WO2024036784A1 - 一种眼部参数评估装置 - Google Patents

一种眼部参数评估装置 Download PDF

Info

Publication number
WO2024036784A1
WO2024036784A1 PCT/CN2022/132091 CN2022132091W WO2024036784A1 WO 2024036784 A1 WO2024036784 A1 WO 2024036784A1 CN 2022132091 W CN2022132091 W CN 2022132091W WO 2024036784 A1 WO2024036784 A1 WO 2024036784A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
measurement
light source
eyeball
evaluation device
Prior art date
Application number
PCT/CN2022/132091
Other languages
English (en)
French (fr)
Inventor
田超楠
杜东
贺中春
Original Assignee
上海佰翊医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海佰翊医疗科技有限公司 filed Critical 上海佰翊医疗科技有限公司
Publication of WO2024036784A1 publication Critical patent/WO2024036784A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/145Arrangements specially adapted for eye photography by video means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0033Operational features thereof characterised by user input arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0075Apparatus for testing the eyes; Instruments for examining the eyes provided with adjusting devices, e.g. operated by control lever
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0083Apparatus for testing the eyes; Instruments for examining the eyes provided with means for patient positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1005Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring distances inside the eye, e.g. thickness of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement

Definitions

  • the invention relates to the technical field of measuring instruments, and in particular to an eye parameter evaluation device.
  • the present invention provides an eye parameter evaluation device to solve at least one problem in the related art.
  • an eye parameter evaluation device including:
  • a measurement unit and a human-computer interaction unit, the measurement unit and the human-computer interaction unit are both arranged on the base;
  • the measurement unit includes at least one shooting module, at least one eye corner card point and a light source module, wherein,
  • the photography module is used to collect eye data
  • the human-computer interaction unit adjusts the position of the corner of the eye stuck point so that the corner of the eye stuck point locates the outer canthus point of the eye; the described corner of the eye stuck point is connected to a tilted reflector, so that the shooting module collects images of the eye through the reflector side virtual image;
  • the light source module includes several discretely distributed light bars and near-infrared light sources; the near-infrared light sources selectively cooperate with the light bars to assist the work of the shooting module;
  • the lighting sequence of the light strips is sequentially controlled to illuminate the strip light sources at different positions on the surface of the eyeball, and the shooting module is synchronously controlled to collect the eye virtual image video stream in the reflector; human-computer interaction unit
  • the image frame corresponding to the reflected light with the longest visible light beam appearing on the eyeball in the virtual image video stream is intercepted, and the eyeball protrusion value is obtained by analyzing the data of the intercepted image frame.
  • the evaluation device further includes a control unit, which obtains instructions received by the human-computer interaction unit to control the movement of the corner of the eye stuck point so that the corner of the eye stuck point contacts the lateral canthus point of the eye. Depends on positioning.
  • the light bar and the near-infrared light source are both electrically connected to the control unit, wherein,
  • the near-infrared light source selectively cooperates with the light bar including: the control unit controls the light bar to start in a predetermined sequence according to different measurement modes, or controls the near-infrared light source to start; or controls the light bar to start in a predetermined order and controls The near-infrared light source is activated.
  • the photographing module is electrically connected to the control unit, wherein,
  • control unit controls the shooting module to collect the video stream of the eyeball in the reflector according to the different measurement modes; or controls the shooting module to collect the first eye position map and the second eye position of the eyeball. image or third eye bitmap; or control the shooting module to collect the video stream of eyeball rotation status.
  • the measurement mode is at least one of an eyeball proptosis measurement mode, an eyeball mobility measurement mode, an eye fissure width measurement mode, or a conjunctival congestion measurement mode.
  • the wavelength of the near-infrared light source is 700-1200 nm.
  • the evaluation device further includes a forehead rest and a chin rest, wherein,
  • the forehead rest is connected to the horizontal moving platform, and the control unit is electrically connected to the horizontal moving platform to adjust the front and rear position of the forehead rest;
  • the jaw rest is connected to the vertical moving platform, and the control unit is electrically connected to the vertical moving platform to adjust the up and down position of the jaw rest.
  • the number of the corner of the eye card points and the number of reflectors is two, and they are respectively distributed on the left and right sides of the measurement unit; the mirrors are tilted at the corner of the eye card points to reflect the A virtual image corresponding to the eyeball is formed in the mirror.
  • the photographing module includes two area array cameras arranged on the left and right; and/or the number of near-infrared lamps is two and is distributed on both sides of the measurement unit.
  • the base is provided with a card slot; and/or multiple types of communication interfaces.
  • the shooting module is used to collect eye data; the human-computer interaction unit adjusts the position of the eye corner stuck point to make the eye corner stuck point Locate the outer canthus point of the eye; the eye corner stuck point is connected to an inclined reflector; the near-infrared light source selectively cooperates with the light bar to assist the shooting module; making the equipment in one embodiment easy to operate , after completing the positioning of the lateral canthus point, it only needs to take a video or picture to complete the measurement, and combine it with image recognition to obtain the eye parameters, which greatly improves the measurement efficiency and the accuracy of data measurement.
  • the evaluation device of the present invention can provide rich light field conditions to meet the measurement of multiple parameters, so that the evaluation device can be applied to multiple measurement modes at low cost to obtain rich measurement data.
  • the combination of the near-infrared light source and the light bar produces a clear image of the eye contour reflecting light in the reflector, allowing the shooting module to collect a clear video stream of protrusion, improve the quality of the data source for image processing, and obtain accurate eyeballs.
  • Protrusion measurement value when the device of the present invention is used in an eye examination instrument, the measurement data accuracy is high, the measurement results are stable, and the data measurement no longer relies on the user's experience.
  • the boundaries of the sclera, iris, and pupil can be well distinguished, which can better improve the accuracy and stability of the algorithm. Therefore, using a near-infrared light source with a wavelength of 700-1200nm can significantly improve the measurement accuracy of exophthalmos, eye movement, or eye fissure width.
  • the forehead rest is connected to the horizontal moving platform, and the control unit is electrically connected to the horizontal moving platform to adjust the front and back position of the forehead rest;
  • the jaw rest is connected to the vertical moving platform, and the control unit
  • the unit is electrically connected to the vertical moving platform to adjust the up and down position of the chin rest; at the same time, the adjustment structure combined with the canthus of the eye can first roughly adjust the positioning of the canthus of the eye, and then fine-tune its positioning. Through the above two-step adjustment process, the appearance can be improved. The positioning efficiency and positioning accuracy of the canthus point.
  • An area array camera is used to improve the clarity and accuracy of the captured two-dimensional images and provide an accurate data source for subsequent data processing, thereby increasing the parameter measurement accuracy of the equipment of the present invention.
  • Figure 1 is an axial schematic diagram of an eye parameter evaluation device according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of an eye parameter evaluation device according to an embodiment of the present invention from another perspective;
  • Figure 3 is a schematic diagram of the partial structure of an eye parameter evaluation device according to an embodiment of the present invention.
  • Figure 4 is a top view of the partial structure of an eye parameter evaluation device according to an embodiment of the present invention.
  • Figure 5 is a front view of a partial structure of an eye parameter evaluation device according to an embodiment of the present invention.
  • Figure 6 is an image collected by an eye parameter evaluation device according to an embodiment of the present invention.
  • an eye parameter evaluation device or an eye parameter measurement device, is provided according to an aspect of an embodiment of the present invention.
  • the evaluation device as shown in Figure 1 includes a measurement unit and a human-computer interaction unit, and the measurement unit and the human-computer interaction unit are both arranged on the base.
  • the measurement unit and the human-computer interaction unit are distributed on the front and rear sides of the base.
  • the human-computer interaction unit may be a combination of a display and a keyboard, or a touch screen 17 or the like.
  • the measurement unit includes at least one shooting module, at least one eye corner card point and a light source module.
  • the photography module is used to collect eye feature data.
  • the data described here refers to pictures or video streams that can continuously display eye images.
  • the human-computer interaction unit is controllably connected to the corner of the eye stuck point to adjust the position of the corner of the eye stuck point so that the corner of the eye stuck point locates the outer canthus point of the eye.
  • the accuracy of the measurement results of the equipment in the related art strongly depends on the experience of the user. Different operating habits among individuals lead to differences in the positioning of the outer canthus point of the eye, and it is difficult for the operator to accurately position the left and right points simultaneously. Lateral canthus points on both sides.
  • the corner of the eye stuck point of the present invention is installed on a displacement platform.
  • the displacement platform adjusts the displacement of the corner of the eye stuck point after receiving instructions from the human-computer interaction unit to accurately position the corner of the eye stuck point.
  • On the lateral canthus point of the ministry Even if faced with the problem of locating the outer canthus points of the left and right eyes at the same time, it only needs to set one canthus card point on the left and right sides of the evaluation device. It is understandable that the operator needs to observe the position of the stuck point at the corner of the eye in real time during the process of adjusting the stuck point at the corner of the eye.
  • the observation can be performed in a variety of ways, such as by observing continuously collected images of the distance between the eye and the stuck point at the corner of the eye to obtain the distance information between the two.
  • a distance measurement unit is set on the stuck point at the corner of the eye. When the measurement value of the distance measurement unit reaches the set threshold, it means that the stuck point at the corner of the eye has been successfully positioned with the lateral canthus point.
  • the corner of the eye card point is connected to an inclined reflector; the light source includes several discretely distributed light bars 13 and near-infrared light sources. Wherein, the light bars are discretely distributed with each other, and/or each luminous body in the light bar is discretely distributed.
  • the near-infrared light source selectively cooperates with the light bar to assist the shooting module in working.
  • the "selectivity" means that the near-infrared light source is only used with the light bar in a specific measurement mode, so that the shooting module can obtain high-precision eye data. It is precisely because of the selective cooperation between the near-infrared light source and the light strip that the evaluation device in one embodiment can provide rich light field conditions to meet the measurement of multiple parameters, so that the evaluation device can be applied at low cost. Use multiple measurement modes to obtain rich measurement data.
  • the reflector is used to project a virtual image of the eyeball, thereby facilitating the shooting module to obtain a clear picture of the eyeball.
  • the shooting module collects virtual images in the reflector to obtain various characteristic images of the eye.
  • the tilted reflector can clearly reflect the outer contour of the eyeball surface (such as the convex contour curve) and the detailed characteristics of the eyeball from the side of the eyeball, especially when illuminated by near-infrared light. A clear picture of the surface of the eyeball.
  • it can collect the longest reflected light picture of the eyeball, providing accurate measurement data for obtaining the protrusion of the eyeball.
  • the above-mentioned shooting process can obtain the first eye position map (facing forward), the second eye position map (inner, outer, upper, lower), and the third eye position map (inner upper, inner lower, outer upper, outer, upper) of the eyeball. (outer and lower), as well as eyeball activity video stream and other data, and through the above-mentioned one-time measurement process and subsequent image data processing, multiple measurements of the eye such as proptosis, eye fissure width, eyeball mobility, conjunctival congestion, etc. can be obtained at the same time parameter.
  • the specific measurement process is described below. It can be seen from the above description that the equipment in the embodiment is easy to operate.
  • a virtual image video stream; the human-computer interaction unit intercepts the image frame corresponding to the reflected light with the longest visible light beam appearing on the eyeball in the virtual image video stream, and obtains the eyeball protrusion value by analyzing the data of the intercepted image frame.
  • near-infrared light sources are used in conjunction with light strips to create the required light field conditions in the eyes. This light source setting is very important for collecting image data.
  • the colors of different parts of the eye namely the pupil, iris, and sclera, have almost no effect on imaging, due to the gradient of the limbus in the contact part between the iris and the sclera. formula structure, resulting in the inability to accurately identify the center of the eyeball.
  • the absorption peak of human melanin pigment occurs at around 335nm, and it is almost completely non-absorbent for wavelengths exceeding 700nm.
  • the reflectivity of the iris is quite stable in the near-infrared band with wavelengths exceeding 700nm. Therefore, the present invention uses near-infrared light.
  • the light field can well distinguish the sclera, iris, and pupil boundaries, so that the pupil center can be accurately identified during post-image processing, thereby improving the measurement effect of exophthalmos.
  • the present invention further turns on the strip light bar in sequence.
  • the light of the strip light bar is strip-shaped and the light intensity is basically equal, which can make the eyeball reflect
  • the light intensity is basically equal, which is beneficial to showing a clear outer contour of the eye in the reflector, making it easier to obtain the center point of the pupil during later image processing, and improving the accuracy and stability of measurement.
  • FIG. 6 shows a virtual image collected in a reflector. This virtual image reflects that the device of the present invention can clearly collect the reflected light of the eyeball.
  • looking at the eye image in the front view it is difficult to represent the protruding state of the eyeball.
  • the device of the present invention has higher measurement data stability, smaller numerical deviations in multiple measurements, and smaller data fluctuations.
  • Table 1 shows the statistical results after 10 measurements of four testers respectively. It can be seen from the data in the table that the device of the present invention can obtain stable measurement data for different testers, and the standard deviation of the data changes slightly. High stability. Therefore, the device of the present invention no longer relies on the experience of the instrument user, and can stably track the data changes of the subject for a long time, and the measurement results are very reliable.
  • the evaluation device further includes a control unit, which obtains instructions received by the human-computer interaction unit to control the movement of the corner of the eye stuck point so that the corner of the eye stuck point is positioned against the lateral canthus point of the eye.
  • the control unit is integrated in the base, and the control unit may include multiple sub-control modules to achieve different data processing and control requirements.
  • each sub-control module of the control unit can be disposed on the first mainboard 14 and the second mainboard 16 respectively.
  • the control unit is electrically connected to the human-computer interaction unit to receive control instructions from the operator, and controls the movement of the stuck point at the corner of the eye according to the instructions, and finally accurately locates the lateral canthus point.
  • both the light bar and the near-infrared light source are electrically connected to the control unit, wherein the near-infrared light source selectively cooperates with the light bar including: the control unit controls the light bar according to different measurement modes. Start in a predetermined sequence, or control the near-infrared light source to start; or control the light bar to start in a predetermined sequence and control the near-infrared light source to start.
  • the evaluation device further includes an illumination light source, and the illumination light source includes but is not limited to an incandescent lamp.
  • the near-infrared light source is selectively turned on to form different light fields in conjunction with the light bar, creating a light field environment that meets usage requirements for completing specific shooting tasks.
  • One embodiment involves the following four measurement modes: eyeball proptosis measurement mode, eyeball mobility measurement mode, eye fissure width measurement mode, and conjunctival congestion measurement mode.
  • the proptosis measurement mode and eye movement measurement mode the near-infrared light source and light strip need to be turned on; in the conjunctival hyperemia measurement mode, only the horizontal indicator light and the illumination light source need to be turned on.
  • the horizontal indicator light refers to a light that is controlled by the control unit to light up in a predetermined manner to form an indicator light.
  • the eye fissure width measurement mode the light source that needs to be turned on is different depending on the data post-processing mode selected by the operator.
  • the shooting module is electrically connected to the control unit, wherein, in response to the on state of the light bar or near-infrared light source, the control unit controls the shooting module to collect the eyeball video stream in the reflector according to different measurement modes; or controls the shooting.
  • the module collects the first eye bitmap, the second eye bitmap or the third eye bitmap of the eyeball; or controls the shooting module to collect the eyeball rotation status video stream.
  • the shooting module is then controlled to capture a video stream in which the eyeball remains motionless from the reflector on the side of the eyeball.
  • the photography module In the eye movement measurement mode, you need to control the photography module to first capture the first eye position map of the person being measured without turning on the light bar; then turn on each light bar in sequence to take photos of the eyeballs rotating with the light bar.
  • the conjunctival congestion and eye fissure width measurement mode when the lighting source is turned on, the shooting module needs to be controlled to capture the video stream of the eyeballs rotating with the light bar.
  • the measurement mode is one or more of an eyeball proptosis measurement mode, an eyeball mobility measurement mode, an eye fissure width measurement mode, or a conjunctival congestion measurement mode.
  • the purpose of the technical solution provided in one embodiment is to solve the problem that equipment in related technologies cannot measure one or more eye data at a low cost.
  • the measurement device of this embodiment integrates two light sources, a light bar and a near-infrared light source.
  • the measurement device further includes an illumination light source, such as an incandescent lamp.
  • the control unit controls the corresponding light sources to cooperate with each other according to the selected measurement mode to create a light field environment that meets the working needs of the shooting module, and then captures the data required for the shooting module.
  • control the light bar after turning on the near-infrared light, control the light bar to light up sequentially (such as from left to right, or from right to left), and at the same time control the shooting module to shoot a segment of the eyeballs looking straight ahead (this A photo of the left or right eye with the eyeball held still).
  • the image data is analyzed and processed to determine the corneal vertex, and a neural network is used to determine the pupil center; and then the optical center position of the shooting unit is , the position of the outer canthus point of the eye, the tilt angle of the mirror, the vertex of the cornea, and the center of the pupil are used to calculate the proptosis; where the tilt angle of the mirror is the angle between the mirror and the imaging surface.
  • control the light bar after turning on the near-infrared light, control the light bar to light up the indicator lights in eight directions (such as the eight directions indicated by the rice-shaped azimuth diagram) clockwise (or counterclockwise).
  • the subject controls the eyeballs to follow the indicator light according to the voice command
  • the shooting module captures the first eye bitmap (looking straight ahead) and the second eye bitmap (inside and outside) of the subject's eyeballs as they move to the extreme position in the direction to be measured.
  • up and down directions or the four directions of up, down, left, and right in the rice-shaped azimuth diagram
  • the third eye diagram inner upper, inner lower, outer upper, outer lower directions, or called Northeast, southeast, northwest, southwest directions in the rice-shaped orientation map
  • the control light bar lights up sequentially (from left to right, or from right to left), and the subject moves his or her eyes left and right following the tracking point under the instructions of the indicator light.
  • the shooting module shoots a 20s video stream; in the later stage, a neural network is used to segment the static and dynamic junction points from each frame of the video stream, and the outline of the eyelids is obtained through the collection of junction points, and then the outline of the eyelids on the pupil center line is obtained The upper and lower distance to obtain the eye fissure width.
  • the semantic segmentation measurement mode of eye fissure width first turn on the near-infrared light to form a 700-1200nm near-infrared light field in the shooting area; use the shooting module to capture the third image of the subject's eyes in the near-infrared light field.
  • the neural network training method For the first-eye bitmap, use the neural network training method to segment the background, iris, sclera, and pupil from the first-eye bitmap; then obtain the pupil center from the segmented pupil, and obtain the vertical pupil center line.
  • Find The width of the eye fissure can be obtained from the distance between the intersection of the sclera, iris or pupil and the background on the center line of the exit pupil.
  • the subject moves the eyeballs left and right along with the tracking point under the instruction of the indicator light to shoot the video stream; later, the video stream is image segmented to obtain the eye image, which is extracted from the eye image.
  • the red channel value and the blue channel value of each pixel; the percentage of conjunctival hyperemia is determined by the ratio of the red channel value and the blue channel value of each pixel.
  • the wavelength of the near-infrared light source is 700-1200nm.
  • the evaluation device also includes a forehead rest 6 and a jaw rest 2, wherein the forehead rest is connected to a horizontal moving platform 7, and the control unit is electrically connected to the horizontal moving platform to adjust the front and back of the forehead rest. Position; the jaw rest is connected to the vertical moving platform 1, and the control unit is electrically connected to the vertical moving platform to adjust the up and down position of the jaw rest.
  • the subject's head position can be controlled by setting independent mobile platforms for the chin rest and forehead rest respectively, so that the subject's eyes are initially aligned with the canthus point; and then through the canthus of the eye
  • the mobile platform of the stuck point such as the left displacement platform 3 or the right displacement platform 12, further finely adjusts the position of the stuck point in the corner of the eye to accurately locate the outer canthus point of the eye.
  • the number of eye corner card points and reflectors is two, and they are respectively distributed on the left and right sides of the measurement unit.
  • the corner of the eye stuck point includes a left corner of the eye stuck point 4 and a right corner of the eye stuck point 10
  • the reflective mirror also includes two pieces, respectively, a left mirror 5 and a right mirror 11.
  • the above components are arranged on the left and right sides of the measurement unit, making it possible to measure both eyes of the subject at the same time.
  • the reflector is tilted and installed at the corner of the eye to form a virtual image corresponding to the eyeball in the reflector.
  • the two reflectors are respectively tilted toward the outside of the human face axis, so that the reflective surface of the reflector is aligned with the shooting module, so that the shooting module can capture the virtual image in the reflector.
  • the photography module includes two area array cameras 8 arranged on the left and right; and/or, the number of near-infrared lamps 9 is two and is distributed on both sides of the measurement unit.
  • the above-mentioned camera and near-infrared lamp are respectively set into two groups, and each group corresponds to an eyeball, which can provide sufficient illumination for the eye to be measured, thereby improving the picture shooting effect of the corresponding eyeball.
  • the captured data is post-processed to obtain various required measurement results, so the accuracy of the measurement results is closely related to the accuracy of the captured data; for this purpose, an area array camera is used in one embodiment to improve The clarity and precision of the captured 2D footage.
  • the base 22 is provided with a card slot 27; and/or multiple types of communication interfaces.
  • the card slot includes but is not limited to being used for inserting social security cards.
  • the card slot is electrically connected to the card reading module 15 in the base.
  • the communication interface includes but is not limited to the network access port 26, USB interface 25, etc.
  • the corresponding power switch 24 and power interface 23 are provided on the same side of the above-mentioned communication interface.
  • the power interface is connected to the power supply 18 .
  • I/O interfaces can also be integrated on the device base, and the I/O interfaces can be used to connect input parts including keyboards, mice, etc.; including devices such as cathode ray tubes (CRT), liquid crystal An output section including a display (LCD), etc., and a speaker, etc.; a storage section including a hard disk, etc.; and a communication section including a network interface card such as a LAN card, a modem, etc. The communication section performs communication processing via a network such as the Internet. Drives are also connected to I/O interfaces as needed. Removable media, such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc., are installed on the drive as needed, so that the computer program read therefrom is installed into the storage section as needed.
  • Removable media such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Eye Examination Apparatus (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种眼部参数评估装置,包括:测量单元和人机交互单元,测量单元和人机交互单元均设置在底座(22)上;测量单元包括至少一个拍摄模块、至少一个眼角卡点和光源模块,其中,拍摄模块用于采集眼部数据;人机交互单元调整眼角卡点(4,10)的位置,使眼角卡点(4,10)定位眼部的外眦点;眼角卡点(4,10)与倾斜设置的镜片(5,11)连接;光源模块包括若干条离散分布的灯条和近红外光源;近红外光源选择性的与灯条配合以辅助拍摄模块工作。该装置用作突眼检查设备时,操作简便,其在完成外眦点定位后仅需拍摄视频或图片即可完成测量,极大的提高了眼球突出度等参数的测量效率和数据测量的准确性。

Description

一种眼部参数评估装置 技术领域
本发明涉及测量仪器技术领域,具体涉及一种眼部参数评估装置。
背景技术
眼部特征参数的测量对医疗或科研均存在重要的意义。实际使用中,工作人员常常需要获取被检测人员的眼球突出度、眼裂宽度等特征参数。当前,常用的测量仪器有Hertel眼球突出度仪和CT扫描仪等。前者需要工作人员手动操作和读数,操作者个体间的操作习惯或使用经验的差异将导致测量结果缺乏稳定性。后者虽然测量精度较高,但是CT设备存在辐射大,测量成本高,结果生成慢等诸多问题。相关技术中还存在其它类似测量设备,但此类设备存在使用复杂,测量精度不高等诸多问题。并且,背景技术中提到的设备往往无法通过同一设备低成本的测量多个眼部参数。也即,相关技术中的设备往往仅能够测量单一参数,且缺乏高精度的数据处理手段,从而导致测量结果差,无法满足使用者的测量需求。
发明内容
为了克服相关技术中设备成本高、测量结果稳定性差、无法使用同一仪器低成本的测量多种参数的问题,本发明提供了一种眼部参数评估装置以解决相关技术中的至少一个问题。
为实现上述目的,根据本发明实施例的一个方面,提供了一种眼部参数评估装置,包括:
测量单元和人机交互单元,所述的测量单元和人机交互单元均设置在底座上;
测量单元包括至少一个拍摄模块、至少一个眼角卡点和光源模块,其中,
所述的拍摄模块用于采集眼部数据;
所述的人机交互单元调整眼角卡点的位置,使眼角卡点定位眼部的外眦点;所述的眼角卡点与倾斜设置的反射镜连接,以使拍摄模块通过反射镜采集眼部侧面虚像;
所述的光源模块包括若干条离散分布的灯条和近红外光源;所述的近红外光源选择性的与灯条配合以辅助拍摄模块工作;
近红外光源开启后,顺次控制灯条的点亮顺序以对眼球表面照射不同位置的条状光源,并同步控制所述的拍摄模块采集反射镜中的眼部虚像视频流;人机交互单元截取所述虚像视频流中眼球上出现可见光光柱最长的反射光对应的图像帧,通过对截取的所述图像帧的数据分析以获得眼球突出度数值。
可选的一实施例中,所述的评估装置还包括控制单元,所述的控制单元获取人机交互单元接收的指令以控制眼角卡点移动而使眼角卡点与眼部的外眦点抵靠定位。
可选的一实施例中,所述的灯条和近红外光源均与控制单元电连接,其中,
所述的近红外光源选择性的与灯条配合包括:控制单元根据测量模式的不同而控制灯条按预定的顺序启动,或者控制近红外光源启动;或者控制灯条按预定的顺序启动且控制近红外光源启动。
可选的一实施例中,拍摄模块与控制单元电连接,其中,
响应于灯条或近红外光源的开启状态,控制单元根据测量模式的不同而控制拍摄模块采集所述反射镜中眼球视频流;或者控制拍摄模块采集眼球的第一眼位图、第二眼位图或第三眼位图;或者控制拍摄模块采集眼球转动状态视频流。
可选的一实施例中,所述的测量模式为眼球突出度测量模式、眼球活动度测量模式、眼裂宽度测量模式、或结膜充血测量模式中的至少一种。
可选的一实施例中,所述的近红外光源的波长为700-1200nm。
可选的一实施例中,所述的评估装置还包括额托和颌托,其中,
所述的额托与水平移动平台连接,所述的控制单元与水平移动平台电连接以调节额托的前后位置;
所述的颌托与竖直移动平台连接,所述的控制单元与竖直移动平台电连接以调节颌托的上下位置。
可选的一实施例中,所述的眼角卡点和反射镜的数量均为两个,且分别分布于测量单元的左右两侧;所述的反射镜倾斜设置在眼角卡点上以在反射镜内形成对应眼球的虚像。
可选的一实施例中,所述的拍摄模块包括左右设置的两个面阵相机;和/或,近红外灯的数量为两个,且分布在测量单元的两侧。
可选的一实施例中,所述底座上设置有卡槽;和/或多种类型的通信接口。
本发明的技术方案具有如下优点或有益效果:
(1)通过在测量单元中集成至少一个拍摄模块、至少一个眼角卡点和光源模块,拍摄模块用于采集眼部数据;所述的人机交互单元调整眼角卡点的位置,使眼角卡点定位眼部的外眦点;所述的眼角卡点与倾斜设置的反射镜连接;所述的近红外光源选择性的与灯条配合以辅助拍摄模块工作;使得一个实施例中的设备操作简便,其在完成外眦点定位后仅需拍摄视频或图片即可完成测量,并结合图像识别即可得到眼部参数,极大的提高了测量效率和数据测量的准确性。解决了相关技术中的测量设备测量成本高,测量效率低,无法同步测量多项数据的问题,且测量设备无辐射等副作用。本发明的评估装置能够提供丰富的光场条件,进而满足多种参数的测量,使得所述评估装置能够低成本的应用于多种测量模式,以获得丰富的测量数据。近红外光源与灯条的配合使得反射镜中产生清晰的眼部轮廓反射光线的图像,进而使拍摄模块可以采集清晰的突眼度视频流,提高图像处理的数据源质量,并获得准确的眼球突出度测量值;本发明的装置用于眼部检查仪时,测量数据精度高,测量结果稳定性好,数据测量不再依赖使用者的经验。
(2)通过采用近红外光光场,可以很好地区分巩膜、虹膜、瞳孔边界,从而可以更好地提升算法的准确性与稳定性。因此采用近红外光源的波长为700-1200nm,能够显著的提高眼球突出度、眼球活动度或眼裂宽度的测量精度。
(3)通过所述的额托与水平移动平台连接,所述的控制单元与水平移动平台电连接以调节额托的前后位置;所述的颌托与竖直移动平台连接,所述的控制单元与竖直移动平台电连接以调节颌托的上下位置;同时配合眼角卡点的调节结构能够先通过粗调眼角卡点的定位,再精调其定位,通过上述的两步调节过程提高外眦点的定位效率和定位精度。
(4)采用面阵相机以提高拍摄的二维画面的清晰度和精度,为后续的数据处理提供精确的数据源,从而调高本发明设备的参数测量精度。
附图说明
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:
图1是根据本发明实施例的眼部参数评估装置的轴侧示意图;
图2是根据本发明实施例的眼部参数评估装置的另一视角的示意图;
图3是根据本发明实施例的眼部参数评估装置的局部结构的示意图;
图4是根据本发明实施例的眼部参数评估装置的局部结构的俯视图;
图5是根据本发明实施例的眼部参数评估装置的局部结构的正视图;
图6是根据本发明实施例的眼部参数评估装置采集的图像。
具体实施方式
以下结合附图对本发明的示范性实施例做出说明,其中包括本发明实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本发明的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
为了解决背景技术中的至少一个问题,根据本发明实施例的一个方面提供了一种眼部参数评估装置,或者称作眼部参数测量装置。
如图1所示的评估装置,其包括测量单元和人机交互单元,所述的测量单元和人机交互单元均设置在底座上。为了便于操作人员和被测量人员的使用,所述的测量单元和人机交互单元分布在底座的前后两侧。操作人员面向人机交互单元进行测量操作时,可以方便观察被测量人员的头部姿态并控制设备的工作状态。相应的,被测量人员的面部面向测量单元的机壳21。示例性的,所述的人机交互单元可以为显示器与键盘的组合,或者触摸显示屏17等。进一步的,测量单元包括至少一个拍摄模块、至少一个眼角卡点和光源模块。所述的拍摄模块用于采集眼部特征数据。此处所述的数据指能够连续展示眼部画面的图片或视频流等。所述的人机交互单元与所述的眼角卡点可控的连接以调整眼角卡点的位置,使眼角卡点定位眼部的外眦点。如背景技术所述,相关技术中的设备的测量结果的准确性强烈依靠使用人员的经验,个体间操作习惯的不同导致眼部外眦点的定位位置存在差异,且操作者难以准确同步定位左右两侧的外眦点。为了克服上述问题,本发明的眼角卡点安装在位 移平台上,所述的位移平台在接收到人机交互单元发送的指令后而调整眼角卡点的位移,以准确将眼角卡点定位在眼部的外眦点上。即使面对同时定位左右眼部外眦点的问题,也仅需要在评估装置的左右两侧各设置一个眼角卡点即可。可以理解的是,操作人员在调整眼角卡点位置的过程中需要实时观测眼角卡点的位置。所述的观察可以采用多种方式,如通过观察连续采集的眼部与眼角卡点之间的距离画面而获得两者之间的距离信息。或者在眼角卡点上设置距离测量单元,当距离测量单元的测量值达到设定阈值时即表明眼角卡点已与外眦点定位成功。进一步的,所述的眼角卡点与倾斜设置的反射镜连接;所述的光源包括若干条离散分布的灯条13和近红外光源。其中,所述的灯条彼此间离散分布,和/或,灯条内的各个发光体离散分布。所述的近红外光源选择性的与灯条配合以辅助拍摄模块工作。所述的“选择性”指近红外光源仅在特定的测量模式下配合灯条使用,以使拍摄模块获得眼部高精度数据。正是由于近红外光源与灯条选择性的配合工作,才使得一个实施例中的评估装置能够提供丰富的光场条件,进而满足多种参数的测量,使得所述评估装置能够低成本的应用于多种测量模式,以获得丰富的测量数据。所述反射镜用于投影眼球的虚像,从而便于拍摄模块获取眼球的清晰画面。部分测量场景中,拍摄模块采集反射镜中虚像以获得眼部的各种特征画面。相较于正面拍摄眼球的图像,倾斜设置的反射镜能够从眼球的侧面清晰反映眼球表面的外轮廓(例如凸起的轮廓曲线)和眼球的细节特征,尤其是在近红外光线的照射下反映眼球表面清晰的画面。同时,配合多个灯条的开启顺序的不同和近红外光源的特性能够采集眼球最长的反射光的画面,为获得眼球突出度提供准确的测量数据。此外,上述的拍摄过程能够获得眼球的第一眼位图(正视前方)、第二眼位图(内、外、上、下)、第三眼位图(内上、内下、外上、外下),以及眼球的活动视频流等数据,并且通过上述的一次测量过程和后续的图像数据处理能够同时获得眼部的眼球突出度、眼裂宽度、眼球活动度、结膜充血等多个测量参数。具体测量过程见下文描述。通过上述描述可见,所述实施例中的设备操作简便,其在完成外眦点定位后仅需拍摄视频或图片即可完成测量,通过后续的图像处理手段获得各种眼部参数,极大的提高了测量效率和数据测量的准确性。解决了相关技术中的测量设备测量成本高,测量效率低,无法同 步测量多项数据的问题,且测量设备无辐射等副作用。此外,在眼球突出度测量时,近红外光源开启后,顺次控制灯条的点亮顺序以对眼球表面照射不同位置的条状光源,并同步控制所述的拍摄模块采集反射镜中的眼部虚像视频流;人机交互单元截取所述虚像视频流中眼球上出现可见光光柱最长的反射光对应的图像帧,通过对截取的所述图像帧的数据分析以获得眼球突出度数值。此处采用近红外光源与灯条配合使用以在眼部营造所需的光场条件。该光源设置对采集图像数据十分重要,在正常可见光的波段400-700nm中,眼睛不同部分,即瞳孔、虹膜、巩膜的颜色对成像几乎不起作用,由于虹膜与巩膜接触部分的角膜缘的渐变式结构,导致无法准确地识别眼球的球心。人类黑色素色素的吸收峰值发生在335nm左右,而对于波长超过700nm的波段几乎完全不吸收,而虹膜的反射率在波长超过700nm的近红外线波段内是相当稳定的,因此,本发明采用近红外光光场,可以很好地区分巩膜、虹膜、瞳孔边界,进而在后期图像处理时可以准确识别瞳孔中心,进而提高眼球突出度的测量效果。此外,本发明在测量突眼度时,还进一步顺次开启了条状灯条,相较于点状光源,条状灯条的光线为条形且光强度基本相等,其能够使眼球反射的光线强度基本相等,利于在反射镜中呈现清晰的眼部外轮廓,便于后期图像处理时获得瞳孔的中心点,提高测量的准确性和稳定性。具体的,参见图6,其展示了在反射镜中采集的虚像,该虚像反映了本发明的装置可以清晰采集眼球的反射光线。反观正视图中的眼部图像,其难以表征眼球的突出状态。更为有利的是,本发明的装置相较于传统的测量设备,测量的数据稳定性更高,多次测量的数值偏差较小,数据波动小,具体参见表1的对比数据。表1展示了对4个测试者分别测量10次后的统计结果,通过表中数据可以看出,本发明的装置针对不同的测试者均可以获得稳定的测量数据,数据的标准差变化微弱,稳定性高。因此本发明的装置不再依赖仪器使用者的经验,可以长期稳定追踪被测者的数据变化,测量结果十分可靠。
表1 本发明的装置与相关技术中的仪器的测量结果对比
Figure PCTCN2022132091-appb-000001
可选的,所述的评估装置还包括控制单元,所述的控制单元获取人机交互单元接收的指令以控制眼角卡点移动而使眼角卡点与眼部的外眦点抵靠定位。一个实施例中,所述的控制单元集成在底座中,所述的控制单元可包括多个子控制模块以实现不同的数据处理和控制需求。如图3所示的实施例中,所述的控制单元的各个子控制模块可分别设置在第一主板14和第二主板16上。所述的控制单元与人机交互单元电连接以接收操作人员发出的控制指令,并根据指令控制眼角卡点移动,最终精确定位在外眦点处。
可选的,所述的灯条和近红外光源均与控制单元电连接,其中,所述的近红外光源选择性的与灯条配合包括:控制单元根据测量模式的不同而控制灯条按预定的顺序启动,或者控制近红外光源启动;或者控制灯条按预定的顺序启动且控制近红外光源启动。可选的实施例中,所述的评估装置还包括照明光源,所述的照明光源包括但不限于白炽灯。如前文所述,所述的近红外光源选择性的开启以配合灯条形成不同的光场,为完成特定的拍摄任务营造符合使用需求的光场环境。一个实施例中涉及如下4种测量模式:眼球突出度测量模式、眼球活动度测量模式、眼裂宽度测量模式、结膜充血测量模式。眼球突出度测量模式和眼球活动度测量模式中需要开启近红外光源和灯条;而在结膜充血测量模式中仅需要开启横向指示灯以及照明光源。所述的横向指示灯指由控制单元控制所述的灯条按照预定的方式点亮以形成具有指示作用的灯。对于眼裂宽度测量模式中,根据操作人员选择的数据后处理模式的不同,需要开启的光源存在差异。例如,当采用动态分割算法处理数据时,仅需要开启照明光明即可以满足眼裂宽度的测量需要。而选择采用语义分割算法处理数据时,则仅需要开启近红外光源。
可选的,拍摄模块与控制单元电连接,其中,响应于灯条或近红外光源的开启 状态,控制单元根据测量模式的不同而控制拍摄模块采集所述反射镜中眼球视频流;或者控制拍摄模块采集眼球的第一眼位图、第二眼位图或第三眼位图;或者控制拍摄模块采集眼球转动状态视频流。实践中,为了精确测量眼部的各种特征数据,针对不同的测量模式,拍摄模块所要采集的数据存在差异。具体的,针对眼球突出度测量模式,在控制光源模块对应的光源开启后,再控制拍摄模块从眼球侧方的反射镜中拍摄眼球保持不动的视频流。在眼球活动度测量模式中,需要控制拍摄模块在未开启灯条的条件下先拍摄被测量者的第一眼位图;然后再按顺序开启各个灯条以拍摄眼球随灯条转动过程的照片。而在选择语义分割算法时,仅需要打开近红外光源,并控制拍摄模块在近红外光场中获取眼部的第一眼位图即可。结膜充血与眼裂宽度测量模式中,开启照明光源,需要控制拍摄模块拍摄眼球随灯条转动的视频流。
可选的,所述的测量模式为眼球突出度测量模式、眼球活动度测量模式、眼裂宽度测量模式、或结膜充血测量模式中的一种或多种。可以理解的是,一个实施例中提供的技术方案的目的在于解决相关技术中的设备无法一次低成本地测量一种或多种眼部数据的问题。相应的,该实施例的测量装置集成了灯条和近红外两种光源,在另外一些实施例中,所述的测量装置还进一步包括照明光源,如白炽灯。在操作人员选择对应的测量模式后,控制单元根据所选的测量模式控制相应的光源相互配合,以营造符合拍摄模块工作需求的光场环境,进而拍摄模块拍摄所需的数据。具体的,在眼球突出度测量模式中,在开启近红外灯后,再控制灯条依次(如从左至右,或从右至左)点亮,同时控制拍摄模块拍摄一段眼球平视前方(此时眼球保持不动)的左眼或右眼的照片。通过从所述照片中获取镜子中的眼球上出现可见光光柱的最长的反射光时,通过分析和处理该图像数据以确定角膜顶点,并采用神经网络确定瞳孔中心;再通过拍摄单元光心位置、眼角外眦点的位置、镜子倾斜角度、所述角膜顶点、所述瞳孔中心,计算眼球突出度;其中,所述镜子倾斜角度为镜子和成像面的夹角。在眼球活动度测量模式中,开启近红外灯后,控制灯条使其沿着顺时针(或逆时针)依次点亮八个方向(例如米字型方位图指示的八个方向)的指示灯,被测者根据语音指令,控制眼球跟随指示灯移动,拍摄模块拍摄被测者眼球沿待测方向运动到极限位置的第一眼位图(正视前方)、第二眼位图(内、外、上、 下方向,或者称作米字型方位图中的上、下、左、右四个方向)、第三眼位图(内上、内下、外上、外下方向,或者称为米字型方位图中的东北、东南、西北、西南方向);将第一眼位图(正视前方)分别与第二眼位图、第三眼位图进行对比,计算眼球活动度的活动角。在眼裂宽度动态分割测量模式中,控制灯条依次(从左至右,或从右至左)点亮,被测者在指示灯的指示下随着跟踪点左右转动眼球,与此同时,拍摄模块拍摄20s的视频流;后期,采用神经网络从视频流的各帧中分割出静态与动态的交接点,通过交接点的集合得到眼皮的轮廓,进而求出瞳孔中心线上的眼皮的轮廓的上下距离以得到眼裂宽度。在眼裂宽度的语义分割测量模式中,首先开启近红外灯以在拍摄区域形成一个700-1200nm的近红外光光场;通过拍摄模块拍摄被测者眼部在近红外光光场中的第一眼位图,采用神经网络的训练方式从第一眼位图中分割出背景、虹膜、巩膜、瞳孔;再从分割出的瞳孔中得到瞳孔中心,并得到竖直方向的瞳孔中心线,求出瞳孔中心线上巩膜、虹膜或瞳孔与背景的交点之间的距离即可得到眼裂宽度。在结膜充血测量模式中,被测者在指示灯的指示下随着跟踪点左右转动眼球,从而拍摄视频流;后期通过对视频流进行图像分割,以获取眼部图像,从眼部图像中提取每一个像素的红色通道值和蓝色通道值;通过对每一个像素的红色通道值和蓝色通道值的比值确定结膜充血的百分比。
可选的,所述的近红外光源的波长为700-1200nm。经过对拍摄模块获取的数据分析可以发现,当可见光的波段为400-700nm时,眼睛不同部分,如瞳孔、虹膜、巩膜的颜色对成像几乎不起作用。由于虹膜与巩膜接触部分的角膜缘的渐变式结构,当采用上述波段照射眼球时,会导致无法从拍摄数据中准确地识别眼球的球心。经过多次实验验证,发明人发现对于波长超过700nm的波段,眼睛几乎完全不吸收上述光线,而虹膜的反射率在波长超过700nm的近红外线波段内是相当稳定的。因此,一个实施例中采用近红外光光场,可以很好地区分巩膜、虹膜、瞳孔边界,从而可以更好地提升算法的准确性与稳定性。因此,该实施例中采用近红外光源的波长为700-1200nm,能够显著的提高眼球突出度、眼球活动度或眼裂宽度的测量精度。
可选的,所述的评估装置还包括额托6和颌托2,其中,所述的额托与水平移动平台7连接,所述的控制单元与水平移动平台电连接以调节额托的前后位置;所 述的颌托与竖直移动平台1连接,所述的控制单元与竖直移动平台电连接以调节颌托的上下位置。如图3所示的实施例中,通过对颌托和额托分别设置独立的移动平台能够控制被测者的头部位置,使被测者的眼部初步对准眼角卡点;再通过眼角卡点的移动平台,如左位移平台3或右位移平台12进一步精调眼角卡点的位置以便精确定位眼部的外眦点。通过上述的两步调节过程能够提高外眦点的定位效率和定位精度。
可选的,所述的眼角卡点和反射镜的数量均为两个,且分别分布于测量单元的左右两侧。如图1至3所示的实施例中的,所述的眼角卡点包括左眼角卡点4和右眼角卡点10,所述的反射镜也包括两块,分别为左镜子5和右镜子11。上述元件分设在测量单元的左右两侧使同时测量被测者的双眼成为可能。所述的反射镜倾斜设置在眼角卡点上以在反射镜内形成对应眼球的虚像。如图3所示,两个反射镜分别向人体面部轴线的外侧倾斜,从而使反射镜的反光面对准拍摄模块,以便拍摄模块能够捕捉反射镜中的虚像。
可选的,所述的拍摄模块包括左右设置的两个面阵相机8;和/或,近红外灯9的数量为两个,且分布在测量单元的两侧。上述的相机和近红外灯分别设置为两组,且两组分别对应一只眼球,能够为待测量的眼部提供充足的光照,进而提高了对应眼球的画面拍摄效果。需要说明的是,一个实施例中对拍摄的数据进行后处理以获得各种所需的测量结果,因此测量结果的精度与拍摄数据的精度息息相关;为此一个实施例中采用面阵相机以提高拍摄的二维画面的清晰度和精度。
可选的,所述底座22上设置有卡槽27;和/或多种类型的通信接口。如图1和2所示,所述的卡槽包括但不限于用于插入社会保障卡。所述的卡槽与底座内的读卡模组15电连接。相应的,通信接口包括但不限于网络接入口26、USB接口25等。当然,为了便于操作设备,相应的电源开关24和电源接口23设置在上述通信接口同侧。所述的电源接口与电源18连接。可以理解的是,也可在设备底座上集成其它类型的I/O接口,所述的I/O接口可以用于连接包括键盘、鼠标等的输入部分;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分;包括硬盘等的存储部分;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部 分。通信部分经由诸如因特网的网络执行通信处理。驱动器也根据需要连接至I/O接口。可拆卸介质,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器上,以便于从其上读出的计算机程序根据需要被安装入存储部分。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (10)

  1. 一种眼部参数评估装置,包括:
    测量单元和人机交互单元,所述的测量单元和人机交互单元均设置在底座上;
    其特征在于:
    测量单元包括至少一个拍摄模块、至少一个眼角卡点和光源模块,其中,
    所述的拍摄模块用于采集眼部数据;
    所述的人机交互单元调整眼角卡点的位置,使眼角卡点定位眼部的外眦点;所述的眼角卡点与倾斜设置的反射镜连接,以使拍摄模块通过反射镜采集眼部侧面虚像;
    所述的光源模块包括若干条离散分布的灯条和近红外光源;所述的近红外光源选择性的与灯条配合以辅助拍摄模块工作;
    近红外光源开启后,顺次控制灯条的点亮顺序以对眼球表面照射不同位置的条状光源,并同步控制所述的拍摄模块采集反射镜中的眼部虚像视频流;人机交互单元截取所述虚像视频流中眼球上出现可见光光柱最长的反射光对应的图像帧,通过对截取的所述图像帧的数据分析以获得眼球突出度数值。
  2. 根据权利要求1所述的评估装置,其特征在于,
    所述的评估装置还包括控制单元,所述的控制单元获取人机交互单元接收的指令以控制眼角卡点移动而使眼角卡点与眼部的外眦点抵靠定位。
  3. 根据权利要求2所述的评估装置,其特征在于,
    所述的灯条和近红外光源均与控制单元电连接,其中,
    所述的近红外光源选择性的与灯条配合包括:控制单元根据测量模式的不同而控制灯条按预定的顺序启动;或者控制近红外光源启动;或者控制灯条按预定的顺序启动且控制近红外光源启动。
  4. 根据权利要求3所述的评估装置,其特征在于,
    拍摄模块与控制单元电连接,其中,
    响应于灯条或近红外光源的开启状态,控制单元根据测量模式的不同而控制拍摄模块采集所述反射镜中眼球视频流;或者控制拍摄模块采集眼球的第一眼位图、第二眼位图或第三眼位图;或者控制拍摄模块采集眼球转动状态视频流。
  5. 根据权利要求3或4所述的评估装置,其特征在于,
    所述的测量模式为眼球突出度测量模式、眼球活动度测量模式、眼裂宽度测量模式、或结膜充血测量模式中的至少一种。
  6. 根据权利要求1所述的评估装置,其特征在于,
    所述的近红外光源的波长为700-1200nm。
  7. 根据权利要求2所述的评估装置,其特征在于,
    所述的评估装置还包括额托和颌托,其中,
    所述的额托与水平移动平台连接,所述的控制单元与水平移动平台电连接以调节额托的前后位置;
    所述的颌托与竖直移动平台连接,所述的控制单元与竖直移动平台电连接以调节颌托的上下位置。
  8. 根据权利要求1所述的评估装置,其特征在于,
    所述的眼角卡点和反射镜的数量均为两个,且分别分布于测量单元的左右两侧;所述的反射镜倾斜设置在眼角卡点上以在反射镜内形成对应眼球的虚像。
  9. 根据权利要求1所述的评估装置,其特征在于,
    所述的拍摄模块包括左右设置的两个面阵相机;和/或,近红外灯的数量为两个,且分布在测量单元的两侧。
  10. 根据权利要求1所述的评估装置,其特征在于,
    所述底座上设置有卡槽;和/或多种类型的通信接口。
PCT/CN2022/132091 2022-08-18 2022-11-15 一种眼部参数评估装置 WO2024036784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210989498.3 2022-08-18
CN202210989498.3A CN115067872B (zh) 2022-08-18 2022-08-18 一种眼部参数评估装置

Publications (1)

Publication Number Publication Date
WO2024036784A1 true WO2024036784A1 (zh) 2024-02-22

Family

ID=83244611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132091 WO2024036784A1 (zh) 2022-08-18 2022-11-15 一种眼部参数评估装置

Country Status (2)

Country Link
CN (1) CN115067872B (zh)
WO (1) WO2024036784A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115633935B (zh) * 2022-08-18 2023-04-14 上海佰翊医疗科技有限公司 用于突眼检查仪的眼球突出度的评估装置、方法和系统
CN115067872B (zh) * 2022-08-18 2022-11-29 上海佰翊医疗科技有限公司 一种眼部参数评估装置
CN117462070A (zh) * 2023-12-11 2024-01-30 上海长征医院 一种基于刻度投影的眼部参数测量设备及测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379079A (en) * 1991-05-10 1995-01-03 Mount Sinai Hospital Corporation Attachment device for an exophthalmometer
CN104116494A (zh) * 2014-08-21 2014-10-29 太原中北新缘科技中心 基于远心光路系统的角膜曲率测量装置
CN110215185A (zh) * 2019-06-05 2019-09-10 北京清华长庚医院 眼球突出度测量设备
WO2020235939A2 (ko) * 2019-05-21 2020-11-26 (의) 삼성의료재단 이동통신 단말기에서의 안면 인식을 이용한 관련 질환 모니터링 방법 및 시스템
CN112315424A (zh) * 2020-10-30 2021-02-05 奥佳华瑞(厦门)医疗科技有限公司 一种基于双目立体视觉的突眼检测仪
CN114305318A (zh) * 2022-01-12 2022-04-12 复旦大学附属中山医院 数控眼球突出测量仪以及测量方法
CN114391805A (zh) * 2022-02-09 2022-04-26 复旦大学附属中山医院 一种实时眼球生物数据测量装置及测量方法
CN115067872A (zh) * 2022-08-18 2022-09-20 上海佰翊医疗科技有限公司 一种眼部参数评估装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0405832A (pt) * 2004-12-23 2008-07-15 Univ Fed Sao Paulo Unifesp exoftalmÈmetro com conjunto tridimensional de medida

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379079A (en) * 1991-05-10 1995-01-03 Mount Sinai Hospital Corporation Attachment device for an exophthalmometer
CN104116494A (zh) * 2014-08-21 2014-10-29 太原中北新缘科技中心 基于远心光路系统的角膜曲率测量装置
WO2020235939A2 (ko) * 2019-05-21 2020-11-26 (의) 삼성의료재단 이동통신 단말기에서의 안면 인식을 이용한 관련 질환 모니터링 방법 및 시스템
CN110215185A (zh) * 2019-06-05 2019-09-10 北京清华长庚医院 眼球突出度测量设备
CN112315424A (zh) * 2020-10-30 2021-02-05 奥佳华瑞(厦门)医疗科技有限公司 一种基于双目立体视觉的突眼检测仪
CN114305318A (zh) * 2022-01-12 2022-04-12 复旦大学附属中山医院 数控眼球突出测量仪以及测量方法
CN114391805A (zh) * 2022-02-09 2022-04-26 复旦大学附属中山医院 一种实时眼球生物数据测量装置及测量方法
CN115067872A (zh) * 2022-08-18 2022-09-20 上海佰翊医疗科技有限公司 一种眼部参数评估装置

Also Published As

Publication number Publication date
CN115067872A (zh) 2022-09-20
CN115067872B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2024036784A1 (zh) 一种眼部参数评估装置
US7434931B2 (en) Custom eyeglass manufacturing method
US7845797B2 (en) Custom eyeglass manufacturing method
CN110199517B (zh) 在单个对准处具有自动剪辑的宽视野眼底相机
US20170311800A1 (en) Through Focus Retinal Image Capturing
KR20110086004A (ko) 안구 촬영 장치 및 방법
JP2006504493A (ja) 取得した画像の処理に基づく眼底画像の自動発生
JP7228342B2 (ja) スリットランプ顕微鏡及び眼科システム
US20200167549A1 (en) Skin analysis apparatus
JP2023073473A (ja) スリットランプ顕微鏡及び眼科システム
US8591031B2 (en) Device and method for determining the visual field
JPH02224637A (ja) 視線検出方法
JP2019213733A (ja) スリットランプ顕微鏡及び眼科システム
TWI720353B (zh) 眼底相機以及自行拍攝眼底之方法
JP7488924B2 (ja) 眼科装置
CN110367926A (zh) 一种应用于自助医疗的干眼症检查装置及方法
JP7111832B2 (ja) 眼科装置
JPH11347016A (ja) 撮像装置
WO2024098321A1 (zh) 一种结合光学反射成像的3d结构光全脸成像装置
RU219079U1 (ru) Устройство определения направления взгляда
US20240008735A1 (en) Coaxial multi-illuminated ocular imaging apparatus
CN109700431A (zh) 一种基于双照明模式获取睑板腺图像的装置、睑板腺图像处理方法以及系统
Zare Bidaki A System for Ocular Surface Temperature Measurement Using Infrared Thermography
JP2022143399A (ja) 検眼システム、及び検眼方法
JP2021069714A (ja) 眼底撮像装置および眼疾検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955554

Country of ref document: EP

Kind code of ref document: A1