WO2024037060A1 - 一种资源配置方法及装置 - Google Patents

一种资源配置方法及装置 Download PDF

Info

Publication number
WO2024037060A1
WO2024037060A1 PCT/CN2023/092917 CN2023092917W WO2024037060A1 WO 2024037060 A1 WO2024037060 A1 WO 2024037060A1 CN 2023092917 W CN2023092917 W CN 2023092917W WO 2024037060 A1 WO2024037060 A1 WO 2024037060A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resources
terminal
cell
mac
Prior art date
Application number
PCT/CN2023/092917
Other languages
English (en)
French (fr)
Inventor
王妮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024037060A1 publication Critical patent/WO2024037060A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a resource configuration method and device.
  • the base station can send a channel-state information reference signal (CSI-RS) to the terminal to measure the quality of the downlink channel.
  • CSI-RS channel-state information reference signal
  • the terminal can measure the received CSI-RS, determine the measurement results, and feed back the measurement results to the base station.
  • the base station can adjust the scheduling strategy for subsequent downlink data based on the measurement results fed back by the terminal.
  • the base station configures CSI-RS resources to the terminal in advance, and the terminal detects the CSI-RS on the configured resources. How the base station configures CSI-RS resources to the terminal is a matter of concern in the embodiments of this application.
  • Embodiments of the present application provide a resource configuration method and device, so that the base station configures CSI-RS resources to the terminal.
  • a resource configuration method is provided.
  • the execution subject of the method is a terminal, or a component (processor, chip, etc.) provided in the terminal.
  • the method includes: in the terminal When accessing the first cell, the terminal receives a radio resource control RRC message from the network device.
  • the RRC message is used to configure N channel state information-reference signal CSI-RS resources for the terminal, where N is a positive integer.
  • the RRC message includes a CSI-RS resource set configured for the terminal, and the CSI-RS resource set includes N CSI-RS resources; in the first location area of the terminal in the first cell In case of CSI-RS is measured on M1 CSI-RS resources in the resource, the M1 CSI-RS resources at least include CSI-RS resources associated with the first location area, and M1 is a positive integer less than or equal to N; in In the same cycle, the terminal measures the CSI-RS from the network device on the M1 CSI-RS resources.
  • the network device configures the CSI-RS resources associated with the first cell to the terminal through the RRC message; when the terminal moves to the first cell
  • the network device sends the MAC CE to the terminal and activates the CSI-RS associated with the first location area. resource.
  • the terminal periodically measures CSI-RS on the activated CSI-RS resources.
  • the base station configures CSI-RS resources for the terminal through RRC signaling, and the terminal directly measures CSI-RS on the configured CSI-RS resources.
  • one RRC signaling is configured with up to 8 CSI-RS resources, and one location area is associated with at least one CSI-RS resource.
  • the network equipment Frequent RRC reconfiguration is required for the terminal.
  • the network device configures the CSI-RS resources associated with the cell to the terminal through RRC signaling; when the terminal moves to a certain location area in the cell
  • the CSI-RS resources associated with the location area are activated through MAC CE signaling, and the terminal measures CSI-RS on the activated CSI-RS resources.
  • the network equipment when a terminal accesses a certain cell, the network equipment does not need to perform frequent RRC reconfiguration, and only needs the MAC CE to activate the CSI-RS resources associated with different location areas.
  • the air interface overhead is usually dozens of bits, and the air interface overhead of MAC CE is usually more than ten bits. Therefore, using the above solution can save the air interface overhead of CSI-RS resource configuration.
  • the above M1 CSI-RS resources may also include CSI-RS resources associated with other location areas, such as the first location CSI-RS resources of multiple location areas adjacent to the area.
  • the network device can activate the terminal to measure CSI-RS on the CSI-RS resources associated with multiple location areas through a MAC CE. There is no need for the terminal to send a MAC CE to activate the corresponding CSI-RS every time it moves to a location area, thus Further reduce the air interface overhead of CSI-RS resource configuration.
  • the terminal supports measuring CSI-RS on at most X CSI-RS resources in the same cycle, where X is a positive integer less than or equal to N.
  • the application scenario for the first aspect is a scenario where the terminal's ability to support CSI-RS measurement is less than all CSI-RS resources associated with one cell. In this case, the terminal's capability cannot support the terminal to perform CSI-RS measurements on all CSI-RS resources associated with a cell at the same time.
  • the method when the terminal moves from the first location area in the first cell to the second location area in the first cell, the method further includes: the terminal receives data from the network.
  • the second MAC CE of the device the second MAC CE is used to activate the terminal to measure the CSI-RS on M2 CSI-RS resources among the N CSI-RS resources in the same cycle,
  • the M2 CSI-RS resources at least include CSI-RS resources associated with the second location area, and M2 is a positive integer less than or equal to N.
  • the network device when the terminal moves to the first location area, the network device sends the first MAC CE to the terminal.
  • the first MAC CE is used to activate the CSI-RS resources associated with the first location area.
  • the terminal is in the first location. Measure CSI-RS on the CSI-RS resources associated with the area; and when the terminal moves to the second location area, the network device sends a second MAC CE to the terminal, and the second MAC CE is used to activate the CSI-RS associated with the second location area.
  • the terminal measures CSI-RS on the CSI-RS resources associated with the second location area, thereby enabling the terminal to measure CSI-RS on the corresponding CSI-RS resources through MAC CE activation according to the location area of the terminal.
  • the N CSI-RS resources are all CSI-RS resources associated with the first cell.
  • the first cell includes at least one location area, and each location area is associated with at least one CSI-RS resource.
  • All CSI-RS resources associated with the first cell may refer to: CSI associated with all location areas included in the first cell. -RS resources.
  • the location area may also be called a beam or the like.
  • the network device configures all CSI-RS resources associated with the cell to the terminal at once through RRC signaling. Subsequently, depending on the location area that the terminal accesses, the terminal is activated through MAC CE to measure CSI-RS on the corresponding CSI-RS resources.
  • the network device only needs to perform RRC configuration once, and there is no need to perform frequent RRC reconfiguration.
  • the network device needs to send MAC CE to activate the corresponding CSI-RS according to the location area of the terminal in the cell. The network device may need to send MAC CE multiple times. signaling.
  • an RRC configuration process includes: downlink DCI or downlink PDSCH+ACK or NACK+SR+downlink DCI+BSR+downlink DCI+uplink PUSCH (reconfiguration completed). The entire process includes 3 downlink interactions and 4 uplink interactions.
  • a MAC CE signaling process includes: downlink DCI or downlink PDSCH + uplink ACK or NACK, the entire process includes 1 downlink interaction and 1 uplink interaction.
  • the first location area is associated with at least one CSI-RS resource
  • the second location area is associated with at least one CSI-RS resource
  • a resource allocation method is provided.
  • the second aspect corresponds to the first aspect.
  • the beneficial effects can be found in the records of the first aspect.
  • the execution subject of the method is a network device, or a component configured in the network device ( processor, chip or others), taking the network device as the execution subject as an example, the method includes: when the terminal accesses the first cell, the network device sends a radio resource control RRC message to the terminal, and the RRC message Used to configure N channel state information-reference signal CSI-RS resources for the terminal.
  • the RRC message includes a CSI-RS resource set configured for the terminal, and the CSI-RS resource set includes N CSI-RS resources, etc., where N is a positive integer; the network device configures the terminal according to the The CSI-RS resources associated with the first location area in the cell determine M1 CSI-RS resources among the N CSI-RS resources, and the M1 CSI-RS resources at least include the first location area.
  • the associated CSI-RS resource, M1 is a positive integer less than or equal to N; the network device sends the first media access control MAC control information element CE to the terminal, and the first MAC CE is used to activate the terminal at the same time Within one cycle, CSI-RS is measured on the M1 CSI-RS resources.
  • the terminal supports measuring the CSI-RS on at most X CSI-RS resources in the same cycle, where X is a positive integer less than or equal to N.
  • the method when the terminal moves from the first location area in the first cell to a second location area in the first cell, the method further includes: a network device based on the second location area.
  • CSI-RS resources associated with the location area determine M2 CSI-RS resources among the N CSI-RS resources, and the M2 CSI-RS resources at least include CSI-RS resources associated with the second location area , M2 is a positive integer less than or equal to N; the network device sends a second MAC CE to the terminal, and the second MAC CE is used to activate the terminal in the M2 CSI-RS resources in the same cycle.
  • the CSI-RS is measured on.
  • the method further includes: the network device determines the N CSI-RS resources according to the CSI-RS resources associated with the first cell.
  • the N CSI-RS resources are all CSI-RS resources associated with the first cell.
  • the first location area is associated with at least one CSI-RS resource
  • the second location area is associated with at least one CSI-RS resource
  • a resource allocation method is provided.
  • the execution subject of the method is a terminal, or a component (processor, chip or others) configured in the terminal. Taking the terminal as the execution subject as an example, the method includes: When the terminal accesses the first cell, the terminal receives a first radio resource control RRC message from the network device, where the first RRC message is used to configure N1 channel state information-reference signal CSI-RS resources for the terminal.
  • the first RRC message includes a first CSI-RS resource set, and the first CSI-RS resource set includes N1 CSI-RS resources, N1 is a positive integer less than or equal to X, and X is the terminal
  • the maximum number of CSI-RS resources supported, X is a positive integer; optionally, the N1 CSI-RS resources are all CSI-RS resources associated with the first cell.
  • the terminal measures CSI-RS from the network device on the N1 CSI-RS resources.
  • the network device configures all CSI-RS resources associated with the first cell to the terminal through RRC messages.
  • the terminal measures CSI-RS on all CSI-RS resources configured in the RRC message.
  • the terminal does not need to perform frequent RRC reconfiguration when accessing each cell.
  • the method further includes: the terminal sending capability information to the network device, where the capability information is used to indicate that the terminal supports measuring the CSI-RS on up to X CSI-RS resources in the same cycle. RS.
  • the terminal can proactively report capability information to the network device, or the network device can initiate a terminal capability query command. When the terminal receives the query command, it reports the terminal's own capabilities to the network device, without limitation.
  • the network device when the network device receives the terminal's capability information, it can determine whether the X number of simultaneously measured CSI-RS resources supported in the terminal's capability information are greater than the CSI-RS resources associated with one cell. If it is greater than the CSI-RS resources associated with one cell, it indicates the terminal's ability to support the terminal in measuring the CSI-RS resources associated with one cell at the same time. Then the CSI-RS resources associated with one cell can be configured to the terminal through RRC messages. Correspondingly, the terminal measures CSI-RS on the CSI-RS resources associated with a cell according to the configuration of the RRC message. When the terminal moves within a cell, it does not need to perform frequent RRC reconfiguration, saving the overhead of CSI-RS resource configuration.
  • the method further includes: the terminal receives a first media access control MAC control element CE from the network device, and the first MAC CE is used to activate the terminal in the same cycle.
  • the CSI-RS is measured on N1 CSI-RS resources.
  • the terminal when the terminal receives the RRC message from the network device, it does not directly perform CSI-RS measurement according to the configuration of the RRC message. Instead, it performs the corresponding CSI-RS measurement when it receives the activation command of MAC CE.
  • network equipment can flexibly control the time when the terminal performs CSI-RS measurements. For example, the network device may pre-configure N1 CSI-RS resources associated with the first cell to the terminal, but for some reason, the terminal may be allowed to start performing CSI-RS measurement when a certain condition is met.
  • the network device can flexibly control the time when the terminal starts CSI-RS measurement, preventing the terminal from performing invalid CSI-RS measurements and saving the energy consumption of the terminal.
  • the method when the terminal switches from the first cell to the second cell, the method further includes: the terminal receives a second RRC message from the network device, and the second RRC message is used to The terminal configures N1 CSI-RS resources.
  • the second RRC message includes a second CSI-RS resource set, and the second CSI-RS resource set includes N2 CSI-RS resources, where N2 is a positive integer less than or equal to X; optionally, the The N2 CSI-RS resources are all CSI-RS resources associated with the second cell.
  • the terminal measures the CSI-RS from the network device on the N2 CSI-RS resources.
  • the network device configures the CSI-RS resources associated with the cell to the terminal, and subsequent terminals perform CSI-RS measurements on the configured CSI-RS resources, eliminating the need for frequent RRC configuration. , reduce air interface overhead.
  • the terminal also includes: the terminal receives a second MAC CE from the network device, and the second MAC CE is used to activate the terminal on the N2 CSI-RS resources in the same cycle. Measure the CSI-RS.
  • the network device can configure the CSI-RS resources associated with the cell to the terminal.
  • the terminal receives the RRC configuration, it does not directly perform CSI-RS measurement on the CSI-RS resources configured by RRC. Instead, it performs CSI-RS measurement after receiving the activation of MAC CE, so that the network device can Flexibly control the time when the terminal performs CSI-RS measurement to avoid invalid CSI-RS measurement by the terminal.
  • the fourth aspect provides a resource allocation method.
  • the fourth aspect corresponds to the third aspect.
  • the beneficial effects can be found in the records of the third aspect.
  • the execution subject of the method is a network device, or a component configured in the network device ( processor, chip or others), taking the network device as the execution subject as an example, the method includes: when the terminal accesses the first cell, the network device uses the channel state information-reference signal CSI associated with the first cell. -RS resources, determine N1 CSI-RS resources, N1 is a positive integer less than or equal to X, X is the CSI-RS supported by the terminal in the same cycle The maximum number of resources, X is a positive integer; optionally, the N1 CSI-RS resources are all CSI-RS resources associated with the first cell.
  • the network device sends a first radio resource control RRC message to the terminal, where the first RRC message is used to configure the terminal to measure CSI-RS on N1 CSI-RS resources in the same cycle.
  • the first RRC message includes a first CSI-RS resource set, and the first CSI-RS resource set includes the N1 CSI-RS resources.
  • the method further includes: the network device receives capability information from the terminal, where the capability information is used to indicate that the terminal supports measuring the CSI on up to X CSI-RS resources in the same cycle. -RS.
  • the network device sends a first media access control MAC control element CE to the terminal, and the first MAC CE is used to activate the terminal in the same cycle, in the N1
  • the CSI-RS is measured on CSI-RS resources.
  • the method when the terminal is handed over from the first cell to the second cell, the method further includes: the network device determines N2 CSI-RS resources based on the CSI-RS resources associated with the second cell.
  • N2 is a positive integer less than or equal to X; optionally, the N2 CSI-RS resources are all CSI-RS resources associated with the second cell.
  • the network device sends a second RRC message to the terminal, where the second RRC message is used to configure the terminal to measure the CSI-RS on the N2 CSI-RS resources in the same cycle.
  • the second RRC message includes a second CSI-RS resource set, and the second CSI-RS resource set includes the N2 CSI-RS resources.
  • the network device sends a second MAC CE to the terminal, and the second MAC CE is used to activate the terminal to measure on the N2 CSI-RS resources in the same cycle.
  • the CSI-RS is used to activate the terminal to measure on the N2 CSI-RS resources in the same cycle.
  • a device in a fifth aspect, includes a unit or module corresponding to the method described in the first, second, third or fourth aspect.
  • the unit or module can be implemented by a hardware circuit. Either implemented through software, or implemented through hardware circuit combined with software.
  • a device including a processor and an interface circuit.
  • the processor is configured to communicate with other devices through the interface circuit and perform the steps described in the first, second, third or fourth aspect. Methods.
  • the processor includes one or more.
  • a device including a processor coupled to a memory, the processor being configured to call a program stored in the memory to execute the description in the first aspect, the second aspect, the third aspect or the fourth aspect.
  • the memory may be located within the device or external to the device.
  • the processor can be one or more.
  • An eighth aspect provides a device, including a processor and a memory; the memory is used to store computer instructions, and when the device is running, the processor executes the computer instructions stored in the memory, so that the device executes the above-mentioned first A method described in the aspect, the second aspect, the third aspect or the fourth aspect.
  • a chip system including: a processor for executing the method described in the above first aspect, second aspect, third aspect or fourth aspect.
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium.
  • the computer-readable storage medium is run on a communication device, the above-mentioned first aspect, second aspect, third aspect or The method in the fourth aspect is executed.
  • a computer program product includes a computer program or instructions.
  • the computer program or instructions are run by a device, the above-mentioned first aspect, second aspect, third aspect or fourth aspect is achieved. The methods in the aspect are executed.
  • a twelfth aspect provides a system, including a device corresponding to the first aspect and a device corresponding to the second aspect, or a device corresponding to the third aspect and a device corresponding to the fourth aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of CSI-RS resource configuration provided by an embodiment of the present application.
  • FIGS 3 and 5 are flow charts of resource configuration provided by embodiments of the present application.
  • Figure 4 is a schematic diagram of a cell beam provided by an embodiment of the present application.
  • FIGS 6 and 7 are schematic diagrams of devices provided by embodiments of the present application.
  • FIG 1 is a schematic architectural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a wireless access network 100 and a core network 200.
  • the communication system 1000 may also include the Internet 300.
  • the radio access network 100 may include at least one radio access network device (110a and 110b in Figure 1), and may also include at least one terminal (120a-120j in Figure 1).
  • the terminal is connected to the wireless access network equipment through wireless means, and the wireless access network equipment is connected to the core network through wireless or wired means.
  • the core network equipment and the radio access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical device, or they can be one physical device.
  • Figure 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Figure 1 .
  • Wireless access network equipment can be a base station, an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), or the next generation of the fifth generation (5th generation, 5G) mobile communication system.
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the wireless fidelity (WiFi) system etc.; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the base station’s radio resource control (RRC) protocol and packet data convergence protocol (PDCP), and can also complete the service data adaptation protocol (SDAP) function;
  • DU completes the functions of the radio link control (RLC) layer and medium access control (MAC) layer of the base station, and can also complete part of the physical (PHY) layer or all of the physical layer.
  • Functions for specific descriptions of each of the above protocol layers, please refer to the relevant technical specifications of the 3rd generation partnership project (3GPP).
  • the wireless access network equipment may be a macro base station (110a in Figure 1), a micro base station or an indoor station (110b in Figure 1), or a relay node or donor node.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the wireless access network equipment.
  • the following description takes a base station as an example of a radio access network device.
  • the terminal may also be called terminal equipment, user equipment (UE), mobile station, mobile terminal, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, machinery arms, smart home devices, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal.
  • Base stations and terminals can be fixed-location or mobile. Base stations and terminals can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. The embodiments of this application do not limit the application scenarios of base stations and terminals.
  • the helicopter or drone 120i in Figure 1 may be configured as a mobile base station.
  • the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is through a wireless air interface protocol.
  • communication between 110a and 120i can also be carried out through an interface protocol between base stations.
  • relative to 110a, 120i is also a base station. Therefore, both base stations and terminals can be collectively called communication devices.
  • 110a and 110b in Figure 1 can be called communication devices with base station functions
  • 120a-120j in Figure 1 can be called communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time; it can communicate through 6,000 It can communicate using spectrum below gigahertz (GHz), it can also communicate through spectrum above 6GHz, and it can also communicate using spectrum below 6GHz and spectrum above 6GHz at the same time.
  • GHz gigahertz
  • the embodiments of this application do not limit the spectrum resources used for wireless communication.
  • the functions of the base station can also be executed by modules (such as chips) in the base station, or by a control subsystem that includes the base station functions.
  • the control subsystem containing base station functions here can be the control center in the above application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal can also be performed by modules in the terminal (such as chips or modems), or by a device containing the terminal functions.
  • the base station sends downlink signals or downlink information to the terminal, and the downlink signal or downlink information is carried on the downlink channel; the terminal sends uplink signals or uplink information to the base station, and the uplink signal or uplink information is carried on the uplink channel.
  • the terminal In order to communicate with the base station, the terminal establishes a wireless connection with the cell controlled by the base station.
  • the cell with which a terminal has established a wireless connection is called the serving cell of the terminal.
  • the serving cell When the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • the process for terminals to report downlink channel quality to the base station includes: the base station sends channel-state information reference signal (CSI-RS) according to the configuration.
  • the terminal measures the CSI-RS and reports the measurement results.
  • the base station schedules downlink data based on the reported measurement results.
  • the measurement results include but are not limited to at least one of the following: channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (precoding matrix indicator, PMI) or rank indicator (rank indication, RI), etc., which can be referred to as three A kind of indicator (3indicator, 3I) measurement result.
  • channel quality indicator channel quality indicator
  • CQI channel quality indicator
  • precoding matrix indicator precoding matrix indicator
  • PMI rank indicator
  • RI rank indication
  • CSI-RS resource setting Instruct the terminal to select which CSI-RS resources to measure and report the measurement results.
  • the CSI-RS resource configuration may be referred to as resource configuration for short.
  • CSI-RS reporting setting Rules for instructing terminals to report measurement results, which may include reported time domain resources, frequency domain resources, and reported measurement quantities.
  • CSI-RS reporting configuration may be referred to as reporting configuration.
  • each report configuration is associated with a resource configuration and can be used as a measurement task. For example, if the terminal measures CSI-RS on a resource corresponding to a certain resource configuration, the terminal can report the measurement results to the terminal according to the reporting configuration associated with the resource configuration.
  • the type of report configuration can include periodic, aperiodic, or semi-static.
  • the CSI-RS resource configuration includes at least one of the following:
  • CSI-RS resource configuration identity used to identify CSI-RS resource configuration
  • CSI-RS resource set list (CSI-RS resource set list), including at least one CSI-RS resource set.
  • CSI-RS resource set list (CSI-RS resource set list), including at least one CSI-RS resource set.
  • CSI-RS resource set list For periodic CSI-RS, a CSI-RS resource set is included, and each CSI-RS resource set includes up to 8 CSI-RS resources.
  • CSI-RS resource set For aperiodic and semi-static CSI-RS, multiple CSI-RS resource sets are included.
  • the parameters configured in each CSI-RS resource please refer to the description in the protocol 3GPP TS 38.331.
  • the parameters configured for each CSI-RS resource include at least one of the following: resource mapping configuration (resource mapping), power control offset (power control offset), power control offset synchronization signal (synchronization signal, SS) ( power control offset SS), scrambling ID (scrambling ID), periodicity and offset configuration (periodicity and offset), or quasi-co-location (QCL) configuration, etc.
  • the resource mapping configuration may also be called a CSI-RS pattern, and the resource mapping configuration includes at least one of the following: time domain resource configuration, frequency domain resource configuration, code grouping configuration, density or frequency domain bandwidth, etc.
  • the density refers to the number of resource elements (RE) that CSI-RS transmission specifically occupies on a single resource block (RB). For example, if CSI-RS transmission occupies one RE in a single RB, the density value is 1.
  • Periodic properties including periodic, aperiodic and semi-static, etc.
  • the terminal will measure CSI-RS on the CSI-RS resources included in the CSI-RS resource configuration periodically, and the length of the period is a predetermined period. set, or pre-configured by the base station to the terminal, etc., there is no restriction.
  • the periodic attribute included in the configuration is aperiodic
  • the terminal measures CSI-RS once on the CSI-RS resources included in the CSI-RS resource configuration.
  • the trigger instruction can It is downlink control information (DCI).
  • DCI downlink control information
  • the terminal periodically measures CSI-RS on the CSI-RS resources included in the CSI-RS resource configuration until receiving until the end command sent by the base station.
  • Partial bandwidth part (BWP) ID is used to identify the BWP on which the CSI-RS corresponding to the CSI-RS resource configuration is transmitted.
  • the base station configures the above CSI-RS resource configuration and CSI-RS report configuration to the terminal through an RRC message.
  • the base station sends an RRC message to the terminal, and the RRC message includes the above-mentioned CSI-RS resource configuration and CSI-RS report configuration.
  • the embodiments of this application focus on the process of configuring CSI-RS resources.
  • the subsequent description focuses on the process of configuring CSI-RS resources through RRC messages.
  • the terminal when receiving the above-mentioned RRC message, can periodically measure CSI-RS on the CSI-RS resources configured in the RRC message.
  • the base station sends an RRC message to the terminal.
  • the RRC message includes a CSI-RS resource set, and the CSI-RS resource set includes 4 CSI-RS resources.
  • the terminal can periodically measure CSI-RS on the four CSI-RS resources according to the RRC configuration.
  • the terminal can periodically measure CSI-RS according to periodicity and offset parameters.
  • the above period and offset parameters may be notified by the base station to the terminal through an RRC message, or may be preset without limitation. Take the period parameter as 4 time slots and the offset parameter as 3 time slots as an example.
  • the terminal can measure CSI-RS on the 4 CSI-RS resources included in the CSI-RS resource set in the third time slot of every 4-slot cycle according to a 4-slot cycle, and obtain 4 Measurement results.
  • the terminal selects one measurement result among the four measurement results, and reports the selected measurement result to the base station.
  • the first cycle includes time slot 0 to time slot 3, then the terminal is at a time slot position offset by 3 time slots from the start of the cycle, that is, on time slot 2, and is included in the CSI-RS resource set. Measure CSI-RS on CSI-RS resources.
  • a cell may include multiple beams, and each beam is associated with at least one CSI-RS resource.
  • a terminal accesses a certain beam, it should measure CSI-RS on the CSI-RS resource corresponding to the beam. Moving at high speed on the terminal In this case, the terminal will frequently perform beam switching, or in the non-terrestrial network (NTN) satellite communication system, during the high-speed movement of the satellite, the terminal may passively experience cell coverage even if it is stationary. Frequent switching of multiple beams.
  • NTN non-terrestrial network
  • the CSI-RS resource configuration only includes one CSI-RS resource set, and the CSI-RS resource set includes up to 8 CSI-RS resources.
  • the base station reconfigures the CSI-RS resource for the terminal. That is, every time the terminal switches 8 beams, the base station sends a configured CSI to the terminal.
  • - RRC of RS resources makes the air interface overhead of CSI-RS resource configuration larger.
  • the base station to which the terminal accesses is deployed on the satellite.
  • the terminal sends the uplink data to the base station deployed on the satellite.
  • the base station sends the uplink data, routes it through one or more satellites, and then sends it to the gateway station deployed on the ground.
  • the gateway station then sends the uplink data to the gateway station deployed on the ground.
  • Uplink data is sent to the user plane function (UPF) or other terminals deployed on the ground.
  • the UPF deployed on the ground sends downlink data to the gateway station deployed on the ground.
  • the gateway station sends the downlink data, and after routing through one or more satellites, reaches the base station deployed on the satellite, and then Downlink data is sent to the terminal.
  • the coverage area of a single satellite is 670,000 square kilometers; considering that the link budget margin under the satellite that can satisfy access is 8.6 decibels, and the corresponding beam width is 4.6 degrees, then The coverage area that can satisfy access under the satellite is 1039 square kilometers, and the number of beams is 640+. Assuming that the satellite moves at 7.8km/s, the satellite will fly through the above coverage area of 1039 square kilometers in 3 minutes, and a single user will experience 50-80 beams in 3 minutes.
  • each RRC is configured with up to 8 CSI-RS resources, and each beam is associated with a CSI-RS resource. If the user experiences 80 beams in 3 minutes, the base station will send 10 CSI-RS resources to the user within 3 minutes. RRC message. The above only considers the case of a single user. If there are 2,000 users in a cell, and for each user, the base station sends 10 RRC messages within 3 minutes for configuration, the configuration overhead of CSI-RS resources will increase exponentially.
  • a resource configuration method which includes: when a terminal accesses a certain cell, all CSI-RS resources associated with the beams included in the cell are all at once through RRC messages. Configure to the terminal. Afterwards, when the terminal accesses different beams, the CSI-RS resources associated with the beam are activated through the MAC control element (CE), and the terminal measures CSI-RS on the activated CSI-RS resources. Compared with the previous solution, the base station frequently sends RRC messages to the terminal to configure the CSI-RS resources associated with the current access beam, which can reduce the overhead of RRC reconfiguration signaling. As shown in Figure 3, a resource configuration process is provided, which at least includes:
  • Step 300 The base station determines N CSI-RS resources according to the CSI-RS resources associated with the first cell, where N is a positive integer, for example, N is a positive integer greater than 8. This step 300 is optional.
  • the CSI-RS resources associated with the first cell may refer to all CSI-RS resources associated with the first cell.
  • the first cell includes at least one beam, and each beam is associated with one or more CSI-RS resources.
  • All CSI-RS resources associated with the first cell may refer to CSI-RS resources associated with all beams included in the first cell.
  • a cell includes 64 beams, and each beam is associated with a CSI-RS resource. Then all the CSI-RS resources associated with the cell are the 64 CSI-RS resources associated with the 64 beams included in the cell.
  • N The value can be 64.
  • the base station selects some CSI-RS resources from all CSI-RS resources associated with the first cell as N CSI-RS resources in the embodiment of the present application.
  • the base station selects 32 CSI-RS resources among the above 64 CSI-RS resources, and the value of N is 32. Subsequently, the 32 CSI-RS resources are first configured to the terminal through the RRC message in step 301. After that, when the terminal accesses the beam corresponding to the remaining 32 CSI-RS resources, the remaining 32 CSI-RS resources are configured to the terminal, etc., without any restriction.
  • Step 301 When the terminal accesses the first cell, the base station sends an RRC message to the terminal.
  • the information is used to configure N CSI-RS resources for the terminal.
  • the RRC message includes a CSI-RS resource set, and the CSI-RS resource set includes N CSI-RS resources.
  • the number of CSI-RS resources included in each CSI-RS resource set is limited to no more than 8.
  • the value of N can be limited to a positive integer greater than 8.
  • Step 302 The base station determines M1 CSI-RS resources among the N CSI-RS resources based on the CSI-RS resources associated with the first location area of the terminal in the first cell, where M1 is less than or equal to N. Positive integer. This step 302 is optional.
  • a location area in the first cell can be an area covered by an SSB, or the SSB coverage area can be divided into multiple location areas, that is, an SSB coverage area includes multiple location areas, and each location area is covered by an SSB. part of the area.
  • each location area is associated with at least one CSI-RS resource.
  • a location area is associated with multiple CSI-RS resources, it can be said that the location area is associated with a group of CSI-RS resources.
  • the base station when the base station detects that the terminal is located in the first location area in the first cell, the base station can determine the CSI-RS resources associated with the first location area, and the base station sends the first MAC CE to the terminal , the first MAC CE activated terminal measures CSI-RS on the CSI-RS resources associated with the first location area.
  • the M1 CSI-RS resources activated by the first MAC CE at least include CSI-RS resources associated with the first location area.
  • the above M1 CSI-RS resources may also include other CSI-RS resources.
  • the other CSI-RS resources may be CSI-RS resources associated with other location areas adjacent to the first location area, etc., without limitation.
  • the above M1 CSI-RS resources may also include CSI-RS resources associated with the second location area, CSI-RS resources associated with the third location area, etc.
  • the base station can determine the specific value of M1 based on the terminal's capabilities. The number of CSI-RS resources activated by the terminal through the first MAC CE should not exceed the terminal's capabilities. The terminal's capabilities are In the same cycle, the ability to simultaneously detect CSI-RS on CSI-RS resources.
  • the terminal supports detecting CSI-RS on up to 4 CSI-RS resources simultaneously in the same cycle, so the value of M1 should not exceed 4.
  • each location area is associated with a CSI-RS resource
  • location area 1 to location area 4 are associated with CSI-RS resources 1 to 4 respectively.
  • the terminal supports detection on up to 4 CSI-RS resources in the same cycle.
  • CSI-RS When the terminal is located in location area 1, the base station can send a MAC CE to the terminal, and the MAC CE can activate CSI-RS resources 1 to CSI-RS resources 4.
  • the terminal simultaneously detects CSI-RS on CSI-RS resources 1 to CSI-RS resources 4 in the same cycle.
  • an implementation manner of the above step 302 may be: the base station determines M1 CSI-RS resources according to the CSI-RS resources associated with the first location area in the first cell and the capabilities of the terminal.
  • the location area can also be called a beam.
  • a beam refers to a special directional sending or receiving effect formed by the transmitter or receiver of a base station or terminal through an antenna array, just like a flashlight that converges light in one direction to form a beam. Transmitting and receiving signals in the form of beams can effectively increase the signal transmission distance.
  • the beam can be a wide beam, a narrow beam, or other types of beams.
  • the beam forming technology may be beam forming technology or other technologies. Beamforming technology can specifically be digital beamforming technology, analog beamforming technology or hybrid digital/ Analog beamforming technology, etc. Beams generally correspond to resources. For example, when performing beam measurement, the base station can determine the quality of the corresponding beam through the measurement results of different resources.
  • the base station can know the quality of the corresponding beam.
  • beam information is also indicated by its corresponding resources.
  • the base station indicates a TCI-state through the transmission configuration indicator (TCI) field in the DCI, and the terminal determines the beam corresponding to the reference resource based on the reference signal resource included in the TCI-state.
  • TCI transmission configuration indicator
  • beams can be specifically characterized as digital beams, analog beams, spatial domain filters, spatial filters, spatial parameters, TCI, TCI-state, etc.
  • the beam used to transmit signals can be called transmission beam (or Tx beam), spatial domain transmission filter (spatial domain transmission filter), spatial transmission filter (spatial transmission filter), spatial domain transmission parameter (spatial domain transmission parameter) , spatial transmission parameter (spatial transmission parameter), etc.
  • the beam used to receive signals can be called a reception beam (or Rx beam), a spatial domain reception filter, a spatial reception filter, and a spatial domain reception parameter. , spatial reception parameter (spatial reception parameter), etc.
  • the antenna panel can perform beam forming, and the antenna panel can form a beam in a certain direction.
  • the beam can also be called an antenna panel.
  • the antenna panel can be represented by panel, panel index, etc.
  • the antenna panel can also be implicitly represented in other ways.
  • the antenna panel can also be represented by antenna ports, such as CSI-RS ports, sounding reference signal (SRS) ports, demodulation reference signal (DMRS) ports, phase tracking reference signal (phase tracking reference signal (PTRS) port, cell reference signal (CRS) port, time-frequency tracking reference signal (TRS) port, or SSB port, etc.
  • antenna ports such as CSI-RS ports, sounding reference signal (SRS) ports, demodulation reference signal (DMRS) ports, phase tracking reference signal (phase tracking reference signal (PTRS) port, cell reference signal (CRS) port, time-frequency tracking reference signal (TRS) port, or SSB port, etc.
  • the antenna panel may be represented by an antenna port group including at least one antenna port, and the antenna port group may include antenna ports of the same or different types.
  • the antenna port can be represented by channel characteristics, such as physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH), physical random access channel (physical random access channel, PRACH), physical downlink shared channel (PDSCH), physical downlink control channel (PDCCH), physical broadcast channel (PBCH), etc.
  • the antenna port is represented by a channel group, the channel group includes at least one channel, and the channel group includes channels of the same type or different types.
  • the channel group may be a control channel group or the like.
  • the antenna port may be represented by at least one of the following: QCL, TCI-state, spatial relation, or by an index configured in QCL, TCI-state, or spatial relation, etc.
  • Step 303 The base station sends the first MAC CE to the terminal.
  • the first MAC CE is used to activate the terminal to measure CSI-RS on M1 CSI-RS resources among N CSI-RS resources in the same cycle. .
  • Step 304 The terminal measures CSI-RS from the base station on M1 CSI-RS resources in the same period.
  • the terminal will measure CSI-RS on M1 CSI-RS resources periodically and report the measurement results.
  • the length of the cycle can be preset or the base station notifies the terminal in advance, and there is no limit. .
  • the terminal measures CSI-RS on M1 CSI-RS resources respectively.
  • a corresponding measurement result is obtained respectively.
  • a total of M1 measurement results can be obtained.
  • the measurement results reported to the base station are selected and reported to the base station.
  • the base station can adjust the downlink data scheduling strategy based on the measurement results reported by the terminal.
  • the terminal performs CSI-RS measurements according to the above-mentioned first cycle method and reports the measurement results.
  • the second location area may be associated with at least one CSI-RS resource.
  • the base station determines M2 CSI-RS resources among the N CSI-RS resources according to the CSI-RS resources associated with the second location area, and the M2 CSI-RS resources at least include the CSI-RS resources associated with the second location area,
  • the base station sends the second MAC CE to the terminal, and the second MAC CE is used to activate the terminal to measure CSI-RS on M2 CSI-RS resources.
  • the terminal measures CSI-RS on M2 CSI-RS resources in the same cycle and reports the measurement results.
  • the terminal may move out of the coverage area of the first cell and move to the coverage area of the second cell.
  • the cell accessed by the terminal will be switched from the first cell to the second cell.
  • the base station can follow The aforementioned method in the process of Figure 3 sends another RRC message to the terminal.
  • This RRC message can configure the CSI-RS resources associated with the second cell for the terminal.
  • the MAC CE is sent to the terminal to activate the terminal to measure CSI-RS on the corresponding CSI-RS resource.
  • the base station when the terminal moves to a new location area, the base station sends a MAC CE to the terminal.
  • the MAC CE can also activate other location area associated CSI-RS resources.
  • CSI-RS resources not every time the terminal moves to a new location area, the base station correspondingly sends a MAC CE to the terminal to activate the CSI-RS resources associated with the new location area. Only when the CSI-RS resources associated with the location area to which the terminal has newly moved have not been activated, or the M CSI-RS resources activated by the MAC CE received by the terminal last time do not include the newly moved location.
  • the base station will send another MAC CE. Before sending each MAC CE, the base station can perform the following judgment: determine the CSI-RS resources associated with the new location area to which the terminal currently moves, and the CSI-RS resources activated by the previously sent MAC CE. When the CSI-RS resources of the former do not belong to the CSI-RS resources of the latter, or when the CSI-RS resources of the latter do not include the CSI-RS resources of the former, the base station sends the MAC CE to the terminal to activate the new location area association. CSI-RS resources.
  • a cell includes location areas 1 to 5, each location area is associated with a CSI-RS resource, and location areas 1 to 5 are associated with CSI-RS resources 1 to 5 respectively.
  • the terminal moves to location area 1, the terminal is set to support measuring CSI-RS on up to 4 CSI-RS resources in the same cycle.
  • the base station can send MAC CE1 to the terminal, and the MAC CE1 activates CSI-RS.
  • the base station will send MAC CE2 to the terminal. This MAC CE2 is at least used to activate CSI-RS resource 5.
  • the base station sends MAC CE to the terminal to activate the CSI-RS resources corresponding to the location area.
  • the MAC CE only activates the CSI-RS resources associated with the current location area.
  • the base station sends MAC CE1 to the terminal to activate the CSI-RS1 resources associated with location area 1; when the terminal moves to location area 2, the base station sends MAC to the terminal.
  • CE2 activates CSI-RS2 resources associated with location area 2, etc.
  • the subsequent processes are similar and will not be explained one by one.
  • the number of MAC CEs sent by the base station can be reduced and the air interface overhead can be reduced.
  • the application scenario of the above process in Figure 3 may be: the terminal supports measuring CSI-RS on up to X CSI-RS resources in the same cycle, where X is a positive integer less than or equal to N. That is, the number of CSI-RS resources associated with a cell is set to N.
  • the capabilities of the terminal are specifically: the terminal supports measuring CSI-RS on up to X CSI-RS resources in the same cycle. When X is less than N, the terminal's capabilities determine that the terminal cannot simultaneously measure all CSI-RS resources associated with the first cell (ie, N CSI-RS resources) in the same cycle.
  • all CSI-RS resources associated with a cell are pre-configured to the terminal through RRC messages.
  • the base station sends a MAC CE to the terminal according to the terminal's location area.
  • the MAC CE at least activates the current location area association.
  • CSI-RS resources are pre-configured to the terminal through RRC messages.
  • the process of an RRC reconfiguration signaling interaction includes: downlink DCI or downlink PDSCH + uplink positive acknowledgement (ACK) or negative acknowledge (NACK) + uplink scheduling request (SR) + downlink DCI + uplink cache status Report (buffer status repor, BSR) + downlink DCI + uplink PUSCH (reconfiguration completed).
  • the entire process includes 3 downlink interactions and 4 uplink interactions.
  • the air interface overhead of one RRC reconfiguration signaling is usually dozens of bits.
  • the process of a MAC CE indication includes downlink DCI or downlink PDSCH + uplink ACK or NACK. The entire process includes one downlink interaction and one uplink interaction.
  • the air interface overhead of one MAC CE indication is usually more than ten bits.
  • the corresponding CSI-RS resources are activated through the MAC CE according to the mobile area of the terminal, there is no need to perform frequent RRC reconfiguration. Therefore, through the method of the embodiment of the present application, the signaling overhead of tens of bits of RRC can be reduced to the MAC CE overhead of more than ten bits, thus saving air interface resources.
  • a cell includes 64 beams, and each beam is associated with a CSI-RS resource, then the cell can be considered to be associated with 64 CSI-RS resources.
  • the capabilities of the terminal include: supporting measurement of CSI-RS on up to 4 CSI-RS resources in the same cycle.
  • the terminal accesses the cell, and the base station sends an RRC message to the terminal to configure the terminal periodic CSI-RS measurement.
  • the RRC message includes a CSI-RS resource set, and the CSI-RS resource set includes corresponding 64 CSI-RS resources. .
  • the initial access beam of the terminal is beam 1.
  • the base station sends MAC CE to the terminal and activates CSI-RS resources 1 to 4.
  • the 64 beams in the cell are numbered from beam 1 to beam 64 respectively, and the CSI-RS resources associated with beams 1 to 64 are CSI-RS resources 1 to CSI-RS resources 64 respectively.
  • the MAC CE when the terminal accesses beam 1, the MAC CE at least activates the terminal to measure CSI-RS on CSI-RS resource 1.
  • the base station can activate the terminal to measure CSI-RS on CSI-RS resources 1 to 4 at one time through MAC CE. In this way, when the terminal moves to beam 5, the base station sends MAC CE to the terminal to activate another 4 CSI-RS resources.
  • the terminal measures CSI-RS on the above four CSI-RS resources in the same cycle and feeds back the measurement results to the base station.
  • the base station sends a MAC CE to the terminal to activate another 4 CSI-RS.
  • all CSI-RS resources associated with a cell are configured to the terminal through a single RRC signaling.
  • multiple CSI-RS within the terminal's capabilities are activated through MAC CE.
  • CSI-RS is measured on activated CSI-RS resources, thereby effectively reducing RRC reconfiguration signaling overhead.
  • the base station when the terminal supports measuring up to 4 CSI-RS resources in the same cycle, the base station activates 4 CSI-RS resources at a time through MAC CE as an example and is not a limitation. .
  • the base station can also activate 1, 2 or 3 CSI-RS resources at a time through MAC CE, but it usually cannot exceed the capabilities of the terminal.
  • the terminal configures all 64 CSI-RS resources associated with the cell to the terminal through RRC signaling at one time.
  • the terminal configures part of the CSI-RS resources associated with the cell to the terminal.
  • the first 32 beams are associated with CSI-RS resources 1 to CSI-RS resources 32.
  • the corresponding CSI-RS can be activated through MAC CE.
  • the remaining 32 CSI-RS resources are configured to the terminal through RRC.
  • the terminal moves between beam 33 to beam 64 the corresponding CSI-RS resource is activated through MAC CE.
  • a cell in another design, includes 64 beams, and each beam is associated with 2 CSI-RS resources.
  • Each 2 CSI-RS resources can be regarded as a set of CSI-RS resources.
  • the process of the base station configuring CSI-RS resources for the terminal includes:
  • the base station sends an RRC message to the terminal.
  • the RRC message configures the terminal to periodically measure CSI-RS.
  • the RRC message includes a CSI-RS resource set.
  • the CSI-RS resource set includes 64 groups of CSI-RS resources. Each group of CSI-RS resources includes 2 CSI-RS resources.
  • the CSI-RS resource set can be considered to include 128 CSI-RS resources.
  • the terminal accesses beam 1. Considering that the terminal supports measuring CSI-RS on up to 4 CSI-RS resources in the same cycle, the base station sends MAC CE to the terminal and activates the first 4 of the configured 128 CSI-RS resources. CSI-RS resources, namely CSI-RS resource 1 to CSI-RS resource 4.
  • the 4 CSI-RS resources activated by the above MAC CE are essentially 2 sets of CSI-RS resources, which can be called CSI-RS Group 1 to CSI-RS group 2 correspond to beam 1 and beam 2 respectively.
  • the terminal simultaneously measures CSI-RS on CSI-RS resources 1 to CSI-RS resources 4 in the same cycle and feeds back the measurement results.
  • the base station sends MAC CE to the terminal, which is used to activate CSI-RS resources 5 to 8.
  • the CSI-RS resources 5 to 8 can be considered as two sets of CSI-RS resources, which can be called CSI-RS resource group 3 and CSI-RS resource group 4, corresponding to beam 3 and beam 4 respectively.
  • the base station sends a MAC CE to the terminal once to activate the corresponding CSI-RS resources.
  • the base station sends a MAC CE to the terminal once to activate the corresponding CSI-RS resources.
  • all CSI-RS resources associated with the cell are configured to the terminal through a single RRC signaling, and then as the terminal moves between beams, Activate the corresponding CSI-RS resources through MAC CE to reduce RRC signaling overhead.
  • all 128 CSI-RS resources associated with the cell are configured to the terminal through RRC signaling at one time, and the corresponding CSI-RS resources are subsequently activated through MAC CE as an example.
  • the base station can also configure part of the CSI-RS resources associated with the cell to the terminal through RRC signaling. For example, the 64 CSI-RS resources associated with the first 32 beams of the cell are first configured to the terminal. When the terminal moves to the last 32 beams, the remaining 64 CSI-RS resources are configured to the terminal through RRC signaling.
  • a resource configuration process is provided, which at least includes:
  • Step 500 When the terminal accesses the first cell, the base station determines N1 CSI-RS resources based on the CSI-RS resources associated with the first cell, where N1 is a positive integer less than or equal to X, and In the same cycle, support The maximum number of CSI-RS resources supported, X is a positive integer. This step 500 is optional.
  • the CSI-RS resources associated with the first cell may be all CSI-RS resources associated with the first cell.
  • all CSI-RS resources associated with the first cell please refer to the relevant description in Figure 3.
  • the 64 CSI-RS resources can be used as N1 CSI-RS resources and configured to the terminal through the first RRC message in subsequent step 501.
  • Step 501 The base station sends a first RRC message to the terminal, where the first RRC message is used to configure the terminal to measure CSI-RS on N1 CSI-RS resources in the same cycle.
  • the first RRC message includes a first CSI-RS resource set, and the first CSI-RS resource set includes N1 CSI-RS resources.
  • Step 502 In the same cycle, the terminal measures CSI-RS on N1 CSI-RS resources.
  • the terminal when receiving the first RRC message, may directly perform step 502 to measure CSI-RS on N1 CSI-RS resources.
  • the base station may first configure N1 CSI-RS resources for the terminal through the first RRC. After that, the base station sends the first MAC CE to the terminal, and the first MAC CE is used to activate the above N1 CSI-RS resources. After the N1 CSI-RS resources are activated, the terminal then measures CSI-RS on the N1 CSI-RS resources. That is, optionally, between step 501 and step 502, the base station may also include: the base station sends the first MAC CE, the first MAC CE is used to activate the terminal to measure CSI-RS on N1 CSI-RS resources in the same cycle.
  • the base station may determine N2 CSI-RS resources according to the CSI-RS resources associated with the second cell.
  • the N2 CSI-RS resources are all CSI-RS resources associated with the second cell.
  • the base station sends a second RRC message to the terminal, where the second RRC message is used to configure the terminal to measure CSI-RS on N2 CSI-RS resources in the same period. After receiving the configuration of the second RRC message, the terminal measures CSI-RS on N2 CSI-RS resources.
  • the terminal receiving the second RRC message and the terminal performing CSI-RS measurement may also include: the terminal receives a second MAC CE from the base station, and the second MAC CE is used to activate the N2 CSI-RS. RS resources. The terminal then performs CSI-RS measurement after receiving the activation signaling of N2 CSI-RS resources.
  • the subsequent processes for the terminal to switch from the second cell to other cells are similar and will not be described again.
  • the terminal when the terminal switches between different beams in the same cell, no other signaling instructions or configurations are required, thereby reducing signaling overhead.
  • an application scenario of the resource configuration method shown in Figure 5 includes: setting the capabilities of the terminal includes: the maximum number of CSI-RS resources supported by the terminal in one cycle is X, and X is a positive integer.
  • the process shown in Figure 5 is executed.
  • the number of all CSI-RS resources associated with the first cell is N1.
  • the value of X can be limited to be greater than or equal to N1.
  • the terminal can also report the terminal's capabilities to the base station.
  • the terminal sends capability information to the base station, and the capability information is used to indicate that the terminal supports measuring CSI-RS on up to X CSI-RS resources in the same cycle.
  • the base station can determine whether to execute the process shown in Figure 5 based on the capabilities reported by the terminal. For example, the capability reported by the terminal indicates that the maximum number of CSI-RS resources supported by the terminal in one cycle is X. In the case where the value of Otherwise, it will not be executed.
  • a cell includes 64 beams, each beam is associated with 1 CSI-RS resource, and the cell is associated with 64 CSI-RS Resources, the maximum number of CSI-RS resources supported by the terminal in the same cycle is N, and the value of N is greater than 64, for example.
  • the process of the base station configuring CSI-RS resources for the terminal includes:
  • the base station sends an RRC message to the terminal.
  • the RRC message configures the terminal to periodically measure CSI-RS.
  • the RRC message includes a CSI-RS resource set, and the CSI-RS resource set includes 64 CSI-RS resources associated with the cell.
  • the base station sends MAC CE to the terminal, which is used to activate the above 64 CSI-RS resources.
  • the terminal measures CSI-RS on 64 CSI-RS resources in one cycle and feeds back the measurement results to the base station.
  • RRC activates all CSI-RS resources associated with a cell as an example.
  • RRC can also activate part of the CSI-RS resources associated with a cell. That is, the N1 CSI-RS resources in the aforementioned process shown in Figure 5 may be part of the CSI-RS resources associated with the first cell, and the N2 CSI-RS resources may be part of the CSI-RS resources associated with the second cell.
  • the values of N1 and N2 can both be 32.
  • all CSI-RS resources associated with a cell are 64 CSI-RS resources.
  • the base station When the terminal accesses beam 1 in the current cell, the base station sends RRC1 to the terminal, which configures the terminal to measure CSI-RS on the first 32 CSI-RS resources in the same cycle. After the terminal accesses beam 33, the base station sends RRC2 to the terminal, which configures the terminal to measure CSI-RS on the last 32 CSI-RS resources in the same period. In this design, within a cell, the base station sends multiple RRC messages to the terminal to configure CSI-RS resources. In this design, as long as the number of CSI-RS resources configured in an RRC message is greater than 8, the RRC configuration signaling overhead can still be reduced compared to the current solution.
  • the resource configuration method of the embodiment of the present application is applied to the resource configuration of periodic CSI-RS as an example, and is not used as a limitation.
  • the resource configuration method provided by the embodiments of this application can also be applied to resource configuration of other types of CSI-RS.
  • the base station when the terminal accesses a certain cell, the base station sends an RRC message to the terminal, and the RRC message includes multiple CSI-RS resource sets. Afterwards, the base station sends a MAC CE to the terminal.
  • the MAC CE includes two pieces of information.
  • One piece of information is used to instruct the terminal to start periodically measuring CSI-RS, and the other piece of information is used to indicate a CSI-RS in multiple CSI-RS resource sets.
  • Resource set For example, in the above-mentioned semi-static CSI-RS, when the resource configuration method shown in Figure 3 is applied, the CSI-RS resource set indicated by the base station may include all CSI-RS resources associated with the cell currently connected to the terminal; When the beam changes, different CSI-RS resources are activated through MAC CE. The terminal periodically measures CSI-RS on the activated CSI-RS resources until it receives an instruction to stop periodic measurement.
  • the base station and the terminal include corresponding hardware structures and/or software modules for performing each function.
  • the embodiments of this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • Figures 6 and 7 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can It is used to realize the functions of the terminal or the base station in the above method embodiments, so it can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 120a-120j as shown in Figure 1, or it may be the base station 110a or 110b as shown in Figure 1, or it may be a module applied to the terminal or the base station. (such as chips).
  • the communication device 6000 includes a processing unit 6010 and a transceiver unit 6020.
  • the communication device 6000 is used to implement the functions of the terminal or the base station in the method embodiment shown in FIG. 3 or FIG. 5 .
  • the transceiver unit 6020 is used to receive an RRC message from the network device when the terminal accesses the first cell, the RRC The message is used to configure N CSI-RS resources for the terminal, N is a positive integer, and, when the terminal is in the first location area in the first cell, receive the first MAC from the network device CE, the first MAC CE is used to activate the terminal to measure CSI-RS on M1 CSI-RS resources among the N CSI-RS resources in the same cycle, and the M1 CSI-RS The resources at least include CSI-RS resources associated with the first location area, and M1 is a positive integer less than or equal to N; the processing unit 6010 is configured to measure the M1 CSI-RS resources from The CSI-RS of the network device.
  • the transceiver unit 6020 is used to send an RRC message to the terminal when the terminal accesses the first cell, and the RRC message is Configuring N CSI-RS resources for the terminal, N is a positive integer, and sending a first MAC CE to the terminal, where the first MAC CE is used to activate the terminal in the same period.
  • CSI-RS is measured on the M1 CSI-RS resources.
  • the processing unit 6010 is configured to determine M1 CSI-RS resources among the N CSI-RS resources according to the CSI-RS resources associated with the first location area of the terminal in the first cell.
  • the CSI-RS resources at least include CSI-RS resources associated with the first location area, and M1 is a positive integer less than or equal to N;
  • the transceiver unit 6020 is used to receive the first RRC message from the network device when the terminal accesses the first cell, so The first RRC message is used to configure N1 CSI-RS resources for the terminal, N1 is a positive integer less than or equal to X, and X is the maximum number of CSI-RS resources supported by the terminal in the same cycle, X is a positive integer; the processing unit 6010 is configured to measure the CSI-RS from the network device on the N1 CSI-RS resources in the same cycle.
  • the processing unit 6010 is used to: when the terminal accesses the first cell, according to the CSI-RS associated with the first cell resources, determine N1 CSI-RS resources, N1 is a positive integer less than or equal to X, X is the maximum number of CSI-RS resources supported by the terminal in the same cycle, and X is a positive integer; the transceiver unit 6020 uses and sending a first RRC message to the terminal, where the first RRC message is used to configure the terminal to measure CSI-RS on N1 CSI-RS resources in the same period.
  • the first RRC message includes a first CSI-RS resource set, and the first CSI-RS resource set includes the N1 CSI-RS resources.
  • processing unit 6010 and transceiver unit 6020 can be obtained directly by referring to the relevant description in the method embodiment shown in FIG. 5, and will not be described again here.
  • the communication device 7000 includes a processor 7010 and an interface circuit 7020 .
  • the processor 7010 and the interface circuit 7020 are coupled to each other.
  • the interface circuit 7020 may be a transceiver or an input-output interface.
  • the communication device 7000 may also include a memory 7030 for storing instructions executed by the processor 7010 or input data for the instructions executed by the processor 7010 or data generated after the processor 7010 executes the instructions.
  • the processor 7010 is used to implement the functions of the above-mentioned processing unit 6010, and the interface circuit 7020 is used to implement the functions of the above-mentioned transceiver unit 6020.
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), and the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas).
  • the information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent by the terminal to the base station; or, the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), and the base station module The information is sent by the base station to the terminal.
  • the base station module here can be the baseband chip of the base station, or it can be a DU or other module.
  • the DU here can be a DU under the open radio access network (O-RAN) architecture.
  • OF-RAN open radio access network
  • processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), application-specific integrated circuit ( application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the base station or terminal. Of course, the processor and the storage medium may also exist as discrete components in the base station or terminal.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
  • the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and magnetic tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard disks.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are an "or” relationship; in the formula of the embodiment of the application, the character “/” indicates that the related objects are an "or” relationship.
  • “division” relationship “Including at least one of A, B or C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种资源配置方法及装置,该方法包括:在终端接入第一小区的情况下,将第一小区关联的CSI-RS资源通过RRC消息配置给终端;在终端移动到第一小区的第一位置区域时,向终端发送MAC CE,用于激活终端在第一位置区域关联的CSI-RS资源上进行CSI-RS测量,所述MAC CE激活的CSI-RS资源属于第一小区关联的CSI-RS资源。采用本申请实施例的方法及装置,当终端接入某个小区时,网络设备无需频繁为终端进行RRC配置,减少RRC信令的开销。

Description

一种资源配置方法及装置
相关申请的交叉引用
本申请要求在2022年08月17日提交中国专利局、申请号为202210984241.9、申请名称为“一种资源配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种资源配置方法及装置。
背景技术
在无线通信系统中,基站可向终端发送信道状态信息-参考信号(channel-state information reference signal,CSI-RS),用于测量下行信道的质量。例如,终端可对接收的CSI-RS进行测量,确定测量结果,并将测量结果反馈给基站。基站可根据终端反馈的测量结果,调整后续下行数据的调度策略。在上述过程中,基站预先将CSI-RS资源配置给终端,终端在配置的资源上检测CSI-RS。关于基站如何向终端配置CSI-RS资源,是本申请实施例关注的问题。
发明内容
本申请实施例提供一种资源配置方法及装置,以使得基站向终端配置CSI-RS资源。
第一方面,提供一种资源配置方法,该方法的执行主体为终端,或者设置于终端中的部件(处理器、芯片或其它等),以终端为执行主体为例,该方法包括:在终端接入第一小区的情况下,终端接收来自网络设备的无线资源控制RRC消息,所述RRC消息用于为所述终端配置N个信道状态信息-参考信号CSI-RS资源,N为正整数。例如,该RRC消息中包括为所述终端配置的CSI-RS资源集,所述CSI-RS资源集中包括N个CSI-RS资源;在所述终端在所述第一小区中的第一位置区域的情况下,终端接收来自所述网络设备的第一媒体接入控制MAC控制信元CE,所述第一MAC CE用于激活所述终端在同一个周期内,在所述N个CSI-RS资源中的M1个CSI-RS资源上测量CSI-RS,所述M1个CSI-RS资源中至少包括所述第一位置区域关联的CSI-RS资源,M1为小于或等于N的正整数;在同一个周期内,终端在所述M1个CSI-RS资源上测量来自所述网络设备的所述CSI-RS。
通过上述设计,在终端接入一小区的情况下,假设该小区称为第一小区,网络设备将第一小区关联的CSI-RS资源通过RRC消息配置给终端;在终端移动到第一小区的一个位置区域的情况下,假设该位置区域称为第一位置区域,可选的,位置区域可称为波束覆盖区域,则网络设备向终端发送MAC CE,激活第一位置区域关联的CSI-RS资源。终端在激活的CSI-RS资源上,周期性的测量CSI-RS。相对于目前方案中,基站通过RRC信令为终端配置CSI-RS资源,终端直接在配置的CSI-RS资源上测量CSI-RS。在目前的方案中,一个RRC信令最多配置8个CSI-RS资源,一个位置区域关联至少一个CSI-RS资源。在终端高速移动,或者,由于卫星移动导致终端所处于的位置区域频繁变化时,网络设备 需要频繁的为终端进行RRC重配。而在本申请的设计中,在终端接入某个小区的情况下,网络设备通过RRC信令将该小区关联的CSI-RS资源配置给终端;当终端移动到该小区中的某个位置区域时,再通过MAC CE信令激活该位置区域相关联的CSI-RS资源,终端在激活的CSI-RS资源上,测量CSI-RS。采用本申请的方案,当终端接入某个小区时,网络设备无需进行频繁的RRC重配,只需要MAC CE激活不同的位置区域关联的CSI-RS资源即可。而对于RRC配置的过程,空口开销通常有几十比特,MAC CE的空口开销通常为十几比特,因此,采用上述方案,可以节省CSI-RS资源配置的空口开销。
可选的,上述M1个CSI-RS资源中,除包括第一小区中的第一位置区域关联的CSI-RS资源外,还可以包括其它位置区域关联的CSI-RS资源,比如,第一位置区域相邻的多个位置区域的CSI-RS资源。如此,网络设备通过一个MAC CE可激活终端在多个位置区域关联的CSI-RS资源上测量CSI-RS,无需终端每移动到一个位置区域,则发送一次MAC CE激活对应的CSI-RS,从而进一步减少CSI-RS资源配置的空口开销。
在一种设计中,所述终端在同一个周期内,最多支持在X个CSI-RS资源上测量CSI-RS,X为小于或等于N的正整数。可选的,针对上述第一方面的应用场景为:终端支持CSI-RS测量的能力,小于一个小区关联的全部CSI-RS资源的场景。在这种情况下,终端的能力,无法支持终端同时在一个小区关联的全部CSI-RS资源进行CSI-RS测量。
在一种设计中,在所述终端由所述第一小区中的所述第一位置区域移动到所述第一小区中的第二位置区域的情况下,还包括:终端接收来自所述网络设备的第二MAC CE,所述第二MAC CE用于激活所述终端在同一个周期内,在所述N个CSI-RS资源中的M2个CSI-RS资源上测量所述CSI-RS,所述M2个CSI-RS资源中至少包括所述第二位置区域关联的CSI-RS资源,M2为小于或等于N的正整数。
通过上述设计,在终端移动到第一位置区域的情况下,网络设备向终端发送第一MAC CE,该第一MAC CE用于激活第一位置区域关联的CSI-RS资源,终端在第一位置区域关联的CSI-RS资源上测量CSI-RS;而在终端移动到第二位置区域的情况下,网络设备向终端发送第二MAC CE,该第二MAC CE用于激活第二位置区域关联的CSI-RS资源,终端在第二位置区域关联的CSI-RS资源上测量CSI-RS,从而实现根据终端的位置区域不同,通过MAC CE激活终端在相应的CSI-RS资源上测量CSI-RS。
在一种设计中,所述N个CSI-RS资源为所述第一小区关联的全部CSI-RS资源。可选的,第一小区包括至少一个位置区域,每个位置区域关联至少一个CSI-RS资源,第一小区关联的全部CSI-RS资源可指:第一小区中包括的全部位置区域关联的CSI-RS资源。可选的,位置区域还可称为波束等。
通过上述设计,在终端接入某个小区时,则网络设备通过RRC信令将该小区关联的全部CSI-RS资源,一次性全都配置给终端。后续根据终端接入的位置区域不同,通过MAC CE激活终端在对应的CSI-RS资源上测量CSI-RS。在终端接入某个小区时,网络设备执行一次RRC配置即可,无需频繁的进行RRC重配。进一步,在该设计中的方案,在终端接入某个小区时,网络设备需要根据终端在该小区的位置区域不同,发送MAC CE激活对应的CSI-RS,可能需要网络设备多次发送MAC CE信令。但MAC CE信令的开销,要小于RRC配置信令的开销。比如,一次RRC配置的过程包括:下行DCI或下行PDSCH+ACK或NACK+SR+下行DCI+BSR+下行DCI+上行PUSCH(重配完成),整个过程包括3次下行交互和4次上行交互。一次MAC CE信令的过程,包括:下行DCI或下行PDSCH+上 行ACK或NACK,整个过程包括1次下行交互和1次上行交互。相对于频繁进行RRC重配,采用上述在小区内多次发送MAC CE激活不同位置区域关联的CSI-RS资源的方案,可以减少CSI-RS资源配置的开销。
在一种设计中,所述第一位置区域关联至少一个CSI-RS资源,第二位置区域关联至少一个CSI-RS资源。
第二方面,提供一种资源配置方法,该第二方面与第一方面相对应,有益效果可参见第一方面的记载,该方法的执行主体为网络设备,或者配置于网络设备中的部件(处理器、芯片或其它等),以网络设备为执行主体为例,该方法包括:在终端接入第一小区的情况下,网络设备向所述终端发送无线资源控制RRC消息,所述RRC消息用于为终端配置N个信道状态信息-参考信号CSI-RS资源。例如,该RRC消息中包括为所述终端配置的CSI-RS资源集,所述CSI-RS资源集中包括N个CSI-RS资源等,N为正整数;网络设备根据所述终端在所述第一小区中的第一位置区域关联的CSI-RS资源,确定所述N个CSI-RS资源中的M1个CSI-RS资源,所述M1个CSI-RS资源中至少包括所述第一位置区域关联的CSI-RS资源,M1为小于或等于N的正整数;网络设备向所述终端发送第一媒体接入控制MAC控制信元CE,所述第一MAC CE用于激活所述终端在同一个周期内,在所述M1个CSI-RS资源上测量CSI-RS。
在一种设计中,所述终端在同一个周期内,最多支持在X个CSI-RS资源上测量所述CSI-RS,X为小于或等于N的正整数。
在一种设计中,在所述终端由所述第一小区中的所述第一位置区域移动到所述第一小区中的第二位置区域情况下,还包括:网络设备根据所述第二位置区域关联的CSI-RS资源,确定所述N个CSI-RS资源中的M2个CSI-RS资源,所述M2个CSI-RS资源中至少包括所述第二位置区域关联的CSI-RS资源,M2为小于或等于N的正整数;网络设备向所述终端发送第二MAC CE,所述第二MAC CE用于激活所述终端在同一个周期内,在所述M2个CSI-RS资源上测量所述CSI-RS。
在一种设计中,还包括:网络设备根据所述第一小区关联的CSI-RS资源,确定所述N个CSI-RS资源。例如,所述N个CSI-RS资源为所述第一小区关联的全部CSI-RS资源。
在一种设计中,所述第一位置区域关联至少一个CSI-RS资源,第二位置区域关联至少一个CSI-RS资源。
第三方面,提供一种资源配置方法,该方法的执体主体为终端,或者配置于终端中的部件(处理器、芯片或其它等),以终端为执行主体为例,该方法包括:在终端接入第一小区的情况下,终端接收来自网络设备的第一无线资源控制RRC消息,所述第一RRC消息用于为终端配置N1个信道状态信息-参考信号CSI-RS资源。例如,所述第一RRC消息中包括第一CSI-RS资源集,所述第一CSI-RS资源集中包括N1个CSI-RS资源,N1为小于或等于X的正整数,X为所述终端在同一个周期内,支持的CSI-RS资源的最大数量,X为正整数;可选的,所述N1个CSI-RS资源为所述第一小区关联的全部CSI-RS资源。在同一个周期内,终端在所述N1个CSI-RS资源上测量来自所述网络设备的CSI-RS。
通过上述方法,终端在接入第一小区时,网络设备将第一小区关联的CSI-RS资源通过RRC消息,全部配置给终端。终端在RRC消息配置的全部CSI-RS资源上,测量CSI-RS。采用该方案,终端在接入每个小区时,无需频繁进行RRC重配。进一步的,也无需采用MAC CE进行CSI-RS资源的激活,降低CSI-RS资源配置的开销。
在一种设计中,还包括:终端向所述网络设备发送能力信息,所述能力信息用于指示所述终端在同一个周期内,最多支持在X个CSI-RS资源上测量所述CSI-RS。可选的,终端可主动向网络设备上报能力信息,或者,网络设备可发起终端能力查询的命令,终端接收到该查询命令时,再向网络设备上报终端自身的能力等,不作限制。
通过上述设计,网络设备在接收到终端的能力信息时,可判断终端的能力信息中支持的同时测量的X个CSI-RS资源,是否大于一个小区关联的CSI-RS资源。若大于一个小区关联的CSI-RS资源,则表示终端的能力,能够支持终端同时测量一个小区关联的CSI-RS资源,则可将一个小区关联的CSI-RS资源通过RRC消息配置给终端。相应的,终端根据RRC消息的配置,在一个小区关联的CSI-RS资源上测量CSI-RS,终端在一个小区的内部移动时,无需频繁进行RRC重配,节省CSI-RS资源配置的开销。
在一种设计中,还包括:终端接收来自所述网络设备的第一媒体接入控制MAC控制信元CE,所述第一MAC CE用于激活所述终端在同一个周期内,在所述N1个CSI-RS资源上测量所述CSI-RS。
通过上述设计,终端在接收到网络设备的RRC消息时,并不直接根据RRC消息的配置进行CSI-RS测量,而是在接收到MAC CE的激活命令时,再进行相应的CSI-RS测量。通过MAC CE的激活,网络设备可灵活控制终端执行CSI-RS测量的时间。比如,网络设备可预先将第一小区关联的N1个CSI-RS资源配置给终端,但出于某种原因,可在满足某条件时,再让终端开始执行CSI-RS测量。而在上述设计中,通过MAC CE,网络设备可灵活的控制终端开始CSI-RS测量的时间,避免终端进行无效的CSI-RS测量,节省终端的能耗。
在一种设计中,在所述终端由所述第一小区切换到第二小区的情况下,还包括:终端接收来自所述网络设备的第二RRC消息,所述第二RRC消息用于为终端配置N1个CSI-RS资源。例如,所述第二RRC消息中包括第二CSI-RS资源集,所述第二CSI-RS资源集中包括N2个CSI-RS资源,N2为小于或等于X的正整数;可选的,所述N2个CSI-RS资源为所述第二小区关联的全部CSI-RS资源。在同一个周期内,终端在所述N2个CSI-RS资源上测量来自所述网络设备的所述CSI-RS。
通过上述设计,每当终端接入一个小区时,则网络设备将该小区关联的CSI-RS资源配置给终端,后续终端在配置的CSI-RS资源上进行CSI-RS测量,无需频繁进行RRC配置,减少空口开销。
在一种设计中,还包括:终端接收来自所述网络设备的第二MAC CE,所述第二MAC CE用于激活所述终端在同一个周期内,在所述N2个CSI-RS资源上测量所述CSI-RS。
与前述效果相似,终端在接入到一个小区时,网络设备可将该小区关联的CSI-RS资源配置给终端。终端在接收到RRC的配置时,并不直接在RRC配置的CSI-RS资源上执行CSI-RS测量,而是在接收到MAC CE的激活后,再进行CSI-RS测量,从而使得网络设备可灵活的控制终端执行CSI-RS测量的时间,避免终端进行无效的CSI-RS测量。
第四方面,提供一种资源配置方法,该第四方面与第三方面相对应,有益效果可参见第三方面的记载,该方法的执行主体为网络设备,或配置于网络设备中的部件(处理器、芯片或其它等),以网络设备为执行主体为例,该方法包括:在终端接入第一小区的情况下,网络设备根据所述第一小区关联的信道状态信息-参考信号CSI-RS资源,确定N1个CSI-RS资源,N1为小于或等于X的正整数,X为所述终端在同一个周期内,支持的CSI-RS 资源的最大数量,X为正整数;可选的,所述N1个CSI-RS资源为所述第一小区关联的全部CSI-RS资源。网络设备向所述终端发送第一无线资源控制RRC消息,所述第一RRC消息用于配置终端在同一个周期内,在N1个CSI-RS资源上测量CSI-RS。例如,所述第一RRC消息中包括第一CSI-RS资源集,所述第一CSI-RS资源集中包括所述N1个CSI-RS资源。
在一种设计中,还包括:网络设备接收来自所述终端的能力信息,所述能力信息用于指示所述终端在同一个周期内,最多支持在X个CSI-RS资源上测量所述CSI-RS。
在一种设计中,还包括:网络设备向所述终端发送第一媒体接入控制MAC控制信元CE,所述第一MAC CE用于激活所述终端在同一个周期内,在所述N1个CSI-RS资源上测量所述CSI-RS。
在一种设计中,在所述终端由所述第一小区切换到第二小区的情况下,还包括:网络设备根据所述第二小区关联的CSI-RS资源,确定N2个CSI-RS资源,N2为小于或等于X的正整数;可选的,所述N2个CSI-RS资源为所述第二小区关联的全部CSI-RS资源。网络设备向所述终端发送第二RRC消息,所述第二RRC消息用于配置所述终端在同一个周期内,在所述N2个CSI-RS资源上测量所述CSI-RS。例如,所述第二RRC消息中包括第二CSI-RS资源集,所述第二CSI-RS资源集中包括所述N2个CSI-RS资源。
在一种设计中,还包括:网络设备向所述终端发送第二MAC CE,所述第二MAC CE用于激活所述终端在同一个周期内,在所述N2个CSI-RS资源上测量所述CSI-RS。
第五方面,提供一种装置,该装置包括执行上述第一方面、第二方面、第三方面或第四方面中所描述的方法对应的单元或模块,该单元或模块可通过硬件电路实现、或者通过软件实现,或者通过硬件电路结合软件实现。
第六方面,提供一种装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一方面、第二方面、第三方面或第四方面中所描述的方法。该处理器包括一个或多个。
第七方面,提供一种装置,包括与存储器耦合的处理器,该处理器用于调用所述存储器中存储的程序,以执行上述第一方面、第二方面、第三方面或第四方面中描述的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器可以是一个或多个。
第八方面,提供一种装置,包括处理器和存储器;该存储器用于存储计算机指令,在该装置运行的情况下,该处理器执行该存储器存储的计算机指令,以使该装置执行上述第一方面、第二方面、第三方面或第四方面中描述的方法。
第九方面,提供一种芯片系统,包括:处理器,用于执行上述第一方面、第二方面、第三方面或第四方面中描述的方法。
第十方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,在其在通信装置上运行的情况下,使得上述第一方面、第二方面、第三方面或第四方面中的方法被执行。
第十一方面,提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,在计算机程序或指令被装置运行的情况下,使得上述第一方面、第二方面、第三方面或第四方面中的方法被执行。
第十二方面,提供一种系统,包括第一方面对应的装置和第二方面对应的装置,或者第三方面对应的装置和第四方面对应的装置。
附图说明
图1为本申请实施例提供的通信系统的架构示意图;
图2为本申请实施例提供的CSI-RS资源配置的示意图;
图3和图5为本申请实施例提供的资源配置的流程图;
图4为本申请实施例提供的小区波束的示意图;
图6和图7为本申请实施例提供的装置示意图。
具体实施方式
图1是本申请实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备等,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制(radio resource control,RRC)协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制(radio link control,RLC)层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理(physical,PHY)层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械 臂、智能家居设备等。本申请实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请实施例对无线通信所使用的频谱资源不做限定。
在本申请实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请实施例中,基站向终端发送下行信号或下行信息,下行信号或下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信号或上行信息承载在上行信道上。终端为了与基站进行通信,终端与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。在终端与该服务小区进行通信的情况下,还会受到来自邻区的信号的干扰。
在新空口(new radio,NR)系统中,终端向基站报告下行信道质量的流程,包括:基站根据配置发送信道状态信息参考信号(channel-state information reference signal,CSI-RS)。终端对CSI-RS进行测量,并上报测量结果。基站根据上报的测量结果,对下行数据进行调度。所述测量结果包括但不限于以下至少一项:信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)或秩指示(rank indication,RI)等,可简称为三种指示(3indicator,3I)测量结果。NR中CSI-RS的总体框架在协议38.214中描述,主要概念有:
1、CSI-RS资源配置(resource setting):指示终端选择哪些CSI-RS资源进行测量并上报测量结果。该CSI-RS资源配置可简称为资源配置。
2、CSI-RS报告配置(reporting setting):指示终端上报测量结果的规则,可包括上报使用的时域资源、频域资源、和上报的测量量等内容。CSI-RS报告配置可简称为报告配置。
其中,每个报告配置关联一个资源配置,可以作为一项测量任务。例如,终端在某资源配置对应的资源上测量CSI-RS,则该终端可按照该资源配置关联的报告配置,向终端上报测量结果。对于报告配置的类型,可以包括周期、非周期或半静态等。可选的,如图2所示,CSI-RS资源配置中包括以下至少一项:
CSI-RS资源配置标识(CSI-RS resource configuration identity,ID),用于标识CSI-RS资源配置;
CSI-RS资源集列表(CSI-RS resource set list),包括至少一个CSI-RS资源集。对于周期CSI-RS,包括一个CSI-RS资源集,每个CSI-RS资源集中最多包括8个CSI-RS资源。对于非周期和半静态CSI-RS,包括多个CSI-RS资源集。关于每个CSI-RS资源中配置的参数,可参考协议3GPP TS 38.331中的描述。例如,对于每个CSI-RS资源配置的参数中包括以下至少一项:资源映射配置(resource mapping)、功率控制偏移(power control offset)、功率控制偏移同步信号(synchronization signal,SS)(power control offset SS)、扰码标识(scrambling ID)、周期和偏移配置(periodicity and offset)、或准共址(quasi-co-location,QCL)配置等。所述资源映射配置还可称为CSI-RS图样,所述资源映射配置中包括以下至少一项:时域资源配置、频域资源配置、码分组配置、密度或频域带宽等。所述密度是指CSI-RS传输具体占单个资源块(resource block,RB)上的资源元素(resource element,RE)的数量。比如,CSI-RS传输占用单个RB中的一个RE,则该密度的取值为1。
周期属性,包括周期、非周期和半静态等。对于一个CSI-RS资源配置,若该配置中包括的周期属性为周期,则终端将按周期在该CSI-RS资源配置中包括的CSI-RS资源上测量CSI-RS,该周期的长度是预设的,或者基站预先配置给终端的等,不作限制。或者,若该配置中包括的周期属性为非周期,则终端在接收到基站的触发指令后,在该CSI-RS资源配置中包括的CSI-RS资源上测量一次CSI-RS,该触发指令可以为下行控制信息(downlink control information,DCI)。或者,若该配置中包括的周期属性为半静态,则终端在接收到基站的触发指令后,在该CSI-RS资源配置中包括的CSI-RS资源上周期性的测量CSI-RS,直至接收到基站发送的结束指令为止。
部分带宽(bandwidth part,BWP)ID,用于标识该CSI-RS资源配置对应的CSI-RS在哪一个BWP上传输。
在一种设计中,基站通过RRC消息将上述CSI-RS资源配置和CSI-RS报告配置,配置给终端。例如,基站向终端发送RRC消息,该RRC消息中包括上述CSI-RS资源配置和CSI-RS报告配置。本申请实施例重点关注,对CSI-RS资源配置的过程,后续重点描述通过RRC消息配置CSI-RS资源的过程。
对于周期CSI-RS,终端在接收到上述RRC消息时,可在RRC消息所配置的CSI-RS资源上周期性的测量CSI-RS。例如,对于周期CSI-RS,基站向终端发送RRC消息,该RRC消息中包括一个CSI-RS资源集,该CSI-RS资源集中包括4个CSI-RS资源。终端可根据该RRC的配置,在该4个CSI-RS资源上,周期性的测量CSI-RS。可选的,终端可根据周期(periodicity)和偏移(offset)参数,周期性的测量CSI-RS。上述周期和偏移参数可以是基站通过RRC消息通知终端的,或者预设的,不作限制。以周期参数为4个时隙,偏移参数为3个时隙为例。终端可按照4个时隙为周期,在每4个时隙周期中的第3个时隙,在CSI-RS资源集中包括的4个CSI-RS资源上,分别测量CSI-RS,得到4个测量结果。终端在4个测量结果中,选择一个测量结果,且将该选择的一个测量结果上报给基站。例如,第一个周期,包括时隙0至时隙3,则终端在距离周期起始位置,偏移3个时隙的时隙位置,即时隙2上,在CSI-RS资源集中包括的4个CSI-RS资源上测量CSI-RS。
在NR中,一个小区中可包括多个波束,每个波束关联至少一个CSI-RS资源,终端在接入某个波束时,应该在该波束对应的CSI-RS资源上,测量CSI-RS。在终端高速移动的 情况下,终端会频繁进行波束切换,或者在非地面网络(non-terrestrial network,NTN)卫星通信系统中,在卫星高速移动过程中,即使终端静止不动,终端可能也会被动经历小区覆盖下的多个波束的频繁切换。而前已述,对于周期CSI-RS,CSI-RS资源配置中仅包括一个CSI-RS资源集,CSI-RS资源集中最多包括8个CSI-RS资源。以每个波束关联一个CSI-RS资源为例,按照前述设计,终端每切换8个波束,基站重新为终配置一次CSI-RS资源,即终端每切换8个波束,基站向终端发送一个配置CSI-RS资源的RRC,使得CSI-RS资源配置的空口开销较大。
以NTN系统为例,对上述过程进行说明:在NTN系统中,终端接入的基站是部署在卫星上的。在上行方向上,终端将上行数据发送至部署在卫星上的基站,该基站将上行数据发出,经由一个或多个卫星路由后,发送到部署在地面的信关站,该信关站再将上行数据发送至部署到地面的用户面功能(user plane function,UPF)或其它终端。在下行方向上,部署在地面的UPF将下行数据发送到部署在地面的信关站,信关站将下行数据发出,经由一个或多个卫星的路由后,到达部署在卫星上的基站,然后将下行数据发送给终端。对于轨高为508千米的低轨卫星通信系统,单星的覆盖面积为67万平方公里;考虑星下能满足接入的链路预算余量为8.6分贝,对应波束宽度为4.6度,则星下能满足接入的覆盖面积为1039平方公里,波束个数640+。假设卫星以7.8km/s移动,则卫星会在3分钟内飞过上述覆盖面积1039平方公里,单用户在3分钟会经历50-80个波束。按照目前NR中的设计,每个RRC最多配置8个CSI-RS资源,每个波束关联一个CSI-RS资源,如果用户在3分钟经历80个波束,则在3分钟内,基站向用户发送10个RRC消息。上述仅考虑单用户的情况,如果一个小区内包括2000个用户,针对每个用户,基站在3分钟内发送10个RRC消息进行配置,则CSI-RS资源的配置开销将成倍增加。
对于周期CSI-RS的配置,本申请实施例提供一种资源配置方法,包括:在终端接入某个小区的情况下,将该小区包括的波束关联的CSI-RS资源通过RRC消息一次性全部配置给终端。之后,在终端接入不同的波束的情况下,通过MAC控制信元(control element,CE)激活该波束关联的CSI-RS资源,终端在激活的CSI-RS资源上测量CSI-RS。相对于前述方案中,基站频繁向终端发送RRC消息配置当前接入波束关联的CSI-RS资源,可减小RRC重配信令的开销。如图3所示,提供一种资源配置的流程,至少包括:
步骤300:基站根据第一小区关联的CSI-RS资源,确定N个CSI-RS资源,N为正整数,例如N为大于8的正整数。该步骤300是可选的。
其中,第一小区关联的CSI-RS资源,可指第一小区关联的全部CSI-RS资源。例如,第一小区中包括至少一个波束,每个波束关联一个或多个CSI-RS资源,第一小区关联的全部CSI-RS资源可指第一小区包括的全部波束关联的CSI-RS资源。举例来说,一个小区包括64个波束,每个波束关联一个CSI-RS资源,则该小区关联的全部CSI-RS资源为该小区包括的64个波束关联的64个CSI-RS资源,N的取值可以为64。或者,进一步的,基站在第一小区关联的全部CSI-RS资源中,选择部分CSI-RS资源,作为本申请实施例中的N个CSI-RS资源。例如,基站在上述64个CSI-RS资源中,选择32个CSI-RS资源,N的取值为32。后续通过步骤301中的RRC消息,先将该32个CSI-RS资源配置给终端。之后,在终端接入剩余的32个CSI-RS资源对应的波束的情况下,再将剩余的32个CSI-RS资源配置给终端等,不作限制。
步骤301:在终端接入第一小区的情况下,基站向终端发送RRC消息,所述RRC消 息用于为终端配置N个CSI-RS资源。
以周期CSI-RS为例,RRC消息中包括一个CSI-RS资源集,该CSI-RS资源集中包括N个CSI-RS资源。考虑当前协议中,对于周期CSI-RS,每个CSI-RS资源集中包括的CSI-RS资源的数量限制不超过8个。可选的,在本申请实施例中,可限定N的取值为大于8的正整数。
步骤302:基站根据所述终端在第一小区中的第一位置区域关联的CSI-RS资源,确定所述N个CSI-RS资源中的M1个CSI-RS资源,M1为小于或等于N的正整数。该步骤302是可选的。
示例性的,第一小区内有多个同步信号-物理广播信道块(synchronization signal and physical broadcast channel block,SSB)。第一小区中的一个位置区域可以是一个SSB覆盖的区域,或者将SSB的覆盖区域划分为多个位置区域,也就是一个SSB的覆盖区域内包括多个位置区域,每个位置区域是SSB覆盖区域中的部分区域。
在本申请实施例中,每个位置区域关联至少一个CSI-RS资源。在一个位置区域关联多个CSI-RS资源的情况下,可称该位置区域关联一组CSI-RS资源。在一种可能的实现方式中,在基站检测到终端位于第一小区中的第一位置区域的情况下,基站可确定第一位置区域关联的CSI-RS资源,基站向终端发送第一MAC CE,该第一MAC CE激活终端在第一位置区域关联的CSI-RS资源上测量CSI-RS。在上述步骤302中,第一MAC CE激活的M1个CSI-RS资源中,至少包括第一位置区域关联的CSI-RS资源。可选的,上述M1个CSI-RS资源中,还可以包括其它CSI-RS资源,该其它CSI-RS资源可以是第一位置区域相邻的其它位置区域关联的CSI-RS资源等,不作限制。例如,上述M1个CSI-RS资源中除包括第一位置区域关联的CSI-RS资源外,还可以包括第二位置区域关联的CSI-RS资源和第三位置区域关联的CSI-RS资源等。在一种设计中,基站可根据终端的能力,确定M1的具体取值,终端通过第一MAC CE激活的CSI-RS资源的数量,不应超过终端的能力,所述终端的能力是终端在同一个周期内,在CSI-RS资源上同时检测CSI-RS的能力。例如,终端在同一个周期内,最多支持在4个CSI-RS资源上同时检测CSI-RS,则M1的取值不应超过4。举例来说,每个位置区域关联一个CSI-RS资源,位置区域1至位置区域4分别关联CSI-RS资源1至4,终端在同一个周期内,最多支持在4个CSI-RS资源上检测CSI-RS。在终端位于位置区域1的情况下,基站可向终端发送MAC CE,该MAC CE可激活CSI-RS资源1至CSI-RS资源4。终端在同一个周期内,在CSI-RS资源1至CSI-RS资源4上同时检测CSI-RS。如此设计的好处在于,在终端移动到位置区域2、位置区域3或位置区域4的情况下,基站均无需再发送MAC CE。直至终端移动到位置区域5时,基站才再发送一个MAC CE激活对应的另外4个CSI-RS资源。在上述设计中,基站在通过第一MAC CE激活M1个CSI-RS资源时,除了考虑终端当前的第一位置区域关联的CSI-RS资源外,还考虑终端的能力的影响。因此,上述步骤302的一种实现方式可为:基站根据第一小区中的第一位置区域关联的CSI-RS资源和终端的能力,确定M1个CSI-RS资源。
可选的,位置区域还可称为波束。波束是指基站或终端的发射机或接收机通过天线阵列形成的具有指向性的特殊的发送或接收效果,就像手电筒将光收敛到一个方向形成光束一样。通过波束的形式进行信号的发送和接收,可以有效提升信号的传输距离。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/ 模拟波束赋形技术等。波束一般和资源对应,例如进行波束测量时,基站可通过不同资源的测量结果确定对应波束的质量,例如,终端向基站反馈测得到的资源质量,基站就可以知道对应波束的质量。在数据传输中,波束信息也是通过其对应的资源来进行指示的。例如,基站通过DCI中的传输配置指示(transmission configuration indicator,TCI)字段来指示一个TCI-状态(state),终端根据该TCI-state中包含的参考信号资源来确定采用该参考资源对应的波束。在通信协议中,波束可以具体表征为数字波束,模拟波束,空域滤波器(spatial domain filter),空间滤波器(spatial filter),空间参数(spatial parameter),TCI,TCI-state等。用于发送信号的波束可以称为发送波束(transmission beam,或Tx beam),空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain transmission parameter),空间发射参数(spatial transmission parameter)等。用于接收信号的波束可以称为接收波束(reception beam,或Rx beam),空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter),空间接收参数(spatial reception parameter)等。或者,天线面板可进行波束赋形,天线面板可形成某个方向的波束,波束也还可以称为天线面板。在协议中,天线面板可以用panel、panel index等来表示。可选的,也可以通过其它方式隐示表示天线面板。例如,天线面板也可以通过天线端口来表示,例如,CSI-RS端口、探测参考信号(sounding reference signal,SRS)端口、解调参考信号(demodulation reference signal,DMRS)端口、相位跟踪参考信号(phase tracking reference signal,PTRS)端口、小区参考信号(cell reference signal,CRS)端口、时频跟踪参考信号(tracking reference signal,TRS)端口、或SSB端口等。或者天线面板可通过天线端口组来表示,天线端口组中包括至少一个天线端口,天线端口组中可包括相同或不同类型的天线端口。可选的,天线端口可通过信道特征表示,例如物理上行控制信道(physical uplink control channel,PUCCH),物理上行共享信道(physical uplink shared channel,PUSCH),物理随机接入信道(physical random access channel,PRACH),物理下行共享信道(physical downlink shared channel,PDSCH),物理下行控制信道(physical downlink control channel,PDCCH),物理广播信道(physical broadcast channel,PBCH)等。或者天线端口通过信道组表示,该信道组中包括至少一个信道,该信道组中包括相同类型或不同类型的信道。例如,所述信道组可为控制信道组等。或者,天线端口可以通过以下至少一项表示:QCL,TCI-state,空间关系(spatial relation),或通过配置在QCL,TCI-state,或spatial relation中的某个索引(index)来表示等。
步骤303:基站向终端发送第一MAC CE,所述第一MAC CE用于激活所述终端在同一个周期内,在N个CSI-RS资源中的M1个CSI-RS资源上测量CSI-RS。
步骤304:终端在同一个周期内,在M1个CSI-RS资源上测量来自基站的CSI-RS。
在一种可能的实现方式中,终端将按周期在M1个CSI-RS资源上测量CSI-RS,并上报测量结果,该周期的时长可以是预设的,或者基站预先通知终端的,不作限制。例如,终端在第一周期内,在M1个CSI-RS资源上,分别测量CSI-RS。在每个CSI-RS资源上测量CSI-RS,分别得到一个对应的测量结果,在上述M1个CSI-RS资源上测量,总共可得到M1个测量结果。在M1个测量结果中,选择出上报给基站的测量结果,上报给基站。基站根据终端上报的测量结果,可调整下行数据的调度策略。例如,终端上报的测量结果较好,代表当前下行信道的质量较佳,可以采用较简单的下行预编码技术;否则,采用较 复杂的下行预编码技术等。后续,在第二周期和第三周期等,终端均按照上述第一周期的方式,进行CSI-RS的测量,并上报测量结果。直至终端移动到第一小区的其它位置区域,例如,第二位置区域,第二位置区域可关联至少一个CSI-RS资源。基站根据第二位置区域关联的CSI-RS资源,在N个CSI-RS资源中确定M2个CSI-RS资源,该M2个CSI-RS资源中至少包括第二位置区域关联的CSI-RS资源,基站向终端发送第二MAC CE,第二MAC CE用于激活终端在M2个CSI-RS资源上测量CSI-RS。终端在同一个周期内,在M2个CSI-RS资源上测量CSI-RS,并上报测量结果。可选的,随着终端的移动,终端可能会移出第一小区的覆盖范围,移动到第二小区的覆盖范围,终端接入的小区将由第一小区切换到第二小区,此时基站可按照前述图3流程中的方法,向终端发送另一个RRC消息,该RRC消息可为终端配置第二小区关联的CSI-RS资源。根据终端在第二小区中所属的位置区域不同,向终端发送MAC CE,激活终端在对应的CSI-RS资源上测量CSI-RS。
前已述,在终端移动到一个新的位置区域的情况下,基站向终端发送MAC CE,该MAC CE除激活当前新的位置区域关联的CSI-RS资源外,还可以激活其它位置区域关联的CSI-RS资源。可选的,在该设计中,并不是终端每移动到一个新的位置区域,基站即对应的向终端发送MAC CE,激活该新位置区域关联的CSI-RS资源。只有当终端新移动到的位置区域相关联的CSI-RS资源并未被激活,或称为终端前一次接收到的MAC CE所激活的M个CSI-RS资源中,不包括新移动到的位置区域相关联的CSI-RS资源时,基站才会再发送一个MAC CE。基站在发送每个MAC CE前,可执行以下判断:确定终端当前移动到的新的位置区域关联的CSI-RS资源,以及前一次发送的MAC CE所激活的CSI-RS资源。当前者的CSI-RS资源,不属于后者CSI-RS资源时,或者称为当后者CSI-RS资源不包括前者CSI-RS资源时,基站才向终端发送MAC CE,激活新位置区域关联的CSI-RS资源。举例来说,一个小区包括位置区域1至5,每个位置区域关联一个CSI-RS资源,位置区域1至5分别关联CSI-RS资源1至5。在终端移动到位置区域1的情况下,设定终端在同一个周期内,最多支持在4个CSI-RS资源上测量CSI-RS,则基站可向终端发送MAC CE1,该MAC CE1激活CSI-RS资源1至CSI-RS资源4。后续只有在终端移动到位置区域5的情况下,基站才会向终端发送MAC CE2,该MAC CE2至少用于激活CSI-RS资源5。或者在另一种方案中,在终端每移动到一个新的位置区域的情况下,基站即向终端发送MAC CE,激活该位置区域对应的CSI-RS资源。在该方案中,MAC CE仅激活当前位置区域关联的CSI-RS资源。沿用上述举例,在终端移动到位置区域1的情况下,基站向终端发送MAC CE1激活位置区域1相关联的CSI-RS1资源;在终端移动到位置区域2的情况下,则基站向终端发送MAC CE2激活位置区域2相关联的CSI-RS2资源等。后续过程相似,不再一一说明。采用前述方案,相对于后述方案,可减少基站发送MAC CE的数量,降低空口开销。
可选的,上述图3流程的应用场景可为:终端在同一个周期内,最多支持在X个CSI-RS资源上测量CSI-RS,X为小于或等于N的正整数。也就是,设定一个小区关联CSI-RS资源的数量为N。终端的能力具体为:终端在同一个周期内,最多支持在X个CSI-RS资源上测量CSI-RS。在X小于N的情况下,终端的能力决定,终端不能在同一个周期内,同时测量第一小区关联的全部CSI-RS资源(即N个CSI-RS资源)。此时可采用上述图3流程中的方案:将一个小区关联的全部CSI-RS资源,通过RRC消息预先配置给终端。基站根据终端的位置区域不同,向终端发送MAC CE,该MAC CE至少激活当前位置区域关联 的CSI-RS资源。通过该方案,在终端接入的小区未作改变的情况下,即终端不切换接入新的小区时,根据终端的位置区域不同,基站通过MAC CE激活对应的CSI-RS资源即可,无需频繁对终端进行RRC重配,减少了配置开销。进一步,一次RRC重配信令交互的过程包括:下行DCI或下行PDSCH+上行肯定确认(acknowledge,ACK)或否定确认(negative acknowledge,NACK)+上行调度请求(scheduling request,SR)+下行DCI+上行缓存状态报告(buffer status repor,BSR)+下行DCI+上行PUSCH(重配完成),整个过程包括3次下行交互和4次上行交互,一次RRC重配信令的空口开销通常为几十比特。一次MAC CE指示的过程包括下行DCI或下行PDSCH+上行ACK或NACK,整个过程包括1次下行交互和1次上行交互,一次MAC CE指示的空口开销通常为十几比特。由于在本申请实施例的方案中,根据终端的移动区域不同,通过MAC CE激活对应的CSI-RS资源,无需频繁进行RRC重配。因此通过本申请实施例的方法,可将RRC的几十比特的信令开销,降低到十几比特的MAC CE开销,节省了空口资源。
在后续描述中,以位置区域为波束为例,进行说明。在一种设计中,如图4所示,设定一个小区中包括64个波束,每个波束关联一个CSI-RS资源,则可认为该小区关联64个CSI-RS资源。终端的能力包括:在同一个周期内,最多支持在4个CSI-RS资源上测量CSI-RS。基站为终端配置CSI-RS资源的过程:
1、终端接入该小区,基站向终端发送RRC消息,配置终端周期CSI-RS测量,该RRC消息中包括一个CSI-RS资源集,该CSI-RS资源集中包括对应的64个CSI-RS资源。
2、终端的初始接入波束为波束1,基站向终端发送MAC CE,激活CSI-RS资源1至4。
其中,小区中的64个波束的编号分别为波束1至波束64,波束1至波束64关联的CSI-RS资源分别为CSI-RS资源1至CSI-RS资源64。在一种设计中,在终端接入波束1的情况下,该MAC CE至少激活终端在CSI-RS资源1上测量CSI-RS。考虑到终端在同一个周期内,支持最多在4个CSI-RS资源上测量CSI-RS。因此,基站通过MAC CE,可以一次性激活终端在CSI-RS资源1至4上测量CSI-RS。这样,在终端移动到波束5的情况下,基站再向终端发送MAC CE,激活另外4个CSI-RS资源。
3、终端在同一个周期内,在上述4个CSI-RS资源上测量CSI-RS,向基站反馈测量结果。
4、在终端移动到波束5的情况下,或者由于卫星移动导致终端所处于的波束变化到波束5时,向终端发送MAC CE,激活CSI-RS资源5至8。
在该设计中,以通过MAC CE同时激活4个CSI-RS资源为例,终端每移动4个波束,基站即向终端发送一次MAC CE,激活另外4个CSI-RS。在该设计中,通过单次RRC信令将一个小区关联的CSI-RS资源全部配置给终端,之后随着终端在波束间移动,通过MAC CE激活终端能力范围内的多个CSI-RS,终端在激活的CSI-RS资源上测量CSI-RS,从而有效降低RRC重配信令开销。
应当指出,在上述设计中,在终端在同一个周期内,最多支持测量4个CSI-RS资源的情况下,基站通过MAC CE一次激活4个CSI-RS资源为例描述的,并不作为限制。比如,基站通过MAC CE也可以一次激活1、2或3个CSI-RS资源等,但通常不能超过终端的能力。终端通过RRC信令,一次将小区关联的全部64个CSI-RS资源配置给终端,也不作为限制。比如,在初始配置阶段,终端将小区关联的部分CSI-RS资源配置给终端。 例如,前32个波束关联的CSI-RS资源1至CSI-RS资源32。在终端在波束1至波束32间移动的情况下,可通过MAC CE激活对应的CSI-RS。在终端移动到波束33至波束64的情况下,再通过RRC将剩余的32个CSI-RS资源配置给终端。在终端在波束33至波束64间移动的情况下,通过MAC CE激活对应的CSI-RS资源。
在另一种设计中,以一个小区包括64个波束,每个波束关联2个CSI-RS资源为例,每2个CSI-RS资源可认为一组CSI-RS资源。基站为终端配置CSI-RS资源的过程,包括:
1、终端接入小区时,基站向终端发送RRC消息,该RRC消息配置终端周期性测量CSI-RS。该RRC消息中包括一个CSI-RS资源集,该CSI-RS资源集中包括64组CSI-RS资源,每组CSI-RS资源包括2个CSI-RS资源,该CSI-RS资源集可认为包括128个CSI-RS资源。
2、终端接入波束1,考虑到终端在同一个周期最多支持在4个CSI-RS资源上测量CSI-RS,基站向终端发送MAC CE,激活配置的128个CSI-RS资源中的前4个CSI-RS资源,即CSI-RS资源1至CSI-RS资源4。
可以理解的是,在该示例中,由于每个波束关联2个CSI-RS资源,上述MAC CE激活的4个CSI-RS资源,实质上为2组CSI-RS资源,可称为CSI-RS组1至CSI-RS组2,分别对应波束1和波束2。
3、终端在同一个周期内,在CSI-RS资源1至CSI-RS资源4上同时测量CSI-RS,并反馈测量结果。
4、在终端移动到波束3的情况下,或者由于卫星移动导致终端所处的波束变化到波束3时,基站向终端发送MAC CE,该MAC CE用于激活CSI-RS资源5至8。该CSI-RS资源5至8可认为是2组CSI-RS资源,可称为CSI-RS资源组3和CSI-RS资源组4,分别对应波束3和波束4。
后续过程与前述相似,在终端每移动2个波束,或者由于卫星移动导致终端所处的波束变化2个波束的情况下,基站向终端发送一次MAC CE,激活对应的CSI-RS资源。针对小区内包括多个波束,每个波束关联多个CSI-RS的场景,通过单次RRC信令将小区所关联的所有CSI-RS资源均配置给终端,之后随着终端在波束间移动,通过MAC CE激活对应的CSI-RS资源,降低RRC信令开销。在上述描述中,是通过RRC信令一次将小区关联的全部128个CSI-RS资源都配置给终端,后续通过MAC CE激活对应的CSI-RS资源为例说明的。在一种设计中,基站还可以通过RRC信令将小区关联的部分CSI-RS资源配置给终端。比如,该小区的前32个波束关联的64个CSI-RS资源先配置给终端。在终端移到后32个波束的情况下,再通过RRC信令将剩余的64个CSI-RS资源配置给终端。
对于周期CSI-RS的配置,本申请实施例还提供一种资源配置方法,在该方法中主要考虑随着终端能力的提升,在同一个周期内支持CSI-RS资源的数量X,可能会大于一个小区关联的全部CSI-RS资源的场景。在这种场景中,可通过RRC将一个小区关联的全部CSI-RS资源都配置给终端,终端在同一个周期内,直接在小区关联的全部CSI-RS资源上测量CSI-RS,直至终端切换到其它小区时,再进行一次RRC配置。这样,终端在一个小区内,执行一次RRC配置即可,从而减少信令开销。如图5所示,提供一种资源配置的流程,至少包括:
步骤500:在终端接入第一小区的情况下,基站根据第一小区关联的CSI-RS资源,确定N1个CSI-RS资源,N1为小于或等于X的正整数,X为所述终端在同一个周期内,支 持的CSI-RS资源的最大数量,X为正整数。该步骤500是可选的。
可选的,第一小区关联的CSI-RS资源可以为第一小区关联的全部CSI-RS资源。关于第一小区关联的全部CSI-RS资源的说明,可参见图3中的相关说明。设定第一小区关联64个CSI-RS资源,则可将该64个CSI-RS资源,作为N1个CSI-RS资源,通过后续步骤501中的第一RRC消息,配置给终端。
步骤501:基站向终端发送第一RRC消息,所述第一RRC消息用于配置终端在同一个周期内,在N1个CSI-RS资源上测量CSI-RS。例如,所述第一RRC消息包括第一CSI-RS资源集,第一CSI-RS资源集中包括N1个CSI-RS资源。
步骤502:在同一个周期内,终端在N1个CSI-RS资源上测量CSI-RS。
在一种设计中,终端在接收到第一RRC消息时,可直接执行步骤502,在N1个CSI-RS资源上测量CSI-RS。或者,基站可先通过第一RRC,为终端配置N1个CSI-RS资源。之后,基站再向终端发送第一MAC CE,该第一MAC CE用于激活上述N1个CSI-RS资源。在该N1个CSI-RS资源被激活后,终端再在N1个CSI-RS资源上测量CSI-RS,即可选的,在步骤501与步骤502之间还可以包括:基站向终端发送第一MAC CE,该第一MAC CE用于激活终端在同一个周期内,在N1个CSI-RS资源上测量CSI-RS。在本申请实施例中,在终端在第一小区的波束间移动的情况下,或者由于卫星的高速移动,导致终端所处波束发生变生的情况下,无需再进行其它操作。比如,无需再进行目前方案中的RRC重配,也无需像前述图3所示的流程中的通过MAC CE激活当前波束对应的CSI-RS资源的操作,减少信令开销。
可选的,在终端由第一小区切换到第二小区的情况下,基站可根据第二小区关联的CSI-RS资源,确定N2个CSI-RS资源。可选的,该N2个CSI-RS资源为第二小区关联的全部CSI-RS资源。基站向终端发送第二RRC消息,该第二RRC消息用于配置在同一个周期内,终端在N2个CSI-RS资源上测量CSI-RS。终端在接收到第二RRC消息的配置后,在N2个CSI-RS资源上测量CSI-RS。可选的,在终端接收到第二RRC消息,与终端执行CSI-RS测量之间,还可以包括:终端接收来自基站的第二MAC CE,该第二MAC CE用于激活该N2个CSI-RS资源。而终端在接收到N2个CSI-RS资源的激活信令后,再执行CSI-RS测量。后续终端由第二小区切换到其它小区的过程都相似,不再赘述。由于在本申请实施例的方案中,终端在同一个小区的不同波束间切换时,无需其它信令的指示或配置,从而减少信令开销。
可选的,上述图5所示的资源配置方法的一种应用场景包括:设定终端的能力包括:终端在一个周期内,支持CSI-RS资源的最大数量为X,X为正整数。在X的取值大于或等于一个小区关联的全部CSI-RS资源的数量的情况下,则执行图5所示的流程。在前述步骤501中,第一小区关联的全部CSI-RS资源的数量为N1,在本申请实施例中,可限定X的取值大于或等于N1。可选的,终端还可以向基站上报终端的能力。例如,终端向基站发送能力信息,该能力信息用于指示终端在同一个周期内,最多支持在X个CSI-RS资源上测量CSI-RS。而基站可根据终端上报的能力,确定是否执行图5所示的流程。例如,终端上报的能力表明:终端在一个周期内,支持CSI-RS资源的最大数量为X。在X的取值大于或等于终端当前接入小区所关联的全部CSI-RS资源的情况下,执行图5流程中的方法。否则,不再执行。
以一个小区包括64个波束,每个波束关联1个CSI-RS资源,该小区关联64个CSI-RS 资源,终端在同一个周期内,支持CSI-RS资源的最大数量为N,且N的取值大于64为例。如图6所示,基站为终端配置CSI-RS资源的过程,包括:
1、终端接入一个小区时,基站向终端发送RRC消息,该RRC消息配置终端周期性测量CSI-RS。该RRC消息中包括一个CSI-RS资源集,该CSI-RS资源集中包括该小区关联的64个CSI-RS资源。
2、基站向终端发送MAC CE,该MAC CE用于激活上述64个CSI-RS资源。
3、终端在一个周期内,在64个CSI-RS资源上测量CSI-RS,并向基站反馈测量结果。
在该设计中,终端在同一个小区内的不同波束间移动,或者由于卫星移动导致终端所处的波束发生变化时,无需MAC CE进行激活或去激活CSI-RS资源。该设计主要是考虑终端在同一个周期支持CSI-RS资源的数量大于或等于一个小区关联的全部CSI-RS资源的情况,终端支持在同一个周期内,在小区关联的全部CSI-RS资源上测量CSI-RS,则通过RRC消息可将该小区关联的全部CSI-RS资源一次都配置给终端,相应的终端将在该小区关联的全部CSI-RS资源上测量CSI-RS。在终端在同一个小区中所处的波束发生变化的情况下,无需再通过MAC CE进行CSI-RS资源的激活或去激活,节省信令开销。
在上述描述中,是以RRC激活一个小区关联的全部CSI-RS资源为例描述的。在一种设计中,RRC也可以激活一个小区关联的部分CSI-RS资源。即前述图5所示流程中的N1个CSI-RS资源可以是第一小区关联的部分CSI-RS资源,N2个CSI-RS资源可以是第二小区关联的部分CSI-RS资源。例如,N1与N2的取值可以均为32。以一个小区关联的全部CSI-RS资源为64个CSI-RS资源为例。在终端接入当前小区中的波束1的情况下,基站向终端发送RRC1,该RRC1配置终端在同一个周期内,在前32个CSI-RS资源上测量CSI-RS。在终端接入到波束33后,基站向终端发送RRC2,该RRC2配置终端在同一个周期内,在后32个CSI-RS资源上测量CSI-RS。在该种设计中,在一个小区内,基站向终端发送多次RRC消息进行CSI-RS资源的配置。在该设计中,只要RRC消息一次配置的CSI-RS资源的数量大于8个,那么相对于目前方案,还是可以减少RRC配置信令开销的。
在上述描述中,是以本申请实施例的资源配置方法,应用于周期CSI-RS的资源配置为例说明的,并不作为限制。本申请实施例提供的资源配置方法,还可以应用于其它类型的CSI-RS的资源配置。例如,非周期CSI-RS或半静态CSI-RS的资源配置等。例如,对于半静态CSI-RS,在终端接入某个小区的情况下,基站向终端发送RRC消息,该RRC消息中包括多个CSI-RS资源集。之后,基站向终端发送MAC CE,该MAC CE中包括两个信息,一个信息用于指示终端开始周期性测量CSI-RS,另一个信息用于指示多个CSI-RS资源集中的一个CSI-RS资源集。例如,在上述半静态CSI-RS中,应用上述图3所示的资源配置方法时,基站所指示的CSI-RS资源集中可包括终端当前接小区相关联的全部CSI-RS资源;在终端所处的波束变化的情况下,通过MAC CE激活不同的CSI-RS资源,终端在激活的CSI-RS资源上,周期性测量CSI-RS,直至接收到停止周期测量的指令为止。
可以理解的是,为了实现上述实施例中的功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请实施例中所公开的实施例描述的各示例的单元及方法步骤,本申请实施例能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图6和图7为本申请实施例提供的可能的通信装置的结构示意图。这些通信装置可以 用于实现上述方法实施例中终端或基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,也可以是如图1所示的基站110a或110b,还可以是应用于终端或基站的模块(如芯片)。
如图6所示,通信装置6000包括处理单元6010和收发单元6020。通信装置6000用于实现上述图3或图5中所示的方法实施例中终端或基站的功能。
在通信装置6000用于实现图3所示的方法实施例中终端的功能的情况下:收发单元6020用于在终端接入第一小区的情况下,接收来自网络设备的RRC消息,所述RRC消息用于为终端配置N个CSI-RS资源,N为正整数,以及,在所述终端在所述第一小区中的第一位置区域的情况下,接收来自所述网络设备的第一MAC CE,所述第一MAC CE用于激活所述终端在同一个周期内,在所述N个CSI-RS资源中的M1个CSI-RS资源上测量CSI-RS,所述M1个CSI-RS资源中至少包括所述第一位置区域关联的CSI-RS资源,M1为小于或等于N的正整数;处理单元6010用于在同一个周期内,在所述M1个CSI-RS资源上测量来自所述网络设备的所述CSI-RS。
在通信装置6000用于实现图3所示的方法实施例中基站的功能的情况下:收发单元6020用于在终端接入第一小区的情况下,向终端发送RRC消息,所述RRC消息用于为所述终端配置N个CSI-RS资源,N为正整数,以及,向所述终端发送第一MAC CE,所述第一MAC CE用于激活所述终端在同一个周期内,在所述M1个CSI-RS资源上测量CSI-RS。处理单元6010用于根据所述终端在所述第一小区中的第一位置区域关联的CSI-RS资源,确定所述N个CSI-RS资源中的M1个CSI-RS资源,所述M1个CSI-RS资源中至少包括所述第一位置区域关联的CSI-RS资源,M1为小于或等于N的正整数;
有关上述处理单元6010和收发单元6020更详细的描述可以直接参考图3所示的方法实施例中相关描述直接得到,这里不加赘述。
在通信装置6000用于实现图5所示的方法实施例中终端的功能的情况下:收发单元6020用于在终端接入第一小区的情况下,接收来自网络设备的第一RRC消息,所述第一RRC消息用于为所述终端配置N1个CSI-RS资源,N1为小于或等于X的正整数,X为所述终端在同一个周期内,支持的CSI-RS资源的最大数量,X为正整数;处理单元6010用于在同一个周期内,在所述N1个CSI-RS资源上测量来自所述网络设备的CSI-RS。
在通信装置6000用于实现图5所示的方法实施例中基站的功能的情况下:处理单元6010用于在终端接入第一小区的情况下,根据所述第一小区关联的CSI-RS资源,确定N1个CSI-RS资源,N1为小于或等于X的正整数,X为所述终端在同一个周期内,支持的CSI-RS资源的最大数量,X为正整数;收发单元6020用于向所述终端发送第一RRC消息,所述第一RRC消息用于配置所述终端在同一个周期内,在N1个CSI-RS资源上测量CSI-RS。例如,所述第一RRC消息中包括第一CSI-RS资源集,所述第一CSI-RS资源集中包括所述N1个CSI-RS资源。
有关上述处理单元6010和收发单元6020更详细的描述可以直接参考图5所示的方法实施例中相关描述直接得到,这里不加赘述。
如图7所示,通信装置7000包括处理器7010和接口电路7020。处理器7010和接口电路7020之间相互耦合。可以理解的是,接口电路7020可以为收发器或输入输出接口。可选的,通信装置7000还可以包括存储器7030,用于存储处理器7010执行的指令或存储处理器7010运行指令的输入数据或存储处理器7010运行指令后产生的数据。
在通信装置7000用于实现图3或图5中所示的方法的情况下,处理器7010用于实现上述处理单元6010的功能,接口电路7020用于实现上述收发单元6020的功能。
在上述通信装置为应用于终端的芯片的情况下,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
在上述通信装置为应用于基站的模块的情况下,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。在使用软件实现的情况下,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑 关系可以组合形成新的实施例。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请实施例的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请实施例的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B或C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (35)

  1. 一种资源配置方法,其特征在于,包括:
    在终端接入第一小区的情况下,接收来自网络设备的无线资源控制RRC消息,所述RRC消息用于为所述终端配置N个信道状态信息-参考信号CSI-RS资源,N为正整数;
    在所述终端在所述第一小区中的第一位置区域情况下,接收来自所述网络设备的第一媒体接入控制MAC控制信元CE,所述第一MAC CE用于激活所述终端在同一个周期内,在所述N个CSI-RS资源中的M1个CSI-RS资源上测量CSI-RS,所述M1个CSI-RS资源中至少包括所述第一位置区域关联的CSI-RS资源,M1为小于或等于N的正整数;
    在同一个周期内,在所述M1个CSI-RS资源上测量来自所述网络设备的所述CSI-RS。
  2. 如权利要求1所述的方法,其特征在于,所述终端在同一个周期内,最多支持在X个CSI-RS资源上测量CSI-RS,X为小于或等于N的正整数。
  3. 如权利要求1或2所述的方法,其特征在于,在所述终端由所述第一小区中的所述第一位置区域移动到所述第一小区中的第二位置区域的情况下,还包括:
    接收来自所述网络设备的第二MAC CE,所述第二MAC CE用于激活所述终端在同一个周期内,在所述N个CSI-RS资源中的M2个CSI-RS资源上测量所述CSI-RS,所述M2个CSI-RS资源中至少包括所述第二位置区域关联的CSI-RS资源,M2为小于或等于N的正整数。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述N个CSI-RS资源为所述第一小区关联的全部CSI-RS资源。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述第一位置区域关联至少一个CSI-RS资源,第二位置区域关联至少一个CSI-RS资源。
  6. 一种资源配置方法,其特征在于,包括:
    在终端接入第一小区的情况下,向所述终端发送无线资源控制RRC消息,所述RRC消息用于为所述终端配置N个信道状态信息-参考信号CSI-RS资源,N为正整数;
    根据所述终端在所述第一小区中的第一位置区域关联的CSI-RS资源,确定所述N个CSI-RS资源中的M1个CSI-RS资源,所述M1个CSI-RS资源中至少包括所述第一位置区域关联的CSI-RS资源,M1为小于或等于N的正整数;
    向所述终端发送第一媒体接入控制MAC控制信元CE,所述第一MAC CE用于激活所述终端在同一个周期内,在所述M1个CSI-RS资源上测量CSI-RS。
  7. 如权利要求6所述的方法,其特征在于,所述终端在同一个周期内,最多支持在X个CSI-RS资源上测量所述CSI-RS,X为小于或等于N的正整数。
  8. 如权利要求6或7所述的方法,其特征在于,在所述终端由所述第一小区中的所述第一位置区域移动到所述第一小区中的第二位置区域的情况下,还包括:
    根据所述第二位置区域关联的CSI-RS资源,确定所述N个CSI-RS资源中的M2个CSI-RS资源,所述M2个CSI-RS资源中至少包括所述第二位置区域关联的CSI-RS资源,M2为小于或等于N的正整数;
    向所述终端发送第二MAC CE,所述第二MAC CE用于激活所述终端在同一个周期内,在所述M2个CSI-RS资源上测量所述CSI-RS。
  9. 如权利要求6至8中任一项所述的方法,其特征在于,还包括:
    根据所述第一小区关联的CSI-RS资源,确定所述N个CSI-RS资源。
  10. 如权利要求9所述的方法,其特征在于,所述N个CSI-RS资源为所述第一小区关联的全部CSI-RS资源。
  11. 如权利要求6至10中任一项所述的方法,其特征在于,所述第一位置区域关联至少一个CSI-RS资源,第二位置区域关联至少一个CSI-RS资源。
  12. 一种资源配置方法,其特征在于,包括:
    在终端接入第一小区的情况下,接收来自网络设备的第一无线资源控制RRC消息,所述第一RRC消息用于为所述终端配置N1个信道状态信息-参考信号CSI-RS资源,N1为小于或等于X的正整数,X为所述终端在同一个周期内,支持的CSI-RS资源的最大数量,X为正整数;
    在同一个周期内,在所述N1个CSI-RS资源上测量来自所述网络设备的CSI-RS。
  13. 如权利要求12所述的方法,其特征在于,所述N1个CSI-RS资源为所述第一小区关联的全部CSI-RS资源。
  14. 如权利要求12或13所述的方法,其特征在于,还包括:
    向所述网络设备发送能力信息,所述能力信息用于指示所述终端在同一个周期内,最多支持在X个CSI-RS资源上测量所述CSI-RS。
  15. 如权利要求12至14中任一项所述的方法,其特征在于,还包括:
    接收来自所述网络设备的第一媒体接入控制MAC控制信元CE,所述第一MAC CE用于激活所述终端在同一个周期内,在所述N1个CSI-RS资源上测量所述CSI-RS。
  16. 如权利要求12至15中任一项所述的方法,其特征在于,在所述终端由所述第一小区切换到第二小区的情况下,还包括:
    接收来自所述网络设备的第二RRC消息,所述第二RRC消息用于为所述终端配置N2个CSI-RS资源,N2为小于或等于X的正整数;
    在同一个周期内,在所述N2个CSI-RS资源上测量来自所述网络设备的所述CSI-RS。
  17. 如权利要求16所述的方法,其特征在于,所述N2个CSI-RS资源为所述第二小区关联的全部CSI-RS资源。
  18. 如权利要求16或17所述的方法,其特征在于,还包括:
    接收来自所述网络设备的第二MAC CE,所述第二MAC CE用于激活所述终端在同一个周期内,在所述N2个CSI-RS资源上测量所述CSI-RS。
  19. 一种资源配置方法,其特征在于,包括:
    在终端接入第一小区的情况下,根据所述第一小区关联的信道状态信息-参考信号CSI-RS资源,确定N1个CSI-RS资源,N1为小于或等于X的正整数,X为所述终端在同一个周期内,支持的CSI-RS资源的最大数量,X为正整数;
    向所述终端发送第一无线资源控制RRC消息,所述第一RRC消息用于配置所述终端在同一个周期内,在N1个CSI-RS资源上测量CSI-RS。
  20. 如权利要求19所述的方法,其特征在于,所述N1个CSI-RS资源为所述第一小区关联的全部CSI-RS资源。
  21. 如权利要求19或20所述的方法,其特征在于,还包括:
    接收来自所述终端的能力信息,所述能力信息用于指示所述终端在同一个周期内,最多支持在X个CSI-RS资源上测量所述CSI-RS。
  22. 如权利要求19至21中任一项所述的方法,其特征在于,还包括:
    向所述终端发送第一媒体接入控制MAC控制信元CE,所述第一MAC CE用于激活所述终端在同一个周期内,在所述N1个CSI-RS资源上测量所述CSI-RS。
  23. 如权利要求19至22中任一项所述的方法,其特征在于,在所述终端由所述第一小区切换到第二小区的情况下,还包括:
    根据所述第二小区关联的CSI-RS资源,确定N2个CSI-RS资源,N2为小于或等于X的正整数;
    向所述终端发送第二RRC消息,所述第二RRC消息用于配置所述终端在同一个周期内,在所述N2个CSI-RS资源上测量所述CSI-RS。
  24. 如权利要求23所述的方法,其特征在于,所述N2个CSI-RS资源为所述第二小区关联的全部CSI-RS资源。
  25. 如权利要求23或24所述的方法,其特征在于,还包括:
    向所述终端发送第二MAC CE,所述第二MAC CE用于激活所述终端在同一个周期内,在所述N2个CSI-RS资源上测量所述CSI-RS。
  26. 一种通信装置,其特征在于,包括用于执行如权利要求1至5中的任一项所述方法的单元,或者权利要求12至18中的任一项所述方法的单元。
  27. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至5中任一项所述的方法,或者权利要求12至18中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括处理器和存储器;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置实现权利要求1至5中任一项所述的方法,或者权利要求12至18中任一项所述的方法。
  29. 一种通信装置,其特征在于,包括用于执行如权利要求6至11中的任一项所述方法的单元,或者权利要求19至25中的任一项所述方法的单元。
  30. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求6至11中任一项所述的方法,或者权利要求19至25中任一项所述的方法。
  31. 一种通信装置,其特征在于,包括处理器和存储器;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置实现权利要求6至11中任一项所述的方法,或者权利要求19至25中任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,在所述计算机程序或指令被通信装置执行的情况下,实现如权利要求1至5中任一项所述的方法,或者权利要求6至11中任一项所述的方法,或者权利要求12至18中任一项所述的方法,或者权利要求19至25中任一项所述的方法。
  33. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,使得所述芯片实现权利要求1至5中任一项所述的方法, 或者实现权利要求6至11中任一项所述的方法,或者实现权利要求12至18中任一项所述的方法,或者实现权利要求19至25中任一项所述的方法。
  34. 一种计算机程序产品,其特征在于,包括计算机程序或指令,当计算机程序或指令被装置运行时,使得权利要求1至5中任一项所述的方法被执行,或者权利要求6至11中任一项所述的方法被执行,或者权利要求12至18中任一项所述的方法,或者权利要求19至25中任一项所述的方法。
  35. 一种通信系统,其特征在于,包括:第一终端装置,所述第一终端装置用于实现权利要求1至5中任一项所述的方法,或者权利要求12至18中任一项所述的方法;
    第二终端装置,所述第二终端装置用于实现权利要求6至11中任一项所述的方法,或者权利要求19至25中任一项所述的方法。
PCT/CN2023/092917 2022-08-17 2023-05-09 一种资源配置方法及装置 WO2024037060A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210984241.9 2022-08-17
CN202210984241.9A CN117640041A (zh) 2022-08-17 2022-08-17 一种资源配置方法及装置

Publications (1)

Publication Number Publication Date
WO2024037060A1 true WO2024037060A1 (zh) 2024-02-22

Family

ID=89940600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092917 WO2024037060A1 (zh) 2022-08-17 2023-05-09 一种资源配置方法及装置

Country Status (2)

Country Link
CN (1) CN117640041A (zh)
WO (1) WO2024037060A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180262313A1 (en) * 2017-03-08 2018-09-13 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
CN110022192A (zh) * 2018-01-09 2019-07-16 维沃移动通信有限公司 参考信号资源的测量方法、网络侧设备及用户侧设备
US20210337525A1 (en) * 2020-04-23 2021-10-28 Samsung Electronics Co., Ltd. Method and apparatus for dynamic beam indication mechanism
US20220140874A1 (en) * 2020-10-29 2022-05-05 GM Global Technology Operations LLC Method and system for beamform management for communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180262313A1 (en) * 2017-03-08 2018-09-13 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
CN110022192A (zh) * 2018-01-09 2019-07-16 维沃移动通信有限公司 参考信号资源的测量方法、网络侧设备及用户侧设备
US20210337525A1 (en) * 2020-04-23 2021-10-28 Samsung Electronics Co., Ltd. Method and apparatus for dynamic beam indication mechanism
US20220140874A1 (en) * 2020-10-29 2022-05-05 GM Global Technology Operations LLC Method and system for beamform management for communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Measurement with CSI-RS", 3GPP DRAFT; R4-1800193 MEASUREMENT WITH CSI-RS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. San Diego, USA; 20180122 - 20180126, 15 January 2018 (2018-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051387907 *

Also Published As

Publication number Publication date
CN117640041A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US11723049B2 (en) Beam management in a wireless network
WO2020156174A1 (zh) 波束指示的方法和通信装置
WO2020034889A1 (zh) 信号传输的方法和通信装置
CN109890079B (zh) 一种资源配置方法及其装置
TW201902156A (zh) 涉及無線通信網絡中的通道狀態資訊報告的方法和裝置
JP7248816B2 (ja) 情報送信方法および情報送信装置
US20230361835A1 (en) Beam information reporting and receiving method and apparatus
WO2023050472A1 (zh) 用于寻呼的方法和装置
WO2022022517A1 (zh) 确定传输功率的方法及装置
US20210185690A1 (en) Resource management method and apparatus
JP2024512750A (ja) 電子機器、通信方法、及び記憶媒体
CN112351451B (zh) 波束失败恢复方法及装置
CN113938960A (zh) 一种邻区测量方法及其装置
US20220232440A1 (en) Configuration of carriers for non-mobility related purposes
EP4354934A1 (en) Communication method and communication apparatus
WO2023030133A1 (zh) 测量方法、装置及系统
WO2024037060A1 (zh) 一种资源配置方法及装置
CN112469125A (zh) 一种传输方法、终端设备以及网络设备
WO2024032327A1 (zh) 信息传输方法、装置和系统
WO2023193771A1 (zh) 一种通信方法、装置及系统
US11785512B2 (en) Fallback to conditional handover using SSB reference signal
WO2024125399A1 (zh) 一种小区激活的方法和通信装置
WO2023179412A1 (zh) 多面板通信方法及装置
WO2021204250A1 (en) Method and network device for coverage enhancement
WO2023241505A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853967

Country of ref document: EP

Kind code of ref document: A1