WO2024036927A1 - 基于一致性算法的配电台区群云边协同调控方法和系统 - Google Patents

基于一致性算法的配电台区群云边协同调控方法和系统 Download PDF

Info

Publication number
WO2024036927A1
WO2024036927A1 PCT/CN2023/080661 CN2023080661W WO2024036927A1 WO 2024036927 A1 WO2024036927 A1 WO 2024036927A1 CN 2023080661 W CN2023080661 W CN 2023080661W WO 2024036927 A1 WO2024036927 A1 WO 2024036927A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
cost
control
station
regulation
Prior art date
Application number
PCT/CN2023/080661
Other languages
English (en)
French (fr)
Inventor
范辉
梁纪峰
曾四鸣
李晓军
李铁成
罗蓬
赵宇皓
张蕊
Original Assignee
国网河北省电力有限公司电力科学研究院
国家电网有限公司
国网河北能源技术服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网河北省电力有限公司电力科学研究院, 国家电网有限公司, 国网河北能源技术服务有限公司 filed Critical 国网河北省电力有限公司电力科学研究院
Publication of WO2024036927A1 publication Critical patent/WO2024036927A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component

Definitions

  • Embodiments of the present disclosure generally relate to the technical field of distribution network optimization and dispatching, and more specifically, to a method and system for cloud-edge collaborative regulation of distribution station groups based on a consistency algorithm.
  • the cloud-edge collaborative regulation model fits the distribution characteristics of new energy in the distribution network and is applied in the optimization and control of the distribution network. It can effectively solve the computing and computing challenges caused by the access of high-proportion distributed resources. The problem of large amounts of communication data.
  • the cloud is the control center and is responsible for the overall management and control of the distribution network system.
  • the edge side provides various The distribution station area is equipped with intelligent distribution transformer terminals, which are mainly responsible for intelligently sensing and aggregating distributed power sources, energy storage and controllable loads in the distribution station area, communicating with the cloud and adjacent sides, and performing edge computing and load Regulatory capability assessment and control, etc.
  • Cloud-edge collaboration can reasonably allocate complex computing tasks.
  • Edge computing implements local data collection and analysis close to the data side, and then uploads it to the cloud.
  • the cloud collects the data transmitted from the edge side, makes optimization decisions for the entire system, and then sends the control tasks to each edge.
  • the cloud-edge collaborative control method can effectively improve the problem of large computing and communication loads, it is difficult to correct the power deviation in real time due to the communication delay in cloud-edge collaborative control.
  • the optimization and control methods for distribution network are divided into centralized and distributed.
  • the centralized control method requires centralized control links to centrally process the global control information in the distribution network. Although this facilitates centralized management, it reduces the reliability of distribution network dispatching; the distributed control method can improve the reliability of control and Real-time, but due to the lack of coordination of centralized links, it is generally only suitable for distributed control with relatively fixed rules. It is difficult to adapt to changes in the power grid environment, and it is difficult to convert complex optimization problems into distributed algorithms.
  • embodiments of the present disclosure provide a method and system for cloud-edge collaborative regulation of distribution station groups based on a consensus algorithm, which can adapt to changes in the power grid environment and improve the reliability and real-time performance of distribution network dispatching.
  • a method for coordinated control of distribution station group cloud and edge based on a consistency algorithm including:
  • the leader of each station group sends the group power deviation and regulation cost information of the corresponding station group to the cloud server;
  • the leader of the current station group receives the control volume information sent by the cloud server;
  • the regulation power of the stations in the current station group is determined according to the current cost increment rate.
  • the resources participating in the regulation of the station area include distributed power supplies, flexible loads and energy storage devices.
  • the regulation cost of the station area is expressed by the following formula:
  • control cost of the station area is obtained by fitting the power control cost of the distributed power supply, the power control cost of the flexible load, and the power control cost of the energy storage device, where,
  • the power regulation cost of distributed power supply is expressed by the following function:
  • the power regulation cost of flexible loads is expressed by the following function:
  • the power regulation cost of the energy storage device is expressed by the following function:
  • the power regulated by the energy storage device Indicates charging the energy storage, Indicates discharging stored energy; , are the corresponding cost coefficients respectively.
  • it also includes:
  • the cloud server uses the cost increment rate as a consistency variable to optimize and calculate the power control amount of the station group, and sends the optimized and calculated power control amount to the leader of each station group, where the cost increment rate is The derivative of the control cost per unit time to the power control amount is expressed as:
  • the cloud server uses the cost micro-increase rate as a consistency variable to optimize and calculate the power control amount of the station group, including:
  • the cloud server determines the power control amount of each station group on the premise of ensuring that the derivative of the unit time control cost of each station group to the power control amount is the same.
  • calculating the current cost increment rate of each station area in the current station area group based on the control amount information, and determining the control power corresponding to the current cost increment rate includes:
  • it also includes:
  • the network topology diagram of the current station group is updated, the updated state transition matrix is determined, the consistency variables of each station in the current station group are updated, and the new station group is determined.
  • a distribution station group cloud-edge collaborative control system based on a consistency algorithm including:
  • the leader of each station group is used to send the group power deviation and regulation cost information of the corresponding station group to the cloud server;
  • the leader of the current station group is used to receive the control amount information sent by the cloud server; calculate the current cost increment rate of each station in the current station group based on the control amount information, Determine the regulation power corresponding to the current cost increment rate; in response to the regulation power meeting the preset constraint conditions, determine the regulation power of the stations in the current station group according to the current cost increment rate.
  • an electronic device including a memory and a processor.
  • a computer program is stored on the memory.
  • the processor executes the program, the method as described above is implemented.
  • a computer-readable storage medium is provided, a computer program is stored thereon, and when the program is executed by a processor, the method as described above is implemented.
  • cloud-edge collaborative control method of distribution station group based on the disclosed consistency algorithm, it can adapt to changes in the power grid environment and improve the reliability and real-time performance of distribution network dispatching.
  • Figure 1 shows a flow chart of a distribution station group cloud-edge collaborative control method based on a consistency algorithm according to Embodiment 1 of the present disclosure
  • Figure 2 shows a schematic structural diagram of the distribution station group cloud-edge collaborative control system based on the consistency algorithm in Embodiment 2 of the present disclosure
  • Figure 3 shows a schematic structural diagram of the distribution station group cloud-edge collaborative control equipment based on the consistency algorithm in Embodiment 3 of the present disclosure
  • Figure 4 shows the network topology diagram of the distribution station group in Embodiment 4 of the present disclosure.
  • the cloud-edge collaborative control method for distribution station groups based on the consistency algorithm of the disclosed embodiments can adapt to changes in the power grid environment and improve the reliability and real-time performance of distribution network dispatching.
  • the disclosed embodiment aims to correct the long-term prediction deviation of the distribution network, and proposes a cloud-edge collaborative distributed rapid control method based on the characteristics of the cloud and edge.
  • Intelligent terminals in the Taiwan area are used as edge computing nodes and will have adjacent communication functions.
  • Multi-station clusters perform cloud-edge collaboration.
  • the cloud allocates the total control volume to the station groups for initial allocation.
  • the station area group then collaboratively allocates the initially allocated control volume to each station area for secondary allocation.
  • the station group can independently perform secondary optimal allocation according to the control amount of the group to achieve independent operation.
  • FIG. 1 it is a flow chart of the cloud-edge collaborative control method of a distribution station group based on the consistency algorithm according to Embodiment 1 of the present disclosure.
  • the method for coordinated control of distribution station group cloud and edge based on consistency algorithm may include the following steps:
  • S101 The leader of each station group sends the group power deviation and regulation cost information of the corresponding station group to the cloud server.
  • the cloud-edge collaborative control method of the distribution station group based on the consistency algorithm in this embodiment can be applied to the power scheduling of intelligent terminals in the station area.
  • the station area intelligent terminals can be divided into multiple station area groups, in which one station area intelligent terminal is selected as the leader in each station group, and the other station area intelligent terminals are selected as followers.
  • the leader of each station group communicates with other station area intelligent terminals in the station group where it is located to obtain the control power (i.e., power deviation) and control cost of other station area intelligent terminals, and will obtain the follower's control power.
  • the control power information and control cost, as well as its own control power and control cost information are sent to the cloud server.
  • the cloud server after receiving the group power deviation and regulation cost information sent by the leader of each station group, the cloud server will use the cost micro-increase rate as a consistency variable to optimize and calculate the power regulation amount of the station group.
  • the optimized and calculated power control amount is sent to the leader of each station group, where the cost increment rate is the derivative of the control cost per unit time to the power control amount, expressed as:
  • the power control amount of each station group is determined on the premise of ensuring that the derivative of the unit time control cost of each station group to the power control amount is the same.
  • the leader of the current station group receives the control volume information sent by the cloud server.
  • S103 Calculate the current cost slight increase rate of each station area in the current station area group according to the control amount information, and determine the control power corresponding to the current cost slight increase rate.
  • the leader of the current stage group receives the control amount information sent by the cloud server, the consistency variable of each stage in the current stage group is updated, and the following formula is used to calculate the stage area exist The slight increase rate of control costs at any time:
  • Taiwan area the resources participating in the regulation of the Taiwan area include distributed power supplies, flexible loads and energy storage devices.
  • the regulation cost of the Taiwan area is expressed by the following formula:
  • the control cost of the Taiwan area is obtained by fitting the power control cost of distributed power sources, the power control cost of flexible loads and the power control cost of energy storage devices, where,
  • the power regulation cost of distributed power supply is expressed by the following function:
  • the power regulation cost of flexible loads is expressed by the following function:
  • the power regulation cost of the energy storage device is expressed by the following function:
  • the power regulated by the energy storage device Indicates charging the energy storage, Indicates discharging the stored energy; , are the corresponding cost coefficients respectively.
  • S104 In response to the regulation power meeting the preset constraint conditions, determine the regulation power of the stations in the current station group according to the current cost increment rate.
  • the control power of the stations in the current station group is determined based on the current cost increment rate. That is, the regulation power corresponding to the current slight cost increase rate is regarded as the final regulation power.
  • the disclosed cloud-edge collaborative control method for distribution station groups based on a consistency algorithm can adapt to changes in the power grid environment and improve the reliability and real-time performance of distribution network dispatching.
  • the method further includes:
  • the network topology diagram of the current station group is updated, the updated state transition matrix is determined, the consistency variables of each station in the current station group are updated, and the new station group is determined.
  • control power of each station area within the station group can be accurately obtained.
  • the distribution network power balance constraints are expressed as:
  • the "leader-follower” distributed control method is adopted internally in the station cluster.
  • the cloud summarizes the power deviation and cost information uploaded by all “leaders”, performs optimization calculations based on the equal-cost micro-increase rate, and calculates the optimized control amount.
  • the "leaders" assigned to each station group will be assigned for the first time.
  • the total power deviation of the distribution network is:
  • the cloud Based on the power deviation uploaded by the leaders of each distribution station group, the cloud performs optimization calculations based on the equal cost micro-increase rate. When the following equation is satisfied, the power deviation can be optimally allocated to each station group with the goal of economy. the goal of.
  • the station district obtains the control amount allocated by the cloud and interacts with adjacent stations, selects the cost increment rate as the consistency variable, and iteratively calculates the cost increment rate of each station district.
  • Each distribution station area can be represented by To the nodes in the graph, is the edge set of the directed graph G.
  • the distribution network power balance constraints are expressed as:
  • the convergence condition is:
  • the optimal value of the active power output of the distribution station area at the minimum control cost can be determined.
  • FIG. 2 it is a schematic structural diagram of a distribution station group cloud-edge collaborative control system based on a consensus algorithm according to Embodiment 2 of the present disclosure.
  • the distribution station group cloud-edge collaborative control system based on the consistency algorithm in this embodiment includes:
  • each station group 202 includes a leader and one or more followers;
  • the leader of each station group 202 is used to send the group power deviation and regulation cost information of the corresponding station group to the cloud server 201;
  • the leader of the current station group is used to receive the control amount information sent by the cloud server 201; calculate the current cost slight increase rate of each station in the current station group based on the control amount information. , determine the regulation power corresponding to the current cost increment rate; in response to the regulation power meeting the preset constraint conditions, determine the regulation power of the stations in the current station group according to the current cost increment rate.
  • the distribution station group in this embodiment includes six stations.
  • Station area 1 contains distributed power supplies, energy storage devices and flexible loads;
  • station area 2 contains distributed power supplies and flexible loads;
  • station area 3 contains distributed power supplies and flexible loads. It includes energy storage devices and flexible loads;
  • station area 4 only contains distributed power sources;
  • station area 5 only contains energy storage devices;
  • station area 6 only contains flexible loads.
  • device 300 includes a central processing unit (CPU) 301 that may be configured to operate in accordance with computer program instructions stored in read-only memory (ROM) 302 or loaded from storage unit 308 into random access memory (RAM) 303 of the computer. Program instructions to perform various appropriate actions and processes. In the RAM 303, various programs and data required for the operation of the device 300 can also be stored.
  • the CPU 301, ROM 302, and RAM 303 are connected to each other through a bus 304.
  • An input/output (I/O) interface 305 is also connected to bus 304 .
  • I/O interface 305 Multiple components in the device 300 are connected to the I/O interface 305, including: input unit 306, such as a keyboard, mouse, etc.; output unit 307, such as various types of displays, speakers, etc.; storage unit 308, such as a magnetic disk, optical disk, etc. ; and communication unit 309, such as a network card, modem, wireless communication transceiver, etc.
  • the communication unit 309 allows the device 300 to exchange information/data with other devices through computer networks such as the Internet and/or various telecommunications networks.
  • the processing unit 301 performs the various methods and processes described above, which are tangibly embodied in a machine-readable medium, such as the storage unit 308.
  • part or all of the computer program may be loaded and/or installed onto device 300 via ROM 302 and/or communication unit 309.
  • the computer program is loaded into RAM 303 and executed by CPU 301, one or more steps of the method described above may be performed.
  • the CPU 301 may be configured to perform the above-described method in any other suitable manner (eg, by means of firmware).
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs Systems on Chips
  • CPLDs Load Programmable Logic Devices
  • Program code for implementing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, special-purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions specified in the flowcharts and/or block diagrams/ The operation is implemented.
  • the program code may execute entirely on the machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wires based electrical connection, laptop disk, hard drive, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM portable compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

本公开提供了一种基于一致性算法的配电台区群云边协同调控方法和系统,属于配电网优化调度技术领域,其中,方法包括:各台区群的领导者向云端服务器发送对应台区群的群功率偏差和调控成本信息;对于其中的每一个台区群,当前台区群的领导者接收云端服务器发送的调控量信息;根据所述调控量信息计算当前台区群中的各台区的当前成本微增率,确定所述当前成本微增率对应的调控功率;响应于所述调控功率满足预设的约束条件,根据所述当前成本微增率确定所述当前台区群中的台区的调控功率。以此方式,能够适应电网环境变化,提高配电网调度的可靠性和实时性。

Description

基于一致性算法的配电台区群云边协同调控方法和系统 技术领域
本公开的实施例一般涉及配电网优化调度技术领域,并且更具体地,涉及一种基于一致性算法的配电台区群云边协同调控方法和系统。
背景技术
高比例分布式新能源的广泛接入,以及储能、柔性负荷等大规模资源参与配电网调控,导致配电网的调控对象急剧增长,给配电网的优化调控带来挑战。
在能源互联网蓬勃发展的环境下,云边协同调控模式契合配电网中新能源的分布特征,被应用于配电网优化调控中,可有效解决高比例分布式资源接入带来的计算与通信数据量大的问题。云端为控制中心,负责配电网系统的全局管控,其主要功能包括收集并处理边缘侧传送的信息,对整个系统进行优化决策,下达调控指令到边侧以及协助边缘计算等;边缘侧为各配电台区,配置有智能配变终端,主要负责对配电台区内分布式电源、储能及可控负荷进行智能感知与聚合,与云端及邻边侧进行通讯,执行边缘计算以及负荷调控能力评估与控制等。云边协同可以将复杂的计算任务进行合理的分配,边缘计算是在靠近数据侧实施本地数据采集和分析,再上传至云端。云端收集边缘侧传送过来的数据,进行整个系统的优化决策,再将调控任务下发至各边缘。虽然云边协同调控方法可有效改善计算量与通信量大的问题,但由于云边协同调控存在通信时延,难以实时地修正功率偏差。
目前针对配电网的优化调控方法分为集中式和分布式。集中式调控方法需要集中控制环节对配电网中的全局调控信息进行集中的处理,这样虽然便于集中管理,但降低了配电网调度的可靠性;分布式调控方法可提高调控的可靠性以及实时性,但由于缺乏集中环节的协调,一般只适用于规则较固定的分布式控制,难以适应电网环境变化,且对于复杂的优化问题转化为分布式算法困难。
发明内容
有鉴于此,本公开实施例提供了一种基于一致性算法的配电台区群云边协同调控方法和系统,能够适应电网环境变化,提高配电网调度的可靠性和实时性。
在本公开的第一方面,提供了一种基于一致性算法的配电台区群云边协同调控方法,包括:
各台区群的领导者向云端服务器发送对应台区群的群功率偏差和调控成本信息;
对于其中的每一个台区群,当前台区群的领导者接收云端服务器发送的调控量信息;
根据所述调控量信息计算当前台区群中的各台区的当前成本微增率,确定所述当前成本微增率对应的调控功率;
响应于所述调控功率满足预设的约束条件,根据所述当前成本微增率确定所述当前台区群中的台区的调控功率。
在一些实施例中,参与台区调控的资源包括分布式电源、柔性负荷和储能装置,台区的调控成本用以下公式表示:
其中, 表示第 个台区的调控功率, 分别为对应的成本系数, 为台区的调控成本。
在一些实施例中,台区的调控成本是通过对分布式电源的功率调控成本、柔性负荷的功率调控成本和储能装置的功率调控成本进行拟合得到的,其中,
分布式电源的功率调控成本用以下函数表示:
其中, 为第 个分布式电源的调控成本, 为第 个分布式电源调控的功率, 分别为对应成本系数;
柔性负荷的功率调控成本用以下函数表示:
其中, 为柔性负荷的调控成本, 为柔性负荷消耗的功率, 分别为对应系数;
储能装置的功率调控成本用以下函数表示:
其中, 为储能装置调控的功率, 表示对储能进行充电, 表示对储能进行放电; 分别为对应的成本系数。
在一些实施例中,还包括:
云端服务器将成本微增率作为一致性变量对台区群的功率调控量进行优化计算,将优化计算后的功率调控量发送至各台区群的领导者,其中,所述成本微增率为单位时间内调控成本对功率调控量的导数,表示为:
在一些实施例中,所述云端服务器将成本微增率作为一致性变量对台区群的功率调控量进行优化计算,包括:
所述云端服务器在保证各台区群的单位时间内调控成本对功率调控量的导数相同的前提下,确定各台区群的功率调控量。
在一些实施例中,所述根据所述调控量信息计算当前台区群中的各台区的当前成本微增率,确定所述当前成本微增率对应的调控功率,包括:
更新当前台区群中的各台区的一致性变量,用以下公式计算台区 时刻的调控成本微增率:
其中, 为功率调节系数, 为云端服务器分配给台区群的功率调控量, 为第j个台区在 时刻的成本微增率, 为第 个台区在 时刻的成本微增率;
根据第 个配电台区 时刻的调控成本微增率,利用以下公式得到第 个配电台区 时刻的调控功率:
其中, 为第 个配电台区在 时刻的调控功率, 为第 个配电台区功率调节的上下限。
在一些实施例中,还包括:
响应于所述调控功率不满足预设的约束条件,则更新当前台区群的网络拓扑图,确定更新后的状态转移矩阵,更新当前台区群中的各台区的一致性变量,确定新的调控功率;
重复上述过程,直到调控功率满足预设的约束条件。
在本公开的第二方面,提供一种基于一致性算法的配电台区群云边协同调控系统,包括:
多个台区群和云端服务器,其中每个台区群包括一个领导者,以及一个或多个跟随者;
其中,各台区群的领导者用于向所述云端服务器发送对应台区群的群功率偏差和调控成本信息;
对于其中的每一个台区群,当前台区群的领导者用于接收云端服务器发送的调控量信息;根据所述调控量信息计算当前台区群中的各台区的当前成本微增率,确定所述当前成本微增率对应的调控功率;响应于所述调控功率满足预设的约束条件,根据所述当前成本微增率确定所述当前台区群中的台区的调控功率。
在本公开的第三方面,提供了一种电子设备,包括存储器和处理器,所述存储器上存储有计算机程序,所述处理器执行所述程序时实现如以上所述的方法。
在本公开的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如以上所述的方法。
通过本公开的基于一致性算法的配电台区群云边协同调控方法,能够适应电网环境变化,提高配电网调度的可靠性和实时性。
发明内容部分中所描述的内容并非旨在限定本公开的实施例的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
图1示出了本公开实施例一的基于一致性算法的配电台区群云边协同调控方法的流程图;
图2示出了本公开实施例二的基于一致性算法的配电台区群云边协同调控系统的结构示意图;
图3示出了本公开实施例三的基于一致性算法的配电台区群云边协同调控设备的结构示意图;
图4示出了本公开实施例四的配电台区群的网络拓扑图。
实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的全部其他实施例,都属于本公开保护的范围。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本公开实施例的基于一致性算法的配电台区群云边协同调控方法,能够适应电网环境变化,提高配电网调度的可靠性和实时性。
本公开实施例以修正配电网长时间尺度的预测偏差为目标,结合云边特点提出一种云边协同分布式快速调控方法,以台区智能终端作为边缘计算节点,将具有相邻通信功能的多台区群进行云边协同。云端将总调控量分配给台区群,进行初次分配。台区群再将初次分配的调控量协同分配给各台区,进行二次分配。并且,当云边之间通信中断时,台区群能够自主根据本群的调控量进行二次优化分配,实现独立运行。
下面结合具体的实施例对台区调控量进行分配的详细过程进行说明。
具体地,如图1所示,为本公开实施例一的基于一致性算法的配电台区群云边协同调控方法的流程图。在本实施例中,所述基于一致性算法的配电台区群云边协同调控方法,可以包括以下步骤:
S101:各台区群的领导者向云端服务器发送对应台区群的群功率偏差和调控成本信息。
本实施例的基于一致性算法的配电台区群云边协同调控方法,可以应用于台区智能终端的功率调度。具体地,可以将台区智能终端划分为多个台区群,其中,每个台群中选择一个台区智能终端作为领导者,其他台区智能终端作为跟随者。各台区群的领导者通过与自身所在台区群中的其他台区智能终端进行通信,获取其他台区智能终端的调控功率(即功率偏差)和调控成本,并将获取到的跟随者的调控功率信息和调控成本,以及自身的调控功率和调控成本信息发送给云端服务器。
S102:对于其中的每一个台区群,当前台区群的领导者接收云端服务器发送的调控量信息。
在本实施例中,云端服务器在接收到各台区群的领导者发送的群功率偏差和调控成本信息后,会将成本微增率作为一致性变量对台区群的功率调控量进行优化计算,将优化计算后的功率调控量发送至各台区群的领导者,其中,所述成本微增率为单位时间内调控成本对功率调控量的导数,表示为:
即在在保证各台区群的单位时间内调控成本对功率调控量的导数相同的前提下,确定各台区群的功率调控量。
对于其中的每一个台区群,当前台区群的领导者接收云端服务器发送的调控量信息。
S103:根据所述调控量信息计算当前台区群中的各台区的当前成本微增率,确定所述当前成本微增率对应的调控功率。
在当前台区群的领导者接收到云端服务器发送的调控量信息后,更新当前台区群中的各台区的一致性变量,用以下公式计算台区 时刻的调控成本微增率:
其中, 为功率调节系数, 为云端服务器分配给台区群的功率调控量, 为第j个台区在 时刻的成本微增率, 为第 个台区在 时刻的成本微增率;
根据第 个配电台区 时刻的调控成本微增率,利用以下公式得到第 个配电台区 时刻的调控功率:
其中, 为第 个配电台区在 时刻的调控功率, 为第 个配电台区功率调节的上下限。
其中,参与台区调控的资源包括分布式电源、柔性负荷和储能装置,台区的调控成本用以下公式表示:
其中, 表示第 个台区的调控功率, 分别为对应的成本系数, 为台区的调控成本。
台区的调控成本是通过对分布式电源的功率调控成本、柔性负荷的功率调控成本和储能装置的功率调控成本进行拟合得到的,其中,
分布式电源的功率调控成本用以下函数表示:
其中, 为第 个分布式电源的调控成本, 为第 个分布式电源调控的功率, 分别为对应成本系数;
柔性负荷的功率调控成本用以下函数表示:
其中, 为柔性负荷的调控成本, 为柔性负荷消耗的功率, 分别为对应系数;
储能装置的功率调控成本用以下函数表示:
其中, 为储能装置调控的功率, 表示对储能进行充电, 表示对储能进行放电; 分别为对应的成本系数。
S104:响应于所述调控功率满足预设的约束条件,根据所述当前成本微增率确定所述当前台区群中的台区的调控功率。
在确定当前成本微增率对应的调控功率后,若所述调控功率满足预设的约束条件,根据所述当前成本微增率确定所述当前台区群中的台区的调控功率。即将当前成本微增率对应的调控功率作为最终的调控功率。
本公开的基于一致性算法的配电台区群云边协同调控方法,能够适应电网环境变化,提高配电网调度的可靠性和实时性。
此外,作为本公开的一个可选实施例,在上述实施例中,所述方法还包括:
响应于所述调控功率不满足预设的约束条件,则更新当前台区群的网络拓扑图,确定更新后的状态转移矩阵,更新当前台区群中的各台区的一致性变量,确定新的调控功率;
重复上述过程,直到调控功率满足预设的约束条件。
通过重复迭代,可以准确得到台区群内各台区的调控功率。
下面结合具体的实例对本公开的技术方案进行详细的说明:
对配电台区中的各种分布式资源进行拟合,确定台区群的调控成本函数,并以各台区的调控成本最小为调控目标。
以台区群内各台区调控成本最小为调控目标,可表示为:
,其中, 表示第 个配电台区的调控功率; 表示第 个配电台区的调控成本。
配电网功率平衡约束表示为:
    
其中: 表示配电网调控功率, 表示实际负荷需求功率。
台区群内部采用“领导者—跟随者”分布式调控方法,云端对所有“领导者”上传的功率偏差以及成本信息进行汇总,基于等成本微增率进行优化计算,将优化后的调控量分配给各台区群的“领导者”,进行初次分配。
配电网总功率偏差为:
                  
                    
其中: 表示配电网的总功率偏差, 表示第 个配电台区群上传到云端的功率偏差值, 为第 个配电台区群调控功率的上下限。
云端根据各配电台区群领导者上传的功率偏差,基于等成本微增率进行优化计算,当满足式一下等式时,即可达到以经济性为目标向各台区群优化分配功率偏差的目的。
    
式中: 为第m个配电台区群的调控成本; 为第m个配电台区群的功率偏差。
当所有台区群的成本微增率达到一致,得到最低调控成本下的各台区群需修正的最优功率偏差值,即满足以下所示关系。
    
式中: 表示第j个配电台区群的功率偏差; 表示第j个配电台区群经云端等微增率优化计算后的功率偏差。
作为“领导者”的台区获得云端分配的调控量后与相邻台区进行信息交互,选取成本微增率作为一致性变量,并迭代计算各台区的成本微增率。
根据配电台区群的拓扑结构求得拉普拉斯矩阵 ,进而求得状态转移矩阵
为状态转移矩阵, 若矩阵 满足两个条件,即 为非负的行随机矩阵且所有的特征值都不大于1,则该系统的所有智能体经过足够多次的迭代运算会收敛到一个相同的值。 为状态转移矩阵第 行第 列的元素 ;由通信网络拓扑结构决定,可以表示为:
    
式中: 表示节点 到节点 的增益权重。
矩阵 为G的邻接矩阵,其对角元素为0,非对角线元素 是从节点 到节点 的边的数量。其中,G=(V,E)为配电台区群各台区间的通信关系有向图,V={1,…,n}是有向图G的节点集,各个配电台区可由有向图中的节点表示, 是有向图G的边集。
为度矩阵, 是一个 的对角矩阵, 为每个节点对应的度数,度为某节点邻居节点的数量。 为拉普拉斯矩阵,反应了配电台区群的拓扑结构;其中满足如以下所示的关系:
    
更新各配电台区的一致性变量,并求得在该状态下的调控功率;
根据第 个配电台区 时刻的调控成本微增率,得到第 个配电台区 时刻的调控功率。
                     
式中: 为第 个配电台区在 时刻的调控功率, 为第 个配电台区功率调节的上下限。
判断更新后的调控功率值是否满足约束条件,若不满足,则要重新更新网络拓扑图,重新求状态转移矩阵,再重复前一过程,直到满足约束条件。
配电网调控功率上下限约束表示为
                                               
式中: 表示配电网调控功率的上下限值。
配电网功率平衡约束表示为:
                                                 
式中: 表示配电网调控功率, 表示实际负荷需求功率。
判断功率偏差是否满足收敛条件,若满足则对一致性变量进行迭代计算,同时迭代计算各台区的有功出力,输出该台区的最优调控功率值,若不满足则重新计算分配台区的功率偏差。
收敛条件为:
                                                    
式中: 为收敛误差。
分别对 进行迭代更新,直到 趋于同一个值 时系统达到一致性收敛,并得到该收敛值下各个配电台区的最优调控成本。根据一致性算法求得各台区的一致性变量值,从而得到配电台区在最小调控成本下有功出力的最优值为:
          。
通过上述过程,可以确定配电台区在最小调控成本下有功出力的最优值。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应所述知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应所述知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本公开所必须的。
以上是关于方法实施例的介绍,以下通过系统实施例,对本公开所述方案进行进一步说明。
如图2所示,为本公开实施例二的基于一致性算法的配电台区群云边协同调控系统的结构示意图。本实施例的基于一致性算法的配电台区群云边协同调控系统,包括:
多个台区群202和云端服务器201,其中每个台区群202包括一个领导者,以及一个或多个跟随者;
其中,各台区群202的领导者用于向所述云端服务器201发送对应台区群的群功率偏差和调控成本信息;
对于其中的每一个台区群,当前台区群的领导者用于接收云端服务器201发送的调控量信息;根据所述调控量信息计算当前台区群中的各台区的当前成本微增率,确定所述当前成本微增率对应的调控功率;响应于所述调控功率满足预设的约束条件,根据所述当前成本微增率确定所述当前台区群中的台区的调控功率。
如图4所示,为配电台区群的网络拓扑图。本实施例的中的配电台区群,包括六个台区,台区1内包含分布式电源、储能装置和柔性负荷;台区2内包含分布式电源和柔性负荷;台区3内包含储能装置和柔性负荷;台区4内仅包含分布式电源;台区5内仅包含储能装置;台区6内仅包含柔性负荷。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,所述描述的模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图3示出了可以用来实施本公开的实施例的电子设备300的示意性框图。如图所示,设备300包括中央处理单元(CPU)301,其可以根据存储在只读存储器(ROM)302中的计算机程序指令或者从存储单元308加载到随机访问存储器(RAM)303中的计算机程序指令,来执行各种适当的动作和处理。在RAM 303中,还可以存储设备300操作所需的各种程序和数据。CPU 301、ROM 302以及RAM 303通过总线304彼此相连。输入/输出(I/O)接口305也连接至总线304。
设备300中的多个部件连接至I/O接口305,包括:输入单元306,例如键盘、鼠标等;输出单元307,例如各种类型的显示器、扬声器等;存储单元308,例如磁盘、光盘等;以及通信单元309,例如网卡、调制解调器、无线通信收发机等。通信单元309允许设备300通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
处理单元301执行上文所描述的各个方法和处理,其被有形地包含于机器可读介质,例如存储单元308。在一些实施例中,计算机程序的部分或者全部可以经由ROM 302和/或通信单元309而被载入和/或安装到设备300上。当计算机程序加载到RAM 303并由CPU 301执行时,可以执行上文描述的方法的一个或多个步骤。备选地,在其他实施例中,CPU 301可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行上述方法。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)等等。
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实现中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (15)

  1.  基于一致性算法的配电台区群云边协同调控方法,其特征在于,包括:
    各台区群的领导者向云端服务器发送对应台区群的群功率偏差和调控成本信息;
    对于其中的每一个台区群,当前台区群的领导者接收云端服务器发送的调控量信息;
    根据所述调控量信息计算当前台区群中的各台区的当前成本微增率,确定所述当前成本微增率对应的调控功率;
    响应于所述调控功率满足预设的约束条件,根据所述当前成本微增率确定所述当前台区群中的台区的调控功率。
  2.  根据权利要求1所述的方法,其特征在于,参与台区调控的资源包括分布式电源、柔性负荷和储能装置,台区的调控成本用以下公式表示:
  3. 其中, 表示第 个台区的调控功率, 分别为对应的成本系数, 为台区的调控成本。
  4.  根据权利要求2所述的方法,其特征在于,台区的调控成本是通过对分布式电源的功率调控成本、柔性负荷的功率调控成本和储能装置的功率调控成本进行拟合得到的,其中,
    分布式电源的功率调控成本用以下函数表示:
  5. 其中, 为第 个分布式电源的调控成本, 为第 个分布式电源调控的功率, 分别为对应成本系数;
    柔性负荷的功率调控成本用以下函数表示:
  6. 其中, 为柔性负荷的调控成本, 为柔性负荷消耗的功率, 分别为对应系数;
    储能装置的功率调控成本用以下函数表示:
  7. 其中, 为储能装置调控的功率, 表示对储能进行充电, 表示对储能进行放电; 分别为对应的成本系数。
  8.  根据权利要求3所述的方法,其特征在于,还包括:
    云端服务器将成本微增率作为一致性变量对台区群的功率调控量进行优化计算,将优化计算后的功率调控量发送至各台区群的领导者,其中,所述成本微增率为单位时间内调控成本对功率调控量的导数,表示为:
  9.  根据权利要求4所述的方法,其特征在于,所述云端服务器将成本微增率作为一致性变量对台区群的功率调控量进行优化计算,包括:
    所述云端服务器在保证各台区群的单位时间内调控成本对功率调控量的导数相同的前提下,确定各台区群的功率调控量。
  10.  根据权利要求5所述的方法,其特征在于,所述根据所述调控量信息计算当前台区群中的各台区的当前成本微增率,确定所述当前成本微增率对应的调控功率,包括:
    更新当前台区群中的各台区的一致性变量,用以下公式计算台区 在时刻 的调控成本微增率:
  11. 其中, 为功率调节系数, 为云端服务器分配给台区群的功率调控量, 为第j个台区在 时刻的成本微增率, 为第 个台区在 时刻的成本微增率;
    根据第 个配电台区 时刻的调控成本微增率,利用以下公式得到第 个配电台区 时刻的调控功率:
    其中, 为第 个配电台区在 时刻的调控功率, 为第 个配电台区功率调节的上下限。
  12.  根据权利要求6所述的方法,其特征在于,还包括:
    响应于所述调控功率不满足预设的约束条件,则更新当前台区群的网络拓扑图,确定更新后的状态转移矩阵,更新当前台区群中的各台区的一致性变量,确定新的调控功率;
    重复上述过程,直到调控功率满足预设的约束条件。
  13.  基于一致性算法的配电台区群云边协同调控系统,其特征在于,包括:
    多个台区群和云端服务器,其中每个台区群包括一个领导者,以及一个或多个跟随者;
    其中,各台区群的领导者用于向所述云端服务器发送对应台区群的群功率偏差和调控成本信息;
    对于其中的每一个台区群,当前台区群的领导者用于接收云端服务器发送的调控量信息;根据所述调控量信息计算当前台区群中的各台区的当前成本微增率,确定所述当前成本微增率对应的调控功率;响应于所述调控功率满足预设的约束条件,根据所述当前成本微增率确定所述当前台区群中的台区的调控功率。
  14.  一种电子设备,包括存储器和处理器,所述存储器上存储有计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1~7中任一项所述的方法。
  15.  一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1~7中任一项所述的方法。
PCT/CN2023/080661 2022-08-17 2023-03-10 基于一致性算法的配电台区群云边协同调控方法和系统 WO2024036927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210992117.7A CN115395647A (zh) 2022-08-17 2022-08-17 基于一致性算法的配电台区群云边协同调控方法和系统
CN202210992117.7 2022-08-17

Publications (1)

Publication Number Publication Date
WO2024036927A1 true WO2024036927A1 (zh) 2024-02-22

Family

ID=84120356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080661 WO2024036927A1 (zh) 2022-08-17 2023-03-10 基于一致性算法的配电台区群云边协同调控方法和系统

Country Status (2)

Country Link
CN (1) CN115395647A (zh)
WO (1) WO2024036927A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117791662A (zh) * 2024-02-27 2024-03-29 华北电力大学 一种混合储能容量分配方法、系统、电子设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115395647A (zh) * 2022-08-17 2022-11-25 国网河北省电力有限公司电力科学研究院 基于一致性算法的配电台区群云边协同调控方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474353A (zh) * 2019-08-26 2019-11-19 北京大学 分层式储能系统及其参与的电网调频协调控制方法
CN113269420A (zh) * 2021-05-14 2021-08-17 南京邮电大学 基于通信噪声的分布式事件驱动电力经济调度方法
CN115395647A (zh) * 2022-08-17 2022-11-25 国网河北省电力有限公司电力科学研究院 基于一致性算法的配电台区群云边协同调控方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474353A (zh) * 2019-08-26 2019-11-19 北京大学 分层式储能系统及其参与的电网调频协调控制方法
CN113269420A (zh) * 2021-05-14 2021-08-17 南京邮电大学 基于通信噪声的分布式事件驱动电力经济调度方法
CN115395647A (zh) * 2022-08-17 2022-11-25 国网河北省电力有限公司电力科学研究院 基于一致性算法的配电台区群云边协同调控方法和系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AN BAOXIANG; CHEN ZHENPING; HE WEN; FU BAOCHUAN: "Consensus-based Distributed Economic Dispatch Method for Smart Grid", 2022 41ST CHINESE CONTROL CONFERENCE (CCC), TECHNICAL COMMITTEE ON CONTROL THEORY, CHINESE ASSOCIATION OF AUTOMATION, 25 July 2022 (2022-07-25), pages 6030 - 6035, XP034203888, DOI: 10.23919/CCC55666.2022.9902360 *
ZHANG, ZIANG ET AL.: "Convergence Analysis of the Incremental Cost Consensus Algorithm Under Different Communication Network Topologies in a Smart Grid", IEEE TRANSACTIONS ON POWER SYSTEMS, vol. 27, no. 4, 30 November 2012 (2012-11-30), XP011470019, DOI: 10.1109/TPWRS.2012.2188912 *
ZHAOXIA ZHANG, WEN CHUANBO; CAI PENGCHENG: "Distributed droop control of islanded microgrid based on incremental cost consistency", RENEWABLE ENERGY RESOURCES, vol. 38, no. 4, 16 April 2020 (2020-04-16), pages 517 - 523, XP093140799, DOI: 10.13941/j.cnki.21-1469/tk.2020.04.015 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117791662A (zh) * 2024-02-27 2024-03-29 华北电力大学 一种混合储能容量分配方法、系统、电子设备及介质
CN117791662B (zh) * 2024-02-27 2024-05-17 华北电力大学 一种混合储能容量分配方法、系统、电子设备及介质

Also Published As

Publication number Publication date
CN115395647A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2024036927A1 (zh) 基于一致性算法的配电台区群云边协同调控方法和系统
WO2023201916A1 (zh) 一种分布式灵活资源聚合控制装置及控制方法
CN113326002A (zh) 基于计算迁移的云边协同控制系统及迁移决策生成方法
CN113452956B (zh) 一种输电线路巡检任务智能分配方法及系统
CN105429185B (zh) 一种具有鲁棒协同一致性的经济调度方法
CN106600080B (zh) 一种数据网络与电力网络耦合模型参与系统经济调度方法
CN113810233B (zh) 一种在随机网络中基于算网协同的分布式计算卸载方法
WO2023087658A1 (zh) 一种任务调度方法、装置、设备及可读存储介质
CN112650581A (zh) 一种面向智能楼宇的云边协同任务调度方法
CN113419867B (zh) 一种面向边云协同计算环境中节能的服务供应方法
CN110287034A (zh) 一种可充电移动边缘计算中能量-延迟平衡的动态任务分配方法
CN114662751B (zh) 基于lstm的园区多能短期负荷预测及优化方法
CN114899885A (zh) 电力调度方法、系统和存储介质
CN113064480B (zh) 一种基于多智能体强化学习的多数据中心协同节能方法
Xiong et al. An Energy Aware Algorithm for Edge Task Offloading.
CN116170881A (zh) 一种基于边缘计算的跨域资源分配与卸载方法及系统
CN111242513B (zh) 一种基于一致性理论的电力系统分布式经济调度方法
Ji et al. Towards optimal application offloading in heterogeneous edge-cloud computing
CN115513945A (zh) 一种基于物联网的分布式电源管理方法
CN107977791A (zh) 一种考虑网损的一致性算法的电力系统经济运行调度方法
Luo et al. Real-time distributed dispatch strategy for distribution transformer supply zone cluster based on cloud-edge collaboration architecture
CN114819740B (zh) 交直流输电通道功率优化分配方法、装置和计算机设备
WO2024060344A1 (zh) 数据-物理融合驱动的柔性配电系统自适应电压控制方法
Tajiri et al. Optimizing data distribution for federated learning under bandwidth constraint
Feng et al. A task processing efficiency improvement scheme based on Cloud-Edge architecture in computationally intensive scenarios

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853844

Country of ref document: EP

Kind code of ref document: A1