WO2024035004A1 - Location-based terminal mobility management method and device in mobile communication system - Google Patents

Location-based terminal mobility management method and device in mobile communication system Download PDF

Info

Publication number
WO2024035004A1
WO2024035004A1 PCT/KR2023/011458 KR2023011458W WO2024035004A1 WO 2024035004 A1 WO2024035004 A1 WO 2024035004A1 KR 2023011458 W KR2023011458 W KR 2023011458W WO 2024035004 A1 WO2024035004 A1 WO 2024035004A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
cube
location measurement
amf
information
Prior art date
Application number
PCT/KR2023/011458
Other languages
French (fr)
Korean (ko)
Inventor
김혜성
박성진
배재현
백영교
서동은
이지철
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2024035004A1 publication Critical patent/WO2024035004A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/63Location-dependent; Proximity-dependent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks

Definitions

  • the present disclosure relates to a mobile communication system (or wireless communication system), and specifically, the present disclosure relates to a method for managing the mobility of a terminal in a mobile communication system (or wireless communication system).
  • 5G mobile communication technology defines a wide frequency band to enable fast transmission speeds and new services, including sub-6 GHz (“Sub 6GHz”) bands such as 3.5 GHz, as well as millimeter wave (mm) bands such as 28 GHz and 39 GHz. It is also possible to implement it in the ultra-high frequency band (“Above 6GHz”) called Wave.
  • Sub 6GHz sub-6 GHz
  • mm millimeter wave
  • Wave ultra-high frequency band
  • 6G mobile communication technology which is called the system of Beyond 5G
  • Terra is working to achieve a transmission speed that is 50 times faster than 5G mobile communication technology and an ultra-low delay time that is reduced to one-tenth.
  • THz Terahertz
  • ultra-wideband services enhanced Mobile BroadBand, eMBB
  • ultra-reliable low-latency communications URLLC
  • massive machine-type communications mMTC
  • numerology support multiple subcarrier interval operation, etc.
  • dynamic operation of slot format initial access technology to support multi-beam transmission and broadband
  • definition and operation of BWP Band-Width Part
  • New channel coding methods such as LDPC (Low Density Parity Check) codes for data transmission and Polar Code for highly reliable transmission of control information
  • L2 pre-processing L2 pre-processing
  • dedicated services specialized for specific services. Standardization of network slicing, etc., which provides networks, has been carried out.
  • V2X Vehicle-to-Everything
  • NR-U New Radio Unlicensed
  • UE Power Saving NR terminal low power consumption technology
  • NTN Non-Terrestrial Network
  • IAB provides a node for expanding the network service area by integrating intelligent factories (Industrial Internet of Things, IIoT) to support new services through linkage and convergence with other industries, and wireless backhaul links and access links.
  • Intelligent factories Intelligent Internet of Things, IIoT
  • Mobility Enhancement including Conditional Handover and DAPS (Dual Active Protocol Stack) handover
  • 2-step Random Access (2-step RACH for simplification of random access procedures)
  • Standardization in the field of wireless interface architecture/protocol for technologies such as NR is also in progress
  • 5G baseline for incorporating Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technology Standardization in the field of system architecture/services for architecture (e.g., Service based Architecture, Service based Interface) and Mobile Edge Computing (MEC), which provides services based on the location of the terminal, is also in progress.
  • NFV Network Functions Virtualization
  • SDN Software-Defined Networking
  • FD-MIMO full dimensional MIMO
  • array antennas to ensure coverage in the terahertz band of 6G mobile communication technology.
  • multi-antenna transmission technology such as Large Scale Antenna, metamaterial-based lens and antenna to improve coverage of terahertz band signals, high-dimensional spatial multiplexing technology using OAM (Orbital Angular Momentum), RIS ( In addition to Reconfigurable Intelligent Surface technology, Full Duplex technology, satellite, and AI (Artificial Intelligence) to improve the frequency efficiency of 6G mobile communication technology and system network are utilized from the design stage and end-to-end.
  • TA terminal mobility management
  • the network entity (or network function) of the core network cannot recognize the detailed location of the terminal in units smaller than cells during the terminal's initial registration procedure. Additional security procedures are required to provide the detailed location of the terminal to the core network during the initial registration process. This is because the initial registration procedure request message transmitted by the terminal is not completely secure, and the detailed location information of the terminal is personal information.
  • a method for managing the mobility of a terminal in units smaller than cells we propose a cube as an area unit that is smaller than the cell used inside the 5G system and can specify the three-dimensional location of the terminal.
  • a procedure in which the network entity (or network function) of the core network transmits cube map information, zoning the network coverage area into cubes, to the terminal and base station, and detailed location information of the terminal during the registration procedure of the terminal We specifically propose a procedure for transmitting to the terminal and base station the information necessary to determine on a cube basis, and a procedure for transmitting information about the cube area where the terminal is located to a network entity without leaking personal information.
  • a method includes: a network entity transmitting information related to the location of a terminal to a terminal; and receiving a security message including the location of the terminal from the terminal.
  • the network entity can manage the mobility of the terminal based on the three-dimensional location of the terminal, making it possible to manage the mobility of the terminal more efficiently and specifically.
  • information requiring personal information security such as the detailed location of the terminal, can be included and transmitted in the registration request message even before NAS (non-access stratum) security is guaranteed during the initial registration process. This makes it possible to maintain the safety and security of personal information.
  • 1 is a diagram illustrating an example of the structure of a 5G core network related to the present disclosure.
  • Figure 2 is a diagram explaining a procedure for managing the mobility of a terminal in relation to an embodiment proposed in this disclosure.
  • FIG. 3 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
  • FIG. 4 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
  • FIG. 5 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
  • FIG. 6 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
  • Figure 7 is a diagram showing the structure of a terminal according to embodiments of the present disclosure.
  • Figure 8 is a diagram showing the structure of a base station according to embodiments of the present disclosure.
  • FIG. 9 is a diagram illustrating the structure of a network function (or network entity) according to embodiments of the present disclosure.
  • each block of the processing flow diagram diagrams and combinations of the flow diagram diagrams can be performed by computer program instructions.
  • These computer program instructions can be mounted on a processor of a general-purpose computer, special-purpose computer, or other programmable data processing equipment, so that the instructions performed through the processor of the computer or other programmable data processing equipment are described in the flow chart block(s). It creates the means to perform functions.
  • These computer program instructions may also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular manner, so that the computer-usable or computer-readable memory It is also possible to produce manufactured items containing instruction means that perform the functions described in the flowchart block(s).
  • Computer program instructions can also be mounted on a computer or other programmable data processing equipment, so that a series of operational steps are performed on the computer or other programmable data processing equipment to create a process that is executed by the computer, thereby generating a process that is executed by the computer or other programmable data processing equipment. Instructions that perform processing equipment may also provide steps for executing the functions described in the flow diagram block(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s).
  • ' ⁇ unit' used in this embodiment refers to software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and ' ⁇ unit' refers to what roles. Perform.
  • ' ⁇ part' is not limited to software or hardware.
  • the ' ⁇ part' may be configured to reside in an addressable storage medium and may be configured to reproduce on one or more processors. Therefore, as an example, ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and 'parts' may be combined into a smaller number of components and 'parts' or may be further separated into additional components and 'parts'. Additionally, components and 'parts' may be implemented to regenerate one or more CPUs within a device or a secure multimedia card. Additionally, in an embodiment, ' ⁇ part' may include one or more processors.
  • connection node a term referring to network entities
  • a term referring to messages a term referring to an interface between network objects
  • a term referring to various types of identification information a term referring to various types of identification information.
  • the following are examples for convenience of explanation. Accordingly, the present disclosure is not limited to the terms described below, and other terms referring to objects having equivalent technical meaning may be used.
  • the present disclosure uses terms and names defined in the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) standard or the New Radio (NR) standard.
  • 3GPP LTE 3rd Generation Partnership Project Long Term Evolution
  • NR New Radio
  • the present disclosure is not limited by the above terms and names, and can be equally applied to systems complying with other standards.
  • the base station is the entity that performs resource allocation for the terminal, and includes a radio access network (RAN) node, gNode B (next generation node B, gNB), eNode B (evolved node B, eNB), and Node B, may be at least one of a wireless access unit, a base station controller, or a node on a network.
  • RAN radio access network
  • gNode B next generation node B
  • eNode B evolved node B
  • Node B Node B
  • eNB evolved node B
  • Node B may be at least one of a wireless access unit, a base station controller, or a node on a network.
  • eNB may be used interchangeably with gNB for convenience of explanation. That is, a base station described as an eNB may represent a gNB.
  • a terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smartphone, a computer, or a multimedia system capable of performing communication functions.
  • UE user equipment
  • MS mobile station
  • cellular phone a smartphone
  • computer a computer
  • multimedia system capable of performing communication functions
  • the present disclosure is applicable to 3GPP NR (5th generation mobile communication standard).
  • the present disclosure provides intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, It can be applied to security and safety-related services, etc.)
  • the term terminal can refer to other wireless communication devices as well as mobile phones, NB-IoT devices, and sensors.
  • Wireless communication systems have moved away from providing early voice-oriented services to, for example, 3GPP's HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), and LTE-Advanced.
  • Broadband wireless that provides high-speed, high-quality packet data services such as communication standards such as (LTE-A), LTE-Pro, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e. It is evolving into a communication system.
  • the LTE system uses OFDM (Orthogonal Frequency Division Multiplexing) in the downlink (DL), and SC-FDMA (Single Carrier Frequency Division Multiple Access) in the uplink (UL). ) method is adopted.
  • Uplink refers to a wireless link through which a terminal (or UE) transmits data or control signals to a base station (or eNB, gNB), and downlink refers to a wireless link through which a base station transmits data or control signals to the terminal.
  • the multiple access method described above differentiates each user's data or control information by allocating and operating the time-frequency resources to carry data or control information for each user so that they do not overlap, that is, orthogonality is established. .
  • 5G communication system As a future communication system after LTE, the 5G communication system must be able to freely reflect the various requirements of users and service providers, so services that simultaneously satisfy various requirements must be supported. Services considered for 5G communication systems include enhanced mobile broadband communication (eMBB), massive machine-type communication (mMTC), and ultra-reliable low-latency communication (URLLC).
  • eMBB enhanced mobile broadband communication
  • mMTC massive machine-type communication
  • URLLC ultra-reliable low-latency communication
  • eMBB may aim to provide more improved data transmission rates than those supported by existing LTE, LTE-A, or LTE-Pro.
  • eMBB must be able to provide a peak data rate of 20Gbps in the downlink and 10Gbps in the uplink from the perspective of one base station.
  • the 5G communication system may need to provide the maximum transmission rate and at the same time provide an increased user perceived data rate.
  • 5G communication systems may require improvements in various transmission and reception technologies, including more advanced multiple input multiple output (MIMO) transmission technology.
  • MIMO multiple input multiple output
  • the 5G communication system uses a frequency bandwidth wider than 20 MHz in the 3 to 6 GHz or above 6 GHz frequency band, meeting the requirements of the 5G communication system. Data transfer speed can be satisfied.
  • mMTC is being considered to support application services such as the Internet of Things (IoT) in 5G communication systems.
  • IoT Internet of Things
  • mMTC may require support for access to a large number of terminals within a cell, improved coverage of terminals, improved battery time, and reduced terminal costs.
  • the Internet of Things provides communication functions by attaching various sensors and various devices, it must be able to support a large number of terminals (for example, 1,000,000 terminals/km ⁇ 2) within a cell.
  • terminals supporting mMTC are likely to be located in shadow areas that cannot be covered by cells, such as the basement of a building, so wider coverage may be required compared to other services provided by the 5G communication system.
  • Terminals that support mMTC must be composed of low-cost terminals, and since it is difficult to frequently replace the terminal's battery, a very long battery life time, such as 10 to 15 years, may be required.
  • URLLC Ultra-low latency
  • ultra-reliability very high reliability
  • a service that supports URLLC must meet an air interface latency of less than 0.5 milliseconds and may have a packet error rate of less than 10 ⁇ -5.
  • the 5G system must provide a smaller transmission time interval (TTI) than other services, and at the same time, a design that requires allocating wide resources in the frequency band to ensure the reliability of the communication link. Specifications may be required.
  • TTI transmission time interval
  • the three services considered in the above-described 5G communication system namely eMBB, URLLC, and mMTC, can be multiplexed and transmitted in one system.
  • different transmission/reception techniques and transmission/reception parameters can be used between services to satisfy the different requirements of each service.
  • the above-described mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which this disclosure is applied are not limited to the above-described examples.
  • embodiments of the present disclosure will be described using LTE, LTE-A, LTE Pro, 5G (or NR), or 6G systems as examples, but the present disclosure can also be applied to other communication systems with similar technical background or channel type. Examples may be applied. Additionally, the embodiments of the present disclosure may be applied to other communication systems through some modifications without significantly departing from the scope of the present disclosure at the discretion of a person with skilled technical knowledge.
  • 1 is a diagram illustrating an example of the structure of a 5G core network related to the present disclosure.
  • the 5G system structure that supports edge computing systems may include various network functions (NFs) or network entities.
  • Figure 1 is an example of such a network function or network entity, including an access and mobility management function (AMF), a session management function (SMF), a policy control function (PCF), Application function (AF), unified data management (UDM), data network (DN), user plane function (UPF), location management function (LMF) ), and in addition, it shows a (radio) access network ((R)AN) and a user equipment (UE) of the 5G core network.
  • AMF access and mobility management function
  • SMF session management function
  • PCF policy control function
  • AF Application function
  • UDM unified data management
  • DN data network
  • UPF user plane function
  • LMF location management function
  • R radio access network
  • UE user equipment
  • the NFs shown in Figure 1 support the following functions.
  • AMF provides functions for UE-level access and mobility management, and each UE can be basically connected to one AMF.
  • DN refers to a network outside of 5GS (5G system) where, for example, operator services, Internet access, or third party services exist.
  • the DN transmits a downlink protocol data unit (PDU) to the UPF or receives an uplink PDU transmitted from the UE from the UPF.
  • PDU downlink protocol data unit
  • PCF receives information about packet flow from the application server and provides the function of determining policies such as mobility management and session management. Specifically, PCF supports a unified policy framework to govern network behavior, provides policy rules so that control plane function(s) (e.g. AMF, SMF, etc.) can enforce the policy rules, and provides user data storage ( It supports functions such as implementing a front end to access relevant subscription information for policy decisions within the user data repository (UDR).
  • control plane function(s) e.g. AMF, SMF, etc.
  • UDR user data repository
  • SMF provides a session management function, and when the UE has multiple sessions, each session can be managed by a different SMF.
  • UDM UDM stores user subscription data, policy data, etc.
  • UPF delivers the downlink PDU received from the DN to the UE via (R)AN, and delivers the uplink PDU received from the UE to the DN via (R)AN.
  • AF supports the 3GPP core for service provisioning (e.g., supporting functions such as application influence on traffic routing, access to network capability exposure, and interaction with policy frameworks for policy control). Interoperates with the network.
  • LMF LMF supports functions related to measuring the location of the terminal and providing location-related information in conjunction with AMF, UDM, and NEF.
  • the network functions or network entities shown in FIG. 1 are some of the nodes constituting the 5G core network, and the 5G core network may include more network functions or network entities than this example.
  • Figure 2 is a diagram explaining a procedure for managing the mobility of a terminal in relation to an embodiment proposed in this disclosure.
  • Figure 2 shows an example operation of performing mobility management of a terminal in units smaller than a cell unit.
  • a unit smaller than a cell may be defined as a cube.
  • Figure 2 shows the process of dividing space into cube units, specifying the location of the terminal in cube units, and tracking the location of the terminal in cube units in a mobile communication network.
  • a cube may have a cube or rectangular parallelepiped shape, and may be specified or expressed by three three-dimensional coordinates.
  • Table 1 below represents one or more sets of information for defining and using a cube, and for example, this set of information may be defined under the name data type for cube.
  • Data type for cube can be expressed with one or more attributes as shown in Table 1.
  • the shape attribute value can include cube or rectangular cuboid value, and a point list.
  • )'s characteristic value may include a 3D point value to indicate the area and size of the actual cube.
  • the data type for cube is a cell ID (identifier) as an associated cell(s) characteristic value or an associated tracking area(s) characteristic value to express information on cells or TAs that contain or are adjacent to the cube area. Or, it may include a TA ID.
  • the data type for cube may be information representing one cube, and a plurality of cell IDs or TA IDs may be included for this one cube. Furthermore, the data type for cube can also include a cube's unique identifier (cube ID) as a characteristic value.
  • cube ID cube's unique identifier
  • a cube map can be defined as a cube list containing one or more cubes, and the data type for cube map can be defined as shown in Table 2 below.
  • data type for cube map can be defined as cube list, cube identifier and cell ID, and TA ID. If the data type for cube map includes characteristic values for cell ID or TA ID, the data type for cube map will be understood as expressing the result of zoning (or dividing into zones) the corresponding cell area or TA into cubes. You can. In this case, the data type for cube map may be interpreted as information specific to the cell or TA, and may be invalid information in other cells or TAs.
  • the specific shape of the cube is limited to a cube or rectangular parallelepiped and used in the description of the following embodiments.
  • various modifications to the shape of the cube are possible without departing from the scope of the present disclosure.
  • the shape of a cube can be defined as a convex hexahedron or a hexagonal prism, and it is natural that these various cube shapes are also included in the invention proposed in this disclosure. .
  • the value corresponding to the shape, the value of pointList, and the cardinality value in the set of information displayed as data type for cube are It may have different values from Table 1.
  • cube map information can be set to network entities (or network functions) such as LMF, AMF, and RAN through an operation and management (OAM) system.
  • OAM operation and management
  • an operation is required to transmit all or part of the cube map information in which entities (or functions) such as LMF, AMF, and RAN are set for each to the terminal.
  • LMF can deliver cube map information to the terminal through AMF and RAN.
  • the LMF may transmit or provide information (e.g., assistance data) necessary to specify the location of the terminal on a cube basis to the AMF, RAN, and the terminal.
  • the information required for specification on a cube basis includes GPS (global positioning system) auxiliary information needed to perform positioning of the terminal, base station transceiver point location information needed to perform 3GPP-based positioning, and related signaling setting information (e.g., It may include at least one of DL/UL positioning reference signal (PRS) setting information) and cube map information.
  • PRS positioning reference signal
  • the LMF can receive measurement values from the terminal and directly perform an operation to specify the location of the terminal in cube units.
  • the LMF can provide the cube identifier determined as a result of this operation to the AMF.
  • the AMF can deliver the cube map information received from the LMF and the auxiliary information necessary for measuring the cube-level position of the terminal to the terminal through the RAN. Additionally, AMF can determine whether the terminal supports cube-level mobility management based on signaling received from the terminal. In addition, AMF can check subscriber information for the corresponding terminal in conjunction with UDM and check whether the network allows cube-level mobility management for the terminal. Additionally, AMF can apply or enforce AM policies (access and mobility management policy) applied on a cube basis to the corresponding terminal.
  • AM policies access and mobility management policy
  • the RAN uses set cube map information or cube map information received from LMF through AMF (e.g., cell-specific cube map or TA-specific cube map information), or auxiliary information required for cube unit UE location measurement (e.g., At least one of GPS assistance information, signaling configuration information such as base station transceiver point location information and related DL/UL PRS configuration information required to perform 3GPP-based positioning, and cube map information) may be transmitted to the terminal.
  • the method by which the RAN transmits the above-described information to the terminal is through periodic broadcasting (e.g., periodically transmitted by including in a SIB (system information block)), or when the terminal transmits an on-demand SIB during the initial access procedure.
  • the response may include transmitting cube map information or auxiliary information necessary for cube-level terminal location measurement.
  • the RAN can perform AM policy enforcement applied on a cube basis to the terminal based on information received from the AMF.
  • the terminal may perform an operation to determine the cube identifier (cube ID) of the cube in which the terminal is located based on information received from the network (cube map information and auxiliary information required for cube-level terminal location measurement).
  • the terminal can perform a concealment operation for the cube identifier based on information set in the Universal Subscriber Identify Module (USIM) or the universal integrated circuit card (UICC) within the terminal, and the terminal can use the hidden cube identifier ( concealed cube ID) can be transmitted to AMF through RAN.
  • This concealment operation can be performed using the home network public key set in the terminal.
  • the terminal may not directly determine the cube identifier based on information set within the terminal or information received from the network, but may provide the network function or network entity (e.g., LMF or AMF) with the measurement values required to calculate the terminal location. there is.
  • the network function or network entity e.g., LMF or AMF
  • the terminal can monitor its own location based on cube map information and transmit the cube identifier information where the terminal is located to the AMF according to specific conditions (cube identifier reporting conditions received from the network).
  • the UDM can perform a revealing or de-concealment operation on the cube identifier or the location-related measurement value of the terminal concealed with the home network public key.
  • UDM stores subscriber information related to whether cube-level mobility management is allowed for the terminal and can provide related information to AMF or LMF.
  • FIG. 3 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
  • Figure 3 explains in detail the cube-level mobility management procedure.
  • the OAM system sets cube map information to network entities (or network functions) such as RAN, AMF, and LMF.
  • network entities such as RAN, AMF, and LMF.
  • the OAM can set only the cube map information corresponding to the coverage area or cell area of the RAN to the RAN.
  • cube map information set in the RAN may include only information corresponding to the cell ID broadcasted by the RAN.
  • OAM can set only cube map information corresponding to the AMF service area defined by the TA(s) of AMF to AMF.
  • cube map information set for AMF may include cube map information corresponding to the corresponding TA ID.
  • the cube map may include only information corresponding to the registration area of the terminal. For example, if the registration area of the terminal set by the AMF is expressed as a TA ID list, cube map information corresponding to the TA ID list may be set to the AMF for each terminal.
  • cube map information corresponding to the service area of the LMF may be set to the LMF.
  • the LMF transmits or provides the AMF with auxiliary data (or auxiliary information) necessary to measure the location of the terminal in cube units.
  • This auxiliary data refers to information necessary to measure the location of the UE in the UE or RAN, and information on at least one of the following may be included in the auxiliary data (or information).
  • TAI Cell ID
  • TA-specific cube map information cell-specific cube map information
  • DL-PRS configuration information for RAN transmitter/receiver point(s) (Transmission/Reception point(s), TRP(s))
  • SSB Synchronization Signal Block
  • spatial direction information of the DL-PRS spatial direction information of the DL-PRS, geographic coordinates information for TRPs
  • auxiliary data (or auxiliary information) may be as follows. If the LMF receives an auxiliary data request from an AMF, a request from an external application function (AF) (via the NEF), or the LMF's service area overlaps a cube-level mobility management area, the LMF is within the LMF service area. Auxiliary data may be provided to AMF.
  • AF application function
  • AMF transmits to the RAN the auxiliary data required to measure the location of the terminal in cube units received from the LMF.
  • the RAN transmits to the terminal at least one of the information previously received and set from the OAM (e.g., cube map information including a cube ID list) and auxiliary data required to measure the location of the terminal in cube units received from the AMF. do.
  • the OAM e.g., cube map information including a cube ID list
  • the RAN can transmit the above-described information to the terminal in two ways as follows.
  • the RAN can periodically broadcast the information by including it in a broadcast message.
  • the RAN transmits an on-demand system information block (SIB) message including a cube-level positioning or cube-level mobility management indicator or flag to the RAN
  • SIB system information block
  • the RAN's response message includes the auxiliary data and sends the RAN to the RAN. can be sent to.
  • SIB system information block
  • the terminal calculates the location coordinates of the terminal through terminal location measurement/calculation using at least one of the information received from the RAN, the GPS module mounted inside the terminal, and the sensor, and compares it with the cube map information to determine where the terminal is located. Decide on a cube.
  • the terminal may perform an operation to transmit the corresponding cube ID to the RAN and AMF.
  • the terminal performs concealment of the determined cube ID using the home network public key set in the terminal and generates a concealed cube ID. For example, if the cube ID concealment indication is set in the USIM within the terminal, the terminal can calculate and generate a concealed cube ID using the home network public key stored in the USIM. If the cube ID hiding indicator is not set in the USIM, the terminal can encrypt the cube ID using another encryption method.
  • the terminal transmits the generated concealed cube ID to AMF.
  • Concealed cube ID may be transmitted and included in the terminal's registration request message.
  • the terminal When transmitting a concealed cube ID to the AMF, the terminal includes a fine grained MM (mobility management) support indication and the method by which the terminal encrypted the cube ID or the cube ID concealment method (e.g., home At least one of the network public key usage, encryption scheme information, etc.), and terminal identifier can be provided to AMF along with the concealed cube ID.
  • MM mobility management
  • AMF receives the concealed cube ID from the terminal, and if the cube ID concealment method uses the home network public key, the AMF can transmit the concealed cube ID to the UDM along with the terminal identifier. Additionally, if the terminal indicates that it supports fine-grained mobility management through a fine-grained MM support indication, the AMF may request related subscriber information from the UDM.
  • UDM performs de-concealment operation for concealed cube ID using home network private key. This operation is performed in UDM's SIDF (subscriber identity de-concealing function).
  • SIDF subscriber identity de-concealing function
  • the UDM can also check based on subscriber information whether fine-grained mobility management or cube-level mobility management is allowed for the corresponding terminal. Additionally, the de-concealment operation may be performed only when fine-grained mobility management or cube-level mobility management is allowed for the terminal according to the network operator's policy and subscriber information. For example, if the terminal does not support fine-grained mobility management or cube-level mobility management is not allowed for the terminal, the UDM will not perform a de-concealment operation for the cube ID and provide a rejection response to the AMF. You can.
  • UDM transmits the cube ID to AMF as a result of cube ID de-concealment.
  • UDM can also provide AMF with subscriber information indicating that the terminal is allowed to use fine-grained mobility management or cube-level mobility management.
  • AMF can provide the RAN with the cube ID of the cube area where the terminal is located.
  • AMF can perform AM policy association using the cube ID received from UDM.
  • AMF may provide the PCF with the cube ID of the cube where the terminal is located, and receive policy information that should be applied in the corresponding cube area from the PCF.
  • Policy information that AMF receives from PCF may include at least one of the following:
  • RAT Frequency Selection Priority value set for the cube area may correspond to subscriber profile ID for RAT/Frequency Priority
  • UE-AMBR aggregate maximum bitrate
  • UE Slice-MBR maximum bitrate
  • AMF When AMF receives an AM policy including a cube-level RFSP (Radio access type/Frequency of Selection Priority) Index from PCF, it transmits the RFSP Index value to RAN, and RAN selects RAT/Frequency based on RAT Frequency selection priority. can be performed. Additionally, AMF can also provide the RAN with a cube ID that matches the location of the terminal.
  • RFSP Radio access type/Frequency of Selection Priority
  • AMF transmits to the terminal at least one of the cube ID (de-concealed cube ID) obtained from UDM, reporting triggering condition (list of neighbor cube ID list), and flag to perform cube-level mobility tracking.
  • the terminal checks whether the cube ID received from AMF matches the cube ID determined in step 4 in the terminal, and the cube area identified by the cube ID included in the cube ID list included in the reporting triggering condition provided by AMF Monitor whether it is out of bounds. This monitoring can be performed through UE-based positioning as in step 4.
  • the terminal When the terminal leaves the cube area included in the cube ID list included in the reporting triggering condition and enters a new cube area, it re-registers with AMF and transmits the cube ID. At this time, if the registration procedure to be re-performed is a registration update, the NAS signaling security may be guaranteed, so secure NAS signaling is performed without concealment in a separate method as in step 4 in front of the cube ID. It can be sent to AMF through.
  • FIG. 4 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
  • Figure 4 specifically explains operations after the NAS security mode control procedure is completed in relation to the cube-level mobility management procedure.
  • the OAM system sets cube map information to network entities (or network functions) such as RAN, AMF, and LMF.
  • network entities such as RAN, AMF, and LMF.
  • the OAM can set only the cube map information corresponding to the coverage area or cell area of the RAN to the RAN.
  • cube map information set in the RAN may include only information corresponding to the cell ID broadcasted by the RAN.
  • the OAM can set only the cube map information corresponding to the AMF service area defined by the TA(s) of the AMF to the AMF.
  • the AMF service area is expressed as a TA ID list
  • cube map information set in AMF may include cube map information corresponding to the corresponding TA ID.
  • the cube map may include information corresponding to the registration area of the terminal.
  • the registration area of the terminal set by the AMF is expressed as a TA ID list
  • cube map information corresponding to the TA ID list may be set in the AMF for each terminal.
  • cube map information corresponding to the service area of the LMF may be set to the LMF.
  • the LMF transmits or provides the AMF with auxiliary data (or auxiliary information) necessary to measure the location of the terminal in cube units.
  • This auxiliary data refers to information necessary to measure the location of the UE in the UE or RAN, and information on at least one of the following may be included in the auxiliary data (or information).
  • the conditions under which LMF provides such auxiliary data (or information) may be as follows.
  • the LMF receives an ancillary data request from an AMF, a request from an external AF (via the NEF), or the LMF's service area overlaps a cube-level mobility management area, the LMF sends ancillary data to the AMF within the LMF service area. can be provided.
  • AMF transmits to the RAN the auxiliary data required to measure the location of the terminal in cube units received from the LMF.
  • the RAN transmits to the terminal at least one of the information previously received and set from the OAM (e.g., cube map information including a cube ID list) and auxiliary data required to measure the location of the terminal in cube units received from the AMF. do.
  • the OAM e.g., cube map information including a cube ID list
  • the RAN transmits the above-described information to the UE in two ways as follows.
  • the RAN can periodically broadcast the information by including it in a broadcast message.
  • the RAN transmits an on-demand system information block (SIB) message including a cube-level positioning or cube-level mobility management indicator or flag to the RAN
  • SIB system information block
  • the RAN's response message includes the auxiliary data and sends the RAN to the RAN. can be sent to.
  • SIB system information block
  • the terminal calculates the location coordinates of the terminal through terminal location measurement/calculation using at least one of the information received from the RAN, the GPS module mounted inside the terminal, and the sensor, and compares it with the cube map information to determine where the terminal is located. Decide on a cube.
  • the terminal may perform an operation to transmit the corresponding cube ID to the RAN and AMF.
  • the terminal determines in the previous step. You can avoid concealing the cube ID and not include it in the initial registration request.
  • the terminal provides AMF with a terminal identifier and an indicator related to support of fine-grained mobility management (fine-grained MM support indication) or an indicator related to support of cube-level mobility management (cube-level MM support indication) or cube-level mobility management support. At least one of the UE capabilities to support cube-level MM may be included and transmitted in the registration request message.
  • AMF performs authentication and security-related procedures in conjunction with the terminal, AUSF, and UDM based on the information received from the terminal.
  • UDM can inform AMF of information about whether fine-grained MM or cube-level MM is supported (or allowed) for the corresponding terminal.
  • AMF If AMF successfully performs the mutual authentication process with the terminal in the previous step, it sends a NAS security mode command to the terminal. At this time, if the AMF receives a fine-grained MM support indication or cube-level MM support indication or UE capability to support cube-level MM from the terminal in step 5, the AMF sends a NAS security mode command to the terminal and requests a flag. The UE location or flag requesting cube ID can be transmitted together.
  • the terminal When the terminal receives the flag requesting UE location or flag requesting cube ID from AMF, it creates a NAS container containing the cube ID determined in step 4.
  • the NAS container may include information that can be included in the registration request message, such as cube ID and terminal identifier. Additionally, the terminal can apply ciphering and integrity protection schemes to the corresponding NAS container.
  • the terminal transmits the NAS container containing the cube ID to AMF.
  • the AMF When the AMF receives the cube ID from the terminal, it can select the UDM and request subscriber information related to cube-level mobility management for the terminal.
  • the UDM can also provide AMF with subscriber information indicating that the terminal is allowed to fine-grained mobility management or cube-level mobility management.
  • AMF can perform AM policy association using the cube ID received from UDM.
  • AMF may provide the PCF with the cube ID of the cube where the terminal is located and receive policy information that should be applied in the corresponding cube area from the PCF.
  • Policy information that AMF receives from PCF may include at least one of the following:
  • RAT Frequency Selection Priority value set for the cube area may correspond to subscriber profile ID for RAT/Frequency Priority
  • UE-AMBR aggregate maximum bitrate
  • UE Slice-MBR maximum bitrate
  • the AMF When the AMF receives an AM policy including the cube-level RFSP Index from the PCF, it transfers the RFSP Index value to the RAN, and the RAN can perform RAT/Frequency selection based on RAT Frequency selection priority. Additionally, AMF can provide the RAN with a cube ID that matches the location of the terminal.
  • AMF transmits to the terminal at least one of the cube ID (de-concealed cube ID) obtained from UDM, reporting triggering condition (list of neighbor cube ID list), and flag to perform cube-level mobility tracking.
  • the terminal checks whether the cube ID received from AMF matches the cube ID determined in step 4 in the terminal, and the cube area identified by the cube ID included in the cube ID list included in the reporting triggering condition provided by AMF Monitor whether it is out of bounds. This monitoring can be performed through UE-based positioning as in step 4.
  • the terminal leaves the cube area included in the cube ID list included in the reporting triggering condition and enters a new cube area, it re-registers with AMF and transmits the corresponding cube ID.
  • FIG. 5 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
  • Figure 5 specifically explains the LMF-based method in relation to the cube-level mobility management procedure.
  • the OAM system can set cube map information to network entities (or functions) such as RAN, AMF, and LMF.
  • network entities such as RAN, AMF, and LMF.
  • cube map information may not be set in the RAN.
  • cube map information may be set only in the AMF and LMF and not in the RAN.
  • LMF transmits or provides AMF with auxiliary data (or auxiliary information) necessary for LMF-based cube unit terminal location measurement.
  • This auxiliary data refers to information necessary to measure the location of the UE in the UE or RAN, and information on at least one of the following may be included in the auxiliary data (or information).
  • the conditions under which LMF provides such auxiliary data may be as follows.
  • the LMF receives assistance data requests from the AMF, receives requests from external application functions (via NEF), or when the LMF's service area overlaps with the cube-level mobility management area, the LMF provides assistance to the AMF within the LMF service area. Data can be provided.
  • AMF transmits auxiliary data required for LMF-based cube unit UE location measurement received from LMF to RAN.
  • the AMF may not provide cube map information (TA-specific cube map information and cell-specific cube map information) among the information received from the LMF to the RAN.
  • cube map information TA-specific cube map information and cell-specific cube map information
  • AMF may not provide cube map information to the RAN.
  • the RAN transmits to the UE the auxiliary data required for LMF-based cube level UE location measurement received from the AMF.
  • the RAN transmits the above-described information to the UE in two ways as follows.
  • the RAN can periodically broadcast the information by including it in a broadcast message.
  • the RAN transmits an on-demand system information block (SIB) message including a cube-level positioning or cube-level mobility management indicator or flag to the RAN
  • SIB system information block
  • the RAN's response message includes the auxiliary data and sends the RAN to the RAN. can be sent to.
  • SIB system information block
  • the terminal uses at least one of the information received from the RAN, the GPS module mounted inside the terminal, and the sensor to generate measurement values necessary for calculating the terminal location (measurement values necessary to determine the location of the terminal in the LMF).
  • the terminal may perform an operation to transmit the corresponding measurement value to the LMF through RAN and AMF.
  • the terminal performs concealment of the generated measurement values using the home network public key set in the terminal, thereby creating a concealed UE measurement. For example, if the UE measurement hidden indicator is set in the USIM within the terminal, the terminal can calculate and generate a concealed UE measurement using the home network public key stored in the USIM. If concealed UE measurement is not set in USIM, the UE can encrypt the measurement value using another encryption method.
  • the terminal transmits the generated concealed UE measurement to AMF.
  • the UE can transmit the concealed UE measurement by including it in the registration request message.
  • the UE indicates the method by which the UE encrypted the measurement value (UE measurement) or the UE measurement concealment method (for example, a fine grained MM support indication) along with an indicator related to support for fine-grained mobility management (fine grained MM support indication). For example, whether a home network public key is used, encryption scheme information, etc.), and at least one of a terminal identifier may be provided.
  • AMF can transmit the concealed UE measurement, UE measurement concealment method, terminal identifier, and fine grained MM support indication received from the terminal to the LMF. Additionally, the AMF can check whether fine grained MM is supported for the terminal by checking the subscriber information of the terminal before transmitting the corresponding information to the LMF. If, as a result of AMF confirmation, the terminal does not support segmented MM, the following operations may not be performed.
  • the LMF receives the received concealed UE measurement and, if the UE measurement concealment method uses the home network public key, can perform a de-concealment request while transmitting the concealed UE measurement to the UDM along with the terminal identifier.
  • the UDM can check whether the LMF's request is permitted, perform de-concealment, and then transmit the UE measurement value (de-concealed UE measurement) along with the UE identifier to the LMF.
  • steps 6 through 9 may follow a modified procedure as follows: Instead of the AMF transmitting concealed UE measurement to the LMF, the AMF can transmit a de-concealment request to the UDM and obtain de-concealed UE measurement from the UDM. AMF can transmit de-concealed UE measurement values to LMF.
  • LMF calculates the location of the terminal using the acquired UE measurement value (de-concealed UE measurement) and cube map information, and determines the cube ID of the cube area where the terminal is located.
  • the LMF transmits the cube ID (cube ID of the cube area where the terminal is located) determined in the previous operation to the AMF.
  • AMF may provide the received cube ID to the RAN and perform AM policy enforcement for the corresponding terminal as in step 9 of the embodiment described in FIG. 3 above.
  • AMF transmits the acquired cube ID (de-concealed cube ID), reporting triggering condition (list of neighbor cube ID list), and flag to perform cube-level mobility tracking to the terminal.
  • the terminal checks whether the cube ID received from AMF matches the cube ID determined in step 4 in the terminal.
  • the terminal monitors whether it leaves the cube area identified by the cube ID included in the cube ID list included in the reporting triggering condition provided by AMF, and when it detects that it leaves the area, it sends the terminal measurement value to AMF as in the previous operations. (After initial registration, when transmitting terminal measurement values, the concealment operation performed in step 4 may not be performed).
  • FIG. 6 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
  • Figure 6 specifically explains operations after the NAS security mode control procedure is completed in relation to the LMF-based mobility management procedure.
  • the OAM system can set cube map information to network entities (or functions) such as RAN, AMF, and LMF.
  • network entities such as RAN, AMF, and LMF.
  • cube map information may not be set in the RAN.
  • cube map information may be set only in the AMF and LMF and not in the RAN.
  • the terminal provides AMF with a terminal identifier and an indicator related to support of fine-grained mobility management (fine-grained MM support indication) or an indicator related to support of cube-level mobility management (cube-level MM support indication) or cube-level mobility management support. At least one of the UE capabilities to support cube-level MM may be included and transmitted in the registration request message.
  • AMF performs the authentication procedure in conjunction with the terminal, AUSF, and UDM based on the information received from the terminal.
  • AMF After completing the authentication process, AMF performs the terminal and NAS security mode setting process.
  • AMF allows fine-grained MM or cube-level MM for the terminal.
  • Subscriber information related to availability can be obtained from UDM.
  • UDM can provide AMF whether to allow fine-grained MM or cube-level MM based on subscriber information.
  • AMF confirms that it allows fine-grained MM or cube-level MM based on information received from UDM or subscriber information, and provides LMF with a terminal identifier in the cube-level positioning request message indicating that cube-level MM is allowed. It is transmitted including at least one of information, the cell where the terminal is currently located, or TA information.
  • the LMF performs a cube-level positioning operation to specify (or confirm) the location of the terminal in cube units at the request of the AMF.
  • the LMF may perform the operations described in steps 1, 2, and 3 of the embodiment described in FIG. 3 and transmit cube map information and auxiliary data necessary to measure the location of the terminal on a cube basis to the RAN and the terminal.
  • the terminal may measure the terminal location, determine a cube ID corresponding to the location, and provide it to the LMF, as in the operation described in step 4 of the embodiment described in FIG. 3 (or, unlike the operation of the embodiment described in FIG. 3,
  • the terminal may transmit the cube ID to the LMF through AMF by including it in the NAS container without performing separate concealment for the cube ID).
  • the LMF performs the operations described in steps 1, 2, and 3 of the embodiment of Figure 5, and the terminal generates measurement values required for position calculation (measurement values necessary to determine the location of the terminal in the LMF) and LMF It can be sent to (via AMF).
  • the LMF determines the cube ID corresponding to the location of the terminal through the cube ID obtained from the terminal in the previous step or the measurement value required for position calculation, and transmits the cube ID to the AMF.
  • AMF can perform AM policy using the cube ID received from LMF.
  • AMF may provide the PCF with the cube ID of the cube where the terminal is located and receive policy information that should be applied in the corresponding cube area from the PCF.
  • Policy information that AMF may receive from PCF may include:
  • RAT Frequency Selection Priority value set for the cube area may correspond to subscriber profile ID for RAT/Frequency Priority
  • UE-AMBR aggregate maximum bitrate
  • UE Slice-MBR maximum bitrate
  • the AMF When the AMF receives an AM policy including the cube-level RFSP Index from the PCF, it transfers the RFSP Index value to the RAN, and the RAN can perform RAT/Frequency selection based on RAT Frequency selection priority. Additionally, AMF can also provide the RAN with a cube ID that matches the location of the terminal.
  • AMF transmits the cube ID (de-concealed cube ID) obtained from LMF, reporting triggering condition (list of neighbor cube ID list), and flag to perform cube-level mobility tracking to the terminal.
  • the AMF may also transmit a reporting triggering condition to the LMF and make a subscribe request to the cube-level UE mobility tracking notification service that receives notification when the UE location measurement value performed by the LMF meets the reporting triggering condition.
  • the terminal checks whether the cube ID received from AMF matches the cube ID determined in step 6 in the terminal, and the cube area identified by the cube ID included in the cube ID list included in the reporting triggering condition provided by AMF Monitor whether it is out of bounds.
  • the terminal can perform monitoring through LMF and cube-level positioning of the terminal as in step 6.
  • AMF transmits a new cube ID.
  • the UE may transmit a registration request message including a new cube ID to the AMF
  • the LMF may transmit a cube-level UE mobility tracking notification message including a new cube ID to the AMF.
  • the terminal In the method of determining the cube ID corresponding to the terminal location, the terminal directly calculates the location of the terminal using cube map information provided by RAN, AMF, or LMF and auxiliary information required for cube-level terminal location measurement and matches the location of the terminal. You can determine the cube ID.
  • the terminal may provide measurement values that require location calculation to the RAN or LMF, and the location and cube ID of the terminal may be determined by the RAN or LMF.
  • the terminal performs concealment of the information and then transmits it to the AMF by including it in the initial registration request message, or performs a separate concealment operation. After completing the NAS security mode setting procedure without performing any additional steps, it can be transmitted by including it in the NAS container.
  • the AMF immediately uses the cube ID received from the terminal or the measurement value required to calculate the terminal location (using the cube ID for AM policy enforcement or transmitting the measurement value to the LMF to obtain the cube ID) or provided by the UDM You can use the de-concealment service to obtain and use the de-concealed cube ID or measurement value.
  • Figure 7 is a diagram showing the structure of a terminal according to embodiments of the present disclosure.
  • the terminal of the present disclosure may include a transceiver 710, a memory 720, and a control unit (or processor 730).
  • the terminal's control unit 730, transceiver unit 710, and memory 720 may operate according to the above-described terminal communication method.
  • the components of the terminal are not limited to the examples described above.
  • the terminal may include more or fewer components than the aforementioned components.
  • the control unit 730, the transceiver unit 710, and the memory 720 may be implemented in the form of a single chip.
  • the transmitting/receiving unit 710 is a general term for the terminal's receiving unit and the terminal's transmitting unit, and can transmit and receive signals to and from a base station or network entity. Signals transmitted and received from the base station may include control information and data.
  • the transceiver 710 may be composed of an RF (radio frequency) transmitter that up-converts and amplifies the frequency of the transmitted signal, and an RF receiver that amplifies the received signal with low noise and down-converts the frequency.
  • RF radio frequency
  • the transceiver 710 may include a wired or wireless transceiver and may include various components for transmitting and receiving signals. Additionally, the transceiver 710 may receive a signal through a wireless channel and output it to the control unit 730, and transmit the signal output from the control unit 730 through a wireless channel. Additionally, the transceiver 710 may receive a communication signal and output it to the control unit 730, and transmit the signal output from the control unit 730 to a base station or network entity through a wired or wireless network.
  • the memory 720 can store programs and data necessary for operation of the terminal. Additionally, the memory 720 may store control information or data included in signals obtained from the terminal.
  • the memory 720 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media.
  • the control unit 730 can control a series of processes so that the terminal can operate according to the above-described embodiment of the present disclosure.
  • the control unit 730 may include at least one processor.
  • the control unit 730 may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls upper layers such as application programs.
  • CP communication processor
  • AP application processor
  • Figure 8 is a diagram showing the structure of a base station according to embodiments of the present disclosure.
  • the base station shown in FIG. 8 may correspond to the RAN node previously described in FIG. 1.
  • the base station of the present disclosure may include a transceiver 810, a memory 820, and a control unit (or processor, 830).
  • the control unit 830, transceiver unit 810, and memory 820 of the base station may operate according to the above-described base station communication method.
  • the components of the base station are not limited to the above examples.
  • a base station may include more or fewer components than those described above.
  • the base station of FIG. 8 may be implemented with the overall functions separated into CU and DU. In this case, the CU and DU may each perform some functions performed by the base station of FIG. 8.
  • the control unit 830, transceiver 810, and memory 820 of FIG. 8 may be implemented in the form of a single chip.
  • the transceiving unit 810 is a general term for the receiving unit of the base station and the transmitting unit of the base station, and can transmit and receive signals to and from a terminal and/or network entity. At this time, the transmitted and received signals may include control information and data. To this end, the transceiver 810 may be composed of an RF transmitter that up-converts and amplifies the frequency of the transmitted signal, and an RF receiver that amplifies the received signal with low noise and down-converts the frequency. However, this is only an example of the transceiver 810, and the components of the transceiver 810 are not limited to the RF transmitter and RF receiver. The transceiver 810 may include a wired or wireless transceiver and may include various components for transmitting and receiving signals.
  • the transceiver 810 may receive a signal through a communication channel (eg, a wireless channel) and output it to the control unit 830, and transmit the signal output from the control unit 830 through the communication channel. Additionally, the transceiver 810 may receive a communication signal, output it to a processor, and transmit the signal output from the processor to a terminal or network entity through a wired or wireless network.
  • a communication channel eg, a wireless channel
  • the memory 820 can store programs and data necessary for the operation of the base station. Additionally, the memory 820 may store control information or data included in signals obtained from the base station.
  • the memory 820 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media.
  • the control unit 830 can control a series of processes so that the base station can operate according to the above-described embodiment of the present disclosure.
  • the control unit 830 may include at least one processor. Methods according to embodiments described in the claims or specification of the present disclosure may be implemented in the form of hardware, software, or a combination of hardware and software.
  • FIG. 9 is a diagram illustrating the structure of a network function (or network entity) according to embodiments of the present disclosure.
  • the network function (or network entity) shown in FIG. 9 may correspond to various nodes of the core network previously described in FIG. 1.
  • a network function (or network entity) of the present disclosure may include a transceiver 910, a memory 920, and a control unit (or processor, 930).
  • the control unit 930, transceiver unit 910, and memory 920 of the network function (or network entity) may operate according to the communication method of the network function (or network entity) described above.
  • the components of the network function (or network entity) are not limited to the examples described above.
  • a network function (or network entity) may include more or fewer components than those described above.
  • the transceiving unit 910 is a general term for the receiving unit of a network function (or network entity) and the transmitting unit of a base station, and can transmit and receive signals with a terminal, a base station, and/or other network functions (or network entities). At this time, the transmitted and received signals may include control information and data. To this end, the transceiver 910 can communicate with nodes of the core network through a wired or wireless transceiver. However, this is only an example of the transceiver 910, and the components of the transceiver 910 include an RF transmitter that up-converts and amplifies the frequency of the transmitted signal, low-noise amplifies the received signal, and down-converts the frequency. It may be composed of an RF receiver, etc., and may include various configurations for transmitting and receiving signals.
  • the transceiver 910 receives a signal through a communication channel (for example, a wireless channel or a core network channel) and outputs it to the control unit 930, and transmits the signal output from the control unit 930 through the communication channel. Can be transmitted. Additionally, the transceiver unit 910 may receive a communication signal and output it to the control unit 930, and transmit the signal output from the control unit 930 to a terminal, base station, or network entity through a wired or wireless network.
  • a communication channel for example, a wireless channel or a core network channel
  • the memory 920 may store programs and data necessary for the operation of a network function (or network entity). Additionally, the memory 920 may store control information or data included in signals obtained from a network function (or network entity).
  • the memory 920 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media.
  • the control unit 930 may control a series of processes so that a network function (or network entity) can operate according to the above-described embodiment of the present disclosure.
  • the control unit 930 may include at least one processor. Methods according to embodiments described in the claims or specification of the present disclosure may be implemented in the form of hardware, software, or a combination of hardware and software.
  • a computer-readable storage medium that stores one or more programs (software modules) may be provided.
  • One or more programs stored in a computer-readable storage medium are configured to be executable by one or more processors in an electronic device (configured for execution).
  • One or more programs include instructions that cause the electronic device to execute methods according to embodiments described in the claims or specification of the present disclosure.
  • These programs include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM.
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • magnetic disc storage device Compact Disc-ROM (CD-ROM: Compact Disc-ROM), Digital Versatile Discs (DVDs), or other types of It can be stored in an optical storage device or magnetic cassette. Alternatively, it may be stored in a memory consisting of a combination of some or all of these. Additionally, multiple configuration memories may be included.
  • the program may be operated through a communication network such as the Internet, an intranet, a local area network (LAN), a wide LAN (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored on an attachable storage device that is accessible. This storage device can be connected to a device performing an embodiment of the present disclosure through an external port. Additionally, a separate storage device on a communications network may be connected to the device performing embodiments of the present disclosure.
  • a communication network such as the Internet, an intranet, a local area network (LAN), a wide LAN (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored on an attachable storage device that is accessible. This storage device can be connected to a device performing an embodiment of the present disclosure through an external port. Additionally, a separate storage device on a communications network may be connected to the device performing embodiments of the present disclosure.

Abstract

The present disclosure relates to a 5G or 6G communication system to support a higher data transmission rate. Specifically, the present disclosure relates to a device for managing the mobility of a terminal on the basis of a detailed location, the device comprising: a transceiver; and a controller coupled to the transceiver, wherein the controller may be configured to: receive setting information for setting at least one cube associated with a three-dimensional space within a cell; receive auxiliary information for location measurement from a location management function (LMF) node; transmit the auxiliary information for location measurement to the terminal; receive concealed information related to the location measurement of the terminal from the terminal; identify an identifier (ID) of a cube related to the terminal on the basis of the concealed information related to the location measurement of the terminal; determine whether it is allowed to apply a mobility management policy based on the identifier of the cube to the terminal; and transmit information about the mobility management policy to the terminal.

Description

이동 통신 시스템에서 위치 기반의 단말 이동성 관리 방법 및 장치Location-based terminal mobility management method and device in mobile communication system
본 개시는 이동 통신 시스템(또는, 무선 통신 시스템)에 관련된 것으로, 구체적으로 본 개시는 이동 통신 시스템(또는 무선 통신 시스템)에서 단말의 이동성 관리 방안에 대한 것이다.The present disclosure relates to a mobile communication system (or wireless communication system), and specifically, the present disclosure relates to a method for managing the mobility of a terminal in a mobile communication system (or wireless communication system).
5G 이동통신 기술은 빠른 전송 속도와 새로운 서비스가 가능하도록 넓은 주파수 대역을 정의하고 있으며, 3.5 기가헤르츠(3.5GHz) 등 6GHz 이하 주파수("Sub 6GHz") 대역은 물론 28GHz와 39GHz 등 밀리미터파(㎜Wave)로 불리는 초고주파 대역("Above 6GHz")에서도 구현이 가능하다. 또한, 5G 통신 이후(Beyond 5G)의 시스템이라 불리어지는 6G 이동통신 기술의 경우, 5G 이동통신 기술 대비 50배 빨라진 전송 속도와 10분의 1로 줄어든 초저(Ultra Low) 지연시간을 달성하기 위해 테라헤르츠(Terahertz, THz) 대역(예를 들어, 95GHz에서 3 테라헤르츠 대역과 같은)에서의 구현이 고려되고 있다.5G mobile communication technology defines a wide frequency band to enable fast transmission speeds and new services, including sub-6 GHz ("Sub 6GHz") bands such as 3.5 GHz, as well as millimeter wave (mm) bands such as 28 GHz and 39 GHz. It is also possible to implement it in the ultra-high frequency band ("Above 6GHz") called Wave. In addition, in the case of 6G mobile communication technology, which is called the system of Beyond 5G, Terra is working to achieve a transmission speed that is 50 times faster than 5G mobile communication technology and an ultra-low delay time that is reduced to one-tenth. Implementation in Terahertz (THz) bands (e.g., 3 terahertz bands at 95 GHz) is being considered.
5G 이동통신 기술의 초기에는, 초광대역 서비스(enhanced Mobile BroadBand, eMBB), 고신뢰/초저지연 통신(Ultra-Reliable Low-Latency Communications, URLLC), 대규모 기계식 통신(massive Machine-Type Communications, mMTC)에 대한 서비스 지원과 성능 요구사항 만족을 목표로, 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위한 빔포밍(Beamforming) 및 거대 배열 다중 입출력(Massive MIMO), 초고주파수 자원의 효율적 활용을 위한 다양한 뉴머롤로지 지원(복수 개의 서브캐리어 간격 운용 등)와 슬롯 포맷에 대한 동적 운영, 다중 빔 전송 및 광대역을 지원하기 위한 초기 접속 기술, BWP(Band-Width Part)의 정의 및 운영, 대용량 데이터 전송을 위한 LDPC(Low Density Parity Check) 부호와 제어 정보의 신뢰성 높은 전송을 위한 폴라 코드(Polar Code)와 같은 새로운 채널 코딩 방법, L2 선-처리(L2 pre-processing), 특정 서비스에 특화된 전용 네트워크를 제공하는 네트워크 슬라이싱(Network Slicing) 등에 대한 표준화가 진행되었다.In the early days of 5G mobile communication technology, there were concerns about ultra-wideband services (enhanced Mobile BroadBand, eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). With the goal of satisfying service support and performance requirements, efficient use of ultra-high frequency resources, including beamforming and massive array multiple input/output (Massive MIMO) to alleviate radio wave path loss in ultra-high frequency bands and increase radio transmission distance. Various numerology support (multiple subcarrier interval operation, etc.) and dynamic operation of slot format, initial access technology to support multi-beam transmission and broadband, definition and operation of BWP (Band-Width Part), large capacity New channel coding methods such as LDPC (Low Density Parity Check) codes for data transmission and Polar Code for highly reliable transmission of control information, L2 pre-processing, and dedicated services specialized for specific services. Standardization of network slicing, etc., which provides networks, has been carried out.
현재, 5G 이동통신 기술이 지원하고자 했던 서비스들을 고려하여 초기의 5G 이동통신 기술 개선(improvement) 및 성능 향상(enhancement)을 위한 논의가 진행 중에 있으며, 차량이 전송하는 자신의 위치 및 상태 정보에 기반하여 자율주행 차량의 주행 판단을 돕고 사용자의 편의를 증대하기 위한 V2X(Vehicle-to-Everything), 비면허 대역에서 각종 규제 상 요구사항들에 부합하는 시스템 동작을 목적으로 하는 NR-U(New Radio Unlicensed), NR 단말 저전력 소모 기술(UE Power Saving), 지상 망과의 통신이 불가능한 지역에서 커버리지 확보를 위한 단말-위성 직접 통신인 비 지상 네트워크(Non-Terrestrial Network, NTN), 위치 측위(Positioning) 등의 기술에 대한 물리계층 표준화가 진행 중이다. Currently, discussions are underway to improve and enhance the initial 5G mobile communication technology, considering the services that 5G mobile communication technology was intended to support, based on the vehicle's own location and status information. V2X (Vehicle-to-Everything) to help autonomous vehicles make driving decisions and increase user convenience, and NR-U (New Radio Unlicensed), which aims to operate a system that meets various regulatory requirements in unlicensed bands. ), NR terminal low power consumption technology (UE Power Saving), Non-Terrestrial Network (NTN), which is direct terminal-satellite communication to secure coverage in areas where communication with the terrestrial network is impossible, positioning, etc. Physical layer standardization for technology is in progress.
뿐만 아니라, 타 산업과의 연계 및 융합을 통한 새로운 서비스 지원을 위한 지능형 공장(Industrial Internet of Things, IIoT), 무선 백홀 링크와 액세스 링크를 통합 지원하여 네트워크 서비스 지역 확장을 위한 노드를 제공하는 IAB(Integrated Access and Backhaul), 조건부 핸드오버(Conditional Handover) 및 DAPS(Dual Active Protocol Stack) 핸드오버를 포함하는 이동성 향상 기술(Mobility Enhancement), 랜덤액세스 절차를 간소화하는 2 단계 랜덤액세스(2-step RACH for NR) 등의 기술에 대한 무선 인터페이스 아키텍쳐/프로토콜 분야의 표준화 역시 진행 중에 있으며, 네트워크 기능 가상화(Network Functions Virtualization, NFV) 및 소프트웨어 정의 네트워킹(Software-Defined Networking, SDN) 기술의 접목을 위한 5G 베이스라인 아키텍쳐(예를 들어, Service based Architecture, Service based Interface), 단말의 위치에 기반하여 서비스를 제공받는 모바일 엣지 컴퓨팅(Mobile Edge Computing, MEC) 등에 대한 시스템 아키텍쳐/서비스 분야의 표준화도 진행 중이다.In addition, IAB (IAB) provides a node for expanding the network service area by integrating intelligent factories (Industrial Internet of Things, IIoT) to support new services through linkage and convergence with other industries, and wireless backhaul links and access links. Integrated Access and Backhaul, Mobility Enhancement including Conditional Handover and DAPS (Dual Active Protocol Stack) handover, and 2-step Random Access (2-step RACH for simplification of random access procedures) Standardization in the field of wireless interface architecture/protocol for technologies such as NR) is also in progress, and 5G baseline for incorporating Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technology Standardization in the field of system architecture/services for architecture (e.g., Service based Architecture, Service based Interface) and Mobile Edge Computing (MEC), which provides services based on the location of the terminal, is also in progress.
이와 같은 5G 이동통신 시스템이 상용화되면, 폭발적인 증가 추세에 있는 커넥티드 기기들이 통신 네트워크에 연결될 것이며, 이에 따라 5G 이동통신 시스템의 기능 및 성능 강화와 커넥티드 기기들의 통합 운용이 필요할 것으로 예상된다. 이를 위해, 증강현실(Augmented Reality, AR), 가상현실(Virtual Reality, VR), 혼합 현실(Mixed Reality, MR) 등을 효율적으로 지원하기 위한 확장 현실(eXtended Reality, XR), 인공지능(Artificial Intelligence, AI) 및 머신러닝(Machine Learning, ML)을 활용한 5G 성능 개선 및 복잡도 감소, AI 서비스 지원, 메타버스 서비스 지원, 드론 통신 등에 대한 새로운 연구가 진행될 예정이다.When this 5G mobile communication system is commercialized, an explosive increase in connected devices will be connected to the communication network. Accordingly, it is expected that strengthening the functions and performance of the 5G mobile communication system and integrated operation of connected devices will be necessary. To this end, eXtended Reality (XR) and Artificial Intelligence are designed to efficiently support Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality (MR). , AI) and machine learning (ML), new research will be conducted on 5G performance improvement and complexity reduction, AI service support, metaverse service support, and drone communication.
또한, 이러한 5G 이동통신 시스템의 발전은 6G 이동통신 기술의 테라헤르츠 대역에서의 커버리지 보장을 위한 신규 파형(Waveform), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(Array Antenna), 대규모 안테나(Large Scale Antenna)와 같은 다중 안테나 전송 기술, 테라헤르츠 대역 신호의 커버리지를 개선하기 위해 메타물질(Metamaterial) 기반 렌즈 및 안테나, OAM(Orbital Angular Momentum)을 이용한 고차원 공간 다중화 기술, RIS(Reconfigurable Intelligent Surface) 기술 뿐만 아니라, 6G 이동통신 기술의 주파수 효율 향상 및 시스템 네트워크 개선을 위한 전이중화(Full Duplex) 기술, 위성(Satellite), AI(Artificial Intelligence)를 설계 단계에서부터 활용하고 종단간(End-to-End) AI 지원 기능을 내재화하여 시스템 최적화를 실현하는 AI 기반 통신 기술, 단말 연산 능력의 한계를 넘어서는 복잡도의 서비스를 초고성능 통신과 컴퓨팅 자원을 활용하여 실현하는 차세대 분산 컴퓨팅 기술 등의 개발에 기반이 될 수 있을 것이다.In addition, the development of these 5G mobile communication systems includes new waveforms, full dimensional MIMO (FD-MIMO), and array antennas to ensure coverage in the terahertz band of 6G mobile communication technology. , multi-antenna transmission technology such as Large Scale Antenna, metamaterial-based lens and antenna to improve coverage of terahertz band signals, high-dimensional spatial multiplexing technology using OAM (Orbital Angular Momentum), RIS ( In addition to Reconfigurable Intelligent Surface technology, Full Duplex technology, satellite, and AI (Artificial Intelligence) to improve the frequency efficiency of 6G mobile communication technology and system network are utilized from the design stage and end-to-end. -to-End) Development of AI-based communication technology that realizes system optimization by internalizing AI support functions, and next-generation distributed computing technology that realizes services of complexity beyond the limits of terminal computing capabilities by utilizing ultra-high-performance communication and computing resources. It could be the basis for .
통신 시스템의 발전에 따라, 단말의 이동성을 더 효율적으로 관리하기 위한 방안에 대한 요구가 증대되고 있다.As communication systems develop, demand for methods to more efficiently manage the mobility of terminals is increasing.
현재 이동 통신 시스템에서는 셀(cell) 또는 트래킹 영역(tracking area, TA) 보다 작은 단위의 단말 이동성 관리를 지원하지 않는다. 이는, 코어 망의 네트워크 엔티티(또는 네트워크 기능(function))이 단말의 초기 등록 절차에서 셀 보다 작은 단위로 단말의 상세 위치를 인지할 수 없기 때문이다. 초기 등록 절차에서 단말의 상세 위치를 코어 망에 제공하기 위해서는 추가적인 보안 절차가 요구된다. 왜냐하면, 단말이 전송하는 초기 등록 절차 요청 메시지는 보안이 완전하게 보장되지 않으며, 단말 상세 위치 정보는 개인 정보이기 때문이다.Current mobile communication systems do not support terminal mobility management in units smaller than a cell or tracking area (TA). This is because the network entity (or network function) of the core network cannot recognize the detailed location of the terminal in units smaller than cells during the terminal's initial registration procedure. Additional security procedures are required to provide the detailed location of the terminal to the core network during the initial registration process. This is because the initial registration procedure request message transmitted by the terminal is not completely secure, and the detailed location information of the terminal is personal information.
따라서, 이하에서는, 셀보다 작은 단위로 단말의 이동성을 관리하는 방안을 제안한다. 구체적으로, 5G 시스템 내부에서 사용되는 셀(cell) 보다 작고, 단말의 3차원 상의 위치를 특정할 수 있는 영역 단위로써 큐브(cube)를 제안한다. 이와 관련하여, 코어 망의 네트워크 엔티티(또는 네트워크 기능)가 네트워크 커버리지 영역을 큐브 단위로 구역화한 큐브 맵(cube map) 정보를 단말 및 기지국에 전달하는 절차, 단말의 등록 절차 수행 중 단말 상세 위치 정보를 큐브 단위로 결정하는데 필요한 정보를 단말 및 기지국에 전달하는 절차, 단말이 위치한 큐브 영역에 대한 정보를 개인 정보 유출 없이 네트워크 엔티티로 전송하는 절차 등을 구체적으로 제안한다.Therefore, below, we propose a method for managing the mobility of a terminal in units smaller than cells. Specifically, we propose a cube as an area unit that is smaller than the cell used inside the 5G system and can specify the three-dimensional location of the terminal. In this regard, a procedure in which the network entity (or network function) of the core network transmits cube map information, zoning the network coverage area into cubes, to the terminal and base station, and detailed location information of the terminal during the registration procedure of the terminal. We specifically propose a procedure for transmitting to the terminal and base station the information necessary to determine on a cube basis, and a procedure for transmitting information about the cube area where the terminal is located to a network entity without leaking personal information.
본 개시의 일 실시예에 따른 방법은, 네트워크 엔티티가 단말의 위치와 관련된 정보를 단말로 전송하는 단계; 및 단말로부터 단말의 위치를 포함하는 보안 메시지를 수신하는 단계를 포함한다.A method according to an embodiment of the present disclosure includes: a network entity transmitting information related to the location of a terminal to a terminal; and receiving a security message including the location of the terminal from the terminal.
본 개시에서 제안하는 다양한 실시예들에 따르면, 셀이나 트래킹 영역보다 더 상세한 단위로 단말의 3차원 상 위치를 확인할 수 있게 된다. 이를 통해서, 네트워크 엔티티가 단말의 3차원 상 위치를 기반으로 단말의 이동성을 관리할 수 있어서 단말의 이동성을 더 효율적이고 구체적으로 관리하는 것이 가능하게 된다.According to various embodiments proposed in this disclosure, it is possible to confirm the three-dimensional position of the terminal in more detailed units than cells or tracking areas. Through this, the network entity can manage the mobility of the terminal based on the three-dimensional location of the terminal, making it possible to manage the mobility of the terminal more efficiently and specifically.
또한, 본 개시에서 제안하는 다양한 실시예들에 따르면, 단말의 최초 등록 절차(initial registration procedure) 또는 주기적인 등록 절차(periodic registration procedure)에서 단말의 상세 위치를 특정하는 것이 가능하게 된다. 이를 통해, 코어 망의 네트워크 엔티티가 특정한 물리적 영역(셀 또는 트래킹 영역보다 작은 영역, 또는 영역을 셀 ID(identifier) 또는 TAI로만 정확하게 정의할 수 없는 영역)에 대해서 접속 및 이동성 관리 정책을 적용할 수 있다.Additionally, according to various embodiments proposed in this disclosure, it is possible to specify the detailed location of the terminal in the initial registration procedure or periodic registration procedure of the terminal. This allows network entities in the core network to apply access and mobility management policies to specific physical areas (areas that are smaller than a cell or tracking area, or areas that cannot be accurately defined only by cell ID (identifier) or TAI). there is.
또한, 본 개시에서 제안하는 다양한 실시예들에 따르면, 최초 등록 절차 시 NAS(non-access stratum) 보안이 보장되기 전에도 등록 요청 메시지 내에 단말의 상세 위치와 같은 개인 정보 보안이 필요한 정보를 포함시켜 전송할 수 있게 되어, 개인정보에 대한 안전한 보안유지가 가능하게 된다.In addition, according to various embodiments proposed in this disclosure, information requiring personal information security, such as the detailed location of the terminal, can be included and transmitted in the registration request message even before NAS (non-access stratum) security is guaranteed during the initial registration process. This makes it possible to maintain the safety and security of personal information.
도 1은 본 개시와 관련한 5G 코어 망의 구조의 예시를 도시하는 도면이다. 1 is a diagram illustrating an example of the structure of a 5G core network related to the present disclosure.
도 2는 본 개시에서 제안하는 실시예와 관련하여 단말의 이동성을 관리하는 절차에 대해 설명하는 도면이다.Figure 2 is a diagram explaining a procedure for managing the mobility of a terminal in relation to an embodiment proposed in this disclosure.
도 3은 본 개시에서 제안하는 실시예와 관련하여 상세한 위치를 기반으로 단말의 이동성을 관리하는 절차에 대해 설명하는 도면이다.FIG. 3 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
도 4는 본 개시에서 제안하는 실시예와 관련하여 상세한 위치를 기반으로 단말의 이동성을 관리하는 절차에 대해 설명하는 도면이다.FIG. 4 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
도 5는 본 개시에서 제안하는 실시예와 관련하여 상세한 위치를 기반으로 단말의 이동성을 관리하는 절차에 대해 설명하는 도면이다.FIG. 5 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
도 6은 본 개시에서 제안하는 실시예와 관련하여 상세한 위치를 기반으로 단말의 이동성을 관리하는 절차에 대해 설명하는 도면이다.FIG. 6 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure.
도 7은 본 개시의 실시예들에 따른 단말의 구조를 도시한 도면이다.Figure 7 is a diagram showing the structure of a terminal according to embodiments of the present disclosure.
도 8은 본 개시의 실시예들에 따른 기지국의 구조를 도시한 도면이다.Figure 8 is a diagram showing the structure of a base station according to embodiments of the present disclosure.
도 9은 본 개시의 실시예들에 따른 네트워크 기능(또는 네트워크 엔티티)의 구조를 도시한 도면이다.FIG. 9 is a diagram illustrating the structure of a network function (or network entity) according to embodiments of the present disclosure.
이하, 첨부된 도면을 참조하여 본 개시의 바람직한 실시예들을 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의해야 한다. 또한 본 개시의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the attached drawings. At this time, it should be noted that in the attached drawings, identical components are indicated by identical symbols whenever possible. Additionally, detailed descriptions of well-known functions and configurations that may obscure the gist of the present disclosure will be omitted.
본 명세서에서 실시예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In describing the embodiments in this specification, description of technical content that is well known in the technical field to which the present disclosure belongs and that is not directly related to the present disclosure will be omitted. This is to convey the gist of the present disclosure more clearly without obscuring it by omitting unnecessary explanation.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.For the same reason, some components are exaggerated, omitted, or schematically shown in the accompanying drawings. Additionally, the size of each component does not entirely reflect its actual size. In each drawing, identical or corresponding components are assigned the same reference numbers.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.The advantages and features of the present disclosure and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present disclosure is not limited to the embodiments disclosed below and may be implemented in various different forms, and the present embodiments are merely intended to ensure that the disclosure is complete and are within the scope of common knowledge in the technical field to which the present disclosure pertains. It is provided to fully inform those who have the scope of the disclosure, and the disclosure is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.At this time, it will be understood that each block of the processing flow diagram diagrams and combinations of the flow diagram diagrams can be performed by computer program instructions. These computer program instructions can be mounted on a processor of a general-purpose computer, special-purpose computer, or other programmable data processing equipment, so that the instructions performed through the processor of the computer or other programmable data processing equipment are described in the flow chart block(s). It creates the means to perform functions. These computer program instructions may also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular manner, so that the computer-usable or computer-readable memory It is also possible to produce manufactured items containing instruction means that perform the functions described in the flowchart block(s). Computer program instructions can also be mounted on a computer or other programmable data processing equipment, so that a series of operational steps are performed on the computer or other programmable data processing equipment to create a process that is executed by the computer, thereby generating a process that is executed by the computer or other programmable data processing equipment. Instructions that perform processing equipment may also provide steps for executing the functions described in the flow diagram block(s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시예에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.Additionally, each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). Additionally, it should be noted that in some alternative embodiments it is possible for the functions mentioned in the blocks to occur out of order. For example, it is possible for two blocks shown in succession to be performed substantially at the same time, or it is possible for the blocks to be performed in reverse order depending on the corresponding function.
이 때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다.At this time, the term '~unit' used in this embodiment refers to software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and '~unit' refers to what roles. Perform. However, '~part' is not limited to software or hardware. The '~ part' may be configured to reside in an addressable storage medium and may be configured to reproduce on one or more processors. Therefore, as an example, '~ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functions provided within the components and 'parts' may be combined into a smaller number of components and 'parts' or may be further separated into additional components and 'parts'. Additionally, components and 'parts' may be implemented to regenerate one or more CPUs within a device or a secure multimedia card. Additionally, in an embodiment, '~ part' may include one or more processors.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.Terms used in the following description to identify a connection node, a term referring to network entities, a term referring to messages, a term referring to an interface between network objects, and a term referring to various types of identification information. The following are examples for convenience of explanation. Accordingly, the present disclosure is not limited to the terms described below, and other terms referring to objects having equivalent technical meaning may be used.
이하 설명의 편의를 위하여, 본 개시는 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) 규격 또는 NR(New Radio) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 개시가 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.For convenience of description below, the present disclosure uses terms and names defined in the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) standard or the New Radio (NR) standard. However, the present disclosure is not limited by the above terms and names, and can be equally applied to systems complying with other standards.
이하, 기지국(base station, BS)은 단말의 자원할당을 수행하는 주체로서, RAN(radio access network) 노드, gNode B(next generation node B, gNB), eNode B(evolved node B, eNB), Node B, 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 본 개시에서 eNB는 설명의 편의를 위하여 gNB와 혼용되어 사용될 수 있다. 즉 eNB로 설명한 기지국은 gNB를 나타낼 수 있다. Hereinafter, the base station (BS) is the entity that performs resource allocation for the terminal, and includes a radio access network (RAN) node, gNode B (next generation node B, gNB), eNode B (evolved node B, eNB), and Node B, may be at least one of a wireless access unit, a base station controller, or a node on a network. In this disclosure, eNB may be used interchangeably with gNB for convenience of explanation. That is, a base station described as an eNB may represent a gNB.
이하, 단말(terminal)은 UE(User Equipment), MS(Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어 시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다.Hereinafter, a terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smartphone, a computer, or a multimedia system capable of performing communication functions. Of course, it is not limited to the above example.
특히 본 개시는 3GPP NR(5세대 이동통신 표준)에 적용할 수 있다. 또한 본 개시는 5G 통신 기술 및 IoT(Internet of Things) 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 또한 단말이라는 용어는 핸드폰, NB-IoT 기기들, 센서들뿐 만 아니라 또 다른 무선 통신 기기들을 나타낼 수 있다.In particular, the present disclosure is applicable to 3GPP NR (5th generation mobile communication standard). In addition, the present disclosure provides intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, It can be applied to security and safety-related services, etc.) Additionally, the term terminal can refer to other wireless communication devices as well as mobile phones, NB-IoT devices, and sensors.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA(Evolved Universal Terrestrial Radio Access)), LTE-Advanced(LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다.Wireless communication systems have moved away from providing early voice-oriented services to, for example, 3GPP's HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), and LTE-Advanced. Broadband wireless that provides high-speed, high-quality packet data services such as communication standards such as (LTE-A), LTE-Pro, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e. It is evolving into a communication system.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(downlink, DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(uplink, UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(또는 UE)이 기지국(또는 eNB, gNB)으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성(orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.As a representative example of a broadband wireless communication system, the LTE system uses OFDM (Orthogonal Frequency Division Multiplexing) in the downlink (DL), and SC-FDMA (Single Carrier Frequency Division Multiple Access) in the uplink (UL). ) method is adopted. Uplink refers to a wireless link through which a terminal (or UE) transmits data or control signals to a base station (or eNB, gNB), and downlink refers to a wireless link through which a base station transmits data or control signals to the terminal. The multiple access method described above differentiates each user's data or control information by allocating and operating the time-frequency resources to carry data or control information for each user so that they do not overlap, that is, orthogonality is established. .
LTE 이후의 향후 통신 시스템으로서, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 동시에 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 향상된 모바일 광대역 통신(eMBB), 대규모 기계형 통신(mMTC), 초신뢰 저지연 통신(URLLC) 등이 있다. As a future communication system after LTE, the 5G communication system must be able to freely reflect the various requirements of users and service providers, so services that simultaneously satisfy various requirements must be supported. Services considered for 5G communication systems include enhanced mobile broadband communication (eMBB), massive machine-type communication (mMTC), and ultra-reliable low-latency communication (URLLC).
일 실시예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 할 수 있다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps의 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 또한 5G 통신시스템은 최대 전송 속도를 제공하는 동시에, 증가된 단말의 실제 체감 전송 속도(user perceived data rate)를 제공해야 할 수 있다. 이와 같은 요구 사항을 만족시키기 위해, 5G 통신 시스템에서는 더욱 향상된 다중 안테나(Multiple Input Multiple Output, MIMO) 전송 기술을 포함하여 다양한 송수신 기술의 향상을 요구될 수 있다. 또한 현재의 LTE가 사용하는 2GHz 대역에서 최대 20MHz 전송대역폭을 사용하여 신호를 전송하는 반면에 5G 통신시스템은 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다. According to one embodiment, eMBB may aim to provide more improved data transmission rates than those supported by existing LTE, LTE-A, or LTE-Pro. For example, in a 5G communication system, eMBB must be able to provide a peak data rate of 20Gbps in the downlink and 10Gbps in the uplink from the perspective of one base station. In addition, the 5G communication system may need to provide the maximum transmission rate and at the same time provide an increased user perceived data rate. In order to meet these requirements, 5G communication systems may require improvements in various transmission and reception technologies, including more advanced multiple input multiple output (MIMO) transmission technology. In addition, while the current LTE transmits signals using a maximum of 20 MHz transmission bandwidth in the 2 GHz band, the 5G communication system uses a frequency bandwidth wider than 20 MHz in the 3 to 6 GHz or above 6 GHz frequency band, meeting the requirements of the 5G communication system. Data transfer speed can be satisfied.
동시에, 5G 통신시스템에서 사물 인터넷(IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km^2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지가 요구될 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 10~15년과 같이 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다. At the same time, mMTC is being considered to support application services such as the Internet of Things (IoT) in 5G communication systems. In order to efficiently provide the Internet of Things, mMTC may require support for access to a large number of terminals within a cell, improved coverage of terminals, improved battery time, and reduced terminal costs. Since the Internet of Things provides communication functions by attaching various sensors and various devices, it must be able to support a large number of terminals (for example, 1,000,000 terminals/km^2) within a cell. Additionally, due to the nature of the service, terminals supporting mMTC are likely to be located in shadow areas that cannot be covered by cells, such as the basement of a building, so wider coverage may be required compared to other services provided by the 5G communication system. Terminals that support mMTC must be composed of low-cost terminals, and since it is difficult to frequently replace the terminal's battery, a very long battery life time, such as 10 to 15 years, may be required.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmanned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스 등에 사용될 수 있다. 따라서 URLLC가 제공하는 통신은 매우 낮은 저지연(초저지연) 및 매우 높은 신뢰도(초신뢰도)를 제공해야 할 수 있다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(air interface latency)를 만족해야 하며, 동시에 10^-5 이하의 패킷 오류율(packet error rate)의 요구사항을 가질 수 있다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(TTI; Transmission Time Interval)를 제공해야 하며, 동시에 통신 링크의 신뢰성을 확보하기 위해 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구될 수 있다.Lastly, in the case of URLLC, it is a cellular-based wireless communication service used for specific purposes (mission-critical), such as remote control of robots or machinery, industrial automation, It can be used for services such as unmanned aerial vehicles, remote health care, and emergency alerts. Therefore, the communication provided by URLLC may need to provide very low latency (ultra-low latency) and very high reliability (ultra-reliability). For example, a service that supports URLLC must meet an air interface latency of less than 0.5 milliseconds and may have a packet error rate of less than 10^-5. . Therefore, for services that support URLLC, the 5G system must provide a smaller transmission time interval (TTI) than other services, and at the same time, a design that requires allocating wide resources in the frequency band to ensure the reliability of the communication link. Specifications may be required.
전술한 5G 통신 시스템에서 고려되는 세가지 서비스들, 즉 eMBB, URLLC, mMTC는 하나의 시스템에서 다중화되어 전송될 수 있다. 이 때, 각각의 서비스들이 갖는 상이한 요구사항을 만족시키기 위해 서비스 간에 서로 다른 송수신 기법 및 송수신 파라미터를 사용할 수 있다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 예시일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.The three services considered in the above-described 5G communication system, namely eMBB, URLLC, and mMTC, can be multiplexed and transmitted in one system. At this time, different transmission/reception techniques and transmission/reception parameters can be used between services to satisfy the different requirements of each service. However, the above-described mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which this disclosure is applied are not limited to the above-described examples.
또한, 이하에서 LTE, LTE-A, LTE Pro, 5G(또는 NR), 또는 6G 시스템을 일례로서 본 개시의 실시예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신 시스템에도 본 개시의 실시예가 적용될 수 있다. 또한, 본 개시의 실시예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.In addition, hereinafter, embodiments of the present disclosure will be described using LTE, LTE-A, LTE Pro, 5G (or NR), or 6G systems as examples, but the present disclosure can also be applied to other communication systems with similar technical background or channel type. Examples may be applied. Additionally, the embodiments of the present disclosure may be applied to other communication systems through some modifications without significantly departing from the scope of the present disclosure at the discretion of a person with skilled technical knowledge.
도 1은 본 개시와 관련한 5G 코어 망의 구조의 예시를 도시하는 도면이다.1 is a diagram illustrating an example of the structure of a 5G core network related to the present disclosure.
에지 컴퓨팅(edge computing) 시스템을 지원하는 5G 시스템 구조는 다양한 네트워크 기능(network function, NF) 또는 네트워크 엔티티(network entity)를 포함할 수다. 도 1은 이러한 네트워크 기능 또는 네트워크 엔티티의 예시로써, 액세스 및 이동성 관리 기능(access and mobility management function, AMF), 세션 관리 기능(session management function, SMF), 정책 제어 기능(policy control function, PCF), 어플리케이션 기능(application function, AF), 통합된 데이터 관리(unified data management, UDM), 데이터 네트워크(data network, DN), 사용자 평면 기능(user plane function, UPF), 위치 관리 기능(location management function, LMF)를 도시하며, 이와 더불어 5G 코어 망의 (무선) 액세스 네트워크((radio) access network, (R)AN) 및 단말(user equipment, UE)를 도시한다.The 5G system structure that supports edge computing systems may include various network functions (NFs) or network entities. Figure 1 is an example of such a network function or network entity, including an access and mobility management function (AMF), a session management function (SMF), a policy control function (PCF), Application function (AF), unified data management (UDM), data network (DN), user plane function (UPF), location management function (LMF) ), and in addition, it shows a (radio) access network ((R)AN) and a user equipment (UE) of the 5G core network.
도 1에 도시된 NF들은 다음과 같은 기능을 지원한다.The NFs shown in Figure 1 support the following functions.
AMF: AMF는 UE 단위의 접속 및 이동성 관리를 위한 기능을 제공하며, 하나의 UE 당 기본적으로 하나의 AMF에 연결될 수 있다.AMF: AMF provides functions for UE-level access and mobility management, and each UE can be basically connected to one AMF.
DN: DN은, 예를 들어, 운영자 서비스, 인터넷 접속 또는 서드파티(3rd party) 서비스 등이 존재하는 5GS(5G system) 외부의 네트워크를 의미한다. DN은 UPF로 하향링크 프로토콜 데이터 유닛(protocol data unit, PDU)을 전송하거나, UE로부터 전송된 상향링크 PDU를 UPF로부터 수신한다.DN: DN refers to a network outside of 5GS (5G system) where, for example, operator services, Internet access, or third party services exist. The DN transmits a downlink protocol data unit (PDU) to the UPF or receives an uplink PDU transmitted from the UE from the UPF.
PCF: PCF는 어플리케이션 서버로부터 패킷 흐름에 대한 정보를 수신하여, 이동성 관리, 세션 관리 등의 정책을 결정하는 기능을 제공한다. 구체적으로, PCF는 네트워크 동작을 통제하기 위한 단일화된 정책 프레임워크 지원, 제어평면 기능(들)(예를 들어, AMF, SMF 등)이 정책 규칙을 시행할 수 있도록 정책 규칙 제공, 사용자 데이터 저장소(user data repository, UDR) 내 정책 결정을 위해 관련된 가입 정보에 액세스하기 위한 프론트 엔드(front end) 구현 등의 기능을 지원한다.PCF: PCF receives information about packet flow from the application server and provides the function of determining policies such as mobility management and session management. Specifically, PCF supports a unified policy framework to govern network behavior, provides policy rules so that control plane function(s) (e.g. AMF, SMF, etc.) can enforce the policy rules, and provides user data storage ( It supports functions such as implementing a front end to access relevant subscription information for policy decisions within the user data repository (UDR).
SMF: SMF는 세션 관리 기능을 제공하며, UE가 다수 개의 세션을 가지는 경우 각 세션 별로 서로 다른 SMF에 의해 관리될 수 있다.SMF: SMF provides a session management function, and when the UE has multiple sessions, each session can be managed by a different SMF.
UDM: UDM은 사용자의 가입 데이터, 정책 데이터 등을 저장한다. UDM: UDM stores user subscription data, policy data, etc.
UPF: UPF는 DN으로부터 수신한 하향링크 PDU를 (R)AN을 경유하여 UE에게 전달하며, (R)AN을 경유하여 UE로부터 수신한 상향링크 PDU를 DN으로 전달한다.UPF: UPF delivers the downlink PDU received from the DN to the UE via (R)AN, and delivers the uplink PDU received from the UE to the DN via (R)AN.
AF: AF는 서비스 제공(예를 들어, 트래픽 라우팅 상에서 어플리케이션 영향, 네트워크 능력 노출(network capability exposure)에 대한 접근, 정책 제어를 위한 정책 프레임워크와의 상호동작 등의 기능을 지원)을 위해 3GPP 코어 네트워크와 상호 동작한다.AF: AF supports the 3GPP core for service provisioning (e.g., supporting functions such as application influence on traffic routing, access to network capability exposure, and interaction with policy frameworks for policy control). Interoperates with the network.
LMF: LMF는 AMF, UDM, NEF 등과 연동하여 단말의 위치 측정 및 위치 관련 정보 제공 관련 기능을 지원한다.LMF: LMF supports functions related to measuring the location of the terminal and providing location-related information in conjunction with AMF, UDM, and NEF.
도 1에 도시된 네트워크 기능 또는 네트워크 엔티티들은 5G 코어 망을 구성하는 노드 중 일부이며, 5G 코어 망은 이러한 예시보다 더 많은 네트워크 기능 또는 네트워크 엔티티들을 포함할 수 있다.The network functions or network entities shown in FIG. 1 are some of the nodes constituting the 5G core network, and the 5G core network may include more network functions or network entities than this example.
도 2는 본 개시에서 제안하는 실시예와 관련하여 단말의 이동성을 관리하는 절차에 대해 설명하는 도면이다.Figure 2 is a diagram explaining a procedure for managing the mobility of a terminal in relation to an embodiment proposed in this disclosure.
도 2는 단말의 이동성 관리를 셀(cell) 단위보다 작은 단위로 수행하는 예시 동작을 도시한다. 이하에서, 본 개시와 관련하여 셀 보다 작은 단위를 큐브(cube)로 정의하여 설명할 수 있다. 구체적으로, 도 2는 공간을 큐브 단위로 나누어 구분하는 과정과, 큐브 단위로 단말의 위치를 특정하고 이동 통신망에서 단말의 위치를 큐브 단위로 트래킹하는 절차를 도시한다. 큐브는 정육면체 또는 직육면체 형태를 가질 수 있으며, 3차원 상의 좌표 3개로 특정되거나 표현될 수 있다. Figure 2 shows an example operation of performing mobility management of a terminal in units smaller than a cell unit. Hereinafter, in relation to the present disclosure, a unit smaller than a cell may be defined as a cube. Specifically, Figure 2 shows the process of dividing space into cube units, specifying the location of the terminal in cube units, and tracking the location of the terminal in cube units in a mobile communication network. A cube may have a cube or rectangular parallelepiped shape, and may be specified or expressed by three three-dimensional coordinates.
예를 들어, 이하의 표 1은 큐브를 정의하고 사용하기 위한 하나 이상의 정보의 집합을 나타내며, 예를 들어 이러한 정보의 집합은 data type for cube 라는 명칭으로 정의될 수 있다. Data type for cube는 표 1에 나타나는 바와 같이 하나 이상의 특성(attribute)으로 표현될 수 있으며, 예를 들어 형태(shape)의 특성 값으로 cube 또는 rectangular cuboid 값을 포함할 수 있고, 포인트 리스트(point list)의 특성 값으로 실제 큐브의 영역 및 크기를 나타내기 위한 3차원 포인트 값을 포함할 수 있다. 또한, data type for cube는, 해당 큐브 영역이 포함되거나 인접해있는 셀 또는 TA의 정보를 표현하기 위해, associated cell(s) 특성 값 또는 associated tracking area(s) 특성 값으로써, 셀 ID(identifier) 또는 TA ID를 포함할 수 있다.data type for cube는 하나의 큐브를 나타내기 위한 정보일 수 있고, 이러한 하나의 큐브를 위해 복수 개의 셀 ID 또는 TA ID들이 포함될 수 있다. 나아가, data type for cube는 큐브 고유의 식별자(cube ID) 또한 특성 값으로써 포함할 수 있다.For example, Table 1 below represents one or more sets of information for defining and using a cube, and for example, this set of information may be defined under the name data type for cube. Data type for cube can be expressed with one or more attributes as shown in Table 1. For example, the shape attribute value can include cube or rectangular cuboid value, and a point list. )'s characteristic value may include a 3D point value to indicate the area and size of the actual cube. In addition, the data type for cube is a cell ID (identifier) as an associated cell(s) characteristic value or an associated tracking area(s) characteristic value to express information on cells or TAs that contain or are adjacent to the cube area. Or, it may include a TA ID. The data type for cube may be information representing one cube, and a plurality of cell IDs or TA IDs may be included for this one cube. Furthermore, the data type for cube can also include a cube's unique identifier (cube ID) as a characteristic value.
Figure PCTKR2023011458-appb-img-000001
Figure PCTKR2023011458-appb-img-000001
위와 같이 정의한 큐브를 이용해서 특정 지역 또는 이동 통신망의 서비스 지역을 빈틈없이 구역으로 나누어 나타낼 수 있으며(즉, tessellation with cubes), 이러한 결과는 큐브 맵(cube map)으로 표현될 수 있다. 큐브 맵은 하나 이상의 큐브를 포함하는 큐브 리스트(cube list)로 정의될 수 있으며, 큐브 맵을 나타내기 위한 data type(data type for cube map)은 아래 표 2와 같이 정의될 수 있다.Using the cube defined above, a specific region or service area of a mobile communication network can be divided into zones without any gaps (i.e., tessellation with cubes), and these results can be expressed as a cube map. A cube map can be defined as a cube list containing one or more cubes, and the data type for cube map can be defined as shown in Table 2 below.
표 2에 표시된 바와 같이, data type for cube map은 큐브 리스트, 큐브 식별자 및 셀 ID, TA ID로 정의될 수 있다. 만약 data type for cube map이 셀 ID 또는 TA ID에 관한 특성 값을 포함하는 경우, data type for cube map은 해당 셀 영역 또는 TA를 큐브로 구역화(또는 구역을 나누는)한 결과를 표현하는 것으로 이해될 수 있다. 이러한 경우, data type for cube map은 해당 셀 또는 TA에 특정된 정보로 해석될 수 있으며, 다른 셀 또는 TA에서는 유효하지 않은 정보가 될 수 있다. As shown in Table 2, data type for cube map can be defined as cube list, cube identifier and cell ID, and TA ID. If the data type for cube map includes characteristic values for cell ID or TA ID, the data type for cube map will be understood as expressing the result of zoning (or dividing into zones) the corresponding cell area or TA into cubes. You can. In this case, the data type for cube map may be interpreted as information specific to the cell or TA, and may be invalid information in other cells or TAs.
Figure PCTKR2023011458-appb-img-000002
Figure PCTKR2023011458-appb-img-000002
본 개시의 상세한 설명에서는 구체적인 큐브의 형태를 정육면체 또는 직육면체로 한정하여 다음의 실시예의 설명에 사용하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 큐브의 형태의 여러 가지 변형이 가능함은 물론이다. 예를 들어, 큐브의 형태는 다른 형태의 convex한 육면체(hexahedron) 또는 육각기둥(Hexagonal prism) 등의 형태로 정의될 수 있으며, 이러한 다양한 큐브의 형태 또한 본 개시에서 제안하는 발명에 포함됨은 당연하다. 이러한 다른 예시에서, convex 한 정/직육면체가 아닌 육면체의 형태 또는 육각기둥 형태의 큐브를 정의하는 경우, data type for cube로 표시되는 정보의 집합에서 shape에 해당하는 값과 pointList의 값과 cardinality 값이 표 1과는 다른 값을 가질 수 있다.In the detailed description of the present disclosure, the specific shape of the cube is limited to a cube or rectangular parallelepiped and used in the description of the following embodiments. However, of course, various modifications to the shape of the cube are possible without departing from the scope of the present disclosure. For example, the shape of a cube can be defined as a convex hexahedron or a hexagonal prism, and it is natural that these various cube shapes are also included in the invention proposed in this disclosure. . In this other example, when defining a cube in the form of a hexahedron or a hexagonal prism rather than a convex regular/cube, the value corresponding to the shape, the value of pointList, and the cardinality value in the set of information displayed as data type for cube are It may have different values from Table 1.
이와 같이, 코어 망이 큐브 정보 및 큐브 맵 정보를 기반으로 단말의 위치를 추적하고 이동성을 관리하기 위해서는, 새로운 동작 및 기능 등이 필요하다. In this way, in order for the core network to track the location of the terminal and manage mobility based on cube information and cube map information, new operations and functions are required.
먼저, 큐브 맵 정보를 네트워크 기능 및 RAN에게 설정하는 동작이 필요하다. 예를 들어, operation and management(OAM) 시스템을 통해서 LMF, AMF, RAN 등의 네트워크 엔티티(또는 네트워크 기능)에게 큐브 맵 정보가 설정될 수 있다. First, an operation is required to set cube map information to network functions and RAN. For example, cube map information can be set to network entities (or network functions) such as LMF, AMF, and RAN through an operation and management (OAM) system.
또한, LMF, AMF, RAN 등의 엔티티(또는 기능)가 각각에 설정되어 있는 큐브 맵 정보 전체 또는 일부를 단말에게 전달하기 위한 동작이 필요하다. 예를 들어, LMF는 AMF 와 RAN을 통해서 큐브 맵 정보를 단말에게 전달할 수 있다. In addition, an operation is required to transmit all or part of the cube map information in which entities (or functions) such as LMF, AMF, and RAN are set for each to the terminal. For example, LMF can deliver cube map information to the terminal through AMF and RAN.
LMF는 단말의 위치를 큐브 단위로 특정하기 위해 필요한 정보(예를 들어, 보조 데이터(assistance data))를 AMF, RAN, 단말에게 전송하거나 제공할 수 있다. 큐브 단위로 특정하기 위해 필요한 정보는, 단말의 측위(positioning) 수행에 필요한 GPS(global positioning system) 보조 정보, 3GPP 기반 측위 수행에 필요한 기지국의 송수신기 지점 위치 정보, 관련 시그널링 설정 정보(예를 들어, DL/UL 측위 기준 신호(positioning reference signal, PRS) 설정 정보), 및 큐브 맵 정보 중 적어도 하나를 포함할 수 있다. 또한, LMF는 단말로부터 측정 값을 수신하여 직접 큐브 단위로 단말의 위치를 특정하는 연산을 수행할 수 있다. LMF는 이러한 연산 결과로 결정된 큐브 식별자를 AMF에게 제공할 수 있다. The LMF may transmit or provide information (e.g., assistance data) necessary to specify the location of the terminal on a cube basis to the AMF, RAN, and the terminal. The information required for specification on a cube basis includes GPS (global positioning system) auxiliary information needed to perform positioning of the terminal, base station transceiver point location information needed to perform 3GPP-based positioning, and related signaling setting information (e.g., It may include at least one of DL/UL positioning reference signal (PRS) setting information) and cube map information. Additionally, the LMF can receive measurement values from the terminal and directly perform an operation to specify the location of the terminal in cube units. The LMF can provide the cube identifier determined as a result of this operation to the AMF.
AMF는 LMF로부터 수신한 큐브 맵 정보 및 단말의 큐브 단위 위치 측정에 필요한 보조 정보를 RAN을 통해서 단말에게 전달할 수 있다. 또한, AMF는 단말로부터 수신한 시그널링을 기반으로 해당 단말이 큐브 단위의 이동성 관리를 지원하는지 판단할 수 있다. 또한, AMF는 UDM 과 연동하여 해당 단말에 대한 가입자 정보를 확인하고, 네트워크에서 해당 단말에 대한 큐브 단위 이동성 관리를 허용하는지 확인할 수 있다. 추가적으로, AMF는 큐브 단위로 적용되는 AM 정책(access and mobility management policy)를 해당 단말에 대해서 적용(apply)하거나 집행(enforcement) 할 수 있다.The AMF can deliver the cube map information received from the LMF and the auxiliary information necessary for measuring the cube-level position of the terminal to the terminal through the RAN. Additionally, AMF can determine whether the terminal supports cube-level mobility management based on signaling received from the terminal. In addition, AMF can check subscriber information for the corresponding terminal in conjunction with UDM and check whether the network allows cube-level mobility management for the terminal. Additionally, AMF can apply or enforce AM policies (access and mobility management policy) applied on a cube basis to the corresponding terminal.
RAN은 설정된 큐브 맵 정보 또는 LMF로부터 AMF를 통해서 수신한 큐브 맵 정보(예를 들어, cell-specific cube map 또는 TA-specific cube map 정보) 또는 큐브 단위 단말 위치 측정에 필요한 보조 정보(예를 들어, GPS 보조 정보, 3GPP 기반 측위 수행에 필요한 기지국의 송수신기 지점 위치 정보 및 관련 DL/UL PRS 설정 정보와 같은 시그널링 설정 정보, 큐브 맵 정보) 중 적어도 하나를 단말에게 전달할 수 있다. RAN이 단말에게 상술한 정보를 전달하는 방식은, 주기적인 브로드캐스트(예를 들어, SIB(system information block)에 포함하여 주기적으로 전송)하는 방식, 또는 단말이 초기 접속 절차 시 on-demand SIB를 요청했을 때 그에 대한 응답으로 큐브 맵 정보 또는 큐브 단위 단말 위치 측정에 필요한 보조 정보를 전송하는 방식을 포함할 수 있다. 또한, RAN은 AMF로부터 수신한 정보를 기반으로 단말에 대한 큐브 단위로 적용되는 AM 정책 집행(enforcement)를 수행할 수 있다.The RAN uses set cube map information or cube map information received from LMF through AMF (e.g., cell-specific cube map or TA-specific cube map information), or auxiliary information required for cube unit UE location measurement (e.g., At least one of GPS assistance information, signaling configuration information such as base station transceiver point location information and related DL/UL PRS configuration information required to perform 3GPP-based positioning, and cube map information) may be transmitted to the terminal. The method by which the RAN transmits the above-described information to the terminal is through periodic broadcasting (e.g., periodically transmitted by including in a SIB (system information block)), or when the terminal transmits an on-demand SIB during the initial access procedure. When requested, the response may include transmitting cube map information or auxiliary information necessary for cube-level terminal location measurement. Additionally, the RAN can perform AM policy enforcement applied on a cube basis to the terminal based on information received from the AMF.
단말은 네트워크로부터 수신한 정보(큐브 맵 정보 및 큐브 단위 단말 위치 측정에 필요한 보조 정보)를 기반으로 단말이 위치한 큐브의 큐브 식별자(cube identifier, cube ID)를 결정하는 동작을 수행할 수 있다.The terminal may perform an operation to determine the cube identifier (cube ID) of the cube in which the terminal is located based on information received from the network (cube map information and auxiliary information required for cube-level terminal location measurement).
또한, 단말은 단말 내 USIM(Universal Subscriber Identify Module) 또는 UICC(Universal integrated circuit card)에 설정되어 있는 정보에 기반하여 큐브 식별자에 대한 숨김(concealment) 동작을 수행할 수 있으며, 단말은 숨겨진 큐브 식별자(concealed cube ID)를 RAN을 통해 AMF에게 전송할 수 있다. 이러한 숨김(concealment) 동작은 단말 내 설정되어 있는 홈 네트워크 공용 키(home network public key)를 사용하여 수행될 수 있다.In addition, the terminal can perform a concealment operation for the cube identifier based on information set in the Universal Subscriber Identify Module (USIM) or the universal integrated circuit card (UICC) within the terminal, and the terminal can use the hidden cube identifier ( concealed cube ID) can be transmitted to AMF through RAN. This concealment operation can be performed using the home network public key set in the terminal.
또한, 단말은 단말 내 설정된 정보 또는 네트워크로부터 수신한 정보에 따라 직접 큐브 식별자를 결정하지 않고, 단말 위치 계산에 필요한 측정 값을 네트워크 기능 또는 네트워크 엔티티(예를 들어, LMF 또는 AMF)에게 제공할 수 있다.In addition, the terminal may not directly determine the cube identifier based on information set within the terminal or information received from the network, but may provide the network function or network entity (e.g., LMF or AMF) with the measurement values required to calculate the terminal location. there is.
또한, 단말은 큐브 맵 정보에 기반하여 스스로의 위치를 모니터링하고, 특정 조건(네트워크로부터 수신한 큐브 식별자 리포팅 조건)에 따라 AMF에게 단말이 위치한 큐브 식별자 정보를 전송할 수 있다.Additionally, the terminal can monitor its own location based on cube map information and transmit the cube identifier information where the terminal is located to the AMF according to specific conditions (cube identifier reporting conditions received from the network).
UDM은 AMF 또는 LMF의 요청에 따라 홈 네트워크 공용 키로 concealment 된 큐브 식별자 또는 단말의 위치 관련 측정 값에 대한 드러냄(노출) 또는 숨김 해제(de-concealment) 동작을 수행할 수 있다. 또한, UDM은 단말에 대한 큐브 단위 이동성 관리 허용 여부 관련 가입자 정보를 저장하고, AMF 또는 LMF에게 관련 정보를 제공해줄 수 있다.At the request of the AMF or LMF, the UDM can perform a revealing or de-concealment operation on the cube identifier or the location-related measurement value of the terminal concealed with the home network public key. In addition, UDM stores subscriber information related to whether cube-level mobility management is allowed for the terminal and can provide related information to AMF or LMF.
이하에서는, 앞서 설명한 큐브 단위 이동성 관리를 위한 절차들을 구체적으로 설명한다.Below, the procedures for cube-level mobility management described above will be described in detail.
도 3은 본 개시에서 제안하는 실시예와 관련하여 상세한 위치를 기반으로 단말의 이동성을 관리하는 절차에 대해 설명하는 도면이다. 도 3은 큐브 단위의 이동성 관리 절차에 대해 구체적으로 설명한다.FIG. 3 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure. Figure 3 explains in detail the cube-level mobility management procedure.
0. OAM 시스템은, 큐브 맵 정보를 RAN, AMF, LMF 등의 네트워크 엔티티(또는 네트워크 기능)에게 설정한다. 큐브 맵 정보가 RAN에 설정되는 경우, OAM은 RAN의 커버리지 영역 또는 셀 영역에 대응되는 큐브 맵 정보만을 RAN에게 설정할 수 있다. 예를 들어, RAN에 설정되는 큐브 맵 정보는 RAN에서 브로드캐스팅하는 셀 ID에 대응되는 정보만을 포함할 수 있다. 큐브 맵 정보가 AMF에게 설정되는 경우, OAM은 AMF의 TA(들)로 정의되는 AMF 서비스 영역에 대응되는 큐브 맵 정보만을 AMF에게 설정할 수 있다. 예를 들어, AMF 서비스 영역이 TA ID 리스트로 표현되는 경우, AMF에게 설정되는 큐브 맵 정보는 해당 TA ID에 대응되는 큐브 맵 정보를 포함할 수 있다. 또는, OAM이 AMF에게 특정 단말에 대한 큐브 맵을 설정하는 경우, 해당 큐브 맵 은 단말의 등록 영역에 대응되는 정보만을 포함할 수 있다. 예를 들어, AMF가 설정한 단말의 등록 영역이 TA ID 리스트로 표현되는 경우, 해당 TA ID 리스트에 대응되는 큐브 맵 정보가 단말 별로 AMF에게 설정될 수 있다. OAM이 LMF에게 큐브 맵 정보를 설정하는 경우, LMF의 서비스 영역에 대응되는 큐브 맵 정보가 LMF에게 설정될 수 있다.0. The OAM system sets cube map information to network entities (or network functions) such as RAN, AMF, and LMF. When cube map information is set to the RAN, the OAM can set only the cube map information corresponding to the coverage area or cell area of the RAN to the RAN. For example, cube map information set in the RAN may include only information corresponding to the cell ID broadcasted by the RAN. When cube map information is set to AMF, OAM can set only cube map information corresponding to the AMF service area defined by the TA(s) of AMF to AMF. For example, when the AMF service area is expressed as a TA ID list, cube map information set for AMF may include cube map information corresponding to the corresponding TA ID. Alternatively, when the OAM sets a cube map for a specific terminal to the AMF, the cube map may include only information corresponding to the registration area of the terminal. For example, if the registration area of the terminal set by the AMF is expressed as a TA ID list, cube map information corresponding to the TA ID list may be set to the AMF for each terminal. When the OAM sets cube map information to the LMF, cube map information corresponding to the service area of the LMF may be set to the LMF.
1. LMF는 AMF에게 큐브 단위로 단말의 위치를 측정하는데 필요한 보조 데이터(또는 보조정보)를 전송하거나 제공한다. 이러한 보조 데이터(또는 정보)는 단말 또는 RAN에서 단말의 위치를 측정하는데 필요한 정보를 의미하며, 다음 중 적어도 하나에 대한 정보가 보조 데이터(또는 정보)에 포함될 수 있다.1. The LMF transmits or provides the AMF with auxiliary data (or auxiliary information) necessary to measure the location of the terminal in cube units. This auxiliary data (or information) refers to information necessary to measure the location of the UE in the UE or RAN, and information on at least one of the following may be included in the auxiliary data (or information).
[TAI, Cell ID, TA-specific cube map 정보, cell-specific cube map 정보, RAN의 송신기/수신기 지점(들)(Transmission/Reception point(s), TRP(s))에 대한 DL-PRS 설정 정보, RAN TRP 들에 대한 SSB(Synchronization Signal Block), spatial direction information of the DL-PRS, TRP 들에 대한 지리적 좌표(geographical coordinates) 정보][TAI, Cell ID, TA-specific cube map information, cell-specific cube map information, DL-PRS configuration information for RAN transmitter/receiver point(s) (Transmission/Reception point(s), TRP(s)) , SSB (Synchronization Signal Block) for RAN TRPs, spatial direction information of the DL-PRS, geographic coordinates information for TRPs]
LMF가 이러한 보조 데이터(또는 보조 정보)를 제공하는 조건은 다음과 같을 수 있다. LMF가 AMF로부터 보조 데이터 요청을 수신하거나, 외부 AF(application function)의 요청을 (NEF를 통해서) 수신하거나, 또는 LMF의 서비스 영역이 cube-level 이동성 관리 지역과 겹치는 경우, LMF는 LMF 서비스 영역 내 AMF에게 보조 데이터를 제공할 수 있다.The conditions under which LMF provides such auxiliary data (or auxiliary information) may be as follows. If the LMF receives an auxiliary data request from an AMF, a request from an external application function (AF) (via the NEF), or the LMF's service area overlaps a cube-level mobility management area, the LMF is within the LMF service area. Auxiliary data may be provided to AMF.
2. AMF는 LMF로부터 수신한 큐브 단위로 단말의 위치를 측정하는데 필요한 보조 데이터를 RAN에게 전송한다.2. AMF transmits to the RAN the auxiliary data required to measure the location of the terminal in cube units received from the LMF.
3. RAN은 앞서 OAM 으로부터 수신하여 설정된 정보(예를 들어, cube ID 리스트를 포함하는 큐브 맵 정보) 와 AMF로부터 수신한 큐브 단위로 단말의 위치를 측정하는데 필요한 보조 데이터 중 적어도 하나를 단말에게 전송한다.3. The RAN transmits to the terminal at least one of the information previously received and set from the OAM (e.g., cube map information including a cube ID list) and auxiliary data required to measure the location of the terminal in cube units received from the AMF. do.
RAN이 단말에 상술한 정보를 전송하는 방식은 다음과 같이 두 가지 방법을 따를 수 있다. RAN은 해당 정보를 브로드캐스트 메시지에 포함시켜 주기적으로 브로드캐스트할 수 있다. 또는 RAN은 단말이 on-demand system information block(SIB) 메시지에 cube-level positioning 또는 cube-level mobility management 지시자 또는 flag를 포함하여 RAN에게 전송하였을 때, RAN의 응답 메시지에 상기 보조 데이터를 포함하여 단말에게 전송할 수 있다.The RAN can transmit the above-described information to the terminal in two ways as follows. The RAN can periodically broadcast the information by including it in a broadcast message. Alternatively, when the RAN transmits an on-demand system information block (SIB) message including a cube-level positioning or cube-level mobility management indicator or flag to the RAN, the RAN's response message includes the auxiliary data and sends the RAN to the RAN. can be sent to.
4. 단말은 RAN 으로부터 수신한 정보, 단말 내부 탑재된 GPS 모듈, 센서 중 적어도 하나를 활용하여 단말 위치 측정/계산을 통해서 단말의 위치 좌표 값을 계산하고, 큐브 맵 정보와 비교하여, 단말이 위치한 큐브를 결정한다. 단말은 해당 큐브 ID를 RAN 및 AMF에게 전송하기 위한 동작을 수행할 수 있다. 4. The terminal calculates the location coordinates of the terminal through terminal location measurement/calculation using at least one of the information received from the RAN, the GPS module mounted inside the terminal, and the sensor, and compares it with the cube map information to determine where the terminal is located. Decide on a cube. The terminal may perform an operation to transmit the corresponding cube ID to the RAN and AMF.
구체적으로, 단말은 결정된 큐브 ID를 단말에 설정되어 있는 홈 네트워크 공용 키를 사용하여 concealment를 수행하고, concealed cube ID를 생성한다. 예를 들어, 단말은 단말 내 USIM에 큐브 ID 숨김 지시자(concealment indication)가 설정되어 있는 경우, USIM에 저장된 홈 네트워크 공용 키를 사용하여 concealed cube ID를 계산하여 생성할 수 있다. 만약, USIM에 큐브 ID 숨김 지시자가 설정되어 있지 않은 경우, 단말은 다른 encryption 방식을 사용하여 큐브 ID를 암호화할 수 있다. Specifically, the terminal performs concealment of the determined cube ID using the home network public key set in the terminal and generates a concealed cube ID. For example, if the cube ID concealment indication is set in the USIM within the terminal, the terminal can calculate and generate a concealed cube ID using the home network public key stored in the USIM. If the cube ID hiding indicator is not set in the USIM, the terminal can encrypt the cube ID using another encryption method.
5. 단말은 생성한 concealed cube ID를 AMF에게 전송한다. Concealed cube ID는 단말의 등록 요청(registration request) 메시지에 포함되어 전송될 수 있다. 단말은 concealed cube ID를 AMF에게 전송할 때, 세분화된 이동성 관리의 지원 관련 지시자(fine grained MM(mobility management) support indication)와 단말이 큐브 ID를 암호화한 방식 또는 cube ID concealment 방식(예를 들어, 홈 네트워크 공용 키 사용 여부, 암호화 scheme 정보 등), 및 단말 식별자 중 적어도 하나를 concealed cube ID 와 함께 AMF에게 제공할 수 있다.5. The terminal transmits the generated concealed cube ID to AMF. Concealed cube ID may be transmitted and included in the terminal's registration request message. When transmitting a concealed cube ID to the AMF, the terminal includes a fine grained MM (mobility management) support indication and the method by which the terminal encrypted the cube ID or the cube ID concealment method (e.g., home At least one of the network public key usage, encryption scheme information, etc.), and terminal identifier can be provided to AMF along with the concealed cube ID.
6. AMF는 단말로부터 concealed cube ID를 수신하고 cube ID concealment 방식이 홈 네트워크 공용 키를 사용한 경우, concealed cube ID를 단말 식별자와 같이 UDM에게 전송할 수 있다. 또한, 단말이 세분화된 이동성 관리의 지원 관련 지시자(fine-grained MM support indication)를 통해 세분화된 이동성 관리를 지원함을 지시한 경우, AMF는 UDM에게 관련 가입자 정보를 요청할 수 있다. 6. AMF receives the concealed cube ID from the terminal, and if the cube ID concealment method uses the home network public key, the AMF can transmit the concealed cube ID to the UDM along with the terminal identifier. Additionally, if the terminal indicates that it supports fine-grained mobility management through a fine-grained MM support indication, the AMF may request related subscriber information from the UDM.
7. UDM은 concealed cube ID에 대한 de-concealment 동작을 홈 네트워크 개인 키(home network private key)를 활용하여 수행한다. 이러한 동작은 UDM의 SIDF(subscriber identity de-concealing function)에서 수행된다.7. UDM performs de-concealment operation for concealed cube ID using home network private key. This operation is performed in UDM's SIDF (subscriber identity de-concealing function).
UDM 은 또한 해당 단말에 대해서 fine-grained mobility management 또는 cube-level mobility management가 허용되는지 가입자 정보를 기반으로 확인할 수 있다. 또한, 망 사업자의 정책 및 가입자 정보에 따라 단말에 대해 fine-grained mobility management 또는 cube-level mobility management 가 허용된 경우에만, de-concealment 동작을 수행할 수도 있다. 예를 들어, 단말이 fine-grained mobility management를 지원하지 않거나 cube-level mobility management 가 단말에 대해서 허용되지 않은 경우, UDM은 큐브 ID에 대한 de-concealment 동작은 수행하지 않고 거절 응답을 AMF에게 제공할 수 있다. UDM can also check based on subscriber information whether fine-grained mobility management or cube-level mobility management is allowed for the corresponding terminal. Additionally, the de-concealment operation may be performed only when fine-grained mobility management or cube-level mobility management is allowed for the terminal according to the network operator's policy and subscriber information. For example, if the terminal does not support fine-grained mobility management or cube-level mobility management is not allowed for the terminal, the UDM will not perform a de-concealment operation for the cube ID and provide a rejection response to the AMF. You can.
8. UDM 은 cube ID de-concealment 수행 결과로써 큐브 ID를 AMF에게 전송한다. UDM 은 AMF에게 단말이 fine-grained mobility management 또는 cube-level mobility management가 허용됨을 나타내는 가입자 정보 또한 제공할 수 있다. AMF는 단말이 위치한 큐브 영역의 큐브 ID를 RAN에게 제공할 수 있다.8. UDM transmits the cube ID to AMF as a result of cube ID de-concealment. UDM can also provide AMF with subscriber information indicating that the terminal is allowed to use fine-grained mobility management or cube-level mobility management. AMF can provide the RAN with the cube ID of the cube area where the terminal is located.
9. AMF는 UDM 으로부터 수신한 큐브 ID를 사용하여, AM 정책 연관을 수행할 수 있다. 예를 들어, AMF는 단말이 위치한 큐브의 큐브 ID를 PCF에게 제공하고, PCF로부터 해당 큐브 영역에서 적용되어야 하는 정책 정보를 수신할 수 있다. AMF가 PCF로부터 수신하는 정책 정보는 다음 중 적어도 하나를 포함할 수 있다.9. AMF can perform AM policy association using the cube ID received from UDM. For example, AMF may provide the PCF with the cube ID of the cube where the terminal is located, and receive policy information that should be applied in the corresponding cube area from the PCF. Policy information that AMF receives from PCF may include at least one of the following:
- 큐브 단위 mobility restriction 또는 service area restriction(allowed cube ID list, non-allowed cube ID list)- Cube-level mobility restriction or service area restriction (allowed cube ID list, non-allowed cube ID list)
- 큐브 단위 RFSP(RAT Frequency Selection Priority) Index value: 큐브 영역에 대해서 설정된 RAT Frequency Selection Priority 값, subscriber profile ID for RAT/Frequency Priority 과 대응될 수 있음- Cube unit RFSP (RAT Frequency Selection Priority) Index value: RAT Frequency Selection Priority value set for the cube area, may correspond to subscriber profile ID for RAT/Frequency Priority
- 큐브 단위 UE-AMBR(aggregate maximum bitrate) 또는 UE Slice-MBR(maximum bitrate)- Per cube UE-AMBR (aggregate maximum bitrate) or UE Slice-MBR (maximum bitrate)
AMF는 PCF로부터 큐브 단위 RFSP(Radio access type/Frequency of Selection Priority) Index를 포함하는 AM 정책을 수신한 경우, RFSP Index 값을 RAN에게 전달하고, RAN에서 RAT Frequency selection priority를 기반으로 RAT/Frequency 선택을 수행할 수 있다. 또한, AMF는 단말의 위치에 부합하는 큐브 ID를 RAN에게 같이 제공할 수 있다.When AMF receives an AM policy including a cube-level RFSP (Radio access type/Frequency of Selection Priority) Index from PCF, it transmits the RFSP Index value to RAN, and RAN selects RAT/Frequency based on RAT Frequency selection priority. can be performed. Additionally, AMF can also provide the RAN with a cube ID that matches the location of the terminal.
10. AMF는 UDM 으로부터 획득한 큐브 ID(de-concealed cube ID) 와 reporting triggering condition(list of neighbor cube ID list), flag to perform cube-level mobility tracking 중 적어도 하나를 단말에게 전송한다.10. AMF transmits to the terminal at least one of the cube ID (de-concealed cube ID) obtained from UDM, reporting triggering condition (list of neighbor cube ID list), and flag to perform cube-level mobility tracking.
단계 10 이후, 단말은 AMF로부터 수신한 큐브 ID 와 단말에서 단계 4에서 정한 큐브 ID가 일치하는지 확인하고, AMF가 제공한 reporting triggering condition에 포함된 큐브 ID 리스트에 포함된 큐브 ID로 식별되는 큐브 영역을 벗어나는지 모니터링한다. 이러한 모니터링은 단계 4와 같이 UE-based positioning을 통해서 수행될 수 있다.After step 10, the terminal checks whether the cube ID received from AMF matches the cube ID determined in step 4 in the terminal, and the cube area identified by the cube ID included in the cube ID list included in the reporting triggering condition provided by AMF Monitor whether it is out of bounds. This monitoring can be performed through UE-based positioning as in step 4.
단말은 reporting triggering condition에 포함된 큐브 ID 리스트에 포함된 큐브 영역을 벗어나서 새로운 큐브 영역에 들어가게 되면, AMF에게 등록을 재수행하면서 해당 큐브 ID를 전송한다. 이 때, 재수행하는 등록 절차가 등록 갱신(registration update)인 경우, NAS 시그널링 보안이 보장되는 상태일 수 있기 때문에 큐브 ID 앞의 단계 4에서와 같이 별도의 방식으로 concealment 하지 않고 보안이 적용된 NAS 시그널링을 통해서 AMF에게 전송할 수 있다.When the terminal leaves the cube area included in the cube ID list included in the reporting triggering condition and enters a new cube area, it re-registers with AMF and transmits the cube ID. At this time, if the registration procedure to be re-performed is a registration update, the NAS signaling security may be guaranteed, so secure NAS signaling is performed without concealment in a separate method as in step 4 in front of the cube ID. It can be sent to AMF through.
도 4는 본 개시에서 제안하는 실시예와 관련하여 상세한 위치를 기반으로 단말의 이동성을 관리하는 절차에 대해 설명하는 도면이다. 도 4는 큐브 단위의 이동성 관리 절차와 관련하여 NAS 보안 모드 제어 절차가 완료된 이후의 동작을 구체적으로 설명한다.FIG. 4 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure. Figure 4 specifically explains operations after the NAS security mode control procedure is completed in relation to the cube-level mobility management procedure.
0. OAM 시스템은, 큐브 맵 정보를 RAN, AMF, LMF 등의 네트워크 엔티티(또는 네트워크 기능)에게 설정한다. 큐브 맵 정보가 RAN에 설정되는 경우, OAM은 RAN의 커버리지 영역 또는 셀 영역에 대응되는 큐브 맵 정보만을 RAN에게 설정할 수 있다. 예를 들어, RAN에 설정되는 큐브 맵 정보는 RAN에서 브로드캐스팅하는 셀 ID에 대응되는 정보만을 포함할 수 있다. 큐브 맵 정보가 AMF에 설정되는 경우, OAM은 AMF의 TA(들)로 정의되는 AMF 서비스 영역에 대응되는 큐브 맵 정보만을 AMF에게 설정할 수 있다. 예를 들어, AMF 서비스 영역이 TA ID 리스트로 표현되는 경우, AMF에 설정되는 큐브 맵 정보는 해당 TA ID에 대응되는 큐브 맵 정보를 포함할 수 있다. 또는, OAM이 AMF에게 특정 단말에 대한 큐브 맵을 설정하는 경우, 해당 큐브 맵 은 단말의 등록 영역에 대응되는 정보를 포함할 수 있다. 예를 들어, AMF가 설정한 단말의 등록 영역이 TA ID 리스트로 표현되는 경우, 해당 TA ID 리스트에 대응되는 큐브 맵 정보가 단말 별로 AMF에 설정될 수 있다. OAM이 LMF에게 큐브 맵 정보를 설정하는 경우, LMF의 서비스 영역에 대응되는 큐브 맵 정보가 LMF에 설정될 수 있다.0. The OAM system sets cube map information to network entities (or network functions) such as RAN, AMF, and LMF. When cube map information is set to the RAN, the OAM can set only the cube map information corresponding to the coverage area or cell area of the RAN to the RAN. For example, cube map information set in the RAN may include only information corresponding to the cell ID broadcasted by the RAN. When cube map information is set in the AMF, the OAM can set only the cube map information corresponding to the AMF service area defined by the TA(s) of the AMF to the AMF. For example, when the AMF service area is expressed as a TA ID list, cube map information set in AMF may include cube map information corresponding to the corresponding TA ID. Alternatively, when the OAM sets the cube map for a specific terminal to the AMF, the cube map may include information corresponding to the registration area of the terminal. For example, if the registration area of the terminal set by the AMF is expressed as a TA ID list, cube map information corresponding to the TA ID list may be set in the AMF for each terminal. When the OAM sets cube map information to the LMF, cube map information corresponding to the service area of the LMF may be set to the LMF.
1. LMF는 AMF에게 큐브 단위로 단말의 위치를 측정하는데 필요한 보조 데이터(또는 보조 정보)를 전송하거나 제공한다. 이러한 보조 데이터(또는 정보)는 단말 또는 RAN에서 단말의 위치를 측정하는데 필요한 정보를 의미하며, 다음 중 적어도 하나에 대한 정보가 보조 데이터(또는 정보)에 포함될 수 있다.1. The LMF transmits or provides the AMF with auxiliary data (or auxiliary information) necessary to measure the location of the terminal in cube units. This auxiliary data (or information) refers to information necessary to measure the location of the UE in the UE or RAN, and information on at least one of the following may be included in the auxiliary data (or information).
[TAI, Cell ID, TA-specific cube map 정보, cell-specific cube map 정보, RAN의 송신기/수신기 지점(들)에 대한 DL-PRS 설정 정보, RAN TRP 들에 대한 SSB, spatial direction information of the DL-PRS, TRP 들에 대한 지리적 좌표 정보][TAI, Cell ID, TA-specific cube map information, cell-specific cube map information, DL-PRS configuration information for the transmitter/receiver point(s) of the RAN, SSB for RAN TRPs, spatial direction information of the DL -Geographic coordinate information for PRS and TRPs]
LMF가 이러한 보조 데이터(또는 정보)를 제공하는 조건은 다음과 같을 수 있다. LMF가 AMF로부터 보조 데이터 요청을 수신하거나, 외부 AF의 요청을 (NEF를 통해서) 수신하거나, 또는 LMF의 서비스 영역이 cube-level 이동성 관리 지역과 겹치는 경우, LMF는 LMF 서비스 영역 내 AMF에게 보조 데이터를 제공할 수 있다.The conditions under which LMF provides such auxiliary data (or information) may be as follows. When the LMF receives an ancillary data request from an AMF, a request from an external AF (via the NEF), or the LMF's service area overlaps a cube-level mobility management area, the LMF sends ancillary data to the AMF within the LMF service area. can be provided.
2. AMF는 LMF로부터 수신한 큐브 단위로 단말의 위치를 측정하는데 필요한 보조 데이터를 RAN에게 전송한다.2. AMF transmits to the RAN the auxiliary data required to measure the location of the terminal in cube units received from the LMF.
3. RAN은 앞서 OAM으로부터 수신하여 설정된 정보(예를 들어, 큐브 ID 리스트를 포함하는 큐브 맵 정보) 와 AMF로부터 수신한 큐브 단위로 단말의 위치를 측정하는데 필요한 보조 데이터 중 적어도 하나를 단말에게 전송한다.3. The RAN transmits to the terminal at least one of the information previously received and set from the OAM (e.g., cube map information including a cube ID list) and auxiliary data required to measure the location of the terminal in cube units received from the AMF. do.
RAN이 단말에게 상술한 정보를 전송하는 방식은 다음과 같이 두 가지 방법을 따를 수 있다. RAN은 해당 정보를 브로드캐스트 메시지에 포함시켜 주기적으로 브로드캐스트할 수 있다. 또는 RAN은 단말이 on-demand system information block(SIB) 메시지에 cube-level positioning 또는 cube-level mobility management 지시자 또는 flag를 포함하여 RAN에게 전송하였을 때, RAN의 응답 메시지에 상기 보조 데이터를 포함하여 단말에게 전송할 수 있다.The RAN transmits the above-described information to the UE in two ways as follows. The RAN can periodically broadcast the information by including it in a broadcast message. Alternatively, when the RAN transmits an on-demand system information block (SIB) message including a cube-level positioning or cube-level mobility management indicator or flag to the RAN, the RAN's response message includes the auxiliary data and sends the RAN to the RAN. can be sent to.
4. 단말은 RAN 으로부터 수신한 정보, 단말 내부 탑재된 GPS 모듈, 센서 중 적어도 하나를 활용하여 단말 위치 측정/계산을 통해서 단말의 위치 좌표 값을 계산하고, 큐브 맵 정보와 비교하여, 단말이 위치한 큐브를 결정한다. 단말은 해당 큐브 ID를 RAN 및 AMF에게 전송하기 위한 동작을 수행할 수 있다. 4. The terminal calculates the location coordinates of the terminal through terminal location measurement/calculation using at least one of the information received from the RAN, the GPS module mounted inside the terminal, and the sensor, and compares it with the cube map information to determine where the terminal is located. Decide on a cube. The terminal may perform an operation to transmit the corresponding cube ID to the RAN and AMF.
구체적으로, 만약, USIM에 cube ID 숨김 지시자가 설정되어 있지 않거나 RAN 으로부터 큐브 ID 전송 관련 가이드 정보를 수신하지 않은 경우, 또는 단말이 직접 cube ID concealment를 지원하지 않는 경우, 단말은 앞의 단계에서 결정한 큐브 ID를 concealment하지 않고 최초 등록 요청에 큐브 ID를 포함시키지 않을 수 있다.Specifically, if the cube ID hiding indicator is not set in the USIM, or guide information related to cube ID transmission is not received from the RAN, or if the terminal does not directly support cube ID concealment, the terminal determines in the previous step. You can avoid concealing the cube ID and not include it in the initial registration request.
5. 단말은 AMF에게 단말 식별자 및 세분화된 이동성 관리의 지원 관련 지시자(fine-grained MM support indication) 또는 큐브-레벨 이동성 관리의 지원 관련 지시자(cube-level MM support indication) 또는 큐브-레벨 이동성 관리 지원에 대한 단말의 능력(UE capability to support cube-level MM) 중 적어도 하나를 등록 요청 메시지에 포함하여 전송할 수 있다.5. The terminal provides AMF with a terminal identifier and an indicator related to support of fine-grained mobility management (fine-grained MM support indication) or an indicator related to support of cube-level mobility management (cube-level MM support indication) or cube-level mobility management support. At least one of the UE capabilities to support cube-level MM may be included and transmitted in the registration request message.
6. AMF는 단말로부터 수신한 정보를 기반으로 단말, AUSF 와 UDM 과 연동하여 인증(authentication) 및 보안(security) 관련 절차를 수행한다. UDM 은 해당 단말에 대해서 세분화된 이동성 관리(fine-grained MM 또는 cube-level MM 지원(또는 허용) 여부에 대한 정보를 AMF에게 알릴 수 있다. 6. AMF performs authentication and security-related procedures in conjunction with the terminal, AUSF, and UDM based on the information received from the terminal. UDM can inform AMF of information about whether fine-grained MM or cube-level MM is supported (or allowed) for the corresponding terminal.
7. AMF는 앞의 단계에서 단말과 상호 인증 절차를 성공적으로 수행하면, NAS security mode command를 단말에게 전송한다. 이 때, AMF가 단계 5에서 단말로부터 fine-grained MM support indication 또는 cube-level MM support indication 또는 UE capability to support cube-level MM을 수신하였다면, AMF는 NAS security mode command를 단말에게 전송하면서, flag requesting UE location 또는 flag requesting cube ID를 같이 전송할 수 있다.7. If AMF successfully performs the mutual authentication process with the terminal in the previous step, it sends a NAS security mode command to the terminal. At this time, if the AMF receives a fine-grained MM support indication or cube-level MM support indication or UE capability to support cube-level MM from the terminal in step 5, the AMF sends a NAS security mode command to the terminal and requests a flag. The UE location or flag requesting cube ID can be transmitted together.
8. 단말은 AMF로부터 flag requesting UE location 또는 flag requesting cube ID를 수신하면, 단계 4에서 결정한 큐브 ID를 포함하는 NAS container를 생성한다. 해당 NAS container는 큐브 ID 와 단말 식별자와 같이 등록 요청 메시지에 포함될 수 있는 정보들을 함께 포함할 수 있다. 또한, 단말은 해당 NAS container에 대한 암호화(ciphering) 및 무결성 보호 방식(integrity protection scheme)을 적용할 수 있다.8. When the terminal receives the flag requesting UE location or flag requesting cube ID from AMF, it creates a NAS container containing the cube ID determined in step 4. The NAS container may include information that can be included in the registration request message, such as cube ID and terminal identifier. Additionally, the terminal can apply ciphering and integrity protection schemes to the corresponding NAS container.
9. 단말은 큐브 ID가 포함된 NAS container를 AMF에게 전송한다.9. The terminal transmits the NAS container containing the cube ID to AMF.
10. AMF는 단말로부터 큐브 ID를 수신하면, UDM을 선택하고 해당 단말에 대한 cube-level mobility management 관련 가입자 정보를 요청할 수 있다. UDM은 AMF에게 단말이 fine-grained mobility management 또는 cube-level mobility managemen가 허용됨을 나타내는 가입자 정보 또한 제공할 수 있다.10. When the AMF receives the cube ID from the terminal, it can select the UDM and request subscriber information related to cube-level mobility management for the terminal. The UDM can also provide AMF with subscriber information indicating that the terminal is allowed to fine-grained mobility management or cube-level mobility management.
11. AMF는 UDM 으로부터 수신한 큐브 ID를 사용하여, AM 정책 연관을 수행할 수 있다. 예를 들어, AMF는 단말이 위치한 큐브의 큐브 ID를 PCF에게 제공하고 PCF로부터 해당 큐브 영역에서 적용되어야 하는 정책 정보를 수신할 수 있다. AMF가 PCF로부터 수신하는 정책 정보는 다음 중 적어도 하나를 포함할 수 있다.11. AMF can perform AM policy association using the cube ID received from UDM. For example, AMF may provide the PCF with the cube ID of the cube where the terminal is located and receive policy information that should be applied in the corresponding cube area from the PCF. Policy information that AMF receives from PCF may include at least one of the following:
- 큐브 단위 mobility restriction 또는 service area restriction(allowed cube ID list, non-allowed cube ID list)- Cube-level mobility restriction or service area restriction (allowed cube ID list, non-allowed cube ID list)
- 큐브 단위 RFSP(RAT Frequency Selection Priority) Index value: 큐브 영역에 대해서 설정된 RAT Frequency Selection Priority 값, subscriber profile ID for RAT/Frequency Priority 과 대응될 수 있음- Cube unit RFSP (RAT Frequency Selection Priority) Index value: RAT Frequency Selection Priority value set for the cube area, may correspond to subscriber profile ID for RAT/Frequency Priority
- 큐브 단위 UE-AMBR(aggregate maximum bitrate) 또는 UE Slice-MBR(maximum bitrate)- Per cube UE-AMBR (aggregate maximum bitrate) or UE Slice-MBR (maximum bitrate)
AMF는 PCF로부터 큐브 단위 RFSP Index를 포함하는 AM 정책을 수신한 경우, RFSP Index 값을 RAN에게 전달하고, RAN에서 RAT Frequency selection priority를 기반으로 RAT/Frequency 선택을 수행할 수 있다. 또한, AMF는 RAN에게 단말의 위치에 부합하는 큐브 ID를 같이 제공할 수 있다.When the AMF receives an AM policy including the cube-level RFSP Index from the PCF, it transfers the RFSP Index value to the RAN, and the RAN can perform RAT/Frequency selection based on RAT Frequency selection priority. Additionally, AMF can provide the RAN with a cube ID that matches the location of the terminal.
12. AMF는 UDM 으로부터 획득한 큐브 ID(de-concealed cube ID) 와 reporting triggering condition(list of neighbor cube ID list), flag to perform cube-level mobility tracking 중 적어도 하나를 단말에게 전송한다.12. AMF transmits to the terminal at least one of the cube ID (de-concealed cube ID) obtained from UDM, reporting triggering condition (list of neighbor cube ID list), and flag to perform cube-level mobility tracking.
단계 10 이후, 단말은 AMF로부터 수신한 큐브 ID 와 단말에서 단계 4에서 정한 큐브 ID가 일치하는지 확인하고, AMF가 제공한 reporting triggering condition에 포함된 큐브 ID 리스트에 포함된 큐브 ID로 식별되는 큐브 영역을 벗어나는지 모니터링한다. 이러한 모니터링은 단계 4와 같이 UE-based positioning을 통해서 수행될 수 있다. 단말은 reporting triggering condition에 포함된 큐브 ID 리스트에 포함된 큐브 영역을 벗어나 새로운 큐브 영역에 들어가게 되면, AMF에게 등록을 재수행하면서 해당 큐브 ID를 전송한다.After step 10, the terminal checks whether the cube ID received from AMF matches the cube ID determined in step 4 in the terminal, and the cube area identified by the cube ID included in the cube ID list included in the reporting triggering condition provided by AMF Monitor whether it is out of bounds. This monitoring can be performed through UE-based positioning as in step 4. When the terminal leaves the cube area included in the cube ID list included in the reporting triggering condition and enters a new cube area, it re-registers with AMF and transmits the corresponding cube ID.
도 5는 본 개시에서 제안하는 실시예와 관련하여 상세한 위치를 기반으로 단말의 이동성을 관리하는 절차에 대해 설명하는 도면이다. 도 5는 큐브 단위의 이동성 관리 절차와 관련하여 LMF 기반의 방식을 구체적으로 설명한다.FIG. 5 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure. Figure 5 specifically explains the LMF-based method in relation to the cube-level mobility management procedure.
0. 앞서 도 3 및 도 4에서 설명한 실시예와 같이, OAM 시스템은 큐브 맵 정보를 RAN, AMF, LMF 등의 네트워크 엔티티(또는 기능)에게 설정할 수 있다. 사업자 정책 또는 단말의 위치를 계산하여 단말이 위치한 큐브 영역의 큐브 ID를 결정하는 방식에 따라, RAN에는 큐브 맵 정보가 설정되지 않을 수도 있다. 예를 들어, 네트워크(예를 들어 LMF)에서 단말의 위치를 최종 계산하여 큐브 ID를 결정하는 방식을 사용하는 경우, 큐브 맵 정보는 AMF 와 LMF에만 설정되고 RAN에는 설정되지 않을 수도 있다. 0. As in the embodiment described above in FIGS. 3 and 4, the OAM system can set cube map information to network entities (or functions) such as RAN, AMF, and LMF. Depending on the operator policy or the method of calculating the location of the terminal to determine the cube ID of the cube area where the terminal is located, cube map information may not be set in the RAN. For example, when using a method of determining the cube ID by finally calculating the location of the terminal in the network (eg, LMF), cube map information may be set only in the AMF and LMF and not in the RAN.
1. LMF는 AMF에게 LMF 기반 큐브 단위 단말 위치 측정에 필요한 보조 데이터(또는 보조 정보)를 전송하거나 제공한다. 이러한 보조 데이터(또는 정보)는 단말 또는 RAN에서 단말의 위치를 측정하는데 필요한 정보를 의미하며, 다음 중 적어도 하나에 대한 정보가 보조 데이터(또는 정보)에 포함될 수 있다.1. LMF transmits or provides AMF with auxiliary data (or auxiliary information) necessary for LMF-based cube unit terminal location measurement. This auxiliary data (or information) refers to information necessary to measure the location of the UE in the UE or RAN, and information on at least one of the following may be included in the auxiliary data (or information).
[TAI, Cell ID, TA-specific cube map 정보, cell-specific cube map 정보, RAN의 송신기/수신기 지점(들)에 대한 DL-PRS 설정 정보, RAN TRP 들에 대한 SSB, spatial direction information of the DL-PRS, TRP 들에 대한 지리적 좌표 정보][TAI, Cell ID, TA-specific cube map information, cell-specific cube map information, DL-PRS configuration information for the transmitter/receiver point(s) of the RAN, SSB for RAN TRPs, spatial direction information of the DL -Geographic coordinate information for PRS and TRPs]
LMF가 이러한 보조 데이터(또는 정보)를 제공하는 조건은 다음과 같을 수 있다. LMF는 AMF로부터 보조 데이터 요청을 수신하거나, 외부 application function의 요청을 (NEF를 통해서) 수신하거나, 또는 LMF의 서비스 영역이 cube-level 이동성 관리 지역과 겹치는 경우, LMF는 LMF 서비스 영역 내 AMF에게 보조 데이터를 제공할 수 있다.The conditions under which LMF provides such auxiliary data (or information) may be as follows. The LMF receives assistance data requests from the AMF, receives requests from external application functions (via NEF), or when the LMF's service area overlaps with the cube-level mobility management area, the LMF provides assistance to the AMF within the LMF service area. Data can be provided.
2. AMF는 LMF로부터 수신한 LMF 기반 큐브 단위 단말 위치 측정에 필요한 보조 데이터를 RAN에게 전송한다. 이 때, AMF는 LMF로부터 수신한 정보 중, 큐브 맵 정보(TA-specific cube map 정보 및 cell-specific cube map 정보)를 RAN에게 제공하지 않을 수 있다. 예를 들어, LMF-based positioning을 활용하는 경우, AMF는 큐브 맵 정보를 RAN에게 제공하지 않을 수 있다.2. AMF transmits auxiliary data required for LMF-based cube unit UE location measurement received from LMF to RAN. At this time, the AMF may not provide cube map information (TA-specific cube map information and cell-specific cube map information) among the information received from the LMF to the RAN. For example, when using LMF-based positioning, AMF may not provide cube map information to the RAN.
3. RAN 은 AMF로부터 수신한 LMF 기반 큐브 단위(cube level) 단말 위치 측정에 필요한 보조 데이터를 단말에게 전송한다.3. The RAN transmits to the UE the auxiliary data required for LMF-based cube level UE location measurement received from the AMF.
RAN이 단말에게 상술한 정보를 전송하는 방식은 다음과 같이 두 가지 방법을 따를 수 있다. RAN은 해당 정보를 브로드캐스트 메시지에 포함시켜 주기적으로 브로드캐스트할 수 있다. 또는 RAN은 단말이 on-demand system information block(SIB) 메시지에 cube-level positioning 또는 cube-level mobility management 지시자 또는 flag를 포함하여 RAN에게 전송하였을 때, RAN의 응답 메시지에 상기 보조 데이터를 포함하여 단말에게 전송할 수 있다.The RAN transmits the above-described information to the UE in two ways as follows. The RAN can periodically broadcast the information by including it in a broadcast message. Alternatively, when the RAN transmits an on-demand system information block (SIB) message including a cube-level positioning or cube-level mobility management indicator or flag to the RAN, the RAN's response message includes the auxiliary data and sends the RAN to the RAN. can be sent to.
4. 단말은 RAN으로부터 수신한 정보, 단말 내부 탑재된 GPS 모듈, 센서 중 적어도 하나를 활용하여 단말 위치 계산에 필요한 측정 값(LMF에서 단말의 위치를 결정하는데 필요한 측정 값)을 생성한다. 단말은 해당 측정 값을 RAN 및 AMF를 통해서 LMF에게 전송하기 위한 동작을 수행할 수 있다. 4. The terminal uses at least one of the information received from the RAN, the GPS module mounted inside the terminal, and the sensor to generate measurement values necessary for calculating the terminal location (measurement values necessary to determine the location of the terminal in the LMF). The terminal may perform an operation to transmit the corresponding measurement value to the LMF through RAN and AMF.
구체적으로, 단말은 생성한 측정 값을 단말에 설정되어 있는 홈 네트워크 공용 키를 사용하여 concealment를 수행함으로써, concealed UE measurement를 생성한다. 예를 들어, 단말은 단말 내 USIM에 UE measurement 숨김 지시자가 설정되어 있는 경우, USIM에 저장된 홈 네트워크 공용 키를 사용하여 concealed UE measurement를 계산하여 생성할 수 있다. 만약, USIM에 concealed UE measurement가 설정되어 있지 않은 경우, 단말은 다른 encryption 방식을 사용하여 측정 값을 암호화할 수 있다. Specifically, the terminal performs concealment of the generated measurement values using the home network public key set in the terminal, thereby creating a concealed UE measurement. For example, if the UE measurement hidden indicator is set in the USIM within the terminal, the terminal can calculate and generate a concealed UE measurement using the home network public key stored in the USIM. If concealed UE measurement is not set in USIM, the UE can encrypt the measurement value using another encryption method.
5. 단말은 생성한 concealed UE measurement를 AMF에게 전송한다. 단말은 concealed UE measurement를 등록 요청 메시지에 포함시켜 전송할 수 있다. 단말이 concealed UE measurement를 AMF에게 전송할 때, 단말은 세분화된 이동성 관리의 지원 관련 지시자(fine grained MM support indication)와 함께 단말이 측정 값(UE measurement)을 암호화한 방식 또는 UE measurement concealment 방식(예를 들어, 홈 네트워크 공용 키 사용 여부, 암호화 scheme 정보 등), 및 단말 식별자 중 적어도 하나를 같이 제공할 수 있다.5. The terminal transmits the generated concealed UE measurement to AMF. The UE can transmit the concealed UE measurement by including it in the registration request message. When the UE transmits concealed UE measurement to the AMF, the UE indicates the method by which the UE encrypted the measurement value (UE measurement) or the UE measurement concealment method (for example, a fine grained MM support indication) along with an indicator related to support for fine-grained mobility management (fine grained MM support indication). For example, whether a home network public key is used, encryption scheme information, etc.), and at least one of a terminal identifier may be provided.
6. AMF는 단말로부터 수신한 concealed UE measurement, UE measurement concealment 방식, 단말 식별자, fine grained MM support indication을 LMF에게 전송할 수 있다. 추가적으로, AMF는 LMF에게 해당 정보들을 전송하기 전에 단말의 가입자 정보를 확인하여 해당 단말에 대해서 fine grained MM 지원 여부를 확인할 수 있다. 만약, AMF의 확인 결과, 해당 단말이 세분화된 MM을 지원하지 않는다면, 이하의 동작을 수행하지 않을 수 있다.6. AMF can transmit the concealed UE measurement, UE measurement concealment method, terminal identifier, and fine grained MM support indication received from the terminal to the LMF. Additionally, the AMF can check whether fine grained MM is supported for the terminal by checking the subscriber information of the terminal before transmitting the corresponding information to the LMF. If, as a result of AMF confirmation, the terminal does not support segmented MM, the following operations may not be performed.
7. LMF는 수신한 concealed UE measurement를 수신하고 UE measurement concealment 방식이 홈 네트워크 공용 키를 사용한 경우, concealed UE measurement를 단말 식별자와 같이 UDM에게 전송하면서 de-concealment 요청을 수행할 수 있다.7. The LMF receives the received concealed UE measurement and, if the UE measurement concealment method uses the home network public key, can perform a de-concealment request while transmitting the concealed UE measurement to the UDM along with the terminal identifier.
8, 9. UDM 은 LMF의 요청에 대한 허용 여부를 확인하고, de-concealment를 수행 후, 단말 측정 값(de-concealed UE measurement)을 단말 식별자와 같이 LMF에게 전송할 수 있다.8, 9. The UDM can check whether the LMF's request is permitted, perform de-concealment, and then transmit the UE measurement value (de-concealed UE measurement) along with the UE identifier to the LMF.
참고: 단계 6~9의 동작은 다음과 같이 변형된 절차를 따를 수도 있다. AMF가 LMF에게 concealed UE measurement를 전송하는 동작 대신, AMF는 UDM에게 de-concealment 요청을 전송하고, UDM 으로부터 de-concealed UE measurement 획득할 수 있다. AMF는 de-concealed UE measurement 값을 LMF에게 전송할 수 있다.NOTE: The operations of steps 6 through 9 may follow a modified procedure as follows: Instead of the AMF transmitting concealed UE measurement to the LMF, the AMF can transmit a de-concealment request to the UDM and obtain de-concealed UE measurement from the UDM. AMF can transmit de-concealed UE measurement values to LMF.
10. LMF는 획득한 단말 측정 값(de-concealed UE measurement)과 큐브 맵 정보를 활용하여 단말의 위치를 계산하고, 단말이 위치한 큐브 영역의 큐브 ID를 결정한다.10. LMF calculates the location of the terminal using the acquired UE measurement value (de-concealed UE measurement) and cube map information, and determines the cube ID of the cube area where the terminal is located.
11. LMF는 앞의 동작에서 결정한 큐브 ID(단말이 위치한 큐브 영역의 큐브 ID)를 AMF에게 전송한다.11. The LMF transmits the cube ID (cube ID of the cube area where the terminal is located) determined in the previous operation to the AMF.
12. AMF는 수신한 큐브 ID를 RAN에게 제공하고, 앞의 도 3에서 설명한 실시예의 단계 9와 같이 해당 단말에 대한 AM 정책 집행을 수행할 수 있다. 12. AMF may provide the received cube ID to the RAN and perform AM policy enforcement for the corresponding terminal as in step 9 of the embodiment described in FIG. 3 above.
13. AMF는 단말에게 획득한 큐브 ID(de-concealed cube ID) 와 reporting triggering condition(list of neighbor cube ID list), flag to perform cube-level mobility tracking를 전송한다. 단말은 AMF로부터 수신한 큐브 ID 와 단말에서 단계 4에서 정한 큐브 ID가 일치하는지 확인한다. 단말은 AMF가 제공한 reporting triggering condition에 포함된 큐브 ID 리스트에 포함된 큐브 ID로 식별되는 큐브 영역을 벗어나는지 모니터링하고, 해당 영역을 벗어나는 것을 감지하면 앞의 동작들과 같이 단말 측정 값을 AMF를 통해서 LMF에게 전송할 수 있다(최초 등록 후, 단말 측정 값을 전송 시에는 단계 4에서 수행한 concealment 동작을 수행하지 않을 수 있다).13. AMF transmits the acquired cube ID (de-concealed cube ID), reporting triggering condition (list of neighbor cube ID list), and flag to perform cube-level mobility tracking to the terminal. The terminal checks whether the cube ID received from AMF matches the cube ID determined in step 4 in the terminal. The terminal monitors whether it leaves the cube area identified by the cube ID included in the cube ID list included in the reporting triggering condition provided by AMF, and when it detects that it leaves the area, it sends the terminal measurement value to AMF as in the previous operations. (After initial registration, when transmitting terminal measurement values, the concealment operation performed in step 4 may not be performed).
도 6은 본 개시에서 제안하는 실시예와 관련하여 상세한 위치를 기반으로 단말의 이동성을 관리하는 절차에 대해 설명하는 도면이다. 도 6은 LMF 기반의 이동성 관리 절차와 관련하여 NAS 보안 모드 제어 절차가 완료된 이후의 동작을 구체적으로 설명한다.FIG. 6 is a diagram illustrating a procedure for managing the mobility of a terminal based on a detailed location in relation to an embodiment proposed in this disclosure. Figure 6 specifically explains operations after the NAS security mode control procedure is completed in relation to the LMF-based mobility management procedure.
0. 도 3 및 도 4에서 설명한 실시예와 같이, OAM 시스템은 큐브 맵 정보를 RAN, AMF, LMF 등의 네트워크 엔티티(또는 기능)에게 설정할 수 있다. 사업자 정책 또는 단말의 위치를 계산하여 단말이 위치한 큐브 영역의 큐브 ID를 결정하는 방식에 따라, RAN에는 큐브 맵 정보를 설정되지 않을 수도 있다. 예를 들어, 네트워크(예를 들어 LMF)에서 단말의 위치를 최종 계산하여 큐브 ID를 결정하는 방식을 사용하는 경우, 큐브 맵 정보는 AMF와 LMF에만 설정되고 RAN에는 설정되지 않을 수도 있다. 0. As in the embodiment described in FIGS. 3 and 4, the OAM system can set cube map information to network entities (or functions) such as RAN, AMF, and LMF. Depending on the operator policy or the method of calculating the location of the terminal to determine the cube ID of the cube area where the terminal is located, cube map information may not be set in the RAN. For example, when using a method of determining the cube ID by finally calculating the location of the terminal in the network (eg, LMF), cube map information may be set only in the AMF and LMF and not in the RAN.
1. 단말은 AMF에게 단말 식별자 및 세분화된 이동성 관리의 지원 관련 지시자(fine-grained MM support indication) 또는 큐브-레벨 이동성 관리의 지원 관련 지시자(cube-level MM support indication) 또는 큐브-레벨 이동성 관리 지원에 대한 단말의 능력(UE capability to support cube-level MM) 중 적어도 하나를 등록 요청 메시지에 포함하여 전송할 수 있다.1. The terminal provides AMF with a terminal identifier and an indicator related to support of fine-grained mobility management (fine-grained MM support indication) or an indicator related to support of cube-level mobility management (cube-level MM support indication) or cube-level mobility management support. At least one of the UE capabilities to support cube-level MM may be included and transmitted in the registration request message.
2. AMF는 단말로부터 수신한 정보를 기반으로 단말, AUSF 와 UDM 과 연동하여 authentication 절차를 수행한다. 2. AMF performs the authentication procedure in conjunction with the terminal, AUSF, and UDM based on the information received from the terminal.
3. AMF는 인증 절차 완료 후 단말과 NAS security mode 설정 절차를 수행한다. 3. After completing the authentication process, AMF performs the terminal and NAS security mode setting process.
4. 단말로부터 수신한 정보에 fine-grained MM support indication 또는 cube-level MM support indication 또는 UE capability to support cube-level MM 포함되어 있다면, AMF는 해당 단말에 대한 fine-grained MM 또는 cube-level MM 허용 여부 관련 가입자 정보를 UDM으로부터 획득할 수 있다. 이 때, UDM은 fine-grained MM 또는 cube-level MM 허용 여부를 가입자 정보에 기반하여 AMF에게 제공할 수 있다.4. If the information received from the terminal includes fine-grained MM support indication or cube-level MM support indication or UE capability to support cube-level MM, AMF allows fine-grained MM or cube-level MM for the terminal. Subscriber information related to availability can be obtained from UDM. At this time, UDM can provide AMF whether to allow fine-grained MM or cube-level MM based on subscriber information.
5. AMF는 UDM로부터 수신한 정보 또는 가입자 정보에 기반하여 fine-grained MM 또는 cube-level MM 허용함을 확인하고, LMF에게 cube-level positioning 요청 메시지에 단말 식별자, cube-level MM 허용함을 나타내는 정보, 단말이 현재 위치한 셀 또는 TA 정보 중 적어도 하나를 포함시켜 전송한다.5. AMF confirms that it allows fine-grained MM or cube-level MM based on information received from UDM or subscriber information, and provides LMF with a terminal identifier in the cube-level positioning request message indicating that cube-level MM is allowed. It is transmitted including at least one of information, the cell where the terminal is currently located, or TA information.
6. LMF는 AMF의 요청에 따라 단말의 위치를 큐브 단위로 특정(또는 확정)하기 위한 cube-level positioning 동작을 수행한다. 예를 들어, LMF는 도 3에서 설명한 실시예의 단계 1, 2, 3에서 설명한 동작을 수행하여, RAN 및 단말에게 큐브 단위로 단말의 위치를 측정하는데 필요한 큐브 맵 정보 및 보조 데이터를 전송할 수 있다.6. The LMF performs a cube-level positioning operation to specify (or confirm) the location of the terminal in cube units at the request of the AMF. For example, the LMF may perform the operations described in steps 1, 2, and 3 of the embodiment described in FIG. 3 and transmit cube map information and auxiliary data necessary to measure the location of the terminal on a cube basis to the RAN and the terminal.
단말은 도 3에서 설명한 실시예의 단계 4에서 설명한 동작과 같이 단말 위치를 측정하고, 위치에 부합하는 큐브 ID를 결정하고 이를 LMF에게 제공할 수 있다(또는, 도 3의 실시예의 동작과는 달리, 단말은 큐브 ID에 대한 별도의 concealment를 수행하지 않고 NAS container에 포함하여 큐브 ID를 AMF를 통해서 LMF에게 전송할 수도 있다). 또 다른 예시로, LMF는 도 5의 실시예의 단계 1, 2, 3에서 설명한 동작을 수행하고, 단말은 위치 계산에 필요한 측정 값(LMF에서 단말의 위치를 결정하는데 필요한 측정 값)을 생성하고 LMF에게 (AMF를 통해서) 전송할 수 있다.The terminal may measure the terminal location, determine a cube ID corresponding to the location, and provide it to the LMF, as in the operation described in step 4 of the embodiment described in FIG. 3 (or, unlike the operation of the embodiment described in FIG. 3, The terminal may transmit the cube ID to the LMF through AMF by including it in the NAS container without performing separate concealment for the cube ID). As another example, the LMF performs the operations described in steps 1, 2, and 3 of the embodiment of Figure 5, and the terminal generates measurement values required for position calculation (measurement values necessary to determine the location of the terminal in the LMF) and LMF It can be sent to (via AMF).
7. LMF는 앞의 단계에서 단말로부터 획득한 큐브 ID 또는 위치 계산에 필요한 측정 값을 통해서 단말의 위치에 부합하는 큐브 ID를 결정하고, 해당 큐브 ID를 AMF에게 전송한다.7. The LMF determines the cube ID corresponding to the location of the terminal through the cube ID obtained from the terminal in the previous step or the measurement value required for position calculation, and transmits the cube ID to the AMF.
8. AMF는 LMF로부터 수신한 큐브 ID를 사용하여, AM 정책을 수행할 수 있다. 예를 들어, AMF는 단말이 위치한 큐브의 큐브 ID를 PCF에게 제공하고 PCF로부터 해당 큐브 영역에서 적용되어야 하는 정책 정보를 수신할 수 있다. AMF가 PCF로부터 수신할 수 있는 정책 정보는 다음을 포함할 수 있다.8. AMF can perform AM policy using the cube ID received from LMF. For example, AMF may provide the PCF with the cube ID of the cube where the terminal is located and receive policy information that should be applied in the corresponding cube area from the PCF. Policy information that AMF may receive from PCF may include:
- 큐브 단위 mobility restriction 또는 service area restriction(allowed cube ID list, non-allowed cube ID list)- Cube-level mobility restriction or service area restriction (allowed cube ID list, non-allowed cube ID list)
- 큐브 단위 RFSP(RAT Frequency Selection Priority) Index value: 큐브 영역에 대해서 설정된 RAT Frequency Selection Priority 값, subscriber profile ID for RAT/Frequency Priority 과 대응될 수 있음- Cube unit RFSP (RAT Frequency Selection Priority) Index value: RAT Frequency Selection Priority value set for the cube area, may correspond to subscriber profile ID for RAT/Frequency Priority
- 큐브 단위 UE-AMBR(aggregate maximum bitrate) 또는 UE Slice-MBR(maximum bitrate)- Per cube UE-AMBR (aggregate maximum bitrate) or UE Slice-MBR (maximum bitrate)
AMF는 PCF로부터 큐브 단위 RFSP Index를 포함하는 AM 정책을 수신한 경우, RFSP Index 값을 RAN에게 전달하고, RAN에서 RAT Frequency selection priority를 기반으로 RAT/Frequency 선택을 수행할 수 있다. 또한, AMF는 단말의 위치에 부합하는 큐브 ID를 RAN에게 같이 제공할 수 있다.When the AMF receives an AM policy including the cube-level RFSP Index from the PCF, it transfers the RFSP Index value to the RAN, and the RAN can perform RAT/Frequency selection based on RAT Frequency selection priority. Additionally, AMF can also provide the RAN with a cube ID that matches the location of the terminal.
9. AMF는 LMF 으로부터 획득한 큐브 ID(de-concealed cube ID) 와 reporting triggering condition(list of neighbor cube ID list), flag to perform cube-level mobility tracking을 단말에게 전송한다. AMF는 또한 LMF에게 reporting triggering condition을 전송하면서, LMF에서 수행되는 단말 위치 측정 값이 reporting triggering condition에 부합하는 경우 notification을 받는 cube-level UE mobility tracking notification 서비스에 subscribe 요청을 수행할 수 있다.9. AMF transmits the cube ID (de-concealed cube ID) obtained from LMF, reporting triggering condition (list of neighbor cube ID list), and flag to perform cube-level mobility tracking to the terminal. The AMF may also transmit a reporting triggering condition to the LMF and make a subscribe request to the cube-level UE mobility tracking notification service that receives notification when the UE location measurement value performed by the LMF meets the reporting triggering condition.
단계 9 이후, 단말은 AMF로부터 수신한 큐브 ID 와 단말에서 단계 6에서 결정된 큐브 ID가 일치하는지 확인하고, AMF가 제공한 reporting triggering condition에 포함된 큐브 ID 리스트에 포함된 큐브 ID로 식별되는 큐브 영역을 벗어나는지 모니터링한다. 단말은 단계 6와 같이 LMF 와 단말의 cube-level positioning을 통해서 모니터링을 수행할 수 있다. 단말 또는 LMF에서 reporting triggering condition에 포함된 큐브 ID 리스트에 포함된 큐브 영역을 벗어나 새로운큐브 영역에 들어가게 되면 AMF 새로운 큐브 ID를 전송한다. 예를 들어, 단말은 새로운 큐브 ID를 포함하는 registration 요청 메시지를 AMF에게 전송할 수 있으며, LMF는 새로운 큐브 ID를 포함하는 cube-level UE mobility tracking notification 메시지를 AMF에게 전송할 수 있다.After step 9, the terminal checks whether the cube ID received from AMF matches the cube ID determined in step 6 in the terminal, and the cube area identified by the cube ID included in the cube ID list included in the reporting triggering condition provided by AMF Monitor whether it is out of bounds. The terminal can perform monitoring through LMF and cube-level positioning of the terminal as in step 6. When the terminal or LMF leaves the cube area included in the cube ID list included in the reporting triggering condition and enters a new cube area, AMF transmits a new cube ID. For example, the UE may transmit a registration request message including a new cube ID to the AMF, and the LMF may transmit a cube-level UE mobility tracking notification message including a new cube ID to the AMF.
이상에서 설명한 다양한 실시예들의 구체적인 동작의 조합 및 변형이 각각의 장치에서 일어날 수 있다. 단말 위치에 부합하는 큐브 ID 결정 방법에 있어서, 단말은 RAN 또는 AMF 또는 LMF이 제공하는 큐브 맵 정보 및 큐브 단위 단말 위치 측정에 필요한 보조 정보를 사용하여 단말의 위치를 직접 계산하고 단말의 위치에 부합하는 큐브 ID를 결정할 수 있다.Combinations and modifications of specific operations of the various embodiments described above may occur in each device. In the method of determining the cube ID corresponding to the terminal location, the terminal directly calculates the location of the terminal using cube map information provided by RAN, AMF, or LMF and auxiliary information required for cube-level terminal location measurement and matches the location of the terminal. You can determine the cube ID.
또는, 단말은 위치 계산이 필요한 측정 값을 RAN 또는 LMF에게 제공하고, 단말의 위치 및 큐브 ID 결정은 RAN 또는 LMF에서 수행할 수 있다.Alternatively, the terminal may provide measurement values that require location calculation to the RAN or LMF, and the location and cube ID of the terminal may be determined by the RAN or LMF.
단말이 단말 위치에 부합하는 큐브 ID 또는 단말 위치 계산에 필요한 측정 값을 전송하는 방법에 있어서, 단말은 해당 정보에 대한 concealment 수행 후 초기 Registration 요청 메시지에 포함하여 AMF에게 전송하거나, 별도의 concealment 동작을 추가로 수행하지 않고 NAS security mode 설정 절차 완료 후 NAS container에 포함하여 전송할 수 있다. 이와 관련하여, AMF는 단말로부터 수신한 큐브 ID 또는 단말 위치 계산에 필요한 측정 값을 바로 사용(큐브 ID를 AM 정책 집행에 활용 또는 LMF에게 측정 값을 전송하여 큐브 ID를 획득)하거나, UDM이 제공하는 de-concealment 서비스를 사용하여 de-concealed 된 큐브 ID 또는 측정 값을 획득하여 사용할 수 있다.In a method for a terminal to transmit a cube ID corresponding to the terminal location or a measurement value required to calculate the terminal location, the terminal performs concealment of the information and then transmits it to the AMF by including it in the initial registration request message, or performs a separate concealment operation. After completing the NAS security mode setting procedure without performing any additional steps, it can be transmitted by including it in the NAS container. In this regard, the AMF immediately uses the cube ID received from the terminal or the measurement value required to calculate the terminal location (using the cube ID for AM policy enforcement or transmitting the measurement value to the LMF to obtain the cube ID) or provided by the UDM You can use the de-concealment service to obtain and use the de-concealed cube ID or measurement value.
도 7은 본 개시의 실시예들에 따른 단말의 구조를 도시한 도면이다.Figure 7 is a diagram showing the structure of a terminal according to embodiments of the present disclosure.
도 7에서 도시되는 바와 같이, 본 개시의 단말은 송수신부(710), 메모리(720), 및 제어부(또는, 프로세서 730)를 포함할 수 있다. 전술한 단말의 통신 방법에 따라 단말의 제어부(730), 송수신부(710) 및 메모리(720)가 동작할 수 있다. 다만, 단말의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 단말은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 제어부(730), 송수신부(710) 및 메모리(720)가 하나의 칩(chip) 형태로 구현될 수도 있다. As shown in FIG. 7, the terminal of the present disclosure may include a transceiver 710, a memory 720, and a control unit (or processor 730). The terminal's control unit 730, transceiver unit 710, and memory 720 may operate according to the above-described terminal communication method. However, the components of the terminal are not limited to the examples described above. For example, the terminal may include more or fewer components than the aforementioned components. In addition, the control unit 730, the transceiver unit 710, and the memory 720 may be implemented in the form of a single chip.
송수신부(710)는 단말의 수신부와 단말의 송신부를 통칭한 것으로 기지국 혹은 네트워크 엔티티와 신호를 송수신할 수 있다. 기지국과 송수신하는 신호는 제어 정보와 데이터를 포함할 수 있다. 이를 위해, 송수신부(710)는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF(radio frequency) 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부(710)의 일 실시예일 뿐이며, 송수신부(710)의 구성요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.The transmitting/receiving unit 710 is a general term for the terminal's receiving unit and the terminal's transmitting unit, and can transmit and receive signals to and from a base station or network entity. Signals transmitted and received from the base station may include control information and data. To this end, the transceiver 710 may be composed of an RF (radio frequency) transmitter that up-converts and amplifies the frequency of the transmitted signal, and an RF receiver that amplifies the received signal with low noise and down-converts the frequency. However, this is only an example of the transceiver 710, and the components of the transceiver 710 are not limited to the RF transmitter and RF receiver.
또한, 송수신부(710)는 유무선 송수신부를 포함할 수 있으며, 신호를 송수신하기 위한 다양한 구성을 포함할 수 있다. 또한, 송수신부(710)는 무선 채널을 통해 신호를 수신하여 제어부(730)로 출력하고, 제어부(730)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다. 또한, 송수신부(710)는 통신 신호를 수신하여 제어부(730)로 출력하고, 제어부(730)로부터 출력된 신호를 유무선망을 통해 기지국이나 네트워크 엔티티로 전송할 수 있다. Additionally, the transceiver 710 may include a wired or wireless transceiver and may include various components for transmitting and receiving signals. Additionally, the transceiver 710 may receive a signal through a wireless channel and output it to the control unit 730, and transmit the signal output from the control unit 730 through a wireless channel. Additionally, the transceiver 710 may receive a communication signal and output it to the control unit 730, and transmit the signal output from the control unit 730 to a base station or network entity through a wired or wireless network.
메모리(720)는 단말의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리(720)는 단말에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리(720)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다.The memory 720 can store programs and data necessary for operation of the terminal. Additionally, the memory 720 may store control information or data included in signals obtained from the terminal. The memory 720 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media.
제어부(730)는 상술한 본 개시의 실시예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 제어부(730)는 적어도 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 제어부(730)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다.The control unit 730 can control a series of processes so that the terminal can operate according to the above-described embodiment of the present disclosure. The control unit 730 may include at least one processor. For example, the control unit 730 may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls upper layers such as application programs.
도 8은 본 개시의 실시예들에 따른 기지국의 구조를 도시한 도면이다. 도 8에 도시된 기지국은 앞서 도 1에서 설명한 RAN 노드에 대응될 수 있다.Figure 8 is a diagram showing the structure of a base station according to embodiments of the present disclosure. The base station shown in FIG. 8 may correspond to the RAN node previously described in FIG. 1.
도 8에서 도시되는 바와 같이, 본 개시의 기지국은 송수신부(810), 메모리(820), 제어부(또는, 프로세서, 830)를 포함할 수 있다. 전술한 기지국의 통신 방법에 따라 기지국의 제어부(830), 송수신부(810) 및 메모리(820)가 동작할 수 있다. 다만, 기지국의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 기지국은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 일 실시예에 따르면, 도 8의 기지국은 전체의 기능이 CU와 DU로 분리되어 구현될 수도 있으며, 이러한 경우 CU와 DU는 도 8 기지국에서 수행하는 일부 기능을 각각 수행할 수 있다. 뿐만 아니라, 도 8의 제어부(830), 송수신부(810) 및 메모리(820)가 하나의 칩(chip) 형태로 구현될 수도 있다.As shown in FIG. 8, the base station of the present disclosure may include a transceiver 810, a memory 820, and a control unit (or processor, 830). The control unit 830, transceiver unit 810, and memory 820 of the base station may operate according to the above-described base station communication method. However, the components of the base station are not limited to the above examples. For example, a base station may include more or fewer components than those described above. According to one embodiment, the base station of FIG. 8 may be implemented with the overall functions separated into CU and DU. In this case, the CU and DU may each perform some functions performed by the base station of FIG. 8. In addition, the control unit 830, transceiver 810, and memory 820 of FIG. 8 may be implemented in the form of a single chip.
송수신부(810)는 기지국의 수신부와 기지국의 송신부를 통칭한 것으로 단말 및/또는 네트워크 엔티티와 신호를 송수신할 수 있다. 이때, 송수신하는 신호는 제어 정보와 데이터를 포함할 수 있다. 이를 위해, 송수신부(810)는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부(810)의 일 실시예일 뿐이며, 송수신부(810)의 구성요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다. 송수신부(810)는 유무선 송수신부를 포함할 수 있으며, 신호를 송수신하기 위한 다양한 구성을 포함할 수 있다. The transceiving unit 810 is a general term for the receiving unit of the base station and the transmitting unit of the base station, and can transmit and receive signals to and from a terminal and/or network entity. At this time, the transmitted and received signals may include control information and data. To this end, the transceiver 810 may be composed of an RF transmitter that up-converts and amplifies the frequency of the transmitted signal, and an RF receiver that amplifies the received signal with low noise and down-converts the frequency. However, this is only an example of the transceiver 810, and the components of the transceiver 810 are not limited to the RF transmitter and RF receiver. The transceiver 810 may include a wired or wireless transceiver and may include various components for transmitting and receiving signals.
또한, 송수신부(810)는 통신 채널(예를 들어, 무선 채널)을 통해 신호를 수신하여 제어부(830)로 출력하고, 제어부(830)로부터 출력된 신호를 통신 채널을 통해 전송할 수 있다. 또한, 송수신부(810)는 통신 신호를 수신하여 프로세서로 출력하고, 프로세서로부터 출력된 신호를 유무선망을 통해 단말 또는 네트워크 엔티티로 전송할 수 있다. Additionally, the transceiver 810 may receive a signal through a communication channel (eg, a wireless channel) and output it to the control unit 830, and transmit the signal output from the control unit 830 through the communication channel. Additionally, the transceiver 810 may receive a communication signal, output it to a processor, and transmit the signal output from the processor to a terminal or network entity through a wired or wireless network.
메모리(820)는 기지국의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리(820)는 기지국에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리(820)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다.The memory 820 can store programs and data necessary for the operation of the base station. Additionally, the memory 820 may store control information or data included in signals obtained from the base station. The memory 820 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media.
제어부(830)는 상술한 본 개시의 실시예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 제어부(830)는 적어도 하나 이상의 프로세서를 포함할 수 있다. 본 개시의 청구항 또는 명세서에 기재된 실시예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다.The control unit 830 can control a series of processes so that the base station can operate according to the above-described embodiment of the present disclosure. The control unit 830 may include at least one processor. Methods according to embodiments described in the claims or specification of the present disclosure may be implemented in the form of hardware, software, or a combination of hardware and software.
도 9은 본 개시의 실시예들에 따른 네트워크 기능(또는 네트워크 엔티티)의 구조를 도시한 도면이다. 도 9에 도시된 네트워크 기능(또는 네트워크 엔티티)는 앞서 도 1에서 설명한 코어 망의 다양한 노드들에 대응될 수 있다.FIG. 9 is a diagram illustrating the structure of a network function (or network entity) according to embodiments of the present disclosure. The network function (or network entity) shown in FIG. 9 may correspond to various nodes of the core network previously described in FIG. 1.
도 9에서 도시되는 바와 같이, 본 개시의 네트워크 기능(network function)(또는, 네트워크 엔티티)은 송수신부(910), 메모리(920), 제어부(또는, 프로세서, 930)를 포함할 수 있다. 전술한 네트워크 기능(또는 네트워크 엔티티)의 통신 방법에 따라 네트워크 기능(또는 네트워크 엔티티)의 제어부(930), 송수신부(910) 및 메모리(920)가 동작할 수 있다. 다만, 네트워크 기능(또는 네트워크 엔티티)의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 네트워크 기능(또는 네트워크 엔티티)은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다.As shown in FIG. 9, a network function (or network entity) of the present disclosure may include a transceiver 910, a memory 920, and a control unit (or processor, 930). The control unit 930, transceiver unit 910, and memory 920 of the network function (or network entity) may operate according to the communication method of the network function (or network entity) described above. However, the components of the network function (or network entity) are not limited to the examples described above. For example, a network function (or network entity) may include more or fewer components than those described above.
송수신부(910)는 네트워크 기능(또는 네트워크 엔티티)의 수신부와 기지국의 송신부를 통칭한 것으로 단말, 기지국 및/또는 다른 네트워크 기능(또는 네트워크 엔티티)와 신호를 송수신할 수 있다. 이때, 송수신하는 신호는 제어 정보와 데이터를 포함할 수 있다. 이를 위해, 송수신부(910)는 유선 또는 무선 송수신부를 통해 코어 망의 노드들과 통신할 수 있다. 다만, 이는 송수신부(910)의 일 실시예일 뿐이며, 송수신부(910)의 구성요소는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수도 있으며, 신호를 송수신하기 위한 다양한 구성을 포함할 수 있다. The transceiving unit 910 is a general term for the receiving unit of a network function (or network entity) and the transmitting unit of a base station, and can transmit and receive signals with a terminal, a base station, and/or other network functions (or network entities). At this time, the transmitted and received signals may include control information and data. To this end, the transceiver 910 can communicate with nodes of the core network through a wired or wireless transceiver. However, this is only an example of the transceiver 910, and the components of the transceiver 910 include an RF transmitter that up-converts and amplifies the frequency of the transmitted signal, low-noise amplifies the received signal, and down-converts the frequency. It may be composed of an RF receiver, etc., and may include various configurations for transmitting and receiving signals.
또한, 송수신부(910)는 통신 채널(예를 들어, 무선 채널 또는 코어 망의 채널)을 통해 신호를 수신하여 제어부(930)로 출력하고, 제어부(930)로부터 출력된 신호를 통신 채널을 통해 전송할 수 있다. 또한, 송수신부(910)는 통신 신호를 수신하여 제어부(930)로 출력하고, 제어부(930)로부터 출력된 신호를 유무선망을 통해 단말, 기지국 또는 네트워크 엔티티로 전송할 수 있다. In addition, the transceiver 910 receives a signal through a communication channel (for example, a wireless channel or a core network channel) and outputs it to the control unit 930, and transmits the signal output from the control unit 930 through the communication channel. Can be transmitted. Additionally, the transceiver unit 910 may receive a communication signal and output it to the control unit 930, and transmit the signal output from the control unit 930 to a terminal, base station, or network entity through a wired or wireless network.
메모리(920)는 네트워크 기능(또는 네트워크 엔티티)의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리(920)는 네트워크 기능(또는 네트워크 엔티티)에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리(920)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다.The memory 920 may store programs and data necessary for the operation of a network function (or network entity). Additionally, the memory 920 may store control information or data included in signals obtained from a network function (or network entity). The memory 920 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media.
제어부(930)는 상술한 본 개시의 실시예에 따라 네트워크 기능(또는 네트워크 엔티티)이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 제어부(930)는 적어도 하나 이상의 프로세서를 포함할 수 있다. 본 개시의 청구항 또는 명세서에 기재된 실시예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다.The control unit 930 may control a series of processes so that a network function (or network entity) can operate according to the above-described embodiment of the present disclosure. The control unit 930 may include at least one processor. Methods according to embodiments described in the claims or specification of the present disclosure may be implemented in the form of hardware, software, or a combination of hardware and software.
본 개시의 청구항 또는 명세서에 기재된 실시예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다. Methods according to embodiments described in the claims or specification of the present disclosure may be implemented in the form of hardware, software, or a combination of hardware and software.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다. When implemented as software, a computer-readable storage medium that stores one or more programs (software modules) may be provided. One or more programs stored in a computer-readable storage medium are configured to be executable by one or more processors in an electronic device (configured for execution). One or more programs include instructions that cause the electronic device to execute methods according to embodiments described in the claims or specification of the present disclosure.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리(random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다. These programs (software modules, software) include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM. (EEPROM: Electrically Erasable Programmable Read Only Memory), magnetic disc storage device, Compact Disc-ROM (CD-ROM: Compact Disc-ROM), Digital Versatile Discs (DVDs), or other types of It can be stored in an optical storage device or magnetic cassette. Alternatively, it may be stored in a memory consisting of a combination of some or all of these. Additionally, multiple configuration memories may be included.
또한, 상기 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시예를 수행하는 장치에 접속할 수도 있다.In addition, the program may be operated through a communication network such as the Internet, an intranet, a local area network (LAN), a wide LAN (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored on an attachable storage device that is accessible. This storage device can be connected to a device performing an embodiment of the present disclosure through an external port. Additionally, a separate storage device on a communications network may be connected to the device performing embodiments of the present disclosure.
상술한 본 개시의 구체적인 실시예들에서, 개시에 포함되는 구성 요소는 제시된 구체적인 실시예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.In the specific embodiments of the present disclosure described above, elements included in the disclosure are expressed in singular or plural numbers depending on the specific embodiment presented. However, singular or plural expressions are selected to suit the presented situation for convenience of explanation, and the present disclosure is not limited to singular or plural components, and even components expressed in plural may be composed of singular or singular. Even expressed components may be composed of plural elements.
한편 본 개시의 상세한 설명에서는 구체적인 실시예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 예를 들어, 일부 실시예의 일부 또는 전부가 다른 하나 이상의 실시예의 일부 또는 전부와 결합될 수 있으며, 이러한 결합의 형태 또한 본 개시에서 제안하는 실시예에 해당함은 당연하다. 그러므로 본 개시의 범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.Meanwhile, in the detailed description of the present disclosure, specific embodiments have been described, but of course, various modifications are possible without departing from the scope of the present disclosure. For example, part or all of some embodiments may be combined with part or all of one or more other embodiments, and it is natural that the form of such combination also corresponds to the embodiments proposed in the present disclosure. Therefore, the scope of the present disclosure should not be limited to the described embodiments, but should be determined not only by the scope of the patent claims described later, but also by the scope of the claims and their equivalents.
본 개시의 상세한 설명에서는 구체적인 실시예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.In the detailed description of the present disclosure, specific embodiments have been described, but of course, various modifications are possible without departing from the scope of the present disclosure. Therefore, the scope of the present disclosure should not be limited to the described embodiments, but should be determined not only by the scope of the patent claims described later, but also by the scope of this patent claim and equivalents.

Claims (15)

  1. 무선 통신 시스템에 있어서, AMF(access mobility and management function) 노드는,In a wireless communication system, an access mobility and management function (AMF) node is,
    송수신부(transceiver); 및transceiver; and
    상기 송수신부와 결합된 컨트롤러(controller)를 포함하고,Includes a controller coupled to the transceiver,
    상기 컨트롤러는,The controller is,
    셀(cell) 내의 3차원 공간과 연관된 적어도 하나의 큐브(cube)를 설정하는 설정 정보를 수신하고,Receive setting information for setting at least one cube associated with a three-dimensional space within a cell,
    LMF(location management function) 노드로부터, 위치 측정을 위한 보조 정보를 수신하고,Receive auxiliary information for location measurement from a location management function (LMF) node,
    단말에게, 상기 위치 측정을 위한 보조 정보를 전송하고,Transmitting auxiliary information for location measurement to the terminal,
    상기 단말로부터, 상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보를 수신하고,From the terminal, receive concealed information related to location measurement of the terminal,
    상기 단말의 위치 측정과 관련된 숨겨진 정보에 기반하여, 상기 단말과 관련된 큐브의 식별자(identifier, ID)를 식별하고,Based on hidden information related to location measurement of the terminal, identify the identifier (ID) of the cube related to the terminal,
    상기 큐브의 식별자에 기반한 이동성 관리 정책을, 상기 단말에게 적용하는 것이 허용되는지 여부를 판단하고, 및Determine whether it is allowed to apply a mobility management policy based on the identifier of the cube to the terminal, and
    상기 단말에게, 상기 이동성 관리 정책에 대한 정보를 전송하도록 구성되는 AMF 노드.An AMF node configured to transmit information about the mobility management policy to the terminal.
  2. 청구항 1에 있어서,In claim 1,
    상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보는, 상기 단말에 의해 숨겨진 큐브의 식별자 및 상기 적어도 하나의 큐브에 기반한 이동성 관리를 요청하는 지시자를 포함하는 등록 요청 메시지를 포함하고, 및Concealed information related to location measurement of the terminal includes a registration request message including an identifier of a cube hidden by the terminal and an indicator requesting mobility management based on the at least one cube, and
    상기 단말에 의해 숨겨진 큐브의 식별자는 UDM(unified data management) 노드에 의해 숨김 해제되는(de-concealed) AMF 노드.The identifier of the cube hidden by the terminal is an AMF node that is de-concealed by a unified data management (UDM) node.
  3. 청구항 1에 있어서, 상기 컨트롤러는,The method of claim 1, wherein the controller:
    상기 단말로부터, 상기 적어도 하나의 큐브에 기반한 이동성 관리를 요청하는 지시자를 포함하는 등록 요청 메시지를 수신하고,Receiving, from the terminal, a registration request message including an indicator requesting mobility management based on the at least one cube,
    상기 등록 요청 메시지에 기반하여 상기 단말에 대한 인증 절차를 수행하고, 및Perform an authentication procedure for the terminal based on the registration request message, and
    상기 단말에게, 상기 인증 절차의 결과에 기반하여 NAS(non-access stratum) 명령 메시지를 전송하도록 더 구성되고,Further configured to transmit a non-access stratum (NAS) command message to the terminal based on the result of the authentication procedure,
    상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보는, 상기 단말에 의해 결정된 상기 단말과 관련된 큐브의 식별자를 포함하는 NAS 컨테이너를 포함하는 AMF 노드.Concealed information related to location measurement of the terminal is an AMF node including a NAS container containing an identifier of a cube associated with the terminal determined by the terminal.
  4. 청구항 1에 있어서,In claim 1,
    상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보는, 상기 단말에 의해 숨겨진 위치 측정의 결과 및 상기 적어도 하나의 큐브에 기반한 이동성 관리를 요청하는 지시자를 포함하는 등록 요청 메시지를 포함하고,Concealed information related to location measurement of the terminal includes a registration request message including a result of location measurement hidden by the terminal and an indicator requesting mobility management based on the at least one cube,
    상기 컨트롤러는,The controller is,
    상기 LMF 노드에게, 상기 단말에 의해 숨겨진 위치 측정의 결과를 전송하고, 및transmitting the results of location measurement hidden by the terminal to the LMF node, and
    상기 LMF 노드로부터, 상기 위치 측정의 결과에 기반하여 결정된 상기 단말과 관련된 큐브의 식별자를 수신하도록 더 구성되는 AMF 노드.AMF node further configured to receive, from the LMF node, an identifier of a cube associated with the terminal determined based on a result of the location measurement.
  5. 청구항 1에 있어서, 상기 컨트롤러는,The method of claim 1, wherein the controller:
    상기 단말로부터, 상기 적어도 하나의 큐브에 기반한 이동성 관리를 요청하는 지시자를 포함하는 등록 요청 메시지를 수신하고,Receiving, from the terminal, a registration request message including an indicator requesting mobility management based on the at least one cube,
    상기 등록 요청 메시지에 기반하여 상기 단말에 대한 인증 절차를 수행하고, 및Perform an authentication procedure for the terminal based on the registration request message, and
    상기 단말에게, 상기 인증 절차의 결과에 기반하여 NAS(non-access stratum) 명령 메시지를 전송하도록 더 구성되고,Further configured to transmit a non-access stratum (NAS) command message to the terminal based on the result of the authentication procedure,
    상기 단말과 관련된 큐브의 식별자는, 상기 단말의 위치 측정의 결과에 기반하여 상기 LMF에 의해 결정되는 AMF 노드.The identifier of the cube associated with the terminal is an AMF node determined by the LMF based on the results of location measurement of the terminal.
  6. 청구항 1에 있어서,In claim 1,
    상기 단말의 위치 측정과 관련된 숨겨진 정보는, 상기 단말과 관련된 큐브의 식별자 또는 상기 단말의 위치 측정의 결과, 및 홈 네트워크 공용 키에 기반하여 생성되는 AMF 노드.The hidden information related to the location measurement of the terminal is an AMF node generated based on the identifier of the cube related to the terminal or the result of the location measurement of the terminal, and the home network public key.
  7. 무선 통신 시스템에 있어서, 단말(user equipment, UE)은,In a wireless communication system, a terminal (user equipment, UE) is,
    송수신부(transceiver); 및transceiver; and
    상기 송수신부와 결합된 컨트롤러(controller)를 포함하고,Includes a controller coupled to the transceiver,
    상기 컨트롤러는,The controller is,
    AMF(access mobility and management function)로부터, 셀(cell) 내의 3차원 공간과 연관된 적어도 하나의 큐브(cube)를 설정하는 설정 정보를 수신하고,Receive setting information for setting at least one cube associated with a three-dimensional space within a cell from an access mobility and management function (AMF),
    상기 AMF로부터, 위치 측정을 위한 보조 정보를 수신하고,From the AMF, receive auxiliary information for location measurement,
    상기 설정 정보 및 상기 보조 정보에 기반하여, 상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보를 생성하고,Based on the setting information and the auxiliary information, generate concealed information related to location measurement of the terminal,
    상기 AMF에게, 상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보를 전송하고, 및To the AMF, transmit concealed information related to location measurement of the terminal, and
    상기 AMF로부터, 상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보에 기반하여 생성된 이동성 관리 정책에 대한 정보를 수신하도록 구성된 단말.A terminal configured to receive, from the AMF, information about a mobility management policy created based on concealed information related to location measurement of the terminal.
  8. 청구항 7에 있어서,In claim 7,
    상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보는, 상기 단말에 의해 숨겨진 큐브의 식별자 및 상기 적어도 하나의 큐브에 기반한 이동성 관리를 요청하는 지시자를 포함하는 단말.Concealed information related to location measurement of the terminal includes an identifier of a cube hidden by the terminal and an indicator requesting mobility management based on the at least one cube.
  9. 청구항 7에 있어서,In claim 7,
    상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보는, 상기 단말에 의해 숨겨진 위치 측정의 결과 및 상기 적어도 하나의 큐브에 기반한 이동성 관리를 요청하는 지시자를 포함하는 단말.Concealed information related to location measurement of the terminal includes a result of location measurement hidden by the terminal and an indicator requesting mobility management based on the at least one cube.
  10. 무선 통신 시스템에 있어서, AMF(access mobility and management function) 노드에 의해 수행되는 방법은,In a wireless communication system, the method performed by an access mobility and management function (AMF) node is:
    셀(cell) 내의 3차원 공간과 연관된 적어도 하나의 큐브(cube)를 설정하는 설정 정보를 수신하는 단계;Receiving setting information for setting at least one cube associated with a three-dimensional space within a cell;
    LMF(location management function) 노드로부터, 위치 측정을 위한 보조 정보를 수신하는 단계;Receiving auxiliary information for location measurement from a location management function (LMF) node;
    단말에게, 상기 위치 측정을 위한 보조 정보를 전송하는 단계;Transmitting auxiliary information for location measurement to a terminal;
    상기 단말로부터, 상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보를 수신하는 단계;Receiving concealed information related to location measurement of the terminal from the terminal;
    상기 단말의 위치 측정과 관련된 숨겨진 정보에 기반하여, 상기 단말과 관련된 큐브의 식별자(identifier, ID)를 식별하는 단계;Identifying an identifier (ID) of a cube related to the terminal based on hidden information related to location measurement of the terminal;
    상기 큐브의 식별자에 기반한 이동성 관리 정책을, 상기 단말에게 적용하는 것이 허용되는지 여부를 판단하는 단계; 및determining whether it is permitted to apply a mobility management policy based on the identifier of the cube to the terminal; and
    상기 단말에게, 상기 이동성 관리 정책에 대한 정보를 전송하는 단계를 포함하는 방법.A method comprising transmitting information about the mobility management policy to the terminal.
  11. 청구항 10에 있어서,In claim 10,
    상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보는, 상기 단말에 의해 숨겨진 큐브의 식별자 및 상기 적어도 하나의 큐브에 기반한 이동성 관리를 요청하는 지시자를 포함하는 등록 요청 메시지를 포함하고, 및Concealed information related to location measurement of the terminal includes a registration request message including an identifier of a cube hidden by the terminal and an indicator requesting mobility management based on the at least one cube, and
    상기 단말에 의해 숨겨진 큐브의 식별자는 UDM(unified data management) 노드에 의해 숨김 해제되는(de-concealed) 방법.A method in which the identifier of the cube hidden by the terminal is de-concealed by a unified data management (UDM) node.
  12. 청구항 10에 있어서, 상기 방법은,The method of claim 10, wherein the method:
    상기 단말로부터, 상기 적어도 하나의 큐브에 기반한 이동성 관리를 요청하는 지시자를 포함하는 등록 요청 메시지를 수신하는 단계;Receiving, from the terminal, a registration request message including an indicator requesting mobility management based on the at least one cube;
    상기 등록 요청 메시지에 기반하여 상기 단말에 대한 인증 절차를 수행하는 단계; 및performing an authentication procedure for the terminal based on the registration request message; and
    상기 단말에게, 상기 인증 절차의 결과에 기반하여 NAS(non-access stratum) 명령 메시지를 전송하는 단계를 더 포함하고,Further comprising transmitting a non-access stratum (NAS) command message to the terminal based on the result of the authentication procedure,
    상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보는, 상기 단말에 의해 결정된 상기 단말과 관련된 큐브의 식별자를 포함하는 NAS 컨테이너를 포함하는 방법.Concealed information related to location measurement of the terminal includes a NAS container containing an identifier of a cube associated with the terminal determined by the terminal.
  13. 청구항 10에 있어서,In claim 10,
    상기 단말의 위치 측정과 관련된 숨겨진(concealed) 정보는, 상기 단말에 의해 숨겨진 위치 측정의 결과 및 상기 적어도 하나의 큐브에 기반한 이동성 관리를 요청하는 지시자를 포함하는 등록 요청 메시지를 포함하고,Concealed information related to location measurement of the terminal includes a registration request message including a result of location measurement hidden by the terminal and an indicator requesting mobility management based on the at least one cube,
    상기 방법은,The method is:
    상기 LMF 노드에게, 상기 단말에 의해 숨겨진 위치 측정의 결과를 전송하는 단계; 및Transmitting the results of location measurement hidden by the terminal to the LMF node; and
    상기 LMF 노드로부터, 상기 위치 측정의 결과에 기반하여 결정된 상기 단말과 관련된 큐브의 식별자를 수신하는 단계를 더 포함하는 방법.The method further comprising receiving, from the LMF node, an identifier of a cube associated with the terminal determined based on a result of the location measurement.
  14. 청구항 10에 있어서, 상기 방법은,The method of claim 10, wherein the method:
    상기 단말로부터, 상기 적어도 하나의 큐브에 기반한 이동성 관리를 요청하는 지시자를 포함하는 등록 요청 메시지를 수신하는 단계;Receiving, from the terminal, a registration request message including an indicator requesting mobility management based on the at least one cube;
    상기 등록 요청 메시지에 기반하여 상기 단말에 대한 인증 절차를 수행하는 단계; 및performing an authentication procedure for the terminal based on the registration request message; and
    상기 단말에게, 상기 인증 절차의 결과에 기반하여 NAS(non-access stratum) 명령 메시지를 전송하는 단계를 더 포함하고,Further comprising transmitting a non-access stratum (NAS) command message to the terminal based on the result of the authentication procedure,
    상기 단말과 관련된 큐브의 식별자는, 상기 단말의 위치 측정의 결과에 기반하여 상기 LMF에 의해 결정되는 방법.A method in which the identifier of the cube associated with the terminal is determined by the LMF based on the results of location measurement of the terminal.
  15. 청구항 10에 있어서,In claim 10,
    상기 단말의 위치 측정과 관련된 숨겨진 정보는, 상기 단말과 관련된 큐브의 식별자 또는 상기 단말의 위치 측정의 결과, 및 홈 네트워크 공용 키에 기반하여 생성되는 방법.A method in which hidden information related to location measurement of the terminal is generated based on an identifier of a cube related to the terminal or a result of location measurement of the terminal, and a home network public key.
PCT/KR2023/011458 2022-08-11 2023-08-04 Location-based terminal mobility management method and device in mobile communication system WO2024035004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220100778A KR20240022288A (en) 2022-08-11 2022-08-11 Method and apparatus for location based terminal mobility management in mobile communication system
KR10-2022-0100778 2022-08-11

Publications (1)

Publication Number Publication Date
WO2024035004A1 true WO2024035004A1 (en) 2024-02-15

Family

ID=89852119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011458 WO2024035004A1 (en) 2022-08-11 2023-08-04 Location-based terminal mobility management method and device in mobile communication system

Country Status (2)

Country Link
KR (1) KR20240022288A (en)
WO (1) WO2024035004A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200068355A1 (en) * 2017-01-09 2020-02-27 Qualcomm Incorporated Systems and methods for supporting control plane location in a fifth generation wireless network
US20200092776A1 (en) * 2018-09-14 2020-03-19 Qualcomm Incorporated Systems and methods for deferred 5g location of a mobile device using a combined amf and lmf based location solution
US20200367022A1 (en) * 2018-04-03 2020-11-19 Huawei Technologies Co., Ltd. Distributed Location Management Function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200068355A1 (en) * 2017-01-09 2020-02-27 Qualcomm Incorporated Systems and methods for supporting control plane location in a fifth generation wireless network
US20200367022A1 (en) * 2018-04-03 2020-11-19 Huawei Technologies Co., Ltd. Distributed Location Management Function
US20200092776A1 (en) * 2018-09-14 2020-03-19 Qualcomm Incorporated Systems and methods for deferred 5g location of a mobile device using a combined amf and lmf based location solution

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Introduction of R17 NRPPa related positioning enhancement to TS38.305", 3GPP DRAFT; R2-2204697, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20220509 - 20220520, 25 April 2022 (2022-04-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052138384 *
INTEL CORPORATION: "38.305 CR for Positioning WI", 3GPP DRAFT; R2-2206244, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20220509 - 20220520, 27 May 2022 (2022-05-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052156324 *

Also Published As

Publication number Publication date
KR20240022288A (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2020091380A1 (en) Method and device for transmitting and receiving location information in nr v2x
WO2021002667A1 (en) Method and apparatus for saving energy for a distributed unit in a wireless communication system
WO2021167291A1 (en) Method and apparatus for changing network configuration in wireless communication system
WO2020171634A1 (en) Method and apparatus for location-based sidelink communication in nr v2x
WO2020076011A1 (en) Method for performing synchronization of terminal in wireless communication system and terminal using method
WO2020071727A1 (en) Method and apparatus for mutually exclusive access to network slice for roaming terminal in wireless communication system
WO2021040381A1 (en) Uas service control method and device using wireless communication system
WO2021020834A1 (en) Method for accessing network by terminal
WO2020190106A1 (en) Method and device for reporting device-to-device channel state to base station in nr v2x
WO2023146314A1 (en) Communication method and device for xr service in wireless communication system
WO2020197279A1 (en) Method and apparatus for exchange of capability information for sidelink communications in a wireless communication system
WO2024035004A1 (en) Location-based terminal mobility management method and device in mobile communication system
WO2020055137A1 (en) Method and apparatus for transmitting or receiving data in wireless communication system
WO2022235117A1 (en) Method and apparatus for supporting system information acquisition by sidelink remote terminal over sidelink relay
WO2021010699A1 (en) Method and apparatus for selecting synchronization reference in nr v2x
WO2020130625A1 (en) Method and apparatus for performing bwp-based communication in nr v2x
WO2023018250A1 (en) Method and apparatus for protecting information transmitted and received on user plane, in wireless communication system
WO2024035135A1 (en) Method and apparatus for managing edge computing service session in wireless communication system
WO2024029943A1 (en) Method and apparatus for updating ue policy based on network slicing
WO2024096376A1 (en) Method and device for providing access path in wireless communication system
WO2024096623A1 (en) Method and apparatus for managing backhaul information-based session in wireless communication system
WO2023214781A1 (en) Roaming terminal edge computing service charging supporting method
WO2022158807A1 (en) Method and device for managing connection mode mobility of remote terminal through relay terminal in wireless communication system
WO2022203360A1 (en) Communication method and device for supporting authentication of unmanned aerial vehicle in wireless communication system
WO2024035172A1 (en) Apparatus and method for providing ar content service based on terminal capability in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852884

Country of ref document: EP

Kind code of ref document: A1