WO2024036521A1 - 一种光相控阵电路、发射设备及信号传输系统 - Google Patents

一种光相控阵电路、发射设备及信号传输系统 Download PDF

Info

Publication number
WO2024036521A1
WO2024036521A1 PCT/CN2022/113105 CN2022113105W WO2024036521A1 WO 2024036521 A1 WO2024036521 A1 WO 2024036521A1 CN 2022113105 W CN2022113105 W CN 2022113105W WO 2024036521 A1 WO2024036521 A1 WO 2024036521A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
optical signal
radio frequency
signals
Prior art date
Application number
PCT/CN2022/113105
Other languages
English (en)
French (fr)
Inventor
段飞
郭宇昊
尹延龙
顾增辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/113105 priority Critical patent/WO2024036521A1/zh
Publication of WO2024036521A1 publication Critical patent/WO2024036521A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems

Definitions

  • the present application relates to the field of wireless signal transmission, and in particular to an optical phased array circuit, transmitting equipment and signal transmission system.
  • Phased array is a signal processing technology that uses phased array elements to send and receive radio frequency signals in a direction.
  • a dual-band optical phased array is implemented by constructing a phased array circuit including multiple transmitting units. For a transmitting unit, three optical signals with different wavelengths are input, one of the optical signals is used as the reference optical signal, and different intermediate frequency (IF) signals are loaded on the other two optical signals.
  • the reference optical signal is beat frequency (BF) with the other two optical signals to generate radio frequency (RF) signals in two different frequency bands and transmit them.
  • each transmitting unit includes multiple modulators, multiple phase shifters and other devices, resulting in higher circuit complexity and higher cost.
  • Embodiments of the present application provide an optical phased array circuit, a transmitting device, and a signal transmission system, which reduce the number of optical signals of different wavelengths required to generate radio frequency signals in multiple frequency bands and reduce costs.
  • an optical phased array circuit in a first aspect, includes a photoelectric modulator, a first optical filter, and a phased array unit; the phased array unit includes a transmitting unit; the photoelectric modulator passes through a first optical filter.
  • the optical filter is coupled to the transmitting unit; the optical signal input end of the photoelectric modulator is used to input the first optical signal, and the electrical signal input end of the photoelectric modulator is used to input multiple electrical signals; the multiple electrical signals have different center frequencies;
  • the optoelectronic modulator is used to modulate a plurality of electrical signals onto a first optical signal to obtain a second optical signal; the second optical signal includes a plurality of modulated optical signals; the plurality of modulated optical signals are a plurality of electrical signals modulated to the first optical signal respectively.
  • the optical signal corresponding to the signal; the transmitting unit is used to input the reference optical signal; the reference optical signal and the first optical signal are optical signals of different wavelengths; obtained by beating multiple modulated sideband optical signals one by one with the reference optical signal. Multiple radio frequency signals are transmitted.
  • a second optical signal is obtained by modulating multiple electrical signals with different center frequencies onto the first optical signal.
  • a set of modulated signals obtained by separately modulating the first optical signal.
  • the first optical filter is used to separate the modulated sideband optical signal obtained by beating the frequency of each electrical signal with the first optical signal from the second optical signal.
  • the modulated sideband optical signal can be modulated upper sideband signal or modulated lower sideband signal. With signal.
  • multiple radio frequency signals of different frequency bands can be obtained and transmitted.
  • no matter how many bands of radio frequency signals need to be generated or how many transmitting units are needed to transmit radio frequency signals in the embodiment of the present application only one optoelectronic modulator needs to be installed in an optical phased array circuit, which reduces cost and system complexity.
  • the optical phased array circuit includes a plurality of transmitting units; for one radio frequency signal among the plurality of radio frequency signals, the plurality of transmitting units are used to transmit a radio frequency signal with different phases.
  • the radio frequency signal is divided into multiple channels, one radio frequency signal is received through multiple transmitting units respectively, and then the one radio frequency signal is transmitted by the multiple transmitting units with different phases. , to achieve beamforming of this radio frequency signal.
  • beamforming of multiple radio frequency signals can be achieved by transmitting multiple radio frequency signals with different phases through multiple transmitting units.
  • the plurality of electrical signals include a first electrical signal and a second electrical signal; the plurality of optical signals include a third optical signal and a fourth optical signal; and the third optical signal is a combination of the first electrical signal and the third optical signal.
  • a modulated lower sideband signal of a modulated optical signal obtained by modulating an optical signal; the fourth optical signal is a modulated upper sideband signal of a modulated optical signal obtained by modulating the second electrical signal and the first optical signal; the transmitting unit is used to Beat the third optical signal with the reference optical signal to obtain a first radio frequency signal and transmit it; beat the fourth optical signal and the reference optical signal to obtain a second radio frequency signal and transmit it.
  • the first optical signal is modulated by the first electrical signal and the second electrical signal to obtain a second optical signal.
  • the second optical signal includes a modulated optical signal obtained by modulating the first optical signal by the first electrical signal and a third optical signal.
  • the second electrical signal modulates the first optical signal to obtain a modulated optical signal.
  • two modulated sideband optical signals are obtained from the second optical signal through the first optical signal filter, which are the third optical signal and the fourth optical signal respectively.
  • the first electrical signal modulates the first optical signal to obtain the modulated signal.
  • the first radio frequency signal can be obtained by beating the third optical signal and the reference optical signal
  • the second radio frequency signal can be obtained by beating the fourth optical signal and the reference optical signal, thus completing the generation of two radio frequency signals in different frequency bands.
  • a transmitting unit includes a first phase shifter, a second phase shifter, a light detection unit, an electrical filtering unit, a first antenna unit and a second antenna unit; an input of the first phase shifter The terminal is coupled to the first optical filter, the output terminal of the first phase shifter is coupled to the input terminal of the light detection unit; the input terminal of the second phase shifter is coupled to the first optical filter, and the output terminal of the second phase shifter Coupled with the input end of the light detection unit; the output end of the light detection unit is coupled with the first antenna unit and the second antenna unit through the electrical filtering unit; the first phase shifter is used to phase shift the third optical signal and direct it to the light detection unit.
  • the unit outputs the phase-shifted third optical signal; the second phase shifter is used to phase-shift the fourth optical signal, and outputs the phase-shifted fourth optical signal to the light detection unit; the light detection unit is used to input the phase-shifted The third optical signal, the phase-shifted fourth optical signal, and the reference optical signal; a first radio frequency signal is obtained by beating the phase-shifted third optical signal and the reference optical signal; through the phase-shifted fourth optical signal The signal beats the reference optical signal to obtain a second radio frequency signal; the electrical filtering unit is used to filter out the first radio frequency signal and the second radio frequency signal from the signal output by the light detection unit, and pass them through the first antenna unit and the second radio frequency signal respectively.
  • the antenna unit transmits.
  • the third optical signal and the fourth optical signal are phase-shifted respectively by the first phase shifter and the second phase shifter, and then the phase-shifted third optical signal and the phase-shifted third optical signal are
  • the four optical signals are input into the optical detection unit and beat with the reference optical signal respectively to obtain a radio frequency signal including a first radio frequency signal and a second radio frequency signal.
  • the radio frequency signal is then output to an electrical filtering unit.
  • the electrical filtering unit separates the first radio frequency signal and the second radio frequency signal from the radio frequency signal, and transmits them respectively through the first antenna unit and the second antenna unit.
  • first radio frequency signals of different phases are transmitted through multiple first antenna units corresponding to multiple transmitting units to achieve beam forming of the first radio frequency signal, and are transmitted through multiple second antenna units corresponding to multiple transmitting units.
  • the optical phased array circuit further includes a first transmission channel, a second transmission channel, a plurality of first beam splitters, and a plurality of second beam splitters; the first transmission channel and the second transmission channel
  • the channels are respectively coupled to the first optical filters; the first transmission channel is correspondingly coupled to the plurality of transmitting units through a plurality of first beam splitters, and is used to output the third optical signal output by the first optical filter to the plurality of transmitting units. ;
  • the second transmission channel is correspondingly coupled to the plurality of transmitting units through a plurality of second beam splitters, and is used to output the fourth optical signal output by the first optical filter to the plurality of transmitting units.
  • the third optical signal is output to the first transmission channel, and then output to the first transmission channel through a plurality of first beam splitters respectively.
  • a plurality of transmitting units output the fourth optical signal to the second transmission channel, and then output it to the plurality of transmitting units through a plurality of second beam splitters.
  • a photoelectric modulator is used to modulate the first optical signal, and the first optical filter separates the third optical signal and the fourth optical signal from the modulated second optical signal, and passes them through multiple
  • the beam splitter outputs the third optical signal and the fourth optical signal to multiple transmitting units respectively, thereby reducing the number of photoelectric modulators.
  • the number of channels and beam splitters uses more transmission channels to transmit electrical signals of different frequencies such as the third electrical signal and the fourth electrical signal, and modulates the first optical signal through more electrical signals of different frequencies. This can be achieved by obtaining the corresponding modulated upper sideband signal or modulated lower sideband signal, and setting up a corresponding beam splitter on the additional transmission channel to output the corresponding increased modulated upper sideband signal or modulated lower sideband signal to multiple transmitting units. Beat frequency and beamforming of RF signals in more frequency bands.
  • a transmitting unit further includes a third transmission channel, a first multiplexer, and a second multiplexer; the third transmission channel is coupled to the light detection unit and is used to input the reference optical signal and output it to The light detection unit; the first phase shifter of the emission unit is coupled to the third transmission channel through the first multiplexer, and is used to output the phase-shifted third optical signal to the light detection unit through the third transmission channel; the third phase shifter of the emission unit The two phase shifters are coupled to the third transmission channel through the second multiplexer, and are used to output the phase-shifted fourth optical signal to the light detection unit through the third transmission channel.
  • a set of third optical signals and fourth optical signals received by each transmitting unit are coupled to the third transmission channel through the first multiplexer and the second multiplexer respectively, and then are coupled to the third transmission channel through the third transmission channel.
  • Channel output to the light detection unit At this time, a light detection unit beats the third optical signal and the fourth optical signal respectively through the reference optical signal to obtain radio frequency signals in two frequency bands.
  • the transmitting unit further includes a multi-band amplifier; the output end of the light detection unit is coupled to the electrical filtering unit through the multi-band amplifier; the multi-band amplifier is used to signal the first radio frequency signal and the second radio frequency signal. enlarge.
  • a multi-band amplifier that can amplify radio frequency signals in multiple frequency bands amplifies radio frequency signals in two frequency bands. Then the amplified radio frequency signal is output to the electrical filtering unit, and the electrical filtering unit obtains from the amplified radio frequency signal a first radio frequency signal generated by the beat frequency of the third optical signal and the reference optical signal and a first radio frequency signal generated by the fourth optical signal and the reference The second radio frequency signal is generated by beating the frequency of the optical signal and is transmitted through the first antenna unit and the second antenna unit respectively.
  • the 3dB bandwidth of the light detection unit is greater than the signal frequency of the first radio frequency signal and the signal frequency of the second radio frequency signal.
  • the frequency band of the first radio frequency signal as 28 GHz and the frequency band of the second radio frequency signal as 40 GHz as an example, when the 3dB bandwidth of the light detection unit 7313 is greater than the frequency band of the second radio frequency signal of 40 GHz, light detection can be ensured.
  • the light detection unit includes a first light detector and a second light detector; the emission unit also includes a fourth transmission channel, a fifth transmission channel, a first multiplexer, and a second multiplexer. ;
  • the first photodetector is coupled to the fourth transmission channel and the electrical filtering unit respectively;
  • the second photodetector is coupled to the fifth transmission channel and the electrical filtering unit respectively;
  • the first phase shifter of the transmitting unit is coupled through the first multiplexer to the fourth transmission channel, for outputting the phase-shifted fourth optical signal to the first photodetector through the fourth transmission channel;
  • the second phase shifter of the emission unit is coupled to the fifth transmission channel through the second multiplexer, Used to output the phase-shifted fourth optical signal to the second optical detector through the fifth transmission channel;
  • the first optical detector is used to beat the phase-shifted third optical signal with the reference optical signal to obtain a first radio frequency signal;
  • the second optical detector is used to obtain a second radio frequency signal by beating the phase-shifted fourth optical signal and the reference
  • the same device is not used for beat frequency, but an independent first photodetector and an independent second photodetector are used, and the reference optical signal is used.
  • Beat the third optical signal and the fourth optical signal respectively to obtain a first radio frequency signal and a second radio frequency signal.
  • the specific implementation method is: setting up an independent fourth transmission channel and an independent fifth transmission channel. After the first phase shifter inputs the third optical signal, it phase-shifts the third optical signal, and then outputs the phase-shifted third optical signal to the fourth transmission channel through the first multiplexer and outputs it through the fourth transmission channel. to the first photodetector.
  • the first photodetector inputs a reference optical signal through the fourth transmission channel, and then beats the third optical signal through the reference optical signal to obtain the first radio frequency signal.
  • the second phase shifter inputs the fourth optical signal, it phase-shifts the fourth optical signal, and then outputs the phase-shifted fourth optical signal to the fifth transmission channel through the second multiplexer and outputs it through the fifth transmission channel.
  • the second light detector inputs a reference light signal through the fifth transmission channel, and then beats the fourth light signal through the reference light signal to obtain a second radio frequency signal.
  • the emission unit further includes a first amplifier and a second amplifier; the first photodetector is coupled to the electrical filtering unit through the first amplifier; the second photodetector is coupled to the electrical filtering unit through the second amplifier ; The first amplifier is used to amplify the first radio frequency signal; the second amplifier is used to amplify the second radio frequency signal.
  • an independent first photodetector and an independent second photodetector are used to beat the third optical signal and the fourth optical signal respectively to obtain the first radio frequency signal and the second radio frequency signal. Therefore, independent first amplifiers and second amplifiers may also be used to amplify the first radio frequency signal and the second radio frequency signal respectively.
  • the 3dB bandwidth of the first photodetector is greater than the signal frequency of the first radio frequency signal.
  • the first photodetector since the first photodetector is used to generate the first radio frequency signal at beat frequency, when the 3dB bandwidth of the first photodetector is larger than the frequency band of the first radio frequency signal, it can better ensure that the reference optical signal is used to generate the first radio frequency signal.
  • the signal quality of the first radio frequency signal generated by the beat frequency of the third optical signal since the first photodetector is used to generate the first radio frequency signal at beat frequency, when the 3dB bandwidth of the first photodetector is larger than the frequency band of the first radio frequency signal, it can better ensure that the reference optical signal is used to generate the first radio frequency signal.
  • the signal quality of the first radio frequency signal generated by the beat frequency of the third optical signal since the first photodetector is used to generate the first radio frequency signal at beat frequency
  • the 3dB bandwidth of the second photodetector is greater than the signal frequency of the second radio frequency signal.
  • the second photodetector since the second photodetector is used to generate the second radio frequency signal at beat frequency, when the 3dB bandwidth of the second photodetector is larger than the frequency band of the second radio frequency signal, it can better ensure that the reference optical signal is used to generate the second radio frequency signal.
  • the signal quality of the second radio frequency signal generated by the beat frequency of the fourth optical signal since the second photodetector is used to generate the second radio frequency signal at beat frequency, when the 3dB bandwidth of the second photodetector is larger than the frequency band of the second radio frequency signal, it can better ensure that the reference optical signal is used to generate the second radio frequency signal.
  • the signal quality of the second radio frequency signal generated by the beat frequency of the fourth optical signal since the second photodetector is used to generate the second radio frequency signal at beat frequency
  • inventions of the present application also provide a transmitting device.
  • the transmitting device includes a laser source, a radio frequency signal source and at least one optical phased array circuit described in the first aspect; the laser source is used for phase control of light.
  • the array circuit outputs first optical signals and reference optical signals of different wavelengths;
  • the radio frequency signal source is used to output multiple electrical signals with different center frequencies to the optical phased array circuit;
  • the optical phased array circuit is used to pass multiple electrical signals and reference light
  • the signal generates and transmits multiple radio frequency signals; the multiple radio frequency signals are signals in different frequency bands.
  • inventions of the present application also provide a signal transmission system.
  • the signal transmission system includes a receiving device and the transmitting device described in the second aspect; the transmitting device is used to transmit multiple signals carrying data information to the receiving device. Radio frequency signals; multiple radio frequency signals are radio frequency signals in different frequency bands; the receiving device is used to receive multiple radio frequency signals and obtain data information.
  • Figure 1 is a schematic diagram of the implementation principle of beamforming provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a transmitting device provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a transmitting unit provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of an optical multiplexing unit provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a signal transmission system provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of yet another transmitting device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an optical phased array circuit provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another optical phased array circuit provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a transmitting unit provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of yet another transmitting unit provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of yet another transmitting unit provided by an embodiment of the present application.
  • Figure 12 is an application schematic diagram of an optical phased array circuit provided by an embodiment of the present application.
  • Figure 13 is an application schematic diagram of yet another optical phased array circuit provided by an embodiment of the present application.
  • Figure 14 is an application schematic diagram of yet another optical phased array circuit provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a laser source provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of a first optical signal modulated with a second electrical signal and a third electrical signal provided by an embodiment of the present application;
  • Figure 17 is a schematic diagram of the signal current of a first radio frequency signal of 28 GHz obtained by phase-shifting a third optical signal according to an embodiment of the present application;
  • Figure 18 is a schematic diagram of the signal current of a second radio frequency signal of 40 GHz obtained by phase-shifting the fourth optical signal according to an embodiment of the present application.
  • Coupled and “connection” involved in the embodiments of this application should be understood in a broad sense. For example, they may refer to a physical direct connection, or they may refer to an indirect connection realized through electronic devices, such as resistance, inductance, capacitance or other electronic devices.
  • the connection implemented by the device.
  • Beamforming is also called beamforming and spatial filtering.
  • the principle of beamforming is to use the interference principle of waves.
  • the principle of wave interference means: when wave crests and wave crests, or wave troughs and wave troughs meet, the energy is added, the wave crests are higher and the wave troughs are deeper; when the wave crests and wave troughs meet, the two cancel each other out.
  • Beamforming can be achieved by mirrors, lenses and phased array elements. Beamforming can be used on both the signal transmitting end and the signal receiving end. Compared with mirrors and lenses, when beam forming is achieved through a phased array unit, the beam direction angle can be adjusted and has higher flexibility.
  • radio frequency (RF) signals at certain angles obtain constructive interference (CI), while others
  • the RF signals at different angles obtain destructive interference (DI), thereby generating directional beams to increase the propagation distance of the transmitted RF signals.
  • two transmitting circuits 11 respectively transmit a radio frequency signal, in which the dotted line represents the peak of the radio frequency signal and the solid line represents the valley of the radio frequency signal.
  • the black dots in the figure represent the positions where the peaks of two radio frequency signals meet in the air, or where the troughs of two radio frequency signals meet in the air.
  • the phase of the radio frequency signal transmitted by the transmitting circuit 11 can also be adjusted to adjust the peaks and peaks of different radio frequency signals, as well as the valleys and valleys. The position where they meet in the air is used to determine the launch angle of the beam generated by beamforming in the air, etc.
  • Phased array units include electrical phased array units and optical phased array units.
  • electrical phased array units at higher electromagnetic wave frequencies, signal leakage between adjacent circuits increases, causing the circuits to become more sensitive to the phase noise of the oscillator.
  • the bandwidth of the electronic devices in the electrical phased array unit is small, and beam deflection problems may occur during beam forming.
  • beamforming performs phase control on optical signals.
  • Integrated optical circuits have strong restrictions on optical signals, and photonic devices have smaller phase noise and larger bandwidth. Therefore, in high-frequency wireless communications and radar applications (such as millimeter-wave frequency bands), the use of optical phased array units can reduce the crosstalk between signals in the phased array units and avoid the problem of beam deflection.
  • Dual-band technology refers to the feature that the same communication device can work in two frequency bands.
  • the communication device can choose to work in one of the two frequency bands to avoid Work in the same frequency band with other communication equipment to avoid interference.
  • communication equipment can work in two frequency bands: 28GHz and 40GHz.
  • 28GHz and 40GHz When a large number of communication equipment in the same area works at 28GHz, if the current communication equipment chooses 40GHz to work, it can effectively avoid the 28GHz signal. interference.
  • using the same optical phased array to control the beamforming of dual-band radio frequency signals can reduce the number of chips required for the system and reduce the cost of the equipment.
  • the transmitting device 1 includes a laser source 10 and a plurality of transmitting circuits 11 .
  • each transmitting circuit 11 includes an optical multiplexing unit 111 , a beater 112 and a radio frequency front end 113 .
  • Each optical multiplexing unit 111 includes an optical multiplexer 1111 and an adjustment unit 1112. The input end of the optical multiplexing unit 111 is coupled to the laser source 10 . The output end of the optical multiplexing unit 111 is coupled to the beater 112 and coupled to the radio frequency front end 113 through the beater 112 .
  • the adjustment unit 1112 includes a modulator 11121 and a phase shifter 11122.
  • the laser source 10 is used to output an optical signal to the optical multiplexer 1111 of each transmitting circuit 11.
  • Each optical signal includes a reference optical signal and a beat frequency optical signal.
  • the optical multiplexer 1111 outputs beat frequency optical signals of different wavelengths to different adjustment units 1112 respectively.
  • the modulator 11121 of each adjustment unit 1112 is used to load an intermediate frequency signal or a low frequency signal on a beat frequency optical signal to obtain a modulated optical signal.
  • the modulated optical signal is phase-shifted by the phase shifter 11122 and then output to the optical multiplexer 1111 .
  • the optical multiplexer 1111 is used to input the phase-shifted modulated optical signal, and output the modulated optical signal and the reference optical signal to the corresponding beat frequency device 112 .
  • the beat frequency device 112 performs beat frequency processing on the modulated upper sideband signal and the reference optical signal of the modulated optical signal to obtain a radio frequency signal in a frequency band, and transmits it through the corresponding radio frequency front end 113 .
  • the phase shifter in each transmitting circuit 11 shifts the phase of the corresponding modulated optical signal to a different phase angle. Then multiple transmitting circuits 11 can transmit multiple radio frequency signals located in the same frequency band and with different phases, thereby achieving the goal of operating in one frequency band. Beamforming of RF signals.
  • the transmitting circuit 11 needs to transmit multiple radio frequency signals in multiple frequency bands and perform beam forming, as shown in FIG. 4 , it is only necessary to increase the number of adjustment units 1112 in each transmitting circuit 11 and the number of different wavelengths in one optical signal. The number of beat frequency light signals.
  • the laser source 10 outputs a reference optical signal and multiple beat frequency optical signals of different wavelengths to the optical multiplexer 1111, and a beat frequency optical signal is correspondingly input through different adjustment units 1112, and the input
  • the beat frequency optical signal is modulated and phase-shifted to obtain a modulated optical signal and output to the optical multiplexer 1111; after the optical multiplexer 1111 inputs multiple modulated optical signals obtained by the multiple adjustment units 1112, the multiple modulated optical signals and the reference
  • the optical signal is output to the beater 112.
  • the beater 112 beats the modulated upper sideband signals of the plurality of modulated optical signals with the reference optical signal to obtain radio frequency signals of multiple frequency bands.
  • a set of optical signals including three different wavelengths is required, and one of the optical signals is used as a reference optical signal.
  • the other two optical signals are used as beat frequency optical signals, and the two beat frequency optical signals are beat with the reference optical signal respectively to obtain radio frequency signals in two different frequency bands. If it is necessary to generate radio frequency signals including more frequency bands, a larger number of beat frequency optical signals of different wavelengths are needed in a set of radio frequency signals.
  • the requirements for the laser source 10 that generates optical signals of different wavelengths are very high, and the solution is difficult to implement.
  • a modulator 11121 when beamforming a radio frequency signal in one frequency band, a modulator 11121 needs to be provided in each transmitting circuit 11, and as shown in Figure 4, when beamforming is required in multiple frequency bands.
  • multiple modulators 11121 corresponding to the number of frequency bands need to be installed in each transmitting unit. Setting too many modulators 11121 will also increase the system setup cost and increase the system complexity.
  • the radio frequency signals of multiple frequency bands are generated by the beat frequency converter 112, the modulated upper sideband signal is selected for each frequency band, and the radio frequency signal obtained by beating the frequency by the beat frequency converter 112 has low electrical signal energy.
  • the signal transmission system includes a transmitting device 3 and a receiving device 4.
  • the transmitting device 3 is used to send radio frequency signals to the receiving device 4.
  • the transmitting device 3 includes a laser source 5 , a radio frequency signal source 6 and at least one optical phased array circuit 7 .
  • the optical phased array circuit 7 includes a photoelectric modulator 71 , a first optical filter 72 , and a phased array unit 73 .
  • the phased array unit 73 includes a plurality of transmitting units 731 .
  • the optoelectronic modulator 71 is coupled to the plurality of transmitting units 731 through the first optical filter 72 .
  • the laser source 5 is used to output a set of optical signals to each optical phased array circuit 7.
  • the set of optical signals includes a reference optical signal and a first optical signal.
  • the reference optical signal and the first optical signal have different wavelengths.
  • the radio frequency signal source 6 is used to output a set of electrical signals to the optical phased array circuit 7.
  • the set of electrical signals includes a first electrical signal and a third electrical signal with different center frequencies. Second electrical signal.
  • the optical signal input terminal of the photoelectric modulator 71 is used to input the first optical signal, and the electrical signal input terminal of the photoelectric modulator 71 is used to input the first electrical signal and the second electrical signal to modulate the first electrical signal and the second electrical signal.
  • the first optical filter 72 is used to filter the second optical signal to obtain a third optical signal and a fourth optical signal and output them to the plurality of transmitting units 731 , where the center frequency of the third optical signal is the center frequency of the first optical signal.
  • the center frequency minus the center frequency of the first electrical signal that is, the third optical signal is the modulated lower sideband signal of a modulated optical signal obtained by modulating the first optical signal with the first electrical signal
  • the center frequency of the fourth optical signal is the center frequency of the first optical signal plus the center frequency of the second electrical signal (that is, the fourth optical signal is the modulated upper sideband signal of the modulated optical signal obtained by modulating the first optical signal with the second electrical signal).
  • the plurality of transmitting units 731 are used to input a reference optical signal, a third optical signal and a fourth optical signal, beat the third optical signal and the reference optical signal to obtain a plurality of first radio frequency signals and transmit them; through the fourth optical signal Beat the frequency with the reference optical signal to obtain a plurality of second radio frequency signals and transmit them.
  • each transmitting unit 731 beats the received third optical signal and fourth optical signal with the reference optical signal to obtain a first radio frequency signal, and beats the fourth optical signal with the reference optical signal to obtain a second radio frequency signal.
  • the plurality of transmitting units 731 transmit the first radio frequency signal and the second radio frequency signal respectively, thereby realizing the transmission of dual-band radio frequency signals.
  • the optical phased array circuit provided by the embodiment of the present application solves the problem of requiring a large number of optical signals of different wavelengths when generating multi-band radio frequency signals.
  • optical phased array circuit provided by the embodiment of the present application, regardless of To generate multiple radio frequency signals in different frequency bands, only two optical signals of different wavelengths are needed as the first optical signal and the reference optical signal, and the number of electrical signals with different center frequencies only needs to be increased correspondingly.
  • multi-band radio frequency signals can be transmitted through one transmitting unit 731.
  • multiple transmitting units 731 are used.
  • the radio frequency signal of one frequency band is phase-shifted through multiple transmitting units 731
  • the radio frequency signal of one frequency band is phase-shifted through the multiple transmitting units 731 with different phases.
  • the signal is transmitted to achieve beamforming of the radio frequency signal in a frequency band.
  • multiple transmitting units 731 perform beamforming on multi-band radio frequency signals respectively.
  • the embodiments of the present application reduce the requirements for light sources that provide optical signals of different wavelengths when multi-band radio frequency signals are beamformed. Secondly, no matter how many bands of radio frequency signals need to be generated or how many transmitting units 731 are needed to transmit radio frequency signals in the embodiment of the present application, only one photoelectric modulator 71 needs to be provided in an optical phased array circuit 7. Reduces cost and system complexity.
  • the optical phased array circuit 7 also includes a first transmission channel 74, a second transmission channel 75, a plurality of first beam splitters 76, and a plurality of second beam splitters. 77;
  • the first transmission channel 74 and the second transmission channel 75 are respectively coupled to the first optical filter 72;
  • the first transmission channel 74 is coupled to a plurality of transmitting units 731 through a plurality of first beam splitters 76 for transmitting to multiple transmitters.
  • a transmitting unit 731 outputs the third optical signal output by the first optical filter 72;
  • the second transmission channel 75 is coupled to the plurality of transmitting units 731 through a plurality of second beam splitters 77, and is used to transmit to the plurality of transmitting units 731.
  • the fourth optical signal output by the first optical filter 72 is output.
  • the first optical filter 72 obtains the third optical signal and the fourth optical signal from the second optical signal, it outputs the third optical signal to the first transmission channel 74 and then passes through a plurality of third optical signals.
  • a beam splitter 76 outputs to a plurality of transmitting units 731 respectively; the fourth optical signal is output to the second transmission channel 75 , and then is output to a plurality of transmitting units 731 respectively through a plurality of second beam splitters 77 .
  • a photoelectric modulator 71 is used to modulate the first optical signal, and the first optical filter 72 separates the third optical signal and the fourth optical signal from the modulated second optical signal, and passes them through
  • the plurality of beam splitters output the third optical signal and the fourth optical signal to the plurality of transmitting units 731 respectively, thereby reducing the number of optoelectronic modulators 71 compared to the solutions described in FIGS. 3 and 4 .
  • the number of channels and beam splitters uses more transmission channels to transmit electrical signals of different frequencies such as the third electrical signal and the fourth electrical signal, and modulates the first optical signal through more electrical signals of different frequencies. Obtain the corresponding modulated upper sideband signal or modulated lower sideband signal, and set a corresponding beam splitter on the additional transmission channel to output the corresponding increased modulated upper sideband signal or modulated lower sideband signal to the multiple transmitting units 731, that is Achieve beat frequency and beamforming of RF signals in more frequency bands.
  • the transmitting unit 731 includes a first phase shifter 7311, a second phase shifter 7312, a photodetector unit (photodetector, PD) 7313, an electrical filtering unit 7314, and a first antenna.
  • the input end of the first phase shifter 7311 is coupled to the first optical filter 72, and the output end of the first phase shifter 7311 is coupled to the input end of the light detection unit 7313; the second phase shifter The input end of the phase shifter 7312 is coupled to the first optical filter 72, and the output end of the second phase shifter 7312 is coupled to the input end of the light detection unit 7313; the output end of the light detection unit 7313 is connected to the first antenna unit through the electrical filtering unit 7314.
  • 7315 is coupled to the second antenna unit 7316.
  • the third optical signal is output to the first phase shifter 7311, and passes through the first The phase shifter 7311 shifts the phase of the third optical signal, and outputs the phase-shifted third optical signal to the light detection unit 7313.
  • the first optical filter 72 outputs the third optical signal to the first phase shifter 7311 through the first transmission channel 74 and the first beam splitter 76, and then is The phaser 7311 shifts the phase of the third optical signal and then outputs it to the light detection unit 7313.
  • the first phase shifter 7311 is a time delay interferometer.
  • the first phase shifter 7311 is a Mach-Zehnder delay interferometer.
  • the first phase shifter 7311 uses optical fiber as the phase control element.
  • the first phase shifter 7311 is an optical phase shifter.
  • the first phase shifter 7311 is a thermo-optical phase shifter or an electro-optical phase shifter.
  • the intensity of the output third optical signal may be reduced when the phase is changed, resulting in energy loss.
  • the physical structure of the product will be too large and the integration level will be low.
  • Using an optical phase shifter as the first phase shifter 7311 not only ensures a high degree of integration, but also ensures that the product has a smaller physical structure, and during the phase shifting process, the third optical signal is The interference is relatively small.
  • Figure 17 shows the use of an optical phase shifter to perform a 90° phase shift on the third optical signal, and the third optical signal without The signal is phase-shifted.
  • the current diagram of the first radio frequency signal obtained after beating the frequency on the light detection unit 7313 The dotted line in the figure is the first radio frequency signal after the phase is shifted by 90°, and the solid line is the unphased first RF signal.
  • Figure 18 shows the current of the second radio frequency signal obtained after beating the frequency on the light detection unit 7313 using an optical phase shifter to perform a 90° phase shift on the fourth optical signal, and without performing a phase shift on the fourth optical signal.
  • the first transmission channel 74 is a waveguide or other device that can transmit optical signals.
  • the fourth optical signal is output to the second phase shifter 7312, and passed through the second optical filter 7312.
  • the phase shifter 7312 shifts the phase of the fourth optical signal, and outputs the phase-shifted fourth optical signal to the light detection unit 7313.
  • the first optical filter 72 outputs the fourth optical signal to the second phase shifter 7312 through the second transmission channel 75 and the second beam splitter 77, and then the second phase shifter 7312
  • the phaser 7312 shifts the phase of the fourth optical signal and then outputs it to the light detection unit 7313.
  • the second phase shifter 7312 is a time delay interferometer.
  • the second phase shifter 7312 is a Mach-Zehnder delay interferometer.
  • the second phase shifter 7312 uses optical fiber as the phase control element.
  • the second phase shifter 7312 is an optical phase shifter.
  • the second phase shifter 7312 is a thermo-optical phase shifter, an electro-optical phase shifter, or the like.
  • phase shifter is specifically used for the second phase shifter 7312
  • the technical effects of which phase shifter is specifically used for the second phase shifter 7312 please refer to the above description of the related technical effects of the first phase shifter 7311.
  • the second transmission channel 75 is a waveguide or other device that can transmit optical signals.
  • the light detection unit 7313 is used to input the phase-shifted third optical signal, the phase-shifted fourth optical signal, and the reference optical signal; through the phase-shifted third optical signal, The optical signal and the reference optical signal are beat to obtain a first radio frequency signal; the phase-shifted fourth optical signal and the reference optical signal are beat to obtain a second radio frequency signal.
  • the light detection unit 7313 is a photodiode or the like.
  • the principle of using the photodetector unit 7313 (photodetector, PD) for frequency beating is: after the photodetector unit 7313 receives optical signals of two different frequencies, it mixes them and converts them into electrical signals. signal; assuming that the frequencies of the two optical signals of different frequencies received by the light detection unit 7313 are f 1 and f 2 respectively, when the light detection unit 7313 performs mixing, a mixed frequency of f 1 + f 2 will be obtained. Frequency electrical signal and mixed frequency electrical signal with frequency f 1 -f 2 . Since the frequencies of f 1 and f 2 are generally relatively large, the bandwidth of the light detection unit 7313 is smaller than the sum of f 1 + f 2 .
  • the light detection unit 7313 is equivalent to a low-pass filter and will filter the frequency of f 1 + f
  • the signal of 2 is filtered out, leaving only the signal with frequency f 1 -f 2 , and the electrical signal with frequency f 1 -f 2 can be used as the signal obtained by the beat frequency.
  • the center frequency of the reference optical signal is f 12
  • the center frequency of the first optical signal is f 11
  • the center frequency of the first electrical signal is f RF1
  • the center frequency of the second electrical signal is f RF2 .
  • f 11 is greater than f 12 , or, f 11 is less than f 12
  • f RF1 is not equal to f RF2
  • the absolute value of f 11 minus f 12 is greater than f RF1 and f RF2 .
  • Figure 16 is a signal frequency diagram of modulating the first optical signal through the first electrical signal and the second electrical signal. As shown in Figure 16, through the first electrical signal The signal modulates the first optical signal to obtain a first modulated optical signal; the second electrical signal modulates the first optical signal to obtain a second modulated optical signal.
  • f 11 -f RF1 is the frequency of the modulation lower sideband signal of the first modulated optical signal
  • the signal f 11 +f RF1 is the frequency of the modulation upper sideband signal of the first modulated optical signal
  • f 11 -f RF2 is the frequency of the modulated lower sideband signal of the second modulated optical signal
  • f 11 +f RF2 is the frequency of the modulated upper sideband signal of the second modulated optical signal.
  • the third optical signal and the fourth optical signal are obtained through the first optical filter 72; optionally, the frequency of the third optical signal can be f 11 -f RF1 (that is, the third optical signal is the modulation lower side of the first modulated optical signal.
  • the frequency of the fourth optical signal may be f 11 +f RF2 (that is, the fourth optical signal is the modulated lower sideband optical signal of the second modulated optical signal); or, the frequency of the third optical signal may be f 11 +f RF1 (that is, the third optical signal is the modulated upper sideband optical signal of the first modulated optical signal), and the frequency of the fourth optical signal can be f 11 -f RF2 (that is, the fourth optical signal is the modulated upper sideband optical signal of the second modulated optical signal) with light signal below).
  • the optical signal S(t) converged to the transmitting unit 731 can be expressed by the following expression:
  • S(t) is the total signal input by the transmitting unit 731;
  • a 1 is the amplitude of the third optical signal,
  • a 2 is the amplitude of the fourth optical signal,
  • a 3 is the amplitude of the reference optical signal;
  • f 11 is the first The center frequency of the optical signal,
  • f 12 is the center frequency of the reference optical signal,
  • f RF1 is the center frequency of the first electrical signal,
  • f RF2 is the center frequency of the second electrical signal;
  • the 3dB bandwidth of the light detection unit 7313 is usually tens of GHz.
  • the responsivity of the light detection unit 7313 is 1A/W
  • the light detection unit 7313 can obtain the frequency f 11 -f RF1 - through the reference light signal with the frequency f 12 and the third light signal with the frequency f 11 -f RF1
  • the radio frequency signal of f 12 can be obtained by using the reference light of frequency f 12 and the optical signal of frequency f 11 +f RF2 to obtain the radio frequency signal of frequency f 11 +f RF2 -f 12 .
  • the radio frequency signal with the frequency f 11 -f 12 -f RF1 After converting the frequencies of the two radio frequency signals into expression forms: the radio frequency signal with the frequency f 11 -f 12 -f RF1 , and the radio frequency signal with the frequency f 11 -f 12 +f RF2 .
  • the radio frequency signal I(t) output by the light detection unit 7313 can be expressed by the following formula:
  • Re[] means taking the real part for calculation.
  • the two terms on the right side of the equal sign are the expressions of the radio frequency signals in the two frequency bands respectively.
  • the center frequency difference between the reference optical signal and the first optical signal as an example of 32 GHz
  • the center frequency f RF1 of the first electrical signal is 4 GHz
  • the center frequency f RF2 of the second electrical signal is 8 GHz
  • a transmitting unit 731 also includes a third transmission channel 73171, a first multiplexer 7318, and a second multiplexer 7319; the third transmission channel 73171 and the light detection unit 7313 Coupling; the first phase shifter 7311 of the transmitting unit 731 is coupled to the third transmission channel 73171 through the first multiplexer 7318, for outputting the phase-shifted third optical signal to the light detection unit 7313 through the third transmission channel 73171;
  • the second phase shifter 7312 of the transmitting unit 731 is coupled to the third transmission channel 73171 through the second multiplexer 7319, and is used to output the phase-shifted fourth optical signal to the light detection unit 7313 through the third transmission channel 73171.
  • a set of third optical signals and fourth optical signals received by each transmitting unit 731 are coupled to the third transmission channel 73171 through the first multiplexer 7318 and the second multiplexer 7319 respectively, and then It is output from the third transmission channel 73171 to the light detection unit 7313.
  • a light detection unit 7313 beats the third optical signal and the fourth optical signal respectively through the reference optical signal to obtain radio frequency signals in two frequency bands.
  • the first multiplexer 7318 can be a beam combiner, a ring resonator, or other devices that can combine optical signals.
  • the second multiplexer 7319 can be a beam combiner, a ring resonator, or other devices that can combine optical signals.
  • the transmitting unit 731 as shown in Figure 10 also includes a multi-band amplifier 73101; the output end of the light detection unit 7313 is coupled to the electrical filtering unit 7314 through the multi-band amplifier 73101; the multi-band amplifier 73101 is used to The first radio frequency signal and the second radio frequency signal undergo signal amplification.
  • a light detection unit 7313 is used to beat the frequency to generate radio frequency signals in two frequency bands, and then a multi-channel multi-channel multiplier is used to amplify the radio frequency signals in multiple frequency bands.
  • the frequency band amplifier 73101 amplifies the radio frequency signals of two frequency bands.
  • the amplified radio frequency signal is then output to the electrical filtering unit 7314.
  • the electrical filtering unit 7314 obtains the first radio frequency signal generated by the beat frequency of the third optical signal and the reference optical signal and the fourth optical signal from the amplified radio frequency signal. and the second radio frequency signal generated by the beat frequency of the reference optical signal, and are transmitted through the first antenna unit 7315 and the second antenna unit 7316 respectively.
  • the multi-band amplifier 73101 may use a dual-band amplifier.
  • the 3dB bandwidth of the light detection unit 7313 is larger than the frequency band of the first radio frequency signal and the frequency band of the second radio frequency signal.
  • the frequency band of the first radio frequency signal as 28 GHz and the frequency band of the second radio frequency signal as 40 GHz as an example, when the 3dB bandwidth of the light detection unit 7313 is greater than the frequency band of the second radio frequency signal of 40 GHz, light detection can be ensured.
  • Unit 7313 beats the signal quality of the first radio frequency signal and the second radio frequency signal generated.
  • the first antenna unit 7315 and the second antenna unit 7316 can be manufactured on a PCB board (printed circuit board).
  • the Both the first antenna unit 7315 and the second antenna unit 7316 are coupled to the light detection unit 7313 through the multi-band amplifier 73101 and the electrical filtering unit 7314.
  • the two antenna units can be respectively disposed on different PCB boards, or the two antenna units can also Can be set on a PCB board.
  • the light detection unit 7313 includes a first light detector 73131 and a second light detector 73132; the emission unit 731 also includes a fourth transmission channel 73172, a fifth transmission channel 73173, The first multiplexer 7318 and the second multiplexer 7319; the first photodetector 73131 is coupled to the fourth transmission channel 73172 and the electrical filtering unit 7314 respectively; the second photodetector 73132 is coupled to the fifth transmission channel 73173 and the electrical filtering unit respectively.
  • the unit 7314 is coupled; the first phase shifter 7311 of the transmitting unit 731 is coupled to the fourth transmission channel 73172 through the first multiplexer 7318, for outputting the phase-shifted third signal to the first photodetector 73131 through the fourth transmission channel 73172.
  • the first optical detector 73131 is used to beat the phase-shifted third optical signal with the reference optical signal to obtain a first radio frequency signal
  • the second optical detector 73132 is used to obtain a first radio frequency signal through the phase-shifted fourth optical signal.
  • the optical signal and the reference optical signal are beat to obtain a second radio frequency signal.
  • the same device is not used for beat frequency, but an independent first photodetector 73131 and an independent second photodetector 73132 are used.
  • the optical signal beats the third optical signal and the fourth optical signal respectively, thereby obtaining the first radio frequency signal and the second radio frequency signal.
  • the specific implementation method is: setting up an independent fourth transmission channel 73172 and an independent fifth transmission channel 73173. After the first phase shifter 7311 inputs the third optical signal, it phase-shifts the third optical signal, and then outputs the phase-shifted third optical signal to the fourth transmission channel 73172 through the first multiplexer 7318 and passes through the fourth transmission channel 73172.
  • the transmission channel 73172 outputs to the first light detector 73131.
  • the first light detector 73131 inputs the reference optical signal through the fourth transmission channel 73172, and then beats the third optical signal through the reference optical signal to obtain the first radio frequency signal.
  • the second phase shifter 7312 inputs the fourth optical signal, it phase-shifts the fourth optical signal, and then outputs the phase-shifted fourth optical signal to the fifth transmission channel 73173 through the second multiplexer 7319 and passes through the fifth transmission channel 73173.
  • the transmission channel 73173 outputs to the second light detector 73132.
  • the second light detector 73132 inputs the reference optical signal through the fifth transmission channel 73173, and then beats the fourth optical signal through the reference optical signal to obtain the second radio frequency signal.
  • the embodiment of the present application obtains the first radio frequency signal and the second radio frequency signal by setting up independent devices to beat frequencies respectively as shown in FIG. 11 .
  • the transmitting unit 731 shown in FIG. 11 can more easily separate the radio frequency signals of the two frequency bands.
  • the actual product can also be made into a larger-scale antenna array.
  • the emission unit 731 also includes a first amplifier 73102 and a second amplifier 73103; the first light detector 73131 is coupled to the electrical filtering unit 7314 through the first amplifier 73102; the second light The detector 73132 is coupled to the electrical filtering unit 7314 through a second amplifier 73103; the first amplifier 73102 is used to amplify the first radio frequency signal; the second amplifier 73103 is used to amplify the second radio frequency signal.
  • independent first light detector 73131 and an independent second light detector 73132 are used to beat the third optical signal and the fourth optical signal respectively, the first radio frequency signal and the second radio frequency signal are obtained.
  • independent first amplifier 73102 and second amplifier 73103 can also be used to amplify the first radio frequency signal and the second radio frequency signal respectively.
  • the 3dB bandwidth of the first light detector 73131 is greater than the frequency band of the first radio frequency signal.
  • the first photodetector 73131 since the first photodetector 73131 is used to beat the frequency to generate the first radio frequency signal, when the 3dB bandwidth of the first photodetector 73131 is greater than the frequency band of the first radio frequency signal, it can better ensure that the reference passes The signal quality of the first radio frequency signal generated by beating the optical signal to the third optical signal.
  • the 3dB bandwidth of the second photodetector 73132 is greater than the frequency band of the second radio frequency signal.
  • the second photodetector 73132 since the second photodetector 73132 is used to beat the frequency to generate the second radio frequency signal, when the 3dB bandwidth of the second photodetector 73132 is larger than the frequency band of the second radio frequency signal, it can better ensure that the reference passes The signal quality of the second radio frequency signal generated by beating the optical signal to the fourth optical signal.
  • the electrical filtering unit 7314 can be a device that implements multi-band electrical signal filtering, and filters the signals output by the light detection unit 7313 as shown in Figure 10, thereby obtaining the first radio frequency signal and the second radio frequency signal. Radio frequency signals, or filtering the signals output by the first photodetector 73131 and the second photodetector 73132 as shown in Figure 11 to obtain the first radio frequency signal and the second radio frequency signal respectively.
  • the electrical filtering unit 7314 includes a first electrical filter 73141 and a second electrical filter 73142.
  • the first electrical filter 73141 is used to select the first radio frequency signal from the radio frequency signal output by the light detection unit 7313, and output it to the first antenna Unit 7315 transmits through the first antenna unit 7315.
  • the second electrical filter 73142 is used to select the second radio frequency signal from the radio frequency signal output by the light detection unit 7313, and output it to the second antenna unit 7316 for transmission through the second antenna unit 7316.
  • the first electrical filter 73141 is used to select the first radio frequency signal from the radio frequency signal output by the first light detector 73131, and output it to the first antenna unit 7315, through the first An antenna unit 7315 transmits.
  • the second electrical filter 73142 is used to select the second radio frequency signal from the radio frequency signal output by the second photodetector 73132, and output it to the second antenna unit 7316 for transmission through the second antenna unit 7316.
  • a set of data information that needs to be transmitted can be carried on a first optical signal, and an optical phased array circuit 7 is used to generate radio frequency signals in two frequency bands and beam them with different phases. Shaped emission.
  • multiple sets of different data information need to be transmitted as shown in FIG. 6 , they can be carried on multiple first optical signals and transmitted through multiple optical phased array circuits 7 respectively.
  • each optical phased array circuit 7 receives a set of optical signals output by the laser source 5, and each group
  • the optical signals all include a reference optical signal and a first optical signal, where the first optical signal is used to carry the data signal, and the first electrical signal and the second electrical signal output by the photoelectric modulator 71 through the radio frequency signal source 6 are useful for the first optical signal.
  • An optical signal is modulated to obtain a second optical signal, and then a third optical signal and a fourth optical signal are obtained through the first optical filter 72; then the third optical signal and the fourth optical signal are divided into M paths respectively and output to the phase
  • the M transmitting units 731 of the array unit 73 are controlled.
  • the M transmitting units 731 then respectively phase-shift the input third optical signal and the fourth optical signal, and then obtain the first radio frequency signal and the second radio frequency signal through the beat frequency of the reference optical signal and transmit them.
  • a set of optical signals input by each optical phased array circuit 7 may be the same or different. At this time, the demand for optical signals of different wavelengths is not high.
  • phased array units 73 including multiple light detection units 7313, amplifiers 73101, first antenna unit 7315 and second antenna unit 7316) and corresponding auxiliary components, etc., which will greatly increase the cost and cost of the system. Integration complexity, etc.
  • each of the N optical phased array circuits 7 uses a photodetection unit 7313 shown in Figure 10 of the above embodiment to detect the third optical signal and The fourth light signal performs beat frequency.
  • N optical phased array circuits 7 can share the third transmission channel 73171, the optical detection unit 7313, the multi-band amplifier 73101, the electrical filtering unit 7314, the first antenna unit 7315 and the second antenna unit. 7316.
  • each optical phased array circuit 7 obtains the third optical signal and the fourth optical signal from the second optical signal through the first optical filter 72, and then converts the third optical signal and the fourth optical signal into Divided into M channels, each third optical signal in the M channels is input into a corresponding first phase shifter 7311 for phase shifting, and then the phase-shifted third optical signal passes through the corresponding first multiplexer 7318 Output to the shared third transmission channel 73171.
  • each fourth optical signal in the M channels is input to a corresponding second phase shifter 7312 for phase shifting, and then the phase-shifted fourth optical signal is output to the corresponding second multiplexer 7319.
  • Shared third transmission channel 73171 also receives N reference optical signals corresponding to the N optical phased array circuits 7, and converts the input N phase-shifted third optical signals and N phase-shifted optical signals into The fourth optical signal and the N reference optical signals are jointly output to the common optical detection unit 7313, and the optical detection unit 7313 beats the N third optical signals and the N fourth optical signals respectively through the N reference lights.
  • N first radio frequency signals and second radio frequency signals carrying different data information are obtained.
  • a set of optical signals input by each optical phased array circuit 7 needs to satisfy: the frequency difference between the reference optical signal and the first optical signal in each set of optical signals.
  • the absolute values of the values must be equal. Taking the absolute value of the frequency difference between the reference optical signal and the first optical signal as an example of 32GHz, the frequency difference between the reference optical signal and the first optical signal in each group of optical signals The absolute values of the values are all 32GHz; the 3dB bandwidth of the first optical detector 73131 is greater than the absolute value of the frequency difference between the third optical signal and the reference optical signal, and the absolute value of the frequency difference between the fourth optical signal and the reference optical signal. The absolute value of the larger frequency difference. Under such conditions, the N first radio frequency signals and the second radio frequency signals carrying different data information obtained by beating N third optical signals and N fourth optical signals by a light detection unit 7313 are improved as much as possible. signal quality.
  • each of the N optical phased array circuits 7 adopts the first light detection system shown in Figure 11 of the above embodiment.
  • the detector 73131 and the second light detector 73132 beat the third optical signal and the fourth optical signal respectively.
  • Figure 14 in the figure, one of the M first photodetectors 73131 and the second photodetector 73132 of the N optical phased array circuits 7 is example).
  • the difference between the embodiment of Figure 14 is that the N optical phased array circuits 7 share the fourth transmission channel 73172, the fifth transmission channel 73173, the first photodetector 73131, the second Photodetector 73132, first amplifier 73102, second amplifier 73103, first electrical filter 73141, second electrical filter 73142, first antenna unit 7315 and second antenna unit 7316.
  • the first phase shifter 7311 outputs the phase-shifted third optical signal to the shared fourth transmission channel 73172 through the corresponding first multiplexer 7318, and then the shared third optical signal is
  • the four transmission channels 73172 input N reference optical signals, and output the N reference optical signals and N phase-shifted third optical signals to the common first optical detector 73131, which pass through the common first optical detector 73131.
  • the N reference optical signals beat the N third optical signals to obtain N first radio frequency signals and transmit them.
  • the second phase shifter 7312 outputs the phase-shifted fourth optical signal to the shared fifth transmission channel 73173 through the corresponding second multiplexer 7319, and then the shared fifth transmission channel 73173 inputs N references.
  • N signals are selected from the amplified radio frequency signal through the shared electrical filtering unit 7314.
  • the first radio frequency signal is transmitted through the common first antenna unit 7315.
  • N first radio frequency signals are transmitted.
  • the corresponding N first radio frequency signals are transmitted with different phases through the M first antenna units 7315, so as to implement beam forming on the N first radio frequency signals carrying different data information.
  • M second antenna units 7316 transmit corresponding N second radio frequency signals with different phases to achieve beam forming of N second radio frequency signals carrying different data information.
  • a set of optical signals input by each optical phased array circuit 7 needs to satisfy: the frequency difference between the reference optical signal and the first optical signal in each set of optical signals.
  • the absolute values of the values must be equal; the 3dB bandwidth of the first optical detector 73131 is greater than the absolute value of the frequency difference between the third optical signal and the reference optical signal; the 3dB bandwidth of the second optical detector 73132 is greater than the fourth optical signal and the reference light The absolute value of the signal's frequency difference.
  • the laser source 5 is a device that provides an independent reference optical signal and a first optical signal to each optical phased array circuit 7 respectively.
  • the laser source 5 includes a multi-wavelength laser or an optical frequency comb.
  • the laser source 5 when the laser source 5 includes a multi-wavelength laser or an optical frequency comb as the light source device 51 that provides optical signals of different wavelengths, the laser source 5 also includes a multi-channel splitter 52 and an optical frequency comb. A plurality of second optical filters 53 corresponding to the phased array circuit 7 .
  • the light source device 51 outputs an optical signal including multiple wavelengths
  • the multi-channel splitter 52 divides the optical signal including multiple wavelengths into multiple groups of optical signals including a reference optical signal and a first optical signal. , and output multiple sets of optical signals to a plurality of second optical filters 53 respectively.
  • Each second optical filter 53 separates the corresponding reference optical signal and the first optical signal from the input set of optical signals, and outputs the reference optical signal and the first optical signal to the corresponding optical phased array circuit 7 .
  • multi-channel splitter 52 may be a demultiplexer.
  • the laser source 5 may also include a plurality of sixth transmission channels and a plurality of third multiplexers.
  • One end of each sixth transmission channel is used to input a reference optical signal, and the other end passes through the corresponding third multiplexer.
  • the other end of the sixth transmission channel is coupled to the third transmission channel 73171 to output the reference optical signal to the light detection unit 7313; or, the other end of the sixth transmission channel is coupled to the fourth transmission channel 73172 and the fifth transmission channel 73173 through the corresponding third multiplexer. , to output reference light signals to the first light detector 73131 and the second light detector 73132 respectively.
  • the sixth transmission channel may be a waveguide.
  • the third multiplexer may be a ring resonator, a beam combiner, or the like.
  • the radio frequency signal source 6 may be a local oscillator unit.
  • the local oscillator unit is used to input an electrical signal, and generates two electrical signals with different center frequencies from the input electrical signal and outputs them to the optoelectronic modulator 71 of the optical phased array circuit 7 .
  • the transmitting device 3 in the application of radio frequency communication, is usually provided with a local oscillator unit, so the local oscillator unit in the transmitting device 3 can be used as a means to provide electrical signals of different center frequencies to the optoelectronic modulator 71 device.
  • the electrical signal input to the radio frequency signal source 6 is a wireless communication baseband signal.
  • the radio frequency signal source 6 generates two broadband electrical signals with different center frequencies through the wireless communication baseband signal, and outputs the two broadband electrical signals with different center frequencies to
  • the photoelectric modulator 71 serves as an electrical signal modulated with the first optical signal.
  • the bandwidth of the broadband electrical signal of two different center frequencies can be adjusted by adjusting the bandwidth of the wireless communication baseband signal.
  • two broadband electrical signals with different center frequencies can be generated by inputting a wireless communication baseband signal to the radio frequency signal source 6 .
  • two wireless communication baseband signals can be input to the radio frequency signal source 6 to generate two broadband electrical signals with different center frequencies.
  • the wireless communication baseband signal is a signal that is usually input and used by the transmitting device 3.
  • the wireless communication baseband signal can be used to generate two electrical signals with different center frequencies.
  • one radio frequency signal source 6 can be used to provide the optoelectronic modulators 71 in the plurality of optical phased array circuits 7 with electrical signals of two different center frequencies, or different radio frequency signal sources 6 can be used to provide different optical signals.
  • the optoelectronic modulator 71 in the phased array circuit 7 provides electrical signals with different center frequencies.
  • the input of the multiple radio frequency signal sources 6 is used to generate different center frequencies.
  • the frequency electrical signals eg, wireless communication baseband signals
  • the radio frequency signal source 6 can also be any other device that can provide electrical signals with two different center frequencies to the optoelectronic modulator 71 .
  • the optical phased array circuit 7 also includes a controller, which is used to control the phase shift angles of the first phase shifter 7311 and the second phase shifter 7312 to achieve beam forming in different directions.
  • the embodiment of the present application uses the above-mentioned transmitting device 3 including the structure described in Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15 to reduce the cost of the device.
  • the cost is reduced, and the number of optical signals of different wavelengths required when generating multiple radio frequency signals in different frequency bands is reduced.
  • different modulation upper sideband signals and modulated lower sideband signals are used to respectively The method of beating optical signals to achieve beamforming of multiple radio frequency signals in different frequency bands by a multi-band multi-beam phased array antenna.
  • the requirement for the number of optical signals of different wavelengths when generating radio frequency signals in multiple frequency bands is reduced.
  • an upper sideband modulation signal and a lower sideband modulation signal are used to interact with the reference optical signal respectively.
  • beat frequency the electrical signal energy of the obtained radio frequency signal is also larger.
  • the processor involved in the embodiment of this application may be a chip.
  • it can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a central processing unit
  • It can be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit, MCU).
  • it can also be a programmable logic device (PLD) or other integrated chip.
  • the disclosed systems and devices can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or can be integrated into another device, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or modules, which may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located on one device, or they may be distributed to multiple devices. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated in one device, or each module can exist physically alone, or two or more modules can be integrated in one device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

一种光相控阵电路、发射设备及信号传输系统,应用于无线射频信号传输的波束赋形领域。该光相控阵电路用于接收不同波长的第一光信号和参考光信号,以及不同中心频率的多个电信号;通过将多个电信号调制到第一光信号上,得到第二光信号;第二光信号中包括多个调制光信号;多个调制光信号为对应的多个电信号分别调制到第一光信号上得到的光信号;从第二光信号中分离出与多个调制光信号对应的多个调制边带光信号,其中一个调制边带光信号为对应的调制光信号的调制下边带信号或者调制上边带信号;将调制边带光信号分别与参考光信号进行拍频,得到不同频段的射频信号并进行发射,以实现不增加不同波长的光信号的数量下生成更多不同频段的射频信号。

Description

一种光相控阵电路、发射设备及信号传输系统 技术领域
本申请涉及无线信号传输领域,尤其涉及一种光相控阵电路、发射设备及信号传输系统。
背景技术
相控阵是一种使用相控阵列单元定向发送和接收射频信号的信号处理技术。一种双频段光相控阵的实现方式为,构建包括多个发射单元的相控阵电路。对于一个发射单元,输入三路具有不同波长的光信号,以其中一路光信号作为参考光信号,在另外两路光信号上分别加载不同的中频(intermediate frequency,IF)信号。将参考光信号分别与另外两路光信号进行拍频(beat frequency,BF),从而生成分别位于两个不同频段的射频(radio frequency,RF)信号并进行发射。
但上述方式中,实现发射一组双频段的射频信号需要一组包括三个不同波长的光信号,在需要实现一组包括更多频段的射频信号的波束赋形时,或者需要多组包括双频段的射频信号来传输不同的数据时,则需要更多个不同波长的光信号,其对多波长光源提供的不同波长的光信号的数量的要求更大。除此以外,每个发射单元中都包括多个调制器、多个移相器等器件,导致电路复杂度更高且需要更高的成本。
发明内容
本申请实施例提供一种光相控阵电路、发射设备及信号传输系统,减少了生成多个频段的射频信号所需的不同波长的光信号的数量并降低了成本。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种光相控阵电路,该光相控阵电路包括光电调制器、第一光滤波器、相控阵列单元;相控阵列单元包括发射单元;光电调制器通过第一光滤波器耦合至发射单元;光电调制器的光信号输入端用于输入第一光信号,光电调制器的电信号输入端用于输入多个电信号;多个电信号具有不同的中心频率;光电调制器用于将多个电信号调制到第一光信号上以得到第二光信号;第二光信号包括多个调制光信号;多个调制光信号为多个电信号分别调制到第一光信号上对应得到的光信号;发射单元用于输入参考光信号;参考光信号与第一光信号为不同波长的光信号;通过多个调制边带光信号一一与参考光信号进行拍频得到多个射频信号并进行发射。
在本申请实施例中,通过将多个不同中心频率的电信号调制到第一光信号上,得到第二光信号。其中,多个不同中心频率的电信号与第一光信号之间为一一对应进行光电调制,但通过光电调制器只能输出一路第二光信号,其中的第二光信号为多个电信号与第一光信号分别进行调制得到的调制信号的集合。然后通过第一光滤波器从第二光信号中分离出每一个电信号与第一光信号进行拍频得到的调制边带光信号,其中调制边带光信号可以选用调制上边带信号或者调制下边带信号。将多个调制边带光信号分别与参考光信号进行拍频,即可得到多个不同频段的射频信号,并进行发射。在本申请实施例中,需要生成多个不同频段的射频信号时,无需增加不同波长的光信号 的数量,只需要增加对应的不同频率的电信号的数量即可,减少了生成不同频段的射频信号的过程中,对提供不同波长的光信号的光源的要求。除此以外,本申请实施例不论需要生成多少个波段的射频信号,或需要多少个发射单元来发射射频信号,在一个光相控阵电路中,都只需要设置一个光电调制器即可,减少了成本和系统的复杂度。
在一种可能的实施方式中,光相控阵列电路包括多个发射单元;对于多个射频信号中的一个射频信号,多个发射单元用于以不同的相位发射一个射频信号。
在本申请实施例中,当需要对生成的不同频段的多个射频信号进行波束赋形时,只需要增加发射单元的数量。对于多个射频信号中的一个射频信号,将该射频信号分为多路,通过多个发射单元分别接收一路该一个射频信号,然后由多个发射单元以不同的相位对该一个射频信号进行发射,以实现对该一个射频信号的波束赋形。同理,通过多个发射单元分别以不同的相位发射多个射频信号,即可实现对多个射频信号的波束赋形。
在一种可能的实施方式中,多个电信号包括第一电信号和第二电信号;多个光信号包括第三光信号和第四光信号;第三光信号为第一电信号与第一光信号进行调制得到的一个调制光信号的调制下边带信号;第四光信号为第二电信号与第一光信号进行调制得到的一个调制光信号的调制上边带信号;发射单元用于将第三光信号与参考光信号进行拍频得到第一射频信号并进行发射;将第四光信号与参考光信号进行拍频得到第二射频信号并进行发射。
在本申请实施例中,以生成双频段的射频信号为例,则只需要两个不同中心频率的电信号,即第一电信号和第二电信号。通过第一电信号和第二电信号对第一光信号进行调制,得到第二光信号,此时第二光信号中包括第一电信号对第一光信号进行调制得到的调制光信号和第二电信号对第一光信号进行调制得到的调制光信号。然后通过第一光信号滤波器从第二光信号中得到两个调制边带光信号,分别为第三光信号和第四光信号,第一电信号对第一光信号进行调制得到的调制信号包括两个调制边带光信号(调制上边带信号和调制下边带信号),第三光信号为其调制下边带信号;第二电信号对第一电信号进行调制得到的调制信号同样包括两个调制边带光信号(调制上边带信号和调制下边带信号),第四光信号为其调制上边带信号。通过第三光信号与参考光信号进行拍频即可得到第一射频信号,通过第四光信号与参考光信号进行拍频即可得到第二射频信号,从而完成生成两个不同频段的射频信号。
在一种可能的实施方式中,一个发射单元包括第一移相器、第二移相器、光探测单元、电滤波单元、第一天线单元和第二天线单元;第一移相器的输入端与第一光滤波器耦合,第一移相器的输出端与光探测单元的输入端耦合;第二移相器的输入端与第一光滤波器耦合,第二移相器的输出端与光探测单元的输入端耦合;光探测单元的输出端通过电滤波单元与第一天线单元和第二天线单元耦合;第一移相器用于对第三光信号进行移相,并向光探测单元输出移相后的第三光信号;第二移相器用于对第四光信号进行移相,并向光探测单元输出移相后的第四光信号;光探测单元用于输入移相后的第三光信号、移相后的第四光信号、参考光信号;通过移相后的第三光信号与参考光信号进行拍频得到一个第一射频信号;通过移相后的第四光信号与参考光信号进行拍频得到一个第二射频信号;电滤波单元用于从光探测单元输出的信号中筛选出 第一射频信号和第二射频信号,并分别通过第一天线单元和第二天线单元进行发射。
在本申请实施例中,通过第一移相器和第二移相器分别对第三光信号和第四光信号进行移相,然后将移相后的第三光信号和移相后的第四光信号输入到光探测单元中分别与参考光信号进行拍频,得到包括第一射频信号和第二射频信号的射频信号。然后将该射频信号输出至电滤波单元,通过电滤波单元从该射频信号中分离出第一射频信号和第二射频信号,并通过第一天线单元和第二天线单元分别进行发射。通过多个发射单元对应的多个第一天线单元发射多个不同相位的第一射频信号,以实现对第一射频信号的波束赋形,通过多个发射单元对应的多个第二天线单元发射多个不同相位的第二射频信号,以实现对第二射频信号的波束赋形。
在一种可能的实施方式中,光相控阵电路还包括第一传输通道、第二传输通道、多个第一分束器、多个第二分束器;第一传输通道和第二传输通道分别与第一光滤波器耦合;第一传输通道通过多个第一分束器与多个发射单元对应耦合,用于向多个发射单元输出第一光滤波器所输出的第三光信号;第二传输通道通过多个第二分束器与多个发射单元对应耦合,用于向多个发射单元输出第一光滤波器所输出的第四光信号。
在本申请实施例中,从第二光信号中得到第三光信号和第四光信号后,将第三光信号输出到第一传输通道上,再通过多个第一分束器分别输出给多个发射单元;将第四光信号输出到第二传输通道上,再通过多个第二分束器分别输出给多个发射单元。通过这种方式实现了采用一个光电调制器对第一光信号进行调制,由第一光滤波器从调制得到的第二光信号中分离出第三光信号和第四光信号,并通过多个分束器将第三光信号和第四光信号分别输出给多个发射单元,从而减少了光电调制器的数量。且当需要产生更多频段的射频信号时,只需要增加用于对第一光信号进行调制的电信号的个数,如增加第三电信号、第四电信号等等,并适应性增加传输通道和分束器的个数,以更多的传输通道来传输第三电信号和第四电信号等不同频率的电信号,并通过更多不同频率的电信号来对第一光信号进行调制得到对应的调制上边带信号或调制下边带信号,并在增设的传输通道上设置对应的分束器,以向多个发射单元输出对应增加的调制上边带信号或调制下边带信号,即可实现更多频段的射频信号的拍频和波束赋形。
在一种可能的实施方式中,一个发射单元还包括第三传输通道、第一复用器、第二复用器;第三传输通道与光探测单元耦合,用于输入参考光信号并输出至光探测单元;发射单元的第一移相器通过第一复用器耦合至第三传输通道,用于通过第三传输通道向光探测单元输出移相后的第三光信号;发射单元的第二移相器通过第二复用器耦合至第三传输通道,用于通过第三传输通道向光探测单元输出移相后的第四光信号。
在本申请实施例中,每个发射单元所接收的一组第三光信号和第四光信号分别通过第一复用器和第二复用器耦合至第三传输通道,然后由第三传输通道输出至光探测单元。此时,由一个光探测单元通过参考光信号分别对第三光信号和第四光信号进行拍频,得到两个频段的射频信号。
在一种可能的实施方式中,发射单元还包括多频段放大器;光探测单元的输出端通过多频段放大器与电滤波单元耦合;多频段放大器用于对第一射频信号和第二射频 信号进行信号放大。
在本申请实施例中,由一个可以对多个频段的射频信号进行放大的多频段放大器对两个频段的射频信号进行放大。然后将放大后的射频信号输出至电滤波单元,由电滤波单元从放大后的射频信号中得到由第三光信号和参考光信号拍频生成的第一射频信号和由第四光信号和参考光信号拍频生成的第二射频信号,并分别通过第一天线单元和第二天线单元进行发射。
在一种可能的实施方式中,光探测单元的3dB带宽大于第一射频信号的信号频率以及第二射频信号的信号频率。
在本申请实施例中,以第一射频信号的频段为28GHz,第二射频信号的频段为40GHz为例,当光探测单元7313的3dB带宽大于第二射频信号的频段40GHz时,可以确保光探测单元拍频生成的第一射频信号和第二射频信号的信号质量。
在一种可能的实施方式中,光探测单元包括第一光探测器和第二光探测器;发射单元还包括第四传输通道、第五传输通道、第一复用器、第二复用器;第一光探测器分别与第四传输通道和电滤波单元耦合;第二光探测器分别与第五传输通道和电滤波单元耦合;发射单元的第一移相器通过第一复用器耦合至第四传输通道,用于通过第四传输通道向第一光探测器输出移相后的第四光信号;发射单元的第二移相器通过第二复用器耦合至第五传输通道,用于通过第五传输通道向第二光探测器输出移相后的第四光信号;第一光探测器用于通过移相后的第三光信号与参考光信号进行拍频得到一个第一射频信号;第二光探测器用于通过移相后的第四光信号与参考光信号进行拍频得到一个第二射频信号。
在本申请实施例中,对于第一射频信号和第二射频信号,不采用同一个器件进行拍频,而是采用独立的第一光探测器和独立的第二光探测器,通过参考光信号分别对第三光信号和第四光信号进行拍频,从而得到第一射频信号和第二射频信号。具体的实现方式为:设置一个独立的第四传输通道,和一个独立的第五传输通道。第一移相器输入第三光信号后,对第三光信号进行移相,然后通过第一复用器将移相后的第三光信号输出至第四传输通道并通过第四传输通道输出至第一光探测器,同时第一光探测器通过第四传输通道输入参考光信号,然后通过参考光信号对第三光信号进行拍频,得到第一射频信号。第二移相器输入第四光信号后,对第四光信号进行移相,然后通过第二复用器将移相后的第四光信号输出至第五传输通道并通过第五传输通道输出至第二光探测器,同时第二光探测器通过第五传输通道输入参考光信号,然后通过参考光信号对第四光信号进行拍频,得到第二射频信号。
在一种可能的实施方式中,发射单元还包括第一放大器和第二放大器;第一光探测器通过第一放大器耦合至电滤波单元;第二光探测器通过第二放大器耦合至电滤波单元;第一放大器用于对第一射频信号进行信号放大;第二放大器用于对第二射频信号进行信号放大。
在本申请实施例中,因采用独立的第一光探测器和独立的第二光探测器分别对第三光信号和第四光信号进行拍频,得到第一射频信号和第二射频信号。故也可采用独立的第一放大器和第二放大器分别对第一射频信号和第二射频信号进行信号放大。
在一种可能的实施方式中,第一光探测器的3dB带宽大于第一射频信号的信号 频率。
在本申请实施例中,因第一光探测器用于拍频生成第一射频信号,故当第一光探测器的3dB带宽大于第一射频信号的频段,可以更好地保证通过参考光信号对第三光信号拍频生成的第一射频信号的信号质量。
在一种可能的实施方式中,第二光探测器的3dB带宽大于第二射频信号的信号频率。
在本申请实施例中,因第二光探测器用于拍频生成第二射频信号,故当第二光探测器的3dB带宽大于第二射频信号的频段,可以更好地保证通过参考光信号对第四光信号拍频生成的第二射频信号的信号质量。
第二方面,本申请实施例还提供了一种发射设备,该发射设备包括激光源、射频信号源和至少一个上述第一方面所记载的光相控阵电路;激光源用于向光相控阵电路输出不同波长的第一光信号和参考光信号;射频信号源用于向光相控阵电路输出不同中心频率多个电信号;光相控阵电路用于通过多个电信号和参考光信号生成多个射频信号并进行发射;多个射频信号为不同频段的信号。
第三方面,本申请实施例还提供了一种信号传输系统,该信号传输系统包括接收设备和上述第二方面所记载的发射设备;发射设备用于向接收设备发射承载了数据信息的多个射频信号;多个射频信号为不同频段的射频信号;接收设备用于接收多个射频信号,并得到数据信息。
附图说明
图1为本申请实施例提供的一种波束赋形的实现原理示意图;
图2为本申请实施例提供的一种发射设备的结构示意图;
图3为本申请实施例提供的一种发射单元的结构示意图;
图4为本申请实施例提供的一种光复用单元的结构示意图;
图5为本申请实施例提供的一种信号传输系统的结构示意图;
图6为本申请实施例提供的又一种发射设备的结构示意图;
图7为本申请实施例提供的一种光相控阵电路的结构示意图;
图8为本申请实施例提供的又一种光相控阵电路的结构示意图;
图9为本申请实施例提供的一种发射单元的结构示意图;
图10为本申请实施例提供的又一种发射单元的结构示意图;
图11为本申请实施例提供的又一种发射单元的结构示意图;
图12为本申请实施例提供的一种光相控阵电路的应用示意图;
图13为本申请实施例提供的又一种光相控阵电路的应用示意图;
图14为本申请实施例提供的又一种光相控阵电路的应用示意图;
图15为本申请实施例提供的一种激光源的结构示意图;
图16为本申请实施例提供的一种第一光信号与第二电信号、第三电信号进行调制的信号示意图;
图17为本申请实施例提供的一种对第三光信号进行移相得到28GHz的第一射频信号的信号电流示意图;
图18为本申请实施例提供的一种对第四光信号进行移相得到40GHz的第二射频 信号的信号电流示意图。
具体实施方式
需要说明的是,本申请实施例涉及的术语“第一”、“第二”等仅用于区分同一类型特征的目的,不能理解为用于指示相对重要性、数量、顺序等。
本申请实施例涉及的术语“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例涉及的术语“耦合”、“连接”应做广义理解,例如,可以指物理上的直接连接,也可以指通过电子器件实现的间接连接,例如通过电阻、电感、电容或其他电子器件实现的连接。
下面首先对本申请涉及的一些基本概念进行解释说明:
拍频(beat frequency,BF)是指:若两个做简谐振动(simple harmonic oscillation,SHO)的信号的振动频率(或者简称为频率)较接近,它们的频率之差远小于各自的频率,那么在把它们叠加的信号后会出现时间上的拍频。以两个做简谐振动的信号为例,两个信号分别为x1(t)=cos(t)和x2(t)=sin(1.2t),把它们相加后可以发现,合成后得到的信号所做的振动并不是一个简谐振动。此时,合成后的信号的振动频率与x1(t)的振动频率还有x2(t)的振动频率相近,但合成后的信号的振幅却以另一个较大的周期变化。在这种将两个频率差值较小的做简谐振动的信号合成时,合成后的信号的振幅出现时强时弱周期性缓慢变化的现象,叫做拍(beat)。而这种拍出现的频率叫做拍频。
为满足不断增长的移动通信需求,在无线通信中引入了更高频的电磁波,国际通信组织在第三代合作伙伴计划(3rd generation partnership project,3GPP)为第五代移动通信技术(5th generation mobile communication technology,5G)划分出了毫米波频段:24.25GHz(千兆赫兹)~52.6GHz。基于划分出的毫米波频段,世界上多个组织为5G移动通信选择了一些可用的毫米波频段,例如28GHz、32GHz、40GHz。而在高频电磁波无线通信中,波束赋形是一个关键技术。相比于第三代移动通信技术和第四代移动通信技术移动通信所用无线电磁波,毫米波在空气中传播距离更短,需要由更多天线单元来实现波束赋形。
波束赋形(beamforming)又叫波束成型、空域滤波。波束赋形的原理就是利用波的干涉原理。波的干涉原理是指:当波峰和波峰,或者波谷和波谷相遇,则能量相加,波峰更高,波谷更深;当波峰和波谷相遇,两者则相互抵消。波束赋形可由反射镜、透镜和相控阵列单元实现。波束赋形既可以用于信号发射端,又可以用于信号接收端。相比于反射镜和透镜,通过相控阵列单元实现波束赋形时,可调控波束方向角,具有更高的灵活性。
通过相控阵列单元实现波束赋形时,通过调整相控阵列单元的基本单元的参数,使得某些角度的射频(radio frequency,RF)信号获得相长干涉(constructive interference,CI),而另一些角度的射频信号获得相消干涉(destructive interference,DI),从而产生具有指向性的波束来提高被发射的射频信号的传播距离。如图1所示,两个发射电路11分别发射一个射频信号,其中虚线代表射频信号的波峰,实线代表射频信号的波 谷。图中黑点代表两个射频信号的波峰与波峰在空中交汇的位置,或者,两个射频信号的波谷与波谷在空中交汇的位置。如图1所示,当两个射频信号的波峰与波峰在空中相遇,或者,两个射频信号的波谷与波谷在空中相遇时,产生相长干涉,进而产生指向性更强,且传输距离更远的信号波束,而两个射频信号的波谷与波峰在空中相遇时,产生相消干涉,该传播方向的射频信号渐渐消失。通过相长干涉和相消干涉即可实现具有一定指向性的波束的赋形,且赋形后的波束因相长干涉,传播的距离也会更远。同时,在通过相控阵列单元进行波束赋形的过程中,还可以通过对发射电路11所发射的射频信号的相位进行调整,来调整不同的射频信号的波峰与波峰之间,以及波谷与波谷之间,在空中相遇的位置,进而确定通过波束赋形所产生的波束在空中的发射角度等。
相控阵列单元包括电相控阵列单元和光相控阵列单元。在电相控阵列单元中,在较高的电磁波频率下,临近电路之间的信号泄露会增大,从而导致电路对振荡器的相位噪声更加地敏感。除此以外,电相控阵列单元中的电子器件的带宽较小,在波束赋形时会出现波束偏斜的问题。而在光相控阵列单元的应用中,波束赋形是在光信号上进行相位控制,集成光路对光信号的限制较强,且光子器件具有较小的相位噪声以及更大的带宽。故而在高频无线通信和雷达的应用中(例如毫米波频段),采用光相控阵列单元可降低相控阵列单元中信号间的串扰,同时也避免了波束偏斜的问题。
在无线通信中,存在多个通信设备工作在同一频段时,在同一区域内的信号可能会存在相互干扰的问题。为解决该问题,引入了双频段技术,双频段可以是指同一通信设备可工作于两个频段的特性,实际应用中,该通信设备可以选择工作在这两个频段中某个频段,以避免与其他通信设备工作在同一频段,避免干扰。例如在5G通信中,通信设备可工作于两个频段:28GHz、40GHz;同一区域内大量通信设备工作在28GHz时,若当前通信设备选用40GHz进行工作,即可有效避开28GHz的信号所带来的干扰。另一方面,用同一光相控阵对双频段的射频信号的波束赋形进行控制,可以减少系统所需芯片数量,即可降低设备的成本。
为了满足多频段的通信需求,本申请实施例提供了一种发射设备,如图2所示,该发射设备1包括激光源10、多个发射电路11。如图3所示,每个发射电路11中包括光复用单元111、拍频器112和射频前端113。每个光复用单元111包括光复用器1111和调整单元1112。光复用单元111的输入端耦合至激光源10。光复用单元111的输出端耦合至拍频器112,并通过拍频器112耦合至射频前端113。调整单元1112包括调制器11121、移相器11122。激光源10用于向每个发射电路11的光复用器1111输出一路光信号,每一路光信号都包括一个参考光信号和一个拍频光信号。光复用器1111将不同波长的拍频光信号分别对应输出给不同的调整单元1112。每个调整单元1112的调制器11121用于在一路拍频光信号上加载中频信号或低频信号,得到调制光信号,并由移相器11122对调制光信号进行移相后输出至光复用器1111。光复用器1111用于输入移相后的调制光信号,并将调制光信号和参考光信号输出至对应的拍频器112。拍频器112通过调制光信号的调制上边带信号和参考光信号进行拍频处理,得到一个频段的射频信号,并通过对应的射频前端113进行发射。每个发射电路11中的移相器将对应的调制光信号移相为不同的相位角度,则多个发射电路11可发射位于 同一频段且具有不同相位的多个射频信号,从而实现位于一个频段的射频信号的波束赋形。
当发射电路11需要发射多个频段的多个射频信号并进行波束赋形时,如图4所示,只需要增加每个发射电路11中的调整单元1112的数量以及一路光信号中不同波长的拍频光信号的数量。例如,在一个发射电路11中,激光源10向光复用器1111输出一个参考光信号和多个不同波长的拍频光信号,通过不同的调整单元1112对应输入一个拍频光信号,并对输入的拍频光信号进行调制和移相,得到调制光信号并输出至光复用器1111;光复用器1111输入多个调整单元1112得到的多个调制光信号后,将多个调制光信号和参考光信号输出至拍频器112。拍频器112通过参考光信号对多个调制光信号的调制上边带信号进行拍频得到多个频段的射频信号。由多个发射电路11发射各自对应的多个频段的射频信号,即可实现多个频段的射频信号的波束赋形。
由上述图2-图4可知,在本申请实施例中,当需要生成一组双频段的射频信号时,需要一组包括三个不同波长的光信号,以其中一个光信号作为参考光信号,以另外两个光信号作为拍频光信号,以两个拍频光信号分别与参考光信号进行拍频,得到位于两个不同频段的射频信号。如果需要生成包括更多频段的射频信号,则在一组射频信号中需要更多数量的不同波长的拍频光信号。其对产生不同波长的光信号的激光源10的要求非常高,方案实现难度较大。其次,如图3所示,在对一个频段的射频信号进行波束赋形时,每个发射电路11中都需要对应设置一个调制器11121,且如图4所示,在需要对多个频段的射频信号进行波束赋形时,每个发射单元中都需要设置与频段个数对应的多个调制器11121,过多的调制器11121的设置也会增加系统的设置成本并增加系统的复杂度。最后,在通过拍频器112生成多个频段的射频信号时,每个频段选用的都是调制上边带信号,拍频器112拍频得到的射频信号的电信号能量较低。
为此,本申请提出了一种信号传输系统,如图5所示,该信号传输系统包括发射设备3和接收设备4,发射设备3用于向接收设备4发送射频信号。如图6所示,该发射设备3包括激光源5、射频信号源6和至少一个光相控阵电路7。如图7所示,光相控阵电路7包括光电调制器71、第一光滤波器72、相控阵列单元73。相控阵列单元73中包括多个发射单元731。光电调制器71通过第一光滤波器72与多个发射单元731耦合。激光源5用于向每个光相控阵电路7输出一组光信号,该一组光信号中包括一个参考光信号和一个第一光信号,参考光信号和第一光信号具有不同的波长。射频信号源6用于向光相控阵电路7输出一组电信号,以生成两个频段的射频信号为例,则该一组电信号中包括具有不同的中心频率的第一电信号和第二电信号。光电调制器71的光信号输入端用于输入第一光信号,光电调制器71的电信号输入端用于输入第一电信号和第二电信号,将第一电信号和第二电信号调制到第一光信号上,得到第二光信号;第二光信号中包括多个调制光信号;多个调制光信号为多个电信号分别调制到第一光信号上对应得到的光信号。第一光滤波器72用于对第二光信号进行滤波,得到第三光信号和第四光信号并输出给多个发射单元731,其中,第三光信号的中心频率为第一光信号的中心频率减去第一电信号的中心频率(即第三光信号为第一电信号对第一光信号进行调制所得到的一个调制光信号的调制下边带信号),第四光信号的中心频率为第一光信号的中心频率加上第二电信号的中心频率(即第四光信号为第二电信 号对第一光信号进行调制所得到的调制光信号的调制上边带信号)。多个发射单元731用于输入参考光信号、第三光信号和第四光信号,通过第三光信号与参考光信号进行拍频得到多个第一射频信号并进行发射;通过第四光信号与参考光信号进行拍频得到多个第二射频信号并进行发射。
在本申请实施例中,对于一组双频段的射频信号,只需要一组包括参考光信号和第一光信号的光信号,将两个不同中心频率的电信号调制到第一光信号上得到第二光信号,并从第二光信号中分离出两个不同中心频率的光信号,即第三光信号和第四光信号,将第三光信号和第四光信号分别输出至每个发射单元731。每个发射单元731对各自接收到的第三光信号和第四光信号与参考光信号进行拍频得到第一射频信号,将第四光信号与参考光信号进行拍频得到第二射频信号,因第一电信号和第二电信号的中心频率不同,使得第一射频信号和第二射频信号的频段也不相同,从而实现生成双频段的射频信号。多个发射单元731对第一射频信号和第二射频信号分别进行发射,即可实现对双频段的射频信号的发射。在本申请实施例中,以通过第一电信号和第二电信号生成第一射频信号和第二射频信号双频段的信号为例,当需要生成更多频段的射频信号时,只需要增加电信号的数量,通过更多的电信号与第一光信号进行拍频得到更多调制边带光信号,再将得到的调制边带光信号分别与参考光信号进行拍频,即可得到更多频段的射频信号。故,本申请实施例提供的光相控阵电路解决了在生成多频段的射频信号时需要非常多不同波长的光信号的问题,通过使用本申请实施例所提供的光相控阵电路,不论生成多少个不同频段的射频信号,都只需两个不同波长的光信号作为第一光信号和参考光信号,而只需要对应增加不同中心频率的电信号的数量即可。
同时,在本申请实施例中,对通过一个发射单元731即可对多频段的射频信号进行发射。当采用多个发射单元731时。对于多频段的射频信号中的一个频段的射频信号而言,通过多个发射单元731对该一个频段的射频信号进行移相,并通过多个发射单元731以不同的相位对该一个频段的射频信号进行发射,以实现对该一个频段的射频信号进行波束赋形。同理,通过多个发射单元731对多频段的射频信号分别进行波束赋形。
如此,通过本申请实施例所记载的光相控阵电路7,当需要生成一组具有更多频段的射频信号时,只需要利用不同中心频率的电信号对第一光信号调制得到更多不同中心频率的光信号即可,而无需再增加更多用于拍频的不同波长的光信号的数量。首先,本申请实施例减少了在多频段的射频信号进行波束赋形时,对提供不同波长的光信号的光源的要求。其次,本申请实施例不论需要生成多少个波段的射频信号,或需要多少个发射单元731来发射射频信号,在一个光相控阵电路7中,都只需要设置一个光电调制器71即可,减少了成本和系统的复杂度。
在一些可能的实施方式中,如图8所示,光相控阵电路7还包括第一传输通道74、第二传输通道75、多个第一分束器76、多个第二分束器77;第一传输通道74和第二传输通道75分别与第一光滤波器72耦合;第一传输通道74通过多个第一分束器76与多个发射单元731对应耦合,用于向多个发射单元731输出第一光滤波器72所输出的第三光信号;第二传输通道75通过多个第二分束器77与多个发射单元731对应耦 合,用于向多个发射单元731输出第一光滤波器72所输出的第四光信号。
在本申请实施例中,第一光滤波器72从第二光信号中得到第三光信号和第四光信号后,将第三光信号输出到第一传输通道74上,再通过多个第一分束器76分别输出给多个发射单元731;将第四光信号输出到第二传输通道75上,再通过多个第二分束器77分别输出给多个发射单元731。通过这种方式实现了采用一个光电调制器71对第一光信号进行调制,由第一光滤波器72从调制得到的第二光信号中分离出第三光信号和第四光信号,并通过多个分束器将第三光信号和第四光信号分别输出给多个发射单元731,从而相对于图3和图4所记载方案减少了光电调制器71的数量。且当需要产生更多频段的射频信号时,只需要增加用于对第一光信号进行调制的电信号的个数,如增加第三电信号、第四电信号等等,并适应性增加传输通道和分束器的个数,以更多的传输通道来传输第三电信号和第四电信号等不同频率的电信号,并通过更多不同频率的电信号来对第一光信号进行调制得到对应的调制上边带信号或调制下边带信号,并在增设的传输通道上设置对应的分束器,以向多个发射单元731输出对应增加的调制上边带信号或调制下边带信号,即可实现更多频段的射频信号的拍频和波束赋形。
在一些可能的实施方式中,如图9所示,发射单元731包括第一移相器7311、第二移相器7312、光探测单元(photodetector,PD)7313、电滤波单元7314、第一天线单元7315和第二天线单元7316;第一移相器7311的输入端与第一光滤波器72耦合,第一移相器7311的输出端与光探测单元7313的输入端耦合;第二移相器7312的输入端与第一光滤波器72耦合,第二移相器7312的输出端与光探测单元7313的输入端耦合;光探测单元7313的输出端通过电滤波单元7314与第一天线单元7315和第二天线单元7316耦合。
在一些可能的实施方式中,通过第一光滤波器72从第二光信号中得到第三光信号和第四光信号后,将第三光信号输出至第一移相器7311,通过第一移相器7311对第三光信号进行移相,并将移相后的第三光信号输出至光探测单元7313。
示例性的,如图8和图9所示,第一光滤波器72通过第一传输通道74和第一分束器76向第一移相器7311输出第三光信号,然后由第一移相器7311对第三光信号进行移相后输出至光探测单元7313。
示例性地,第一移相器7311为延时干涉仪。可选地,第一移相器7311为马赫-曾德尔的延时干涉仪。
示例性地,第一移相器7311采用光纤作为相位控制元件。
示例性地,第一移相器7311为光移相器。可选地,第一移相器7311为热光移相器或电光移相器。
在本申请实施例中,采用延时干涉仪器调节第三光信号的相位时,在改变相位时可能降低输出的第三光信号的光强,导致能量损失。采用光纤作为相位控制元件时,会导致产品实体结构过大,且集成度较低。而采用光移相器作为第一移相器7311,在保证了较高的集成度的情况下,还能保证产品具有较小的实体结构,且在移相的过程中,对第三光信号的干扰也相对较小。如图17、图18所示,以第一射频信号为28GHz,第二射频信号为40GHz为例,图17为采用光移相器对第三光信号进行90°移相,以及不对第三光信号进行移相,两种情况下在光探测单元7313上拍频后得到的第一射频信 号的电流示意图,图中虚线为移相90°后的第一射频信号,实线为未移相的第一射频信号。图18为采用光移相器对第四光信号进行90°移相,以及不对第四光信号进行移相,两种情况下在光探测单元7313上拍频后得到的第二射频信号的电流示意图,图中虚线为移相90°后的第一射频信号,实线为未移相的第一射频信号。根据图17和图18可以看出在28GHz和40GHz两个不同的频段下,第一射频信号和第二射频信号的电流信号的幅值都与理论计算结果吻合,移相效果良好。
示例性地,第一传输通道74为波导或其他可传输光信号的器件。
在一些可能的实施方式中,通过第一光滤波器72从第二光信号中得到第三光信号和第四光信号后,将第四光信号输出至第二移相器7312,通过第二移相器7312对第四光信号进行移相,并将移相后的第四光信号输出至光探测单元7313。
示例性的,如图8和图9所示,第一光滤波器72通过第二传输通道75和第二分束器77向第二移相器7312输出第四光信号,然后由第二移相器7312对第四光信号进行移相后输出至光探测单元7313。
可选地,第二移相器7312为延时干涉仪。示例性地,第二移相器7312为马赫-曾德尔的延时干涉仪。
可选地,第二移相器7312采用光纤作为相位控制元件。
可选地,第二移相器7312为光移相器。示例性地,第二移相器7312为热光移相器、电光移相器等等。
在本申请实施例中,关于第二移相器7312具体采用何种移相器的技术效果可参考上述关于第一移相器7311的相关技术效果描述。
示例性地,第二传输通道75为波导或其他可传输光信号的器件。
在一些可能的实施方式中,如图9所示,光探测单元7313用于输入移相后的第三光信号、移相后的第四光信号、参考光信号;通过移相后的第三光信号与参考光信号进行拍频得到一个第一射频信号;通过移相后的第四光信号与参考光信号进行拍频得到一个第二射频信号。
示例性地,光探测单元7313为光电二极管等。
在本申请实施例中,采用光探测单元7313(photodetector,PD)进行拍频的原理为:光探测单元7313接收到两种不同频率的光信号后,会对其进行混频,并转换得到电信号;以光探测单元7313接收到的两种不同频率的光信号的频率分别为f 1和f 2,则在光探测单元7313进行混频时,因为会得到频率为f 1+f 2的混频电信号和频率为f 1-f 2的混频电信号。因一般f 1和f 2的频率较大,光探测单元7313的带宽小于f 1+f 2的和,则此时的光探测单元7313相当于低通滤波器,会将频率为f 1+f 2的信号过滤掉了,只留下频率为f 1-f 2的信号,而频率为f 1-f 2的电信号即可作为拍频得到的信号。
示例性地,以生成双频段的射频信号为例。参考光信号的中心频率为f 12,第一光信号的中心频率为f 11,第一电信号的中心频率为f RF1,第二电信号的中心频率为f RF2。其中,f 11大于f 12,或者,f 11小于f 12;f RF1不等于f RF2;且f 11减去f 12的绝对值大于f RF1和f RF2。以f 11大于f 12为例,如图16所示,图16为通过第一电信号和第二电信号对第一光信号进行调制的信号频率示意图,如图16所示,通过第一电信号对第一光信号进行调制,可以得到第一调制光信号;通过第二电信号对第一光信号进行调制,可以 得到第二调制光信号。其中,f 11-f RF1为第一调制光信号的调制下边带信号的频率,f 11+f RF1的信号为第一调制光信号的调制上边带信号的频率;同理,f 11-f RF2为第二调制光信号的调制下边带信号的频率,f 11+f RF2为第二调制光信号的调制上边带信号的频率。通过第一光滤波器72得到第三光信号和第四光信号;可选地,第三光信号的频率可以为f 11-f RF1(即第三光信号为第一调制光信号的调制下边带光信号),第四光信号的频率可以为f 11+f RF2(即第四光信号为第二调制光信号的调制下边带光信号);或者,第三光信号的频率可以为f 11+f RF1(即第三光信号为第一调制光信号的调制上边带光信号),第四光信号的频率可以为f 11-f RF2(即第四光信号为第二调制光信号的调制下边带光信号)。以第三光信号的频率为f 11-f RF1,第四光信号的频率为f 11+f RF2为例,当将第三光信号、第四光信号和参考光信号输入到发射单元731进行拍频时,汇聚到发射单元731的光信号S(t)可通过如下表达式进行表达:
Figure PCTCN2022113105-appb-000001
式中,S(t)为发射单元731输入的总信号;A 1为第三光信号的振幅,A 2为第四光信号的振幅,A 3为参考光信号的振幅;f 11为第一光信号的中心频率,f 12为参考光信号的中心频率,f RF1为第一电信号的中心频率,f RF2为第二电信号的中心频率;
Figure PCTCN2022113105-appb-000002
为第三光信号的相位,
Figure PCTCN2022113105-appb-000003
为第四光信号的相位,
Figure PCTCN2022113105-appb-000004
为参考光信号的相位,其中,
Figure PCTCN2022113105-appb-000005
Figure PCTCN2022113105-appb-000006
可调,
Figure PCTCN2022113105-appb-000007
为固定的相位。
当光信号S(t)输入光探测单元7313后,光探测单元7313的3dB带宽通常在几十GHz。在光探测单元7313的响应度在1A/W时,光探测单元7313通过频率为f 12的参考光信号和频率为f 11-f RF1的第三光信号可以得到频率为f 11-f RF1-f 12的射频信号,通过频率为f 12的参考光和频率为f 11+f RF2的光信号可以得到频率为f 11+f RF2-f 12的射频信号。将两个射频信号的频率变换一下表达形式后为:频率为f 11-f 12-f RF1的射频信号,和频率为f 11-f 12+f RF2的射频信号。光探测单元7313输出的射频信号I(t)可用如下公式表达:
Figure PCTCN2022113105-appb-000008
式中:Re[]表示取实部计算。等号右部两项即分别为两个频段的射频信号的表达式。
通过上述计算表达式可知,在第一光信号的中心频率f 11大于参考光信号的中心频率f 12,第一电信号的中心频率f RF1小于第二电信号的中心频率f RF2的情况下。生成的两个射频信号的频段与第一光信号和参考光信号之间的中心频率差值(即f 11-f 12)、第一电信号的中心频率f RF1、第二电信号的中心频率f RF2有关。以参考光信号和第一光信号的中心频率差值为32GHz为例,当第一电信号的中心频率f RF1为4GHz,第二电信号的中心频率f RF2为8GHz时,生成的两个射频信号的频段分别为32-4=28GHz和32+8=40GHz。综上可知,在实际应用中,通过调整参考光信号和第一光信号的中心频率的差值,以及第一电信号和第二电信号的中心频率,即可实现生成所需的不同频段的多个射频信号。
在一些可能的实施方式中,如图10所示,一个发射单元731还包括第三传输通道73171、第一复用器7318、第二复用器7319;第三传输通道73171与光探测单元7313 耦合;发射单元731的第一移相器7311通过第一复用器7318耦合至第三传输通道73171,用于通过第三传输通道73171向光探测单元7313输出移相后的第三光信号;发射单元731的第二移相器7312通过第二复用器7319耦合至第三传输通道73171,用于通过第三传输通道73171向光探测单元7313输出移相后的第四光信号。
在本申请实施例中,每个发射单元731所接收的一组第三光信号和第四光信号分别通过第一复用器7318和第二复用器7319耦合至第三传输通道73171,然后由第三传输通道73171输出至光探测单元7313。此时,由一个光探测单元7313通过参考光信号分别对第三光信号和第四光信号进行拍频,得到两个频段的射频信号。
示例性地,第一复用器7318可以为合束器、环形谐振器或者其他可以将光信号合并的器件。
示例性地,第二复用器7319可以为合束器、环形谐振器或者其他可以将光信号合并的器件。
在一些可能的实施方式中,如图10所示的发射单元731还包括多频段放大器73101;光探测单元7313的输出端通过多频段放大器73101与电滤波单元7314耦合;多频段放大器73101用于对第一射频信号和第二射频信号进行信号放大。
在本申请实施例中,基于图10所示的发射单元731,采用了一个光探测单元7313拍频生成了两个频段的射频信号,然后由一个可以对多个频段的射频信号进行放大的多频段放大器73101对两个频段的射频信号进行放大。然后将放大后的射频信号输出至电滤波单元7314,由电滤波单元7314从放大后的射频信号中得到由第三光信号和参考光信号拍频生成的第一射频信号和由第四光信号和参考光信号拍频生成的第二射频信号,并分别通过第一天线单元7315和第二天线单元7316进行发射。
示例性地,当生成双频段的射频信号时,多频段放大器73101可采用双频段放大器。
在一些可能的实施方式中,光探测单元7313的3dB带宽大于第一射频信号的频段和第二射频信号的频段。
在本申请实施例中,以第一射频信号的频段为28GHz,第二射频信号的频段为40GHz为例,当光探测单元7313的3dB带宽大于第二射频信号的频段40GHz时,可以确保光探测单元7313拍频生成的第一射频信号和第二射频信号的信号质量。
在一些可能的实施方式中,如图10所示的发射单元731中,第一天线单元7315和第二天线单元7316可制作在一个PCB板(printed circuit board)上。
在本申请实施例中,因如图10所示的发射单元731中采用一个光探测单元7313拍频生成两个频段的射频信号,则在实际应用中,用于发射两个频段的射频信号的第一天线单元7315和第二天线单元7316都通过多频段放大器73101和电滤波单元7314与光探测单元7313耦合,两个天线单元可分别设置在不同的PCB板上,或者,两个天线单元也可设置在一个PCB板上。
在一些可能的实施方式中,如图11所示,光探测单元7313包括第一光探测器73131和第二光探测器73132;发射单元731还包括第四传输通道73172、第五传输通道73173、第一复用器7318、第二复用器7319;第一光探测器73131分别与第四传输通道73172和电滤波单元7314耦合;第二光探测器73132分别与第五传输通道73173 和电滤波单元7314耦合;发射单元731的第一移相器7311通过第一复用器7318耦合至第四传输通道73172,用于通过第四传输通道73172向第一光探测器73131输出移相后的第三光信号;发射单元731的第二移相器7312通过第二复用器7319耦合至第五传输通道73173,用于通过第五传输通道73173向第二光探测器73132输出移相后的第四光信号;第一光探测器73131用于通过移相后的第三光信号与参考光信号进行拍频得到一个第一射频信号;第二光探测器73132用于通过移相后的第四光信号与参考光信号进行拍频得到一个第二射频信号。
在本申请实施例中,对于第一射频信号和第二射频信号,不采用同一个器件进行拍频,而是采用独立的第一光探测器73131和独立的第二光探测器73132,通过参考光信号分别对第三光信号和第四光信号进行拍频,从而得到第一射频信号和第二射频信号。具体的实现方式为:设置一个独立的第四传输通道73172,和一个独立的第五传输通道73173。第一移相器7311输入第三光信号后,对第三光信号进行移相,然后通过第一复用器7318将移相后的第三光信号输出至第四传输通道73172并通过第四传输通道73172输出至第一光探测器73131,同时第一光探测器73131通过第四传输通道73172输入参考光信号,然后通过参考光信号对第三光信号进行拍频,得到第一射频信号。第二移相器7312输入第四光信号后,对第四光信号进行移相,然后通过第二复用器7319将移相后的第四光信号输出至第五传输通道73173并通过第五传输通道73173输出至第二光探测器73132,同时第二光探测器73132通过第五传输通道73173输入参考光信号,然后通过参考光信号对第四光信号进行拍频,得到第二射频信号。
本申请实施例通过如图11所示的设置独立的器件分别拍频得到第一射频信号和第二射频信号的方式。相对于图10所示的发射单元731,如图11所示的发射单元731更容易将两个频段的射频信号分离开来。除此以外,也可以将实际产品做成更大规模的天线阵列。
在一些可能的实施方式中,如图11所示,发射单元731还包括第一放大器73102和第二放大器73103;第一光探测器73131通过第一放大器73102耦合至电滤波单元7314;第二光探测器73132通过第二放大器73103耦合至电滤波单元7314;第一放大器73102用于对第一射频信号进行信号放大;第二放大器73103用于对第二射频信号进行信号放大。
在本申请实施例中,因采用独立的第一光探测器73131和独立的第二光探测器73132分别对第三光信号和第四光信号进行拍频,得到第一射频信号和第二射频信号。故也可采用独立的第一放大器73102和第二放大器73103分别对第一射频信号和第二射频信号进行信号放大。
在一些可能的实施方式中,第一光探测器73131的3dB带宽大于第一射频信号的频段。
在本申请实施例中,因第一光探测器73131用于拍频生成第一射频信号,故当第一光探测器73131的3dB带宽大于第一射频信号的频段,可以更好地保证通过参考光信号对第三光信号拍频生成的第一射频信号的信号质量。
在一些可能的实施方式中,第二光探测器73132的3dB带宽大于第二射频信号的频段。
在本申请实施例中,因第二光探测器73132用于拍频生成第二射频信号,故当第二光探测器73132的3dB带宽大于第二射频信号的频段,可以更好地保证通过参考光信号对第四光信号拍频生成的第二射频信号的信号质量。
在一些可能的实施方式中,电滤波单元7314可以为一个实现多频段的电信号滤波的器件,分别对如图10的光探测单元7313输出的信号进行滤波,从而得到第一射频信号和第二射频信号,或者对如图11的第一光探测器73131和第二光探测器73132输出的信号进行滤波,分别得到第一射频信号和第二射频信号。
在一些可能的实施方式中,如图10和图11所示,电滤波单元7314包括第一电滤波器73141和第二电滤波器73142。
在本申请实施例中,在如图10所示的发射单元731中,第一电滤波器73141用于从光探测单元7313输出的射频信号中选出第一射频信号,并输出给第一天线单元7315,通过第一天线单元7315进行发射。第二电滤波器73142用于从光探测单元7313输出的射频信号中选出第二射频信号,并输出给第二天线单元7316,通过第二天线单元7316进行发射。在如图11所示的发射单元731中,第一电滤波器73141用于从第一光探测器73131输出的射频信号中选出第一射频信号,并输出给第一天线单元7315,通过第一天线单元7315进行发射。第二电滤波器73142用于从第二光探测器73132输出的射频信号中选出第二射频信号,并输出给第二天线单元7316,通过第二天线单元7316进行发射。
在一些可能的实施方式中,对于一组需要传输的数据信息,可以承载在一个第一光信号上,通过一个光相控阵电路7生成两个频段的射频信号,并以不同的相位进行波束赋形发射。当需要传输多组不同的数据信息时,如图6所示,可以承载在多个第一光信号上,并分别通过多个光相控阵电路7分别进行发射。
示例性地,在本申请实施例中,如图12所示,假设有N个光相控阵电路7,每个光相控阵电路7都接收激光源5输出的一组光信号,每组光信号都包括一个参考光信号和一个第一光信号,其中,第一光信号用于承载数据信号,由光电调制器71通过射频信号源6输出的第一电信号和第二电信号对第一光信号进行调制得到第二光信号,然后通过第一光滤波器72得到第三光信号和第四光信号;然后分别将第三光信号和第四光信号分为M路,输出给相控阵列单元73的M个发射单元731。M个发射单元731再分别对输入的第三光信号和第四光信号进行移相,然后通过参考光信号拍频得到第一射频信号和第二射频信号并进行发射。在本申请实施例中,因光相控阵电路7互相独立,则每个光相控阵电路7输入的一组光信号可以是相同的,也可以是不相同的。此时,对不同波长的光信号的需求并不高。但该实现方式需要大量的相控阵列单元73(包括多个光探测单元7313、放大器73101、第一天线单元7315和第二天线单元7316)及相应的辅助器件等,会大大增加系统的成本和集成复杂度等。
示例性地,在本申请实施例中N个光相控阵电路7中的每一个光相控阵电路7都采用上述实施例的图10所示的一个光探测单元7313对第三光信号和第四光信号进行拍频的方式。在这种实施方式下,N个光相控阵电路7之间可共用第三传输通道73171、光探测单元7313、多频段放大器73101、电滤波单元7314、第一天线单元7315和第二天线单元7316。以N个光相控阵电路7都包括M个光探测单元7313为例,如图13 所示(图中以N个光相控阵电路7的M个光探测单元7313中的一个光探测单元7313为例),此时每个光相控阵电路7通过第一光滤波器72从第二光信号中得到第三光信号和第四光信号后,将第三光信号和第四光信号分为M路,M路中的每一路第三光信号都输入一个对应的第一移相器7311中进行移相,然后将移相后的第三光信号通过对应的第一复用器7318输出至共用的第三传输通道73171上。同理,M路中的每一路第四光信号都输入一个对应的第二移相器7312中进行移相,然后将移相后的第四光信号通过对应的第二复用器7319输出至共用的第三传输通道73171。除此以外,共用的第三传输通道73171还接收N个光相控阵电路7对应的N个参考光信号,并将输入的N个移相后的第三光信号、N个移相后的第四光信号和N个参考光信号共同输出至共用的光探测单元7313,并由光探测单元7313通过N个参考光分别对N个第三光信号和N个第四光信号进行拍频,得到N个承载不同的数据信息的第一射频信号和第二射频信号。在如图13所示的实施例中,每一个光相控阵电路7所输入的一组光信号,需要满足:每一组光信号中的参考光信号和第一光信号之间的频率差值的绝对值要相等,以参考光信号和第一光信号之间的频率差值的绝对值为32GHz为例,每一组光信号中的参考光信号和第一光信号之间的频率差值的绝对值都为32GHz;第一光探测器73131的3dB带宽大于第三光信号和参考光信号的频率差值的绝对值、第四光信号与参考光信号的频率差值的绝对值中的较大的一个频率差值的绝对值。在这样的条件下,尽可能提高一个光探测单元7313对N路第三光信号和N路第四光信号进行拍频所得到的N个承载不同数据信息的第一射频信号和第二射频信号的信号质量。
示例性地,在本申请实施例中,在本申请实施例中N个光相控阵电路7中的每一个光相控阵电路7都采用上述实施例的图11所示的第一光探测器73131和第二光探测器73132分别对第三光信号和第四光信号进行拍频的方式。如图14所示(图中以N个光相控阵电路7的M个第一光探测器73131和第二光探测器73132中的一个第一光探测器73131和第二光探测器73132为例)。与图13所示的实施例相比,图14的实施例的区别在于,N个光相控阵电路7共用第四传输通道73172、第五传输通道73173、第一光探测器73131、第二光探测器73132、第一放大器73102、第二放大器73103、第一电滤波器73141、第二电滤波器73142、第一天线单元7315和第二天线单元7316。在如图14所示的实施例中,第一移相器7311将移相后的第三光信号通过对应的第一复用器7318输出至共用的第四传输通道73172上,然后共用的第四传输通道73172输入N个参考光信号,并将N个参考光信号和N个移相后的第三光信号输出至共用的第一光探测器73131,由共用的第一光探测器73131通过N个参考光信号分别对N个第三光信号进行拍频得到N个第一射频信号并进行发射。同理,第二移相器7312将移相后的第四光信号通过对应的第二复用器7319输出至共用的第五传输通道73173上,然后共用的第五传输通道73173输入N个参考光信号,并将N个参考光信号和N个移相后的第四光信号输出至共用的第二光探测器73132,由共用的第二光探测器73132通过N个参考光信号分别对N个第四光信号进行拍频得到N个第二射频信号并进行发射。共用的第一光探测器73131通过对应的共用的第一放大器73102对第一光探测器73131输出的射频信号进行放大后,通过共用的电滤波单元7314从放大后的射频信号中选出N个第一射频信号,并通过共用的第一天线单元7315发射N个第一射 频信号。通过M个第一天线单元7315以不同的相位发射对应的N个第一射频信号,以实现对N个承载不同数据信息的第一射频信号进行波束赋形。同理,通过M个第二天线单元7316以不同的相位发射对应的N个第二射频信号,以实现对N个承载不同数据信息的第二射频信号进行波束赋形。在如图14所示的实施例中,每一个光相控阵电路7所输入的一组光信号,需要满足:每一组光信号中的参考光信号和第一光信号之间的频率差值的绝对值要相等;第一光探测器73131的3dB带宽大于第三光信号与参考光信号的频率差值的绝对值;第二光探测器73132的3dB带宽大于第四光信号与参考光信号的频率差值的绝对值。
在一些可能的实施方式中,激光源5为分别向每一个光相控阵电路7提供独立的参考光信号和第一光信号的器件。
在一些可能的实施方式中,激光源5包括多波长激光器或光频率梳。
示例性地,如图15所示,当激光源5包括采用多波长激光器或光频率梳作为提供不同波长的光信号的光源器件51时,激光源5还包括多通道分路器52、与光相控阵电路7对应的多个第二光滤波器53。如图15所示,光源器件51输出包括多个波长的光信号,通过多通道分路器52将该包括多个波长的光信号分为多组包括参考光信号和第一光信号的光信号,并将多组光信号分别对应输出至多个第二光滤波器53。每个第二光滤波器53从输入的一组光信号中分离出对应的参考光信号和第一光信号,并将参考光信号和第一光信号输出给对应的光相控阵电路7。
示例性地,多通道分路器52可以为解复用器。
示例性地,激光源5还可以包括多个第六传输通道和多个第三复用器,每个第六传输通道的一端用于输入一路参考光信号,另一端通过对应的第三复用器耦合至第三传输通道73171,以向光探测单元7313输出参考光信号;或者,第六传输通道的另一端通过对应的第三复用器耦合至第四传输通道73172和第五传输通道73173,以分别向第一光探测器73131和第二光探测器73132输出参考光信号。
可选地,第六传输通道可以为波导。
可选地,第三复用器可以为环形谐振器、合束器等。
本申请实施例关于第六传输通道和第三复用器的相关技术效果和技术原理的描述可以参考上述如图10记载的关于第三传输通道73171、第一复用器7318、第二复用器7319的描述。
在一些可能的实施方式中,射频信号源6可为本振单元。该本振单元用于输入电信号,并通过输入的电信号生成两个不同中心频率的电信号并输出至光相控阵电路7的光电调制器71。
在本申请实施例中,在射频通信的应用中,发射设备3中通常设置有本振单元,故可使用发射设备3中的本振单元作为向光电调制器71提供不同中心频率的电信号的器件。
示例性地,输入射频信号源6的电信号为无线通信基带信号,射频信号源6通过无线通信基带信号生成两个不同中心频率的宽带电信号,将两个不同中心频率的宽带电信号输出至光电调制器71,作为与第一光信号进行调制的电信号。
可选地,可以通过调节无线通信基带信号的带宽来调节两个不同中心频率的宽带 电信号的带宽。
可选地,可以通过向射频信号源6输入一路无线通信基带信号,生成两个不同中心频率的宽带电信号。
可选地,可以通过向射频信号源6输入两路无线通信基带信号,生成两个不同中心频率的宽带电信号。
在本申请实施例中,无线通信基带信号为发射设备3通常会输入和使用的信号,可使用无线通信基带信号生成两个不同中心频率的电信号。
示例性地,可以通过一个射频信号源6为多个光相控阵电路7中的光电调制器71提供两个不同中心频率的电信号,也可以通过不同的射频信号源6分别为不同的光相控阵电路7中的光电调制器71提供不同中心频率的电信号。
可选地,当通过多个射频信号源6分别为不同的光相控阵电路7中的光电调制器71提供不同中心频率的电信号时,输入多个射频信号源6的用于生成不同中心频率的电信号的信号(例如无线通信基带信号)可以为相同的信号,也可以为不同的信号。
示例性地,射频信号源6还可以为其他任何可以向光电调制器71提供两个不同中心频率的电信号的器件。
在一些可能的实施方式中,光相控阵电路7还包括控制器,控制器用于控制第一移相器7311和第二移相器7312的移相角度,以实现不同方向的波束赋形。
本申请实施例通过上述包括图5、图6、图7、图8、图9、图10、图11、图12、图13、图14和图15记载的结构的发射设备3在降低了器件成本的同时,降低了生成多个不同频段的射频信号时所需的不同波长的光信号的数量,且在通过拍频生成射频信号时,通过采用调制上边带信号和调制下边带信号分别对不同的光信号进行拍频的方式,实现了由多频段多波束的相控阵天线对多个不同频段的射频信号进行波束赋形。通过该实施方式,降低了生成多个频段的射频信号时对不同波长的光信号的数量要求。且减少了对光电调制器等器件的数量需求,特别是在需要越多天线单元对射频信号进行发射的情况下,对光电调制器等数量的节约效果越可观。在本申请实施例中,如图7、图8、图9、图10、图11、图12、图13、图14、图15、图16、图17和图18中的记载,是以两个不同中心频率的电信号对第一光信号进行调制,最终生成两个频段的射频信号为例。但当需要生成更多不同频段的射频信号时,只需要增加图7、图8、图9、图10、图11、图12、图13、图14和图15中的相关器件的数量即可完成方案的实现,具体实现可从上述实施例的记载的明确得出,故不再赘述。除此以外,在生成双频段的射频信号时,如本申请实施例的图5、图6和图7所记载的方案中,采用一个上边带调制信号和一个下边带调制信号分别与参考光信号进行拍频,得到的射频信号的电信号能量也较大。
本申请实施例涉及的处理器可以是一个芯片。例如,可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或 其他集成芯片。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个设备,或者也可以分布到多个设备上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个设备中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个设备中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种光相控阵电路,其特征在于,包括光电调制器、第一光滤波器、相控阵列单元;所述相控阵列单元包括发射单元;所述光电调制器通过所述第一光滤波器耦合至所述发射单元;
    所述光电调制器的光信号输入端用于输入第一光信号,所述光电调制器的电信号输入端用于输入多个电信号;所述多个电信号具有不同的中心频率;所述光电调制器用于将所述多个电信号调制到所述第一光信号上以得到第二光信号;所述第二光信号包括多个调制光信号;所述多个调制光信号为所述多个电信号分别调制到所述第一光信号上对应得到的光信号;
    所述第一光滤波器用于对所述第二光信号进行滤波得到所述多个调制光信号对应的多个调制边带光信号;所述多个调制边带光信号中的一个调制边带光信号为对应的调制光信号的调制上边带信号或者调制下边带信号;
    所述发射单元用于输入参考光信号;所述参考光信号与所述第一光信号为不同波长的光信号;通过所述多个调制边带光信号一一与所述参考光信号进行拍频得到多个射频信号并进行发射。
  2. 根据权利要求1所述的电路,其特征在于,所述相控阵列单元包括多个所述发射单元;多个所述发射单元用于以不同的相位发射所述多个射频信号中的一个射频信号。
  3. 根据权利要求2所述的电路,其特征在于,所述多个电信号包括第一电信号和第二电信号;所述多个调制边带光信号包括第三光信号和第四光信号;所述第三光信号为所述第一电信号与所述第一光信号进行调制得到的一个所述调制光信号的调制下边带信号;所述第四光信号为所述第二电信号与所述第一光信号进行调制得到的一个所述调制光信号的调制上边带信号;
    所述发射单元用于将所述第三光信号与所述参考光信号进行拍频得到第一射频信号并进行发射;将所述第四光信号与所述参考光信号进行拍频得到第二射频信号并进行发射。
  4. 根据权利要求3所述的电路,其特征在于,一个发射单元包括第一移相器、第二移相器、光探测单元、电滤波单元、第一天线单元和第二天线单元;所述第一移相器的输入端与所述第一光滤波器耦合,所述第一移相器的输出端与所述光探测单元的输入端耦合;所述第二移相器的输入端与所述第一光滤波器耦合,所述第二移相器的输出端与所述光探测单元的输入端耦合;所述光探测单元的输出端通过所述电滤波单元与所述第一天线单元和所述第二天线单元耦合;
    所述第一移相器用于对所述第三光信号进行移相,并向所述光探测单元输出移相后的所述第三光信号;
    所述第二移相器用于对所述第四光信号进行移相,并向所述光探测单元输出移相后的所述第四光信号;
    所述光探测单元用于输入移相后的所述第三光信号、移相后的所述第四光信号、所述参考光信号;通过移相后的所述第三光信号与所述参考光信号进行拍频得到一个所述第一射频信号;通过移相后的所述第四光信号与所述参考光信号进行拍频得到一 个所述第二射频信号;
    所述电滤波单元用于从所述光探测单元输出的信号中筛选出所述第一射频信号和所述第二射频信号,并分别通过所述第一天线单元和所述第二天线单元进行发射。
  5. 根据权利要求4所述的电路,其特征在于,所述光相控阵电路还包括第一传输通道、第二传输通道、多个第一分束器、多个第二分束器;所述第一传输通道和所述第二传输通道分别与所述第一光滤波器耦合;所述第一传输通道通过所述多个第一分束器与所述多个发射单元对应耦合,用于向所述多个发射单元输出所述第一光滤波器所输出的所述第三光信号;所述第二传输通道通过所述多个第二分束器与所述多个发射单元对应耦合,用于向所述多个发射单元输出所述第一光滤波器所输出的所述第四光信号。
  6. 根据权利要求4或5所述的电路,其特征在于,一个所述发射单元还包括第三传输通道、第一复用器、第二复用器;所述第三传输通道与所述光探测单元耦合,用于输入所述参考光信号并输出至所述光探测单元;所述发射单元的所述第一移相器通过所述第一复用器耦合至所述第三传输通道,用于通过所述第三传输通道向所述光探测单元输出移相后的所述第三光信号;所述发射单元的所述第二移相器通过所述第二复用器耦合至所述第三传输通道,用于通过所述第三传输通道向所述光探测单元输出移相后的所述第四光信号。
  7. 根据权利要求4-6任一项所述的电路,其特征在于,所述发射单元还包括多频段放大器;所述光探测单元的输出端通过所述多频段放大器与所述电滤波单元耦合;所述多频段放大器用于对所述第一射频信号和所述第二射频信号进行信号放大。
  8. 根据权利要求4-7任一项所述的电路,其特征在于,所述光探测单元的3dB带宽大于所述第一射频信号的信号频率以及所述第二射频信号的信号频率。
  9. 根据权利要求4或5所述的电路,其特征在于,所述光探测单元包括第一光探测器和第二光探测器;所述发射单元还包括第四传输通道、第五传输通道、第一复用器、第二复用器;
    所述第一光探测器分别与所述第四传输通道和所述电滤波单元耦合;所述第二光探测器分别与所述第五传输通道和所述电滤波单元耦合;所述发射单元的所述第一移相器通过所述第一复用器耦合至所述第四传输通道,用于通过所述第四传输通道向所述第一光探测器输出移相后的所述第四光信号;所述发射单元的所述第二移相器通过所述第二复用器耦合至所述第五传输通道,用于通过所述第五传输通道向所述第二光探测器输出移相后的所述第四光信号;
    所述第一光探测器用于通过移相后的所述第三光信号与所述参考光信号进行拍频得到一个所述第一射频信号;所述第二光探测器用于通过移相后的所述第四光信号与所述参考光信号进行拍频得到一个所述第二射频信号。
  10. 根据权利要求9所述的电路,其特征在于,所述发射单元还包括第一放大器和第二放大器;所述第一光探测器通过所述第一放大器耦合至所述电滤波单元;所述第二光探测器通过所述第二放大器耦合至所述电滤波单元;所述第一放大器用于对所述第一射频信号进行信号放大;所述第二放大器用于对所述第二射频信号进行信号放大。
  11. 根据权利要求9或10所述的电路,其特征在于,所述第一光探测器的3dB带 宽大于所述第一射频信号的信号频率。
  12. 根据权利要求9-11任一项所述的电路,其特征在于,所述第二光探测器的3dB带宽大于所述第二射频信号的信号波段。
  13. 一种发射设备,其特征在于,包括激光源、射频信号源和至少一个如权利要求1-12任一项所述的光相控阵电路;所述激光源用于向所述光相控阵电路输出不同波长的第一光信号和参考光信号;所述射频信号源用于向所述光相控阵电路输出不同中心频率多个电信号;所述光相控阵电路用于通过所述多个电信号和所述参考光信号生成多个射频信号并进行发射;所述多个射频信号为不同频段的信号。
  14. 一种信号传输系统,其特征在于,包括接收设备和如权利要求13所述的发射设备;所述发射设备用于向所述接收设备发射承载了数据信息的多个射频信号;所述多个射频信号为不同频段的射频信号;所述接收设备用于接收所述多个射频信号,并得到所述数据信息。
PCT/CN2022/113105 2022-08-17 2022-08-17 一种光相控阵电路、发射设备及信号传输系统 WO2024036521A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113105 WO2024036521A1 (zh) 2022-08-17 2022-08-17 一种光相控阵电路、发射设备及信号传输系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113105 WO2024036521A1 (zh) 2022-08-17 2022-08-17 一种光相控阵电路、发射设备及信号传输系统

Publications (1)

Publication Number Publication Date
WO2024036521A1 true WO2024036521A1 (zh) 2024-02-22

Family

ID=89940461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113105 WO2024036521A1 (zh) 2022-08-17 2022-08-17 一种光相控阵电路、发射设备及信号传输系统

Country Status (1)

Country Link
WO (1) WO2024036521A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120328298A1 (en) * 2010-03-02 2012-12-27 Xiaoke Yi Phase shifter and photonic controlled beam former for phased array antennas
US20130223842A1 (en) * 2012-02-27 2013-08-29 Fujitsu Limited Optical signal transmitting device, optical signal transmitting method, frequency fluctuation suppressing device and frequency fluctuation suppressing system
CN109088673A (zh) * 2018-09-05 2018-12-25 北京邮电大学 基于双载波的宽带信号微波光子移相方法和系统
CN112165361A (zh) * 2020-09-29 2021-01-01 中国船舶重工集团公司第七二四研究所 一种频率范围可调谐的光信道化装置及方法
CN114594462A (zh) * 2022-03-03 2022-06-07 清华大学 基于双光频梳的宽带光控波束赋形网络及相控阵雷达

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120328298A1 (en) * 2010-03-02 2012-12-27 Xiaoke Yi Phase shifter and photonic controlled beam former for phased array antennas
US20130223842A1 (en) * 2012-02-27 2013-08-29 Fujitsu Limited Optical signal transmitting device, optical signal transmitting method, frequency fluctuation suppressing device and frequency fluctuation suppressing system
CN109088673A (zh) * 2018-09-05 2018-12-25 北京邮电大学 基于双载波的宽带信号微波光子移相方法和系统
CN112165361A (zh) * 2020-09-29 2021-01-01 中国船舶重工集团公司第七二四研究所 一种频率范围可调谐的光信道化装置及方法
CN114594462A (zh) * 2022-03-03 2022-06-07 清华大学 基于双光频梳的宽带光控波束赋形网络及相控阵雷达

Similar Documents

Publication Publication Date Title
US11374654B2 (en) Extended transit time array photodetector combiner (ETT-APC)
US11936433B2 (en) Integrated microwave photon transceiving front-end for phased array system
CN106972881B (zh) 一种波束赋形bf权值赋值的方法和装置
CN111181683B (zh) 一种基于微波光子的超宽带接收机的装置及设计方法
CN113067635B (zh) 基于集成光延迟芯片的收发一体相控阵波束合成装置
CN113630182B (zh) 一种基于片上模数信号的微波光子调控系统及方法
US11018770B2 (en) Silicon photonics phased array systems
CN105721060B (zh) 一种应用偏振复用实现载波重利用的双向多业务接入rof传输系统和方法
US20060067709A1 (en) Optically frequency generated scanned active array
US11283168B2 (en) Device for optically receiving a signal coming from a phased antenna array and associated antenna system
CN112485777B (zh) 基于可插拔式收发组件的光控微波相控阵雷达系统及反馈控制方法
US11589140B2 (en) Optical beamforming device using phased array antenna and operating method thereof
KR102611737B1 (ko) 위상 배열 안테나를 이용한 광학식 빔포밍 장치 및 이의 동작 방법
CN114355382A (zh) 一种微波光子mimo雷达收发系统
CN112383363B (zh) 一种基于混频技术的大带宽相控阵接收装置
WO2024036521A1 (zh) 一种光相控阵电路、发射设备及信号传输系统
CN116865900A (zh) 一种全光同时多频段多波束相控阵发射机及其方法
CN117014074A (zh) 一种面向不同电子系统应用的超宽带一体化柔性变频装置
CN114448511A (zh) 可重构多波段微波光子收发链路
CN117040575A (zh) 一种多波长调制的相干光学接收多波束形成装置及方法
CN114024616B (zh) 一种偏振态独立调制实现的多路变频结构
US20230109405A1 (en) Beamforming systems, networks, and elements configured for simultaneous optical up/down conversion and beamforming
KR102520675B1 (ko) 펼스파형 송수신을 위한 포토닉스 기반 능동 배열 레이다
JPH0622285B2 (ja) 光制御型フェーズドアレーアンテナ
KR101999589B1 (ko) 고주파 대역용 광학빔 형성시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955302

Country of ref document: EP

Kind code of ref document: A1