WO2024035096A1 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
WO2024035096A1
WO2024035096A1 PCT/KR2023/011717 KR2023011717W WO2024035096A1 WO 2024035096 A1 WO2024035096 A1 WO 2024035096A1 KR 2023011717 W KR2023011717 W KR 2023011717W WO 2024035096 A1 WO2024035096 A1 WO 2024035096A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
reactor
reaction vessel
cooling
baffle
Prior art date
Application number
PCT/KR2023/011717
Other languages
French (fr)
Korean (ko)
Inventor
안우열
이신범
이혜원
김영조
한기도
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Publication of WO2024035096A1 publication Critical patent/WO2024035096A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00736Non-biologic macromolecules, e.g. polymeric compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical

Definitions

  • the present invention relates to reactors, and in particular to PVC polymerization reactors.
  • PVC particles In order to suppress the formation of fish eyes, PVC particles must be formed small so that breakage in the flow is strong. Additionally, in the flow in the tank, the size of the area with low velocity, low turbulence, and low shear rate must be small.
  • the particles do not grow by agglomerating together, and polymerization occurs in one large particle without being decomposed, resulting in the formation of fish eye particles without pores.
  • One aspect of the present invention is to provide a reactor that can improve PVC quality by reducing the production of fish eyes.
  • the reactor includes a reaction vessel, a rotating shaft rotatably installed in the reaction vessel, a stirring blade connected to the rotating shaft and rotating, a plurality of cooling baffles disposed at regular intervals along the inner peripheral surface of the reaction vessel, and cooling baffles. It is formed on at least one fin and includes a fin that is formed long along the longitudinal direction of the cooling baffle, and the fin protrudes from the outer surface of the cooling baffle toward the rotation axis.
  • the distance between the end of the pin and the end of the stirring blade may be 00 to 00.
  • the thickness of the fin may decrease as the fin moves away from the cooling baffle.
  • the plurality of baffles may be arranged at a certain angle.
  • the end of the pin may have a curved surface, and both sides of the pin may have a curved surface.
  • the stirring blade may be paddle-type.
  • FIG. 1 is a schematic diagram of a reactor according to an embodiment of the present invention.
  • Figure 2 is a layout view of a cooling baffle included in the reactor of Figure 1.
  • 3 to 5 are layout views of cooling baffles according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a reactor according to an embodiment of the present invention
  • FIG. 2 is a layout view of a cooling baffle included in the reactor of FIG. 1
  • FIGS. 3 to 5 are cooling baffles according to another embodiment of the present invention. This is the layout diagram.
  • the reactor 100 includes a reaction vessel 10 containing reactants, a cooling baffle 20 installed in the reaction vessel 10, and a stirrer 30. ) includes.
  • the reactor 100 may be, for example, a polymerization reactor for polymer polymerization.
  • the reaction vessel 10 is not limited in shape, but may have a cylindrical structure and includes a cylindrical side wall portion, a bottom portion, and a cover portion to form a space for accommodating the reaction material.
  • the reaction vessel 10 may be formed as a double-walled structure (not shown), and fluid may circulate inside the double-walled structure, and heat exchange may occur between the fluid and the reactants. That is, a heat exchange jacket may be installed in the reaction vessel.
  • the stirrer 30 includes a stirring blade 3 installed inside the reaction vessel to rotate the reactant, and a motor 7 having a rotating shaft 5 connected to the stirring blade 3 to rotate the stirring blade.
  • the rotation axis 5 may be located in the center of the reaction vessel 3.
  • the stirring blade 3 is located inside the reaction vessel 10 and is coupled to the rotation shaft 5 and rotates by the rotation shaft.
  • the stirring blades 3 may be installed as a set of a plurality of blades at one end of the rotating shaft, and may be installed as a plurality of sets at regular intervals along the longitudinal direction of the rotating shaft for effective stirring of the reactants.
  • One set of stirring blades 3 may include at least 2 to 4 stirring blades.
  • the installation location and number of stirring blades can be selected in various ways depending on need.
  • the stirring blade 3 may be a paddle type without a pitch, but is not limited thereto and may be a plurality of paddles arranged with pitches.
  • the baffle 20 is used to improve mixing of the reactants by changing the circumferential flow of the reactants to a vertical flow as the stirring blade 3 rotates, and to effectively remove reaction heat. It is used for heat exchange such as cooling water. It may be composed of pipes through which fluid flows.
  • the baffle 20 maintains a constant temperature of the reactants through heat exchange with the reactants, thereby controlling the temperature, that is, performing a heat removal function. For example, it can maintain the polymerization temperature of 40 to 100 degrees. .
  • the heat generated during the polymerization reaction can proceed not only through the baffle, but also through the jacket, RC (reflux condenser), etc.
  • the fluid for heat exchange may have a temperature of approximately 4 degrees Celsius to 35 degrees Celsius in the case of low temperature, and approximately 50 degrees Celsius to 200 degrees Celsius in the case of high temperature.
  • the baffles 20 may be arranged in plural numbers and spaced apart along the circumferential direction of the reaction vessel 10.
  • a plurality of baffles 20 are installed along the circumferential direction of the reaction vessel 10 at a certain distance from the stirring blade 3, and may preferably be installed at equal intervals along the circumferential direction.
  • the baffles are From 3 to 24 can be arranged.
  • the baffle may be arranged in one stage as shown in FIG. 2, but the baffle is not limited to this and may be formed by overlapping multiple stages such as two stages and three stages (not shown) as shown in FIG. 3. At this time, the fin may be formed on the baffle stage closest to the center of the reaction vessel.
  • a fin 40 is formed on at least one baffle 20 among the plurality of baffles.
  • the fin 40 may be formed long along the longitudinal direction of the baffle, and may be a plate-shaped structure that protrudes from the outer surface of the baffle 20 toward the rotation axis of the reactor.
  • the fin 40 may be formed so that the sum (W) of the width of the baffle on which the fin is formed and the width of the fin is 0.07 to 0.14 times the reactor diameter (D), and preferably 0.14 times.
  • the thickness of the fin 40 becomes thinner as it moves away from the baffle 20, and may be of a prism type having an isosceles triangle in cross section. However, the fin 40 is not limited thereto and may be of a plate type with a constant thickness.
  • the end of the pin 40 facing the rotation axis of the reactor may have a curved shape so that the reactant can be moved without getting caught in the edge of the pin 40.
  • both surfaces of the pin 40 may be flat planes, but are not limited to this and may have an outwardly convex curved surface as in the pin 41 of FIG. 4 or an inwardly concave curved surface as in the pin 42 of FIG. 5. You can have it.
  • FIG 2 it is shown that three fins 40 are formed at 120 degree intervals, but this is not limited and fewer or more fins can be installed at a certain angle such as 180 degrees or 60 degrees, and all of them are installed on each baffle. Can be installed.
  • the stirring blades of the reactor are of the paddle type, and are formed in two stages along the rotation axis at regular intervals. Twelve baffles can be installed on the outer wall of the reactor as one-stage double pipes. At this time, the rotation speed (rpm) is 128 (m/sec).
  • fins are formed on three of the twelve one-stage baffles arranged at 120-degree intervals. It was operated in the same manner as Comparative Example 1, except that the sum of the width of the baffle to which the fin was attached and the width of the fin (W) was 0.3 m, which was 0.07 with respect to the reactor diameter (D).
  • Example 2 It is the same as Example 1, except that the sum (W) of the width of the baffle to which the fin is attached and the width of the fin is 0.5 m, which is 0.11 with respect to the reactor diameter (D).
  • Total baffle width The sum of the width of the baffle to which the fin is attached and the width of the fin (W) The sum of the width of the baffle to which the fin is attached and the width of the fin (W) is 0.66 m, which is equal to the reactor diameter (D). It is the same as Example 1, except that it is 0.14.
  • Example 2 Example 3 TBW/D(reactor) 0.05 0.07 0.11 0.14 radial (m/sec) 0.65 0.92 1.10 1.17 CFD indicator (sec 2 /m 2 ) 2.48 2.63 2.71 2.24 FE increase/decrease rate compared to comparative example 0% 34% 52% -55% Increased heat exchange area (m 2 ) 0 1.46 5.06 7.94
  • Table 1 shows the CFD values measured in Comparative Example 1, Examples 1 and 2. At this time, the CFD flow was analyzed using a two-phase Eulerian model.
  • the CFD indicator is the volume fraction of the area with a turbulence value of 1m 2 /sec 3 to 100m 2 /sec 3 or more and the volume fraction of the area with a shear rate of 0.5/s to 5/s or less, and the CFD indicator value is The smaller it is, the better the quality of the product is.
  • Example 3 the radial velocity is high and the CFD index is low, so the quality is improved, and the heat exchange area by the fin is increased, so it is a device that can increase production.
  • the reaction speed can be increased by reducing the droplet size, and the FE (fish eye) quality can be predicted using the CFD indicator, improving responsiveness or product quality.
  • the size of the pin can be adjusted as needed.
  • the diameter ratio of the cooling baffle and the reaction vessel as in the present invention, various effects can be expected, such as reducing FE, increasing speed, and increasing heat exchange area. Therefore, depending on the required process characteristics and quality, the sum of the width of the cooling baffle on which the fins are installed and the width of the fins can be selected within the range of 0.07 to 0.14 times the diameter of the reaction vessel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A reactor according to one embodiment of the present invention comprises: a reaction vessel; a rotating shaft rotatably installed in the reaction vessel; an agitating blade which is connected to the rotating shaft and rotates; a plurality of cooling baffles disposed at regular intervals along the inner peripheral surface of the reaction vessel; and a fin which is formed on at least one of the cooling baffles and formed to be elongated along the longitudinal direction of the cooling baffles, wherein the fin protrudes from the outer surface of the cooling baffle toward the rotating shaft.

Description

반응기reactor
관련 출원(들)과의 상호 인용Cross-Citation with Related Application(s)
본 출원은 2022년 8월 9일자 한국 특허 출원 제10-2022-0099172호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2022-0099172, dated August 9, 2022, and all contents disclosed in the document of the Korean Patent Application are included as part of this specification.
본 발명은 반응기에 관한 것으로, 특히 PVC 중합 반응기에 관한 것이다. The present invention relates to reactors, and in particular to PVC polymerization reactors.
PVC 품질 중 피쉬 아이(fish eye)는 제품의 결함을 야기시키며 특히 연질 PVC를 활용한 필름 등의 제품에 있어서는 매우 치명적인 품질 이슈를 야기시킨다. Among PVC quality, fish eyes cause product defects and are particularly critical quality issues in products such as films using soft PVC.
피쉬 아이 생성을 억제하기 위해서는 유동에 있어 파손이 강하여 PVC 입자를 작게 형성시켜야 한다. 또한 탱크 내의 유동 흐름에 있어, 낮은 속도, 낮은 터뷸런스(turbulence), 낮은 전단속도(shear rate)를 가지는 영역의 크기가 작아야 한다. In order to suppress the formation of fish eyes, PVC particles must be formed small so that breakage in the flow is strong. Additionally, in the flow in the tank, the size of the area with low velocity, low turbulence, and low shear rate must be small.
빈약한 융합 영역(poor coalescence zone)에서는 입자들이 서로 뭉침으로 인한 성장이 이루어지지 않고, 분해되지 못한 채 큰 입자 하나에서 중합이 일어나기 때문에 공극(pore)이 없는 피쉬 아이 입자를 형성시키게 된다.In the poor coalescence zone, the particles do not grow by agglomerating together, and polymerization occurs in one large particle without being decomposed, resulting in the formation of fish eye particles without pores.
본 발명의 일 측면은 피쉬 아이의 생성을 감소시켜, PVC 품질을 향상시킬 수 있는 반응기를 제공하는 것이다. One aspect of the present invention is to provide a reactor that can improve PVC quality by reducing the production of fish eyes.
본 발명의 일 실시예에 따른 반응기는 반응 용기, 반응 용기 내에 회전 가능하게 설치된 회전축, 회전축과 연결되어 회전하는 교반 날개, 반응 용기의 내주면을 따라 일정한 간격으로 배치된 복수의 냉각 배플, 냉각 배플 중 적어도 하나에 형성되며, 냉각 배플의 길이 방향을 따라 길게 형성된 핀을 포함하고, 핀은 냉각 배플의 외면으로부터 회전축을 향해서 돌출된다.The reactor according to an embodiment of the present invention includes a reaction vessel, a rotating shaft rotatably installed in the reaction vessel, a stirring blade connected to the rotating shaft and rotating, a plurality of cooling baffles disposed at regular intervals along the inner peripheral surface of the reaction vessel, and cooling baffles. It is formed on at least one fin and includes a fin that is formed long along the longitudinal direction of the cooling baffle, and the fin protrudes from the outer surface of the cooling baffle toward the rotation axis.
상기 핀의 끝단으로부터 상기 교반 날개의 끝단 사이의 간격은 00 내지 00일 수 있다.The distance between the end of the pin and the end of the stirring blade may be 00 to 00.
상기 핀은 냉각 배플로부터 멀어질수록 핀의 두께가 줄어들 수 있다.The thickness of the fin may decrease as the fin moves away from the cooling baffle.
상기 복수의 배플은 일정한 각도를 두고 배치될 수 있다.The plurality of baffles may be arranged at a certain angle.
상기 핀의 끝단은 곡면을 가지고, 핀의 양면은 곡면을 가질 수 있다. The end of the pin may have a curved surface, and both sides of the pin may have a curved surface.
상기 교반 날개는 패들형일 수 있다.The stirring blade may be paddle-type.
본 발명의 일 실시예에서와 같이 냉각 배플에 핀을 설치하면, PVC 입자를 작게 유지시키며 FE의 생성을 최소화할 수 있다.By installing fins on the cooling baffle as in one embodiment of the present invention, PVC particles can be kept small and the generation of FE can be minimized.
도 1은 본 발명의 일 실시예에 따른 반응기의 개략적인 도면이다.1 is a schematic diagram of a reactor according to an embodiment of the present invention.
도 2는 도 1의 반응기에 포함된 냉각 배플의 배치도이다.Figure 2 is a layout view of a cooling baffle included in the reactor of Figure 1.
도 3 내지 도 5는 본 발명의 다른 실시예에 따른 냉각 배플의 배치도이다3 to 5 are layout views of cooling baffles according to another embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발 명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다. Hereinafter, with reference to the attached drawings, various embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. The invention may be implemented in many different forms and is not limited to the embodiments described herein.
도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타 내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.Since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of explanation, the present invention is not necessarily limited to what is shown.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.In the drawing, the thickness is enlarged to clearly express various layers and regions. And in the drawings, for convenience of explanation, the thicknesses of some layers and regions are exaggerated. When a part of a layer, membrane, region, plate, etc. is said to be "on" or "on" another part, this includes not only being "directly above" the other part, but also cases where there is another part in between.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, throughout the specification, when a part is said to "include" a certain component, this means that it may further include other components rather than excluding other components, unless specifically stated to the contrary.
도 1은 본 발명의 일 실시예에 따른 반응기의 개략적인 도면이고, 도 2는 도 1의 반응기에 포함된 냉각 배플의 배치도이고, 도 3 내지 도 5는 본 발명의 다른 실시예에 따른 냉각 배플의 배치도이다.FIG. 1 is a schematic diagram of a reactor according to an embodiment of the present invention, FIG. 2 is a layout view of a cooling baffle included in the reactor of FIG. 1, and FIGS. 3 to 5 are cooling baffles according to another embodiment of the present invention. This is the layout diagram.
도 1 및 도 2에 도시한 바와 같이, 본 발명의 일 실시예에 따른 반응기(100)는 반응물을 담는 반응 용기(10), 반응 용기(10) 내에 설치되는 냉각 배플(20), 교반기(30)를 포함한다.As shown in Figures 1 and 2, the reactor 100 according to an embodiment of the present invention includes a reaction vessel 10 containing reactants, a cooling baffle 20 installed in the reaction vessel 10, and a stirrer 30. ) includes.
반응기(100)는 예를 들어, 고분자 중합을 위한 중합 반응기일 수 있다. The reactor 100 may be, for example, a polymerization reactor for polymer polymerization.
반응 용기(10)는 모양에 제한이 없으나, 원통형 구조일 수 있으며, 원통형 측벽부, 바닥부 및 덮개부를 포함하여 반응 물질을 수용하기 위한 공간을 형성한다. 반응 용기(10)는 이중벽 구조(도시하지 않음)로 형성될 수 있으며, 이중벽 내부로 유체가 순환할 수 있고, 유체와 반응물 사이 열교환이 이루어질 수 있다. 즉, 반응 용기에 열교환 자켓이 설치될 수 있다.The reaction vessel 10 is not limited in shape, but may have a cylindrical structure and includes a cylindrical side wall portion, a bottom portion, and a cover portion to form a space for accommodating the reaction material. The reaction vessel 10 may be formed as a double-walled structure (not shown), and fluid may circulate inside the double-walled structure, and heat exchange may occur between the fluid and the reactants. That is, a heat exchange jacket may be installed in the reaction vessel.
교반기(30)는 반응 용기 내부에 설치되어 반응물을 회전시키는 교반 날개(3), 교반 날개(3)와 연결되어 교반 날개를 회전시키는 회전축(5)을 가지는 모터(7)를 포함한다. 회전축(5)은 반응 용기(3)의 중앙에 위치할 수 있다.The stirrer 30 includes a stirring blade 3 installed inside the reaction vessel to rotate the reactant, and a motor 7 having a rotating shaft 5 connected to the stirring blade 3 to rotate the stirring blade. The rotation axis 5 may be located in the center of the reaction vessel 3.
교반 날개(3)는 반응 용기(10)의 내부에 위치하며, 회전축(5)에 결합되어 회전축에 의해서 회전한다. The stirring blade 3 is located inside the reaction vessel 10 and is coupled to the rotation shaft 5 and rotates by the rotation shaft.
교반 날개(3)는 회전축의 일단에 복수개의 날개를 한 세트로 설치될 수 있으며, 반응물의 효과적인 교반을 위해서 회전축의 길이 방향을 따라 일정한 간격을 두고 복수의 세트로 설치될 수 있다. 한 세트의 교반 날개(3)는 적어도 2개 내지 4개의 교반 날개를 포함할 수 있다. 교반 날개는 필요에 따라서 설치 위치 및 개수는 다양하게 선택될 수 있다. The stirring blades 3 may be installed as a set of a plurality of blades at one end of the rotating shaft, and may be installed as a plurality of sets at regular intervals along the longitudinal direction of the rotating shaft for effective stirring of the reactants. One set of stirring blades 3 may include at least 2 to 4 stirring blades. The installation location and number of stirring blades can be selected in various ways depending on need.
교반 날개(3)는 피치가 없는 패들(paddle) 타입일 수 있으나, 이에 한정되는 것은 아니며 피치를 두고 복수로 배치된 패들일 수 있다.The stirring blade 3 may be a paddle type without a pitch, but is not limited thereto and may be a plurality of paddles arranged with pitches.
배플(20)은 교반 날개(3)의 회전에 따른 반응물의 원주 방향 흐름을 상하 방향 흐름으로 바꾸어 반응물의 혼합을 양호하게 하며, 반응열을 효과적으로 제거하기 위한 것으로, 그 내부에 냉각수와 같은 열교환을 위한 유체가 흐르는 배관으로 구성될 수 있다. 배플(20)은 반응물과의 열교환을 통해 반응물의 온도를 일정하게 유지시켜 온도를 제어할 수 있는 기능, 즉 제열 기능을 담당하며, 예를 들어 중합 온도인 40도 내지 100도를 유지시킬 수 있다. The baffle 20 is used to improve mixing of the reactants by changing the circumferential flow of the reactants to a vertical flow as the stirring blade 3 rotates, and to effectively remove reaction heat. It is used for heat exchange such as cooling water. It may be composed of pipes through which fluid flows. The baffle 20 maintains a constant temperature of the reactants through heat exchange with the reactants, thereby controlling the temperature, that is, performing a heat removal function. For example, it can maintain the polymerization temperature of 40 to 100 degrees. .
중합 반응시 발생되는 열은 배플 뿐 아니라, 자켓, RC(reflux condenser) 등을 통해서도 진행될 수 있다. The heat generated during the polymerization reaction can proceed not only through the baffle, but also through the jacket, RC (reflux condenser), etc.
열교환을 위한 유체는 저온의 경우 대략 섭씨 4도 내지 35도의 온도를 가질 수 있으며, 고온의 경우 대략 섭씨 50도 내지 200도의 온도를 가질 수 있다.The fluid for heat exchange may have a temperature of approximately 4 degrees Celsius to 35 degrees Celsius in the case of low temperature, and approximately 50 degrees Celsius to 200 degrees Celsius in the case of high temperature.
배플(20)은 반응 용기(10)의 원주 방향을 따라 이격되어 복수로 배치될 수 있다. 복수의 배플(20)은 교반 날개(3)와 일정한 거리를 두고 반응 용기(10)의 원주 방향을 따라 설치되며, 바람직하게는 원주 방향을 따라 등간격으로 설치될 수 있으며, 예를 들어 배플은 3개 내지 24개가 배치될 수 있다. The baffles 20 may be arranged in plural numbers and spaced apart along the circumferential direction of the reaction vessel 10. A plurality of baffles 20 are installed along the circumferential direction of the reaction vessel 10 at a certain distance from the stirring blade 3, and may preferably be installed at equal intervals along the circumferential direction. For example, the baffles are From 3 to 24 can be arranged.
배플은 도 2에서와 같이 1 스테이지(stage)으로 배치될 수 있으나, 이에 한정되는 것은 아니며 도 3에서와 같이 2 스테이지, 3스테이지(도시하지 않음)과 같이 복수로 중첩되어 형성될 수 있다. 이때, 핀은 반응 용기의 중심과 가장 인접한 배플 스테이지(stage)에 형성될 수 있다.The baffle may be arranged in one stage as shown in FIG. 2, but the baffle is not limited to this and may be formed by overlapping multiple stages such as two stages and three stages (not shown) as shown in FIG. 3. At this time, the fin may be formed on the baffle stage closest to the center of the reaction vessel.
복수의 배플 중 적어도 하나의 배플(20)에는 핀(fin)(40)이 형성되어 있다. 핀(40)은 배플의 길이 방향을 따라 길게 형성될 수 있으며, 판형 구조물로 배플(20)의 외면으로부터 반응기의 회전축을 향해서 돌출될 수 있다. A fin 40 is formed on at least one baffle 20 among the plurality of baffles. The fin 40 may be formed long along the longitudinal direction of the baffle, and may be a plate-shaped structure that protrudes from the outer surface of the baffle 20 toward the rotation axis of the reactor.
핀(40)은 핀이 형성된 배플의 폭과 핀의 폭의 합(W)이 반응기 직경(D) 대비 0.07~0.14배가 되도록 형성될 수 있으며, 바람직하게는 0.14배일 수 있다.The fin 40 may be formed so that the sum (W) of the width of the baffle on which the fin is formed and the width of the fin is 0.07 to 0.14 times the reactor diameter (D), and preferably 0.14 times.
핀(40)은 배플(20)로부터 멀어질수록 두께가 얇아져, 횡단면이 이등변 삼각형을 가지는 프리즘형(prism type)일 수 있으나, 이에 한정되는 것은 아니며 두께가 일정한 판형(plate type)일 수 있다. 반응기의 회전축과 마주하는 핀(40)의 끝단은 반응물이 핀(40)의 모서리에 걸림없이 이동될 수 있도록 곡면 모양을 가질 수 있다.The thickness of the fin 40 becomes thinner as it moves away from the baffle 20, and may be of a prism type having an isosceles triangle in cross section. However, the fin 40 is not limited thereto and may be of a plate type with a constant thickness. The end of the pin 40 facing the rotation axis of the reactor may have a curved shape so that the reactant can be moved without getting caught in the edge of the pin 40.
또한, 핀(40)의 양면은 평평한 평면 일 수 있으나, 이에 한정되는 것은 아니며 도 4의 핀(41)에서와 같이 바깥쪽으로 볼록한 곡면 또는 도 5의 핀(42)에서와 같이 안쪽으로 오목한 곡면을 가질 수 있다. In addition, both surfaces of the pin 40 may be flat planes, but are not limited to this and may have an outwardly convex curved surface as in the pin 41 of FIG. 4 or an inwardly concave curved surface as in the pin 42 of FIG. 5. You can have it.
도 2에서는 핀(40)이 120도 간격으로 3개가 형성된 것을 도시하였으나, 이에 한정되는 것은 아니며 180도, 60도와 같이 일정한 각도를 두고 더 적게 또는 더 많은 핀이 설치될 수 있으며, 배플 각각에 모두 설치될 수 있다.In Figure 2, it is shown that three fins 40 are formed at 120 degree intervals, but this is not limited and fewer or more fins can be installed at a certain angle such as 180 degrees or 60 degrees, and all of them are installed on each baffle. Can be installed.
[비교예 1][Comparative Example 1]
반응기의 교반 날개는 패들 타입으로, 일정한 간격을 두고 회전축을 따라 2스테이지(stage)로 형성된다. 배플은 1 스테이지(stage)로 이중관(double pipe)으로 반응기 외벽에도 12개가 설치될 수 있다. 이때, 회전 속도(rpm)는 128(m/sec)이다. The stirring blades of the reactor are of the paddle type, and are formed in two stages along the rotation axis at regular intervals. Twelve baffles can be installed on the outer wall of the reactor as one-stage double pipes. At this time, the rotation speed (rpm) is 128 (m/sec).
[실시예 1][Example 1]
도 2에 도시된 반응기로, 1 스테이지(stage) 배플 12개 중 120도 간격으로 배치된 3개의 배플에 핀이 형이 형성되어 있다. 핀이 부착된 배플의 폭과 핀의 폭의 합(W)는 0.3m로 반응기 직경(D)에 대해서 0.07인 것을 제외하고, 비교예 1과 동일하게 운전되었다.In the reactor shown in FIG. 2, fins are formed on three of the twelve one-stage baffles arranged at 120-degree intervals. It was operated in the same manner as Comparative Example 1, except that the sum of the width of the baffle to which the fin was attached and the width of the fin (W) was 0.3 m, which was 0.07 with respect to the reactor diameter (D).
[실시예 2][Example 2]
핀이 부착된 배플의 폭과 핀의 폭의 합(W)이 0.5m로 반응기 직경(D)에 대해서 0.11인 것을 제외하고, 실시예 1과 동일하다.It is the same as Example 1, except that the sum (W) of the width of the baffle to which the fin is attached and the width of the fin is 0.5 m, which is 0.11 with respect to the reactor diameter (D).
[실시예 3][Example 3]
전체 배플 폭(total baffle width) 핀이 부착된 배플의 폭과 핀의 폭의 합(W) 핀이 부착된 배플의 폭과 핀의 폭의 합(W)이 0.66m로 반응기 직경(D)에 대해서 0.14인 것을 제외하고, 실시예 1과 동일하다.Total baffle width The sum of the width of the baffle to which the fin is attached and the width of the fin (W) The sum of the width of the baffle to which the fin is attached and the width of the fin (W) is 0.66 m, which is equal to the reactor diameter (D). It is the same as Example 1, except that it is 0.14.
  비교예Comparative example 실시예1Example 1 실시예2Example 2 실시예3Example 3
TBW/D(reactor)TBW/D(reactor) 0.050.05 0.070.07 0.110.11 0.140.14
radial (m/sec)radial (m/sec) 0.65 0.65 0.92 0.92 1.10 1.10 1.17 1.17
CFD 지표(sec2/m2)CFD indicator (sec 2 /m 2 ) 2.482.48 2.632.63 2.712.71 2.242.24
비교예 대비 FE 증감률FE increase/decrease rate compared to comparative example 0%0% 34%34% 52%52% -55%-55%
열교환 면적 증가(m2)Increased heat exchange area (m 2 ) 00 1.461.46 5.065.06 7.947.94
표 1은 비교예 1, 실시예 1 및 2에서 측정된 CFD 값이다. 이때, 2상(phase) 오일러 모델(eulerian model)로 CFD 유동을 해석하였다. Table 1 shows the CFD values measured in Comparative Example 1, Examples 1 and 2. At this time, the CFD flow was analyzed using a two-phase Eulerian model.
CFD 지표는 1m2/sec3 내지 100m2/sec3 이상의 난류값을 가지는 영역의 부피 분율이 0.5/s 내지 5/s 이하 전단속도(shear rate)를 가지는 영역의 부피 분율로, CFD 지표값이 작을수록 제품의 품질이 우수한 것을 나타낸다.The CFD indicator is the volume fraction of the area with a turbulence value of 1m 2 /sec 3 to 100m 2 /sec 3 or more and the volume fraction of the area with a shear rate of 0.5/s to 5/s or less, and the CFD indicator value is The smaller it is, the better the quality of the product is.
표 1을 참고하면, 비교예 1에서의 속도는 0.65이고, 실시예 1, 실시예 2 및 실시예 3으로 갈수록 0.92, 1.1, 1.17로 속도가 증가함을 알 수 있다. 이는, 방울(droplet) 크기가 줄어들면서 속도가 증가하는 것을 알 수 있다. Referring to Table 1, it can be seen that the speed in Comparative Example 1 is 0.65, and the speed increases to 0.92, 1.1, and 1.17 in Examples 1, 2, and 3. This shows that the speed increases as the droplet size decreases.
그리고, FE(fish eye)는 비교예를 기준으로 실시예 1 및 2에서 증가하나, 실시예 3에서 FE가 -55%로 감소하는 것을 확인할 수 있다.In addition, it can be seen that FE (fish eye) increases in Examples 1 and 2 based on the comparative example, but FE decreases to -55% in Example 3.
또한, 열교환 면적은 비교예 1을 기준으로 실시예 1, 2, 3으로 갈수록 증가하는 것을 알 수 있다.In addition, it can be seen that the heat exchange area increases from Comparative Example 1 to Examples 1, 2, and 3.
한편, 제품의 품질을 평가하는 CFD 지표를 살펴보면, 비교예 1에서는 2.48이고, 실시예 1 및 2는 2.63, 2.71로 증가하여 제품 품질은 비교예 1보다 떨어짐을 알 수 있다. 또한, 실시예 3은 2.24로 CFD 지표가 비교예 1보다 떨어져 반응 속도 뿐 아니라, 제품 품질 또한 향상됨 알 수 있다.Meanwhile, looking at the CFD index that evaluates the quality of the product, it is 2.48 in Comparative Example 1, and increases to 2.63 and 2.71 in Examples 1 and 2, showing that the product quality is lower than that of Comparative Example 1. In addition, the CFD index of Example 3 was 2.24, which was lower than that of Comparative Example 1, showing that not only the reaction speed but also product quality was improved.
실시예 3의 경우 속도(radial velocity)가 높으며 CFD 지표가 낮아 품질 향상이 있으며 또한 핀(fin)에 의한 열교환 면적이 증가하기 때문에 생산량까지 증가시킬 수 있는 장치이다.In the case of Example 3, the radial velocity is high and the CFD index is low, so the quality is improved, and the heat exchange area by the fin is increased, so it is a device that can increase production.
즉, 본 발명의 일 실시예에서와 같이 핀을 설치하면 방울 크기를 줄여 반응 속도를 증가시킬 수 있으며, CFD 지표를 이용하여 FE(fish eye) 품질을 예측할 수 있어, 반응성 향상 또는 제품 품질 향상과 같이 필요에 따라서 핀의 크기를 조절할 수 있다.In other words, by installing a pin as in one embodiment of the present invention, the reaction speed can be increased by reducing the droplet size, and the FE (fish eye) quality can be predicted using the CFD indicator, improving responsiveness or product quality. Likewise, the size of the pin can be adjusted as needed.
이처럼, 본 발명에서와 같이 냉각 배플과 반응 용기의 직경 비율을 조절하면 FE 감소, 속도 증가, 열교환 면적 증가 등과 같이 다양한 효과를 기대할 수 있다. 따라서, 필요로 하는 공정 특성 및 품질에 따라서, 핀이 설치된 냉각 배플의 폭과 핀의 폭의 합이 반응 용기 직경에 대해서 0.07 내지 0.14배 범위 내에서 선택될 수 있다.In this way, by adjusting the diameter ratio of the cooling baffle and the reaction vessel as in the present invention, various effects can be expected, such as reducing FE, increasing speed, and increasing heat exchange area. Therefore, depending on the required process characteristics and quality, the sum of the width of the cooling baffle on which the fins are installed and the width of the fins can be selected within the range of 0.07 to 0.14 times the diameter of the reaction vessel.
이상 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명이 이에 한정되는 것은 아니며 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시할 수 있다.Although preferred embodiments of the present invention have been described above, the present invention is not limited thereto and may be implemented with various modifications within the scope of the claims, detailed description of the invention, and accompanying drawings.

Claims (7)

  1. 반응 용기,reaction vessel,
    상기 반응 용기 내에 회전 가능하게 설치된 회전축,A rotating shaft rotatably installed in the reaction vessel,
    상기 회전축과 연결되어 회전하는 교반 날개,A stirring blade connected to the rotating shaft and rotating,
    상기 반응 용기의 내주면을 따라 일정한 간격으로 배치된 복수의 냉각 배플A plurality of cooling baffles disposed at regular intervals along the inner peripheral surface of the reaction vessel
    상기 냉각 배플 중 적어도 하나에 형성되며, 상기 냉각 배플의 길이 방향을 따라 길게 형성된 핀A fin is formed on at least one of the cooling baffles and is long along the longitudinal direction of the cooling baffle.
    을 포함하고,Including,
    상기 핀은 상기 냉각 배플의 외면으로부터 상기 회전축을 향해서 돌출되어 있는 반응기.The fin is a reactor in which the fin protrudes from the outer surface of the cooling baffle toward the rotation axis.
  2. 제1항에서,In paragraph 1:
    상기 핀이 설치된 냉각 배플의 폭과 상기 핀의 폭의 합은 상기 반응 용기 직경에 대해서 0.07 내지 0.14배인 반응기.A reactor wherein the sum of the width of the cooling baffle on which the fin is installed and the width of the fin is 0.07 to 0.14 times the diameter of the reaction vessel.
  3. 제1항에서,In paragraph 1:
    상기 핀은 상기 냉각 배플로부터 멀어질수록 상기 핀의 두께가 줄어드는 반응기.A reactor in which the thickness of the fin decreases as the fin moves away from the cooling baffle.
  4. 제1항에서,In paragraph 1:
    상기 복수의 배플은 일정한 각도를 두고 배치되어 있는 반응기.A reactor in which the plurality of baffles are arranged at a certain angle.
  5. 제1항에서,In paragraph 1:
    상기 핀의 끝단은 곡면을 가지는 반응기.The end of the pin is a reactor having a curved surface.
  6. 제1항에서,In paragraph 1:
    상기 핀의 양면은 곡면을 가지는 반응기.A reactor where both sides of the pin have curved surfaces.
  7. 제1항에서,In paragraph 1:
    상기 교반 날개는 패들형인 반응기.The stirring wing is a paddle-type reactor.
PCT/KR2023/011717 2022-08-09 2023-08-09 Reactor WO2024035096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220099172A KR20240020889A (en) 2022-08-09 2022-08-09 Reactor
KR10-2022-0099172 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024035096A1 true WO2024035096A1 (en) 2024-02-15

Family

ID=89852089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011717 WO2024035096A1 (en) 2022-08-09 2023-08-09 Reactor

Country Status (2)

Country Link
KR (1) KR20240020889A (en)
WO (1) WO2024035096A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120134548A (en) * 2011-06-02 2012-12-12 경상대학교산학협력단 Mixing container combined with pins and an agitator using the same
CN205700520U (en) * 2016-04-21 2016-11-23 台州禾欣高分子新材料有限公司 Reactor
US20190217260A1 (en) * 2016-06-14 2019-07-18 Sumitomo Metal Mining Co., Ltd. Chemical reaction device and particle production method using chemical reaction device
CN112742323A (en) * 2019-10-30 2021-05-04 格林美股份有限公司 Reation kettle accuse flows device
KR20210059512A (en) * 2019-11-15 2021-05-25 한화솔루션 주식회사 Polymerization reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120134548A (en) * 2011-06-02 2012-12-12 경상대학교산학협력단 Mixing container combined with pins and an agitator using the same
CN205700520U (en) * 2016-04-21 2016-11-23 台州禾欣高分子新材料有限公司 Reactor
US20190217260A1 (en) * 2016-06-14 2019-07-18 Sumitomo Metal Mining Co., Ltd. Chemical reaction device and particle production method using chemical reaction device
CN112742323A (en) * 2019-10-30 2021-05-04 格林美股份有限公司 Reation kettle accuse flows device
KR20210059512A (en) * 2019-11-15 2021-05-25 한화솔루션 주식회사 Polymerization reactor

Also Published As

Publication number Publication date
KR20240020889A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
US4460278A (en) Continuous bulk polymerization reactor
WO2015102273A1 (en) Batch reactor with baffle
US6024483A (en) Mixing element for a chemical reactor
WO2010047481A2 (en) An agitator vessel using a baffle and an agitator with improved stirring ability including the same
CN1035237C (en) Viscous liquid processor
WO2024035096A1 (en) Reactor
WO2020130539A1 (en) Batch reactor
CN1756591A (en) Segmented agitator reactor
JP2766847B2 (en) Stirrer
JP4451504B2 (en) Reactor heat exchange system
WO2021096261A1 (en) Polymerization reactor
WO2018009034A2 (en) Reactor for metallocene-based solution polymerization process of polyolefins
US4378436A (en) Process and device for improving the quality of mixing of liquid especially viscous media
CN102029138A (en) Polymerizing kettle
WO2020055115A1 (en) Batch reactor having baffle
WO2020080680A1 (en) Batch reactor
WO2021049883A1 (en) Batch-type stirrer for suspension polymerization of polyvinyl chloride resin, and batch-type suspension polymerization reactor using same
US4750556A (en) Reactor apparatus
US10738137B2 (en) Reactor
WO2012165891A2 (en) Agitating container using pin and agitator with improved agitating capability including same
JPH01218632A (en) Heat exchange piping mixing and reaction apparatus
CN106621935A (en) Stirring device used for carbon-fiber polymerization solutions
JP3606896B2 (en) Reactor and copolymerization or polymerization process carried out in this reactor
JP4635149B2 (en) Stirrer
WO2019050271A1 (en) Reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852967

Country of ref document: EP

Kind code of ref document: A1