WO2024036923A1 - 冷板及电子设备 - Google Patents

冷板及电子设备 Download PDF

Info

Publication number
WO2024036923A1
WO2024036923A1 PCT/CN2023/080067 CN2023080067W WO2024036923A1 WO 2024036923 A1 WO2024036923 A1 WO 2024036923A1 CN 2023080067 W CN2023080067 W CN 2023080067W WO 2024036923 A1 WO2024036923 A1 WO 2024036923A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
branch pipe
cold plate
fluid chamber
flow
Prior art date
Application number
PCT/CN2023/080067
Other languages
English (en)
French (fr)
Inventor
周晓东
刘帆
陶成
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024036923A1 publication Critical patent/WO2024036923A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • the present disclosure relates to the field of communications, and specifically to a cold plate and electronic equipment.
  • micro-nano heat transfer structures are obtained on different material substrates and packaged to form micro-fluidic channels, and heat is exchanged through single-phase forced convection and flow boiling.
  • the boundary layer of the working medium continues to thin along the flow direction until heat transfer deteriorates, resulting in technical problems such as large temperature differences on the chip surface.
  • the present disclosure provides a cold plate and electronic equipment to at least solve the technical problem of large temperature differences on the chip surface in related technologies.
  • a cold plate including: a plate body with a fluid chamber formed inside the plate body, and a liquid inlet chamber and a liquid outlet chamber respectively formed on both sides of the plate body in the direction of working medium flow in the fluid chamber. , both the liquid inlet chamber and the liquid outlet chamber are connected with the fluid chamber; a plurality of fin groups are arranged in the fluid chamber at intervals along the working medium flow direction, and each fin group includes a plurality of fins arranged at intervals in the first direction.
  • the fins in two adjacent fin groups are staggered in a first direction, and the first direction is perpendicular to the working fluid flow direction; and a first liquid replenishing component, including a first main branch pipe and a first side branch connected
  • the first main branch pipe is connected with the liquid inlet chamber, and the first side branch pipe is located on one side of the fluid chamber in the first direction and is connected with the fluid chamber.
  • an electronic device including: the cold plate of the aforementioned embodiment, and electronic components installed on the board body.
  • Figure 1 is an exploded structural schematic diagram of a cold plate according to the present disclosure
  • Figure 2 is a schematic structural diagram of the plate body of the cold plate according to the present disclosure
  • Figure 3 is a schematic diagram of the axis side of the plate body of the cold plate according to the present disclosure
  • Figure 4 is a schematic structural diagram for embodying the first fluid replenishment component in the cold plate according to the present disclosure
  • Figure 5 is a partial enlarged view of part B in Figure 4.
  • Figure 6 is a partial axial side view (1) of the cold plate according to the present disclosure.
  • Figure 7 is a partial axial side view (2) of the cold plate according to the present disclosure.
  • Figure 8 is a cross-sectional view along the A-A direction in Figure 7;
  • Figure 9 is a schematic structural diagram of a cover body in a cold plate according to the present disclosure.
  • Figure 10 is a schematic axial side view of a cover body in a cold plate according to the present disclosure.
  • Second replenishing component 501. Second main branch pipe; 502. Second side branch pipe; S1, heat source area; S2, flow channel area; S3, core area.
  • micro-nano heat transfer structures are obtained on different material substrates and packaged to form micro-fluidic channels, and heat is exchanged through single-phase forced convection and flow boiling.
  • microchannels Compared with conventional channels, microchannels have the advantages of large specific surface area, high heat transfer efficiency per unit area, strong heat treatment capability, and miniaturization to meet the needs of microelectronic equipment for compact micro heat exchange equipment.
  • the boundary layer of the working medium continues to thin along the flow direction until the heat transfer deteriorates, resulting in technical problems such as large temperature differences on the chip surface, which affects the temperature uniformity of the chip surface.
  • a cold plate is provided.
  • Figure 1 is an exploded structural diagram of the cold plate according to the present disclosure
  • Figure 2 is a structural schematic diagram of the plate body 1 of the cold plate according to the present disclosure
  • Figure 3 is a structural schematic diagram of the plate body 1 according to the present disclosure.
  • the cold plate includes the plate body 1, the fin group and the first fluid replenishment component 3.
  • a fluid cavity 101 is formed inside the plate body 1.
  • a liquid inlet chamber 102 and a liquid outlet chamber 103 are respectively formed on both sides of the fluid chamber 101 in the direction of the working fluid flow.
  • the liquid inlet chamber 102 and the liquid outlet chamber 103 are both connected to the fluid chamber 101.
  • a plurality of fin groups are arranged at intervals in the fluid chamber 101 along the working fluid flow direction.
  • Each fin group includes a plurality of fins 2 arranged at intervals in the first direction.
  • Each fin 2 in two adjacent fin groups They are staggered in a first direction, and the first direction is perpendicular to the flow direction of the working fluid.
  • the first replenishing assembly 3 includes a first main branch pipe 301 and a first side branch pipe 302 that are connected.
  • the first main branch pipe 301 is connected with the liquid inlet chamber 102
  • the first side branch pipe 302 is located in the first direction of the liquid flow chamber. One side is connected with the fluid chamber 101 .
  • the boundary layer is continuously Break and increase the frequency of the disturbance cycle, thereby inhibiting the merger of bubbles in the fluid chamber 101, strengthening the turbulent heat exchange, and inhibiting core drying.
  • Liquid replenishment is performed to reduce the dryness accumulation effect in the length direction of the flow channel and achieve uniform temperature and flow, thereby solving the problem of large temperature differences on the chip surface and ensuring the uniformity of the chip surface temperature.
  • the first fluid replenishing component 3 is a cavity structure formed inside the plate body 1 .
  • the first fluid replenishment component 3 is formed on one side of the plate body 1 in the first direction. In the first direction, the first fluid replenishment component 3 and the fluid flow chamber are arranged adjacent to each other to ensure the first fluid replenishment component 3 .
  • the working medium in the side branch pipe 302 can be replenished along the first direction toward the fins 2 in the liquid flow chamber, thereby achieving the effect of uniform temperature and flow of the working medium in the flow direction of the working medium from the liquid inlet chamber 102 to the liquid outlet chamber 103 .
  • the first fluid replenishing component 3 may also be provided as an external pipeline structure connected to the plate body 1 .
  • the first main branch pipe 301 and the first side branch pipe 302 are welded or plugged into the plate body 1 to realize the communication between the first main branch pipe 301 and the liquid inlet chamber 102.
  • the first side branch pipe 302 is connected to the fluid chamber 101.
  • the pipe diameters of the first main branch pipe 301 and the first side branch pipe 302 are not limited by the thickness of the plate body 1, and the first main branch pipe 301 and the first side branch pipe 302 can also be flexibly adjusted through installation and disassembly.
  • the diameter of the side branch pipe 302 indirectly adjusts the amount of fluid replacement to meet the needs under different working conditions.
  • the axial direction of the first side branch pipe 302 is arranged parallel to the first direction, so that the fluid in the first side branch pipe 302 can impact toward the fin 2 along the first direction. , so that the fluid in the first side branch pipe 302 can be replenished vertically with the side of the fin 2, so that there is a greater flushing effect between the fluid and the side of the fin 2, improving the heat exchange capacity and reducing the heat exchange temperature rise. Ensure the flow stability and uniformity of the incoming liquid.
  • each fin 2 is evenly spaced in the first direction to facilitate processing and manufacturing of the fins 2 in the fluid chamber.
  • the cross-sectional shape of the fin 2 along the orthographic projection perpendicular to its own height direction may be rectangular, circular, rhombus or triangular, etc.
  • the shape is rectangular, and in order to ensure the heat exchange capability of the working fluid in the fluid chamber, the length direction of the rectangle is parallel to the flow direction of the working fluid, and the width direction of the rectangle is parallel to the first direction. Through this arrangement, Reduce the resistance effect of fin 2 on the working fluid.
  • the cross-sectional shape of the fluid chamber 101 along the orthographic projection perpendicular to the height direction of the fin 2 is adapted to the shape of the fin 2 , and in the orthographic projection of the fin 2
  • the shape of the orthographic projection of the fluid chamber is also rectangular, and the length direction of the fluid chamber is parallel to the flow direction of the working medium, and the width direction of the fluid chamber is parallel to the first direction.
  • the first main branch pipe 301 includes a first section and a second section that are connected. One end of the first section away from the second section is connected to the liquid inlet, and the second section is used to communicate with the first side branch.
  • the tubes 302 are connected.
  • the axis direction of the first section is parallel to the first direction
  • the axis direction of the second section is parallel to the flow direction of the working fluid.
  • a plurality of first side branch pipes 302 are arranged at intervals in the direction of flow of the working medium.
  • the arrangement of the plurality of first side branch pipes 302 solves the problem of interference of the working medium in the length direction of the fluid chamber 101 .
  • the degree is accumulated, so that when the working fluid flows to the liquid outlet chamber 103, its various properties meet the preset requirements.
  • the plurality of first side branch pipes 302 refers to the arrangement of two or more first side branch pipes 302, and the specific number of the first side branch pipes 302 is The amount and the spacing of each first side branch pipe 302 in the working fluid flow direction need to be determined by those skilled in the art based on the total length of the fluid chamber 101, the set operating dryness, and the change pattern of the heat transfer coefficient of the working fluid with dryness, etc. Selection and determination are not limited in this embodiment. As an example, for R134a medium, the distance between adjacent first side branch pipes 302 is 6-10 mm, so that the operating dryness of the medium is always less than 0.2, and the heat exchange performance is stable under the condition of sufficient fluid replenishment.
  • the diameters of the plurality of first side branch pipes 302 may be completely the same, partially the same, or completely different, and those skilled in the art may make a selection based on actual working conditions.
  • the diameters of the first side branch pipes 302 when the diameters of the first side branch pipes 302 are completely different, the diameter of each first side branch pipe 302 in the working fluid flow direction gradually increases; at this time, the first side branch pipes 302 have completely different diameters.
  • the diameter of 302 can increase regularly or change irregularly. The specific change process needs to be selected based on specific working conditions and target temperature data.
  • the fluid chamber 101 is disposed in the middle of the plate body 1 , and there are two groups of first fluid replenishment components 3 .
  • the two first fluid replenishment components 3 are symmetrically arranged on both sides of the fluid chamber 101 .
  • the two sets of first fluid replenishment components 3 are symmetrically distributed on both sides of the fluid chamber 101, and the first side branch pipes 302 in the two sets of first fluid replenishment components 3 flush the fins 2 along the first direction to achieve a symmetrical rehydration effect. Further ensure the effect of uniform temperature and flow.
  • fluid is replenished through both sides of the fluid chamber 101, so that the disturbance capability is enhanced and the heat exchange efficiency is improved.
  • the first side branch pipe 302 is connected to the fluid chamber 101 through the first liquid replenishment port 303, and the central axis of the first liquid replenishment port 303 is located between two adjacent groups of fins. gap. Through this arrangement, the fluid can be disturbed to more areas to ensure the heat exchange effect.
  • the diameter of the first liquid replenishment port 303 is greater than the length of the gap in the working fluid flow direction, and the diameter of the first liquid replenishing port 303 is smaller than the length of the fin 2 in the working fluid flow direction.
  • the diameter of the first fluid replenishing port 303 is too small, the fluid resistance will be too large; when the diameter of the first fluid replenishing port 303 is too large, the pressure difference will be too small and will not significantly affect the form of flow splitting and even temperature and flow. The effect is poor.
  • the fluid chamber 101 corresponds to a heat source area S1 and a flow channel area S2, where the heat source area S1 is an area of the fluid chamber 101 corresponding to the heat conduction part of the electronic component, That is, the effective heating area that the heating area of the electronic component can conduct.
  • the cold plate provided in this embodiment is suitable for a pump-driven two-phase liquid cooling system. It is connected in series in the secondary loop and serves as an evaporator or heat sink installed on the surface of electronic parts with higher heat flux density.
  • electronic components are installed on the lower surface of the board 1 , and the lower surface of the board 1 is also called a thermal interface.
  • the material of the thermal interface Liquid metal, thermally conductive silica gel or brazing process can be used.
  • the material of the plate body 1 can be aluminum alloy, copper or special ceramics.
  • the boundaries of the flow channel area S2 in the first direction are two edges of the fluid chamber 101, and the boundaries of the flow channel area S2 in the working fluid flow direction are two edges of the plurality of fin groups.
  • the two edges of the flow channel area S2 and the two edges of the heat source area S1 coincide with each other, or the distance between the edge of the flow channel area S2 and the adjacent edge of the heat source area S1 does not exceed the first preset size.
  • the core area S3 refers to the middle and rear portion of the heat source area S1 in the liquid flow area.
  • the core area S3 has the farthest diffusion range of the working fluid, the largest temperature gradient, and the dryness gradually increases along the direction of the working fluid flow. , the tension gradually decreases, and there will be a stronger evaporation effect, which will lead to the problem of dry spots.
  • the first preset size is 2mm.
  • the distance between the edge of the flow channel area S2 and the adjacent edge of the heat source area S1 does not exceed the second preset size, and the second preset size is 4 mm.
  • an opening is formed on the top of the fluid chamber 101, and the cold plate also includes a cover 4 for covering the opening.
  • a second fluid replenishment component 5 is formed on the cover 4, and the second fluid replenishment component 5 is formed on the cover 4.
  • the assembly 5 includes: a second main branch pipe 501 and a second side branch pipe 502.
  • the second main branch pipe 501 is used to communicate with the liquid outlet chamber 103; one end of the second side branch pipe 502 is connected with the second main branch pipe 501 cavity, and the second side branch pipe 502 is connected to the second main branch pipe 501.
  • the other end of the side branch pipe 502 is connected with the fluid chamber 101 , and the second side branch pipe 502 extends along the height direction of the fin 2 .
  • the second side branch pipe 502 flushes the fin 2 along the height direction of the fin 2 to further ensure the uniform temperature and flow of the working fluid in the fluid chamber 101 and improve the liquid phase in the middle and rear sections of the fluid chamber 101 along the flow direction of the working fluid.
  • the wettability of the working fluid maximizes the uniformity of heat dissipation of the cold plate.
  • a plurality of second side branch pipes 502 are provided at intervals along the flow direction of the working fluid.
  • the arrangement of multiple second side branch pipes 502 solves the problem of the problem that the working fluid flows in the length direction of the fluid chamber 101 .
  • the dryness on the fluid is accumulated, so that when the working fluid flows to the liquid outlet chamber 103, its various properties meet the preset requirements.
  • a plurality of second side branch pipes 502 refers to the arrangement of two or more second side branch pipes 502, and the specific number of second side branch pipes 502 and the location of each second side branch pipe 502 are The spacing in the flow direction of the working fluid needs to be selected and determined by those skilled in the art based on the total length of the fluid chamber 101, the set operating dryness, and the change pattern of the heat transfer coefficient of the working fluid with dryness. In this embodiment, this No restrictions.
  • multiple groups of second fluid replenishment components 5 are arranged at intervals.
  • the heat exchange effect is further improved by arranging multiple groups of second fluid replenishment components 5.
  • multiple groups of second fluid replenishment components 5 are arranged at intervals.
  • the two fluid replenishment components 5 refer to the quantity settings of two or more groups. In actual use, those skilled in the art need to choose and adopt an appropriate cold plate structure according to actual working conditions.
  • the second side branch pipe 502 is connected to the fluid chamber 101 through the second fluid replenishment port, and the central axis of the second fluid replenishment port is parallel to the height direction of the fin 2, so that through the second fluid replenishment port
  • the fluid flowing into the fluid chamber 101 can circulate perpendicularly to the surface of the fins 2 for rehydration, which can ensure the uniformity of flow distribution between the parallel microchannels.
  • the cover 4 and the plate 1 can be connected by brazing or stir welding, and the lower surface of the cover 4 and the wall of the fluid chamber 101 are enclosed to form a heat exchange chamber for the circulation of working fluid.
  • the fin group is installed in the heat exchange chamber to ensure the reliability of the heat exchange process.
  • the staggered arrangement of each fin 2 divides the fluid chamber into multiple micro-channels, and the distance between two adjacent fins 2 in the first direction is a channel.
  • Width W ch , height H ch of fluid chamber 101 The ratio to the channel width W ch is less than 10:1.
  • the resistance of the fluid in the fluid chamber 101 is adjusted, and at the same time, the ratio of the height H ch of the fluid chamber 101 to the channel width W ch is limited to ensure the periodicity of the disturbance, thereby determining the adaptive disturbance.
  • the resistance should be as small as possible to ensure the heat exchange effect.
  • the height of the fins 2 is less than or equal to the height of the fluid chamber 101 to ensure the reliability of the placement of the fins 2 in the fluid chamber 101 . In an exemplary embodiment, the height of the fin 2 is less than 3 mm. When the height of the fin 2 is high, the top of the fin 2 will have a weakening effect, and the temperature rise of the fluid in the fluid chamber 101 will decrease, resulting in a decrease in heat exchange efficiency.
  • the length of the fin 2 in the working fluid flow direction is 6-10 times the thickness of the fin 2 in the first direction.
  • the specific dimensions of the fins 2 are selected, where the specific dimensions include the length of the fins 2 in the working fluid flow direction, the width of the fins 2 in the first direction, The height of the fins 2 and the lateral arrangement spacing and longitudinal arrangement spacing of the staggered fins 2, etc., where the lateral arrangement spacing of the fins 2 refers to the distance between two adjacent fins 2 in the first direction. , the longitudinal arrangement spacing of fins 2 refers to the distance between adjacent fin groups. Different materials of fins 2 and different processing techniques may have different processing limits for the size of fins 2.
  • the minimum distance between two adjacent fins 2 in the first direction is about 0.4mm-0.5mm, and the thickness of the fins 2 in the first direction
  • the minimum thickness is about 0.4mm; and when the fins 2 are made of copper when prepared by CNC processing, the minimum thickness of the fins 2 in the first direction is about 0.2mm. Therefore, in order to ensure higher rib efficiency, the lateral arrangement spacing of the fins 2 is generally 3-4 times the thickness of the fins 2 in the first direction, and the longitudinal arrangement spacing of the fins 2 is generally 3-4 times the thickness of the fins 2 in the first direction. 1-2 times the thickness in one direction.
  • the distances between the fin group and the two adjacent fin groups in the working fluid flow direction are different from each other, so that the flow rate period can be adjusted during the disturbance process, thereby improving the conversion rate.
  • Thermal effects there are three fin groups.
  • Each fin group is the first group, the second group and the third group in sequence along the working fluid flow direction.
  • the distance between the first group and the second group is the first spacing.
  • the distance between the second group and the third group is the second spacing, that is, the first spacing and the second spacing have different numerical values; in an exemplary embodiment, the first spacing is greater than the second spacing.
  • each spacing value can be set for a periodic structure.
  • each fin group is the first group, the second group, the third group, the fourth group and the fifth group along the working fluid flow direction, and the third group and the fourth group are The distance between them is the third spacing, and the distance between the fourth group and the fifth group is the fourth spacing, that is, the first spacing and the second spacing have the same numerical value, and the third spacing and the fourth spacing have the same numerical value.
  • the distance between the fin groups located in the rear section of the working medium flow direction is greater than the distance between the fin groups located in the front section of the working medium flow direction.
  • five groups of fin groups are provided. That is, the values of the first spacing, the second spacing, the third spacing and the fourth spacing are all different from each other, and the third spacing value is greater than the first spacing value, and the fourth spacing value is greater than the second spacing value.
  • Scheme 1 refers to the arrangement structure in which the first fluid replenishment component 3 is formed inside the plate body 1;
  • Scheme 2 refers to the structural arrangement in which the first fluid replenishment component 3 is formed outside the plate body 1, that is, through an external pipe;
  • the thickness refers to is the thickness of the plate 1 located between the fluid chamber 101 and the electronic components;
  • the tooth thickness D d refers to the thickness of the fin 2 in the first direction;
  • the tooth height D h refers to the height of the fin 2;
  • the center distance refers to the center distance between two adjacent fins 2 in the first direction.
  • the distance between adjacent fins 2 in the first direction is Dm, so the tooth center distance is the sum of the tooth thickness and phase.
  • the sum of the distances between adjacent fins 2; the total number of fins 28 * 12 groups means that the fin groups located in the fluid chamber 101 are arranged in 12 groups at intervals along the working fluid flow direction, and each group of fin groups is There are 28 fins arranged at intervals in the first direction; the total length of the fins 2 in the working medium flow direction is the length of the flow channel area S2 in the working medium flow direction; the width of the fluid chamber 101 in the first direction is also the length of the flow channel area S2 in the first direction. Width in one direction.
  • the spacing between adjacent fin groups is arranged periodically, and the spacing distance is d1 is 0.5mm and d2 is 0.3mm, which are set sequentially along the working fluid flow direction.
  • synchronization can also be performed through corresponding expressions. verify.
  • the part between two adjacent fins 2 in the first direction and extending along the working fluid flow direction is called a microchannel, and the hydraulic diameter of the channel is calculated as follows:
  • D h is the hydraulic diameter of a single channel, the unit is m; W ch is the channel width, indicating the distance between the surfaces of two adjacent fins 2 in the first direction, the unit is m; H ch is the channel height , represents the height between the lower surface of the cover 4 and the lower surface of the fluid chamber 101, that is, the height value of the fluid chamber 101, the unit is m. Substitute W ch as 0.5mm and H ch as 2mm into the above expression to calculate D h as 0.8mm.
  • the restricted number is calculated as follows:
  • D h is the hydraulic diameter of a single channel, in m; ⁇ is the surface tension, in N/m; ⁇ l is the liquid phase density, in kg/m 3 ; ⁇ g is the gas phase density, in kg/m 3 ; g is the acceleration due to gravity, m/s 2 .
  • the working fluid R134a as an example, and take the physical parameters of the working fluid R134a at 20 degrees Celsius. It can be seen that the surface tension ⁇ is 8.6915 ⁇ 10 -3 N/m, and the liquid phase density ⁇ l is 1225.3kg/m. 3 , the gas phase density ⁇ g is 27.78kg/m 3 , and the gravity acceleration g is 9.8m/s 2 . Substituting the above parameters into expression 2, we can get the critical hydraulic diameter Dc as 1.72mm, so the above channel can be regarded as Microchannel. It should be noted that without verification of experimental data under specific structures, it is recommended to use the above-mentioned expression 1 and expression 2 as the method for determining the size of conventional two-phase working fluid microchannels.
  • the surface tension ⁇ is 8.6915 ⁇ 10 -3 N/m
  • the liquid phase density ⁇ l is 1225.3kg/m 3
  • the gas phase density ⁇ g is 27.78kg/m 3
  • the gravity acceleration g is 9.8m/s 2
  • substituting the restricted number Co as 1 into expression 2 can obtain the critical hydraulic diameter Dc as 0.86mm. It can be seen from this that when the physical temperature of R134a working fluid is 20 degrees Celsius, the single-channel hydraulic diameter D h calculated according to the aforementioned expression 1 is 0.8mm, which belongs to the microchannel.
  • the design parameters can be modified, that is, the channel width and channel height can be adjusted, and then the calculations are performed according to the previous steps, so that the single-channel hydraulic diameter within the microchannel flow scale.
  • the size of the microchannel design fin 2 corresponding to the limited number Co should be slightly larger than the upper limit of the microchannel size, the critical limited number Co, so that the lowest possible flow resistance and pump power can be obtained. Optimal.
  • the cold plate improves the problem of the boundary layer of the working fluid flowing along the working fluid flow direction being continuously thinned until the heat transfer deteriorates through the staggered arrangement of fins 2 in the fluid chamber 101.
  • This allows the working fluid to enhance turbulence, strengthen local boiling and prevent the formation of dry spots; liquid replenishment is performed from the side of the fin 2 through the first replenishment port 303, reducing the dryness accumulation effect in the length direction of the flow channel, and achieving temperature or flow compensation suppression.
  • the explosive growth of microchannel bubbles by setting the central axis of the first liquid replenishing port 303 perpendicular to the surface of the fin 2, ensuring uniform liquid flow into the fin 2; adjusting the width of the flow channel area S2 according to the width of the heat source area S1 to avoid fluid
  • the working medium in the cavity 101 is short-circuited and escapes to the ineffective area; by limiting the aspect ratio of the fins 2, the heat transfer rib efficiency and heat exchange efficiency are ensured.
  • the cold plate structure provided by the present disclosure achieves ultra-high heat dissipation capacity of 300W/ cm2 with low flow resistance, and the convection heat transfer temperature difference is less than 30K, solving the problem of highly reliable and stable heat dissipation based on the current chip structure of 22.3mm ⁇ 22.3mm.
  • the cold plate provided by the present disclosure is suitable for higher heat flux density in saturated flow boiling heat exchange scenarios.
  • the higher heat flux density refers to the scenario where micro-channel configuration strengthens heat exchange in scenarios greater than 100W/ cm2 .
  • this structure is especially suitable for the cold plate design of various gas-liquid two-phase working fluids. It is not limited to refrigerant scenarios and is applicable to other two-phase working fluids such as ammonia, and the working fluid is not limited to liquids.
  • the aforementioned working fluids can be of various types. Gas and liquid two-phase working fluid.
  • This embodiment also provides an electronic device, which includes the cold plate and electronic components of the previous embodiment, and the electronic components are installed on the board body 1 .
  • the electronic device is used to implement the above embodiments and preferred implementations, and what has been described will not be described again.
  • each fin is staggered in the first direction, thereby thinning the flow and heat exchange boundary layer, enhancing the turbulence, strengthening local boiling to prevent the formation of dry spots, and in addition, through the first side branch pipe, the flow and heat exchange boundary layers are separated from the fins.
  • Liquid replenishment is carried out on the side, so that the working fluid in the fluid chamber flows at an even temperature and reduces the dryness accumulation effect in the length direction of the flow channel, thereby solving the problem of large temperature differences on the chip surface and ensuring the uniformity of the chip surface temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本公开提供了一种冷板及电子设备,该冷板包括板体、翅片组以及第一补液组件,板体内部形成有流体腔,板体在流体腔的工质流动方向两侧分别形成有进液腔和出液腔,进液腔和出液腔均与流体腔连通,多个翅片组沿工质流动方向间隔设置于流体腔内,每个翅片组包括在第一方向上间隔布置的多个翅片,相邻两翅片组中的各翅片在第一方向上交错排布,第一方向垂直于工质流动方向,第一补液组件包括相连通的第一主支管和第一侧支管,第一主支管与进液腔连通,第一侧支管位于流体腔在第一方向的一侧,且与流体腔相连通。

Description

冷板及电子设备
相关申请的交叉引用
本公开要求享有2022年08月15日提交的名称为“冷板及电子设备”的中国专利申请CN202210977062.2的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及通信领域,具体而言,涉及一种冷板及电子设备。
背景技术
微电子芯片的高热流密度导致芯片工作温度突升,造成芯片表面存在较大的热应力,严重威胁芯片性能、稳定性和使用寿命。通过采用微纳加工技术在不同材料基底上得到微纳传热结构并封装形成微流道,通过单相强制对流和流动沸腾进行换热。
然而在微通道内,工质沿着流动方向边界层不断减薄直至传热恶化,导致芯片表面存在较大温差的技术问题。
发明内容
本公开提供了一种冷板及电子设备,以至少解决相关技术中芯片表面存在较大温差的技术问题。
根据本公开的一个实施例,提供了一种冷板,包括:板体,其内部形成有流体腔,板体在流体腔内工质流动方向的两侧分别形成有进液腔和出液腔,进液腔和出液腔均与流体腔连通;多个翅片组,沿工质流动方向间隔设置于流体腔内,每个翅片组包括在第一方向上间隔布置的多个翅片,相邻两翅片组中的各翅片在第一方向上交错排布,第一方向垂直于工质流动方向;以及第一补液组件,包括相连通的第一主支管和第一侧支管,第一主支管与进液腔连通,第一侧支管位于流体腔在第一方向的一侧,且与流体腔相连通。
根据本公开的另一个实施例,提供了一种电子设备,包括:前述实施例冷板,以及电子件,安装于板体上。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开的冷板的爆炸结构示意图;
图2是根据本公开的冷板中板体的结构示意图;
图3是根据本公开的冷板中板体的轴侧示意图;
图4是根据本公开的冷板中用于体现第一补液组件的结构示意图;
图5是图4中B部分的局部放大图;
图6是根据本公开的冷板的局部轴侧示意图(一);
图7是根据本公开的冷板的局部轴侧示意图(二);
图8是图7中A-A方向的剖视图;
图9是根据本公开的冷板中盖体的结构示意图;
图10是根据本公开的冷板中盖体的轴侧示意图。
附图说明:
1、板体;101、流体腔;102、进液腔;103、出液腔;翅片;3、第一补液组件;301、第一主支管;302、第一侧支管;303、第一补液口;4、盖体;5、第二补液组件;501、第二主支管;502、第二侧支管;S1、热源区域;S2、流道区域;S3、核心区域。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
微电子芯片的高热流密度导致芯片工作温度突升,造成芯片表面存在较大的热应力,严重威胁芯片性能、稳定性和使用寿命。通过采用微纳加工技术在不同材料基底上得到微纳传热结构并封装形成微流道,通过单相强制对流和流动沸腾进行换热。与常规通道相比,微通道具有比表面积大、单位面积换热效率高、热处理能力强和微型化等优点满足微电子设备对紧凑微型换热设备的需求。
然而在微通道内,工质沿着流动方向边界层不断减薄直至传热恶化,导致芯片表面存在较大温差的技术问题,影响芯片表面温度均匀性。
实施例1
在本实施例中提供了一种冷板,图1是根据本公开的冷板的爆炸结构示意图;图2是根据本公开的冷板中板体1的结构示意图,图3是根据本公开的冷板中板体1的轴侧示意图,如图1-图3所示,冷板包括板体1、翅片组以及第一补液组件3,板体1的内部形成有流体腔101,板体1在流体腔101内工质流动方向的两侧分别形成有进液腔102和出液腔103,进液腔102和出液腔103均与流体腔101连通。多个翅片组沿工质流动方向间隔设置于流体腔101内,每个翅片组包括在第一方向上间隔布置的多个翅片2,相邻两翅片组中的各翅片2在第一方向上交错排布,第一方向垂直于工质流动方向。第一补液组件3包括相连通的第一主支管301和第一侧支管302,第一主支管301与进液腔102连通,第一侧支管302位于流液腔在第一方向上的一侧,且与流体腔101相连通。
通过将各翅片2交错排布使得工质在流体腔101内的流动过程中,边界层不断被 打破,增加扰动周期的频率,从而抑制流体腔101内气泡合并、强化扰流换热、抑制核心干涸,此外结合第一补液组件3的设置,通过第一侧支管302从翅片2的侧面进行补液,减小流道长度方向上的干度累积效应,实现均温均流,进而解决了芯片表面存在较大温差的问题,保障芯片表面温度的均匀性。
结合图4,在一些实施例中,第一补液组件3为形成于板体1内部的腔体结构设置。在一示例性实施例中,第一补液组件3形成于板体1在第一方向上的一侧,在第一方向上,第一补液组件3和流液腔相邻设置,以保障第一侧支管302中的工质可以沿第一方向朝向流液腔内的翅片2补液,实现工质从进液腔102到出液腔103的工质流动方向上的均温均流的效果。
在一示例性实施例中,第一补液组件3还可以为与板体1相连接的外接管路结构设置。在一示例性实施例中,第一主支管301和第一侧支管302焊接或插接于板体1上,以实现第一主支管301与进液腔102的连通,第一侧支管302与流体腔101的连通。在这种设置情况下,第一主支管301和第一侧支管302的管径可以不受板体1的厚度所限制,还可以通过安装和拆卸灵活地调整第一主支管301和第一侧支管302的管径大小,间接调节补液量的大小,以满足不同工况下的需求。
参照图2-图4,在一些实施例中,第一侧支管302的轴线方向与第一方向平行设置,以使第一侧支管302中的流体可以沿第一方向朝向翅片2冲击,以使得第一侧支管302中的流体可以与翅片2的侧面垂直补液,使得流体和翅片2的侧面之间有更大的冲刷作用,提升换热能力,降低换热温升,保证进液流动稳定性和进液均匀性。
在一些实施例中,各翅片2在第一方向上均匀间隔分布,以便于翅片2在流液腔中的加工制造。此外,翅片2沿垂直于其自身高度方向的正投影的截面形状可以为矩形、圆形、菱形或三角形等。在本公开中,形状采用矩形,且为了保证流液腔中工质的换热能力,矩形的长度方向与工质流动方向平行,矩形的宽度方向与第一方向平行,通过这种设置方式以减小翅片2对工质的阻力影响。
参照图2和图3,在一示例性实施例中,流体腔101沿垂直于翅片2高度方向的正投影的截面形状与翅片2的形状相适配,在翅片2的正投影的形状为矩形时,流液腔的正投影的形状同样采用矩形,且流液腔的长度方向为与工质流动方向相平行的方向,流液腔的宽度方向为与第一方向相平行的方向。
在一示例性实施例中,第一主支管301包括相连通的第一段和第二段,第一段远离第二段的一端与进液口连通,第二段用于与第一侧支管302连通,为保障第一补液组件3的补液路径流通便捷,第一段的轴线方向与第一方向相平行,第二段的轴线方向与工质流动方向相平行设置。
在一示例性实施例中,第一侧支管302在工质流动方向上间隔设置有多个,通过多个第一侧支管302的设置从而解决工质在流体腔101长度方向上的干度累积,以使得工质流动至出液腔103时其各项性能满足预设要求。需要说明的是,多个第一侧支管302中的多个指的是两个及两个以上的设置情况,而第一侧支管302具体的设置数 量以及各第一侧支管302在工质流动方向上的间距需要本领域技术人员根据流体腔101的总长度、设定运行干度情况以及工质随干度的换热系数变化规律等进行选择和判定,本实施例中对此不作限制。作为示例,对于R134a介质,相邻第一侧支管302之间的距离为6-10mm,使得介质的运行干度始终低于0.2以内,且补液充分的条件下换热性能稳定。同样地,多个第一侧支管302的直径可以完全相同、部分相同或完全不同,本领域技术人员可根据实际工况进行选择。在一示例性实施例中,在各第一侧支管302的直径完全不同的情况下,各第一侧支管302在工质流动方向上的直径逐渐增大;此时第一侧支管302的直径可以为规律性增加或者是不规律性的变化,具体变化过程还需要结合具体工况以及目标温度等数据进行选择。
在一示例性实施例中,流体腔101设置于板体1的中部位置,第一补液组件3设置有两组,两第一补液组件3对称设置于流体腔101的两侧。通过两组第一补液组件3对称分布在流体腔101的两侧,并通过两组第一补液组件3中的第一侧支管302沿着第一方向冲刷翅片2,实现对称补液效果,进一步保证均温均流的效果。与此同时,通过流体腔101两侧进行补液,使得扰动能力增强,换热效率提升。
参照图3-图4,在一些实施例中,第一侧支管302通过第一补液口303与流体腔101连通,第一补液口303的中轴线位于相邻两组翅片组之间的间隙。通过这种设置,使得流体可以扰动到更多的区域,以保障换热效果。
在一示例性实施例中,第一补液口303的直径大于在工质流动方向上间隙的长度,第一补液口303的直径小于在工质流动方向上翅片2的长度。在第一补液口303的直径过小时,导致流体的阻力过大;而当第一补液口303的直径过大时,导致压差过小,不能显著的影响到分流的形式,均温均流的效果较差。
参照图1-图4,在一些实施例中,流体腔101内对应有热源区域S1和流道区域S2,其中,热源区域S1为流体腔101用于与电子件的发热传导部分对应的区域,也就是电子件的发热区域能够传导的有效发热面积。本实施例中所提供的冷板适用于泵驱两相液冷系统,其串联在二次回路中,作为蒸发器或热沉安装于较高热流密度的电子件表面。在一示例性实施例中,电子件安装于板体1的下表面,板体1的下表面同样称之为热介面,在一示例性实施例中,为了保障换热效果,热介面的材料可以采用液态金属、导热硅胶或者钎焊工艺等。同样地,板体1的材质可以为铝合金、紫铜或者特种陶瓷等。
流道区域S2在第一方向上的边界为流体腔101的两边缘,流道区域S2在工质流动方向上的边界为多个翅片组的两边缘。在第一方向上,流道区域S2的两边缘和热源区域S1的两边缘均重合,或者流道区域S2的边缘与热源区域S1的相邻边缘之间的距离不超过第一预设尺寸。通过这种设置形式,保证热源区域S1的整个区域处于流动沸腾换热状态,避免工质在流动过程中发生不换热的情况,造成流动的损失。当在第一方向上流道区域S2的长度远大于热源区域S1的长度时,翅片2上存在无效流动区域,有效流动流量降低,换热效率降低,并且在第一方向中部对应的热源区域S1存在阻力,会将位于中部的工质沿第一方向的两侧进行排斥,使得流量分散到两边缘,会 引起非均匀热源散热的问题,造成核心区域S3出现干斑,沸腾传热出现恶化的情况。
需要说明的是,核心区域S3指的是热源区域S1在液流区域的中后段部分,核心区域S3工质的扩散范围最远,温度梯度最大,并沿着工质流动方向干度逐渐增加,张力逐渐降低,会有更强的蒸发效果从而导致干斑的问题发生。在本公开中,通过限制在第一方向上流道区域S2边缘与热源区域S1边缘之间的距离,有效避免上述问题的发生,可以避免工质短路向无效区逸散的情况,解决沸腾传热的问题。在一示例性实施例中,第一预设尺寸为2mm。
在一示例性实施例中,在工质流动方向上,流道区域S2的边缘与热源区域S1的相邻边缘之间的距离不超过第二预设尺寸,第二预设尺寸为4mm。
参照图6-图9,在一些实施例中,流体腔101的顶部形成有开口,冷板还包括用于覆盖开口的盖体4,盖体4上形成有第二补液组件5,第二补液组件5包括:第二主支管501和第二侧支管502,第二主支管501用于与出液腔103连通;第二侧支管502的一端与第二主支管501腔连通,第二侧支管502的另一端与流体腔101连通,第二侧支管502沿翅片2的高度方向延伸设置。第二侧支管502沿翅片2的高度方向冲刷翅片2,以进一步保障工质在流体腔101内的均温均流,提高流体腔101内沿工质流动方向的中后段液相工质的浸润性,最大程度提升冷板散热的均匀性。
结合图10,在一示例性实施例中,第二侧支管502沿工质流动方向间隔设置有多个,通过多个第二侧支管502的设置从而解决工质在流体腔101长度方向上的干度累积,以使得工质流动至出液腔103时其各项性能满足预设要求。需要说明的是,多个第二侧支管502中的多个指的是两个及两个以上的设置情况,而第二侧支管502具体的设置数量以及各第二侧支管502在工质流动方向上的间距需要本领域技术人员根据流体腔101的总长度、设定运行干度情况以及工质随干度的换热系数变化规律等进行选择和判定,本实施例中对此不作限制。
在一示例性实施例中,在第一方向上,第二补液组件5间隔设置有多组,通过多组第二补液组件5的设置进一步提升换热效果,同样需要说明的是,多组第二补液组件5指的是两组或两组以上的数量设置。在实际使用中,本领域技术人员需要根据实际工况需求从而选择采用适应的冷板结构。
在一示例性实施例中,第二侧支管502通过第二补液口与流体腔101相连通,第二补液口的中轴线与翅片2的高度方向相平行,以使得经由第二补液口流通至流体腔101内的流体可以垂直翅片2表面流通以进行补液,可以保证各并联微通道之间的流量分配的均匀性。
在一示例性实施例中,盖体4与板体1可以通过钎焊或搅拌焊接相连接,盖体4的下表面与流体腔101的壁面合围形成用于工质流通的换热腔室,翅片组设置于换热腔室内,以保证换热过程的可靠性。
参照图6-图8,在一些实施例中,各翅片2的交错排布将流液腔分隔成多个微通道,在第一方向上相邻两翅片2之间的距离为槽道宽度Wch,流体腔101的高度Hch 与槽道宽度Wch之间的比值小于10:1。通过调整槽道宽度Wch以调节流体在流体腔101内的阻力大小,同时限制流体腔101的高度Hch与槽道宽度Wch的比值以保障扰动周期性的问题,从而确定在适应的扰动效果的情况下,阻力尽量小,保障换热效果。
在一示例性实施例中,翅片2高度小于或等于流体腔101的高度,以保障翅片2在流体腔101内布置的可靠性。在一示例性实施例中,翅片2的高度小于3mm,翅片2的高度较高时,翅片2顶部会有减弱效果,流体腔101内流体的温升下降,导致换热效率降低。
结合图5,在一示例性实施例中,翅片2在工质流动方向上的长度为翅片2在第一方向上厚度的6-10倍。当翅片2在工质流动方向上的长度过长时,会使得流体的扰动效果达不到预期,不能很好的剥离边界;而当翅片2在工质流动方向上的长度过小时,会导致阻力过大,温升升高,压降增加。
参照图5-图8,在一示例性实施例中,翅片2的具体尺寸的选择,其中具体尺寸包括翅片2在工质流动方向的长度、翅片2在第一方向的宽度、翅片2的高度以及交错布置的翅片2的横向排布间距和纵向排布间距等,其中,翅片2的横向排布间距是指在第一方向上相邻两翅片2之间的距离,翅片2的纵向排布间距是指相邻翅片组之间的距离,对于翅片2的不同材质以及不同的加工工艺可能会有不同的翅片2尺寸的加工极限。例如,在翅片2为铝合金材质并采用数控加工时,在第一方向上相邻两翅片2之间的最小距离约为0.4mm-0.5mm,翅片2在第一方向上的厚度最小约为0.4mm;而在采用数控加工制备时翅片2采用紫铜材质时,翅片2在第一方向上的厚度最小约为0.2mm。因此,为了保证较高的肋效率,翅片2的横向排布间距一般采用翅片2在第一方向上厚度的3-4倍,翅片2的纵向排布间距一般采用翅片2在第一方向上厚度的1-2倍。
结合图3,在一些实施例中,翅片组与在工质流动方向上与其相邻的两个翅片组之间的距离互不相同,使得在扰动过程中可以调整流速周期,进而提升换热效果。作为示例,翅片组设置有三组,各翅片组沿工质流动方向依次为第一组、第二组和第三组,第一组和第二组之间的距离为第一间距,第二组和第三组之间的距离为第二间距,即第一间距与第二间距的数值不等;在一示例性实施例中,第一间距大于第二间距。在翅片组设置有大于三组的时候,各间距值可以为周期性的结构设置。即当翅片组设置有五组时,各翅片组沿工质流动方向依次为第一组、第二组、第三组、第四组和第五组,第三组和第四组之间的距离为第三间距,第四组和第五组之间的距离为第四间距,即第一间距与第二间距的数值相同,第三间距与第四间距的数值相同。
在一示例性实施例中,位于工质流动方向后段的翅片组之间的距离大于位于工质流动方向前段的翅片组之间的距离,作为示例,翅片组设置有五组,即第一间距、第二间距、第三间距以及第四间距的数值均互不相同,且第三间距值大于第一间距值,第四间距值大于第二间距值。由于工质在流体腔101中随工质流动方向的流动其流速会越来越高,随着流速的增加,使得位于后段的工质的扰动频率升高,扰动频次随工质的流动而不一样的情况使得后段的扰动是变化的,是增长的,因此需要调节相邻翅 片组之间的距离,调整流速周期,保障换热效率。
为了比较第一补液组件3的两种不同设置情况下的换热情况以及本公开所提供的结构下的换热效果,采用如表1中所提供的冷板的各项尺寸参数进行实验验证。
表1冷板相关结构尺寸
其中,方案1指的是第一补液组件3形成于板体1内部的设置结构;方案2指的是第一补液组件3形成于板体1外部,即通过外接管路的结构设置;厚度指的是位于流体腔101与电子件之间的板体1的厚度;齿厚Dd指的是翅片2在第一方向上的厚度;齿高Dh指的是翅片2的高度;齿中心距指的是在第一方向上相邻的两个翅片2之间的中心距,在第一方向上相邻翅片2之间的距离为Dm,故齿中心距为齿厚和相邻翅片2之间的距离的加和;总翅片数28片*12组指的是位于流体腔101内的翅片组沿工质流动方向间隔设置有12组,每组翅片组在第一方向上间隔设置有28片;工质流动方向翅片2的总长度也就是流道区域S2在工质流动方向上的长度;第一方向流体腔101宽度也就是流道区域S2在第一方向上的宽度。此外,相邻翅片组之间的间距为周期性排列,且间隔距离为沿工质流动方向依次设置的d1为0.5mm和d2为0.3mm。
由此,在流体腔101、翅片组以及电子件的热源区域S1不变的情况下,分别对如方案1和方案2所提的两种不同形式的第一补液组件3的结构进行实验验证,以流体腔101内流动的工质为R134a,热源总功耗设计为1500W为例,得到如下实验数据:运行条件为干度0.2,对应质量流率1590kg/(m2s)。并且方案1和方案2所得到的实验数据结果基本一致,由此可知,冷板在进行结构设计时,第一补液组件3的设置形式不会较大影响换热效果,因此本领域技术人员可以根据不同工况选择更适宜的连接方式。此外,通过上述实验数据还可以知道,在前述对翅片2的尺寸构造的限制条件下,可以得到相对较好的运行条件干度,可以满足较高热流密度场景下的强化换热需求,实现低流阻的高散热能力。
参照图3和图6,在一些实施例中,在确定翅片2的相应尺寸后,为保障冷板的换热性能,除了通过具体实验进行性能验证之外,还可以通过相应表达式进行同步验证。以在第一方向上相邻两翅片2之间的部分且沿工质流动方向延伸的部分称之为微通道,而通道的水力直径计算如下:
式中,Dh为单通道水力直径,单位为m;Wch为槽道宽度,表示在第一方向上相邻两翅片2表面之间的距离,单位为m;Hch为槽道高度,表示盖体4下表面与流体腔101下表面之间的高度,也就是流体腔101的高度值,单位为m。以Wch为0.5mm,Hch为2mm代入上述表达式中计算得到Dh为0.8mm。
然而,微通道与宏观通道的区分限制是以特征数-受限数Co作为判定的,受限数的计算方式如下:
式中,Dh为单通道水力直径,单位m;σ为表面张力,单位N/m;ρl为液相密度,单位kg/m3;ρg为气相密度,单位kg/m3;g为重力加速度,m/s2。其中,受限数Co的判断标准定义为:在Co大于0.5时,流动状态为受限流;在Co小于等于0.5时,流动状态为宏观流动。由此可见,在Co为0.5时是流动状态介于宏观流动和受限流动的转折点,因此可以将Co为0.5代入表达式2中进行所计算出来的单通道水力直径Dh也被定义为临界水力直径Dc。
作为示例,以工质为R134a为例,取工质R134a在20摄氏度下的物性参数,由此可知,表面张力σ为8.6915×10-3N/m,液相密度ρl为1225.3kg/m3,气相密度ρg为27.78kg/m3,重力加速度g为9.8m/s2,将上述各项参数代入至表达式2中可以得到临界水力直径Dc为1.72mm,因此上述通道可以视为微通道。需要说明的是,在未进行具体结构下的实验数据验证情况下,建议以前述表达式1和表达式2作为常规两相工质微通道尺度判定的方法。
此外,针对不同的工质在通道内流动沸腾的流型图分析可知,例如,R134a、R236fa和R245fa工质的常规通道与过度区流的转变发生在受限数Co为0.3-0.4;微通道流与过渡区流的转变发生在受限数Co约为1时,因此针对前述各工质而言,受限数Co在0.3-0.4~1时为过渡区流,因此前述各工质应按照受限数Co为1时作为计算微通道尺度的方法。以工质为R134a为例,取工质R134a在20摄氏度下的物性参数,表面张力σ为8.6915×10-3N/m,液相密度ρl为1225.3kg/m3,气相密度ρg为27.78kg/m3,重力加速度g为9.8m/s2,将受限数Co为1代入至表达式2中可以得到临界水力直径Dc为0.86mm。由此可知,R134a工质,物性温度为20摄氏度时,按照前述表达式1计算所得的单通道水力直径Dh为0.8mm的通道属于微通道。如果经过计算所得到的单通道水力直径不属于微通道尺度时,可以通过修正设计参数,即对槽道宽度和槽道高度进行调整,再接着按照前述步骤依次进行计算,以使单通道水力直径处微通道流动尺度内。
需要说明的是,受限数Co越大微通道尺度越小,而受限数Co越小微通道尺度就越大。在保证散热能力的前提下,微通道设计翅片2的尺寸对应受限数Co应可能选取略大于微通道尺度上限值临界受限数Co,这样可以获得尽可能最低的流阻且泵功最优。
综上所述,本公开所提供的冷板通过在流体腔101内交错排布的翅片2,改善了工质沿着工质流动方向流动的边界层不断减薄直至传热恶化的问题,使得工质可以增强扰流,强化局部沸腾防止干斑形成;通过第一补液口303从翅片2的侧向进行补液,减少流道长度方向上的干度累积效应,达到温度或流量补偿抑制微通道气泡的爆炸性生长;通过将第一补液口303的中轴线垂直翅片2表面设置,保障翅片2的均流进液;根据热源区域S1的宽度调整流道区域S2的宽度,避免流体腔101内的工质短路向无效区逸散;通过限制翅片2的高宽比,保证传热肋效率以及换热效率。由此可知,本公开所提供的冷板结构,实现低流阻300W/cm2超高散热能力,对流换热温差低于30K,解决基于当前芯片结构22.3mm×22.3mm的高可靠稳定散热。
由此可知,本公开所提供的冷板适用于饱和流动沸腾换热场景下针对较高热流密度,较高热流密度指的是大于100W/cm2场景的微通道构型强化换热的需求场合,适用于热源沿着工质流动方向狭长布置的情况,适用于对评价数据中心能源效率的指标或噪声指标有明显苛刻要求的场景。此外,本结构尤其适用于各类气液两相工质的冷板设计,不仅局限于冷媒类场景其他两相工质如氨均适用,且工质不限于液体,前文工质可以为各类气、液两相工质。
实施例2
在本实施例中还提供了一种电子设备,该电子设备包括前所实施例冷板以及电子件,电子件安装于板体1上。该电子设备用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。
通过本公开,通过各翅片在第一方向上交错排布,从而减薄流动、换热边界层,增强扰流,强化局部沸腾防止干斑形成,此外通过第一侧支管从翅片的侧面进行补液,使得流体腔内的工质流动均温均流,减小流道长度方向上的干度累积效应,进而解决了芯片表面存在较大温差的问题,保障芯片表面温度的均匀性。通过本公开,可以强化扰流换热、抑制核心干涸,减少流道长度方向上的干度累积效应,保障进液流动稳定性和进液均匀性,实现高散热能力。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 一种冷板,包括:
    板体,其内部形成有流体腔,所述板体在所述流体腔内工质流动方向的两侧分别形成有进液腔和出液腔,所述进液腔和所述出液腔均与所述流体腔连通;
    多个翅片组,沿所述工质流动方向间隔设置于所述流体腔内,每个所述翅片组包括在第一方向上间隔布置的多个翅片,相邻两所述翅片组中的各所述翅片在所述第一方向上交错排布,所述第一方向垂直于所述工质流动方向;以及
    第一补液组件,包括相连通的第一主支管和第一侧支管,所述第一主支管与所述进液腔连通,所述第一侧支管位于所述流体腔在所述第一方向的一侧,且与所述流体腔相连通。
  2. 根据权利要求1所述的冷板,其中,所述第一侧支管的轴线方向与所述第一方向平行设置。
  3. 根据权利要求1所述的冷板,其中,所述流体腔设置于所述板体的中部位置,所述第一补液组件设置有两组,两所述第一补液组件对称设置于所述流体腔的两侧。
  4. 根据权利要求1-3任一项所述的冷板,其中,所述第一侧支管通过第一补液口与所述流体腔连通,所述第一补液口的中轴线位于相邻两组所述翅片组之间的间隙。
  5. 根据权利要求4所述的冷板,其中,所述第一补液口的直径大于在所述工质流动方向上所述间隙的长度,所述第一补液口的直径小于在所述工质流动方向上所述翅片的长度。
  6. 根据权利要求1所述的冷板,其中,所述流体腔内对应有:
    热源区域,所述热源区域为所述流体腔用于与电子件的发热传导部分对应的区域;以及
    流道区域,所述流道区域在所述第一方向上的边界为所述流体腔的两边缘,所述流道区域在所述工质流动方向上的边界为多个所述翅片组的两边缘;
    在所述第一方向上,所述流道区域的两边缘和所述热源区域的两边缘均重合,或者所述流道区域的边缘与所述热源区域的相邻边缘之间的距离不超过第一预设尺寸。
  7. 根据权利要求6所述的冷板,其中,所述第一预设尺寸为2mm。
  8. 根据权利要求1所述的冷板,其中,所述板体包括形成所述流体腔的腔体以及盖合于所述腔体的盖体,所述盖体上形成有第二补液组件,所述第二补液组件包括:
    第二主支管,用于与所述出液腔连通;以及
    第二侧支管,其一端与所述第二主支管腔连通,其另一端与所述流体腔连通,所述第二侧支管沿所述翅片的高度方向延伸设置。
  9. 根据权利要求1所述的冷板,其中,各所述翅片在所述第一方向上等间距设置,在所述第一方向上相邻两所述翅片之间的距离为槽道宽度,所述流体腔的高度与所述槽道宽度之间的比值小于10:1。
  10. 根据权利要求5-9中任一项所述的冷板,其中,所述翅片的高度小于3mm。
  11. 一种电子设备,包括:
    如权利要求1-10任一项所述的冷板,以及
    电子件,安装于所述板体上。
PCT/CN2023/080067 2022-08-15 2023-03-07 冷板及电子设备 WO2024036923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210977062.2 2022-08-15
CN202210977062.2A CN117438385A (zh) 2022-08-15 2022-08-15 冷板及电子设备

Publications (1)

Publication Number Publication Date
WO2024036923A1 true WO2024036923A1 (zh) 2024-02-22

Family

ID=89557145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080067 WO2024036923A1 (zh) 2022-08-15 2023-03-07 冷板及电子设备

Country Status (2)

Country Link
CN (1) CN117438385A (zh)
WO (1) WO2024036923A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776652A (zh) * 2015-04-21 2015-07-15 苏州昆图热控系统有限公司 冷凝器
US20190212076A1 (en) * 2018-01-11 2019-07-11 Asia Vital Components Co., Ltd. Multi-outlet-inlet liquid-cooling heat dissipation structure
CN113840516A (zh) * 2021-09-03 2021-12-24 南昌华勤电子科技有限公司 一种液冷冷板及板级液冷系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776652A (zh) * 2015-04-21 2015-07-15 苏州昆图热控系统有限公司 冷凝器
US20190212076A1 (en) * 2018-01-11 2019-07-11 Asia Vital Components Co., Ltd. Multi-outlet-inlet liquid-cooling heat dissipation structure
CN113840516A (zh) * 2021-09-03 2021-12-24 南昌华勤电子科技有限公司 一种液冷冷板及板级液冷系统

Also Published As

Publication number Publication date
CN117438385A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
CN108444324A (zh) 一种均热板
US20090145581A1 (en) Non-linear fin heat sink
CN110779373B (zh) 一种水冷管板式换热器
CN208779995U (zh) 一种均热板
CN113811149B (zh) 一种用于高功率igbt模块热管理的两相微通道散热装置
WO2023160109A1 (zh) 一种散热装置和电子设备
CN113468463B (zh) 一种两相冷板的参数计算方法
CN216818326U (zh) 大功率芯片高效散热冷却装置
CN106895728A (zh) 一种卧式变径串、并联槽道板式脉动热管
WO2024036923A1 (zh) 冷板及电子设备
WO2024060347A1 (zh) 板式换热器
CN206847442U (zh) 一种变径串、并联槽道板式脉动热管
CN114664768A (zh) 一种针鳍与肋板组合式微通道散热器
CN110793370B (zh) 一种水冷管板式换热器的设计方法
CN112071813A (zh) 一种集成电路芯片散热结构
CN214676301U (zh) 具有独立多孔并列减缩入水孔设计的均温板散热器
CN212380414U (zh) 一种集成电路芯片散热结构
CN110779371A (zh) 一种流体进出口优化分布的水冷管板式换热器
CN111356340A (zh) 一种高热通量冲击冷却式超临界二氧化碳散热器
CN114111099B (zh) 逆流连通微通道蒸发器装置
CN110779372B (zh) 一种圆柱肋片间距变化的水冷管板式换热器
CN214676302U (zh) 具有渐缩入水孔设计的均温板散热器
CN106931815A (zh) 一种变径串、并联槽道板式脉动热管
CN118317581A (zh) 一种相变冷板
CN218627901U (zh) 单面高热流换热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853840

Country of ref document: EP

Kind code of ref document: A1