a protective mask configured to be worn on the user's face, and/or a helmet configured to be worn on the user's head.
  • the MEMS flow sensor when it is desired to supply the personal protective module through the hose with filtered air at a set value of airflow, the MEMS flow sensor is configured to periodically detect the airflow to obtain a detected value, the detected value is compared with the set value such that a motor speed of the electric blower can be increased or reduced correspondingly to ensure that the detected value is equal to or approaches the set value.
  • the detection module also comprises a MEMS temperature sensor and/or a MEMS humidity sensor and/or a MEMS fluid pressure sensor, when the airflow is detected, results detected by the MEMS flow sensor and the MEMS temperature sensor and/or the MEMS humidity sensor and/or the MEMS fluid pressure sensor are provided as input of a pre-defined transfer function whose output is as the detected value.
  • the motor speed of the electric blower when the motor speed of the electric blower is regulated depending on the compared result between the detected value and the set value, the motor speed of the electric blower is increased or reduced such that the detected value of airflow is changed at a minimum interval of 1 SLPM.
  • the detection module does not detect the airflow until a given time interval has passed.
  • pre-calibration according to the prior art can be dispensed with and parameter consistency for batch apparatuses can be still guaranteed.
  • the operation of the blower is controllable in a closed-loop feedback manner such that a desired airflow rate setting is achievable precisely to improve user experience.
  • Fig. 1 is a system block diagram schematically illustrating a conventional positive pressure type respiratory protective apparatus
  • Fig. 2 is a system block diagram schematically illustrating a detection module according to an embodiment of the present disclosure which can be adopted in the positive pressure type respiratory protective apparatus;
  • Fig. 3 is a system block diagram schematically illustrating a positive pressure type respiratory protective apparatus according to an embodiment of the present disclosure
  • Fig. 4 is a system block diagram schematically illustrating a positive pressure type respiratory protective apparatus according to another embodiment of the present disclosure
  • Fig. 5 is a flow chart schematically illustrating a control method according to an embodiment of the present disclosure
  • Fig. 6A is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus according to the present disclosure, in which a personal protective module of the apparatus is embodied as a helmet;
  • Fig. 6B is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus according to the present disclosure, in which the personal protective module of the apparatus is embodied as a protective mask;
  • Fig. 6C is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus according to the present disclosure, in which in which the personal protective module of the apparatus is embodied as a protective suit.
  • Fig. 1 is a system block diagram schematically illustrating a conventional positive pressure type respiratory protective apparatus 100 according to the prior art.
  • the respiratory protective apparatus 100 generally comprises a blower unit 110, a personal protective module 120, and a hose 130 air-tightly connected between the blower unit 110 and the personal protective module 120.
  • the blower unit 110 can be designed such that it can be worn on a user's waist.
  • the personal protective module 120 may comprise one or more of personal protective means for respiratory use such as a protective suit which can be worn by the user and whose interior can be supplied with air, a protective mask which can be worn on the user's face, a helmet which can be worn on the user's head, or the like.
  • Ambient air can be sucked into a hollow housing of the blower unit 110 when a blower 112 of the blower unit 110 is operating.
  • the sucked-in air can be filtered by a filter 111 and then supplied via the hose 130 to the personal protective module 120 for the user's breathing.
  • the filter 111 and the blower 112 are disposed in the housing of the blower unit 120.
  • the filter 111 and the blower 112 can be sequentially arranged in an airflow path 115 formed between an air intake port 113 and an air discharge port 114 of the blower unit 110.
  • the airflow path 115 as shown is given here for illustrative purpose only.
  • the airflow path can be suitably designed depending on the concrete internal configuration of the housing, for example to be meanderingly routed in the housing.
  • the blower 112 can be energized by a battery (not shown) installed in the housing of the blower unit.
  • the blower unit 110 also comprises a microprocessor control unit 116 and an operation device 117.
  • the microprocessor control unit 116 is electrically connected to the blower 112 and the operation device 117 respectively.
  • the microprocessor control unit 116 comprises an integrated circuit board on which a microprocessor chip and a data storage chip are integrated. Therefore, after receiving inputs from the operation device 117, the microprocessor control unit 116 can send corresponding control instructions to the blower 112.
  • the data storage chip can be configured to store corresponding programs and/or data such that when they are invoked as desired, the blower 112 can be instructed to work.
  • the operation device 117 is for example a touchscreen display, a control knob, a button device, or any other suitable manually operative input device.
  • the operation device 117 is configured such that manual operation of a user on the operation device 117 can be converted into a signal which can be received by the microprocessor control unit 116.
  • relevant operation parameters of the blower unit 110 such as a motor speed of the blower 112 or the like can be in real time displayed on a display installed on the housing of the blower unit or in real time displayed on the operation device 117 embodied as the touchscreen display.
  • An air-tight sealing connection feature 140a is releasably provided between the air discharge port 114 of the housing of the blower unit and one connection end of the hose 130, and an air-tight sealing connection feature 140b is also releasably provided between the opposite connection end of the hose 130 and the personal protective module 120.
  • the air-tight sealing connection feature 140a and/or 140b can comprise a joint provided between the hose 130 and the air discharge port 140 and/or between the hose 130 and the personal protective module 120 in a suitable manner such as snapping-on or screwing connection.
  • an accessary such as a gasket used for air-tightness can be equipped for the joint (s) .
  • the apparatus Before the conventional positive pressure type respiratory protective apparatus 100 is used, for example before it leaves the factory, the apparatus has to be pre-calibrated such that when the positive pressure type respiratory protective apparatus 100 is being operated, the previously stored programs can be automatically invoked to adjust operation of the blower 112 or the operation of the blower 112 can be adjusted depending on manual inputs from a user (for example on the operation device) .
  • the intensity of current supplied to the blower 112 can be altered to change the output strength of the blower 112 such that a desired target air mass flow can be discharged by the blower unit 110.
  • the conventional positive pressure type respiratory protective apparatus 100 is disadvantageous in that the fact that the interior volume of the housing of the blower unit is limited will result in swirls of airflow probably occurring in the airflow path 115 when the blower arranged in the housing is being operated. Therefore, when the pre-calibration according to the prior art is carried out by the tests during which the hose is blocked to different extents, the accuracy of the pre-calibration by the tests may be affected by the probably occurring swirls of airflow themselves or the variations of the swirls.
  • Fig. 2 schematically shows a detection module 200 according to an embodiment of the present disclosure.
  • the detection module 200 for example comprises a MEMS (Micro-electromechanical Systems) sensor.
  • the MEMS sensor can comprise a MEMS flow sensor 210, a MEMS temperature sensor 220, a MEMS humidity sensor 230, a MEMS fluid pressure sensor or the like. They are shown non-restrictively.
  • the detection module 200 can comprise a shell in or on which the MEMS sensor can be integrated at a suitable position.
  • a battery such as a lithium battery can be provided in the shell. Take the MEMS flow sensor 210 for example.
  • this MEMS flow sensor 210 can be a thermal flow sensor (such as a thermal conduction flow sensor or a thermal time-of-flight flow sensor) , a mechanical flow sensor, and/or a resonant flow sensor.
  • the MEMS sensor (or called as a sensor chip) can be manufactured to be very small. For example, it can have a volume of 4 mm (length) *4 mm (width) *3 mm (height) such that it can be readily integrated in an integrated circuit board of the detection module 200.
  • the lithium battery when embodied as a well-known lithium battery such as a button battery, integrated in the detection module 200 is sufficient to ensure that the MEMS sensor can work for a desired long term.
  • the detection module 200 can also comprise a wireless communication device which for example can be embodied as a device integrated in the integrated circuit board, such that data acquired by the detection module 200 can be sent outwards wireless or the detection module 200 can receive wireless data from other devices or modules.
  • the MEMS flow sensor 200 can be embodied as a MEMS flow sensor chip with accuracy of 0.5 SLPM (Standard Liter Per Minute) , such that a detection value of airflow at least with the same accuracy can be acquired by the MEMS flow sensor 200, which will provide the basis for approximately continuous motor speed regulation of the blower later.
  • SLPM Standard Liter Per Minute
  • approximately continuous motor speed regulation means that the airflow can be regulated at a minimum interval of 1 SLPM.
  • Fig. 3 schematically illustrates a positive pressure type respiratory protective apparatus 300 according to an embodiment of the present disclosure.
  • the positive pressure type respiratory protective apparatus 300 comprises a blower unit 110, a personal protective module 120, and a hose 130 air-tightly connected between the blower unit 110 and the personal protective module 120.
  • the positive pressure type respiratory protective apparatus 300 comprises the detection module 200.
  • the detection module 200 can be configured to be disposed on an outer side of the hose 130 to detect airflow through the hose 130.
  • the accuracy of airflow detected by the MEMS flow sensor chip when it is disposed on the outer side of the hose is higher than that when it is disposed on an inner side of the hose.
  • the detection module 200 can be safely protected to avoid accidental damage caused by an external force.
  • the detection module 200 can be disposed on the outer side of the hose 130.
  • the expression that the detection module is disposed on a feature can refer to that the detection module can be secured on the feature in any suitable physically connected manner, for example by a suitable fastener such as a clamp, bonding, screwing or the like, such that the detection module 200 can work well.
  • the detection module 200 can be configured to be arranged at a part of a joint of the hose 130 for connecting the blower unit 110 or the personal protective module 120 or alternatively can be formed as the part of the joint, such that the detection module 200 is arranged outside the housing of the blower unit 110.
  • arranging the detection module 200 outside the housing of the blower unit 110 can ensure that the accuracy of airflow detected by the MEMS flow sensor 210 is minimally (or even prevented from being) affected by variation of irregular swirls of airflow occurring in the housing when the blower of the blower unit 110 is being operated.
  • the detection device such as the sensor is disposed within the housing of the blower unit only. He/she usually neglects that the variation of irregular swirls of airflow occurring in the housing when the blower of the blower unit 110 is being operated will affect the accuracy of airflow as detected. Therefore, the present disclosure aims to solve this problem neglected by designers in the prior art such that the motor speed regulation of the blower can be carried out more preciously.
  • the detection module 200 can be disposed at any suitable position between two opposite joints of the hose 130.
  • the detection module 200 can be configured to be wire or wireless data communication with the blower unit 110, especially its microprocessor control unit 116.
  • a conductor cable configured to achieve data communication between the detection module 200 and the blower unit 110, especially its microprocessor control unit 116 can be disposed on an outer surface (i.e., the outer side) of the hose 130 and protected by a guard band wrapped around the same.
  • the conductor cable can be attached on an inner surface (i.e., the inner side) of the hose 130, for example secured there by a suitable clamp, an adhesive or the like, as soon as the filtered air can smoothly (or without being affected by them) flow through the hose 130.
  • the conductor cable can be embedded in the wall of the hose 130 as its part.
  • the detection module 200 and the microprocessor control unit 116 can be designed such that data can be transmitted by the conductor cable therebetween via any suitable communication protocol such as UART, 12C or the like.
  • a wireless communication unit can be integrated in the integrated circuit board of the blower unit 110, especially its microprocessor control unit 116, such that it can achieve data transmission to or data reception from a wireless communication unit of the detection module 200.
  • various data acquired by the detection module 200 can be transmitted to the microprocessor control unit 116 or the detection module 200 can receive instructions from the microprocessor control unit 116.
  • the detection module 200 and the microprocessor control unit 116 can be designed such that data can be transmitted therebetween via any suitable communication protocol such as BLUEBOOTH, ZigBee, wireless internet or the like.
  • Fig 4 schematically illustrates a positive pressure type respiratory protective apparatus 400 according to another embodiment of the present disclosure.
  • the positive pressure type respiratory protective apparatus 400 comprises a blower unit 110, a personal protective module 120, and a hose 130 air-tightly connected between the blower unit 110 and the personal protective module 120.
  • the positive pressure type respiratory protective apparatus 400 also comprises the detection module 200.
  • the detection module 200 can be configured such that it is disposed on the inner side of the hose 130 to detect airflow flowing through the hose 130.
  • the detection module 200 is disposed in the hose at a position as far as possible away from a joint of the hose 130 connected to the blower unit 110. In this way, the detected results can be prevented from being affected by swirls of airflow occurring in the airflow path 115 within the housing of the blower unit when the blower of the blower unit 110 is being operated.
  • Fig. 6A is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus 300 or 400, in which the personal protective module 120 is embodied as a helmet.
  • Fig. 6B is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus 300 or 400, in which the personal protective module 120 is embodied as a protective mask.
  • Fig. 6C is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus 300 or 400, in which in which the personal protective module 120 is embodied as a protective suit.
  • Fig. 5 schematically illustrates a method according to an embodiment of the present disclosure for controlling the positive pressure type respiratory protective apparatus 300, 400 according to the embodiments or their variants. It should be understood by a person skilled in the art that the method or its steps mentioned below or their variants can be embodied and stored as program (s) in the storage chip of the microprocessor control unit 116, and the program (s) , when desired, can be invoked therefrom and executed.
  • a desired set value S D of airflow to be supplied can be input through the operation device 117.
  • the microprocessor control unit 116 can send instructions such that the blower 112 can be supplied with power at a pre-calculated current intensity corresponding to the desired set value S D of airflow to be supplied.
  • the pre-calculated current intensity can be chosen from a database which stores current intensity results theoretically (for example, in which case the open end of the hose is not blocked anyway or is not connected to the personal protective module 120) calculated only depending on predefined values of airflow when the blower unit is designed. Moreover, the database or the current intensity results are in advance stored in the storage chip of the microprocessor control unit 116 and then invoked for later use.
  • the detection module 200 is configured to detect airflow conveyed by the hose 130.
  • the detection module 200 can detect not only the rate or volume of the conveyed airflow but also other parameters such as ambient pressure, air pressure, temperature, humidity or the like.
  • a detected value S M of airflow can be an average value of several detected values of airflow.
  • the detected value S M of airflow might be different than the set value S D of airflow.
  • Step S30 the detected value S M of airflow is compared with the set value S D of airflow. If the difference therebetween or the absolute value of the difference is less than or equal to a pre-given value, the difference will be deemed to be negligible or no difference will be deemed to exist therebetween. Therefore, the comparison result of Step S30 can be output as Y (Yes) . If the difference between the detected value S M of airflow and the set value S D of airflow or the absolute value of the difference is greater than the pre-given value, it is determined that the difference therebetween is significant and thus not negligible. In this case, the comparison result of Step S30 can be output as N (No) .
  • Step S40 the current intensity of the blower 112 is regulated correspondingly depending on the difference between the detected value S M of airflow and the set value S D of airflow. For instance, if the difference is positive in value, the current intensity of the blower 112 can be reduced respectively; or if the difference is negative in value, the current intensity of the blower 112 can be increased respectively.
  • the operating power of or the current intensity of the blower 112 can be regulated in a one-to-one correspondence relationship with the detected value S M of airflow or with the difference between the detected value S M of airflow and the set value S D of airflow.
  • the one-to-one correspondence relationship means that the relationship between the change of the operating power or the current intensity of the blower 112 and the change of the detected value S M of airflow or the change of the difference between the detected value S M of airflow and the set value S D of airflow is linear. That is to say, the operating power or the current intensity of the electric blower 112 can be regulated linearly depending on the detected value of airflow.
  • the details of the linear relationship are not necessary to be involved.
  • the linear regulation of the blower's operating power or current intensity depending on the detected value of airflow will not require pre-calibration of the levels and thus will prevent a user from feeling discomfort caused by switching the levels.
  • Step S20 the detection module 200 continues to detect the airflow conveyed by the hose 130.
  • the current intensity of the blower 112 is regulated by a small margin which is sufficient to ensure that the airflow or the volume of airflow can be regulated at a minimum interval of 1 SLPM.
  • the MEMS flow sensor 210 can be embodied as a MEMS flow sensor chip with accuracy of 0.5 SLPM, the detection module 200 is able to detect the change of airflow with sufficient accuracy, to provide sufficient basis for later feedback control, even if the airflow or the volume of airflow is regulated at the interval of 1 SLPM.
  • Step S30 the method returns to Step 20, where the detection module 200 continues to detect the airflow conveyed by the hose 130.
  • the blower unit of the apparatus according to the present disclosure is controllable in a closed-loop feedback manner and thus it will be not necessary to pre-calibrate the blower unit like does in the prior art.
  • airflow discharged by the blower unit can be adjusted depending on the real time detected results in a proximately continuous manner such that the desired set value of airflow can be reached with higher precision and maintained dynamically.
  • Step S20 before the method goes first to Step S20 after Step S10, it is possible to wait for a time interval such as from 1 second to 1 minute. That is, after Step S10, the method does not go first to Step S20 until the time interval has passed. This is advantageous in that filtered air can more stably flow in the hose 130 such that the detected results are more stable.
  • the detection module 200 can be configured to detect air pressure, temperature, humidity or the like. Then, the detected parameters (or values) can be input into a pre-designed transfer function. Thereafter, depending on the input parameters (or values) , the transfer function will output a value as the current detected value S M of actual airflow.
  • This transfer function is designed to consider effects of the air pressure, temperature, and humidity on the detected value, and thus the detected value can more truly reflect the change of airflow flowing through the hose 130 or directly felt by a user.
  • the transfer function can be experientially designed or can be designed through multi-tests in advance. For instance, the transfer function can be designed as a computer program or a part of the computer program stored in the storage chip of the microprocessor control unit 116 and later invoked therefrom as desired.
  • the method can be designed such that when the result of Step S30 is Y, the current intensity of the blower 112 together with the corresponding set value can be stored. In this way, when a user inputs the same desired set value S D of airflow, corresponding to the stored current intensity, by the operation device 117, the stored current intensity can be directly invoked at Step S20 to be used to control the blower 112.
  • pre-calibration for batch products according to the prior art will be discarded and parameter consistency for batch products can be still guaranteed.
  • the operation of the blower can be controlled in a closed-loop feedback manner, the desired set value of airflow can be precisely reached and airflow oscillation can be prevented during regulation of the airflow, to improve user experience.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Pulmonology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

The present disclosure relates to a positive pressure type respiratory protective apparatus (300, 400), comprising: a blower unit (110) configured to be worn and include a housing in which a filter and an electric blower (112) are disposed; a personal protective module (120); and a hose (130) air-tightly connected between the blower unit (110) and the personal protective module (120), when the electric blower (112) is being operated, airflow is generated to be filtered by the filter and flow though the hose (130) to the personal protective module (120), wherein the positive pressure type respiratory protective apparatus (300, 400) also comprises a detection module (200), outside the housing of the blower unit, the detection module (200) is disposed at a connection between the hose (130) and the blower unit (110) or at a connection between the hose (130) and the personal protective module (120), the detection module comprises a MEMS flow sensor (210) configured to detect airflow flowing through the hose (130), and the operating power of the electric blower (112) can be regulated linearly depending on the detected airflow.

Description

Positive Pressure Type Respiratory Protective Apparatus FIELD
The present disclosure generally relates to a positive pressure type respiratory protective apparatus, especially a positive pressure type portable respiratory protective apparatus which can be worn by a user.
BACKGROUND
In order to safely work in sites surrounded with or full of dusts, particulates, harmful gases, or even in sites with potential virus such as COVID-19, a user need be equipped with a respiratory protective apparatus such that he or she can breathe safe and clean air in the sites. For this purpose, the respiratory protective apparatus can comprise a blower unit capable of being worn on the user's waist, and a protective suit and/or a respiratory mask and/or a helmet capable of being worn by the user, wherein an airtight hose is connected between the blower unit and the protective suit and/or the respiratory mask and/or the helmet. An air filter and a blower are provided in the blower unit such that when the blower is energized, ambient air can be sucked into the blower unit by the blower and filtered by the air filter. Thereafter, the filtered air can be conveyed though the airtight hose into the protective suit and/or the respiratory mask and/or the helmet. Because the filtered air output by the blower unit has a positive pressure, the respiratory protective apparatus sometimes can be called as a positive pressure type respiratory protective apparatus.
The blower unit of the positive pressure type respiratory protective apparatus is usually switchable between several pre-defined levels (such as two or three air velocity adjustment levels) , such that the filtered air can be output by the blower unit via the airtight hose at different air velocities as required. In the prior art, in order to ensure that a sufficient volume of the filtered air can be output via the airtight hose when the blower unit is at a given level, the blower unit before leaving the factory will be pre-calibrated such that activation currents used for operation of the blower of the blower unit at different levels of the blower unit can correspond to positive pressure volumes of air output by the blower unit at the respective levels. In this pre-calibrating manner, it is usually required to block a free open end of the airtight hose to a respective extent so as to simulate a state where the protective suit and/or the respiratory mask and/or the helmet is actually worn by a user, and at the same time to measure different activation currents supplied to the blower at the respective levels, and record them as data and/or fit the data into a curve such that the data and/or the fitted curve can be stored in an electrical control unit of the blower unit. Therefore, during on-site operation of the blower unit, the data can be invoked at the respective levels of the blower unit such that the blower can work correspondingly.
However, the pre-calibrating manner according to the prior art is very labor-consuming. Even ifthe blower unit can be pre-calibrated, subsequent operation of the blower unit can be affected by factors such as service temperature variation, blower aging, airflow multipath. Therefore, it is very  difficult to pre-calibrate a blower unit having three or more levels such that airflow oscillation negatively affecting user experience will occur because less levels can be available to adjust the rate of airflow discharged by the blower. Furthermore, the pre-calibrating manner according to the prior art cannot guarantee parameter consistency for batch products.
SUMMARY
In order to solve the above problems, the present disclosure aims at propose an improved positive pressure type respiratory protective apparatus such that the rate of airflow discharged by a blower unit of the apparatus is controllable simply, high precisely, and in such a manner that the control of the blower unit is less disturbed by environmental factors, especially airflow discharged by a blower unit of the apparatus can be continuously controlled in a closed-loop mode.
According to one aspect of the present disclosure, a positive pressure type respiratory protective apparatus is provided, comprising:
a blower unit configured to be worn and include a housing in which a filter and an electric blower are disposed;
a personal protective module; and
a hose air-tightly connected between the blower unit and the personal protective module, when the electric blower is being operated, airflow is generated to be filtered by the filter and flow though the hose to the personal protective module, wherein
the positive pressure type respiratory protective apparatus also comprises a detection module, outside the housing of the blower unit, the detection module is disposed at a connection between the hose and the blower unit or at a connection between the hose and the personal protective module, the detection module comprises a MEMS flow sensor configured to detect airflow flowing through the hose, and the operating power of the electric blower can be regulated linearly depending on the detected airflow.
In an embodiment, the detection module is disposed on an outer side of the hose.
In an embodiment, the detection module is disposed on an inner side of the hose.
In an embodiment, the hose comprises a first joint configured to be releasably connected to the housing of the blower unit and a second joint configured to be releasably connected to the personal protective module, and the detection module is disposed in the first or second joint.
In an embodiment, the hose comprises a first joint configured to be releasably connected to the housing of the blower unit and a second joint configured to be releasably connected to the personal protective module, and the detection module is disposed in the second joint.
In an embodiment, the personal protective module comprises a protective suit configured to be worn by a user and be filled with gas, a protective mask configured to be worn on the user's face, and/or a helmet configured to be worn on the user's head.
In an embodiment, when it is desired to supply the personal protective module through the hose  with filtered air at a set value of airflow, the MEMS flow sensor is configured to periodically detect the airflow to obtain a detected value, the detected value is compared with the set value such that a motor speed of the electric blower can be increased or reduced correspondingly to ensure that the detected value is equal to or approaches the set value.
In an embodiment, the detection module also comprises a MEMS temperature sensor and/or a MEMS humidity sensor and/or a MEMS fluid pressure sensor, when the airflow is detected, results detected by the MEMS flow sensor and the MEMS temperature sensor and/or the MEMS humidity sensor and/or the MEMS fluid pressure sensor are provided as input of a pre-defined transfer function whose output is as the detected value.
In an embodiment, when the motor speed of the electric blower is regulated depending on the compared result between the detected value and the set value, the motor speed of the electric blower is increased or reduced such that the detected value of airflow is changed at a minimum interval of 1 SLPM.
In an embodiment, after it is desired to supply the personal protective module through the hose with the filtered air at the set value of airflow, the detection module does not detect the airflow until a given time interval has passed.
Using the technological means according to the present disclosure, pre-calibration according to the prior art can be dispensed with and parameter consistency for batch apparatuses can be still guaranteed. Besides, the operation of the blower is controllable in a closed-loop feedback manner such that a desired airflow rate setting is achievable precisely to improve user experience.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other aspects of the present disclosure will be well understood by the following description in combination of the attached drawings. Although those drawings might be given in different ratios for clarity purpose, this cannot be deemed to affect understanding to the present disclosure. In the drawings,
Fig. 1 is a system block diagram schematically illustrating a conventional positive pressure type respiratory protective apparatus;
Fig. 2 is a system block diagram schematically illustrating a detection module according to an embodiment of the present disclosure which can be adopted in the positive pressure type respiratory protective apparatus;
Fig. 3 is a system block diagram schematically illustrating a positive pressure type respiratory protective apparatus according to an embodiment of the present disclosure;
Fig. 4 is a system block diagram schematically illustrating a positive pressure type respiratory protective apparatus according to another embodiment of the present disclosure;
Fig. 5 is a flow chart schematically illustrating a control method according to an embodiment of the present disclosure;
Fig. 6A is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus according to the present disclosure, in which a personal protective module of the apparatus is embodied as a helmet;
Fig. 6B is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus according to the present disclosure, in which the personal protective module of the apparatus is embodied as a protective mask; and
Fig. 6C is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus according to the present disclosure, in which in which the personal protective module of the apparatus is embodied as a protective suit.
EMBODIMENTS
In the drawings, those features configured similarly or having a similar function are represented by the same reference numerals respectively.
Fig. 1 is a system block diagram schematically illustrating a conventional positive pressure type respiratory protective apparatus 100 according to the prior art. The respiratory protective apparatus 100 generally comprises a blower unit 110, a personal protective module 120, and a hose 130 air-tightly connected between the blower unit 110 and the personal protective module 120. For instance, the blower unit 110 can be designed such that it can be worn on a user's waist. For example, the personal protective module 120 may comprise one or more of personal protective means for respiratory use such as a protective suit which can be worn by the user and whose interior can be supplied with air, a protective mask which can be worn on the user's face, a helmet which can be worn on the user's head, or the like. Ambient air can be sucked into a hollow housing of the blower unit 110 when a blower 112 of the blower unit 110 is operating. In the hollow housing of the blower unit 110, the sucked-in air can be filtered by a filter 111 and then supplied via the hose 130 to the personal protective module 120 for the user's breathing.
The filter 111 and the blower 112 are disposed in the housing of the blower unit 120. The filter 111 and the blower 112 can be sequentially arranged in an airflow path 115 formed between an air intake port 113 and an air discharge port 114 of the blower unit 110. It should be understood by a person skilled in the art that the airflow path 115 as shown is given here for illustrative purpose only. In an alternative embodiment, the airflow path can be suitably designed depending on the concrete internal configuration of the housing, for example to be meanderingly routed in the housing. The blower 112 can be energized by a battery (not shown) installed in the housing of the blower unit. Furthermore, the blower unit 110 also comprises a microprocessor control unit 116 and an operation device 117. The microprocessor control unit 116 is electrically connected to the blower 112 and the operation device 117 respectively. For example, the microprocessor control unit 116 comprises an integrated circuit board on which a microprocessor chip and a data storage chip are integrated. Therefore, after receiving inputs from the operation device 117, the microprocessor control unit 116 can send corresponding control instructions to the blower 112. The data storage  chip can be configured to store corresponding programs and/or data such that when they are invoked as desired, the blower 112 can be instructed to work.
The operation device 117 is for example a touchscreen display, a control knob, a button device, or any other suitable manually operative input device. The operation device 117 is configured such that manual operation of a user on the operation device 117 can be converted into a signal which can be received by the microprocessor control unit 116. Moreover, relevant operation parameters of the blower unit 110 such as a motor speed of the blower 112 or the like can be in real time displayed on a display installed on the housing of the blower unit or in real time displayed on the operation device 117 embodied as the touchscreen display.
An air-tight sealing connection feature 140a is releasably provided between the air discharge port 114 of the housing of the blower unit and one connection end of the hose 130, and an air-tight sealing connection feature 140b is also releasably provided between the opposite connection end of the hose 130 and the personal protective module 120. For instance, the air-tight sealing connection feature 140a and/or 140b can comprise a joint provided between the hose 130 and the air discharge port 140 and/or between the hose 130 and the personal protective module 120 in a suitable manner such as snapping-on or screwing connection. Moreover, an accessary such as a gasket used for air-tightness can be equipped for the joint (s) .
Before the conventional positive pressure type respiratory protective apparatus 100 is used, for example before it leaves the factory, the apparatus has to be pre-calibrated such that when the positive pressure type respiratory protective apparatus 100 is being operated, the previously stored programs can be automatically invoked to adjust operation of the blower 112 or the operation of the blower 112 can be adjusted depending on manual inputs from a user (for example on the operation device) . In this case, the intensity of current supplied to the blower 112 can be altered to change the output strength of the blower 112 such that a desired target air mass flow can be discharged by the blower unit 110. For this purpose, it is necessary that there exists a strict one-to-one correspondence relation between the intensity of current supplied to the blower 112 (i.e., activation current intensity) and the desired target air mass flow. That is, it is necessary to precisely calibrate the correspondence relation between the activation current intensity of the blower 112 and the desired target air mass flow for the blower unit 110 of the positive pressure type respiratory protective apparatus 100, as mentioned in the BACKGROUND part of the present disclosure. Such calibration is usually achieved by tests.
Besides the short-comings already mentioned in the BACKGROUND part of the present disclosure, the conventional positive pressure type respiratory protective apparatus 100 is disadvantageous in that the fact that the interior volume of the housing of the blower unit is limited will result in swirls of airflow probably occurring in the airflow path 115 when the blower arranged in the housing is being operated. Therefore, when the pre-calibration according to the prior art is carried out by the tests during which the hose is blocked to different extents, the accuracy of the pre-calibration by the tests may be affected by the probably occurring swirls of airflow themselves or the variations of the  swirls.
Fig. 2 schematically shows a detection module 200 according to an embodiment of the present disclosure. The detection module 200 for example comprises a MEMS (Micro-electromechanical Systems) sensor. The MEMS sensor can comprise a MEMS flow sensor 210, a MEMS temperature sensor 220, a MEMS humidity sensor 230, a MEMS fluid pressure sensor or the like. They are shown non-restrictively. For instance, in a non-restrictive embodiment, the detection module 200 can comprise a shell in or on which the MEMS sensor can be integrated at a suitable position. Furthermore, a battery such as a lithium battery can be provided in the shell. Take the MEMS flow sensor 210 for example. As desired, this MEMS flow sensor 210 can be a thermal flow sensor (such as a thermal conduction flow sensor or a thermal time-of-flight flow sensor) , a mechanical flow sensor, and/or a resonant flow sensor. Depending on current technical developments, the MEMS sensor (or called as a sensor chip) can be manufactured to be very small. For example, it can have a volume of 4 mm (length) *4 mm (width) *3 mm (height) such that it can be readily integrated in an integrated circuit board of the detection module 200. Furthermore, since the MEMS flower sensor 210 has a small power consumption, the lithium battery, when embodied as a well-known lithium battery such as a button battery, integrated in the detection module 200 is sufficient to ensure that the MEMS sensor can work for a desired long term. In an additional embodiment, the detection module 200 can also comprise a wireless communication device which for example can be embodied as a device integrated in the integrated circuit board, such that data acquired by the detection module 200 can be sent outwards wireless or the detection module 200 can receive wireless data from other devices or modules.
The MEMS flow sensor 200 can be embodied as a MEMS flow sensor chip with accuracy of 0.5 SLPM (Standard Liter Per Minute) , such that a detection value of airflow at least with the same accuracy can be acquired by the MEMS flow sensor 200, which will provide the basis for approximately continuous motor speed regulation of the blower later. Here, the “approximately continuous motor speed regulation” means that the airflow can be regulated at a minimum interval of 1 SLPM.
Fig. 3 schematically illustrates a positive pressure type respiratory protective apparatus 300 according to an embodiment of the present disclosure. For simplify, those features shown by Fig. 3 but represented by the same reference numerals shown by Fig. 1 can refer to the relevant description part to Fig. 1. Therefore, the positive pressure type respiratory protective apparatus 300 comprises a blower unit 110, a personal protective module 120, and a hose 130 air-tightly connected between the blower unit 110 and the personal protective module 120. Furthermore, the positive pressure type respiratory protective apparatus 300 comprises the detection module 200. The detection module 200 can be configured to be disposed on an outer side of the hose 130 to detect airflow through the hose 130. Due to physical characteristics of the MEMS flow sensor chip itself, the accuracy of airflow detected by the MEMS flow sensor chip when it is disposed on the outer side of the hose is higher than that when it is disposed on an inner side of the hose. However, when the detection module 200 is disposed on the inner side of the hose, the detection module 200 can be  safely protected to avoid accidental damage caused by an external force. For instance, in the embodiment shown by Fig. 3, the detection module 200 can be disposed on the outer side of the hose 130. It should be understood by a person skilled in the art that in the context of the present disclosure the expression that the detection module is disposed on a feature (such as the hose) can refer to that the detection module can be secured on the feature in any suitable physically connected manner, for example by a suitable fastener such as a clamp, bonding, screwing or the like, such that the detection module 200 can work well. For instance, the detection module 200 can be configured to be arranged at a part of a joint of the hose 130 for connecting the blower unit 110 or the personal protective module 120 or alternatively can be formed as the part of the joint, such that the detection module 200 is arranged outside the housing of the blower unit 110.
In comparison with the case that the detection module 200 is directly arranged in the airflow path 115 within the housing of the blower unit 110, arranging the detection module 200 outside the housing of the blower unit 110 can ensure that the accuracy of airflow detected by the MEMS flow sensor 210 is minimally (or even prevented from being) affected by variation of irregular swirls of airflow occurring in the housing when the blower of the blower unit 110 is being operated. A person skilled in the art, when designing the blower unit, usually thought that the detection device such as the sensor is disposed within the housing of the blower unit only. He/she usually neglects that the variation of irregular swirls of airflow occurring in the housing when the blower of the blower unit 110 is being operated will affect the accuracy of airflow as detected. Therefore, the present disclosure aims to solve this problem neglected by designers in the prior art such that the motor speed regulation of the blower can be carried out more preciously.
It should be appreciated by a person skilled in the art that the detection module 200 can be disposed at any suitable position between two opposite joints of the hose 130.
Furthermore, in the embodiment shown by Fig. 3, the detection module 200 can be configured to be wire or wireless data communication with the blower unit 110, especially its microprocessor control unit 116. For instance, in the case of wire data communication, a conductor cable configured to achieve data communication between the detection module 200 and the blower unit 110, especially its microprocessor control unit 116 can be disposed on an outer surface (i.e., the outer side) of the hose 130 and protected by a guard band wrapped around the same. In an alternative embodiment, the conductor cable can be attached on an inner surface (i.e., the inner side) of the hose 130, for example secured there by a suitable clamp, an adhesive or the like, as soon as the filtered air can smoothly (or without being affected by them) flow through the hose 130. Even in an alternative embodiment, the conductor cable can be embedded in the wall of the hose 130 as its part. In the case of wire data communication, the detection module 200 and the microprocessor control unit 116 can be designed such that data can be transmitted by the conductor cable therebetween via any suitable communication protocol such as UART, 12C or the like.
In the case of wireless data communication between the detection module 200 and the blower unit 110, especially its microprocessor control unit 116, a wireless communication unit can be integrated  in the integrated circuit board of the blower unit 110, especially its microprocessor control unit 116, such that it can achieve data transmission to or data reception from a wireless communication unit of the detection module 200. For instance, in this manner, various data acquired by the detection module 200 can be transmitted to the microprocessor control unit 116 or the detection module 200 can receive instructions from the microprocessor control unit 116. In the case of wireless data communication, the detection module 200 and the microprocessor control unit 116 can be designed such that data can be transmitted therebetween via any suitable communication protocol such as BLUEBOOTH, ZigBee, wireless internet or the like.
Fig 4 schematically illustrates a positive pressure type respiratory protective apparatus 400 according to another embodiment of the present disclosure. For simplify, those features shown by Fig. 4 but represented by the same reference numerals shown by Fig. 1 can refer to the relevant description part to Fig. 1. As shown, the positive pressure type respiratory protective apparatus 400 comprises a blower unit 110, a personal protective module 120, and a hose 130 air-tightly connected between the blower unit 110 and the personal protective module 120. Furthermore, the positive pressure type respiratory protective apparatus 400 also comprises the detection module 200. The detection module 200 can be configured such that it is disposed on the inner side of the hose 130 to detect airflow flowing through the hose 130. In a preferred embodiment, the detection module 200 is disposed in the hose at a position as far as possible away from a joint of the hose 130 connected to the blower unit 110. In this way, the detected results can be prevented from being affected by swirls of airflow occurring in the airflow path 115 within the housing of the blower unit when the blower of the blower unit 110 is being operated.
Fig. 6A is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus 300 or 400, in which the personal protective module 120 is embodied as a helmet. Fig. 6B is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus 300 or 400, in which the personal protective module 120 is embodied as a protective mask. Fig. 6C is a perspective view schematically illustrating the positive pressure type respiratory protective apparatus 300 or 400, in which in which the personal protective module 120 is embodied as a protective suit.
Fig. 5 schematically illustrates a method according to an embodiment of the present disclosure for controlling the positive pressure type respiratory protective apparatus 300, 400 according to the embodiments or their variants. It should be understood by a person skilled in the art that the method or its steps mentioned below or their variants can be embodied and stored as program (s) in the storage chip of the microprocessor control unit 116, and the program (s) , when desired, can be invoked therefrom and executed.
It is assumed that the positive pressure type respiratory protective apparatus according to the present disclosure is undergoing ex-factory tests (for example, the hose 130 is not connected to the personal protective module 120 but is blocked to different extents at its open end) or is being worn by a user for actual use. First, at Step S10, a desired set value SD of airflow to be supplied can be  input through the operation device 117. For instance, after receiving the desired set value, the microprocessor control unit 116 can send instructions such that the blower 112 can be supplied with power at a pre-calculated current intensity corresponding to the desired set value SD of airflow to be supplied. The pre-calculated current intensity can be chosen from a database which stores current intensity results theoretically (for example, in which case the open end of the hose is not blocked anyway or is not connected to the personal protective module 120) calculated only depending on predefined values of airflow when the blower unit is designed. Moreover, the database or the current intensity results are in advance stored in the storage chip of the microprocessor control unit 116 and then invoked for later use.
Then, at Step S20, the detection module 200 is configured to detect airflow conveyed by the hose 130. As previously or later described in the context of the present disclosure, in the embodiments, the detection module 200 can detect not only the rate or volume of the conveyed airflow but also other parameters such as ambient pressure, air pressure, temperature, humidity or the like. For example, a detected value SM of airflow can be an average value of several detected values of airflow. Now, as the open end of the hose 130 (where its joint will be connected to the personal protective module 120) will be blocked to different extents or the joint of the hose 130 will be connected to the personal protective module 120 such that the entire apparatus will be worn by a user, the detected value SM of airflow might be different than the set value SD of airflow. Therefore, at Step S30, the detected value SM of airflow is compared with the set value SD of airflow. If the difference therebetween or the absolute value of the difference is less than or equal to a pre-given value, the difference will be deemed to be negligible or no difference will be deemed to exist therebetween. Therefore, the comparison result of Step S30 can be output as Y (Yes) . Ifthe difference between the detected value SM of airflow and the set value SD of airflow or the absolute value of the difference is greater than the pre-given value, it is determined that the difference therebetween is significant and thus not negligible. In this case, the comparison result of Step S30 can be output as N (No) .
When the comparison result of Step S30 is N, the method goes to Step S40. At Step S40, the current intensity of the blower 112 is regulated correspondingly depending on the difference between the detected value SM of airflow and the set value SD of airflow. For instance, if the difference is positive in value, the current intensity of the blower 112 can be reduced respectively; or if the difference is negative in value, the current intensity of the blower 112 can be increased respectively. Different than the case of the prior art that the blower can be regulated by switching its levels, the operating power of or the current intensity of the blower 112 according to the present disclosure can be regulated in a one-to-one correspondence relationship with the detected value SM of airflow or with the difference between the detected value SM of airflow and the set value SD of airflow. Here, the one-to-one correspondence relationship means that the relationship between the change of the operating power or the current intensity of the blower 112 and the change of the detected value SM of airflow or the change of the difference between the detected value SM of airflow and the set value SD of airflow is linear. That is to say, the operating power or the current intensity of the electric  blower 112 can be regulated linearly depending on the detected value of airflow. In the context of the present disclosure, the details of the linear relationship are not necessary to be involved. However, in comparison with the regulation manner of switching the levels of the blower according to the prior art, the linear regulation of the blower's operating power or current intensity depending on the detected value of airflow will not require pre-calibration of the levels and thus will prevent a user from feeling discomfort caused by switching the levels.
Then, the method goes to Step S20, where the detection module 200 continues to detect the airflow conveyed by the hose 130. At Step S40, the current intensity of the blower 112 is regulated by a small margin which is sufficient to ensure that the airflow or the volume of airflow can be regulated at a minimum interval of 1 SLPM. As in the embodiments of the present disclosure the MEMS flow sensor 210 can be embodied as a MEMS flow sensor chip with accuracy of 0.5 SLPM, the detection module 200 is able to detect the change of airflow with sufficient accuracy, to provide sufficient basis for later feedback control, even if the airflow or the volume of airflow is regulated at the interval of 1 SLPM.
If the result of Step S30 is Y, the method returns to Step 20, where the detection module 200 continues to detect the airflow conveyed by the hose 130. It can be seen from the already explained steps of the method that the blower unit of the apparatus according to the present disclosure is controllable in a closed-loop feedback manner and thus it will be not necessary to pre-calibrate the blower unit like does in the prior art. Moreover, according to the present disclosure, airflow discharged by the blower unit can be adjusted depending on the real time detected results in a proximately continuous manner such that the desired set value of airflow can be reached with higher precision and maintained dynamically.
In an embodiment, before the method goes first to Step S20 after Step S10, it is possible to wait for a time interval such as from 1 second to 1 minute. That is, after Step S10, the method does not go first to Step S20 until the time interval has passed. This is advantageous in that filtered air can more stably flow in the hose 130 such that the detected results are more stable.
In a preferred embodiment, besides the airflow, the detection module 200 can be configured to detect air pressure, temperature, humidity or the like. Then, the detected parameters (or values) can be input into a pre-designed transfer function. Thereafter, depending on the input parameters (or values) , the transfer function will output a value as the current detected value SM of actual airflow. This transfer function is designed to consider effects of the air pressure, temperature, and humidity on the detected value, and thus the detected value can more truly reflect the change of airflow flowing through the hose 130 or directly felt by a user. The transfer function can be experientially designed or can be designed through multi-tests in advance. For instance, the transfer function can be designed as a computer program or a part of the computer program stored in the storage chip of the microprocessor control unit 116 and later invoked therefrom as desired.
In an optional embodiment, the method can be designed such that when the result of Step S30 is Y, the current intensity of the blower 112 together with the corresponding set value can be stored. In  this way, when a user inputs the same desired set value SD of airflow, corresponding to the stored current intensity, by the operation device 117, the stored current intensity can be directly invoked at Step S20 to be used to control the blower 112.
Using the apparatus and the method for controlling the same according to the embodiments of the present disclosure, pre-calibration for batch products according to the prior art will be discarded and parameter consistency for batch products can be still guaranteed. Furthermore, because the operation of the blower can be controlled in a closed-loop feedback manner, the desired set value of airflow can be precisely reached and airflow oscillation can be prevented during regulation of the airflow, to improve user experience.
Although some specific embodiments of the present disclosure have been described here, they are given for illustrative purposes only and cannot be deemed to constrain the claim scope of the present disclosure in any way. Furthermore, it should be understood by a person skilled in the art that various embodiments described here can be combined with each other. Without departing from the spirit and scope of the present disclosure, various alternations, modifications, and replacements can be thought out.

Claims (10)

  1. A positive pressure type respiratory protective apparatus (300, 400) , comprising:
    a blower unit (110) configured to be worn and include a housing in which a filter and an electric blower (112) are disposed;
    a personal protective module (120) ; and
    a hose (130) air-tightly connected between the blower unit (110) and the personal protective module (120) , when the electric blower (112) is being operated, airflow is generated to be filtered by the filter and flow though the hose (130) to the personal protective module (120) , wherein
    the positive pressure type respiratory protective apparatus (300, 400) also comprises a detection module (200) , outside the housing of the blower unit, the detection module (200) is disposed at a connection between the hose (130) and the blower unit (110) or at a connection between the hose (130) and the personal protective module (120) , the detection module comprises a MEMS flow sensor (210) configured to detect airflow flowing through the hose (130) , and the operating power of the electric blower (112) can be regulated linearly depending on the detected airflow.
  2. The positive pressure type respiratory protective apparatus (300, 400) as recited in claim 1, wherein the detection module (200) is disposed on an outer side of the hose (130) .
  3. The positive pressure type respiratory protective apparatus (300, 400) as recited in claim 1, wherein the detection module (200) is disposed on an inner side of the hose (130) .
  4. The positive pressure type respiratory protective apparatus (300, 400) as recited in claim 2, wherein the hose (130) comprises a first joint configured to be releasably connected to the housing of the blower unit (110) and a second joint configured to be releasably connected to the personal protective module (120) , and the detection module (200) is disposed in the first or second joint.
  5. The positive pressure type respiratory protective apparatus (300, 400) as recited in claim 3, wherein the hose (130) comprises a first joint configured to be releasably connected to the housing of the blower unit (110) and a second joint configured to be releasably connected to the personal protective module (120) , and the detection module (200) is disposed in the second joint.
  6. The positive pressure type respiratory protective apparatus (300, 400) as recited in any one of claims 1 to 5, wherein the personal protective module (120) comprises a protective suit configured to be worn by a user and be filled with gas, a protective mask configured to be worn on the user’s face, and/or a helmet configured to be worn on the user’s head.
  7. The positive pressure type respiratory protective apparatus (300, 400) as recited in claim 6, wherein when it is desired to supply the personal protective module (120) through the hose (130) with filtered air at a set value (SD) of airflow, the MEMS flow sensor (210) is configured to periodically detect the airflow to obtain a detected value (SM) , the detected value (SM) is compared with the set value (SD) such that a motor speed of the electric blower (112) can be increased or reduced correspondingly to ensure that the detected value (SM) is equal to or approaches the set value (SD) .
  8. The positive pressure type respiratory protective apparatus (300, 400) as recited in claim 7, wherein the detection module (200) also comprises a MEMS temperature sensor (220) and/or a MEMS humidity sensor (230) and/or a MEMS fluid pressure sensor, when the airflow is detected, results detected by the MEMS flow sensor (210) and the MEMS temperature sensor (220) and/or the MEMS humidity sensor (230) and/or the MEMS fluid pressure sensor are provided as input of a pre-defined transfer function whose output is as the detected value (SM) .
  9. The positive pressure type respiratory protective apparatus (300, 400) as recited in claim 8, wherein when the motor speed of the electric blower (112) is regulated depending on the compared result between the detected value (SM) and the set value (SD) , the motor speed of the electric blower (112) is increased or reduced such that the detected value of airflow is changed at a minimum interval of 1 SLPM.
  10. The positive pressure type respiratory protective apparatus (300, 400) as recited in claim 9, wherein after it is desired to supply the personal protective module (120) through the hose (130) with the filtered air at the set value (SD) of airflow, the detection module (200) does not detect the airflow until a given time interval has passed.
PCT/CN2023/113143 2022-08-16 2023-08-15 Positive pressure type respiratory protective apparatus WO2024037543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210978418.4 2022-08-16
CN202210978418.4A CN115337564A (en) 2022-08-16 2022-08-16 Positive pressure type respiratory protection equipment

Publications (1)

Publication Number Publication Date
WO2024037543A1 true WO2024037543A1 (en) 2024-02-22

Family

ID=83951404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113143 WO2024037543A1 (en) 2022-08-16 2023-08-15 Positive pressure type respiratory protective apparatus

Country Status (2)

Country Link
CN (1) CN115337564A (en)
WO (1) WO2024037543A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337564A (en) * 2022-08-16 2022-11-15 泰克曼(南京)电子有限公司 Positive pressure type respiratory protection equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140311490A1 (en) * 2013-04-20 2014-10-23 Dräger Safety AG & Co. KGaA Blower filter device
CN110719795A (en) * 2017-04-14 2020-01-21 斐雪派克医疗保健有限公司 Flow path sensing for flow therapy devices
CN111298314A (en) * 2020-03-20 2020-06-19 中山市赛恩电器科技有限公司 Respiratory protection device and protection wearing system
CN111345525A (en) * 2020-05-25 2020-06-30 南京华翼电子科技有限公司 Protective clothing electric control system based on microcomputer and sensor monitoring and circuit control method
CN213313018U (en) * 2020-05-21 2021-06-01 湖北华强科技股份有限公司 Breathing following system of gas mask
JP2021192717A (en) * 2020-06-08 2021-12-23 アオク トゥーリング リミティド Super mask artificial respirator system having face mask and sub-peak inhalation rate blower
US20210405008A1 (en) * 2020-06-29 2021-12-30 Dräger Safety AG & Co. KGaA Monitoring system
CN114768135A (en) * 2022-03-24 2022-07-22 湖北华强科技股份有限公司 Breathing following type air supply control system and method for gas mask
CN115337564A (en) * 2022-08-16 2022-11-15 泰克曼(南京)电子有限公司 Positive pressure type respiratory protection equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308343B2 (en) * 2008-02-19 2016-04-12 Circadiance, Llc Respiratory mask with disposable cloth body
CN101822877B (en) * 2010-06-01 2012-06-13 中国人民解放军军事医学科学院卫生装备研究所 Dynamic air supply system and control system thereof
CN106954900A (en) * 2017-04-28 2017-07-18 岳乃余 A kind of multi-functional Prevention of Infectious Diseases device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140311490A1 (en) * 2013-04-20 2014-10-23 Dräger Safety AG & Co. KGaA Blower filter device
CN110719795A (en) * 2017-04-14 2020-01-21 斐雪派克医疗保健有限公司 Flow path sensing for flow therapy devices
CN111298314A (en) * 2020-03-20 2020-06-19 中山市赛恩电器科技有限公司 Respiratory protection device and protection wearing system
CN213313018U (en) * 2020-05-21 2021-06-01 湖北华强科技股份有限公司 Breathing following system of gas mask
CN111345525A (en) * 2020-05-25 2020-06-30 南京华翼电子科技有限公司 Protective clothing electric control system based on microcomputer and sensor monitoring and circuit control method
JP2021192717A (en) * 2020-06-08 2021-12-23 アオク トゥーリング リミティド Super mask artificial respirator system having face mask and sub-peak inhalation rate blower
US20210405008A1 (en) * 2020-06-29 2021-12-30 Dräger Safety AG & Co. KGaA Monitoring system
CN114768135A (en) * 2022-03-24 2022-07-22 湖北华强科技股份有限公司 Breathing following type air supply control system and method for gas mask
CN115337564A (en) * 2022-08-16 2022-11-15 泰克曼(南京)电子有限公司 Positive pressure type respiratory protection equipment

Also Published As

Publication number Publication date
CN115337564A (en) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2024037543A1 (en) Positive pressure type respiratory protective apparatus
JP4757432B2 (en) Method and system for calibrating air flow in a respiratory system
CN209014815U (en) The head-mounted display worn by user
JP2023071885A5 (en)
KR101326936B1 (en) Apparatus for Deilvery of Pressurised Gas
US20080127979A1 (en) Blow Filter Device
US8070423B2 (en) Fan air flow measurement system
CA2466131A1 (en) Programmable thermostat incorporating air quality protection
US20070215155A1 (en) Ventilator with memory for operating data
KR102022181B1 (en) Electric dustproof mask with differential pressure sensor
AU2001273130A1 (en) A method and system of calibrating air flow in a respirator system
KR20180062628A (en) Dust measuring device
US20170211438A1 (en) Cpap device
JP6449151B2 (en) Exhalation measuring apparatus and control method thereof
EP0786265A1 (en) Breath synchronization control unit for gas feeder
KR102545382B1 (en) Portable air cleaner
US8439031B1 (en) Patient treatment system with a patient interface mounted control
KR20040060126A (en) Portable air flow meter for measuring the amount of air to be flowed out
US20170203064A1 (en) Cpap device
CN111060433A (en) Mask tight-contact degree determination device
US20210205751A1 (en) Remote control system for gas detection and purification
JPH09101827A (en) Air pressure regulator
KR200309475Y1 (en) Air inlet adapter for air flow meter for measuring the amount of air to be flowed out
CN208928494U (en) Band heating spray valve control
JP2019041957A (en) Mask adhesion determination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854444

Country of ref document: EP

Kind code of ref document: A1