WO2024036928A1 - Printable transparent stress sensor and preparation method therefor - Google Patents

Printable transparent stress sensor and preparation method therefor Download PDF

Info

Publication number
WO2024036928A1
WO2024036928A1 PCT/CN2023/080672 CN2023080672W WO2024036928A1 WO 2024036928 A1 WO2024036928 A1 WO 2024036928A1 CN 2023080672 W CN2023080672 W CN 2023080672W WO 2024036928 A1 WO2024036928 A1 WO 2024036928A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
conductive layer
stress sensor
transparent conductive
modulus
Prior art date
Application number
PCT/CN2023/080672
Other languages
French (fr)
Chinese (zh)
Inventor
刘阳
许子骏
程博闻
江红
徐剑锋
徐桂明
Original Assignee
江西昌硕户外休闲用品有限公司
深圳市昌硕新纺材料有限公司
天津科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西昌硕户外休闲用品有限公司, 深圳市昌硕新纺材料有限公司, 天津科技大学 filed Critical 江西昌硕户外休闲用品有限公司
Publication of WO2024036928A1 publication Critical patent/WO2024036928A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • B41M1/34Printing on other surfaces than ordinary paper on glass or ceramic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/007Digital printing on surfaces other than ordinary paper on glass, ceramic, tiles, concrete, stones, etc.
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Abstract

A printable transparent stress sensor, comprising a conductive layer and an elastic substrate, wherein the conductive layer is a transparent conductive layer (1) composed of conductive nanomaterials, the elastic substrate is a light-transmitting elastic layer with two or more layers and a modulus gradient structure, and the transparent conductive layer (1) is embedded in the elastic substrate and is connected to the highest-modulus layer.

Description

一种可印刷透明应力传感器及其制备方法Printable transparent stress sensor and preparation method thereof
本申请要求于2022年08月19日提交中国专利局、申请号为202211000536.4、发明名称为“一种可印刷透明应力传感器及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims priority to the Chinese patent application filed with the China Patent Office on August 19, 2022, with the application number 202211000536.4 and the invention title "A printable transparent stress sensor and its preparation method", the entire content of which is incorporated by reference. in this application.
技术领域Technical field
本发明属于柔性透明应力传感器技术领域,涉及柔性透明导电材料以及印刷电子产品技术领域,特别涉及一种高透光率、高灵敏度、大工作范围力学传感器及其制备方法。主要用于柔性触摸屏的屏幕指纹解锁,人体运动信息监测。在人机交互、电子皮肤、仿生机器人等领域具有巨大应用前景。The invention belongs to the technical field of flexible transparent stress sensors and relates to the technical fields of flexible transparent conductive materials and printed electronic products. In particular, it relates to a mechanical sensor with high light transmittance, high sensitivity and large working range and a preparation method thereof. Mainly used for screen fingerprint unlocking of flexible touch screens and human movement information monitoring. It has great application prospects in fields such as human-computer interaction, electronic skin, and bionic robots.
背景技术Background technique
随着柔性电子设备的推广,柔性透明应力传感器引起了人们的广泛关注。例如在柔性触摸屏领域,华为的柔性屏手机Mate Xs的屏幕解锁功能,通过在屏幕背板后采用柔性透明应力传感器实现。在柔性透明可穿戴设备领域,“隐形”和“无感”特性可增加穿戴者的舒适度和美感,是未来柔性传感器的重要特征。因此,发展柔性透明应力传感器具有重要意义。With the promotion of flexible electronic devices, flexible transparent stress sensors have attracted widespread attention. For example, in the field of flexible touch screens, the screen unlocking function of Huawei's flexible screen mobile phone Mate Xs is achieved by using a flexible transparent stress sensor behind the screen backplane. In the field of flexible and transparent wearable devices, "invisibility" and "senseless" properties can increase the wearer's comfort and aesthetics and are important features of future flexible sensors. Therefore, the development of flexible transparent stress sensors is of great significance.
然而,到目前为止,研究人员对于柔性透明应力传感器进行的探索在高灵敏性、大拉伸范围、高透明度上仍然不够理想。工作范围过小不能满足实际应用的要求,灵敏度太低无法检测微小形变,透明度较低会明显降低器件的透光率。However, so far, researchers' exploration of flexible transparent stress sensors is still not ideal in terms of high sensitivity, large stretching range, and high transparency. The working range is too small to meet the requirements of practical applications, the sensitivity is too low to detect small deformations, and low transparency will significantly reduce the transmittance of the device.
中国专利公开号为CN 111678623A公开了一种基于可印刷纳米复合材料的超长寿命自修复应力传感器及其制备方法。其把一维金属纳米线,二维无机纳米片,含有主客体相互作用的高分子材料,以及对应的高沸点溶剂等相复合,制备具有流变特性的纳米复合材料胶体油墨,通过丝网印刷方法制得具有原位自修复能力以及长循环使用寿命的应力传感器。传感器在工作过程中,含有的主客体高分子材料可以实时、原位地修复内部产生的缺陷,极大的延长材料使用寿命。同时,具有工作应变范围>50%、灵敏度gauge factor>100、自修复能力强、对汗液抗干扰能力强的特点。在智能穿戴器件等领域具有巨大应用前景。Chinese patent publication number CN 111678623A discloses an ultra-long life self-healing stress sensor based on printable nanocomposite materials and its preparation method. It combines one-dimensional metal nanowires, two-dimensional inorganic nanosheets, polymer materials containing host-guest interactions, and corresponding high-boiling point solvents to prepare nanocomposite colloidal inks with rheological properties through screen printing. The method prepares a stress sensor with in-situ self-healing ability and long cycle service life. During the working process of the sensor, the host-guest polymer materials contained in the sensor can repair internal defects in real time and in situ, greatly extending the service life of the material. At the same time, it has the characteristics of working strain range >50%, sensitivity gauge factor >100, strong self-healing ability, and strong anti-interference ability against sweat. It has great application prospects in fields such as smart wearable devices.
中国专利公开号为CN211376213U公布了一种基于透明导电薄膜的触控传感器。所述触控传感器仅能进行弯曲,限制了该器件在可穿戴电子上的应用。Chinese patent publication number CN211376213U has announced a touch sensor based on a transparent conductive film. The touch sensor can only be bent, which limits the application of the device in wearable electronics.
中国专利公开号为CN111895902A公开了一种基于碳纳米纤维膜的透明柔性应变传感器。所述透明柔性应变传感器以聚氨酯为基底,超薄型碳纳米纤维膜为导电体。该透明柔性应变传感器的工作范围大于70%,灵敏度最高可达846.7,但是透光率仅为50%,限制了该传感器在透明器件上的应用。Chinese patent publication number CN111895902A discloses a transparent and flexible strain sensor based on carbon nanofiber film. The transparent flexible strain sensor uses polyurethane as a base and an ultra-thin carbon nanofiber film as a conductor. The working range of this transparent flexible strain sensor is greater than 70%, and the sensitivity can reach up to 846.7, but the light transmittance is only 50%, which limits the application of this sensor on transparent devices.
非专利文献1(ACS applied materials&interfaces,2019,11:40232-40242)介绍了一种将银纳米线喷涂在聚对苯二甲酸乙二醇酯/聚硅甲基硅氧烷衬底上制备的透明应力传感器,所述透明应力传感器的灵敏度最大为250;当方块电阻为38.5Ω·sq-1时,透光率为77.4%。但是该透明应力传感器的工作范围仅为13%,限制了该器件在可穿戴领域的应用。Non-patent document 1 (ACS applied materials & interfaces, 2019, 11: 40232-40242) introduces a transparent film prepared by spraying silver nanowires on a polyethylene terephthalate/polysilyl methylsiloxane substrate. Stress sensor, the maximum sensitivity of the transparent stress sensor is 250; when the sheet resistance is 38.5Ω·sq -1 , the light transmittance is 77.4%. However, the working range of this transparent stress sensor is only 13%, which limits the application of this device in the wearable field.
非专利文献2(ACS applied materials&interfaces,2017,9:26279-26285)介绍了一种由溶液处理的碳纳米管与聚二甲基硅氧烷所制备的复合应变传感器,所述应变传感器具有92%的透光率和50%的工作范围。然而,该应变传感器的灵敏度最大仅为2.6,限制了该器件在可穿戴领域的应用。Non-patent document 2 (ACS applied materials&interfaces, 2017, 9:26279-26285) introduces a composite strain sensor prepared from solution-processed carbon nanotubes and polydimethylsiloxane. The strain sensor has 92% transmittance and 50% operating range. However, the maximum sensitivity of this strain sensor is only 2.6, which limits the application of this device in the wearable field.
而具有高灵敏度、大工作范围和高透光率的应力传感器尚未见诸报道。However, stress sensors with high sensitivity, large working range and high light transmittance have not yet been reported.
发明内容 Contents of the invention
为了解决现有技术的不足,本发明目的在于:提供一种可印刷透明应力传感器,把纳米导电材料构成的透明导电薄膜包埋在具有模量梯度的弹性体基底中,制得具有包埋结构的柔性透明传感器。本发明目的通过下述方案实现:提供一种可印刷透明应力传感器,包括导电层和弹性基底,所述的导电层为导电纳米材料组成的透明导电层;所述的弹性基底为二层及以上具有模量梯度结构的透光弹性层,透明导电层包埋在弹性基底中,并与最高模量层相接。In order to solve the shortcomings of the existing technology, the purpose of the present invention is to provide a printable transparent stress sensor, which embeds a transparent conductive film composed of nano conductive materials in an elastomer base with a modulus gradient to obtain an embedded structure. flexible transparent sensor. The object of the present invention is achieved through the following solutions: providing a printable transparent stress sensor, including a conductive layer and an elastic base, the conductive layer being a transparent conductive layer composed of conductive nanomaterials; the elastic base being two layers or more A light-transmitting elastic layer with a modulus gradient structure. The transparent conductive layer is embedded in the elastic base and connected to the highest modulus layer.
本发明的另一目的在于,还提供了一种根据上述可印刷透明应力传感器的制备方法,包括:Another object of the present invention is to provide a method for preparing a printable transparent stress sensor according to the above, including:
(1)导电纳米材料与溶剂混合,超声振荡使其分散均匀,采用印刷的方法在玻璃基板上制备透明导电薄膜;(1) Conductive nanomaterials are mixed with solvents, ultrasonic oscillated to disperse them evenly, and transparent conductive films are prepared on glass substrates by printing;
(2)取两种或两种以上模量相差较大、断裂伸长率接近的弹性体材料,将其按不同的比例混合,得到具有不同模量的弹性体溶液或前驱液,作为弹性体基底材料;(2) Take two or more elastomer materials with large differences in modulus and close elongation at break, and mix them in different proportions to obtain elastomer solutions or precursor liquids with different moduli as elastomers base material;
(3)将步骤(2)中得到的弹性体溶液或前驱液以模量由高到低依次铺展在导电薄膜表面,加热蒸发溶剂或固化,形成包埋了透明导电薄膜的具有模量梯度的弹性基体;(3) Spread the elastomer solution or precursor solution obtained in step (2) on the surface of the conductive film in order from high to low modulus, and heat to evaporate the solvent or solidify to form a modulus gradient embedded transparent conductive film. elastic matrix;
(4)将步骤(3)将包埋了透明导电薄膜的弹性基体从玻璃基板上撕下,得透明应力传感器。(4) Peel off the elastic matrix embedded with the transparent conductive film in step (3) from the glass substrate to obtain a transparent stress sensor.
本发明的再一目的在于,提供了一种根据上述可印刷透明应力传感器的应用,用于柔性触摸屏的屏幕指纹解锁、透明可穿戴设备,或者,用于探测人体运动信号,包括脉搏跳动类微小形变信号以及手指或膝盖弯曲类大应变信号。Another object of the present invention is to provide an application based on the above-mentioned printable transparent stress sensor, which can be used for screen fingerprint unlocking of flexible touch screens, transparent wearable devices, or for detecting human body motion signals, including pulse beats. Deformation signals and large strain signals such as finger or knee bending.
本发明中通过导电纳米材料提供透明导电网络,保证具有较高的透光率和较低的方块电阻;导电纳米材料的相对滑动或形变,使器件具有较高的灵敏度;包埋结构和具有模量梯度的弹性体基底可以缓解导电纳米材料在拉伸过程中的应力集中,提高传感器的工作范围,所得透明应力传感器具有大工作范围(>100%)、高灵敏度(>100)、高透光率(方块电阻小于50Ω·sq-1时,透光率大于80%)、高表面平整度(Rsq<10nm)以及优异的拉伸稳定性(在大于30%应变下,使用寿命超过1000次)等特点。In the present invention, conductive nanomaterials are used to provide a transparent conductive network to ensure higher light transmittance and lower sheet resistance; the relative sliding or deformation of the conductive nanomaterials enables the device to have higher sensitivity; the embedded structure and the mold have The elastomer substrate with quantitative gradient can alleviate the stress concentration of conductive nanomaterials during the stretching process and improve the working range of the sensor. The resulting transparent stress sensor has a large working range (>100%), high sensitivity (>100), and high light transmittance. rate (light transmittance is greater than 80% when the sheet resistance is less than 50Ω·sq -1 ), high surface flatness (R sq <10nm) and excellent tensile stability (more than 1000 times of service life under greater than 30% strain )Features.
附图说明Description of the drawings
图1是可印刷透明应力传感器的结构示意图;Figure 1 is a schematic structural diagram of a printable transparent stress sensor;
图2是实施例1中可印刷透明应力传感器的工作曲线;Figure 2 is the working curve of the printable transparent stress sensor in Example 1;
图3是实施例1中可印刷透明应力传感器的使用寿命;Figure 3 is the service life of the printable transparent stress sensor in Embodiment 1;
图4是实施例1中可印刷透明应力传感器的透光率;Figure 4 is the light transmittance of the printable transparent stress sensor in Example 1;
图5为所制备传感器探测脉搏的图片;Figure 5 is a picture of the prepared sensor detecting pulse;
图6为所制备传感器探测膝盖关节弯曲的图片。Figure 6 is a picture of the prepared sensor detecting knee joint bending.
其中图号标示:The drawing numbers indicate:
1——透明导电层;1——Transparent conductive layer;
2——高模量弹性基底层;3——中模量弹性基底层;4——低模量弹性基底层。2—High modulus elastic base layer; 3—Medium modulus elastic base layer; 4—Low modulus elastic base layer.
具体实施方式Detailed ways
如图1所示,可印刷透明应力传感器包括导电层和弹性基底,导电层为导电纳米材料组成的透明导电层1;弹性基底为三层具有模量梯度结构的弹性基底层,分别为高模量弹性基底层2、中模量弹性基底层3和低模量弹性基底层4。其中弹性基底可以为二层以上模量不弹性体,该具有模量梯度的基底材料,其模量从靠近导电层一侧至另一侧逐渐降低。 As shown in Figure 1, the printable transparent stress sensor includes a conductive layer and an elastic substrate. The conductive layer is a transparent conductive layer 1 composed of conductive nanomaterials; the elastic substrate is three elastic base layers with a modulus gradient structure, which are high-modulus The elastic base layer 2 with a medium modulus, the elastic base layer 3 with a medium modulus and the elastic base layer 4 with a low modulus are provided. The elastic base may be composed of two or more layers of modulus inelastic bodies. The modulus of the base material with a modulus gradient gradually decreases from one side close to the conductive layer to the other side.
透明导电层1包埋在弹性基底中,并与最高模量层相接。具有模量梯度结构的弹性体中,随着透明导电薄膜厚度的增加,透明应力传感器的透光率则会相应地减小。其中,随着透明导电薄膜厚度的增加,透明应力传感器的透光率则会相应地减小,当方块电阻小于50Ω·sq-1时,透光率大于80%。The transparent conductive layer 1 is embedded in the elastic base and connected to the highest modulus layer. In elastomers with a modulus gradient structure, as the thickness of the transparent conductive film increases, the transmittance of the transparent stress sensor will decrease accordingly. Among them, as the thickness of the transparent conductive film increases, the light transmittance of the transparent stress sensor will decrease accordingly. When the sheet resistance is less than 50Ω·sq-1, the light transmittance is greater than 80%.
将导电纳米材料制备为透明导电层,转移包埋在具有模量梯度结构的弹性基底层中,其中,导电纳米材料提供透明导电网络,保证具有较高的透光率和较低的方块电阻。同时,导电纳米材料的相对滑动,使器件具有较高的灵敏度。The conductive nanomaterial is prepared into a transparent conductive layer and transferred and embedded in an elastic base layer with a modulus gradient structure. The conductive nanomaterial provides a transparent conductive network to ensure high light transmittance and low sheet resistance. At the same time, the relative sliding of conductive nanomaterials makes the device highly sensitive.
具有模量梯度结构的弹性基底和包埋结构可以缓解导电纳米材料在拉伸过程中的应力集中,提高传感器的工作范围,所得透明应力传感器具有大工作范围、高灵敏度、高透光率、高表面平整度以及优异的拉伸稳定性等特点,在柔性触控屏、电子皮肤、人机交互、仿生机器人等领域具有巨大应用前景。The elastic substrate and embedded structure with a modulus gradient structure can alleviate the stress concentration of conductive nanomaterials during the stretching process and improve the working range of the sensor. The resulting transparent stress sensor has a large working range, high sensitivity, high transmittance, and high Its surface flatness and excellent tensile stability have great application prospects in fields such as flexible touch screens, electronic skins, human-computer interaction, and bionic robots.
此外,本发明制备方法简单,全程无有害物质,可通过丝网印刷方式量产。In addition, the preparation method of the present invention is simple, there are no harmful substances in the whole process, and it can be mass-produced through screen printing.
透明应力传感器的传感机理为:在拉伸过程中,导电纳米材料之间的不良接触、滑移或裂纹等导致电阻发生明显上升,提高透明传感器的灵敏度。而具有模量梯度的弹性基底可以明显降低导电材料拉伸过程中所受的应力,降低电阻变化,显著增大器件的工作范围。The sensing mechanism of the transparent stress sensor is: during the stretching process, poor contact, slippage or cracks between conductive nanomaterials cause a significant increase in resistance, which improves the sensitivity of the transparent sensor. The elastic substrate with a modulus gradient can significantly reduce the stress experienced by the conductive material during the stretching process, reduce the resistance change, and significantly increase the working range of the device.
弹性体基底是指SBS(苯乙烯-丁二烯-苯乙烯嵌段共聚物)、SEBS(氢化苯乙烯-丁二烯嵌段共聚物)、SIS(苯乙烯-异戊二烯-苯乙烯)、聚氨酯、聚二甲基硅氧烷、聚对苯二甲酸乙二醇酯、聚4-甲基戊烯、聚乙烯醇、聚酰胺热塑性弹性体、乙烯-醋酸乙烯酯共聚物、聚丙烯酸酯、聚烯烃热塑性弹性体中的一种或几种。Elastomer base refers to SBS (styrene-butadiene-styrene block copolymer), SEBS (hydrogenated styrene-butadiene block copolymer), SIS (styrene-isoprene-styrene) , polyurethane, polydimethylsiloxane, polyethylene terephthalate, poly4-methylpentene, polyvinyl alcohol, polyamide thermoplastic elastomer, ethylene-vinyl acetate copolymer, polyacrylate , one or more types of polyolefin thermoplastic elastomers.
纳米导电材料包括零维金属纳米颗粒、一维的金属纳米线、二维的导电材料石墨烯、二维过渡金属碳化物或氮化物中的一种。Nanoconductive materials include one of zero-dimensional metal nanoparticles, one-dimensional metal nanowires, two-dimensional conductive material graphene, and two-dimensional transition metal carbides or nitrides.
零维金属纳米颗粒可以为金、银、铜、铁、铬、镍、铝、钨、铂、镓、铟、镓铟合金、镓铟锡合金金属纳米颗中的任一种,颗粒大小1-1000nm。Zero-dimensional metal nanoparticles can be any of gold, silver, copper, iron, chromium, nickel, aluminum, tungsten, platinum, gallium, indium, gallium-indium alloy, and gallium-indium-tin alloy metal nanoparticles. The particle size is 1- 1000nm.
一维的金属纳米线可以为金、银、铜、铁、镍、铂、钯、铝金属纳米线中的一种,所述金属纳米线的直径为1-300nm,长度为2-100μm。The one-dimensional metal nanowire can be one of gold, silver, copper, iron, nickel, platinum, palladium, and aluminum metal nanowires. The diameter of the metal nanowire is 1-300 nm and the length is 2-100 μm.
二维过渡金属碳化物或氮化物中的一种,所述的二维过渡金属碳化物或氮化物是指具有类似石墨烯的二维结构,其化学通式是Mn+1XnTz,n=1,2,3,其中M为早期过渡金属元素,X为碳或氮元素,T为表面链接的-F、-OH活性官能团,包括Ti2C、Ti3C2、Ti3CN、V2C、Nb2C、TiNbC、Nb4C3、Ta4C3、(Ti0.5Nb0.5)2C或(V0.5Cr0.5)3C2中的一种。One of the two-dimensional transition metal carbides or nitrides. The two-dimensional transition metal carbide or nitride refers to a two-dimensional structure similar to graphene, and its general chemical formula is M n+1 X n T z ,n=1,2,3, where M is an early transition metal element , , V 2 C, Nb 2 C, TiNbC, Nb 4 C 3 , Ta 4 C 3 , (Ti 0.5 Nb 0.5 ) 2 C or (V 0.5 Cr 0.5 ) 3 C 2 .
本申请还提供一种可印刷透明应力传感器的制备方法,具体包括以下的实施例。This application also provides a method for preparing a printable transparent stress sensor, which specifically includes the following examples.
可印刷透明应力传感器通过印刷的方法,将导电纳米材料制备成透明导电层,转移包埋到具有模量梯度结构的弹性基底中,使得透明应力传感器具有良好的性能:灵敏度大于100;工作范围大于100%;在大于30%应变下,使用寿命超过1000次;具有良好的透光率和方块电阻,当方块电阻小于50Ω·sq-1时,透光率大于80%。The printable transparent stress sensor uses a printing method to prepare conductive nanomaterials into a transparent conductive layer, and then transfers and embeds them into an elastic substrate with a modulus gradient structure, so that the transparent stress sensor has good performance: the sensitivity is greater than 100; the working range is greater than 100%; under a strain greater than 30%, the service life exceeds 1,000 times; it has good light transmittance and sheet resistance. When the sheet resistance is less than 50Ω·sq -1 , the light transmittance is greater than 80%.
导电薄膜的印刷方法是指:丝网印刷,喷墨印刷,刮涂,孔版印刷,凹版印刷,凸版印刷,平版印刷,旋涂,浸涂,迈耶棒涂布,喷涂,狭缝式涂布,微接触印刷,直接书写印刷中的一种。The printing method of conductive film refers to: screen printing, inkjet printing, blade coating, stencil printing, gravure printing, letterpress printing, offset printing, spin coating, dip coating, Meyer rod coating, spray coating, slit coating , micro-contact printing, one of direct writing printing.
实施例1 Example 1
可印刷透明应力传感器包括导电层和弹性基底,导电层为导电纳米材料组成的透明导电层1;弹性基底为多层具有模量梯度结构的弹性层,透明导电层1包埋在弹性基底中,并与最高模量层相接,本实施例中导电纳米材料选用银纳米线,弹性基底采用由不同混合比的聚氨酯6210和聚氨酯6290构成的薄膜,按下述步骤制备:The printable transparent stress sensor includes a conductive layer and an elastic substrate. The conductive layer is a transparent conductive layer 1 composed of conductive nanomaterials; the elastic substrate is a multi-layer elastic layer with a modulus gradient structure, and the transparent conductive layer 1 is embedded in the elastic substrate. And connected to the highest modulus layer. In this embodiment, silver nanowires are used as the conductive nanomaterial, and films composed of polyurethane 6210 and polyurethane 6290 with different mixing ratios are used as the elastic base. They are prepared according to the following steps:
(1)透明导电层制备:导电纳米材料选用银纳米线,溶于乙醇中,超声振荡使其分散均匀,得到浓度为2mg/mL银纳米线/乙醇分散液,称取100μL银纳米线/乙醇分散液采用印刷的方法在玻璃片上旋涂,旋转速度为800rpm,旋涂时间为15s,60℃加热1min,反复操作10次,得玻璃基底的银纳米线透明导电层,作为包埋结构;(1) Preparation of transparent conductive layer: Silver nanowires are used as conductive nanomaterials, dissolved in ethanol, and dispersed evenly by ultrasonic oscillation to obtain a silver nanowire/ethanol dispersion with a concentration of 2 mg/mL. Weigh 100 μL silver nanowires/ethanol. The dispersion is spin-coated on the glass sheet using the printing method. The rotation speed is 800 rpm. The spin-coating time is 15 s. Heating at 60°C for 1 min. Repeat the operation 10 times to obtain a transparent conductive layer of silver nanowires on the glass substrate as an embedding structure;
(2)分别按质量比为1:0、10:1、5:1、1:1、1:5、1:10、0:1称取聚氨酯6210和聚氨酯6290,二者混合后搅拌均匀,得到具有7种不同模量层的聚氨酯材料;(2) Weigh polyurethane 6210 and polyurethane 6290 according to the mass ratio of 1:0, 10:1, 5:1, 1:1, 1:5, 1:10, 0:1 respectively. Mix the two and stir evenly. Polyurethane materials with 7 different modulus layers were obtained;
(3)称取1g步骤(2)所得的不同模量的聚氨酯,分别与0.5g丙烯酸(5-乙基-1,3-二氧六环-5-基)甲酯和0.15g的光引发剂,三者混合后搅拌均匀,离心除去气泡,以模量由高到低依次在步骤(1)所得银纳米线透明导电层表面上旋涂,旋转速度为900rpm,旋涂时间为60s,紫外固化3min,得到薄膜;(3) Weigh 1g of polyurethane with different modulus obtained in step (2), and react with 0.5g of (5-ethyl-1,3-dioxane-5-yl)methyl acrylate and 0.15g of photoinitiator agent, mix the three and stir evenly, centrifuge to remove air bubbles, and spin-coat on the surface of the transparent conductive layer of silver nanowires obtained in step (1) in order of modulus from high to low, the rotation speed is 900 rpm, the spin-coating time is 60 s, and UV After curing for 3 minutes, a thin film is obtained;
(4)将步骤(3)将薄膜从玻璃基板上剥离下来,得到透明应力传感器。(4) Peel off the film from the glass substrate in step (3) to obtain a transparent stress sensor.
图2为本实施例透明应力传感器的工作曲线,展示该发明器件的工作范围及其灵敏度。Figure 2 is the operating curve of the transparent stress sensor of this embodiment, showing the operating range and sensitivity of the inventive device.
图3为本实施例透明应力传感器的使用寿命,在应变为40%的拉伸-释放循环中,循环1000次和4000次电阻变化始终保持稳定。Figure 3 shows the service life of the transparent stress sensor of this embodiment. In the stretch-release cycle with a strain of 40%, the resistance change remains stable after 1,000 and 4,000 cycles.
图4为实施例透明应力传感器的透光率,随着透明导电薄膜的厚度增加,其透光率和方块电阻会随之下降;故透明导电薄膜厚度越大,方块电阻和透光率则越小;反之,方块电阻和透光率则越大;图4中,方块电阻增大,相应的是透明导电薄膜的厚度减小,透光率增大。Figure 4 shows the light transmittance of the transparent stress sensor according to the embodiment. As the thickness of the transparent conductive film increases, its light transmittance and sheet resistance will decrease; therefore, the greater the thickness of the transparent conductive film, the greater the sheet resistance and light transmittance. Small; on the contrary, the sheet resistance and light transmittance are larger; in Figure 4, the sheet resistance increases, correspondingly the thickness of the transparent conductive film decreases and the light transmittance increases.
实施例2Example 2
一种可印刷透明应力传感器,与实施例1步骤近似,只是纳米导电材料选择二维过渡金属氮化物(MXene),按下述步骤制备:A printable transparent stress sensor is similar to the steps of Example 1, except that the nano conductive material is two-dimensional transition metal nitride (MXene), and is prepared according to the following steps:
(1)透明导电层制备:称取100μL浓度为10mg/mL MXene/水分散液,在玻璃片上用喷墨印刷机打印,60℃加热1min,反复操作5次,得玻璃基底的MXene透明导电层;(1) Preparation of transparent conductive layer: Weigh 100 μL of MXene/water dispersion with a concentration of 10 mg/mL, print on the glass sheet with an inkjet printer, heat at 60°C for 1 min, and repeat the operation 5 times to obtain the MXene transparent conductive layer on the glass substrate ;
(2)分别称取质量比为1:0、20:1、15:1、10:1、5:1、1:1、1:5、1:10、1:15、1:20、0:1的聚氨酯6210和聚氨酯6290,二者混合后搅拌均匀,得到11种具有不同模量的聚氨酯;(2) Weigh the mass ratios respectively: 1:0, 20:1, 15:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 0 : 1 polyurethane 6210 and polyurethane 6290, mix the two and stir evenly to obtain 11 types of polyurethane with different modulus;
(3)分别称取4g步骤(2)所得的聚氨酯、2g丙烯酸(5-乙基-1,3-二氧六环-5-基)甲酯和0.6g的光引发剂,三者混合后搅拌均匀,抽真空除去气泡,以模量由高到低依次在步骤(1)所得Mxene透明导电层表面上用丝印网版进行丝网印刷,紫外固化5min,得到包埋透明导电层且有模量梯度的弹性薄膜;(3) Weigh 4g of polyurethane obtained in step (2), 2g of (5-ethyl-1,3-dioxan-5-yl)methyl acrylate and 0.6g of photoinitiator respectively, and mix the three Stir evenly, vacuum to remove bubbles, use a screen printing screen on the surface of the Mxene transparent conductive layer obtained in step (1) in order of modulus from high to low, and UV cure for 5 minutes to obtain an embedded transparent conductive layer with a mold. Elastic film with quantitative gradient;
(4)从玻璃基板上剥离下来,得到透明应力传感器。(4) Peel off the glass substrate to obtain a transparent stress sensor.
实施例3Example 3
一种可印刷透明应力传感器,与实施例1步骤近似,只是纳米导电材料选择铜纳米线,弹性基底材料选用聚二甲基硅氧烷PDMS part A和PDMS part B,按下述步骤制备:A printable transparent stress sensor is similar to the steps of Example 1, except that the nano conductive material is copper nanowires, and the elastic base material is polydimethylsiloxane PDMS part A and PDMS part B. It is prepared according to the following steps:
(1)透明导电层制备:称取100μL浓度为5mg/mL铜纳米线/水分散液,在玻璃片上用迈耶棒刮涂,60℃加热1min,反复操作5次,得玻璃基底的铜纳米线透明导电层。 (1) Preparation of transparent conductive layer: Weigh 100 μL of copper nanowire/water dispersion with a concentration of 5 mg/mL, scrape it on the glass sheet with a Meyer rod, heat it at 60°C for 1 min, and repeat the operation 5 times to obtain copper nanowires on the glass substrate. Line transparent conductive layer.
(2)分别称取质量比为10:1、5:1、1:1的聚二甲基硅氧烷PDMS part A和PDMS part B,二者混合后搅拌均匀,得到三种具有不同模量的PDMS;(2) Weigh polydimethylsiloxane PDMS part A and PDMS part B with mass ratios of 10:1, 5:1, and 1:1 respectively. Mix the two and stir evenly to obtain three types with different moduli. PDMS;
(3)称取10g步骤(2)所得的PDMS,抽真空除去气泡,以模量由高到低依次在步骤(1)所得铜纳米线透明导电层表面上用迈耶棒刮涂,60℃加热固化2h,得到包埋透明导电层且有模量梯度的弹性薄膜;(3) Weigh 10g of the PDMS obtained in step (2), vacuum to remove bubbles, and use a Meyer rod to scrape the surface of the transparent conductive layer of copper nanowires obtained in step (1) in order of modulus from high to low, 60°C Heat and solidify for 2 hours to obtain an elastic film embedded with a transparent conductive layer and having a modulus gradient;
(4)将薄膜从玻璃基板上剥离下来,得到透明应力传感器。(4) Peel off the film from the glass substrate to obtain a transparent stress sensor.
实施例4Example 4
一种可印刷透明应力传感器,与实施例1步骤近似,只是纳米导电材料选择二维过渡金属氮化物(MXene),弹性基底材料选用聚二甲基硅氧烷PDMS part A和PDMS part B,按下述步骤制备:A printable transparent stress sensor, the steps are similar to those in Example 1, except that the nano conductive material is two-dimensional transition metal nitride (MXene), and the elastic base material is polydimethylsiloxane PDMS part A and PDMS part B. Press Prepare by following steps:
(1)透明导电层制备:称取100mL浓度为8mg/mL MXene/水分散液,将玻璃片浸泡其中10min,80℃加热烘干,反复操作7次,得到玻璃基底的Mxene透明导电层,作为包埋结构;(1) Preparation of transparent conductive layer: Weigh 100mL of MXene/water dispersion with a concentration of 8 mg/mL, soak the glass piece in it for 10 minutes, heat and dry at 80°C, repeat the operation 7 times, and obtain the Mxene transparent conductive layer on the glass substrate, as embedded structure;
(2)分别称取10:1、8:1、5:1、3:1、1:1的PDMS part A和PDMS part B,二者混合后搅拌均匀,得到五种具有不同模量的PDMS;(2) Weigh 10:1, 8:1, 5:1, 3:1, 1:1 PDMS part A and PDMS part B respectively, mix them and stir evenly to obtain five types of PDMS with different moduli. ;
(3)分别称取5g步骤(2)所得PDMS,以模量由高到低依次在步骤(1)所得MXene透明导电层表面上用丝印网版进行丝网印刷,80℃加热1h,得到包埋透明导电层且有模量梯度的弹性薄膜;(3) Weigh 5g of the PDMS obtained in step (2), and screen-print on the surface of the MXene transparent conductive layer obtained in step (1) in order of modulus from high to low, and heat it at 80°C for 1 hour to obtain a package. An elastic film with a transparent conductive layer embedded in it and a modulus gradient;
(4)将薄膜从玻璃基板上剥离下来,得透明应力传感器。(4) Peel off the film from the glass substrate to obtain a transparent stress sensor.
实施例5Example 5
一种可印刷透明应力传感器,与实施例1步骤近似,只是纳米导电材料选择石墨烯,按下述步骤制备:A printable transparent stress sensor is similar to the steps of Embodiment 1, except that graphene is selected as the nano conductive material, and is prepared according to the following steps:
(1)透明导电层制备:采用二甲基甲酰胺(DMF)为溶剂,制备浓度为6mg/mL石墨烯/DMF分散液,称取10mL石墨烯/DMF分散液在玻璃片上丝网印刷,40℃加热烘干,反复操作3次,得到玻璃基底的石墨烯透明导电层;(1) Preparation of the transparent conductive layer: Use dimethylformamide (DMF) as the solvent to prepare a graphene/DMF dispersion with a concentration of 6 mg/mL. Weigh 10 mL of the graphene/DMF dispersion and screen-print it on the glass sheet, 40 Heat and dry at ℃, repeat the operation three times to obtain a graphene transparent conductive layer on the glass substrate;
(2)分别称取质量比为1:0、7:1、6:1、5:1、4:1、3:1、2:1、1:1、1:2、1:3、1:4、1:5、1:6、1:7、0:1的聚氨酯6210和聚氨酯6290,二者混合后搅拌均匀,得到15种具有不同模量的聚氨酯;(2) Weigh the mass ratios respectively as 1:0, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1 :4, 1:5, 1:6, 1:7, 0:1 polyurethane 6210 and polyurethane 6290, mix the two and stir evenly to obtain 15 kinds of polyurethane with different modulus;
(3)分别称取2g步骤(2)所得聚氨酯、1g丙烯酸(5-乙基-1,3-二氧六环-5-基)甲酯和0.3g光引发剂,三者混合后搅拌均匀,以模量由高到低依次在步骤(1)所得石墨烯透明导电层表面用狭缝涂布机涂布,紫外固化10min,得到包埋透明导电层且有模量梯度的弹性薄膜;(3) Weigh 2g of polyurethane obtained in step (2), 1g of (5-ethyl-1,3-dioxan-5-yl)methyl acrylate and 0.3g of photoinitiator, mix the three and stir evenly , use a slit coater to coat the surface of the graphene transparent conductive layer obtained in step (1) in order of modulus from high to low, and cure with UV for 10 minutes to obtain an elastic film with embedded transparent conductive layer and modulus gradient;
(4)将薄膜从玻璃基板上剥离下来,得透明应力传感器。(4) Peel off the film from the glass substrate to obtain a transparent stress sensor.
本申请还提供可印刷透明应力传感器的应用,其可以用于柔性触摸屏的屏幕指纹解锁、透明可穿戴设备,或者,用于探测人体运动信号,包括脉搏跳动类微小形变信号以及手指或膝盖弯曲类大应变信号。This application also provides the application of printable transparent stress sensors, which can be used for on-screen fingerprint unlocking of flexible touch screens, transparent wearable devices, or for detecting human body motion signals, including pulse beat-like micro-deformation signals and finger or knee bending. Large strain signal.
如图5所示,本发明可作为脉搏跳动的传感器,对脉搏跳动的微小形变信号也有高的探测灵敏度。As shown in Figure 5, the present invention can be used as a pulse beat sensor and has high detection sensitivity for the tiny deformation signals of the pulse beat.
如图6所示,本发明用于探测膝盖关节弯曲动作也有优异的效果。As shown in Figure 6, the present invention also has excellent effects in detecting knee joint bending movements.
以上实施例仅为进一步对本发明做出说明,不应该局限于该实施例所示的内容。本发明技术方案中所公开的产品组分中各具体的物质,均可通过本发明得到实施,并与实施例得到相同的技术效果,在此不单独一一举出实施例进行说明。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。 The above embodiments are only to further illustrate the present invention and should not be limited to the contents shown in the embodiments. Each specific substance in the product components disclosed in the technical solution of the present invention can be implemented by the present invention, and the same technical effects can be obtained as in the examples. Here, the examples will not be cited one by one for explanation. Therefore, any equivalents or modifications made without departing from the spirit disclosed in the present invention fall within the scope of protection of the present invention.

Claims (15)

  1. 一种可印刷透明应力传感器,包括导电层和弹性基底,其中,所述的导电层为导电纳米材料组成的透明导电层;所述的弹性基底为二层及以上具有模量梯度结构的透光弹性层,透明导电层包埋在弹性基底中,并与最高模量层相接。A printable transparent stress sensor, including a conductive layer and an elastic base, wherein the conductive layer is a transparent conductive layer composed of conductive nanomaterials; the elastic base is two or more light-transmissive layers with a modulus gradient structure The elastic layer, the transparent conductive layer is embedded in the elastic base and connected to the highest modulus layer.
  2. 根据权利要求1所述的可印刷透明应力传感器,其中,随着透明导电薄膜厚度的增加,透明应力传感器的透光率则会相应地减小,当方块电阻小于50Ω·sq-1时,透光率大于80%。The printable transparent stress sensor according to claim 1, wherein as the thickness of the transparent conductive film increases, the light transmittance of the transparent stress sensor decreases accordingly. When the sheet resistance is less than 50Ω·sq -1 , the transmittance The light rate is greater than 80%.
  3. 根据权利要求1所述的可印刷透明应力传感器,其中,The printable transparent stress sensor according to claim 1, wherein
    所述弹性体基底是指:SBS、SEBS、SIS、聚氨酯、聚二甲基硅氧烷、聚对苯二甲酸乙二醇酯、聚4-甲基戊烯、聚乙烯醇、聚酰胺热塑性弹性体、乙烯-醋酸乙烯酯共聚物、聚丙烯酸酯、聚烯烃热塑性弹性体中的一种或几种。The elastomer base refers to: SBS, SEBS, SIS, polyurethane, polydimethylsiloxane, polyethylene terephthalate, poly4-methylpentene, polyvinyl alcohol, polyamide thermoplastic elastomer One or more of the following: ethylene-vinyl acetate copolymer, polyacrylate, and polyolefin thermoplastic elastomer.
  4. 根据权利要求1或3所述的可印刷透明应力传感器,其中,具有模量梯度的所述透光弹性层,其模量从靠近透明导电层一侧至另一侧逐渐降低。The printable transparent stress sensor according to claim 1 or 3, wherein the light-transmitting elastic layer having a modulus gradient has a modulus that gradually decreases from one side close to the transparent conductive layer to the other side.
  5. 根据权利要求1所述的可印刷透明应力传感器,其中,The printable transparent stress sensor according to claim 1, wherein
    所述纳米导电材料是指:零维金属纳米颗粒,金、银、铜、铁、铬、镍、铝、钨、铂、镓、铟、镓铟合金、镓铟锡合金金属纳米颗粒中的一种,颗粒大小1-1000nm。The nano-conductive material refers to: zero-dimensional metal nanoparticles, one of gold, silver, copper, iron, chromium, nickel, aluminum, tungsten, platinum, gallium, indium, gallium-indium alloy, and gallium-indium-tin alloy metal nanoparticles. species, particle size 1-1000nm.
  6. 根据权利要求1所述的可印刷透明应力传感器,其中,The printable transparent stress sensor according to claim 1, wherein
    所述纳米导电材料是指:一维的金属纳米线,金、银、铜、铁、镍、铂、钯、铝金属纳米线中的一种,所述金属纳米线的直径为1-300nm,长度为2-100μm。The nano conductive material refers to: one-dimensional metal nanowires, one of gold, silver, copper, iron, nickel, platinum, palladium and aluminum metal nanowires, the diameter of the metal nanowires is 1-300nm, Length is 2-100μm.
  7. 根据权利要求1所述的可印刷透明应力传感器,其中,The printable transparent stress sensor according to claim 1, wherein
    所述纳米导电材料是指:二维的导电材料石墨烯、二维过渡金属碳化物或氮化物中的一种,所述的二维过渡金属碳化物或氮化物是指具有类似石墨烯的二维结构,其化学通式是Mn+1XnTz,n=1,2,3,其中M为早期过渡金属元素,X为碳或氮元素,T为表面链接的-F、-OH活性官能团,包括Ti2C、Ti3C2、Ti3CN、V2C、Nb2C、TiNbC、Nb4C3、Ta4C3、(Ti0.5Nb0.5)2C或(V0.5Cr0.5)3C2中的一种。The nano-conductive material refers to one of two-dimensional conductive materials graphene, two-dimensional transition metal carbide or nitride, and the two-dimensional transition metal carbide or nitride refers to a two-dimensional graphene-like conductive material. dimensional structure, its general chemical formula is M n+1 X n T z , n=1,2,3, where M is an early transition metal element, Reactive functional groups, including Ti 2 C, Ti 3 C 2 , Ti 3 CN, V 2 C, Nb 2 C, TiNbC, Nb 4 C 3 , Ta 4 C 3 , (Ti 0.5 Nb 0.5 ) 2 C or (V 0.5 Cr 0.5 ) 3 C 2 in one.
  8. 一种根据权利要求1至7中任一项所述可印刷透明应力传感器的制备方法,其中,包括:A method for preparing a printable transparent stress sensor according to any one of claims 1 to 7, comprising:
    (1)导电纳米材料与溶剂混合,超声振荡使其分散均匀,采用印刷的方法在玻璃基板上制备透明导电层;(1) The conductive nanomaterials are mixed with solvents, ultrasonic oscillated to disperse them evenly, and a transparent conductive layer is prepared on the glass substrate by printing;
    (2)取两种或两种以上模量相差较大、断裂伸长率接近的弹性体材料,将其按不同的比例混合,得到具有不同模量的弹性体溶液或前驱液,作为弹性基底材料;(2) Take two or more elastomer materials with large differences in modulus and close elongation at break, and mix them in different proportions to obtain elastomer solutions or precursor liquids with different moduli as elastic bases Material;
    (3)将步骤(2)中得到的弹性体溶液或前驱液以模量由高到低依次铺展在导电层表面,加热蒸发溶剂或固化,形成包埋了透明导电层的具有模量梯度的弹性基体;(3) Spread the elastomer solution or precursor solution obtained in step (2) on the surface of the conductive layer in order from high to low modulus, and heat to evaporate the solvent or solidify to form a modulus gradient embedded transparent conductive layer. elastic matrix;
    (4)将步骤(3)将包埋了透明导电层的弹性基体从玻璃基板上撕下,得透明应力传感器。(4) Tear off the elastic matrix embedded with the transparent conductive layer in step (3) from the glass substrate to obtain a transparent stress sensor.
  9. 根据权利要求8所述的可印刷透明应力传感器的制备方法,其中,步骤(1)中,所述导电薄膜的印刷方法是指:丝网印刷,喷墨印刷,刮涂,孔版印刷,凹版印刷,凸版印刷,平版印刷,旋涂,浸涂,迈耶棒涂布,喷涂,狭缝式涂布,微接触印刷,直接书写印刷中的一种。The method for preparing a printable transparent stress sensor according to claim 8, wherein in step (1), the printing method of the conductive film refers to: screen printing, inkjet printing, scraping, stencil printing, gravure printing , letterpress printing, offset printing, spin coating, dip coating, Meyer rod coating, spray coating, slit coating, micro contact printing, one of direct writing printing.
  10. 根据权利要求8所述的可印刷透明应力传感器的制备方法,其中,按下述步骤制备:The method for preparing a printable transparent stress sensor according to claim 8, wherein it is prepared according to the following steps:
    (1)透明导电层制备:导电纳米材料选用银纳米线,溶于乙醇中,超声振荡使其分散均匀,得到浓度为2mg/mL银纳米线/乙醇分散液,称取100μL银纳米线/乙醇分散液采用印刷的方法在玻璃片上旋涂,旋转速度为800rpm,旋涂时间为15s,60℃加热1min,反复操作10次,得玻璃基底的银纳米线透明导 电层,作为包埋结构;(1) Preparation of transparent conductive layer: Silver nanowires are used as conductive nanomaterials, dissolved in ethanol, and dispersed evenly by ultrasonic oscillation to obtain a silver nanowire/ethanol dispersion with a concentration of 2 mg/mL. Weigh 100 μL silver nanowires/ethanol. The dispersion is spin-coated on the glass sheet using the printing method. The rotation speed is 800 rpm. The spin-coating time is 15 s. Heating at 60°C for 1 min. Repeat the operation 10 times to obtain a transparent conductor of silver nanowires on the glass substrate. Electrical layer, as an embedded structure;
    (2)分别按质量比为1:0、10:1、5:1、1:1、1:5、1:10、0:1称取聚氨酯6210和聚氨酯6290,二者混合后搅拌均匀,得到具有7种不同模量层的聚氨酯材料;(2) Weigh polyurethane 6210 and polyurethane 6290 according to the mass ratio of 1:0, 10:1, 5:1, 1:1, 1:5, 1:10, 0:1 respectively. Mix the two and stir evenly. Polyurethane materials with 7 different modulus layers were obtained;
    (3)称取1g步骤(2)所得的不同模量的聚氨酯,分别与0.5g丙烯酸甲酯和0.15g的光引发剂,三者混合后搅拌均匀,离心除去气泡,以模量由高到低依次在步骤(1)所得银纳米线透明导电层表面上旋涂,旋转速度为900rpm,旋涂时间为60s,紫外固化3min,得到薄膜;(3) Weigh 1g of the polyurethane with different modulus obtained in step (2), mix it with 0.5g of methyl acrylate and 0.15g of photoinitiator respectively, mix the three evenly, and remove bubbles by centrifugation. Spin coating on the surface of the silver nanowire transparent conductive layer obtained in step (1) in sequence, the rotation speed is 900 rpm, the spin coating time is 60 s, and UV curing is performed for 3 minutes to obtain a thin film;
    (4)将步骤(3)将薄膜从玻璃基板上剥离下来,得到透明应力传感器。(4) Peel off the film from the glass substrate in step (3) to obtain a transparent stress sensor.
  11. 根据权利要求8所述的可印刷透明应力传感器的制备方法,其中,按下述步骤制备:The method for preparing a printable transparent stress sensor according to claim 8, wherein it is prepared according to the following steps:
    (1)透明导电层制备:称取100μL浓度为10mg/mLMXene/水分散液,在玻璃片上用喷墨印刷机打印,60℃加热1min,反复操作5次,得玻璃基底的MXene透明导电层;(1) Preparation of transparent conductive layer: Weigh 100 μL of MXene/water dispersion with a concentration of 10 mg/mL, print on a glass sheet with an inkjet printer, heat at 60°C for 1 min, and repeat the operation 5 times to obtain a transparent conductive layer of MXene on the glass substrate;
    (2)分别称取质量比为1:0、20:1、15:1、10:1、5:1、1:1、1:5、1:10、1:15、1:20、0:1的聚氨酯6210和聚氨酯6290,二者混合后搅拌均匀,得到11种具有不同模量的聚氨酯;(2) Weigh the mass ratios respectively: 1:0, 20:1, 15:1, 10:1, 5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 0 : 1 polyurethane 6210 and polyurethane 6290, mix the two and stir evenly to obtain 11 types of polyurethane with different modulus;
    (3)分别称取4g步骤(2)所得的聚氨酯、2g丙烯酸甲酯和0.6g的光引发剂,三者混合后搅拌均匀,抽真空除去气泡,以模量由高到低依次在步骤(1)所得Mxene透明导电薄膜表面上用丝印网版进行丝网印刷,紫外固化5min,得到包埋透明导电层且有模量梯度的弹性薄膜;(3) Weigh 4g of the polyurethane obtained in step (2), 2g of methyl acrylate and 0.6g of photoinitiator respectively, mix the three and stir evenly, vacuum to remove air bubbles, and proceed in step (() in order of modulus from high to low. 1) The surface of the obtained Mxene transparent conductive film is screen printed with a screen printing screen, and UV cured for 5 minutes to obtain an elastic film with a transparent conductive layer embedded and a modulus gradient;
    (4)从玻璃基板上剥离下来,得到透明应力传感器。(4) Peel off the glass substrate to obtain a transparent stress sensor.
  12. 根据权利要求8所述的可印刷透明应力传感器的制备方法,其中,按下述步骤制备:The method for preparing a printable transparent stress sensor according to claim 8, wherein it is prepared according to the following steps:
    (1)透明导电层制备:称取100μL浓度为5mg/mL铜纳米线/水分散液,在玻璃片上用迈耶棒刮涂,60℃加热1min,反复操作5次,得玻璃基底的铜纳米线透明导电层;(1) Preparation of transparent conductive layer: Weigh 100 μL of copper nanowire/water dispersion with a concentration of 5 mg/mL, scrape it on the glass sheet with a Meyer rod, heat it at 60°C for 1 min, and repeat the operation 5 times to obtain copper nanowires on the glass substrate. Line transparent conductive layer;
    (2)分别称取质量比为10:1、5:1、1:1的聚二甲基硅氧烷PDMS part A和PDMS part B,二者混合后搅拌均匀,得到三种具有不同模量的PDMS;(2) Weigh polydimethylsiloxane PDMS part A and PDMS part B with mass ratios of 10:1, 5:1, and 1:1 respectively. Mix the two and stir evenly to obtain three types with different moduli. PDMS;
    (3)称取10g步骤(2)所得的PDMS,抽真空除去气泡,以模量由高到低依次在步骤(1)所得铜纳米线透明导电薄膜表面上用迈耶棒刮涂,60℃加热固化2h,得到包埋透明导电层且有模量梯度的弹性薄膜;(3) Weigh 10g of the PDMS obtained in step (2), vacuum to remove bubbles, and use a Meyer rod to scrape the surface of the copper nanowire transparent conductive film obtained in step (1) in order of modulus from high to low, 60°C Heat and solidify for 2 hours to obtain an elastic film embedded with a transparent conductive layer and having a modulus gradient;
    (4)将薄膜从玻璃基板上剥离下来,得到透明应力传感器。(4) Peel off the film from the glass substrate to obtain a transparent stress sensor.
  13. 根据权利要求8所述的可印刷透明应力传感器的制备方法,其中,按下述步骤制备:The method for preparing a printable transparent stress sensor according to claim 8, wherein it is prepared according to the following steps:
    (1)透明导电层制备:称取100mL浓度为8mg/mLMXene/水分散液,将玻璃片浸泡其中10min,80℃加热烘干,反复操作7次,得到玻璃基底的Mxene透明导电层,作为包埋结构;(1) Preparation of transparent conductive layer: Weigh 100 mL of MXene/water dispersion with a concentration of 8 mg/mL, soak the glass piece in it for 10 min, heat and dry at 80°C, repeat the operation 7 times, and obtain the Mxene transparent conductive layer on the glass substrate as a package buried structure;
    (2)分别称取10:1、8:1、5:1、3:1、1:1的PDMS part A和PDMS part B,二者混合后搅拌均匀,得到五种具有不同模量的PDMS;(2) Weigh 10:1, 8:1, 5:1, 3:1, 1:1 PDMS part A and PDMS part B respectively, mix them and stir evenly to obtain five types of PDMS with different moduli. ;
    (3)分别称取5g步骤(2)所得PDMS,以模量由高到低依次在步骤(1)所得MXene透明导电层表面上用丝印网版进行丝网印刷,80℃加热1h,得到包埋透明导电层且有模量梯度的弹性薄膜;(3) Weigh 5g of the PDMS obtained in step (2), and screen-print on the surface of the MXene transparent conductive layer obtained in step (1) in order of modulus from high to low, and heat it at 80°C for 1 hour to obtain a package. An elastic film with a transparent conductive layer embedded in it and a modulus gradient;
    (4)将薄膜从玻璃基板上剥离下来,得透明应力传感器。(4) Peel off the film from the glass substrate to obtain a transparent stress sensor.
  14. 根据权利要求8所述的可印刷透明应力传感器的制备方法,其中,按下述步骤制备:The method for preparing a printable transparent stress sensor according to claim 8, wherein it is prepared according to the following steps:
    (1)透明导电层制备:采用二甲基甲酰胺为溶剂,制备浓度为6mg/mL石墨烯/DMF分散液,称取10mL石墨烯/DMF分散液在玻璃片上丝网印刷,40℃加热烘干,反复操作3次,得到玻璃基底的石墨烯透明导电层; (1) Preparation of transparent conductive layer: Use dimethylformamide as solvent to prepare graphene/DMF dispersion with a concentration of 6 mg/mL. Weigh 10 mL of graphene/DMF dispersion and screen-print it on a glass sheet. Heat and bake at 40°C. Dry and repeat the operation three times to obtain a graphene transparent conductive layer on the glass substrate;
    (2)分别称取质量比为1:0、7:1、6:1、5:1、4:1、3:1、2:1、1:1、1:2、1:3、1:4、1:5、1:6、1:7、0:1的聚氨酯6210和聚氨酯6290,二者混合后搅拌均匀,得到15种具有不同模量的聚氨酯;(2) Weigh the mass ratios respectively as 1:0, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1 :4, 1:5, 1:6, 1:7, 0:1 polyurethane 6210 and polyurethane 6290, mix the two and stir evenly to obtain 15 kinds of polyurethane with different modulus;
    (3)分别称取2g步骤(2)所得聚氨酯、1g丙烯酸甲酯和0.3g光引发剂,三者混合后搅拌均匀,以模量由高到低依次在步骤(1)所得石墨烯透明导电层表面用狭缝涂布机涂布,紫外固化10min,得到包埋透明导电层且有模量梯度的弹性薄膜;(3) Weigh 2g of the polyurethane obtained in step (2), 1g of methyl acrylate and 0.3g of photoinitiator respectively, mix the three and stir evenly, and add the transparent conductive graphene obtained in step (1) in order of modulus from high to low. The surface of the layer is coated with a slit coater and UV cured for 10 minutes to obtain an elastic film with a transparent conductive layer embedded and a modulus gradient;
    (4)将薄膜从玻璃基板上剥离下来,得透明应力传感器。(4) Peel off the film from the glass substrate to obtain a transparent stress sensor.
  15. 一种根据权利要求1至7中任一项所述可印刷透明应力传感器的应用,其中,用于柔性触摸屏的屏幕指纹解锁、透明可穿戴设备,或者,用于探测人体运动信号,包括脉搏跳动类微小形变信号以及手指或膝盖弯曲类大应变信号。 An application of the printable transparent stress sensor according to any one of claims 1 to 7, wherein it is used for screen fingerprint unlocking of flexible touch screens, transparent wearable devices, or for detecting human body motion signals, including pulse beats Small deformation-like signals and large strain signals like finger or knee bending.
PCT/CN2023/080672 2022-08-19 2023-03-10 Printable transparent stress sensor and preparation method therefor WO2024036928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211000536.4A CN115479705B (en) 2022-08-19 2022-08-19 Printable transparent stress sensor and preparation method thereof
CN202211000536.4 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024036928A1 true WO2024036928A1 (en) 2024-02-22

Family

ID=84423173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080672 WO2024036928A1 (en) 2022-08-19 2023-03-10 Printable transparent stress sensor and preparation method therefor

Country Status (2)

Country Link
CN (1) CN115479705B (en)
WO (1) WO2024036928A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115479705B (en) * 2022-08-19 2024-01-16 江西昌硕户外休闲用品有限公司 Printable transparent stress sensor and preparation method thereof
CN116144070A (en) * 2023-01-17 2023-05-23 南京邮电大学 Preparation method of dielectric elastomer material and pressure sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205879411U (en) * 2016-07-01 2017-01-11 南昌欧菲光科技有限公司 Pressure drag sensor and pressure -sensitive element who is used for pressure drag sensor
CN107560766A (en) * 2016-07-01 2018-01-09 南昌欧菲光科技有限公司 Piezoresistance sensor and the pressure cell for piezoresistance sensor
CN110864828A (en) * 2019-11-08 2020-03-06 五邑大学 Preparation method of silver nanowire/MXene flexible stress sensor
CN112213004A (en) * 2020-10-12 2021-01-12 哈尔滨工业大学 Large-response-range and high-sensitivity touch sensor based on gradient elastic modulus
CN113008415A (en) * 2021-01-28 2021-06-22 中科院长春应化所黄埔先进材料研究院 Microstructure elastomer composite film for flexible pressure sensor and preparation method and application thereof
US20220009764A1 (en) * 2020-07-07 2022-01-13 The Regents Of The University Of California Micron-resolution soft stretchable strain and pressure sensor
CN114354030A (en) * 2021-12-07 2022-04-15 之江实验室 Wide-range flexible pressure sensor with modulus gradient microstructure and preparation method
CN114791326A (en) * 2022-03-14 2022-07-26 西安交通大学 Flexible capacitive sensor and preparation method thereof
CN115479705A (en) * 2022-08-19 2022-12-16 江西昌硕户外休闲用品有限公司 Printable transparent stress sensor and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW590890B (en) * 2001-09-03 2004-06-11 Teijin Ltd Transparent electroconductive laminate and transparent touch panel using the same
US9056951B2 (en) * 2007-10-05 2015-06-16 The Regents Of The University Of Michigan Ultrastrong and stiff layered polymer nanocomposites and hierarchical laminate materials thereof
CN205467993U (en) * 2016-03-29 2016-08-17 永益集团股份有限公司 Novel hot thermoprint membrane of elasticity
CN105810598B (en) * 2016-04-05 2017-03-22 华中科技大学 Preparation method for stretchable flexible electronic device and stretchable flexible electronic device product
CN106500886B (en) * 2016-09-22 2019-05-10 太原理工大学 A kind of preparation method of the flexibility stress sensor based on nanometer conductive material
CN106531733A (en) * 2016-12-21 2017-03-22 清华大学 Flexible pressure sensor and preparation method therefor
CN115843353A (en) * 2019-10-14 2023-03-24 瑞态公司 Optically transparent pressure sensor
KR102335434B1 (en) * 2021-03-05 2021-12-06 주식회사 제트콘코리아 Eco-friendly ultra rapid harding organic/inorganic elastic coating waterproofing material and waterproofing construction method of elastic coating using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205879411U (en) * 2016-07-01 2017-01-11 南昌欧菲光科技有限公司 Pressure drag sensor and pressure -sensitive element who is used for pressure drag sensor
CN107560766A (en) * 2016-07-01 2018-01-09 南昌欧菲光科技有限公司 Piezoresistance sensor and the pressure cell for piezoresistance sensor
CN110864828A (en) * 2019-11-08 2020-03-06 五邑大学 Preparation method of silver nanowire/MXene flexible stress sensor
US20220009764A1 (en) * 2020-07-07 2022-01-13 The Regents Of The University Of California Micron-resolution soft stretchable strain and pressure sensor
CN112213004A (en) * 2020-10-12 2021-01-12 哈尔滨工业大学 Large-response-range and high-sensitivity touch sensor based on gradient elastic modulus
CN113008415A (en) * 2021-01-28 2021-06-22 中科院长春应化所黄埔先进材料研究院 Microstructure elastomer composite film for flexible pressure sensor and preparation method and application thereof
CN114354030A (en) * 2021-12-07 2022-04-15 之江实验室 Wide-range flexible pressure sensor with modulus gradient microstructure and preparation method
CN114791326A (en) * 2022-03-14 2022-07-26 西安交通大学 Flexible capacitive sensor and preparation method thereof
CN115479705A (en) * 2022-08-19 2022-12-16 江西昌硕户外休闲用品有限公司 Printable transparent stress sensor and preparation method thereof

Also Published As

Publication number Publication date
CN115479705B (en) 2024-01-16
CN115479705A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2024036928A1 (en) Printable transparent stress sensor and preparation method therefor
Wang et al. Inkjet-printed flexible sensors: From function materials, manufacture process, and applications perspective
Camargo et al. Development of conductive inks for electrochemical sensors and biosensors
Zhang et al. Recent progress for silver nanowires conducting film for flexible electronics
Li et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets
JP6319085B2 (en) Conductive paste
Li et al. Recent Advances in Pen‐Based Writing Electronics and their Emerging Applications
Liang et al. Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices
TWI682405B (en) Conductive silver paste
Yin et al. Highly sensitive and transparent strain sensors with an ordered array structure of AgNWs for wearable motion and health monitoring
CN106601382A (en) Flexible transparent conductive film preparation method
Kong et al. Highly stretchable and durable fibrous strain sensor with growth ring-like spiral structure for wearable electronics
CN105866175A (en) Printable flexible ammonia gas sensor and making method thereof
Park et al. Stretchable conductive nanocomposites and their applications in wearable devices
Soe et al. Performance of a silver nanoparticles-based polydimethylsiloxane composite strain sensor produced using different fabrication methods
Ma et al. Flexible Ti3C2Tx MXene/ink human wearable strain sensors with high sensitivity and a wide sensing range
TWI684999B (en) Conductive film
Shi et al. Flexible electronic skin with nanostructured interfaces via flipping over electroless deposited metal electrodes
CN109251636A (en) The preparation process of high transparency waterborne conductive coating
Liang et al. Direct stamping multifunctional tactile sensor for pressure and temperature sensing
Zhou et al. A triple-layer structure flexible sensor based on nano-sintered silver for power electronics with high temperature resistance and high thermal conductivity
Lu et al. High performance flexible wearable strain sensor based on rGO and AgNWs decorated PBT melt-blown non-woven fabrics
Zhu et al. Electrohydrodynamics-printed silver nanoparticle flexible pressure sensors with improved gauge factor
da Costa et al. Fabrication and patterning methods of flexible sensors using carbon nanomaterials on polymers
Liu et al. Highly stretchable and sensitive SBS/Gr/CNTs fibers with hierarchical structure for strain sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853845

Country of ref document: EP

Kind code of ref document: A1