WO2024037313A1 - 一种多点测温装置、气溶胶生成装置以及温度控制方法 - Google Patents

一种多点测温装置、气溶胶生成装置以及温度控制方法 Download PDF

Info

Publication number
WO2024037313A1
WO2024037313A1 PCT/CN2023/109938 CN2023109938W WO2024037313A1 WO 2024037313 A1 WO2024037313 A1 WO 2024037313A1 CN 2023109938 W CN2023109938 W CN 2023109938W WO 2024037313 A1 WO2024037313 A1 WO 2024037313A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reference voltage
temperature
amplification module
thermocouple
Prior art date
Application number
PCT/CN2023/109938
Other languages
English (en)
French (fr)
Inventor
李新军
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2024037313A1 publication Critical patent/WO2024037313A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/021Particular circuit arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present application relates to the field of temperature measurement, and in particular to a multi-point temperature measurement device, an aerosol generation device and a temperature control method.
  • the heating element In e-cigarette products, the heating element is generally heated and the temperature of the heating element is transferred to the cigarette to generate aerosol.
  • the temperature difference at different positions of the heating element is large.
  • the temperature at different points on the heating element can be measured by thermocouple sensors, so that the heating element can be heated in multiple stages and controlled in multiple stages based on the measured temperature.
  • thermocouple measurement circuits will affect and interfere with each other, resulting in inaccurate measurement results and the inability to achieve accurate temperature measurement at multiple locations on the heating element.
  • the embodiments of the present application are intended to provide a multi-point temperature measurement device, an aerosol generation device and a temperature control method, which can accurately measure the temperature of different points on the conductor under test.
  • a multi-point temperature measurement device which includes: at least two thermocouples, at least two signal processing circuits and a processor;
  • thermocouples are arranged at different positions on the conductor to be measured, and the thermocouples correspond to each position point on the conductor to be measured, and the thermocouples correspond to the signal processing circuit one to one. correspond;
  • thermocouple includes a first electrode and a second electrode, the first electrode is connected to the corresponding first input end of the signal processing circuit, and the second electrode is connected to the corresponding third input end of the signal processing circuit. Two input terminals are connected, and the output terminal of the signal processing circuit is connected with the processor;
  • thermocouple is used to detect the temperature of a corresponding position on the measured conductor, output a first potential signal through the first electrode and output a second potential signal through the second electrode, the first potential signal
  • the signal and the second potential signal are processed by the signal processing circuit to obtain a first voltage signal.
  • the temperature of the corresponding position of the measured conductor is obtained;
  • thermocouples where no current flows between any two of the thermocouples.
  • the at least two thermocouples include a first thermocouple and a second thermocouple, and no closure is formed between the first electrode of the first thermocouple and the second electrode of the second thermocouple. A closed loop is not formed between the second electrode of the first thermocouple and the first electrode of the second thermocouple.
  • the signal processing circuit includes a first signal amplification module and a first reference voltage module
  • the input end of the first reference voltage module is connected to the first reference voltage signal, and the output end of the first reference voltage module is connected to the first input end of the first signal amplification module or the first signal amplification module.
  • the second input terminal is connected, and the first reference voltage module is used to provide a first reference voltage signal;
  • the first input end of the first signal amplification module is connected to the first electrode, the second input end of the first signal amplification module is connected to the second electrode, and the output end of the first signal amplification module Connected to the processor, the first signal amplification module is used to amplify the difference between the first potential signal and the second potential signal to obtain a first amplified signal, so that the processor can The first amplified signal is processed to obtain the temperature of the corresponding position of the measured conductor.
  • a first buffer is also included;
  • the input end of the first buffer is connected to the output end of the first reference voltage module, and the output end of the first buffer is connected to the first input end of the first signal amplification module or the first signal
  • the second input end of the amplification module is connected, and the first buffer is used to isolate the first reference voltage module and the first signal amplification module.
  • the signal processing circuit further includes a second signal amplification module
  • the second signal amplification module is connected in series between the output end of the first signal amplification module and the processor, and the first input end of the second signal amplification module is connected to the first input end of the first signal amplification module.
  • the output end is connected, the second input end of the second signal amplification module is used to access the first reference voltage signal, and the output end of the second signal amplification module is connected to the connected to the processor, the second signal amplification module is used to amplify the difference between the first amplified signal and the first reference voltage signal to obtain a second amplified signal, so that the processor can
  • the second amplified signal is processed to obtain the temperature of the corresponding position.
  • the signal processing circuit further includes a second reference voltage module
  • the input end of the second reference voltage module is connected to the second reference voltage signal, and the output end of the second reference voltage module is connected to the first input end of the first signal amplification module or the first signal amplification module.
  • the second input terminal is connected, and the second reference voltage module is used to provide the second reference voltage signal;
  • the output end of the first reference voltage module and the output end of the second reference voltage module are respectively connected to different input ends of the first signal amplification module.
  • a second buffer is also included.
  • the input end of the second buffer is connected to the output end of the second reference voltage module, and the output end of the second buffer is connected to the first input end of the first signal amplification module or the first signal
  • the second input end of the amplification module is connected, and the second buffer is used to isolate the second reference voltage module from the first signal amplification module.
  • the second reference voltage signal is an adjustable voltage signal.
  • an aerosol generating device which includes a heating element for heating an aerosol-generating article to generate an aerosol, and a power source for providing power to the heating element.
  • sources and controllers, and multi-point temperature measurement devices as described above;
  • the heating element is a conductor, and the heating element includes a plurality of heating zones;
  • thermocouples are disposed at different heating zones of the heating element.
  • the controller is configured to adjust the power provided by the power source to at least one of the heating zones according to the temperature of each of the heating zones.
  • the heating element is a resistance heating element, a semiconductor, a resistance film heater or an infrared film heater.
  • inventions of the present application provide a temperature control method applied to an aerosol generating device.
  • the aerosol generating device includes a heating element for heating an aerosol generating article to generate an aerosol, and a heating element for heating the aerosol generating article to generate an aerosol.
  • the power output of the heating element is adjusted according to the temperature of the first location point and the temperature of the second location point.
  • determining the temperature of the first location point and the temperature of the second location point respectively based on the first sampling signal and the second sampling signal includes:
  • the temperature of the first position point and the temperature of the second position point are respectively determined according to the third amplified signal and the fourth amplified signal.
  • determining the temperature of the first position point and the temperature of the second position point according to the third amplified signal and the fourth amplified signal respectively includes:
  • the temperature of the first position point and the temperature of the second position point are respectively determined according to the fifth amplified signal and the sixth amplified signal.
  • determining the temperature of the first position point and the temperature of the second position point respectively according to the first sampling signal and the second sampling signal further includes:
  • the temperature of the first position point and the temperature of the second position point are respectively determined.
  • the multi-point temperature measurement device includes at least two thermocouples and At least two signal processing circuits and processors, wherein at least two thermocouples are arranged at different positions on the conductor under test, the thermocouples correspond to the signal processing circuit one-to-one, and the at least two thermocouples are used to detect the conductor under test temperatures at different locations.
  • Each thermocouple outputs a first potential signal and a second potential signal, which are then processed by a corresponding signal processing circuit to obtain a corresponding first voltage signal. After the first voltage signal is processed by the processor, the temperature of the corresponding position of the measured conductor is obtained. At the same time, no current flows between any two thermocouples, and any two thermocouples do not affect each other.
  • the multi-point temperature measurement device can accurately measure the temperature at different positions on the conductor being measured.
  • Figure 1a is a schematic structural diagram of one of the aerosol generating devices provided by the embodiment of the present application.
  • Figure 1b is a schematic circuit structure diagram of one of the aerosol generating devices provided by the embodiment of the present application.
  • Figure 2 is a schematic structural diagram of one of the multi-point temperature measurement devices provided by the embodiment of the present application.
  • Figure 3 is a schematic structural diagram of one of the multi-point temperature measurement devices provided by the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of one of the multi-point temperature measurement devices provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of one of the multi-point temperature measurement devices provided by the embodiment of the present application.
  • Figure 6 is a schematic circuit structure diagram of one of the multi-point temperature measurement devices provided by the embodiment of the present application.
  • Figure 7 is a schematic circuit structure diagram of one of the multi-point temperature measurement devices provided by the embodiment of the present application.
  • Figure 8 is a schematic circuit structure diagram of one of the multi-point temperature measurement devices provided by the embodiment of the present application.
  • FIG. 9 is a schematic flow chart of one of the temperature control methods provided by the embodiment of the present application.
  • Figure 10 is a schematic flow chart of step S93 in Figure 9;
  • FIG 11 is a schematic flowchart of step S933 in Figure 10;
  • FIG. 12 is another schematic flowchart of step S93 in FIG. 9 .
  • aerosol-generating article refers to a material that provides volatile components in the form of an aerosol when heated.
  • the aerosol-generating article may include a tobacco component, wherein the tobacco component is any material that includes tobacco or derivatives thereof.
  • the tobacco component may include one or more of ground tobacco, tobacco fiber, shredded tobacco, pressed tobacco, tobacco stems, tobacco flakes and/or tobacco extract.
  • aerosol-generating articles may include tobacco substitutes.
  • Aerosol-generating device means any device that generates aerosols from an aerosol-generating article when in use. any equipment.
  • a device which heats an aerosol-generating article to form an inhalable aerosol without burning or igniting the aerosol-generating article.
  • Such devices are sometimes described as “heat not burn” devices or “tobacco heating products” or “tobacco heating devices” or similar.
  • the aerosol-generating device provides aerosol or vapor by heating a solid form of an aerosol-generating article.
  • the aerosol generating device is a tobacco heating product.
  • Figure 1a is a schematic structural diagram of an aerosol generating device provided by an embodiment of the present application.
  • Figure 1b is a schematic circuit structure diagram of an aerosol generating device provided by an embodiment of the present application.
  • the aerosol generation device 1 includes a heating element 3, a power source 2, a controller 7 and a multi-point temperature measurement device 8.
  • the heating element 3 is used to heat the aerosol-generating product 5 to generate aerosol.
  • the aerosol-generating product 5 can be stored in the heating chamber 4 so that the aerosol-generating product 5 can be heated in the heating chamber 4 .
  • the heating chamber 4 may be positioned close to the heating body 3 so that the thermal energy from the heating body 3 heats the aerosol-generating article 5 therein to volatilize the aerosol without burning the aerosol-generating article 5 .
  • the heating body 3 may include a generally cylindrical elongated heating body 3, and the heating cavity 4 is located around the circumferential longitudinal surface of the heating body 3. Therefore, the heating chamber 4 and the aerosol-generating article 5 comprise coaxial layers surrounding the heating body 3 .
  • the heating body 3 and the heating cavity 4 may be selectively used.
  • the heating element 3 may optionally include a plurality of individual heating zones 6 .
  • the heating zones 6 may be operationally independent of each other such that different zones 6 may be activated for heating at different times. Aerosol-generating articles5.
  • the heating zone 6 can be arranged in the heating body 3 in any geometric arrangement. However, in the illustrated example, the heating zones 6 are geometrically arranged in the heating body 3 such that different ones of the heating zones 6 are arranged to predominantly and independently heat different ones of the aerosol-generating article 5 area.
  • the heating element 3 may be a resistance heating element, which means that when a current is applied to the heating element 3, the resistance in the heating element 3 converts electrical energy into thermal energy, and the thermal energy heats the aerosol-generating product 5.
  • the heating element 3 may be in the form of resistance wire, mesh, coil and/or multiple wires.
  • the heating element 3 may be a film heater, such as a resistive film heater or an infrared film heater.
  • the heating element 3 may also be a conductor or a semiconductor, which may include metal or metal alloy.
  • Metals are excellent conductors of electrical and thermal energy. Suitable metals include, but are not limited to, copper, aluminum, platinum, tungsten, gold, silver, and titanium. Suitable metal alloys include, but are not limited to: nichrome and stainless steel.
  • the heating element 3 can also be an electromagnet, and a changing current flows through the electromagnet to generate a changing magnetic field.
  • the changing magnetic field causes one or more eddy currents to be generated inside the heating element 3, so that the heating element 3 is heating.
  • the aerosol generating device 1 also includes a power source 2, which is electrically connected to the heating body 3 and used to provide power to the heating body 3. It may be a power source that provides power to the heating body 3, such as a lithium-ion battery, a nickel battery, or a lithium-ion battery. Batteries, alkaline batteries and/or other batteries, etc., the power source 2 can provide electric energy to the heating element 3 when needed.
  • the power source 2 is also electrically connected to the controller 7 so that the controller 7 can adjust the power output by the power source 2 .
  • the power output by power source 2 can be adjusted by directly setting the power value, and the power output by power source 2 can also be controlled in the form of PWM waves. This application does not do anything about this. What restrictions.
  • the controller 7 can control the temperature of each heating zone 6 in the heating body 3 by adjusting the power output by the power source 2 to at least one heating zone 6 in the heating body 3, thereby controlling the generation of aerosol.
  • the controller may be configured at any suitable location in the aerosol generating device 1 .
  • the controller 7 can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), a microcontroller, an ARM (Acorn RISC Machine), or other Programmed logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of these components.
  • the controller 7 can also be any conventional processor, controller, microcontroller or state machine.
  • the controller 7 may also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in combination with a DSP and/or any other such configuration.
  • the controller 7 can also be the frequency conversion board or the main control board of the washing machine.
  • the aerosol generation device 1 also includes a multi-point temperature measurement device 8, which is used to detect the temperature of different locations on the heating element 3, which can be arranged at any suitable position in the aerosol generating device 1 .
  • the multi-point temperature measuring device 8 includes at least two thermocouples 10. At least two thermocouples 10 are arranged at different positions of the heating element 3.
  • the thermocouples 10 are connected to each position point on the heating element 3 one by one.
  • the thermocouple 10 can be disposed at each heating zone 6 on the heating element 3 , corresponding to each heating zone 6 one-to-one.
  • the thermocouple 10 serves as a temperature sensor and is used to detect the temperature of each position on the heating element 3 . Since the heating element 3 is a conductor that can conduct electricity, when the thermocouple 10 detects the temperature at each position, it is easy to influence each other, and a closed loop is formed between the thermocouples, causing the thermocouple to The detection signal of 10 is interfered by other thermocouples, and the obtained detection signal is inaccurate, which makes the multi-point temperature measuring device 8 inaccurate in detecting the temperature of multiple positions of the heating element 3 .
  • thermocouples which include at least two thermocouples, at least two signal processing circuits and a processor.
  • at least two thermocouples are arranged at different positions on the conductor to be measured.
  • the thermocouples correspond to the signal processing circuit one-to-one.
  • the at least two thermocouples are used to detect the temperatures at different positions on the conductor to be measured.
  • Each thermocouple outputs a first potential signal and a second potential signal, which are then processed by a corresponding signal processing circuit to obtain a corresponding first voltage signal. After the first voltage signal is processed by the processor, the temperature of the corresponding position of the measured conductor is obtained.
  • thermocouples no current flows between any two thermocouples, and any two thermocouples do not affect each other. That is, the first potential signal and the second potential signal obtained by any one thermocouple will not be interfered by other thermocouples. Thus, the temperature detection at different points on the conductor being measured does not affect each other. Therefore, the multi-point temperature measurement device can accurately measure the temperature at different points on the conductor being measured.
  • FIG. 2 is a schematic structural diagram of a multi-point temperature measurement device provided by an embodiment of the present application.
  • the multi-point temperature measurement device 100 is applied to the aerosol generation device 1.
  • the multi-point temperature measurement device 100 includes at least two thermocouples 10 , at least two signal processing circuits 20 and a processor 30 .
  • thermocouples 10 are arranged at different positions on the conductor 200 to be measured, and the thermocouples 10 correspond to each position on the conductor 200 to be measured.
  • the thermocouples 10 and The signal processing circuits 20 correspond one to one.
  • the first thermocouple 10 corresponds to the position point A on the conductor 200 being measured
  • the second thermocouple 10 corresponds to the position point B on the conductor 200 being measured.
  • thermocouple 10 includes a first electrode and a second electrode, the first electrode is connected to the first input end of the corresponding signal processing circuit 20, and the second electrode is connected to the corresponding signal processing circuit 20.
  • the second input terminal of the signal processing circuit 20 is connected, and the output terminal of the signal processing circuit 20 is connected with the processor 30 .
  • the thermocouple 10 is used to detect the temperature of a corresponding position on the conductor 200 to be measured. It outputs a first potential signal through the first electrode and a second potential signal through the second electrode. The first The potential signal and the second potential signal are processed by the signal processing circuit 20 to obtain a first voltage signal. After the first voltage signal is processed by the processor 30 , the temperature of the corresponding position of the measured conductor 200 is obtained. .
  • thermocouples 10 no current flows between any two thermocouples 10 , that is, any two thermocouples 10 do not affect each other.
  • thermocouples include a first thermocouple and a second thermocouple
  • a closed loop is not formed between the first electrode of the first thermocouple and the second electrode of the second thermocouple
  • a closed loop is not formed between the second electrode of the first thermocouple and the first electrode of the second thermocouple.
  • thermocouples 10 can also take many forms. For example, if the first electrode and the second electrode of the thermocouple 10 are not grounded, then it is impossible to It forms a closed loop with other thermocouples 10 through the earth, or a large capacitor is connected between the first electrode of the thermocouple 10 and the ground or other thermocouples 10, and a large capacitor is connected between the second electrode of the thermocouple 10 and the ground or other thermocouples 10.
  • the capacitor uses the DC resistance characteristic of a large capacitor to block the flow of the first potential signal and blocks the flow of the second potential signal, or a large resistance is connected between the first electrode of the thermocouple 10 and the ground or other thermocouples 10.
  • thermocouple 10 a large resistor is connected between the second electrode of the thermocouple 10 and the ground or other thermocouples 10.
  • the large resistor plays a current limiting role to block the flow of the first potential signal and the flow of the second potential signal. It can also be Isolators are provided between the first electrode and other thermocouples 10 , and isolators are also provided between the second electrode and other thermocouples 10 to isolate the signal flow between the first electrode and other thermocouples 10 and to isolate the second electrode.
  • the signal flow between the two electrodes and other thermocouples 10 realizes that there is no current flow between the two thermocouples 10 .
  • the first potential signal and the second potential signal obtained by any thermocouple 10 in the multi-point temperature measurement device 100 will not be interfered by other thermocouples 10, so that different positions on the measured conductor 200 The temperature detections do not affect each other. Therefore, the multi-point temperature measurement device 100 can accurately measure the temperatures at different locations on the conductor 200 to be measured.
  • the signal processing circuit 20 is used to process the first potential signal and the second potential signal of the thermocouple 10 to obtain the first voltage signal, so that the processor 30 can obtain the target signal according to the first voltage signal. Measure the temperature at the corresponding location on the conductor 200. Therefore, the processing of the first potential signal and the second potential signal by the signal processing circuit 20 can also improve the accuracy of temperature detection.
  • the signal processing circuit 20 can amplify the first potential signal and the second potential signal, so that the processor 30 processes the first voltage signal more accurately.
  • the signal processing circuit 20 includes a first signal amplification module 21 and a first Reference voltage module 22.
  • the input terminal of the first reference voltage module 22 is connected to the first reference voltage signal, and the output terminal of the first reference voltage module 22 is connected to the first input terminal of the first signal amplification module 21 or the first signal amplifier module 21 .
  • the second input terminal of a signal amplification module 21 is connected (in the figure, the output terminal of the first reference voltage module 22 is connected to the first input terminal of the first signal amplification module 21 as an example).
  • the first input end of the first signal amplification module 21 is connected to the first electrode, and the second input end of the first signal amplification module 21 is connected to the second electrode.
  • the first signal amplification module 21 The output end is connected to the processor 30 .
  • the first signal amplification module 21 amplifies the difference between the first potential signal and the second potential signal to obtain a first amplified signal, so that the processor 30 processes the first amplified signal.
  • the temperature at the corresponding position of the measured conductor 200 is obtained.
  • the first signal amplification module 21 can be a non-inverting amplifier or a differential amplifier, and the amplification gain of each amplifier can be set as needed. In this embodiment of the present application, if the first signal amplification module 21 is a non-inverting amplifier, the gain of the non-inverting amplifier may be 100. If the first signal amplifying module 21 is a differential amplifier, the gain of the differential amplifier may be 101.
  • the first signal amplification module 21 amplifies the difference between the first potential signal and the second potential signal, so that the processor 30 can process the amplified signal and obtain the temperature of the corresponding position on the measured conductor 200 more accurately.
  • the first reference voltage module 22 provides a first reference voltage signal, which The signal can be loaded on the first input terminal or the second input terminal of the first signal amplification module 21 .
  • the first reference voltage signal provides a bias voltage for the first signal amplification module 21 . If the first signal amplification module 21 has no bias voltage, when the difference between the first potential signal and the second potential signal of the thermocouple 10 is close to 0V or a negative voltage, such as a normal temperature environment or a negative temperature environment, the first signal The output of the amplification module 21 is close to 0, and the output of the first signal amplification module 21 is incorrect and cannot reflect the normal temperature. Therefore, the first reference voltage signal can enable the first signal amplification module 21 to accurately output the first amplified signal even in a normal temperature environment or a negative temperature environment.
  • the first signal amplification module 21 can also be powered by positive and negative dual power supplies, so that the first signal amplification module 21 can accurately output the first signal. Amplify the signal.
  • the first reference voltage module 22 can be obtained through a separate reference voltage source, such as divided voltage by REF3025/3012/431. It can also be obtained by outputting an adjustable voltage signal through the controller 7 or the processor 30, and then dividing the voltage or processing it accordingly.
  • the voltage of the first reference voltage signal can be set as needed. In the embodiment of the present application, its voltage is 1V.
  • the output of the first signal amplification module 21 is A1*Vth+1, where A1 is the amplification gain of the first signal amplification module 21, and Vth is the difference between the first potential signal and the second potential signal.
  • the multi-point temperature measurement device 100 further includes a first buffer 40 .
  • the input end of the first buffer 40 is connected to the output end of the first reference voltage module 22 .
  • the first buffer 40 The output terminal of the amplifier 40 is connected to the first input terminal of the first signal amplification module 21 or the second input terminal of the first signal amplification module 21 .
  • the first buffer 40 is used to connect the first reference voltage module 22 and the first signal No. amplification module 21 performs isolation.
  • the first buffer 40 can be a follower, which has the characteristics of large input impedance and small output impedance.
  • the first buffer 40 is used to isolate the first reference voltage module 22 and the first signal amplification module 21.
  • the amplification factor of the first signal amplification module 21 can be made not affected by the output resistance of the first reference voltage module 22, so that the first reference voltage module 22 can provide an accurate first reference voltage signal for the first signal amplification module 21, that is, Provides precise bias voltage to further improve the accuracy of temperature detection.
  • the first reference voltage signal can enable the first signal amplification module 21 to output a correct first amplification signal in a normal temperature environment or a negative temperature environment, thereby improving the accuracy of temperature detection.
  • the first reference voltage signal will also affect the output of the first signal amplification module 21, so that the first amplified signal contains the first reference voltage signal. Therefore, a two-stage amplification technical solution can be used to eliminate the first reference voltage signal. signal effects.
  • Figure 4 is a schematic structural diagram of a multi-point temperature measurement device provided by an embodiment of the present application. As shown in Figure 4, the difference from the multi-point temperature measurement device 100 in Figure 3 is that The signal processing circuit 20 also includes a second signal amplification module 23 .
  • the second signal amplification module 23 is connected in series between the output end of the first signal amplification module 21 and the processor 30 , and the first input end of the second signal amplification module 23 is connected to the first signal amplification module 23 .
  • the output end of the signal amplification module 21 is connected, the second input end of the second signal amplification module 23 is used to access the first reference voltage signal, and the output end of the second signal amplification module 23 is connected to the processor. 30 connections.
  • the second signal amplification module 23 amplifies the difference between the first amplified signal and the first reference voltage signal to obtain a second amplified signal, so that the processor 30 performs the operation according to the second amplified signal. Process to obtain the temperature of the corresponding location.
  • the second signal amplification module 23 uses the difference between the first amplified signal and the first reference voltage signal as an input signal, and amplifies the difference to obtain a second amplified signal. Then the first reference voltage has been eliminated from the second amplified signal. The influence brought by the signal makes the multi-point temperature measurement device 100 measure the temperature of each position point on the measured conductor 200 more accurately.
  • the temperature signal when the temperature signal is sampled through the thermocouple 10 and directly amplified using an amplification module, and then the amplified signal is processed by the processor 30 to obtain the temperature of each position point on the measured conductor 200, it may occur
  • the potential difference between the first potential signal and the second potential signal at both ends of the thermocouple 10 is relatively large. Due to the limited amplification factor, the output of the signal amplification module will not be close to its power supply voltage and reach the full value, which will cause The output voltage resolution of the op amp output module is smaller and requires a higher-precision analog-to-digital converter of the processor 30 .
  • the measurement range is also limited due to the fixed magnification.
  • the temperature measurement accuracy can only be limited to a certain temperature range, and high accuracy cannot be obtained within the entire range. Therefore, some thermocouple temperature measurement solutions cannot ensure both measurement accuracy and wide measurement range.
  • FIG. 5 is a schematic structural diagram of a multi-point temperature measurement device according to an embodiment of the present application.
  • the signal processing circuit 20 also includes a second reference voltage module 23 .
  • the input terminal of the second reference voltage module 23 is connected to the second reference voltage signal, and the output terminal of the second reference voltage module 23 is connected to the first input terminal of the first signal amplification module 21 or the third signal amplifier module 21 .
  • the second input end of a signal amplification module 21 is connected.
  • the second reference voltage module 23 provides the second reference voltage signal, and the second reference voltage signal is loaded on the first input end of the first signal amplification module 21 or the first signal amplification module. Second input of block 21.
  • the second reference voltage signal and the first reference voltage signal are both adjustable voltage signals.
  • the second reference voltage signal can be a voltage signal output by the processor 30 through the digital-to-analog conversion terminal, or it can be an independent reference source, such as through REF3025/3012/431 is obtained by partial pressure.
  • the first reference voltage signal is similar to the second reference voltage signal and is also an adjustable voltage signal.
  • the output terminal of the first reference voltage module 22 and the output terminal of the second reference voltage module 23 are respectively connected to different input terminals of the first signal amplification module 21 .
  • the first reference voltage signal is loaded on the first input terminal of the first signal amplification module 21 and the second reference voltage signal is loaded on the second input terminal of the first signal amplification module 21 as an example.
  • the second reference voltage signal is loaded on the second input terminal of the first signal amplification module 21. If the first reference voltage signal is loaded on The second reference voltage signal is loaded on the second input terminal of the first signal amplification module 21 .
  • both input terminals of the first signal amplification module 21 have a reference voltage signal.
  • the output terminal of the first signal amplification module 21 is always maintained at a more reasonable value, thereby obtaining a more reasonable value.
  • the first signal amplification module 21 can always maintain a relatively high amplification factor, thereby making the voltage resolution of the output amplified signal higher.
  • the multi-point temperature measurement device 100 further includes a second buffer 50 , the input end of the second buffer 50 is connected to the output end of the second reference voltage module 23 , the output end of the second buffer 50 and the first signal amplification module The first input terminal of 21 or the second input terminal of the first signal amplification module 21 is connected.
  • the second buffer 50 isolates the second reference voltage module 23 from the first signal amplification module 21 .
  • the second buffer 50 can be a follower, which has the characteristics of large input impedance and small output impedance.
  • the second buffer 50 is used to isolate the second reference voltage module 23 and the first signal amplification module 21.
  • the amplification factor of the first signal amplification module 21 can be made not affected by the output resistance of the second reference voltage module 23 , so that the second reference voltage module 23 can provide an accurate second reference voltage signal for the first signal amplification module 21 .
  • the output end of the first signal amplification module 21 or the output end of the second signal amplification module 23 can be connected to a filter module to filter the first amplified signal or the second amplified signal. Eliminate high-frequency noise signals.
  • a filter module can also be connected to the input end of the first signal amplification module 21 or the input end of the second signal amplification module 23 for filtering the first potential signal or the second potential signal.
  • the first reference voltage signal or the second potential signal can also be filtered.
  • the second reference voltage signal is filtered to further improve the accuracy of temperature detection.
  • Each filter module can be implemented in various forms, such as passive filtering or active filtering.
  • the filter module can use passive filtering, which is lower cost. Filtering can be achieved through low-pass filters, such as RC filters, etc.
  • Figure 6 is a schematic circuit structure diagram of a multi-point temperature measurement device provided by an embodiment of the present application.
  • the first signal amplification module 21 includes a first amplifier U1, a first resistor R1, The second resistor R2, the third resistor R3 and the fourth resistor R4, the first reference voltage module 22 includes a reference voltage source (not shown in the figure), the first buffer 40 is a first voltage Follower U2.
  • the first reference voltage signal passes through the reference voltage source and then is divided to obtain the first reference voltage signal vref1.
  • the first reference voltage signal vref1 is connected to the non-inverting input terminal of the first voltage follower U2 through a resistor.
  • the first voltage follower U2 The inverting input end of U2 is connected to its output end, and the output end of the first voltage follower U2 is also connected to one end of the second resistor R2.
  • the non-inverting input terminal of the first amplifier U1 is connected to one terminal of the first resistor R1 and the other terminal of the second resistor R2 respectively.
  • the other end of the first resistor R1 is connected to the first electrode VP of the thermocouple 10.
  • the inverting input end of the first amplifier U1 is connected to one end of the third resistor R3 and one end of the fourth resistor R4 respectively.
  • the other end of the third resistor R3 One end is connected to the second electrode VM of the thermocouple 10, and the other end of the fourth resistor R4 is connected to the output end of the first amplifier U1.
  • the signal processing circuit 20 also includes a first capacitor C1 and a second capacitor C2.
  • the first capacitor C1 is connected in series between the output end of the first voltage follower U2 and the non-inverting input end of the first amplifier U1.
  • the second capacitor C2 is connected in series. Between the inverting input terminal of the first amplifier U1 and the output terminal of the first amplifier U1, the first capacitor C1 is used to filter the first reference voltage signal vref1, and the second capacitor C2 is used to filter the second potential signal. high frequency noise signal.
  • the signal processing circuit 20 may further include a first filtering module.
  • the first filtering module includes a fifth resistor R5, a sixth resistor R6, a third capacitor C3 and a fourth capacitor C4.
  • One end of the fifth resistor R5 is connected to the output end of the first amplifier U1, the other end of the fifth resistor R5 is connected to one end of the sixth resistor R6 and one end of the third capacitor C3 respectively, and the other end of the sixth resistor R6 is connected to the third capacitor C3.
  • One end of the fourth capacitor C4 is connected to the processor 30 , and the other ends of the third capacitor C3 and the other end of the fourth capacitor C4 are both grounded.
  • the thermocouple 10 is set at a certain position on the conductor 200 to be measured.
  • the first electrode VP of the thermocouple 10 outputs a first potential signal
  • the second electrode VM of the thermocouple 10 outputs a second potential signal.
  • the first reference voltage signal vref1 is loaded on the non-inverting input terminal of the first amplifier U1.
  • the first amplifier U1 amplifies the difference between the first potential signal and the second potential signal to obtain the first amplified signal S1.
  • the first amplified signal S1 is passed through After filtering by the first filtering module, the processor 30 processes and analyzes the filtered first amplified signal S1 to obtain the temperature of the corresponding position of the measured conductor 200 .
  • thermocouple 10 The first electrode VP and the second electrode VM of each thermocouple 10 are directly connected to the non-inverting input terminal and the inverting input terminal of the first amplifier U1 respectively. is not grounded, there is no shunt circuit between the first electrode VP and the non-inverting input terminal of the first amplifier U1, and there is no shunt circuit between the second electrode VM and the inverting input terminal of the first amplifier U1.
  • the third terminal of each thermocouple 10 The potential difference between the first electrode VP and the second electrode VM is not disturbed by other circuits.
  • thermocouples 10 do not affect or interfere with each other, so that each thermocouple 10 can accurately detect the temperature of the corresponding position, and thus the multi-point temperature measurement device 100 can accurately detect the measured conductor 200 temperature at multiple locations.
  • Figure 7 is a schematic circuit structure diagram of a multi-point temperature measurement device provided by an embodiment of the present application.
  • the first signal amplification module 21 includes a first amplifier U1, a seventh resistor R7, The eighth resistor R8 and the ninth resistor R9.
  • One end of the seventh resistor R7 is connected to the first electrode VP of the thermocouple 10
  • the other end of the seventh resistor R7 is connected to the non-inverting input end of the first amplifier U1
  • the second electrode VM of the thermocouple 10 is connected to one end of the eighth resistor R8.
  • the other end of the eight resistor R8 is connected to one end of the ninth resistor R9 and the inverse phase of the first amplifier U1 respectively.
  • the input end is connected, and the other end of the ninth resistor R9 is connected to the output end of the first amplifier U1.
  • the first reference voltage signal vref1 is loaded on the inverting input terminal of the first amplifier U1.
  • the second signal amplification module 23 includes a tenth resistor R10 , an eleventh resistor R11 , a twelfth resistor R12 and a second amplifier U3 .
  • One end of the tenth resistor R10 is connected to the output end of the first amplifier U1 .
  • the other end is connected to the non-inverting input end of the second amplifier U3, one end of the eleventh resistor R11 is connected to the first reference voltage signal vref1, the other end of the eleventh resistor R11 is connected to the inverting input end of the second amplifier U3, the tenth Two resistors R12 are connected in series between the inverting input terminal and the output terminal of the second amplifier U3.
  • the output terminal of the second amplifier U3 is also connected to the first filter module.
  • the second amplified signal S2 output by the second amplifier U3 is filtered by the first After filtering by the module, it is then sent to the processor 30 for processing and analysis to obtain the temperature at the corresponding position of the measured conductor 200
  • the first reference voltage module 22 includes a reference source U4, a fourth capacitor C4, a thirteenth resistor R13 and a fourteenth resistor R14.
  • the first reference voltage signal REF3V0 is connected to the input end of the reference source U4.
  • the output end of the reference source U4 is connected to one end of the fourth capacitor C4 and one end of the thirteenth resistor R13 respectively.
  • the other end of the fourth capacitor C4 is connected to ground.
  • the other ends of the three resistors R13 are respectively connected to one end of the fourteenth resistor R14 and the non-inverting input end of the first voltage follower U2.
  • the other end of the fourteenth resistor R14 is grounded.
  • the output end of the first voltage follower U2 outputs the first Reference voltage signal vref1.
  • the first reference voltage signal REF3V0 outputs the voltage signal PP2V5 through the reference source U4. After the voltage signal PP2V5 is divided by the thirteenth resistor R13 and the fourteenth resistor R14, the first reference voltage signal vref1 is obtained.
  • the voltage of the first reference voltage signal REF3V0 is 3V
  • the voltage of the first reference voltage signal vref1 is 1V
  • the first reference voltage signal vref1 is respectively loaded on the first An inverting input terminal of an amplifier U1 and an inverting input terminal of a second amplifier U3.
  • the first amplifier U1 amplifies the difference between the first potential signal and the second potential signal of the thermocouple 10 to obtain the first amplified signal S1.
  • the voltage of the first amplified signal S1 is A1*Vth+1, where A1 is the The amplification gain of a signal amplifier, Vth is the difference between the first potential signal and the second potential signal, and 1 is the voltage of the first reference voltage signal vref1.
  • the second amplifier U3 amplifies the difference between the first amplified signal S1 and the first reference voltage signal vref1 to obtain a second amplified signal S2.
  • the voltage of the second amplified signal S2 is A2*(A1*Vth), where A2 is the The amplification gain of the second signal amplifier.
  • the second amplified signal S2 is filtered by the first filter module, it is processed and analyzed by the processor 30 to obtain the temperature of the corresponding position on the measured conductor 200 .
  • the multi-point temperature measurement device 100 adds a second amplifier U3 on the basis of the first amplifier U1, and the first reference voltage signal vref1 is loaded on the inverting input of the first amplifier U1 and the inverting input of the second amplifier U3 respectively. end, the influence of the first reference voltage signal vref1 is eliminated through the second amplifier U3, so that the signal processed by the processor 30 is only related to the difference between the first potential signal and the second potential signal of the thermocouple 10, further improving the multi-point The detection accuracy of the temperature measuring device 100.
  • Figure 8 is a schematic circuit structure diagram of a multi-point temperature measurement device provided by an embodiment of the present application.
  • the first signal amplification module 21 includes a first amplifier U1, a seventh resistor R7, The eighth resistor R8 and the ninth resistor R9.
  • One end of the seventh resistor R7 is connected to the first electrode VP of the thermocouple 10
  • the other end of the seventh resistor R7 is connected to the non-inverting input end of the first amplifier U1
  • the second electrode VM of the thermocouple 10 is connected to one end of the eighth resistor R8.
  • the other end of the eight resistor R8 is connected to one end of the ninth resistor R9 and the inverse phase of the first amplifier U1 respectively.
  • the input end is connected, and the other end of the ninth resistor R9 is connected to the output end of the first amplifier U1.
  • the first reference voltage signal vref1 is loaded on the non-inverting input terminal of the first amplifier U1.
  • the first reference voltage module 22 includes a reference source U4, a fourth capacitor C4, a thirteenth resistor R13 and a fourteenth resistor R14.
  • the first voltage follower U2 can be omitted in this embodiment of the present application.
  • the first reference voltage signal REF3V0 is connected to the input end of the reference source U4.
  • the output end of the reference source U4 is connected to one end of the fourth capacitor C4 and one end of the thirteenth resistor R13 respectively.
  • the other end of the fourth capacitor C4 is connected to ground.
  • the other ends of the three resistors R13 are respectively connected to one end of the fourteenth resistor R14 and the non-inverting input end of the first amplifier U1, and the other end of the fourteenth resistor R14 is connected to ground.
  • the common connection point of the thirteenth resistor R13 and the fourteenth resistor R14 outputs the first reference voltage signal vref1, which is loaded on the non-inverting input terminal of the first amplifier U1.
  • the first reference voltage signal REF3V0 is an adjustable voltage signal, which can be obtained through a power supply and a resistor.
  • the specific circuit composition of the second reference voltage module 23 is not shown in FIG. 8 .
  • the circuit composition of the second reference voltage module 23 may be the same as that of the first reference voltage module 22 , or may only include a reference voltage source, so that the second reference voltage signal The second reference voltage signal vref2 is output through the second reference module.
  • the second reference voltage signal is an adjustable signal, and the second reference voltage module 23 can also be omitted, and the voltage of the second reference voltage signal is directly adjusted to the voltage of the second reference voltage signal vref2, and the adjusted The second reference voltage signal is used as the second reference voltage signal vref2, which will not be described again here.
  • the second reference voltage signal Vshift can be obtained through the output of a digital-to-analog converter integrated inside the processor 30 , or can be obtained using a separate digital-to-analog converter chip.
  • the first signal amplification module 21 also includes a fifteenth resistor R15.
  • the second buffer 50 is For the second voltage follower U4, if the second reference voltage module 23 is omitted, the second reference voltage signal Vshift is connected to the non-inverting input end of the second voltage follower U4, and the inverting input end of the second voltage follower U4 is connected to the inverting input end of the second voltage follower U4.
  • the output terminal of the second voltage follower U4 is connected, and the output terminal of the second voltage follower U4 is also connected to one end of the eighth resistor R8 through the fifteenth resistor R15.
  • the second reference voltage signal Vshift outputs a second reference voltage signal vref2 through the second voltage follower U4, and the second reference voltage signal vref2 is loaded on the inverting input terminal of the first amplifier U1.
  • the voltage of the second reference voltage signal vref2 is the same as the voltage of the second reference voltage signal Vshift.
  • the first amplified signal S1 output by the first amplifier U1 is filtered by the first filter module.
  • V th is the difference between the first potential signal and the second potential signal
  • Vvref2 is the voltage value of the second reference voltage signal vref2
  • Vvref1 is the voltage value of the first reference voltage signal vref1 .
  • the initial default value of the second reference voltage signal vref2 is 0V
  • the voltage of the first amplified signal S1 obtained by the processor 30 is 2.5V.
  • V th begins to increase, and the voltage of the first amplified signal S1 obtained by the processor 30 becomes larger.
  • the thermoelectric The electromotive force at both ends of even 10 is 0.5mV
  • the processor 30 begins to adjust the second reference The voltage signal vref2 increases, and the processor 30 begins to adjust the voltage of the second reference voltage signal vref2 to 2.5/16V (the DAC digital-to-analog converter inside the processor 30 will use REF_2V5 as the benchmark, 2.5V as a 16-level gradient, and each level of output The voltage gradient increases by 2.5/16V).
  • thermocouple 10 When the temperature is 300°C, the electromotive force at both ends of the corresponding thermocouple 10 is 12.207mV.
  • the processor 30 detects and analyzes the first amplified signal S1, and then dynamically adjusts the value of the second reference voltage signal vref2 through the internal DAC digital-to-analog converter.
  • the first amplified signal S1 is always maintained at a reasonable value, thereby obtaining accurate measurement over a wide temperature range.
  • the two reference voltage signals are respectively loaded on the two input terminals of the first amplifier U1, and the A reference voltage signal REF3V0 and a second reference voltage signal Vshift are voltage-adjustable signals, and the value of the first reference voltage signal vref1 and the value of the second reference voltage signal vref2 can be adjusted to change the value of the first amplified signal S1 range, so that it is always maintained within the sampling range of the processor 30, and the voltage value of the first amplified signal S1 remains within a larger range, so as to facilitate accurate sampling of the processor 30, improve the accuracy of temperature detection, and broaden the temperature detection range.
  • Figure 9 is a schematic flow chart of a temperature control method provided by an embodiment of the present application.
  • the temperature control method is applied to an aerosol generating device.
  • the aerosol generating device includes a device for heating an aerosol generating product to generate An aerosol heating element, a power source used to provide power to the heating element, a first thermocouple and a second thermocouple respectively arranged at different positions of the heating element, and a controller; wherein, the third No current flows between the positive electrode of one thermocouple and the negative electrode of the second thermocouple, and no current flows between the negative electrode of the first thermocouple and the positive electrode of the second thermocouple.
  • the temperature control method includes:
  • This temperature control method can sample the temperature of each position point on the measured conductor through a thermocouple, then determine the temperature of the corresponding position according to the sampled signal, and finally adjust the power output of the heating element according to the temperature of each position point, which can accurately control the temperature of the conductor being measured. Measure the temperature at each location on the conductor to achieve precise temperature control at multiple locations.
  • step S93 includes:
  • S933. Determine the temperature of the first position point and the temperature of the second position point respectively according to the third amplified signal and the fourth amplified signal.
  • the addition of the first reference voltage signal can improve the accuracy of signal processing, thereby improving the accuracy of temperature detection.
  • step S933 includes:
  • step S93 also includes:
  • S937 Determine the temperature of the first position point and the temperature of the second position point respectively according to the seventh amplified signal and the eighth amplified signal.
  • the addition of dual reference voltage signals can broaden the temperature detection range on the basis of accurately detecting the temperature of the corresponding position point.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Temperature (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

本申请涉及一种多点测温装置、气溶胶生成装置以及温度控制方法,该多点测温装置包括至少两个热电偶、至少两个信号处理电路以及处理器,其中,至少两个热电偶设置于被测导体上的不同位置点,热电偶与信号处理电路一一对应,至少两个热电偶用于检测被测导体上的不同位置点的温度。其中,任意两个热电偶之间没有电流流动,任意两个热电偶之间互不影响,即任意一个热电偶获取到的第一电势信号与第二电势信号不会受到其他热电偶的干扰,进而使得被测导体上不同位置点的温度检测互不影响,因此,该多点测温装置能够精准测量被测导体上不同位置点的温度。

Description

一种多点测温装置、气溶胶生成装置以及温度控制方法
相关申请的交叉参考
本申请要求于2022年8月18日提交中国专利局,申请号为202211003897.4,申请名称为“一种多点测温装置、气溶胶生成装置以及温度控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及测温领域,特别是涉及一种多点测温装置、气溶胶生成装置以及温度控制方法。
背景技术
在电子烟产品中,一般是通过加热发热体,将发热体温度传递至烟支中,以产生气溶胶。发热体不同位置的温差较大,可通过热电偶传感器测量发热体上不同位置点的温度,以根据测量得到的温度,对发热体进行多段加热,多段控温。
然而目前传统测温方案中,多个热电偶测量电路之间会互相影响,互相干扰,导致测量结果不准确,无法实现发热体上的多个位置点的精准测温。
申请内容
本申请实施例旨在提供一种多点测温装置、气溶胶生成装置以及温度控制方法,其能够精准测量被测导体上的不同位置点的温度。
为解决上述技术问题,本申请实施例提供以下技术方案:
在第一方面,本申请实施例提供一种多点测温装置,所述多点测温装置包括:至少两个热电偶、至少两个信号处理电路以及处理器;
所述至少两个热电偶设置于被测导体上的不同位置点,且所述热电偶与所述被测导体上的各个位置点一一对应,所述热电偶与所述信号处理电路一一对应;
其中,所述热电偶包括第一电极和第二电极,所述第一电极与对应的所述信号处理电路的第一输入端连接,所述第二电极与对应的所述信号处理电路的第二输入端连接,所述信号处理电路的输出端与所述处理器连接;
其中,所述热电偶用于检测所述被测导体上的对应位置的温度,通过所述第一电极输出第一电势信号及通过所述第二电极输出第二电势信号,所述第一电势信号与所述第二电势信号经过所述信号处理电路处理,得到第一电压信号,所述第一电压信号经过所述处理器处理之后,得到所述被测导体对应位置的温度;
其中,任意两个所述热电偶之间没有电流流动。
在一些实施例中,所述第一电极与所述信号处理电路的第一输入端之间没有分流电路,且所述第二电极与所述信号处理电路的第二输入端之间没有分流电路。
在一些实施例中,所述至少两个热电偶包括第一热电偶和第二热电偶,所述第一热电偶的第一电极与所述第二热电偶的第二电极之间未形成闭合回路,所述第一热电偶的第二电极与所述第二热电偶的第一电极之间未形成闭合回路。
在一些实施例中,所述信号处理电路包括第一信号放大模块与第一基准电压模块;
所述第一基准电压模块的输入端与第一参考电压信号连接,所述第一基准电压模块的输出端与所述第一信号放大模块的第一输入端或所述第一信号放大模块的第二输入端连接,所述第一基准电压模块用于提供第一基准电压信号;
所述第一信号放大模块的第一输入端与所述第一电极连接,所述第一信号放大模块的第二输入端与所述第二电极连接,所述第一信号放大模块的输出端与所述处理器连接,所述第一信号放大模块用于对所述第一电势信号与所述第二电势信号的差值进行放大,得到第一放大信号,以使所述处理器对所述第一放大信号进行处理得到所述被测导体对应位置的温度。
在一些实施例中,还包括第一缓冲器;
所述第一缓冲器的输入端与所述第一基准电压模块的输出端连接,所述第一缓冲器的输出端与所述第一信号放大模块的第一输入端或所述第一信号放大模块的第二输入端连接,所述第一缓冲器用于对所述第一基准电压模块与所述第一信号放大模块进行隔离。
在一些实施例中,所述信号处理电路还包括第二信号放大模块;
其中,所述第二信号放大模块串联于所述第一信号放大模块的输出端与所述处理器之间,所述第二信号放大模块的第一输入端与所述第一信号放大模块的输出端连接,所述第二信号放大模块的第二输入端用于接入所述第一基准电压信号,所述第二信号放大模块的输出端与所述处 理器连接,所述第二信号放大模块用于对所述第一放大信号与所述第一基准电压信号的差值进行放大,得到第二放大信号,以使所述处理器根据所述第二放大信号进行处理得到对应位置的温度。
在一些实施例中,所述信号处理电路还包括第二基准电压模块;
所述第二基准电压模块的输入端与第二参考电压信号连接,所述第二基准电压模块的输出端与所述第一信号放大模块的第一输入端或所述第一信号放大模块的第二输入端连接,所述第二基准电压模块用于提供所述第二基准电压信号;
其中,所述第一基准电压模块的输出端与所述第二基准电压模块的输出端分别连接于所述第一信号放大模块的不同输入端。
在一些实施例中,还包括第二缓冲器;
所述第二缓冲器的输入端与所述第二基准电压模块的输出端连接,所述第二缓冲器的输出端与所述第一信号放大模块的第一输入端或所述第一信号放大模块的第二输入端连接,所述第二缓冲器用于对所述第二基准电压模块与所述第一信号放大模块进行隔离。
在一些实施例中,所述第二参考电压信号可调电压信号。
在第二方面,本申请实施例提供一种气溶胶生成装置,所述气溶胶生成装置包括用于加热气溶胶生成制品以生成气溶胶的发热体、用于向所述发热体提供功率的功率源和控制器,以及如上所述的多点测温装置;
所述发热体为导体,所述发热体包括多个加热区;
所述至少两个热电偶被设置于所述发热体的不同加热区处;以及,
所述控制器用于根据各个所述加热区的温度,调节所述功率源向至少一个所述加热区所提供的功率。
在一些实施例中,所述发热体为电阻发热体、半导体、电阻薄膜加热器或者红外薄膜加热器。
在第二方面,本申请实施例提供一种应用于气溶胶生成装置的温度控制方法,所述气溶胶生成装置包括用于加热气溶胶生成制品以生成气溶胶的发热体、用于向所述发热体提供功率的功率源、分别设置在所述发热体的不同位置点的第一热电偶和第二热电偶、以及控制器;其中,所述第一热电偶正极与所述第二热电偶负极之间没有电流流动,所述第一热电偶的负极与所述第二热电偶的正极之间没有电流流动;所述方法包括:
通过第一热电偶获取被测导体上的第一位置点的第一采样信号;
通过第二热电偶获取被测导体上的第二位置点的第二采样信号;
根据所述第一采样信号与所述第二采样信号,分别确定所述第一位置点的温度与所述第二位置点的温度;
根据所述第一位置点的温度和所述第二位置点的温度,调整所述发热体的功率输出。
在一些实施例中,所述根据所述第一采样信号与所述第二采样信号,分别确定所述第一位置点的温度与所述第二位置点的温度,包括:
将第一基准电压信号分别加载于所述第一采样信号与所述第二采样信号,得到第一信号与第二信号;
将所述第一信号与所述第二信号分别进行放大,得到第三放大信号 与第四放大信号;
根据所述第三放大信号与所述第四放大信号分别确定所述第一位置点的温度与所述第二位置点的温度。
在一些实施例中,所述根据所述第三放大信号与所述第四放大信号分别确定所述第一位置点的温度与所述第二位置点的温度,包括:
将所述第三放大信号与所述第一基准电压信号的差值进行放大,得到第五放大信号;
将所述第四放大信号与所述第一基准电压信号的差值进行放大,得到第六放大信号;
根据所述第五放大信号与所述第六放大信号分别确定所述第一位置点的温度与所述第二位置点的温度。
在一些实施例中,所述根据所述第一采样信号与所述第二采样信号,分别确定所述第一位置点的温度与所述第二位置点的温度,还包括:
将第一基准电压信号与第二基准电压信号均加载于所述第一采样信号,得到第三信号;
将第一基准电压信号与第二基准电压信号均加载于所述第二采样信号,得到第四信号;
将所述第三信号与所述第四信号分别进行放大,得到第七放大信号与第八放大信号;
根据所述第七放大信号与所述第八放大信号,分别确定所述第一位置点的温度与所述第二位置点的温度。
在本申请各个实施例中,该多点测温装置包括至少两个热电偶、至 少两个信号处理电路以及处理器,其中,至少两个热电偶设置于被测导体上的不同位置点,热电偶与信号处理电路一一对应,至少两个热电偶用于检测被测导体上的不同位置点的温度。每个热电偶输出第一电势信号与第二电势信号,再经过对应的信号处理电路处理得到对应的第一电压信号,第一电压信号经过处理器处理后,得到被测导体对应位置的温度。同时,任意两个热电偶之间没有电流流动,任意两个热电偶之间互不影响,即,任意一个热电偶获取到的第一电势信号与第二电势信号不会受到其他热电偶的干扰,进而使得被测导体上不同位置点的温度检测互不影响,因此,该多点测温装置能够精准测量被测导体上不同位置点的温度。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1a是本申请实施例提供的其中一种气溶胶生成装置的结构示意图;
图1b是本申请实施例提供的其中一种气溶胶生成装置的电路结构示意图;
图2是本申请实施例提供的其中一种多点测温装置的结构示意图;
图3是本申请实施例提供的其中一种多点测温装置的结构示意图;
图4是本申请实施例提供的其中一种多点测温装置的结构示意图;
图5是本申请实施例提供的其中一种多点测温装置的结构示意图;
图6是本申请实施例提供的其中一种多点测温装置的电路结构示意图;
图7是本申请实施例提供的其中一种多点测温装置的电路结构示意图;
图8是本申请实施例提供的其中一种多点测温装置的电路结构示意图;
图9是本申请实施例提供的其中一种温度控制方法的流程示意图;
图10是图9中步骤S93的流程示意图;
图11是图10中步骤S933的流程示意图;
图12是图9中步骤S93的另一流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
术语“气溶胶生成制品”是指在加热时提供气溶胶形式的挥发组分的材料。在一些实施例中,气溶胶生成制品可包含烟草组分,其中,烟草组分是包含烟草或其衍生物的任何材料。烟草组分可包含碎烟草、烟草纤维、烟丝、压制烟草、烟梗、烟草薄片和/或烟草提取物中的一种或多种。在一些实施例中,气溶胶生成制品可包含烟草替代品。
气溶胶产生装置是指在使用时从气溶胶生成制品产生气溶胶的任 何设备。特别地,已知一种设备,其加热气溶胶生成制品以形成可吸入的气溶胶,而不燃烧或点燃气溶胶生成制品。这种设备有时被描述为“加热不燃烧”设备或“烟草加热产品”或“烟草加热装置”或类似物。
类似地,还存在所谓的电子烟装置,其通常蒸发液体形式的气溶胶生成制品,该基质可以含有或不含尼古丁。在其他实施例中,气溶胶产生装置通过加热固体形式的气溶胶生成制品来提供气溶胶或蒸汽。在特定实施例中,气溶胶产生装置是烟草加热产品。
请参阅图1a-图1b,图1a为本申请实施例提供的一种气溶胶生成装置的结构示意图,图1b为本申请实施例提供的一种气溶胶生成装置的电路结构示意图。如图1a-1b所示,该气溶胶生成装置1包括发热体3、功率源2、控制器7以及多点测温装置8。
其中,发热体3用于加热气溶胶生成制品5以产生气溶胶,气溶胶生成制品5可以储存于加热腔4内,使得气溶胶生成制品5可以在加热腔4中被加热。例如,加热腔4可以被安置为靠近发热体3,从而使得来自发热体3的热能加热其中的气溶胶生成制品5,以在不燃烧气溶胶生成制品5的情况下挥发气溶胶。
发热体3可以包括大体圆柱形的细长发热体3,并且加热腔4位于发热体3的周向纵向表面的周围。因此,加热腔4和气溶胶生成制品5包括围绕发热体3的共轴的层。然而,在其他实施例中,可以选择性地使用其它形状和配置的发热体3和加热腔4。
发热体3可以可选择地包括多个单独的加热区6。加热区6可以彼此在操作上独立,从而使得不同的区域6可以在不同时间被启动来加热 气溶胶生成制品5。加热区6可以以任何几何布置方式被布置在发热体3中。然而,在图示的例子中,加热区6被按几何方式布置在发热体3中,从而使得加热区6中的不同加热区6被布置为主导地和独立地加热气溶胶生成制品5的不同区域。
发热体3可以为电阻发热体,是指在向发热体3施加电流时,发热体3中的电阻将电能转换成热能,该热能加热气溶胶生成制品5。发热体3可以是电阻丝、网、线圈和/或多个线的形式。在一些实施例中,发热体3可以是薄膜加热器,如电阻薄膜加热器或红外薄膜加热器。
发热体3还可以为导体或半导体,其可以包含金属或金属合金。金属是电能和热能的优良导体。合适的金属包括但不限于:铜、铝、铂、钨、金、银、以及钛。合适的金属合金包括但不限于:镍铬合金和不锈钢。
发热体3还可以为电磁体,变化的电流流过该电磁体产生变化的磁场,所述变化的磁场使得所述发热体3内部产生一个或多个涡电流,以使所述发热体3被加热。
所述气溶胶生成装置1还包括功率源2,功率源2与发热体3电连接,用于向发热体3提供功率,其可以为向发热体3提供电力的电源,诸如锂离子电池、镍电池、碱性电池和/或其他电池等,在需要时,功率源2可以向发热体3提供电能。
功率源2还与控制器7电连接,以使控制器7调节功率源2输出的功率大小。可通过直接设置功率数值的方式调节功率源2输出的功率,还可以通过PWM波的形式控制功率源2输出的功率,本申请对此不做任 何限制。控制器7通过调节功率源2向发热体3中至少一个加热区6输出的功率大小,可控制发热体3中各个加热区6的温度,进而控制气溶胶的生成。其中,控制器可被配置于气溶胶生成装置1中的任意合适位置。
在一些实施例中,控制器7可以为通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、单片机、ARM(Acorn RISC Machine)或其它可编程逻辑器件、分立门或晶体管逻辑、分立的硬件组件或者这些部件的任何组合。还有,控制器7还可以是任何传统处理器、控制器、微控制器或状态机。控制器7也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器结合DSP和/或任何其它这种配置。控制器7还可以为洗衣机的变频板或主控板。
为了精确地控制发热体3的热输出,该气溶胶生成装置1还包括多点测温装置8,该多点测温装置8用于检测所述发热体3上不同位置点的温度,其可被设置于该气溶胶生成装置1中任意合适位置。该多点测温装置8包括至少两个热电偶10,至少两个热电偶10被设置于所述发热体3的不同位置处,热电偶10与所述发热体3上的各个位置点一一对应,具体地,热电偶10可被设置于发热体3上的各个加热区6处,与各个加热区6一一对应。
热电偶10作为温度传感器,用于检测发热体3上各个位置点的温度。由于发热体3为可以导电的导体,在热电偶10检测其各个位置点的温度时,容易互相影响,各个热电偶之间形成闭合回路,导致热电偶 10的检测信号受到其它热电偶的干扰,获取到的检测信号不准确,进而使得多点测温装置8对发热体3多个位置点的温度检测不精确。
基于上述原因,本申请实施例提供一种多点测温装置,该多点测温装置包括至少两个热电偶、至少两个信号处理电路以及处理器。其中,至少两个热电偶设置于被测导体上的不同位置点,热电偶与信号处理电路一一对应,至少两个热电偶用于检测被测导体上的不同位置点的温度。每个热电偶输出第一电势信号与第二电势信号,再经过对应的信号处理电路处理得到对应的第一电压信号,第一电压信号经过处理器处理后,得到被测导体对应位置的温度。同时,任意两个热电偶之间没有电流流动,任意两个热电偶之间互不影响,即任意一个热电偶获取到的第一电势信号与第二电势信号不会受到其他热电偶的干扰,进而使得被测导体上不同位置点的温度检测互不影响,因此,该多点测温装置能够精准测量被测导体上不同位置点的温度。
请参阅图2,图2是本申请实施例提供的一种多点测温装置的结构示意图,该多点测温装置100应用于气溶胶生成装置1。如图2所示,该多点测温装置100包括至少两个热电偶10、至少两个信号处理电路20以及处理器30。
其中,所述至少两个热电偶10设置于被测导体200上的不同位置点,且所述热电偶10与所述被测导体200上的各个位置点一一对应,所述热电偶10与所述信号处理电路20一一对应。例如:第一个热电偶10与被测导体200上的位置点A对应,第二个热电偶10与被测导体200上的位置点B对应。
其中,所述热电偶10包括第一电极和第二电极,所述第一电极与对应的所述信号处理电路20的第一输入端连接,所述第二电极与对应的所述信号处理电路20的第二输入端连接,所述信号处理电路20的输出端与所述处理器30连接。
所述热电偶10用于检测所述被测导体200上的对应位置的温度,其通过所述第一电极输出第一电势信号及通过所述第二电极输出第二电势信号,所述第一电势信号与所述第二电势信号经过所述信号处理电路20处理,得到第一电压信号,所述第一电压信号经过所述处理器30处理之后,得到所述被测导体200对应位置的温度。
同时,任意两个所述热电偶10之间没有电流流动,即,任意两个热电偶10之间互不影响。实现任意两个热电偶10之间没有电流流动可以通过多种形式,例如,所述第一电极与所述信号处理电路20的第一输入端之间没有分流电路,且所述第二电极与所述信号处理电路20的第二输入端之间没有分流电路。亦或是,其中一个热电偶10的第一电极与其他任意热电偶10的第二电极之间未形成闭合回路,其中一个热电偶10的第二电极与其他任意热电偶10的第一电极之间未形成闭合回路。若所述至少两个热电偶包括第一热电偶与第二热电偶,则所述第一热电偶的第一电极与所述第二热电偶的第二电极之间未形成闭合回路,所述第一热电偶的第二电极与所述第二热电偶的第一电极之间未形成闭合回路。
而任意两个热电偶10之间没有电流流动的具体实现手段也可以有多种形式,例如,热电偶10的第一电极与第二电极均未接地,则无法 与其他热电偶10通过大地构成闭合回路,或热电偶10的第一电极与地或其他热电偶10之间连接大电容,热电偶10的第二电极与地或其他热电偶10之间连接大电容,利用大电容的阻直流特性,阻挡第一电势信号的流动,以及阻挡第二电势信号的流动,亦或是热电偶10的第一电极与地或其他热电偶10之间连接大电阻,且热电偶10的第二电极与地或其他热电偶10之间均连接大电阻,大电阻起到限流作用,以阻挡第一电势信号的流动,以及阻挡第二电势信号的流动,还可以在第一电极与其他热电偶10之间设置隔离件,在第二电极与其他热电偶10之间也设置隔离件,以隔离第一电极与其他热电偶10之间的信号流动,并隔离第二电极与其他热电偶10之间的信号流动,实现两个热电偶10之间没有电流流动。
综上所述,该多点测温装置100中任意一个热电偶10获取到的第一电势信号与第二电势信号均不会受到其他热电偶10的干扰,使得被测导体200上不同位置点的温度检测互不影响,因此,该多点测温装置100能够精准测量被测导体200上不同位置点的温度。
信号处理电路20与热电偶10之间一一对应,用于处理热电偶10的第一电势信号与第二电势信号,得到第一电压信号,以使得处理器30能够根据第一电压信号得到被测导体200上对应位置的温度。因此,信号处理电路20对第一电势信号与第二电势信号的处理,也可以提高温度检测的精确度。在本申请实施例中,信号处理电路20可对第一电势信号与第二电势信号进行放大处理,以使得处理器30对第一电压信号的处理更加精确。
具体地,请参阅图3,图3是本申请实施例提供的一种多点测温装置的结构示意图,如图3所示,所述信号处理电路20包括第一信号放大模块21与第一基准电压模块22。
其中,所述第一基准电压模块22的输入端与第一参考电压信号连接,所述第一基准电压模块22的输出端与所述第一信号放大模块21的第一输入端或所述第一信号放大模块21的第二输入端连接(图中以第一基准电压模块22的输出端与第一信号放大模块21的第一输入端连接为例示出)。
所述第一信号放大模块21的第一输入端与所述第一电极连接,所述第一信号放大模块21的第二输入端与所述第二电极连接,所述第一信号放大模块21的输出端与所述处理器30连接。
所述第一信号放大模块21对所述第一电势信号与所述第二电势信号的差值进行放大,得到第一放大信号,以使所述处理器30对所述第一放大信号进行处理得到所述被测导体200对应位置的温度。
第一信号放大模块21可以为同相放大器,也可以为差分放大器,各个放大器的放大增益可以根据需要而设置。在本申请实施例中,若第一信号放大模块21为同相放大器,该同相放大器的增益可以为100,若第一信号放大模块21为差分放大器,该差分放大器的增益可以为101。
第一信号放大模块21对第一电势信号与第二电势信号的差值进行放大,可使得处理器30对放大后的信号进行处理,能够更加精确得得到被测导体200上对应位置的温度。
第一基准电压模块22提供第一基准电压信号,该第一基准电压信 号可加载于第一信号放大模块21的第一输入端或第二输入端。第一基准电压信号为第一信号放大模块21提供偏置电压。若第一信号放大模块21没有偏置电压,则当热电偶10的第一电势信号与第二电势信号的差值为接近0V或负电压时,如常温环境或负温度环境,则第一信号放大模块21的输出接近O,第一信号放大模块21的输出不正确,无法反映正常温度。因此,第一基准电压信号可使得第一信号放大模块21在常温环境或负温度环境下,也能准确地输出第一放大信号。
若无第一基准电压信号为第一信号放大模块21提供偏置电压,则还可以对第一信号放大模块21进行正负双电源供电,以使得第一信号放大模块21能准确地输出第一放大信号。
第一基准电压模块22可通过单独的基准电压源获得,如通过REF3025/3012/431分压得来。还可以通过控制器7或处理器30输出可调的电压信号,再经过分压或者相应地处理之后而获得。
第一基准电压信号的电压可以根据需要而设置,在本申请实施例中,其电压为1V。则对应的,第一信号放大模块21的输出为A1*Vth+1,其中,A1为第一信号放大模块21的放大增益,Vth为第一电势信号与第二电势信号的差值。
请继续参阅图3,该多点测温装置100还包括第一缓冲器40,所述第一缓冲器40的输入端与所述第一基准电压模块22的输出端连接,所述第一缓冲器40的输出端与所述第一信号放大模块21的第一输入端或所述第一信号放大模块21的第二输入端连接。
所述第一缓冲器40用于对所述第一基准电压模块22与所述第一信 号放大模块21进行隔离。第一缓冲器40可以为跟随器,其具有输入阻抗大,输出阻抗小的特点,在本申请实施例中,用第一缓冲器40隔离第一基准电压模块22与第一信号放大模块21,可以使得第一信号放大模块21的放大倍数不受第一基准电压模块22的输出电阻的影响,使得第一基准电压模块22能够为第一信号放大模块21提供精准的第一基准电压信号,即提供精准的偏置电压,进一步提高温度检测的准确性。
第一基准电压信号可以使得第一信号放大模块21在常温环境或负温度环境下,能够输出正确的第一放大信号,提高温度检测的准确性。但第一基准电压信号也会对第一信号放大模块21的输出有影响,使得第一放大信号中包含第一基准电压信号,因此,可采用二级放大的技术方案,以消除第一基准电压信号的影响。
具体地,请参阅图4,图4是本申请实施例提供的一种多点测温装置的结构示意图,如图4所示,与图3中的多点测温装置100的区别在于,所述信号处理电路20还包括第二信号放大模块23。
其中,所述第二信号放大模块23串联于所述第一信号放大模块21的输出端与所述处理器30之间,所述第二信号放大模块23的第一输入端与所述第一信号放大模块21的输出端连接,所述第二信号放大模块23的第二输入端用于接入所述第一基准电压信号,所述第二信号放大模块23的输出端与所述处理器30连接。
所述第二信号放大模块23对所述第一放大信号与所述第一基准电压信号的差值进行放大,得到第二放大信号,以使所述处理器30根据所述第二放大信号进行处理得到对应位置的温度。
第二信号放大模块23以第一放大信号与第一基准电压信号的差值作为输入信号,在该差值进行放大,得到第二放大信号,则第二放大信号中已经消除了第一基准电压信号带来的影响,使得该多点测温装置100测量被测导体200上各个位置点的温度更加精确。
在一些实施例中,在通过热电偶10进行采样温度信号,并使用放大模块直接放大,再通过处理器30处理放大后的信号,以得到被测导体200上各个位置点的温度时,可能会出现测温精度低、测量范围比较窄的问题。因为在高温区时,热电偶10两端的第一电势信号与第二电势信号之间的电势差比较大,由于放大倍数有限,以免信号放大模块的输出接近其供电电压,达到满值,则会导致运放输出模块的输出电压分辨率较小,需要处理器30更高精度的模数转换器。同时,测量量程也由于放大倍数的固定,受到限制。或者测温精度只能局限于某一区间的温度范围,而不能在整个量程内获得较高精度。因此,一些热电偶测温方案无法既能保证测量精度,又能使得测量范围比较宽。
基于上述原因,请参阅图5,图5是本申请实施例提供一种多点测温装置的结构示意图,如图5所示,所述信号处理电路20还包括第二基准电压模块23。
其中,所述第二基准电压模块23的输入端与第二参考电压信号连接,所述第二基准电压模块23的输出端与所述第一信号放大模块21的第一输入端或所述第一信号放大模块21的第二输入端连接。
所述第二基准电压模块23提供所述第二基准电压信号,第二基准电压信号加载于第一信号放大模块21的第一输入端或第一信号放大模 块21的第二输入端。
其中,第二参考电压信号与第一参考电压信号均为可调电压信号,第二参考电压信号可为处理器30通过数模转换端输出的电压信号,也可以为独立的基准源,例如通过REF3025/3012/431分压得来。第一参考电压信号与第二参考电压信号类似,也是可调电压信号。
需要注意的是,所述第一基准电压模块22的输出端与所述第二基准电压模块23的输出端分别连接于所述第一信号放大模块21的不同输入端。图中以第一基准电压信号加载于第一信号放大模块21的第一输入端,第二基准电压信号加载于第一信号放大模块21的第二输入端为例示出。
即,若第一基准电压信号加载于第一信号放大模块21的第一输入端,则第二基准电压信号加载于第一信号放大模块21的第二输入端,若第一基准电压信号加载于第一信号放大模块21的第二输入端,则第二基准电压信号加载于第一信号放大模块21的第一输入端。
因此,第一信号放大模块21的两个输入端均有基准电压信号,可以通过调整基准电压信号的电压值,使得第一信号放大模块21的输出端始终保持在比较合理的值,从而获得较宽温度范围的精准测量。并且,在较宽温度范围内,第一信号放大模块21始终能保持比较高的放大倍数,从而使得输出的放大信号的电压分辨率更高。
在一些实施例中,请继续参阅图5,该多点测温装置100还包括第二缓冲器50,所述第二缓冲器50的输入端与所述第二基准电压模块23的输出端连接,所述第二缓冲器50的输出端与所述第一信号放大模块 21的第一输入端或所述第一信号放大模块21的第二输入端连接。
所述第二缓冲器50对所述第二基准电压模块23与所述第一信号放大模块21进行隔离。
第二缓冲器50可以为跟随器,其具有输入阻抗大,输出阻抗小的特点,在本申请实施例中,用第二缓冲器50隔离第二基准电压模块23与第一信号放大模块21,可以使得第一信号放大模块21的放大倍数不受第二基准电压模块23的输出电阻的影响,使得第二基准电压模块23能够为第一信号放大模块21提供精准的第二基准电压信号。
需要注意的是,在上述实施例中,第一信号放大模块21的输出端或第二信号放大模块23的输出端均可以连接滤波模块,以对第一放大信号或第二放大信号进行滤波,消除其中的高频噪声信号。还可以在第一信号放大模块21的输入端或第二信号放大模块23的输入端连接滤波模块,用于对第一电势信号或第二电势信号进行滤波,还可以对第一基准电压信号或第二基准电压信号进行滤波,进一步提高温度检测的精确性。
各个滤波模块可通过各种形式实现,如无源滤波或有源滤波,在本申请实施例中,滤波模块可以采用无源滤波,成本更低。可以通过低通滤波器实现滤波,如RC滤波器等。
请参阅图6,图6是本申请实施例提供的一种多点测温装置的电路结构示意图,如图6所示,该第一信号放大模块21包括第一放大器U1、第一电阻R1、第二电阻R2、第三电阻R3以及第四电阻R4,第一基准电压模块22包括基准电压源(图中未示出),第一缓冲器40为第一电压 跟随器U2。
第一参考电压信号经过基准电压源,再经过分压得到第一基准电压信号vref1,该第一基准电压信号vref1经电阻接入第一电压跟随器U2的同相输入端,第一电压跟随器U2的反相输入端连接其输出端,第一电压跟随器U2的输出端还与第二电阻R2的一端连接。
第一放大器U1的同相输入端分别与第一电阻R1的一端、第二电阻R2的另一端连接。
第一电阻R1的另一端与热电偶10的第一电极VP连接,第一放大器U1的反相输入端分别与第三电阻R3的一端以及第四电阻R4的一端连接,第三电阻R3的另一端与热电偶10的第二电极VM连接,第四电阻R4的另一端与第一放大器U1的输出端连接。
该信号处理电路20还包括第一电容C1以及第二电容C2,第一电容C1串联于第一电压跟随器U2的输出端与第一放大器U1的同相输入端之间,第二电容C2串联于第一放大器U1的反相输入端与第一放大器U1的输出端之间,第一电容C1用于对第一基准电压信号vref1进行滤波,第二电容C2用于滤除所述第二电势信号中的高频噪声信号。
该信号处理电路20还可以包括第一滤波模块,第一滤波模块包括第五电阻R5、第六电阻R6、第三电容C3以及第四电容C4。第五电阻R5的一端与第一放大器U1的输出端连接,第五电阻R5的另一端分别与第六电阻R6的一端以及第三电容C3的一端连接,第六电阻R6的另一端分别与第四电容C4的一端以及处理器30连接,第三电容C3的另一端以及第四电容C4的另一端均接地。
热电偶10被设置于被测导体200上的某一位置点,热电偶10的第一电极VP输出第一电势信号,热电偶10的第二电极VM输出第二电势信号。第一基准电压信号vref1加载于第一放大器U1的同相输入端,第一放大器U1对第一电势信号与第二电势信号的差值进行放大,得到第一放大信号S1,第一放大信号S1经过第一滤波模块滤波以后,处理器30对滤波以后的第一放大信号S1进行处理和分析,得到被测导体200对应位置的温度。
每个热电偶10的第一电极VP与第二电极VM均直接分别与第一放大器U1的同相输入端与反相输入端连接,每个热电偶10的第一电极VP与第二电极VM均未接地,则第一电极VP与第一放大器U1的同相输入端之间没有分流电路,第二电极VM与第一放大器U1的反相输入端之间没有分流电路,每个热电偶10的第一电极VP与第二电极VM之间的电势差未受到其他电路干扰。
因此,任意两个热电偶10之间均互不影响,互不干扰,使得每个热电偶10均能精准检测对应位置的温度,进而使得该多点测温装置100能够精准检测被测导体200上多个位置的温度。
请参阅图7,图7是本申请实施例提供的一种多点测温装置的电路结构示意图,如图7所示,该第一信号放大模块21包括第一放大器U1、第七电阻R7、第八电阻R8以及第九电阻R9。第七电阻R7的一端连接热电偶10的第一电极VP,第七电阻R7的另一端连接第一放大器U1的同相输入端,热电偶10的第二电极VM连接第八电阻R8的一端,第八电阻R8的另一端分别与第九电阻R9的一端以及第一放大器U1的反相 输入端连接,第九电阻R9的另一端与第一放大器U1的输出端连接。
第一基准电压信号vref1加载于第一放大器U1的反相输入端。
第二信号放大模块23包括第十电阻R10、第十一电阻R11、第十二电阻R12以及第二放大器U3,第十电阻R10的一端与第一放大器U1的输出端连接,第十电阻R10的另一端与第二放大器U3的同相输入端连接,第十一电阻R11的一端接入第一基准电压信号vref1,第十一电阻R11的另一端与第二放大器U3的反相输入端,第十二电阻R12串联于第二放大器U3的反相输入端与输出端之间,第二放大器U3的输出端还与第一滤波模块连接,第二放大器U3输出的第二放大信号S2经第一滤波模块滤波以后,再传送至处理器30,由处理器30进行处理和分析,以得到被测导体200对应位置的温度。
第一基准电压模块22包括基准源U4、第四电容C4、第十三电阻R13以及第十四电阻R14。第一参考电压信号REF3V0接入基准源U4的输入端,基准源U4的输出端分别与第四电容C4的一端以及第十三电阻R13的一端连接,第四电容C4的另一端接地,第十三电阻R13的另一端分别与第十四电阻R14的一端以及第一电压跟随器U2的同相输入端连接,第十四电阻R14的另一端接地,第一电压跟随器U2的输出端输出第一基准电压信号vref1。
第一参考电压信号REF3V0经过基准源U4输出电压信号PP2V5,电压信号PP2V5经过第十三电阻R13与第十四电阻R14分压之后,得到第一基准电压信号vref1。第一参考电压信号REF3V0的电压为3V,第一基准电压信号vref1的电压为1V,第一基准电压信号vref1分别加载于第 一放大器U1的反相输入端以及第二放大器U3的反相输入端。
第一放大器U1对热电偶10的第一电势信号与第二电势信号的差值进行放大,得到第一放大信号S1,第一放大信号S1的电压为A1*Vth+1,其中,A1为第一信号放大器的放大增益,Vth为第一电势信号与第二电势信号的差值,1为第一基准电压信号vref1的电压。
第二放大器U3对第一放大信号S1与第一基准电压信号vref1的差值进行放大,得到第二放大信号S2,第二放大信号S2的电压为A2*(A1*Vth),其中A2为第二信号放大器的放大增益。
第二放大信号S2经第一滤波模块滤波以后,由处理器30进行处理和分析,得到被测导体200上对应位置的温度。
该多点测温装置100在第一放大器U1的基础上,加入第二放大器U3,且第一基准电压信号vref1分别加载于第一放大器U1的反相输入端与第二放大器U3的反相输入端,通过第二放大器U3消除第一基准电压信号vref1的影响,使得处理器30处理的信号只与热电偶10的第一电势信号与第二电势信号的差值有关,更进一步提高了多点测温装置100检测的精确度。
请参阅图8,图8是本申请实施例提供的一种多点测温装置的电路结构示意图,如图8所示,该第一信号放大模块21包括第一放大器U1、第七电阻R7、第八电阻R8以及第九电阻R9。第七电阻R7的一端连接热电偶10的第一电极VP,第七电阻R7的另一端连接第一放大器U1的同相输入端,热电偶10的第二电极VM连接第八电阻R8的一端,第八电阻R8的另一端分别与第九电阻R9的一端以及第一放大器U1的反相 输入端连接,第九电阻R9的另一端与第一放大器U1的输出端连接。
第一基准电压信号vref1加载于第一放大器U1的同相输入端。
第一基准电压模块22包括基准源U4、第四电容C4、第十三电阻R13以及第十四电阻R14,第一电压跟随器U2在本申请实施例中可省略。第一参考电压信号REF3V0接入基准源U4的输入端,基准源U4的输出端分别与第四电容C4的一端以及第十三电阻R13的一端连接,第四电容C4的另一端接地,第十三电阻R13的另一端分别与第十四电阻R14的一端以及第一放大器U1的同相输入端连接,第十四电阻R14的另一端接地。
第十三电阻R13与第十四电阻R14的共同连接点输出第一基准电压信号vref1,其加载于第一放大器U1的同相输入端。第一参考电压信号REF3V0为可调电压信号,其可通过电源经过电阻而得到。
图8中未示出第二基准电压模块23的具体电路组成,第二基准电压模块23的电路组成可以与第一基准电压模块22相同,也可以只包括基准电压源,使得第二参考电压信号经过第二基准模块输出第二基准电压信号vref2。在一些实施例中,第二参考电压信号为可调信号,第二基准电压模块23还可以省略,直接将第二参考电压信号的电压调整至第二基准电压信号vref2的电压,将调整后的第二参考电压信号作为第二基准电压信号vref2,在此不再赘述。
第二参考电压信号Vshift可通过集成于处理器30内部的数模转换器输出而得到,也可以使用单独的数模转换器芯片而得到。
该第一信号放大模块21还包括第十五电阻R15。第二缓冲器50为 第二电压跟随器U4,若将第二基准电压模块23省略,则第二参考电压信号Vshift接入第二电压跟随器U4的同相输入端,第二电压跟随器U4的反相输入端与第二电压跟随器U4的输出端连接,第二电压跟随器U4的输出端还经第十五电阻R15与第八电阻R8的一端连接。第二参考电压信号Vshift经第二电压跟随器U4输出第二基准电压信号vref2,第二基准电压信号vref2加载于第一放大器U1的反相输入端。在本申请实施例中,第二基准电压信号vref2的电压与第二参考电压信号Vshift的电压相同。
第一放大器U1输出的第一放大信号S1,第一放大信号S1经过第一滤波模块滤波,第一放大信号S1的电压为:
VVTEM_ADC=(R13/R7)*Vth-(R9/R15)*Vvref2+Vvref1
其中,Vth为第一电势信号与第二电势信号的差值,Vvref2为第二基准电压信号vref2的电压值,Vvref1为第一基准电压信号vref1的电压值。
在本申请实施例中,Vvref1为2.5,若R7=100R,R13=100K,R9=100K,R16=5.6K,则VVTEM_ADC=1000Vth-17.857*Vvref2+2.5。
现举例说明该多点测温装置100的工作原理:
当被测导体200对应位置的温度较低时,初始值默认第二基准电压信号vref2为0V,处理器30获取到的第一放大信号S1的电压为2.5V。
当温度升高,Vth开始变大,处理器30获取到的第一放大信号S1电压变大,例如:当第一放大器U1输出电压接近3.0V时,此时温度上升至10℃时,热电偶10两端电动势为0.5mV,处理器30开始调整第二基准 电压信号vref2增大,处理器30开始调整第二基准电压信号vref2的电压为2.5/16V(处理器30内部的DAC数模转换器将以REF_2V5为基准,2.5V为16级梯度,每级输出电压梯度增加2.5/16V),此时第一放大器U1输出值为VS1=1000*0.5*10^(-3)-17.857*2.5/16+2.5=0.21。
当温度为300℃时,对应热电偶10两端电动势为12.207mV。处理器30内部的DAC数模转换器输出5级电压梯度,第二基准电压信号vref2的电压Vvref2=0.7813V。
此时第一放大器U1输出值为:
VS1=1000*12.207*10^(-3)-17.857*2.5*5/16+2.5=0.7553V。
当温度为500度时,第二基准电压信号vref2的电压为:
Vvref2=2.5*8/16=1.25V。
此时第一放大器U1输出值为:
VS1=20.64*10^-3*1000-17.857*2.5*8/16+2.5=0.8188V。
当温度为1000度时,第二基准电压信号vref2的电压为:
Vvref2=2.5*15/16=2.3438V。
此时第一放大器U1输出值为:
VS1=41.269*10^-3*1000-17.857*2.5*15/16+2.5=1.9158V。
从以上举例可知,当被测导体200对应位置的温度变化时,通过处理器30检测和分析第一放大信号S1,然后通过内部DAC数模转换器动态调整第二基准电压信号vref2的数值,可以使第一放大信号S1始终保持在比较合理的值,从而获得较宽温度范围的精准测量。
两路基准电压信号分别加载于第一放大器U1的两个输入端,且第 一参考电压信号REF3V0与第二参考电压信号Vshift均为电压可调的信号,进而可以调整第一基准电压信号vref1的数值以及第二基准电压信号vref2的数值,以改变第一放大信号S1的数值范围,使其始终保持在处理器30的采样范围内,且第一放大信号S1的电压值保持较大的范围,以利于处理器30的精准采样,提高温度检测的精确性,以及拓宽温度检测的范围。
请参阅图9,图9是本申请实施例提供的一种温度控制方法的流程示意图,该温度控制方法应用于气溶胶生成装置,所述气溶胶生成装置包括用于加热气溶胶生成制品以生成气溶胶的发热体、用于向所述发热体提供功率的功率源、分别设置在所述发热体的不同位置点的第一热电偶和第二热电偶、以及控制器;其中,所述第一热电偶正极与所述第二热电偶负极之间没有电流流动,所述第一热电偶的负极与所述第二热电偶的正极之间没有电流流动。
如图9所示,该温度控制方法包括:
S91、通过第一热电偶获取被测导体上的第一位置点的第一采样信号;
S92、通过第二热电偶获取被测导体上的第二位置点的第二采样信号;
S93、根据所述第一采样信号与所述第二采样信号,分别确定所述第一位置点的温度与所述第二位置点的温度;
S94、根据所述第一位置点的温度和所述第二位置点的温度,调整所述发热体的功率输出。
该温度控制方法能够通过热电偶对被测导体上各个位置点的温度进行采样,再根据采样的信号确定对应位置的温度,最后根据各个位置点的温度调整发热体的功率输出,能够精确控制被测导体上各个位置点的温度,实现多个位置点的精确控温。
在一些实施例中,如图10所示,步骤S93包括:
S931、将第一基准电压信号分别加载于所述第一采样信号与所述第二采样信号,得到第一信号与第二信号;
S932、将所述第一信号与所述第二信号分别进行放大,得到第三放大信号与第四放大信号;
S933、根据所述第三放大信号与所述第四放大信号分别确定所述第一位置点的温度与所述第二位置点的温度。
第一基准电压信号的加入可提高信号处理的精确性,进而提高温度检测的精确性。
在一些实施例中,如图11所示,步骤S933包括:
S9331、将所述第三放大信号与所述第一基准电压信号的差值进行放大,得到第五放大信号;
S9332、将所述第四放大信号与所述第一基准电压信号的差值进行放大,得到第六放大信号;
S9333、根据所述第五放大信号与所述第六放大信号分别确定所述第一位置点的温度与所述第二位置点的温度。
消除第三放大信号与第四放大信号中第一基准电压信号的影响,使得第五放大信号与第六放大信号中只与第一采样信号与第二采样信号 相关,进一步提高各个位置点的温度检测的精确性。
在一些实施例中,如图12所示,步骤S93还包括:
S934、将第一基准电压信号与第二基准电压信号均加载于所述第一采样信号,得到第三信号;
S935、将第一基准电压信号与第二基准电压信号均加载于所述第二采样信号,得到第四信号;
S936、将所述第三信号与所述第四信号分别进行放大,得到第七放大信号与第八放大信号;
S937、根据所述第七放大信号与所述第八放大信号,分别确定所述第一位置点的温度与所述第二位置点的温度。
双基准电压信号的加入,可在精确检测对应位置点温度的基础上,拓宽温度检测范围。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (15)

  1. 一种应用于气溶胶生成装置的多点测温装置,其特征在于,所述多点测温装置包括:至少两个热电偶、至少两个信号处理电路以及处理器;
    所述至少两个热电偶设置于被测导体上的不同位置点,且所述热电偶与所述被测导体上的各个位置点一一对应,所述热电偶与所述信号处理电路一一对应;
    其中,所述热电偶包括第一电极和第二电极,所述第一电极与对应的所述信号处理电路的第一输入端连接,所述第二电极与对应的所述信号处理电路的第二输入端连接,所述信号处理电路的输出端与所述处理器连接;
    其中,所述热电偶用于检测所述被测导体上的对应位置的温度,通过所述第一电极输出第一电势信号及通过所述第二电极输出第二电势信号,所述第一电势信号与所述第二电势信号经过所述信号处理电路处理,得到第一电压信号,所述第一电压信号经过所述处理器处理之后,得到所述被测导体对应位置的温度;
    其中,任意两个所述热电偶之间没有电流流动。
  2. 根据权利要求1所述的多点测温装置,其特征在于,所述第一电极与所述信号处理电路的第一输入端之间没有分流电路,且所述第二电极与所述信号处理电路的第二输入端之间没有分流电路。
  3. 根据权利要求1所述的多点测温装置,其特征在于,所述至少 两个热电偶包括第一热电偶和第二热电偶,所述第一热电偶的第一电极与所述第二热电偶的第二电极之间未形成闭合回路,所述第一热电偶的第二电极与所述第二热电偶的第一电极之间未形成闭合回路。
  4. 根据权利要求1-3任一项所述的多点测温装置,其特征在于,所述信号处理电路包括第一信号放大模块与第一基准电压模块;
    所述第一基准电压模块的输入端与第一参考电压信号连接,所述第一基准电压模块的输出端与所述第一信号放大模块的第一输入端或所述第一信号放大模块的第二输入端连接,所述第一基准电压模块用于提供第一基准电压信号;
    所述第一信号放大模块的第一输入端与所述第一电极连接,所述第一信号放大模块的第二输入端与所述第二电极连接,所述第一信号放大模块的输出端与所述处理器连接,所述第一信号放大模块用于对所述第一电势信号与所述第二电势信号的差值进行放大,得到第一放大信号,以使所述处理器对所述第一放大信号进行处理得到所述被测导体对应位置的温度。
  5. 根据权利要求4所述的多点测温装置,其特征在于,还包括第一缓冲器;
    所述第一缓冲器的输入端与所述第一基准电压模块的输出端连接,所述第一缓冲器的输出端与所述第一信号放大模块的第一输入端或所述第一信号放大模块的第二输入端连接,所述第一缓冲器用于对所述第一基准电压模块与所述第一信号放大模块进行隔离。
  6. 根据权利要求4所述的多点测温装置,其特征在于,所述信号 处理电路还包括第二信号放大模块;
    其中,所述第二信号放大模块串联于所述第一信号放大模块的输出端与所述处理器之间,所述第二信号放大模块的第一输入端与所述第一信号放大模块的输出端连接,所述第二信号放大模块的第二输入端用于接入所述第一基准电压信号,所述第二信号放大模块的输出端与所述处理器连接,所述第二信号放大模块用于对所述第一放大信号与所述第一基准电压信号的差值进行放大,得到第二放大信号,以使所述处理器根据所述第二放大信号进行处理得到对应位置的温度。
  7. 根据权利要求4所述的多点测温装置,其特征在于,所述信号处理电路还包括第二基准电压模块;
    所述第二基准电压模块的输入端与第二参考电压信号连接,所述第二基准电压模块的输出端与所述第一信号放大模块的第一输入端或所述第一信号放大模块的第二输入端连接,所述第二基准电压模块用于提供所述第二基准电压信号;
    其中,所述第一基准电压模块的输出端与所述第二基准电压模块的输出端分别连接于所述第一信号放大模块的不同输入端。
  8. 根据权利要求7所述的多点测温装置,其特征在于,还包括第二缓冲器;
    所述第二缓冲器的输入端与所述第二基准电压模块的输出端连接,所述第二缓冲器的输出端与所述第一信号放大模块的第一输入端或所述第一信号放大模块的第二输入端连接,所述第二缓冲器用于对所述第二基准电压模块与所述第一信号放大模块进行隔离。
  9. 根据权利要求7所述的多点测温装置,其特征在于,所述第二参考电压信号可调电压信号。
  10. 一种气溶胶生成装置,其特征在于,所述气溶胶生成装置包括用于加热气溶胶生成制品以生成气溶胶的发热体、用于向所述发热体提供功率的功率源和控制器,以及如权利要求1-9任一项所述的多点测温装置;
    所述发热体为导体,所述发热体包括多个加热区;
    所述至少两个热电偶被设置于所述发热体的不同加热区处;以及,
    所述控制器用于根据各个所述加热区的温度,调节所述功率源向至少一个所述加热区所提供的功率。
  11. 根据权利要求10所述的气溶胶生成装置,其特征在于,所述发热体为电阻发热体、半导体、电阻薄膜加热器或者红外薄膜加热器。
  12. 一种应用于气溶胶生成装置的温度控制方法,其特征在于,所述气溶胶生成装置包括用于加热气溶胶生成制品以生成气溶胶的发热体、用于向所述发热体提供功率的功率源、分别设置在所述发热体的不同位置点的第一热电偶和第二热电偶、以及控制器;其中,所述第一热电偶正极与所述第二热电偶负极之间没有电流流动,所述第一热电偶的负极与所述第二热电偶的正极之间没有电流流动;所述方法包括:
    通过第一热电偶获取被测导体上的第一位置点的第一采样信号;
    通过第二热电偶获取被测导体上的第二位置点的第二采样信号;
    根据所述第一采样信号与所述第二采样信号,分别确定所述第一位置点的温度与所述第二位置点的温度;
    根据所述第一位置点的温度和所述第二位置点的温度,调整所述发热体的功率输出。
  13. 根据权利要求12所述的温度控制方法,其特征在于,所述根据所述第一采样信号与所述第二采样信号,分别确定所述第一位置点的温度与所述第二位置点的温度,包括:
    将第一基准电压信号分别加载于所述第一采样信号与所述第二采样信号,得到第一信号与第二信号;
    将所述第一信号与所述第二信号分别进行放大,得到第三放大信号与第四放大信号;
    根据所述第三放大信号与所述第四放大信号分别确定所述第一位置点的温度与所述第二位置点的温度。
  14. 根据权利要求13所述的温度控制方法,其特征在于,所述根据所述第三放大信号与所述第四放大信号分别确定所述第一位置点的温度与所述第二位置点的温度,包括:
    将所述第三放大信号与所述第一基准电压信号的差值进行放大,得到第五放大信号;
    将所述第四放大信号与所述第一基准电压信号的差值进行放大,得到第六放大信号;
    根据所述第五放大信号与所述第六放大信号分别确定所述第一位置点的温度与所述第二位置点的温度。
  15. 根据权利要求12所述的温度控制方法,其特征在于,所述根据所述第一采样信号与所述第二采样信号,分别确定所述第一位置点的 温度与所述第二位置点的温度,还包括:
    将第一基准电压信号与第二基准电压信号均加载于所述第一采样信号,得到第三信号;
    将第一基准电压信号与第二基准电压信号均加载于所述第二采样信号,得到第四信号;
    将所述第三信号与所述第四信号分别进行放大,得到第七放大信号与第八放大信号;
    根据所述第七放大信号与所述第八放大信号,分别确定所述第一位置点的温度与所述第二位置点的温度。
PCT/CN2023/109938 2022-08-18 2023-07-28 一种多点测温装置、气溶胶生成装置以及温度控制方法 WO2024037313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211003897.4A CN117629436A (zh) 2022-08-18 2022-08-18 一种多点测温装置、气溶胶生成装置以及温度控制方法
CN202211003897.4 2022-08-18

Publications (1)

Publication Number Publication Date
WO2024037313A1 true WO2024037313A1 (zh) 2024-02-22

Family

ID=89940648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109938 WO2024037313A1 (zh) 2022-08-18 2023-07-28 一种多点测温装置、气溶胶生成装置以及温度控制方法

Country Status (2)

Country Link
CN (1) CN117629436A (zh)
WO (1) WO2024037313A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441115A (zh) * 2008-12-25 2009-05-27 哈尔滨工程大学 用热电偶测量通直流电金属表面不同位置多点温度的方法
US20130144549A1 (en) * 2011-12-01 2013-06-06 Grigori Temkine Method for calibrating temperature sensors using reference voltages
CN103668128A (zh) * 2012-09-04 2014-03-26 中晟光电设备(上海)有限公司 Mocvd设备、温度控制系统及控制方法
CN103913249A (zh) * 2012-12-29 2014-07-09 北京谊安医疗系统股份有限公司 一种温度监测电路装置和方法
CN112385902A (zh) * 2020-11-03 2021-02-23 深圳市合元科技有限公司 一种气溶胶生成装置
CN112729579A (zh) * 2020-12-21 2021-04-30 中国兵器装备集团自动化研究所 一种多通道隔离的热电偶测温系统
CN215726424U (zh) * 2020-11-19 2022-02-01 中国石油天然气股份有限公司 管道温度监测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441115A (zh) * 2008-12-25 2009-05-27 哈尔滨工程大学 用热电偶测量通直流电金属表面不同位置多点温度的方法
US20130144549A1 (en) * 2011-12-01 2013-06-06 Grigori Temkine Method for calibrating temperature sensors using reference voltages
CN103668128A (zh) * 2012-09-04 2014-03-26 中晟光电设备(上海)有限公司 Mocvd设备、温度控制系统及控制方法
CN103913249A (zh) * 2012-12-29 2014-07-09 北京谊安医疗系统股份有限公司 一种温度监测电路装置和方法
CN112385902A (zh) * 2020-11-03 2021-02-23 深圳市合元科技有限公司 一种气溶胶生成装置
CN215726424U (zh) * 2020-11-19 2022-02-01 中国石油天然气股份有限公司 管道温度监测装置
CN112729579A (zh) * 2020-12-21 2021-04-30 中国兵器装备集团自动化研究所 一种多通道隔离的热电偶测温系统

Also Published As

Publication number Publication date
CN117629436A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
Efremov et al. Ultrasensitive, fast, thin-film differential scanning calorimeter
JP2019060848A (ja) ガスセンサ
CN107941363B (zh) 基于程控双恒流电源的温度变送装置及方法
Islam et al. Relaxation oscillator-based active bridge circuit for linearly converting resistance to frequency of resistive sensor
JP2928306B2 (ja) ガスの熱伝導率測定方法およびその装置
CN108618206B (zh) 烟具设备及用于该烟具设备的测温控温方法
WO2009003395A1 (fr) Dispositif et procédé de mesure de courant et de température en ligne à grande plage et grande précision
CN110236230A (zh) 电子烟的温控装置及电子烟
Jagtap et al. Study on I–V characteristics of lead free NTC thick film thermistor for self heating application
WO2022156740A1 (zh) 一种直接原位综合测量微纳材料热电性能的方法及装置
WO2024037313A1 (zh) 一种多点测温装置、气溶胶生成装置以及温度控制方法
CN111157039B (zh) 一种可同时检测湿度、温度和流量的多功能气体传感器及其制备方法
Sundeen et al. Thermal sensor properties of cermet resistor films on silicon substrates
CN107014452A (zh) 恒温差热式流量传感器的流量检测电路
WO2019196003A1 (zh) 烟具设备及用于该烟具设备的测温控温方法
WO2015131539A1 (zh) 一种温度测量装置
Ivanisevic et al. Impedance spectroscopy based on linear system identification
CN208350229U (zh) 一种热电阻温度计
TWI644107B (zh) 感測器的讀取電路及其讀取方法
CN113532681B (zh) 利用电阻热噪声电压测量电阻元件温度的系统及方法
CN112798872B (zh) 一种触摸屏电容检测电路
WO2018170802A1 (zh) 电子吸烟器的温度控制装置
CN208016909U (zh) 一种发热装置的温控系统及低温卷烟
Iyengar The steady‐state temperature difference in the Hill‐Baldes technique
CN220255729U (zh) 温度检测电路与电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854217

Country of ref document: EP

Kind code of ref document: A1