WO2024035170A1 - Non-aqueous electrolyte and lithium secondary battery comprising same - Google Patents

Non-aqueous electrolyte and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2024035170A1
WO2024035170A1 PCT/KR2023/011855 KR2023011855W WO2024035170A1 WO 2024035170 A1 WO2024035170 A1 WO 2024035170A1 KR 2023011855 W KR2023011855 W KR 2023011855W WO 2024035170 A1 WO2024035170 A1 WO 2024035170A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
additive
lithium
formula
group
Prior art date
Application number
PCT/KR2023/011855
Other languages
French (fr)
Korean (ko)
Inventor
박성국
조윤교
이철행
이정훈
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority claimed from KR1020230104906A external-priority patent/KR20240022998A/en
Publication of WO2024035170A1 publication Critical patent/WO2024035170A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives

Definitions

  • the present invention relates to a non-aqueous electrolyte and a lithium secondary battery containing the same.
  • lithium secondary batteries Recently, the application area of lithium secondary batteries has rapidly expanded not only to supply power to electronic devices such as electricity, electronics, communication, and computers, but also to supply power storage to large-area devices such as automobiles and power storage devices, leading to high capacity, high output, and high stability. Demand for secondary batteries is increasing.
  • lithium-ion batteries In particular, as interest in solving environmental problems and realizing a sustainable, cyclical society grows, research on power storage devices such as lithium-ion batteries and electric double-layer capacitors is being conducted extensively. Among battery technologies, lithium secondary batteries are attracting attention as a battery system with theoretically the highest energy density.
  • the lithium secondary battery is largely composed of a positive electrode composed of a transition metal oxide containing lithium, a negative electrode capable of storing lithium, an electrolyte solution that serves as a medium for transferring lithium ions, and a separator.
  • a positive electrode composed of a transition metal oxide containing lithium
  • a negative electrode capable of storing lithium
  • an electrolyte solution that serves as a medium for transferring lithium ions
  • a separator a separator.
  • the stability of the battery It is known to be a component that has a significant impact on stability, safety, etc., and much research is being conducted on it.
  • the electrolyte of a lithium secondary battery is a non-aqueous electrolyte containing a lithium salt and an organic solvent, and the organic solvent is a carbonate-based organic solvent.
  • LiPF 6 can be used as the lithium salt.
  • PF 6 - anion it is very vulnerable to heat, so when the battery is exposed to high temperature, thermal decomposition of the lithium salt causes Lewis acids such as HF and PF 5 . There is a problem with acid being generated.
  • Lewis acids such as HF and PF 5 cause decomposition of the organic solvent itself and destroy the solid electrolyte interface layer (SEI layer) formed on the surface of the negative electrode active material, increasing the resistance of lithium secondary batteries, reducing their lifespan, and reducing storage. There is a problem that causes performance problems.
  • One object of the present invention is to provide a non-aqueous electrolyte that can reduce electrolyte side reactions by forming a stable film on an electrode and can provide excellent storage and resistance characteristics at high temperatures when applied to a lithium secondary battery.
  • Another object of the present invention is to provide a lithium secondary battery containing the above-described non-aqueous electrolyte.
  • the present invention relates to a lithium salt; organic solvent; and an additive; wherein the additive includes a first additive and a second additive, wherein the first additive includes a compound represented by the following formula (1), and the second additive includes lithium difluorophosphate.
  • the additive includes a first additive and a second additive, wherein the first additive includes a compound represented by the following formula (1), and the second additive includes lithium difluorophosphate.
  • the first additive includes a compound represented by the following formula (1)
  • the second additive includes lithium difluorophosphate.
  • R 1 is an alkoxy group having 1 to 10 carbon atoms substituted with one or more fluorines or an aryloxy group having 6 to 20 carbon atoms with one or more fluorine substituted
  • R 2 and R 3 are independently hydrogen and carbon atoms. It is an alkyl group with 1 to 10 carbon atoms or an aryl group with 6 to 20 carbon atoms.
  • the present invention is an anode; a cathode opposite the anode; a separator interposed between the anode and the cathode; and a lithium secondary battery containing the above-described non-aqueous electrolyte.
  • the non-aqueous electrolyte of the present invention is characterized by comprising a first additive containing a sulfonamide-based compound having a specific structural formula as an additive and a second additive containing lithium difluorophosphate.
  • the non-aqueous electrolyte according to the present invention can reduce electrolyte side reactions by forming a stable film on the electrode, and can achieve excellent storage and resistance characteristics at high temperatures when applied to a lithium secondary battery.
  • alkyl group having 1 to 5 carbon atoms refers to an alkyl group containing 1 to 5 carbon atoms, i.e. CH 3 -, CH 3 CH 2 -, CH 3 CH 2 CH 2 -, (CH 3 ) 2 CH -, CH 3 CH 2 CH 2 CH 2 -, (CH 3 ) 2 CHCH 2 -, CH 3 CH 2 CH 2 CH 2 -, (CH 3 ) 2 CHCH 2 CH 2 -, etc.
  • substitution means that at least one hydrogen bonded to carbon is replaced with an element other than hydrogen, for example, an alkyl group with 1 to 20 carbon atoms, an alkene with 2 to 20 carbon atoms.
  • Nyl group alkynyl group of 2 to 20 carbon atoms, alkoxy group of 1 to 20 carbon atoms, cycloalkyl group of 3 to 12 carbon atoms, cycloalkenyl group of 3 to 12 carbon atoms, cycloalkynyl group of 3 to 12 carbon atoms, hetero group of 3 to 12 carbon atoms Cycloalkyl group, heterocycloalkenyl group with 3 to 12 carbon atoms, heterocycloalkynyl group with 2 to 12 carbon atoms, aryloxy group with 6 to 12 carbon atoms, halogen atom, fluoroalkyl group with 1 to 20 carbon atoms, nitro group, 6 to 12 carbon atoms It means substituted with an aryl group of 20, a heteroaryl group of 2 to 20 carbon atoms, a haloaryl group of 6 to 20 carbon atoms, etc.
  • the present invention relates to non-aqueous electrolytes. More specifically, the non-aqueous electrolyte may be a non-aqueous electrolyte for a lithium secondary battery.
  • the non-aqueous electrolyte according to the present invention includes a lithium salt; organic solvent; and an additive; wherein the additive includes a first additive and a second additive, wherein the first additive includes a compound represented by the following formula (1), and the second additive includes lithium difluorophosphate. It is characterized by
  • R 1 is an alkoxy group having 1 to 10 carbon atoms substituted with one or more fluorines or an aryloxy group having 6 to 20 carbon atoms with one or more fluorine substituted
  • R 2 and R 3 are independently hydrogen and carbon atoms. It is an alkyl group with 1 to 10 carbon atoms or an aryl group with 6 to 20 carbon atoms.
  • the non-aqueous electrolyte of the present invention is characterized by comprising a first additive containing a sulfonamide-based compound having a specific structural formula as an additive and a second additive containing lithium difluorophosphate.
  • the non-aqueous electrolyte according to the present invention can reduce electrolyte side reactions by forming a stable film on the electrode, and can achieve excellent storage and resistance characteristics at high temperatures when applied to a lithium secondary battery.
  • the lithium salt used in the present invention various lithium salts commonly used in non-aqueous electrolytes for lithium secondary batteries can be used without limitation.
  • the lithium salt includes Li + as a cation, and F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , and ClO 4 - as anions.
  • the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiAlO 4, LiAlCl 4 , LiPF 6 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiBOB (LiB(C 2 O 4 ) 2 ) , LiCF 3 SO 3 , LiFSI (LiN(SO 2 F) 2 ), LiCH 3 SO 3 , LiCF 3 CO 2 , LiCH 3 CO 2 and LiBETI (LiN(SO 2 CF 2 CF 3 ) 2 ). It may include at least one type.
  • the lithium salt is LiBF 4 , LiClO 4 , LiPF 6 , LiBOB (LiB(C 2 O 4 ) 2 ), LiCF 3 SO 3 , LiTFSI (LiN(SO 2 CF 3 ) 2 ), LiFSI ((LiN(SO 2 F) 2 ) and LiBETI (LiN(SO 2 CF 2 CF 3 ) 2 ).
  • the lithium salt may be included in the non-aqueous electrolyte at a concentration of 0.5M to 5M, specifically 0.8M to 4M, and more specifically 0.8M to 2.0M.
  • concentration of the lithium salt satisfies the above range, the lithium ion yield (Li + transference number) and the degree of dissociation of lithium ions are improved, thereby improving the output characteristics of the battery.
  • the organic solvent is a non-aqueous solvent commonly used in lithium secondary batteries, and is not particularly limited as long as it can minimize decomposition due to oxidation reactions, etc. during the charging and discharging process of the secondary battery.
  • the organic solvent may include at least one selected from the group consisting of cyclic carbonate-based organic solvents, linear carbonate-based organic solvents, linear ester-based organic solvents, and cyclic ester-based organic solvents.
  • the organic solvent may include a cyclic carbonate-based organic solvent, a linear carbonate-based organic solvent, or a mixture thereof.
  • the cyclic carbonate-based organic solvent is a high-viscosity organic solvent that has a high dielectric constant and can easily dissociate lithium salts in the electrolyte.
  • 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and vinylene carbonate and may include at least one organic solvent selected from the group consisting of ethylene. May contain carbonate.
  • the linear carbonate-based organic solvent is an organic solvent having low viscosity and low dielectric constant, specifically dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and ethylmethyl carbonate (EMC). ), and may include at least one member selected from the group consisting of methylpropyl carbonate and ethylpropyl carbonate, and more specifically, may include ethylmethyl carbonate (EMC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • EMC ethylmethyl carbonate
  • the organic solvent may be a mixture of a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent.
  • the cyclic carbonate-based organic solvent and the linear carbonate-based organic solvent have a volume ratio of 10:90 to 40:60, specifically 10:90 to 30:70, and more specifically 15:85 to 30:70. Can be mixed.
  • the mixing ratio of the cyclic carbonate-based organic solvent and the linear carbonate-based organic solvent satisfies the above range, high dielectric constant and low viscosity characteristics can be simultaneously satisfied, and excellent ionic conductivity characteristics can be realized.
  • the organic solvent may be added to at least one carbonate-based organic solvent selected from the group consisting of a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent, a linear ester-based organic solvent, and a cyclic organic solvent. It may further include at least one type of ester-based organic solvent selected from the group consisting of ester-based organic solvents.
  • the linear ester-based organic solvent may specifically include at least one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate. there is.
  • the cyclic ester-based organic solvent may specifically include at least one selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone. You can.
  • the organic solvent can be used by adding organic solvents commonly used in non-aqueous electrolytes without limitation, if necessary.
  • it may further include at least one organic solvent selected from the group consisting of an ether-based organic solvent, a glyme-based solvent, and a nitrile-based organic solvent.
  • the ether-based solvents include dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether, ethyl propyl ether, 1,3-dioxolane (DOL), and 2,2-bis (trifluoromethyl )-1,3-dioxolane (TFDOL) or a mixture of two or more of these may be used, but are not limited thereto.
  • the glyme-based solvent has a high dielectric constant and low surface tension compared to linear carbonate-based organic solvents, and is a solvent with low reactivity with metals, such as dimethoxyethane (glyme, DME), diethoxyethane, digylme, It may include, but is not limited to, at least one selected from the group consisting of triglyme and tetra-glyme (TEGDME).
  • DME dimethoxyethane
  • TEGDME tetra-glyme
  • the nitrile-based solvents include acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile, and 4-fluorobenzonitrile. , difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile, but is not limited thereto.
  • the non-aqueous electrolyte according to the invention contains additives.
  • the additive includes a first additive and a second additive.
  • the first additive includes a compound represented by Formula 1.
  • the second additive includes lithium difluorophosphate (LiDFP).
  • the second additive includes lithium difluorophosphate, and the lithium difluorophosphate reacts with an organic solvent (e.g., ethylene carbonate) to form an SEI film containing an organic component on the cathode.
  • an organic solvent e.g., ethylene carbonate
  • the SEI film lacks inorganic components (e.g., LiF, etc.), so the lithium difluorophosphate decomposes first at the anode, resulting in insufficient formation of the SEI film on the cathode. There is.
  • the compound represented by Formula 1 included in the first additive is a sulfonamide-based compound in which an alkoxy group or aryloxy group is substituted with one or more fluorines, and the alkoxy group or aryloxy group with one or more fluorines is substituted is F Since it is a relatively weak electron withdrawing group compared to -, CF 3 -, etc., it is easily reduced at the cathode and can easily form a film containing an inorganic component (for example, LiF).
  • an inorganic component for example, LiF
  • the non-aqueous electrolyte of the present invention using a combination of the first additive and the second additive can form an SEI film containing both organic and inorganic components on the negative electrode, and is excellent in preventing electrolyte side reactions and suppressing gas generation, and is excellent in preventing electrolyte side reactions and gas generation. Storage properties and resistance properties at high temperatures can be improved to an excellent level.
  • the non-aqueous electrolyte of the present invention using a combination of the first additive and the second additive, it is possible to form an SEI film in which an inorganic component such as LiF is distributed in an SEI film containing an organic component with flexible properties, thereby providing flexibility and Since an SEI film with improved durability can be formed on the electrode, the overall performance of lithium secondary batteries, including high-temperature performance, can be improved to an excellent level. If only the first additive is included as an additive in the non-aqueous electrolyte or only the second additive is included in the non-aqueous electrolyte, durability or flexibility may be reduced, making it difficult to achieve the high-temperature performance improvement effect of the lithium secondary battery targeted by the present invention. I can't.
  • the first additive includes a compound represented by the following formula (1).
  • R 1 is an alkoxy group having 1 to 10 carbon atoms substituted with one or more fluorines or an aryloxy group having 6 to 20 carbon atoms with one or more fluorine substituted
  • R 2 and R 3 are independently hydrogen and carbon atoms. It is an alkyl group with 1 to 10 carbon atoms or an aryl group with 6 to 20 carbon atoms.
  • R 1 may be an alkoxy group having 1 to 10 carbon atoms in which one or more fluorines are substituted, or an aryloxy group having 6 to 20 carbon atoms in which one or more fluorines are substituted. Specifically, it may be an alkoxy group having 1 to 10 carbon atoms in which one or more fluorines are substituted. and, more specifically, it may be an alkoxy group having 1 to 5 carbon atoms substituted with one or more fluorines, and even more specifically, it may be CF 3 O-, CF 3 CF 2 O-, or CF 3 CH 2 O-. More specifically, it may be CF 3 CH 2 O- in terms of easy formation of the cathode SEI film.
  • R 2 and R 3 may be independently hydrogen, an alkyl group with 1 to 10 carbon atoms, or an aryl group with 6 to 20 carbon atoms, and specifically hydrogen or an alkyl group with 1 to 5 carbon atoms, more specifically, a stable reaction during formation of the SEI film. In terms of purpose, it may be an alkyl group having 1 to 5 carbon atoms, and more specifically, a methyl group.
  • the compound represented by Formula 1 may include at least one selected from the group consisting of a compound represented by Formula 2, a compound represented by Formula 3, and a compound represented by Formula 4.
  • a compound represented by Formula 2 may include at least one selected from the group consisting of a compound represented by Formula 2, a compound represented by Formula 3, and a compound represented by Formula 4.
  • it may include a compound represented by the following formula (2).
  • the first additive is added to the non-aqueous electrolyte in an amount of 0.01% to 10% by weight, specifically 0.1% to 2% by weight, more specifically 0.2% to 1% by weight, and even more specifically 0.5% to 1% by weight, More specifically, it may be included at 0.7% by weight to 1% by weight.
  • 0.01% to 10% by weight specifically 0.1% to 2% by weight, more specifically 0.2% to 1% by weight, and even more specifically 0.5% to 1% by weight, More specifically, it may be included at 0.7% by weight to 1% by weight.
  • the second additive includes lithium difluorophosphate.
  • the lithium difluorophosphate can form an SEI film containing an organic component on the cathode by reaction with an organic solvent (eg, ethylene carbonate, etc.).
  • an organic solvent eg, ethylene carbonate, etc.
  • the second additive is added to the non-aqueous electrolyte in an amount of 0.01% to 10% by weight, specifically 0.1% to 2% by weight, more specifically 0.2% to 1% by weight, and even more specifically 0.8% to 1% by weight. may be included.
  • the content of the second additive satisfies the above range, it is advantageous to improve resistance characteristics while providing sufficient flexibility to the SEI film, and is desirable in terms of preventing an increase in the resistance of the lithium secondary battery due to excessive addition and a corresponding decrease in life performance. do.
  • the weight ratio of the first additive and the second additive is 10:90 to 90:10, specifically 20:80 to 80:20, more specifically 32:68 to 70:30, and even more specifically 35:65 to 60: 40, more specifically, 53:47 to 60:40, and the above-mentioned weight ratio is preferred because the flexibility and durability of the SEI film can be simultaneously improved to a desirable level.
  • the additive may further include additional additives along with the first and second additives.
  • the additional additive may be included in the non-aqueous electrolyte to prevent decomposition of the non-aqueous electrolyte in a high-power environment, causing cathode collapse, or to improve low-temperature high-rate discharge characteristics, high-temperature stability, overcharge prevention, and battery expansion inhibition at high temperatures.
  • the additional additives include vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, propane sultone, propene sultone, and succino.
  • Nitrile succinonitrile
  • Adiponitrile Adiponitrile
  • ethylene sulfate LiODFB (Lithium difluorooxalatoborate), LiBOB (Lithium bis-(oxalato)borate), TMSPa (3-trimethoxysilanyl-propyl-N-aniline), and It may be at least one selected from the group consisting of TMSPi (Tris(trimethylsilyl) Phosphite), and specifically may be vinylene carbonate.
  • TMSPi Tris(trimethylsilyl) Phosphite
  • the additional additive may be included in the non-aqueous electrolyte in an amount of 0.1% to 15% by weight.
  • the present invention provides a lithium secondary battery containing the above-described non-aqueous electrolyte.
  • the lithium secondary battery includes a positive electrode; a cathode opposite the anode; a separator interposed between the anode and the cathode; and the non-aqueous electrolyte described above.
  • the lithium secondary battery of the present invention can be manufactured according to a common method known in the art.
  • the anode, the cathode, and the separator between the anode and the cathode are sequentially stacked to form an electrode assembly, and then the electrode assembly can be manufactured by inserting the inside of the battery case and injecting the non-aqueous electrolyte according to the present invention. .
  • the positive electrode includes a positive electrode current collector; and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the positive electrode current collector may include at least one selected from the group consisting of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, and aluminum-cadmium alloy, preferably aluminum.
  • the thickness of the positive electrode current collector may typically range from 3 to 500 ⁇ m.
  • the positive electrode current collector may form fine irregularities on the surface to strengthen the bonding force of the negative electrode active material.
  • the positive electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
  • the positive electrode active material layer is disposed on at least one side of the positive electrode current collector. Specifically, the positive electrode active material layer may be disposed on one or both sides of the positive electrode current collector.
  • the positive electrode active material layer may include a positive electrode active material.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, a lithium transition metal complex oxide containing lithium and at least one transition metal consisting of nickel, cobalt, manganese, and aluminum, Preferably, it may include a transition metal containing nickel, cobalt, and manganese, and a lithium transition metal complex oxide containing lithium.
  • the lithium transition metal complex oxide includes lithium-manganese oxide (e.g., LiMnO 2 , LiMn 2 O 4 , etc.), lithium-cobalt oxide (e.g., LiCoO 2 , etc.), and lithium-nickel.
  • lithium-manganese oxide e.g., LiMnO 2 , LiMn 2 O 4 , etc.
  • lithium-cobalt oxide e.g., LiCoO 2 , etc.
  • lithium-nickel lithium-nickel
  • lithium-nickel-manganese oxide for example, LiNi 1-Y Mn Y O 2 (where 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (here, 0 ⁇ Z ⁇ 2), etc.
  • lithium-nickel-cobalt-based oxide for example, LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc.
  • lithium-manganese -Cobalt-based oxides for example, LiCo 1-Y2 Mn Y2 O 2 (where 0 ⁇ Y2 ⁇ 1), LiMn 2-z1 Co z1 O 4 (where 0 ⁇ Z1 ⁇ 2), etc.
  • the lithium transition metal composite oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel-manganese-cobalt oxide (for example, Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 etc.), or lithium nickel cobalt aluminum oxide (e.g.
  • the lithium transition metal The complex oxide is Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 etc., and any one or a mixture of two or more of these may be used.
  • the positive electrode active material is a lithium transition metal complex oxide and may contain 60 mol% or more of nickel based on the total number of moles of transition metals contained in the lithium transition metal complex oxide.
  • the positive electrode active material is a lithium transition metal complex oxide, and the transition metal includes nickel; and at least one selected from manganese, cobalt, and aluminum, and may contain 60 mol% or more, specifically 60 mol% to 90 mol%, of nickel based on the total number of moles of the transition metal.
  • this lithium transition metal complex oxide using a high content of nickel is used together with the above-mentioned non-aqueous electrolyte, it is preferable in that it can reduce by-products in the gas phase generated by structural collapse.
  • the positive electrode active material may include a lithium complex transition metal oxide represented by the following formula (5).
  • a, b, c and d may be 0.70 ⁇ a ⁇ 0.95, 0.025 ⁇ b ⁇ 0.20, 0.025 ⁇ c ⁇ 0.20, and 0 ⁇ d ⁇ 0.05, respectively.
  • a, b, c, and d may be 0.80 ⁇ a ⁇ 0.95, 0.025 ⁇ b ⁇ 0.15, 0.025 ⁇ c ⁇ 0.15, and 0 ⁇ d ⁇ 0.05, respectively.
  • a, b, c, and d may be 0.85 ⁇ a ⁇ 0.90, 0.05 ⁇ b ⁇ 0.10, 0.05 ⁇ c ⁇ 0.10, and 0 ⁇ d ⁇ 0.03, respectively.
  • the positive electrode active material may be included in the positive electrode active material layer at 80% to 99% by weight, preferably 92% to 98.5% by weight, in consideration of sufficient capacity of the positive electrode active material.
  • the positive electrode active material layer may further include a binder and/or a conductive material along with the positive electrode active material described above.
  • the binder is a component that helps bind active materials and conductive materials and bind to the current collector, and is specifically made of polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, and hydroxypropyl cellulose. From the group consisting of wood, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber and fluoroelastomer. It may include at least one selected type, preferably polyvinylidene fluoride.
  • the binder may be included in the positive electrode active material layer in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight, in terms of ensuring sufficient binding force between components such as the positive electrode active material.
  • the conductive material can be used to assist and improve conductivity in secondary batteries, and is not particularly limited as long as it has conductivity without causing chemical changes.
  • the anode conductive material includes graphite such as natural graphite or artificial graphite; Carbon black, such as carbon black, acetylene black, Ketjen black, channel black, Paneth black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Conductive tubes such as carbon nanotubes; fluorocarbon; Metal powders such as aluminum and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; and polyphenylene derivatives, and may preferably include carbon black in terms of improving conductivity.
  • the conductive material may be included in the positive electrode active material layer in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight.
  • the thickness of the positive electrode active material layer may be 30 ⁇ m to 400 ⁇ m, preferably 40 ⁇ m to 110 ⁇ m.
  • the positive electrode may be manufactured by coating a positive electrode slurry containing a positive electrode active material and optionally a binder, a conductive material, and a solvent for forming a positive electrode slurry on the positive electrode current collector, followed by drying and rolling.
  • the solvent for forming the positive electrode slurry may include an organic solvent such as NMP (N-methyl-2-pyrrolidone).
  • the solid content of the positive electrode slurry may be 40% by weight to 90% by weight, specifically 50% by weight to 80% by weight.
  • the cathode faces the anode.
  • the negative electrode includes a negative electrode current collector; and a negative electrode active material layer disposed on at least one side of the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. there is.
  • the negative electrode current collector may typically have a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector may form fine irregularities on the surface to strengthen the bonding force of the negative electrode active material.
  • the negative electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the negative electrode active material layer is disposed on at least one side of the negative electrode current collector. Specifically, the negative electrode active material layer may be disposed on one or both sides of the negative electrode current collector.
  • the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material is a material capable of reversibly inserting/extracting lithium ions, and may include at least one selected from the group consisting of carbon-based active materials, (semi-)metal-based active materials, and lithium metal, and specifically, carbon-based active materials. and (semi-)metal-based active materials.
  • the negative electrode active material may include a carbon-based active material and a (semi-)metal-based active material.
  • the carbon-based active material may include at least one selected from the group consisting of graphite, hard carbon, soft carbon, carbon black, graphene, and fibrous carbon, and may preferably include graphite.
  • the average particle diameter (D 50 ) of the carbon-based active material may be 10 ⁇ m to 30 ⁇ m, preferably 15 ⁇ m to 25 ⁇ m in terms of ensuring structural stability during charging and discharging and reducing side reactions with the electrolyte solution.
  • the (semi-)metal-based active materials include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, At least one (semi-)metal selected from the group consisting of V, Ti, and Sn; From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn.
  • An alloy of lithium and at least one selected (semi-)metal From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn.
  • An oxide of at least one selected (semi-)metal lithium titanium oxide (LTO); lithium vanadium oxide; It may include etc.
  • the (semi-)metal-based active material may include a silicon-based active material.
  • the silicon-based active material may include a compound represented by SiO x (0 ⁇ x ⁇ 2).
  • SiO x is preferably within the above range, and more preferably, the silicon-based active material may be SiO.
  • the average particle diameter (D 50 ) of the silicon-based active material may be 1 ⁇ m to 30 ⁇ m, preferably 2 ⁇ m to 15 ⁇ m in terms of reducing side reactions with the electrolyte solution while ensuring structural stability during charging and discharging.
  • the negative electrode active material may be included in the negative electrode active material layer in an amount of 60% to 99% by weight, preferably 75% to 98% by weight.
  • the negative electrode active material layer may further include a binder and/or a conductive material along with the negative electrode active material.
  • the binder is used to improve battery performance by improving adhesion between the negative electrode active material layer and the negative electrode current collector, for example, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co- HFP), polyvinylidenefluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, recycled Cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoroelastomer, and hydrogen thereof. It may include at least one selected from the group consisting of substances substituted with Li, Na, or Ca, and may also include various copolymers thereof.
  • PVDF-co- HFP polyvinylidene flu
  • the binder may be included in the negative electrode active material layer in an amount of 0.5% to 10% by weight.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • graphite such as natural graphite or artificial graphite
  • Carbon black such as carbon black, acetylene black, Ketjen black, channel black, Paneth black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Conductive tubes such as carbon nanotubes; fluorocarbon;
  • Metal powders such as aluminum and nickel powder;
  • Conductive whiskers such as zinc oxide and potassium titanate;
  • Conductive metal oxides such as titanium oxide;
  • Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material may be included in the negative electrode active material layer in an amount of 0.5% to 10% by weight, preferably 1% to 5% by weight.
  • the thickness of the negative electrode active material layer may be 10 ⁇ m to 100 ⁇ m, preferably 50 ⁇ m to 80 ⁇ m.
  • the negative electrode may be manufactured by coating at least one surface of a negative electrode current collector with a negative electrode slurry containing a negative electrode active material, a binder, a conductive material, and/or a solvent for forming a negative electrode slurry, followed by drying and rolling.
  • the solvent for forming the negative electrode slurry is, for example, distilled water, NMP (N-methyl-2-pyrrolidone), ethanol, methanol, and isopropyl alcohol in terms of facilitating dispersion of the negative electrode active material, binder, and/or conductive material. It may contain at least one selected from the group, preferably distilled water.
  • the solid content of the negative electrode slurry may be 30% by weight to 80% by weight, specifically 40% by weight to 70% by weight.
  • the separator includes typical porous polymer films conventionally used as separators, such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer.
  • Porous polymer films made from the same polyolefin polymer can be used alone or by laminating them, or conventional porous nonwoven fabrics, such as high melting point glass fibers, polyethylene terephthalate fibers, etc., can be used. It is not limited.
  • a coated separator containing ceramic components or polymer materials may be used to ensure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a square shape, a pouch shape, or a coin shape.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • a non-aqueous electrolyte was prepared by adding LiPF 6 as a lithium salt to the organic solvent, a compound represented by the following formula (2) as a first additive, lithium difluorophosphate as a second additive, and vinylene carbonate (VC) as an additional additive.
  • the LiPF 6 was included in the non-aqueous electrolyte at a concentration of 1.2M.
  • the compound represented by Formula 2 was included at 0.5% by weight in the non-aqueous electrolyte, the lithium difluorophosphate was included at 0.8% by weight in the non-aqueous electrolyte, and the vinylene carbonate was included at 0.5% by weight in the non-aqueous electrolyte. included.
  • Cathode active material LiNi 0.90 Co 0.06 Mn 0.03 Al 0.01 O 2
  • conductive material carbon black
  • binder polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • Negative active material graphite and SiO mixed at a weight ratio of 90:10: Conductive material (carbon black): Binder (styrene-butadiene rubber/carboxymethyl cellulose) is added to distilled water as a solvent at a weight ratio of 97.6:1.6:0.8. A negative electrode mixture slurry (solid content: 60% by weight) was prepared. The negative electrode mixture slurry was applied to one side of a negative electrode current collector (Cu thin film) with a thickness of 6 ⁇ m, and dried and roll pressed to prepare a negative electrode.
  • Conductive material carbon black
  • Binder styrene-butadiene rubber/carboxymethyl cellulose
  • a lithium secondary battery was manufactured by interposing a polyethylene porous film separator between the prepared positive electrode and the negative electrode in a dry room, and then injecting the prepared non-aqueous electrolyte.
  • a non-aqueous electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the compound represented by Formula 2 as a first additive was included in the non-aqueous electrolyte at 0.1 wt% instead of 0.5 wt%.
  • a non-aqueous electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the compound represented by Formula 2 as the first additive was included in the non-aqueous electrolyte at 1 wt% instead of 0.5 wt%.
  • a non-aqueous electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1, except that 0.5 wt% of lithium difluorophosphate as a second additive was included in the non-aqueous electrolyte instead of 0.8 wt%.
  • a non-aqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that lithium difluorophosphate as a second additive was included in the non-aqueous electrolyte at 1% by weight instead of 0.8% by weight.
  • a non-aqueous electrolyte, lithium secondary battery was manufactured in the same manner as Example 1, except that the first additive was not added.
  • a non-aqueous electrolyte, lithium secondary battery was manufactured in the same manner as Example 1, except that the first and second additives were not added.
  • Non-aqueous electrolyte was prepared in the same manner as in Example 1, except that the second additive was not added and the compound represented by the following formula 6 was added at 0.5% by weight instead of the compound represented by the formula 2 as the first additive to the non-aqueous electrolyte. Electrolyte and lithium secondary battery were manufactured.
  • a non-aqueous electrolyte, lithium secondary battery was manufactured in the same manner as Example 1, except that the second additive was not added.
  • a formation process was performed on the lithium secondary batteries manufactured in the above examples and comparative examples, and then constant current/constant voltage (CC/CV) charging (0.05C cut off) was performed up to 4.2V at a rate of 0.33C at 25°C. Then, the initial discharge capacity was measured by constant current (CC) discharge to 2.80V at a rate of 0.33C.
  • CC/CV constant current/constant voltage
  • the lithium secondary battery was fully charged to SOC 100% under the above charging conditions and stored at high temperature (60°C) for 8 weeks. Afterwards, it was transferred to a charger and discharger at room temperature (25°C), and the discharge capacity was measured by discharging under the above discharge conditions. The capacity retention rate was calculated using the formula below, and the results are shown in Table 1 below.
  • Capacity maintenance rate (%) (discharge capacity after high temperature storage/initial discharge capacity) ⁇ 100
  • a formation process was performed on the lithium secondary batteries manufactured in the above examples and comparative examples, and then constant current/constant voltage (CC/CV) charging (0.05C cut off) was performed up to 4.2V at a rate of 0.33C at 25°C. And the initial resistance was measured by constant current (CC) discharge to 2.80V at a rate of 0.33C.
  • CC/CV constant current/constant voltage
  • the lithium secondary battery was fully charged to SOC 100% under the above charging conditions and stored at high temperature (60°C) for 8 weeks. Afterwards, it was transferred to a charger and discharger at room temperature (25°C), the resistance was measured, the resistance increase rate was calculated using the following equation, and the results are shown in Table 1 below.
  • Resistance increase rate (%) ⁇ (resistance after high temperature storage - initial resistance) / (initial resistance) ⁇ ⁇ 100
  • the lithium secondary batteries of Examples 1 to 5 using a non-aqueous electrolyte containing the first additive and the second additive according to the present invention have high temperature storage life performance compared to the lithium secondary batteries of Comparative Examples 1 to 4. It can be seen that it is excellent and the resistance increase rate is low.

Abstract

The present invention provides a non-aqueous electrolyte comprising: a lithium salt; an organic solvent; and additives, wherein the additives comprise a first additive including a compound represented by a specific chemical formula and a second additive including lithium difluorophosphate. In the non-aqueous electrolyte according to the present invention, by forming a film that is stable for an electrode, the storage characteristic and resistance characteristic of a lithium secondary battery comprising same can be improved at high temperature.

Description

비수 전해질 및 이를 포함하는 리튬 이차전지Non-aqueous electrolyte and lithium secondary battery containing the same
[관련출원과의 상호인용][Cross-citation with related applications]
본 출원은 2022년 8월 12일에 출원된 한국특허출원 제10-2022-0101642호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2022-0101642 filed on August 12, 2022, and all contents disclosed in the Korean Patent Application document are included as part of this specification.
[기술분야][Technology field]
본 발명은 비수 전해질 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a non-aqueous electrolyte and a lithium secondary battery containing the same.
최근 리튬 이차 전지의 응용 영역이 전기, 전자, 통신, 컴퓨터와 같은 전자 기기의 전력 공급뿐만 아니라 자동차나 전력 저장 장치와 같은 대면적 기기의 전력 저장 공급까지 급속히 확대됨에 따라 고용량, 고출력이면서도 고안정성인 이차전지에 대한 요구가 늘어나고 있다.Recently, the application area of lithium secondary batteries has rapidly expanded not only to supply power to electronic devices such as electricity, electronics, communication, and computers, but also to supply power storage to large-area devices such as automobiles and power storage devices, leading to high capacity, high output, and high stability. Demand for secondary batteries is increasing.
특히, 환경 문제의 해결, 지속 가능한 순환형 사회의 실현에 대한 관심이 대두되면서, 리튬 이온 전지로 및 전기 이중층 커패시터 등의 축전 디바이스의 연구가 광범위하게 행해지고 있다. 이중, 리튬 이차전지는 전지 기술 중에서도 이론적으로 에너지 밀도가 가장 높은 전지 시스템으로 각광을 받고 있다.In particular, as interest in solving environmental problems and realizing a sustainable, cyclical society grows, research on power storage devices such as lithium-ion batteries and electric double-layer capacitors is being conducted extensively. Among battery technologies, lithium secondary batteries are attracting attention as a battery system with theoretically the highest energy density.
상기 리튬 이차전지는 크게 리튬을 함유하고 있는 전이금속 산화물로 구성된 양극과, 리튬을 저장할 수 있는 음극, 리튬 이온을 전달하는 매개체가 되는 전해액, 분리막으로 구성되어 있으며, 이중 전해액의 경우 전지의 안정성(stability, safety) 등에 큰 영향을 주는 구성 성분으로 알려지면서, 이에 대해 많은 연구가 진행되고 있다.The lithium secondary battery is largely composed of a positive electrode composed of a transition metal oxide containing lithium, a negative electrode capable of storing lithium, an electrolyte solution that serves as a medium for transferring lithium ions, and a separator. In the case of the double electrolyte solution, the stability of the battery ( It is known to be a component that has a significant impact on stability, safety, etc., and much research is being conducted on it.
이와 관련하여, 일반적으로 리튬 이차전지의 전해액은 리튬 염, 유기 용매 등을 포함하는 비수 전해액이 사용되며, 상기 유기 용매는 카보네이트 계열의 유기 용매 등이 사용되고 있다. 이때, 상기 리튬 염으로서 예를 들면 LiPF6 등이 사용될 수 있는데, PF6 - 음이온의 경우 열에 매우 취약하여 전지가 고온에 노출되었을 때, 리튬 염의 열분해로 인해 HF, PF5 등의 루이스 산(Lewis acid)가 발생되는 문제가 있다. HF, PF5 등의 루이스 산은 유기 용매 자체의 분해를 초래하고, 음극 활물질 표면에 형성되는 고체 전해질 계면막(Solid Electrolyte Interface layer, SEI layer)의 파괴시켜 리튬 이차전지의 저항 증가, 수명 저하, 저장 성능의 문제를 발생시키는 문제가 있다.In this regard, generally, the electrolyte of a lithium secondary battery is a non-aqueous electrolyte containing a lithium salt and an organic solvent, and the organic solvent is a carbonate-based organic solvent. At this time, for example, LiPF 6 can be used as the lithium salt. In the case of PF 6 - anion, it is very vulnerable to heat, so when the battery is exposed to high temperature, thermal decomposition of the lithium salt causes Lewis acids such as HF and PF 5 . There is a problem with acid being generated. Lewis acids such as HF and PF 5 cause decomposition of the organic solvent itself and destroy the solid electrolyte interface layer (SEI layer) formed on the surface of the negative electrode active material, increasing the resistance of lithium secondary batteries, reducing their lifespan, and reducing storage. There is a problem that causes performance problems.
본 발명의 일 과제는 전극에 안정한 피막을 형성하여 전해질 부반응을 감소시킬 수 있고, 리튬 이차전지에 적용 시 고온에서의 우수한 저장 특성 및 저항 특성을 구현할 수 있는 비수 전해질을 제공하는 것이다.One object of the present invention is to provide a non-aqueous electrolyte that can reduce electrolyte side reactions by forming a stable film on an electrode and can provide excellent storage and resistance characteristics at high temperatures when applied to a lithium secondary battery.
또한, 본 발명의 다른 과제는 전술한 비수 전해질을 포함하는 리튬 이차전지를 제공하는 것이다.In addition, another object of the present invention is to provide a lithium secondary battery containing the above-described non-aqueous electrolyte.
본 발명은 리튬 염; 유기 용매; 및 첨가제;를 포함하고, 상기 첨가제는 제1 첨가제 및 제2 첨가제를 포함하며, 상기 제1 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하고, 상기 제2 첨가제는 리튬 디플루오로포스페이트를 포함하는 비수 전해질을 제공한다.The present invention relates to a lithium salt; organic solvent; and an additive; wherein the additive includes a first additive and a second additive, wherein the first additive includes a compound represented by the following formula (1), and the second additive includes lithium difluorophosphate. Provide non-aqueous electrolyte.
[화학식 1][Formula 1]
Figure PCTKR2023011855-appb-img-000001
Figure PCTKR2023011855-appb-img-000001
상기 화학식 1에서, R1은 불소가 하나 이상 치환된 탄소수 1 내지 10의 알콕시기 또는 불소가 하나 이상 치환된 탄소수 6 내지 20의 아릴옥시기이고, R2 및 R3는 서로 독립적으로 수소, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 20의 아릴기이다.In Formula 1, R 1 is an alkoxy group having 1 to 10 carbon atoms substituted with one or more fluorines or an aryloxy group having 6 to 20 carbon atoms with one or more fluorine substituted, and R 2 and R 3 are independently hydrogen and carbon atoms. It is an alkyl group with 1 to 10 carbon atoms or an aryl group with 6 to 20 carbon atoms.
또한, 본 발명은 양극; 상기 양극에 대향하는 음극; 상기 양극 및 상기 음극 사이에 개재되는 분리막; 및 전술한 비수 전해질을 포함하는 리튬 이차전지를 제공한다.In addition, the present invention is an anode; a cathode opposite the anode; a separator interposed between the anode and the cathode; and a lithium secondary battery containing the above-described non-aqueous electrolyte.
본 발명의 비수 전해질은 첨가제로서 특정 구조식을 갖는 설폰아미드계 화합물을 포함하는 제1 첨가제 및 리튬 디플루오로포스페이트를 포함하는 제2 첨가제를 포함하는 것을 특징으로 한다. 본 발명에 따른 비수 전해질은 전극에 안정한 피막을 형성하여 전해질 부반응을 감소시킬 수 있고, 리튬 이차전지에 적용 시 고온에서의 우수한 저장 특성 및 저항 특성을 구현할 수 있다.The non-aqueous electrolyte of the present invention is characterized by comprising a first additive containing a sulfonamide-based compound having a specific structural formula as an additive and a second additive containing lithium difluorophosphate. The non-aqueous electrolyte according to the present invention can reduce electrolyte side reactions by forming a stable film on the electrode, and can achieve excellent storage and resistance characteristics at high temperatures when applied to a lithium secondary battery.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.Terms or words used in this specification and claims should not be construed as limited to their common or dictionary meanings, and the inventor may appropriately define the concept of terms in order to explain his or her invention in the best way. It should be interpreted with meaning and concept consistent with the technical idea of the present invention based on the principle that it is.
본 명세서에서 "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, terms such as “comprise,” “comprise,” or “have” are intended to designate the presence of implemented features, numbers, steps, components, or a combination thereof, but are intended to indicate the presence of one or more other features or numbers. It should be understood that this does not exclude in advance the possibility of the presence or addition of steps, components, or combinations thereof.
한편, 본 발명을 설명하기에 앞서, 본 발명에서 특별한 언급이 없는 한 " * "는 동일하거나, 상이한 원자 또는 화학식의 말단부 간의 연결된 부분(결합 부위)을 의미한다.Meanwhile, before explaining the present invention, unless otherwise specified in the present invention, "*" means a connected portion (bonding site) between terminal parts of the same or different atoms or chemical formulas.
또한, 본 명세서 내에서 "탄소수 a 내지 b"의 기재에 있어서, "a" 및 "b"는 구체적인 작용기에 포함되는 탄소 원자의 개수를 의미한다. 즉, 상기 작용기는 "a" 내지 "b" 개의 탄소원자를 포함할 수 있다. 예를 들어, "탄소수 1 내지 5의 알킬기"는 탄소수 1 내지 5의 탄소 원자를 포함하는 알킬기, 즉 CH3-, CH3CH2-, CH3CH2CH2-, (CH3)2CH-, CH3CH2CH2CH2-, (CH3)2CHCH2-, CH3CH2CH2CH2CH2-, (CH3)2CHCH2CH2- 등을 의미한다.In addition, in the description of “carbon numbers a to b” in this specification, “a” and “b” refer to the number of carbon atoms included in a specific functional group. That is, the functional group may include “a” to “b” carbon atoms. For example, “alkyl group having 1 to 5 carbon atoms” refers to an alkyl group containing 1 to 5 carbon atoms, i.e. CH 3 -, CH 3 CH 2 -, CH 3 CH 2 CH 2 -, (CH 3 ) 2 CH -, CH 3 CH 2 CH 2 CH 2 -, (CH 3 ) 2 CHCH 2 -, CH 3 CH 2 CH 2 CH 2 CH 2 -, (CH 3 ) 2 CHCH 2 CH 2 -, etc.
또한, 본 명세서에서 알킬기, 또는 아릴기는 모두 치환 또는 비치환될 수 있다. 상기 "치환"이란 별도의 정의가 없는 한, 탄소에 결합된 적어도 하나 이상의 수소가 수소 이외의 원소로 치환된 것을 의미하는 것으로, 예를 들면, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 2 내지 20의 알키닐기, 탄소수 1 내지 20의 알콕시기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 3 내지 12의 사이클로알케닐기, 탄소수 3 내지 12의 사이클로알키닐기, 탄소수 3 내지 12의 헤테로사이클로알킬기, 탄소수 3 내지 12의 헤테로사이클로알케닐기, 탄소수 2 내지 12의 헤테로사이클로알키닐기, 탄소수 6 내지 12의 아릴옥시기, 할로겐 원자, 탄소수 1 내지 20의 플루오로알킬기, 니트로기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 20의 헤테로아릴기, 탄소수 6 내지 20의 할로아릴기 등으로 치환된 것을 의미한다.Additionally, in this specification, all alkyl groups or aryl groups may be substituted or unsubstituted. Unless otherwise defined, the term "substitution" means that at least one hydrogen bonded to carbon is replaced with an element other than hydrogen, for example, an alkyl group with 1 to 20 carbon atoms, an alkene with 2 to 20 carbon atoms. Nyl group, alkynyl group of 2 to 20 carbon atoms, alkoxy group of 1 to 20 carbon atoms, cycloalkyl group of 3 to 12 carbon atoms, cycloalkenyl group of 3 to 12 carbon atoms, cycloalkynyl group of 3 to 12 carbon atoms, hetero group of 3 to 12 carbon atoms Cycloalkyl group, heterocycloalkenyl group with 3 to 12 carbon atoms, heterocycloalkynyl group with 2 to 12 carbon atoms, aryloxy group with 6 to 12 carbon atoms, halogen atom, fluoroalkyl group with 1 to 20 carbon atoms, nitro group, 6 to 12 carbon atoms It means substituted with an aryl group of 20, a heteroaryl group of 2 to 20 carbon atoms, a haloaryl group of 6 to 20 carbon atoms, etc.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
비수 전해질non-aqueous electrolyte
본 발명은 비수 전해질에 관한 것이다. 보다 구체적으로, 상기 비수 전해질은 리튬 이차전지용 비수 전해질일 수 있다.The present invention relates to non-aqueous electrolytes. More specifically, the non-aqueous electrolyte may be a non-aqueous electrolyte for a lithium secondary battery.
본 발명에 따른 비수 전해질은 리튬 염; 유기 용매; 및 첨가제;를 포함하고, 상기 첨가제는 제1 첨가제 및 제2 첨가제를 포함하며, 상기 제1 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하고, 상기 제2 첨가제는 리튬 디플루오로포스페이트를 포함하는 것을 특징으로 한다.The non-aqueous electrolyte according to the present invention includes a lithium salt; organic solvent; and an additive; wherein the additive includes a first additive and a second additive, wherein the first additive includes a compound represented by the following formula (1), and the second additive includes lithium difluorophosphate. It is characterized by
[화학식 1][Formula 1]
Figure PCTKR2023011855-appb-img-000002
Figure PCTKR2023011855-appb-img-000002
상기 화학식 1에서, R1은 불소가 하나 이상 치환된 탄소수 1 내지 10의 알콕시기 또는 불소가 하나 이상 치환된 탄소수 6 내지 20의 아릴옥시기이고, R2 및 R3는 서로 독립적으로 수소, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 20의 아릴기이다.In Formula 1, R 1 is an alkoxy group having 1 to 10 carbon atoms substituted with one or more fluorines or an aryloxy group having 6 to 20 carbon atoms with one or more fluorine substituted, and R 2 and R 3 are independently hydrogen and carbon atoms. It is an alkyl group with 1 to 10 carbon atoms or an aryl group with 6 to 20 carbon atoms.
본 발명의 비수 전해질은 첨가제로서 특정 구조식을 갖는 설폰아미드계 화합물을 포함하는 제1 첨가제 및 리튬 디플루오로포스페이트를 포함하는 제2 첨가제를 포함하는 것을 특징으로 한다. 본 발명에 따른 비수 전해질은 전극에 안정한 피막을 형성하여 전해질 부반응을 감소시킬 수 있고, 리튬 이차전지에 적용 시 고온에서의 우수한 저장 특성 및 저항 특성을 구현할 수 있다.The non-aqueous electrolyte of the present invention is characterized by comprising a first additive containing a sulfonamide-based compound having a specific structural formula as an additive and a second additive containing lithium difluorophosphate. The non-aqueous electrolyte according to the present invention can reduce electrolyte side reactions by forming a stable film on the electrode, and can achieve excellent storage and resistance characteristics at high temperatures when applied to a lithium secondary battery.
(1) 리튬 염(1) Lithium salt
본 발명에서 사용되는 리튬 염으로는, 리튬 이차전지용 비수 전해질에 통상적으로 사용되는 다양한 리튬 염들이 제한 없이 사용될 수 있다. 예를 들어, 상기 리튬 염은, 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, B10Cl10 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CH3SO3 -, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 것일 수 있다.As the lithium salt used in the present invention, various lithium salts commonly used in non-aqueous electrolytes for lithium secondary batteries can be used without limitation. For example, the lithium salt includes Li + as a cation, and F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , and ClO 4 - as anions. , AlO 4 - , AlCl 4 - , PF 6 - , SbF 6 - , AsF 6 - , B 10 Cl 10 - , BF 2 C 2 O 4 - , BC 4 O 8 - , PF 4 C 2 O 4 - , PF 2 C 4 O 8 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , C 4 F 9 SO 3 - , CF 3 CF 2 SO 3 - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , CH 3 SO 3 - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - selected from the group consisting of It may include at least one of them.
구체적으로, 상기 리튬 염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiAlO4, LiAlCl4, LiPF6, LiSbF6, LiAsF6, LiB10Cl10, LiBOB (LiB(C2O4)2), LiCF3SO3, LiFSI (LiN(SO2F)2), LiCH3SO3, LiCF3CO2, LiCH3CO2 및 LiBETI (LiN(SO2CF2CF3)2)로 이루어진 군으로부터 선택된 적어도 1종을 포함할 수 있다. 구체적으로 상기 리튬 염은 LiBF4, LiClO4, LiPF6, LiBOB (LiB(C2O4)2), LiCF3SO3, LiTFSI (LiN(SO2CF3)2), LiFSI ((LiN(SO2F)2) 및 LiBETI (LiN(SO2CF2CF3)2)로 이루어진 군으로부터 선택된 적어도 1종을 포함할 수 있다.Specifically, the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiAlO 4, LiAlCl 4 , LiPF 6 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiBOB (LiB(C 2 O 4 ) 2 ) , LiCF 3 SO 3 , LiFSI (LiN(SO 2 F) 2 ), LiCH 3 SO 3 , LiCF 3 CO 2 , LiCH 3 CO 2 and LiBETI (LiN(SO 2 CF 2 CF 3 ) 2 ). It may include at least one type. Specifically, the lithium salt is LiBF 4 , LiClO 4 , LiPF 6 , LiBOB (LiB(C 2 O 4 ) 2 ), LiCF 3 SO 3 , LiTFSI (LiN(SO 2 CF 3 ) 2 ), LiFSI ((LiN(SO 2 F) 2 ) and LiBETI (LiN(SO 2 CF 2 CF 3 ) 2 ).
상기 리튬 염은 상기 비수 전해질에 0.5M 내지 5M의 농도, 구체적으로 0.8M 내지 4M의 농도, 보다 구체적으로 0.8M 내지 2.0M의 농도로 포함될 수 있다. 상기 리튬 염의 농도가 상기 범위를 만족할 때, 리튬 이온 수율(Li+ transference number) 및 리튬 이온의 해리도가 향상되어 전지의 출력 특성이 향상될 수 있다.The lithium salt may be included in the non-aqueous electrolyte at a concentration of 0.5M to 5M, specifically 0.8M to 4M, and more specifically 0.8M to 2.0M. When the concentration of the lithium salt satisfies the above range, the lithium ion yield (Li + transference number) and the degree of dissociation of lithium ions are improved, thereby improving the output characteristics of the battery.
(2) 유기 용매(2) Organic solvent
상기 유기 용매로는 리튬 이차전지에 통상적으로 사용되는 비수계 용매로서, 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있는 것이라면 특별히 제한되지 않는다.The organic solvent is a non-aqueous solvent commonly used in lithium secondary batteries, and is not particularly limited as long as it can minimize decomposition due to oxidation reactions, etc. during the charging and discharging process of the secondary battery.
구체적으로, 상기 유기 용매는 환형 카보네이트계 유기 용매, 선형 카보네이트계 유기 용매, 선형 에스터계 유기 용매 및 환형 에스터계 유기 용매로 이루어진 군으로부터 선택된 적어도 1종을 포함할 수 있다.Specifically, the organic solvent may include at least one selected from the group consisting of cyclic carbonate-based organic solvents, linear carbonate-based organic solvents, linear ester-based organic solvents, and cyclic ester-based organic solvents.
구체적으로, 상기 유기 용매는 환형 카보네이트계 유기 용매, 선형 카보네이트계 유기 용매 또는 이들의 혼합물을 포함할 수 있다. Specifically, the organic solvent may include a cyclic carbonate-based organic solvent, a linear carbonate-based organic solvent, or a mixture thereof.
상기 환형 카보네이트계 유기 용매는 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시킬 수 있는 유기 용매로서, 구체적으로 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 적어도 1종의 유기 용매를 포함할 수 있으며, 보다 구체적으로 에틸렌 카보네이트를 포함할 수 있다.The cyclic carbonate-based organic solvent is a high-viscosity organic solvent that has a high dielectric constant and can easily dissociate lithium salts in the electrolyte. Specifically, ethylene carbonate (EC), propylene carbonate (PC), and 1,2-butylene carbonate. , 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and vinylene carbonate, and may include at least one organic solvent selected from the group consisting of ethylene. May contain carbonate.
또한, 상기 선형 카보네이트계 유기 용매는 저점도 및 저유전율을 가지는 유기 용매로서, 구체적으로 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있으며, 보다 구체적으로 에틸메틸 카보네이트(EMC)를 포함할 수 있다.In addition, the linear carbonate-based organic solvent is an organic solvent having low viscosity and low dielectric constant, specifically dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and ethylmethyl carbonate (EMC). ), and may include at least one member selected from the group consisting of methylpropyl carbonate and ethylpropyl carbonate, and more specifically, may include ethylmethyl carbonate (EMC).
상기 유기 용매는 환형 카보네이트계 유기 용매와 선형 카보네이트계 유기 용매의 혼합물일 수 있다. 이때, 상기 환형 카보네이트계 유기 용매와 선형 카보네이트계 유기 용매는 10:90 내지 40:60의 부피비, 구체적으로 10:90 내지 30:70의 부피비, 보다 구체적으로 15:85 내지 30:70의 부피비로 혼합될 수 있다. 환형 카보네이트계 유기 용매와 선형 카보네이트계 유기 용매의 혼합비가 상기 범위를 만족할 경우, 고유전율과 저점도 특성을 동시에 만족하며, 우수한 이온 전도도 특성을 구현할 수 있다.The organic solvent may be a mixture of a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent. At this time, the cyclic carbonate-based organic solvent and the linear carbonate-based organic solvent have a volume ratio of 10:90 to 40:60, specifically 10:90 to 30:70, and more specifically 15:85 to 30:70. Can be mixed. When the mixing ratio of the cyclic carbonate-based organic solvent and the linear carbonate-based organic solvent satisfies the above range, high dielectric constant and low viscosity characteristics can be simultaneously satisfied, and excellent ionic conductivity characteristics can be realized.
또한, 상기 유기 용매는 높은 이온 전도율을 갖는 전해질을 제조하기 위하여, 상기 환형 카보네이트계 유기 용매 및 선형 카보네이트계 유기 용매로 이루어진 군으로부터 선택된 적어도 1종의 카보네이트계 유기 용매에 선형 에스터계 유기 용매 및 환형 에스터계 유기 용매로 이루어진 군으로부터 선택된 적어도 1종의 에스터계 유기 용매를 추가로 포함할 수 있다.In addition, in order to prepare an electrolyte having high ionic conductivity, the organic solvent may be added to at least one carbonate-based organic solvent selected from the group consisting of a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent, a linear ester-based organic solvent, and a cyclic organic solvent. It may further include at least one type of ester-based organic solvent selected from the group consisting of ester-based organic solvents.
상기 선형 에스터계 유기 용매는 구체적으로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있다.The linear ester-based organic solvent may specifically include at least one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate. there is.
또한, 상기 환형 에스터계 유기 용매는 구체적으로 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있다.In addition, the cyclic ester-based organic solvent may specifically include at least one selected from the group consisting of γ-butyrolactone, γ-valerolactone, γ-caprolactone, σ-valerolactone, and ε-caprolactone. You can.
한편, 상기 유기 용매는 필요에 따라 비수 전해질에 통상적으로 사용되는 유기 용매를 제한 없이 추가하여 사용할 수 있다. 예를 들면, 에테르계 유기 용매, 글라임계 용매 및 니트릴계 유기 용매 중 적어도 하나 이상의 유기 용매를 추가로 포함할 수도 있다.Meanwhile, the organic solvent can be used by adding organic solvents commonly used in non-aqueous electrolytes without limitation, if necessary. For example, it may further include at least one organic solvent selected from the group consisting of an ether-based organic solvent, a glyme-based solvent, and a nitrile-based organic solvent.
상기 에테르계 용매로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르, 에틸프로필 에테르, 1,3-디옥소란(DOL) 및 2,2-비스(트리플루오로메틸)-1,3-디옥소란(TFDOL)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.The ether-based solvents include dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether, ethyl propyl ether, 1,3-dioxolane (DOL), and 2,2-bis (trifluoromethyl )-1,3-dioxolane (TFDOL) or a mixture of two or more of these may be used, but are not limited thereto.
상기 글라임계 용매는 선형 카보네이트계 유기 용매에 비해 높은 유전율 및 낮은 표면 장력을 가지며, 메탈과의 반응성이 적은 용매로서, 디메톡시에탄 (글라임, DME), 디에톡시에탄, 디글라임 (digylme), 트리-글라임(Triglyme), 및 테트라-글라임 (TEGDME)으로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있으나 이에 한정되는 것은 아니다. The glyme-based solvent has a high dielectric constant and low surface tension compared to linear carbonate-based organic solvents, and is a solvent with low reactivity with metals, such as dimethoxyethane (glyme, DME), diethoxyethane, digylme, It may include, but is not limited to, at least one selected from the group consisting of triglyme and tetra-glyme (TEGDME).
상기 니트릴계 용매는 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 1종 이상인 것일 수 있으나 이에 한정되는 것은 아니다.The nitrile-based solvents include acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile, and 4-fluorobenzonitrile. , difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile, but is not limited thereto.
(3) 첨가제(3) Additives
본 발명에 따른 비수 전해질은 첨가제를 포함한다. 상기 첨가제는 제1 첨가제 및 제2 첨가제를 포함한다. 상기 제1 첨가제는 화학식 1로 표시되는 화합물을 포함한다. 상기 제2 첨가제는 리튬 디플루오로포스페이트(lithium difluorophosphate, LiDFP)를 포함한다.The non-aqueous electrolyte according to the invention contains additives. The additive includes a first additive and a second additive. The first additive includes a compound represented by Formula 1. The second additive includes lithium difluorophosphate (LiDFP).
본 발명에 있어서, 상기 제2 첨가제는 리튬 디플루오로포스페이트를 포함하며, 상기 리튬 디플루오로포스페이트는 유기 용매(예를 들면, 에틸렌 카보네이트)와 반응하여 유기 성분을 포함하는 SEI 막을 음극에 형성할 수 있으나, 리튬 디플루오로포스페이트만을 첨가제로 사용 시 SEI 막에 무기 성분(예를 들면, LiF 등)이 부족하여 상기 리튬 디플루오로포스페이트가 양극에서 먼저 분해되면서 음극의 SEI 막 형성이 충분치 않은 문제가 있다. 한편, 제1 첨가제에 포함된 상기 화학식 1로 표시되는 화합물은 불소가 하나 이상 치환된 알콕시기 또는 아릴옥시기가 치환된 설폰아미드계 화합물로서, 상기 불소가 하나 이상 치환된 알콕시기 또는 아릴옥시기는 F-, CF3- 등에 비해 비교적 약한 전자끄는기(Electron withdrawing group)이므로, 음극에서 쉽게 환원되어 무기 성분(예를 들어, LiF)를 함유하는 피막을 용이하게 형성할 수 있다. 따라서, 제1 첨가제 및 제2 첨가제를 병용한 본 발명의 비수 전해질은 유/무기 성분이 모두 포함된 SEI 막을 음극에 형성할 수 있으므로, 전해질 부반응 방지, 가스 발생 억제 효과가 뛰어나며, 리튬 이차전지의 고온에서의 저장 특성 및 저항 특성이 우수한 수준으로 향상될 수 있다.In the present invention, the second additive includes lithium difluorophosphate, and the lithium difluorophosphate reacts with an organic solvent (e.g., ethylene carbonate) to form an SEI film containing an organic component on the cathode. However, when only lithium difluorophosphate is used as an additive, the SEI film lacks inorganic components (e.g., LiF, etc.), so the lithium difluorophosphate decomposes first at the anode, resulting in insufficient formation of the SEI film on the cathode. There is. Meanwhile, the compound represented by Formula 1 included in the first additive is a sulfonamide-based compound in which an alkoxy group or aryloxy group is substituted with one or more fluorines, and the alkoxy group or aryloxy group with one or more fluorines is substituted is F Since it is a relatively weak electron withdrawing group compared to -, CF 3 -, etc., it is easily reduced at the cathode and can easily form a film containing an inorganic component (for example, LiF). Therefore, the non-aqueous electrolyte of the present invention using a combination of the first additive and the second additive can form an SEI film containing both organic and inorganic components on the negative electrode, and is excellent in preventing electrolyte side reactions and suppressing gas generation, and is excellent in preventing electrolyte side reactions and gas generation. Storage properties and resistance properties at high temperatures can be improved to an excellent level.
또한, 제1 첨가제 및 제2 첨가제를 병용한 본 발명의 비수 전해질의 경우, 유연한 성질을 갖는 유기 성분 함유 SEI 막에 LiF 등의 무기 성분이 분포된 형태의 SEI 막을 형성할 수 있는 바, 유연성과 내구성이 동시에 향상된 SEI 막을 전극에 형성할 수 있어, 리튬 이차전지의 고온 성능 등 제반 성능이 우수한 수준으로 향상될 수 있다. 만일, 첨가제로서 제1 첨가제만을 비수 전해질에 포함시키거나, 제2 첨가제만을 비수 전해질에 포함시킬 경우, 내구성이 저하되거나 유연성이 저하되어 본 발명이 목적하는 리튬 이차전지의 고온 성능 향상 효과를 달성할 수 없다.In addition, in the case of the non-aqueous electrolyte of the present invention using a combination of the first additive and the second additive, it is possible to form an SEI film in which an inorganic component such as LiF is distributed in an SEI film containing an organic component with flexible properties, thereby providing flexibility and Since an SEI film with improved durability can be formed on the electrode, the overall performance of lithium secondary batteries, including high-temperature performance, can be improved to an excellent level. If only the first additive is included as an additive in the non-aqueous electrolyte or only the second additive is included in the non-aqueous electrolyte, durability or flexibility may be reduced, making it difficult to achieve the high-temperature performance improvement effect of the lithium secondary battery targeted by the present invention. I can't.
상기 제1 첨가제는 하기 화학식 1로 표시되는 화합물을 포함한다.The first additive includes a compound represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2023011855-appb-img-000003
Figure PCTKR2023011855-appb-img-000003
상기 화학식 1에서, R1은 불소가 하나 이상 치환된 탄소수 1 내지 10의 알콕시기 또는 불소가 하나 이상 치환된 탄소수 6 내지 20의 아릴옥시기이고, R2 및 R3는 서로 독립적으로 수소, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 20의 아릴기이다.In Formula 1, R 1 is an alkoxy group having 1 to 10 carbon atoms substituted with one or more fluorines or an aryloxy group having 6 to 20 carbon atoms with one or more fluorine substituted, and R 2 and R 3 are independently hydrogen and carbon atoms. It is an alkyl group with 1 to 10 carbon atoms or an aryl group with 6 to 20 carbon atoms.
R1은 불소가 하나 이상 치환된 탄소수 1 내지 10의 알콕시기 또는 불소가 하나 이상 치환된 탄소수 6 내지 20의 아릴옥시기일 수 있고, 구체적으로 불소가 하나 이상 치환된 탄소수 1 내지 10의 알콕시기일 수 있고, 보다 더 구체적으로 불소가 하나 이상 치환된 탄소수 1 내지 5의 알콕시기일 수 있고, 보다 더 구체적으로 CF3O-, CF3CF2O-, 또는 CF3CH2O-일 수 있고, 보다 더 구체적으로 음극 SEI 막의 용이한 형성 측면에서 CF3CH2O-일 수 있다.R 1 may be an alkoxy group having 1 to 10 carbon atoms in which one or more fluorines are substituted, or an aryloxy group having 6 to 20 carbon atoms in which one or more fluorines are substituted. Specifically, it may be an alkoxy group having 1 to 10 carbon atoms in which one or more fluorines are substituted. and, more specifically, it may be an alkoxy group having 1 to 5 carbon atoms substituted with one or more fluorines, and even more specifically, it may be CF 3 O-, CF 3 CF 2 O-, or CF 3 CH 2 O-. More specifically, it may be CF 3 CH 2 O- in terms of easy formation of the cathode SEI film.
R2 및 R3는 서로 독립적으로 수소, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 20의 아릴기일 수 있고, 구체적으로 수소 또는 탄소수 1 내지 5의 알킬기, 보다 구체적으로 SEI 피막 형성 시의 안정적인 반응을 도모하는 측면에서 탄소수 1 내지 5의 알킬기, 보다 더 구체적으로 메틸기일 수 있다.R 2 and R 3 may be independently hydrogen, an alkyl group with 1 to 10 carbon atoms, or an aryl group with 6 to 20 carbon atoms, and specifically hydrogen or an alkyl group with 1 to 5 carbon atoms, more specifically, a stable reaction during formation of the SEI film. In terms of purpose, it may be an alkyl group having 1 to 5 carbon atoms, and more specifically, a methyl group.
구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시되는 화합물, 하기 화학식 3으로 표시되는 화합물 및 하기 화학식 4로 표시되는 화합물로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있고, 구체적으로 음극에 LiF 등 무기 성분을 포함하는 SEI 막을 용이하게 형성할 수 있다는 측면에서 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.Specifically, the compound represented by Formula 1 may include at least one selected from the group consisting of a compound represented by Formula 2, a compound represented by Formula 3, and a compound represented by Formula 4. In terms of being able to easily form an SEI film containing an inorganic component such as LiF on the cathode, it may include a compound represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2023011855-appb-img-000004
Figure PCTKR2023011855-appb-img-000004
[화학식 3][Formula 3]
Figure PCTKR2023011855-appb-img-000005
Figure PCTKR2023011855-appb-img-000005
[화학식 4][Formula 4]
Figure PCTKR2023011855-appb-img-000006
Figure PCTKR2023011855-appb-img-000006
상기 제1 첨가제는 상기 비수 전해질에 0.01중량% 내지 10중량%, 구체적으로 0.1중량% 내지 2중량%, 보다 구체적으로 0.2중량% 내지 1중량%, 보다 더 구체적으로 0.5중량% 내지 1중량%, 보다 더 구체적으로 0.7중량% 내지 1중량%로 포함될 수 있다. 상기 화학식 1로 표시되는 화합물의 함량이 상기 범위를 만족할 경우, SEI 막에 내구성을 충분히 부여하면서, 과량 첨가에 의한 리튬 이차전지의 저항 증가, 이에 따른 수명 성능 저하를 방지한다는 측면에서 바람직하다.The first additive is added to the non-aqueous electrolyte in an amount of 0.01% to 10% by weight, specifically 0.1% to 2% by weight, more specifically 0.2% to 1% by weight, and even more specifically 0.5% to 1% by weight, More specifically, it may be included at 0.7% by weight to 1% by weight. When the content of the compound represented by Formula 1 satisfies the above range, it is desirable in terms of providing sufficient durability to the SEI film and preventing an increase in resistance of the lithium secondary battery due to excessive addition and a corresponding decrease in life performance.
한편, 제2 첨가제는 리튬 디플루오로포스페이트를 포함한다. 상기 리튬 디플루오로포스페이트는 유기 용매(예를 들면, 에틸렌 카보네이트 등)과의 반응에 의해 유기 성분을 함유하는 SEI 막을 음극에 형성할 수 있다.Meanwhile, the second additive includes lithium difluorophosphate. The lithium difluorophosphate can form an SEI film containing an organic component on the cathode by reaction with an organic solvent (eg, ethylene carbonate, etc.).
상기 제2 첨가제는 상기 비수 전해질에 0.01중량% 내지 10중량%, 구체적으로 0.1중량% 내지 2중량%, 보다 구체적으로 0.2중량% 내지 1중량%, 보다 더 구체적으로 0.8중량% 내지 1중량%로 포함될 수 있다. 제2 첨가제의 함량이 상기 범위를 만족할 경우, SEI 막에 유연성을 충분히 부여하면서, 저항 특성 향상에 유리하며, 과량 첨가에 의한 리튬 이차전지의 저항 증가, 이에 따른 수명 성능 저하를 방지한다는 측면에서 바람직하다.The second additive is added to the non-aqueous electrolyte in an amount of 0.01% to 10% by weight, specifically 0.1% to 2% by weight, more specifically 0.2% to 1% by weight, and even more specifically 0.8% to 1% by weight. may be included. When the content of the second additive satisfies the above range, it is advantageous to improve resistance characteristics while providing sufficient flexibility to the SEI film, and is desirable in terms of preventing an increase in the resistance of the lithium secondary battery due to excessive addition and a corresponding decrease in life performance. do.
상기 제1 첨가제 및 제2 첨가제의 중량비는 10:90 내지 90:10, 구체적으로 20:80 내지 80:20, 보다 구체적으로 32:68 내지 70:30, 보다 더 구체적으로 35:65 내지 60:40, 보다 더 구체적으로 53:47 내지 60:40일 수 있으며, 상술한 중량비일 때 SEI 막의 유연성 및 내구성이 바람직한 수준으로 동시에 향상될 수 있어 바람직하다.The weight ratio of the first additive and the second additive is 10:90 to 90:10, specifically 20:80 to 80:20, more specifically 32:68 to 70:30, and even more specifically 35:65 to 60: 40, more specifically, 53:47 to 60:40, and the above-mentioned weight ratio is preferred because the flexibility and durability of the SEI film can be simultaneously improved to a desirable level.
상기 첨가제는 제1 첨가제 및 제2 첨가제와 함께 추가 첨가제를 더 포함할 수 있다. 상기 추가 첨가제는 고출력의 환경에서 비수 전해질이 분해되어 음극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온에서의 전지 팽창 억제 효과 등을 위해 비수 전해질에 포함될 수 있다.The additive may further include additional additives along with the first and second additives. The additional additive may be included in the non-aqueous electrolyte to prevent decomposition of the non-aqueous electrolyte in a high-power environment, causing cathode collapse, or to improve low-temperature high-rate discharge characteristics, high-temperature stability, overcharge prevention, and battery expansion inhibition at high temperatures.
구체적으로 상기 추가 첨가제는 비닐렌 카보네이트(Vinylene Carbonate), 비닐에틸렌 카보네이트(vinyl ethylene carbonate), 플루오로에틸렌 카본네이트(fluoroethylene carbonate), 프로판 설톤(Propane sultone), 프로펜설톤(Propene Sultone), 숙시노니트릴(succinonitrile), 아디포니트릴(Adiponitrile), 에틸렌 설페이트(ethylene sulfate), LiODFB(Lithium difluorooxalatoborate), LiBOB(Lithium bis-(oxalato)borate), TMSPa(3-trimethoxysilanyl-propyl-N-aniline), 및 TMSPi(Tris(trimethylsilyl) Phosphite)로 이루어진 군에서 선택된 적어도 1종일 수 있으며, 구체적으로 비닐렌 카보네이트일 수 있다.Specifically, the additional additives include vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, propane sultone, propene sultone, and succino. Nitrile (succinonitrile), Adiponitrile (Adiponitrile), ethylene sulfate, LiODFB (Lithium difluorooxalatoborate), LiBOB (Lithium bis-(oxalato)borate), TMSPa (3-trimethoxysilanyl-propyl-N-aniline), and It may be at least one selected from the group consisting of TMSPi (Tris(trimethylsilyl) Phosphite), and specifically may be vinylene carbonate.
상기 추가 첨가제는 상기 비수 전해질에 0.1중량% 내지 15중량%으로 포함될 수 있다.The additional additive may be included in the non-aqueous electrolyte in an amount of 0.1% to 15% by weight.
리튬 이차전지Lithium secondary battery
또한, 본 발명은 전술한 비수 전해질을 포함하는 리튬 이차전지를 제공한다.Additionally, the present invention provides a lithium secondary battery containing the above-described non-aqueous electrolyte.
구체적으로, 상기 리튬 이차전지는 양극; 상기 양극에 대향하는 음극; 상기 양극 및 상기 음극 사이에 개재되는 분리막; 및 전술한 비수 전해질;을 포함할 수 있다.Specifically, the lithium secondary battery includes a positive electrode; a cathode opposite the anode; a separator interposed between the anode and the cathode; and the non-aqueous electrolyte described above.
이때, 본 발명의 리튬 이차전지는 당 기술 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들면, 양극, 음극 및 양극과 음극 사이에 분리막이 순차적으로 적층되어 전극 조립체를 형성한 후, 상기 전극 조립체를 전지 케이스 내부에 삽입하고, 본 발명에 따른 비수 전해질을 주입하여 제조할 수 있다.At this time, the lithium secondary battery of the present invention can be manufactured according to a common method known in the art. For example, the anode, the cathode, and the separator between the anode and the cathode are sequentially stacked to form an electrode assembly, and then the electrode assembly can be manufactured by inserting the inside of the battery case and injecting the non-aqueous electrolyte according to the present invention. .
(1) 양극(1) anode
상기 양극은 양극 집전체; 및 상기 양극 집전체의 적어도 일면에 배치된 양극 활물질층;을 포함할 수 있다.The positive electrode includes a positive electrode current collector; and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 구체적으로 상기 양극 집전체는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 및 알루미늄-카드뮴 합금으로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 알루미늄을 포함할 수 있다.The positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Specifically, the positive electrode current collector may include at least one selected from the group consisting of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, and aluminum-cadmium alloy, preferably aluminum.
상기 양극 집전체의 두께는 통상적으로 3 내지 500㎛의 두께를 가질 수 있다.The thickness of the positive electrode current collector may typically range from 3 to 500 ㎛.
상기 양극 집전체는 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 양극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The positive electrode current collector may form fine irregularities on the surface to strengthen the bonding force of the negative electrode active material. For example, the positive electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
상기 양극 활물질층은 상기 양극 집전체의 적어도 일면에 배치된다. 구체적으로, 상기 양극 활물질층은 상기 양극 집전체의 일면 또는 양면에 배치될 수 있다.The positive electrode active material layer is disposed on at least one side of the positive electrode current collector. Specifically, the positive electrode active material layer may be disposed on one or both sides of the positive electrode current collector.
상기 양극 활물질층은 양극 활물질을 포함할 수 있다.The positive electrode active material layer may include a positive electrode active material.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 니켈, 코발트, 망간 및 알루미늄으로 이루어진 적어도 1종의 전이금속과 리튬을 포함하는 리튬 전이금속 복합 산화물, 바람직하게는 니켈, 코발트 및 망간을 포함하는 전이금속과 리튬을 포함하는 리튬 전이금속 복합 산화물을 포함할 수 있다.The positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, a lithium transition metal complex oxide containing lithium and at least one transition metal consisting of nickel, cobalt, manganese, and aluminum, Preferably, it may include a transition metal containing nickel, cobalt, and manganese, and a lithium transition metal complex oxide containing lithium.
예를 들어, 상기 리튬 전이금속 복합 산화물로는 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물 (예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 전이금속 복합 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈-망간-코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 전이금속 복합 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 전이금속 복합 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.For example, the lithium transition metal complex oxide includes lithium-manganese oxide (e.g., LiMnO 2 , LiMn 2 O 4 , etc.), lithium-cobalt oxide (e.g., LiCoO 2 , etc.), and lithium-nickel. oxide (for example, LiNiO 2 etc.), lithium-nickel-manganese oxide (for example, LiNi 1-Y Mn Y O 2 (where 0<Y<1), LiMn 2-z Ni z O 4 (here, 0<Z<2), etc.), lithium-nickel-cobalt-based oxide (for example, LiNi 1-Y1 Co Y1 O 2 (here, 0<Y1<1), etc.), lithium-manganese -Cobalt-based oxides (for example, LiCo 1-Y2 Mn Y2 O 2 (where 0<Y2<1), LiMn 2-z1 Co z1 O 4 (where 0<Z1<2), etc.), lithium -Nickel-manganese-cobalt oxide (for example, Li(Ni p Co q Mn r1 )O 2 (where 0<p<1, 0<q<1, 0<r1<1, p+q+ r1=1) or Li(Ni p1 Co q1 Mn r2 )O 4 (where 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2), etc.), or Lithium-nickel-cobalt-transition metal (M) oxide (e.g., Li(Ni p2 Co q2 Mn r3 M S2 )O 2 (where M is Al, Fe, V, Cr, Ti, Ta, Mg and It is selected from the group consisting of Mo, and p2, q2, r3 and s2 are each independent atomic fraction of elements, 0 < p2 < 1, 0 < q2 < 1, 0 < r3 < 1, 0 < s2 < 1, p2 +q2+r3+s2=1), etc.), and any one or two or more of these compounds may be included. Among these, in that the capacity characteristics and stability of the battery can be improved, the lithium transition metal composite oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel-manganese-cobalt oxide (for example, Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 etc.), or lithium nickel cobalt aluminum oxide (e.g. For example, it may be Li (Ni 0.8 Co 0.15 Al 0.05 )O 2 , etc.), and considering the remarkable improvement effect due to control of the type and content ratio of the constituent elements forming the lithium transition metal complex oxide, the lithium transition metal The complex oxide is Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 etc., and any one or a mixture of two or more of these may be used.
보다 구체적으로, 상기 양극 활물질은 리튬 전이금속 복합 산화물로서, 상기 리튬 전이금속 복합 산화물에 포함된 전이금속의 전체 몰수를 기준으로 니켈을 60몰% 이상 포함하는 것일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 전이금속 복합 산화물로서, 상기 전이금속은 니켈; 및 망간, 코발트 및 알루미늄 중에서 선택된 적어도 1종을 포함하고, 상기 니켈을 상기 전이금속의 전체 몰수를 기준으로 60몰% 이상, 구체적으로 60몰% 내지 90몰%로 포함하는 것일 수 있다. 이러한 니켈을 고함량으로 사용하는 리튬 전이금속 복합 산화물을 전술한 비수 전해액을 함께 사용할 때, 구조 붕괴에 의해 발생되는 가스 상에 부산물을 감소시켜 줄 수 있다는 측면에서 바람직하다.More specifically, the positive electrode active material is a lithium transition metal complex oxide and may contain 60 mol% or more of nickel based on the total number of moles of transition metals contained in the lithium transition metal complex oxide. Specifically, the positive electrode active material is a lithium transition metal complex oxide, and the transition metal includes nickel; and at least one selected from manganese, cobalt, and aluminum, and may contain 60 mol% or more, specifically 60 mol% to 90 mol%, of nickel based on the total number of moles of the transition metal. When this lithium transition metal complex oxide using a high content of nickel is used together with the above-mentioned non-aqueous electrolyte, it is preferable in that it can reduce by-products in the gas phase generated by structural collapse.
또한, 상기 양극 활물질은 하기 화학식 5로 표시되는 리튬 복합 전이금속 산화물을 포함할 수 있다.Additionally, the positive electrode active material may include a lithium complex transition metal oxide represented by the following formula (5).
[화학식 5][Formula 5]
Li1+x(NiaCobMncMd)O2 Li 1+x (Ni a Co b Mn c M d )O 2
상기 화학식 5에서, M은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B 및 Mo 중 선택된 1종 이상이고, 1+x, a, b, c 및 d는 각각 독립적인 원소들의 원자분율로서, 0≤x≤0.2, 0.50≤a<1, 0<b≤0.25, 0<c≤0.25, 0≤d≤0.1, a+b+c+d=1이다.In Formula 5, M is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg , B and Mo, and 1+x, a, b, c and d are the atomic fractions of independent elements, 0≤x≤0.2, 0.50≤a<1, 0<b≤0.25, 0<c≤0.25, 0≤d≤0.1, a+b+c+d=1.
바람직하게는, 상기 a, b, c 및 d는 각각 0.70≤a≤0.95, 0.025≤b≤0.20, 0.025≤c≤0.20, 0≤d≤0.05일 수 있다.Preferably, a, b, c and d may be 0.70≤a≤0.95, 0.025≤b≤0.20, 0.025≤c≤0.20, and 0≤d≤0.05, respectively.
또한, 상기 a, b, c 및 d는 각각 0.80≤a≤0.95, 0.025≤b≤0.15, 0.025≤c≤0.15, 0≤d≤0.05일 수 있다.Additionally, a, b, c, and d may be 0.80≤a≤0.95, 0.025≤b≤0.15, 0.025≤c≤0.15, and 0≤d≤0.05, respectively.
또한, 상기 a, b, c 및 d는 각각 0.85≤a≤0.90, 0.05≤b≤0.10, 0.05≤c≤0.10, 0≤d≤0.03일 수 있다.Additionally, a, b, c, and d may be 0.85≤a≤0.90, 0.05≤b≤0.10, 0.05≤c≤0.10, and 0≤d≤0.03, respectively.
상기 양극 활물질은 양극 활물질의 충분한 용량 발휘 등을 고려하여 양극 활물질층에 80중량% 내지 99중량%, 바람직하게는 92중량% 내지 98.5중량%로 포함될 수 있다.The positive electrode active material may be included in the positive electrode active material layer at 80% to 99% by weight, preferably 92% to 98.5% by weight, in consideration of sufficient capacity of the positive electrode active material.
상기 양극 활물질층은 전술한 양극 활물질과 함께 바인더 및/또는 도전재를 더 포함할 수 있다.The positive electrode active material layer may further include a binder and/or a conductive material along with the positive electrode active material described above.
상기 바인더는 활물질과 도전재 등의 결착과 집전체에 대한 결착에 조력하는 성분이며, 구체적으로 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무 및 불소 고무로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 폴리비닐리덴플루오라이드를 포함할 수 있다.The binder is a component that helps bind active materials and conductive materials and bind to the current collector, and is specifically made of polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, and hydroxypropyl cellulose. From the group consisting of wood, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber and fluoroelastomer. It may include at least one selected type, preferably polyvinylidene fluoride.
상기 바인더는 양극 활물질 등 성분 간 결착력을 충분히 확보하는 측면에서 상기 양극 활물질층에 1중량% 내지 20중량%, 바람직하게는 1.2중량% 내지 10중량%로 포함될 수 있다.The binder may be included in the positive electrode active material layer in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight, in terms of ensuring sufficient binding force between components such as the positive electrode active material.
상기 도전재는 이차전지에 도전성을 보조 및 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 구체적으로 상기 양극 도전재는 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있으며, 바람직하게는 도전성 향상 측면에서 카본 블랙을 포함할 수 있다.The conductive material can be used to assist and improve conductivity in secondary batteries, and is not particularly limited as long as it has conductivity without causing chemical changes. Specifically, the anode conductive material includes graphite such as natural graphite or artificial graphite; Carbon black, such as carbon black, acetylene black, Ketjen black, channel black, Paneth black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Conductive tubes such as carbon nanotubes; fluorocarbon; Metal powders such as aluminum and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; and polyphenylene derivatives, and may preferably include carbon black in terms of improving conductivity.
상기 도전재는 전기 전도성을 충분히 확보하는 측면에서 상기 양극 활물질층 내에 1중량% 내지 20중량%, 바람직하게는 1.2중량% 내지 10중량%로 포함될 수 있다.In terms of ensuring sufficient electrical conductivity, the conductive material may be included in the positive electrode active material layer in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight.
상기 양극 활물질층의 두께는 30㎛ 내지 400㎛, 바람직하게는 40㎛ 내지 110㎛일 수 있다.The thickness of the positive electrode active material layer may be 30㎛ to 400㎛, preferably 40㎛ to 110㎛.
상기 양극은 상기 양극 집전체 상에 양극 활물질 및 선택적으로 바인더, 도전재 및 양극 슬러리 형성용 용매를 포함하는 양극 슬러리를 코팅한 다음, 건조 및 압연하여 제조될 수 있다.The positive electrode may be manufactured by coating a positive electrode slurry containing a positive electrode active material and optionally a binder, a conductive material, and a solvent for forming a positive electrode slurry on the positive electrode current collector, followed by drying and rolling.
상기 양극 슬러리 형성용 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기 용매를 포함할 수 있다. 상기 양극 슬러리의 고형분 함량은 40중량% 내지 90중량%, 구체적으로 50중량% 내지 80중량%일 수 있다.The solvent for forming the positive electrode slurry may include an organic solvent such as NMP (N-methyl-2-pyrrolidone). The solid content of the positive electrode slurry may be 40% by weight to 90% by weight, specifically 50% by weight to 80% by weight.
(2) 음극(2) cathode
상기 음극은 상기 양극에 대향한다.The cathode faces the anode.
상기 음극은 음극 집전체; 및 상기 음극 집전체의 적어도 일면에 배치된 음극 활물질층;을 포함할 수 있다.The negative electrode includes a negative electrode current collector; and a negative electrode active material layer disposed on at least one side of the negative electrode current collector.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 구체적으로 상기 음극 집전체는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Specifically, the negative electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. there is.
상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있다.The negative electrode current collector may typically have a thickness of 3 to 500 ㎛.
상기 음극 집전체는 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 음극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector may form fine irregularities on the surface to strengthen the bonding force of the negative electrode active material. For example, the negative electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
상기 음극 활물질층은 상기 음극 집전체의 적어도 일면에 배치된다. 구체적으로, 상기 음극 활물질층은 상기 음극 집전체의 일면 또는 양면에 배치될 수 있다.The negative electrode active material layer is disposed on at least one side of the negative electrode current collector. Specifically, the negative electrode active material layer may be disposed on one or both sides of the negative electrode current collector.
상기 음극 활물질층은 음극 활물질을 포함할 수 있다.The negative electrode active material layer may include a negative electrode active material.
상기 음극 활물질은 리튬 이온을 가역적으로 삽입/탈리시킬 수 있는 물질로서, 탄소계 활물질, (준)금속계 활물질, 및 리튬 금속으로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있고, 구체적으로 탄소계 활물질 및 (준)금속계 활물질 중에서 선택된 적어도 1종을 포함할 수 있다. 또는 상기 음극 활물질은 탄소계 활물질 및 (준)금속계 활물질을 포함할 수도 있다.The negative electrode active material is a material capable of reversibly inserting/extracting lithium ions, and may include at least one selected from the group consisting of carbon-based active materials, (semi-)metal-based active materials, and lithium metal, and specifically, carbon-based active materials. and (semi-)metal-based active materials. Alternatively, the negative electrode active material may include a carbon-based active material and a (semi-)metal-based active material.
상기 탄소계 활물질은 흑연, 하드카본, 소프트카본, 카본 블랙, 그래핀 및 섬유상 탄소로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있으며, 바람직하게는 흑연을 포함할 수 있다. The carbon-based active material may include at least one selected from the group consisting of graphite, hard carbon, soft carbon, carbon black, graphene, and fibrous carbon, and may preferably include graphite.
상기 탄소계 활물질의 평균 입경(D50)은 충방전 시에 구조적 안정성을 기하고 전해액과의 부반응을 줄이는 측면에서 10㎛ 내지 30㎛, 바람직하게는 15㎛ 내지 25㎛일 수 있다.The average particle diameter (D 50 ) of the carbon-based active material may be 10 ㎛ to 30 ㎛, preferably 15 ㎛ to 25 ㎛ in terms of ensuring structural stability during charging and discharging and reducing side reactions with the electrolyte solution.
구체적으로, 상기 (준)금속계 활물질은 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속; Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속과 리튬의 합금; Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속의 산화물; 리튬 티타늄 옥사이드(LTO); 리튬 바나듐 옥사이드; 등을 포함할 수 있다.Specifically, the (semi-)metal-based active materials include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, At least one (semi-)metal selected from the group consisting of V, Ti, and Sn; From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn. An alloy of lithium and at least one selected (semi-)metal; From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn. An oxide of at least one selected (semi-)metal; lithium titanium oxide (LTO); lithium vanadium oxide; It may include etc.
보다 구체적으로, 상기 (준)금속계 활물질은 실리콘계 활물질을 포함할 수 있다.More specifically, the (semi-)metal-based active material may include a silicon-based active material.
상기 실리콘계 활물질은 SiOx(0≤x<2)로 표시되는 화합물을 포함할 수 있다. SiO2의 경우 리튬 이온과 반응하지 않아 리튬을 저장할 수 없으므로, x는 상기 범위 내인 것이 바람직하며, 보다 바람직하게는 실리콘계 활물질은 SiO일 수 있다.The silicon-based active material may include a compound represented by SiO x (0≤x<2). In the case of SiO 2 , since lithium cannot be stored because it does not react with lithium ions, x is preferably within the above range, and more preferably, the silicon-based active material may be SiO.
상기 실리콘계 활물질의 평균 입경(D50)은 충방전 시 구조적 안정성을 기하면서 전해액과의 부반응을 감소시키는 측면에서 1㎛ 내지 30㎛, 바람직하게는 2㎛ 내지 15㎛일 수 있다. The average particle diameter (D 50 ) of the silicon-based active material may be 1 ㎛ to 30 ㎛, preferably 2 ㎛ to 15 ㎛ in terms of reducing side reactions with the electrolyte solution while ensuring structural stability during charging and discharging.
상기 음극 활물질은 음극 활물질층에 60중량% 내지 99중량%, 바람직하게는 75중량% 내지 98중량%로 포함될 수 있다.The negative electrode active material may be included in the negative electrode active material layer in an amount of 60% to 99% by weight, preferably 75% to 98% by weight.
상기 음극 활물질층은 상기 음극 활물질과 함께 바인더 및/또는 도전재를 더 포함할 수 있다.The negative electrode active material layer may further include a binder and/or a conductive material along with the negative electrode active material.
상기 바인더는 상기 음극 활물질층 및 상기 음극 집전체와의 접착력을 향상시켜 전지의 성능을 향상시키기 위하여 사용되는 것으로서, 예를 들어, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.The binder is used to improve battery performance by improving adhesion between the negative electrode active material layer and the negative electrode current collector, for example, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co- HFP), polyvinylidenefluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, recycled Cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoroelastomer, and hydrogen thereof. It may include at least one selected from the group consisting of substances substituted with Li, Na, or Ca, and may also include various copolymers thereof.
상기 바인더는 상기 음극 활물질층에 0.5중량% 내지 10중량%로 포함될 수 있다.The binder may be included in the negative electrode active material layer in an amount of 0.5% to 10% by weight.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, graphite such as natural graphite or artificial graphite; Carbon black, such as carbon black, acetylene black, Ketjen black, channel black, Paneth black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Conductive tubes such as carbon nanotubes; fluorocarbon; Metal powders such as aluminum and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
상기 도전재는 상기 음극 활물질층에 0.5중량% 내지 10중량%, 바람직하게는 1중량% 내지 5중량%로 포함될 수 있다.The conductive material may be included in the negative electrode active material layer in an amount of 0.5% to 10% by weight, preferably 1% to 5% by weight.
상기 음극 활물질층의 두께는 10㎛ 내지 100㎛, 바람직하게는 50㎛ 내지 80㎛일 수 있다.The thickness of the negative electrode active material layer may be 10㎛ to 100㎛, preferably 50㎛ to 80㎛.
상기 음극은 음극 집전체의 적어도 일면에 음극 활물질, 바인더, 도전재 및/또는 음극 슬러리 형성용 용매를 포함하는 음극 슬러리를 코팅한 다음, 건조 및 압연하여 제조될 수 있다.The negative electrode may be manufactured by coating at least one surface of a negative electrode current collector with a negative electrode slurry containing a negative electrode active material, a binder, a conductive material, and/or a solvent for forming a negative electrode slurry, followed by drying and rolling.
상기 음극 슬러리 형성용 용매는 예를 들어 음극 활물질, 바인더 및/또는 도전재의 분산을 용이하게 하는 측면에서, 증류수, NMP(N-methyl-2-pyrrolidone), 에탄올, 메탄올, 및 이소프로필 알코올로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 증류수를 포함할 수 있다. 상기 음극 슬러리의 고형분 함량은 30중량% 내지 80중량%, 구체적으로 40중량% 내지 70중량%일 수 있다.The solvent for forming the negative electrode slurry is, for example, distilled water, NMP (N-methyl-2-pyrrolidone), ethanol, methanol, and isopropyl alcohol in terms of facilitating dispersion of the negative electrode active material, binder, and/or conductive material. It may contain at least one selected from the group, preferably distilled water. The solid content of the negative electrode slurry may be 30% by weight to 80% by weight, specifically 40% by weight to 70% by weight.
(3) 분리막(3) Separator
또한, 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독공중합체, 프로필렌 단독공중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다. 또한, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.In addition, the separator includes typical porous polymer films conventionally used as separators, such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer. Porous polymer films made from the same polyolefin polymer can be used alone or by laminating them, or conventional porous nonwoven fabrics, such as high melting point glass fibers, polyethylene terephthalate fibers, etc., can be used. It is not limited. Additionally, a coated separator containing ceramic components or polymer materials may be used to ensure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a square shape, a pouch shape, or a coin shape.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 예시일 뿐, 본 발명의 범위를 한정하는 것은 아니다. 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.Hereinafter, the present invention will be described in more detail through specific examples. However, the following examples are only examples to aid understanding of the present invention and do not limit the scope of the present invention. It is obvious to those skilled in the art that various changes and modifications are possible within the scope and technical spirit of the present description, and it is natural that such changes and modifications fall within the scope of the appended patent claims.
실시예 및 비교예Examples and Comparative Examples
실시예 1Example 1
(비수 전해질의 제조)(Preparation of non-aqueous electrolyte)
유기 용매로서 에틸렌 카보네이트(EC) 및 에틸메틸카보네이트(EMC)를 30:70의 부피비로 혼합한 것을 사용하였다.As an organic solvent, a mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) in a volume ratio of 30:70 was used.
상기 유기 용매에 리튬 염으로서 LiPF6, 제1 첨가제로서 하기 화학식 2로 표시되는 화합물, 제2 첨가제로서 리튬 디플루오로포스페이트 및 추가 첨가제로서 비닐렌 카보네이트(VC)를 첨가하여 비수 전해질을 제조하였다.A non-aqueous electrolyte was prepared by adding LiPF 6 as a lithium salt to the organic solvent, a compound represented by the following formula (2) as a first additive, lithium difluorophosphate as a second additive, and vinylene carbonate (VC) as an additional additive.
상기 LiPF6은 비수 전해질에 1.2M의 농도로 포함되었다.The LiPF 6 was included in the non-aqueous electrolyte at a concentration of 1.2M.
상기 화학식 2로 표시되는 화합물은 상기 비수 전해질에 0.5중량%로 포함되었고, 상기 리튬 디플루오로포스페이트는 상기 비수 전해질에 0.8중량%로 포함되었고, 상기 비닐렌 카보네이트는 상기 비수 전해질에 0.5중량%로 포함되었다. The compound represented by Formula 2 was included at 0.5% by weight in the non-aqueous electrolyte, the lithium difluorophosphate was included at 0.8% by weight in the non-aqueous electrolyte, and the vinylene carbonate was included at 0.5% by weight in the non-aqueous electrolyte. included.
[화학식 2][Formula 2]
Figure PCTKR2023011855-appb-img-000007
Figure PCTKR2023011855-appb-img-000007
(리튬 이차전지 제조)(Lithium secondary battery manufacturing)
양극 활물질(LiNi0.90Co0.06Mn0.03Al0.01O2) : 도전재(카본 블랙): 바인더 (폴리비닐리덴플루오라이드)를 97.6 : 0.8 : 1.6 중량비로 용제인 N-메틸-2-피롤리돈(NMP) 에 첨가하여 양극 합제 슬러리(고형분 60 중량%)를 제조하였다. 상기 양극 합제 슬러리를 두께가 13.5 ㎛인 양극 집전체(Al 박막) 일면에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 양극을 제조하였다. Cathode active material (LiNi 0.90 Co 0.06 Mn 0.03 Al 0.01 O 2 ): conductive material (carbon black): binder (polyvinylidene fluoride) was mixed with the solvent N-methyl-2-pyrrolidone ( NMP) was added to prepare a positive electrode mixture slurry (solid content: 60% by weight). The positive electrode mixture slurry was applied to one side of a positive electrode current collector (Al thin film) with a thickness of 13.5 ㎛, and dried and roll pressed to prepare a positive electrode.
음극 활물질(흑연 및 SiO가 90:10의 중량비로 혼합된 것) : 도전재(카본 블랙) : 바인더(스티렌-부타디엔 고무/카르복시메틸셀룰로오스)를 97.6:1.6:0.8의 중량비로 용제인 증류수에 첨가하여 음극 합제 슬러리(고형분 60 중량%)를 제조하였다. 상기 음극 합제 슬러리를 두께가 6 ㎛인 음극 집전체(Cu 박막) 일면에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 음극을 제조하였다. Negative active material (graphite and SiO mixed at a weight ratio of 90:10): Conductive material (carbon black): Binder (styrene-butadiene rubber/carboxymethyl cellulose) is added to distilled water as a solvent at a weight ratio of 97.6:1.6:0.8. A negative electrode mixture slurry (solid content: 60% by weight) was prepared. The negative electrode mixture slurry was applied to one side of a negative electrode current collector (Cu thin film) with a thickness of 6 ㎛, and dried and roll pressed to prepare a negative electrode.
드라이 룸에서 상기 제조된 양극과 음극 사이에 폴리에틸렌 다공성 필름 세퍼레이터를 개재한 다음, 상기 제조된 비수 전해질을 주액하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured by interposing a polyethylene porous film separator between the prepared positive electrode and the negative electrode in a dry room, and then injecting the prepared non-aqueous electrolyte.
실시예 2Example 2
제1 첨가제로서 상기 화학식 2로 표시되는 화합물을 0.5중량% 대신에 0.1중량%로 비수 전해질에 포함시킨 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.A non-aqueous electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the compound represented by Formula 2 as a first additive was included in the non-aqueous electrolyte at 0.1 wt% instead of 0.5 wt%.
실시예 3Example 3
제1 첨가제로서 상기 화학식 2로 표시되는 화합물을 0.5중량% 대신에 1중량%로 비수 전해질에 포함시킨 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.A non-aqueous electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the compound represented by Formula 2 as the first additive was included in the non-aqueous electrolyte at 1 wt% instead of 0.5 wt%.
실시예 4Example 4
제2 첨가제로서 리튬 디플루오로포스페이트를 0.8중량% 대신에 0.5중량%로 비수 전해질에 포함시킨 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.A non-aqueous electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1, except that 0.5 wt% of lithium difluorophosphate as a second additive was included in the non-aqueous electrolyte instead of 0.8 wt%.
실시예 5Example 5
제2 첨가제로서 리튬 디플루오로포스페이트를 0.8중량% 대신에 1중량%로 비수 전해질에 포함시킨 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.A non-aqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that lithium difluorophosphate as a second additive was included in the non-aqueous electrolyte at 1% by weight instead of 0.8% by weight.
비교예 1Comparative Example 1
제1 첨가제를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질, 리튬 이차전지를 제조하였다.A non-aqueous electrolyte, lithium secondary battery was manufactured in the same manner as Example 1, except that the first additive was not added.
비교예 2Comparative Example 2
제1 첨가제 및 제2 첨가제를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질, 리튬 이차전지를 제조하였다.A non-aqueous electrolyte, lithium secondary battery was manufactured in the same manner as Example 1, except that the first and second additives were not added.
비교예 3Comparative Example 3
제2 첨가제를 첨가하지 않은 것, 제1 첨가제로서 상기 화학식 2로 표시되는 화합물 대신 하기 화학식 6으로 표시되는 화합물을 비수 전해질에 0.5중량%로 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질, 리튬 이차전지를 제조하였다.Non-aqueous electrolyte was prepared in the same manner as in Example 1, except that the second additive was not added and the compound represented by the following formula 6 was added at 0.5% by weight instead of the compound represented by the formula 2 as the first additive to the non-aqueous electrolyte. Electrolyte and lithium secondary battery were manufactured.
[화학식 6][Formula 6]
Figure PCTKR2023011855-appb-img-000008
Figure PCTKR2023011855-appb-img-000008
비교예 4Comparative Example 4
제2 첨가제를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질, 리튬 이차전지를 제조하였다.A non-aqueous electrolyte, lithium secondary battery was manufactured in the same manner as Example 1, except that the second additive was not added.
실험예Experiment example
실험예 1: 고온 저장 후 용량 유지율 평가Experimental Example 1: Evaluation of capacity retention rate after high temperature storage
상기 실시예 및 비교예에서 제조된 리튬 이차전지에 대해 활성화(formation) 공정을 실시한 다음, 25℃에서 0.33C rate로 4.2V까지 정전류/정전압(CC/CV) 충전(0.05C cut off)을 실시하고, 0.33C rate로 2.80V까지 정전류(CC) 방전시켜 초기 방전 용량을 측정하였다.A formation process was performed on the lithium secondary batteries manufactured in the above examples and comparative examples, and then constant current/constant voltage (CC/CV) charging (0.05C cut off) was performed up to 4.2V at a rate of 0.33C at 25°C. Then, the initial discharge capacity was measured by constant current (CC) discharge to 2.80V at a rate of 0.33C.
이후, 상기 리튬 이차전지를 상기 충전 조건으로 SOC 100%까지 만충전하고, 고온(60℃)에서 8주간 저장하였다. 이후 상온(25℃)의 충방전기로 옮긴 다음, 상기 방전 조건으로 방전시켜 방전 용량을 측정하였고, 하기 식을 통해 용량 유지율을 계산하여, 그 결과를 하기 표 1에 나타내었다.Thereafter, the lithium secondary battery was fully charged to SOC 100% under the above charging conditions and stored at high temperature (60°C) for 8 weeks. Afterwards, it was transferred to a charger and discharger at room temperature (25°C), and the discharge capacity was measured by discharging under the above discharge conditions. The capacity retention rate was calculated using the formula below, and the results are shown in Table 1 below.
용량 유지율(%) = (고온 저장 후 방전 용량/초기 방전 용량) × 100Capacity maintenance rate (%) = (discharge capacity after high temperature storage/initial discharge capacity) × 100
실험예 2: 고온 저장 후 저항 증가율 평가Experimental Example 2: Evaluation of resistance increase rate after high temperature storage
상기 실시예 및 비교예에서 제조된 리튬 이차전지에 대해 활성화(formation) 공정을 실시한 다음, 25℃에서 0.33C rate로 4.2V까지 정전류/정전압(CC/CV) 충전(0.05C cut off)을 실시하고, 0.33C rate로 2.80V까지 정전류(CC) 방전시켜 초기 저항을 측정하였다.A formation process was performed on the lithium secondary batteries manufactured in the above examples and comparative examples, and then constant current/constant voltage (CC/CV) charging (0.05C cut off) was performed up to 4.2V at a rate of 0.33C at 25°C. And the initial resistance was measured by constant current (CC) discharge to 2.80V at a rate of 0.33C.
이후, 상기 리튬 이차전지를 상기 충전 조건으로 SOC 100%까지 만충전하고, 고온(60℃)에서 8주간 저장하였다. 이후 상온(25℃)의 충방전기로 옮긴 다음, 저항을 측정하였고, 하기 식을 통해 저항 증가율을 계산하여, 그 결과를 하기 표 1에 나타내었다.Thereafter, the lithium secondary battery was fully charged to SOC 100% under the above charging conditions and stored at high temperature (60°C) for 8 weeks. Afterwards, it was transferred to a charger and discharger at room temperature (25°C), the resistance was measured, the resistance increase rate was calculated using the following equation, and the results are shown in Table 1 below.
저항 증가율(%) = {(고온 저장 후 저항 - 초기 저항) / (초기 저항)} × 100Resistance increase rate (%) = {(resistance after high temperature storage - initial resistance) / (initial resistance)} × 100
실험예 1Experimental Example 1 실험예 2Experimental Example 2
고온 저장 시 용량 유지율(%, 8주)Capacity retention rate when stored at high temperature (%, 8 weeks) 고온 저장 시 저항 증가율(%, 8주)Resistance increase rate when stored at high temperature (%, 8 weeks)
실시예 1Example 1 91.1491.14 -8.86-8.86
실시예 2Example 2 90.5890.58 -3.42-3.42
실시예 3Example 3 91.3391.33 -10.17-10.17
실시예 4Example 4 90.3190.31 -5.51-5.51
실시예 5Example 5 91.2491.24 -8.72-8.72
비교예 1Comparative Example 1 90.3990.39 -1.32-1.32
비교예 2Comparative Example 2 89.4589.45 +8.42+8.42
비교예 3Comparative Example 3 87.8587.85 +22.50+22.50
비교예 4Comparative Example 4 89.4589.45 +8.10+8.10
표 1를 참조하면, 본 발명에 따른 제1 첨가제 및 제2 첨가제를 포함하는 비수전해질을 사용한 실시예 1 내지 5의 리튬 이차전지는 비교예 1 내지 4의 리튬 이차전지에 비해 고온 저장 수명 성능이 우수하고, 저항 증가율이 낮은 것을 확인할 수 있다.Referring to Table 1, the lithium secondary batteries of Examples 1 to 5 using a non-aqueous electrolyte containing the first additive and the second additive according to the present invention have high temperature storage life performance compared to the lithium secondary batteries of Comparative Examples 1 to 4. It can be seen that it is excellent and the resistance increase rate is low.

Claims (10)

  1. 리튬 염;lithium salt;
    유기 용매; 및organic solvent; and
    첨가제;를 포함하고,Contains additives;
    상기 첨가제는 제1 첨가제 및 제2 첨가제를 포함하며,The additive includes a first additive and a second additive,
    상기 제1 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하고,The first additive includes a compound represented by the following formula (1),
    상기 제2 첨가제는 리튬 디플루오로포스페이트를 포함하는 비수 전해질:The second additive is a non-aqueous electrolyte comprising lithium difluorophosphate:
    [화학식 1][Formula 1]
    Figure PCTKR2023011855-appb-img-000009
    Figure PCTKR2023011855-appb-img-000009
    상기 화학식 1에서, R1은 불소가 하나 이상 치환된 탄소수 1 내지 10의 알콕시기 또는 불소가 하나 이상 치환된 탄소수 6 내지 20의 아릴옥시기이고, R2 및 R3는 서로 독립적으로 수소, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 20의 아릴기이다.In Formula 1, R 1 is an alkoxy group having 1 to 10 carbon atoms substituted with one or more fluorines or an aryloxy group having 6 to 20 carbon atoms with one or more fluorine substituted, and R 2 and R 3 are independently hydrogen and carbon atoms. It is an alkyl group with 1 to 10 carbon atoms or an aryl group with 6 to 20 carbon atoms.
  2. 청구항 1에 있어서,In claim 1,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시되는 화합물, 하기 화학식 3으로 표시되는 화합물 및 하기 화학식 4로 표시되는 화합물로 이루어진 군에서 선택된 적어도 1종을 포함하는 비수 전해질:The compound represented by Formula 1 is a non-aqueous electrolyte comprising at least one selected from the group consisting of a compound represented by Formula 2, a compound represented by Formula 3, and a compound represented by Formula 4:
    [화학식 2][Formula 2]
    Figure PCTKR2023011855-appb-img-000010
    Figure PCTKR2023011855-appb-img-000010
    [화학식 3][Formula 3]
    Figure PCTKR2023011855-appb-img-000011
    Figure PCTKR2023011855-appb-img-000011
    [화학식 4][Formula 4]
    Figure PCTKR2023011855-appb-img-000012
    .
    Figure PCTKR2023011855-appb-img-000012
    .
  3. 청구항 1에 있어서,In claim 1,
    상기 제1 첨가제는 상기 비수 전해질에 0.1중량% 내지 10중량%로 포함되는 비수 전해질.The first additive is included in the non-aqueous electrolyte in an amount of 0.1% to 10% by weight.
  4. 청구항 1에 있어서,In claim 1,
    상기 제2 첨가제는 상기 비수 전해질에 0.1중량% 내지 10중량%로 포함되는 비수 전해질.The second additive is included in the non-aqueous electrolyte in an amount of 0.1% to 10% by weight.
  5. 청구항 1에 있어서,In claim 1,
    상기 제1 첨가제 및 제2 첨가제의 중량비는 10:90 내지 90:10인 비수 전해질.A non-aqueous electrolyte wherein the weight ratio of the first additive and the second additive is 10:90 to 90:10.
  6. 청구항 1에 있어서,In claim 1,
    상기 리튬 염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiAlO4, LiAlCl4, LiPF6, LiSbF6, LiAsF6, LiB10Cl10, LiBOB(LiB(C2O4)2), LiCF3SO3, LiFSI(LiN(SO2F)2), LiCH3SO3, LiCF3CO2, LiCH3CO2 및 LiBETI(LiN(SO2CF2CF3)2)로 이루어진 군으로부터 선택된 적어도 1종을 포함하는 비수 전해질.The lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4, LiAlO 4 , LiAlCl 4 , LiPF 6 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiBOB (LiB(C 2 O 4 ) 2 ), LiCF 3 At least one selected from the group consisting of SO 3 , LiFSI (LiN(SO 2 F) 2 ), LiCH 3 SO 3 , LiCF 3 CO 2 , LiCH 3 CO 2 and LiBETI (LiN(SO 2 CF 2 CF 3 ) 2 ) A non-aqueous electrolyte containing.
  7. 청구항 1에 있어서,In claim 1,
    상기 리튬 염은 상기 비수 전해질에 0.5 M 내지 5.0 M의 몰 농도로 포함되는 것인 비수 전해질.The lithium salt is included in the non-aqueous electrolyte at a molar concentration of 0.5 M to 5.0 M.
  8. 청구항 1에 있어서,In claim 1,
    상기 유기 용매는 환형 카보네이트계 유기 용매, 선형 카보네이트계 유기 용매, 선형 에스터계 유기 용매 및 환형 에스터계 유기 용매로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 비수 전해질.The organic solvent is a non-aqueous electrolyte comprising at least one selected from the group consisting of a cyclic carbonate-based organic solvent, a linear carbonate-based organic solvent, a linear ester-based organic solvent, and a cyclic ester-based organic solvent.
  9. 청구항 1에 있어서,In claim 1,
    상기 첨가제는 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트, 프로판 설톤, 프로펜 설톤, 숙시노니트릴, 아디포니트릴, 에틸렌 설페이트, LiBOB(Lithium bis-(oxalato)borate), LiODFB(Lithium difluorooxalatoborate), TMSPa(3-trimethoxysilanyl-propyl-N-aniline), 및 TMSPi(Tris(trimethylsilyl) Phosphite)로 이루어진 군에서 선택된 적어도 1종의 추가 첨가제를 더 포함하는 비수 전해질.The additives include vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, propane sultone, propene sultone, succinonitrile, adiponitrile, ethylene sulfate, LiBOB (Lithium bis-(oxalato)borate), LiODFB (Lithium difluorooxalatoborate). , 3-trimethoxysilanyl-propyl-N-aniline (TMSPa), and Tris(trimethylsilyl) Phosphite (TMSPi).
  10. 양극;anode;
    상기 양극에 대향하는 음극;a cathode opposite the anode;
    상기 양극 및 상기 음극 사이에 개재되는 분리막; 및a separator interposed between the anode and the cathode; and
    청구항 1에 따른 비수 전해질;을 포함하는 리튬 이차전지.A lithium secondary battery comprising the non-aqueous electrolyte according to claim 1.
PCT/KR2023/011855 2022-08-12 2023-08-10 Non-aqueous electrolyte and lithium secondary battery comprising same WO2024035170A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220101642 2022-08-12
KR10-2022-0101642 2022-08-12
KR10-2023-0104906 2023-08-10
KR1020230104906A KR20240022998A (en) 2022-08-12 2023-08-10 Non-aqueous electrolyte and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2024035170A1 true WO2024035170A1 (en) 2024-02-15

Family

ID=89852199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011855 WO2024035170A1 (en) 2022-08-12 2023-08-10 Non-aqueous electrolyte and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2024035170A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902492A1 (en) * 1997-09-11 1999-03-17 Hydro-Quebec Solvents and new electrolytic compositions having a large stability range and high conductivity
JP2015088492A (en) * 2013-09-27 2015-05-07 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
US20180342731A1 (en) * 1999-04-30 2018-11-29 Acep Inc. Electrode materials with high surface conductivity
KR20190033448A (en) * 2017-09-21 2019-03-29 주식회사 엘지화학 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20200041171A (en) * 2018-10-11 2020-04-21 주식회사 엘지화학 Non-aqueous electrolyte solution and lithium secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902492A1 (en) * 1997-09-11 1999-03-17 Hydro-Quebec Solvents and new electrolytic compositions having a large stability range and high conductivity
US20180342731A1 (en) * 1999-04-30 2018-11-29 Acep Inc. Electrode materials with high surface conductivity
JP2015088492A (en) * 2013-09-27 2015-05-07 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
KR20190033448A (en) * 2017-09-21 2019-03-29 주식회사 엘지화학 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20200041171A (en) * 2018-10-11 2020-04-21 주식회사 엘지화학 Non-aqueous electrolyte solution and lithium secondary battery comprising the same

Similar Documents

Publication Publication Date Title
WO2019156539A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2021167428A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2021040388A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
WO2022092688A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2021049872A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2023121028A1 (en) Non-aqueous electrolyte comprising additive for non-aqueous electrolyte, and lithium secondary battery comprising same
WO2023085843A1 (en) Non-aqueous electrolyte containing non-aqueous electrolyte additive, and lithium secondary battery including same
WO2023063648A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021256825A1 (en) Electrolyte additive for lithium secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery
WO2022114930A1 (en) Non-aqueous electrolytic solution for lithium secondary battery and lithium secondary battery comprising same
WO2022103101A1 (en) Lithium secondary battery
WO2022080770A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021241976A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery
WO2021194220A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery
WO2020055180A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021049875A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020096411A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battering including same
WO2020197278A1 (en) Lithium secondary battery
WO2024035170A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2023191572A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2024071833A1 (en) Nonaqueous electrolyte and lithium secondary battery comprising same
WO2024035167A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2024035169A1 (en) Nonaqueous electrolyte and lithium secondary battery comprising same
WO2023224361A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2023140619A1 (en) Non-aqueous electrolyte comprising additive for non-aqueous electrolyte and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853037

Country of ref document: EP

Kind code of ref document: A1