WO2024034984A1 - 투석 중 저혈압 발생 예측 방법 및 그 시스템 - Google Patents

투석 중 저혈압 발생 예측 방법 및 그 시스템 Download PDF

Info

Publication number
WO2024034984A1
WO2024034984A1 PCT/KR2023/011305 KR2023011305W WO2024034984A1 WO 2024034984 A1 WO2024034984 A1 WO 2024034984A1 KR 2023011305 W KR2023011305 W KR 2023011305W WO 2024034984 A1 WO2024034984 A1 WO 2024034984A1
Authority
WO
WIPO (PCT)
Prior art keywords
dialysis
data
predicting
occurrence
hypotension
Prior art date
Application number
PCT/KR2023/011305
Other languages
English (en)
French (fr)
Inventor
정병하
고은실
이한비
정성진
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Publication of WO2024034984A1 publication Critical patent/WO2024034984A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Definitions

  • the present disclosure relates to a method and system for predicting the occurrence of hypotension during dialysis and, more specifically, to a method for predicting the risk of hypotension during dialysis using deep learning technology and a system for performing the method.
  • Intradialytic hypotension is one of the common and very dangerous side effects in dialysis patients. It is known that low blood pressure during dialysis causes complications and significantly increases the hospitalization period and mortality rate of dialysis patients.
  • the best way to predict the possibility of low blood pressure during dialysis is to monitor the condition of patients undergoing dialysis in real time and detect signs of low blood pressure in advance.
  • this method is difficult to realize because it requires many medical personnel and complex monitoring equipment.
  • the technical problem to be solved through several embodiments of the present disclosure is to provide a method for accurately predicting the risk of low blood pressure during dialysis and a system for performing the method.
  • Another technical problem to be solved through some embodiments of the present disclosure is to provide a method for building a deep learning model that can accurately predict the risk of hypotension during dialysis and a system for performing the method.
  • Another technical problem to be solved through some embodiments of the present disclosure is to provide key variables (features) that can guarantee the performance of a model for predicting the risk of hypotension during dialysis.
  • a method for predicting the occurrence of hypotension during dialysis is a method performed by at least one computing device, comprising the steps of acquiring medical data of a dialysis patient - the medical data includes dialysis data about a plurality of dialysis sessions, and the dialysis data has a plurality of independent variables - processing the medical data to construct input data for a CNN (Convolutional Neural Network)-based prediction model - the input
  • the data may include inputting two-dimensional data having a dialysis session axis and an independent variable axis, and inputting the input data into the prediction model to predict the risk of developing hypotension during dialysis for the dialysis patient.
  • the plurality of independent variables may include variables related to vital signs and dialysis administration information.
  • the plurality of independent variables may include at least one of systolic blood pressure (SBP), diastolic blood pressure (DBP), ultrafiltration rate (UFR), and whether low blood pressure occurs.
  • SBP systolic blood pressure
  • DBP diastolic blood pressure
  • UFR ultrafiltration rate
  • the plurality of independent variables may include variables related to at least one of dialysate, dialysis mode, dialysis time, and blood flow rate (BFR).
  • the medical data may further include at least one of data regarding the dialysis patient's demographic characteristics, disease history, medication history, and pre-dialysis test results of the dialysis patient.
  • the prediction model may include a convolution layer that performs a one-dimensional convolution operation on the input data along the dialysis session axis.
  • the medical data is learning data with a correct answer label regarding the occurrence of hypotension during dialysis, and may further include training the prediction model based on the difference between the prediction result and the correct answer label. there is.
  • the dialysis data includes first data regarding a previous dialysis session received by the dialysis patient and second data regarding a current dialysis session to be received by the dialysis patient
  • the predicting step includes modeling the prediction model. It may include predicting the risk of low blood pressure occurring in the current dialysis session.
  • a system for predicting the occurrence of hypotension during dialysis includes a memory for storing one or more instructions and one or more processors, wherein the one or more processors store one or more instructions.
  • An operation of acquiring medical data of a dialysis patient by executing the above instructions - the medical data includes dialysis data about a plurality of dialysis sessions and the dialysis data has a plurality of independent variables - processing the medical data
  • An operation of configuring input data of a CNN (Convolutional Neural Network)-based prediction model - the input data is two-dimensional data having a dialysis session axis and an independent variable axis - and inputting the input data into the prediction model to predict the dialysis patient. You can perform actions that predict the risk of low blood pressure during dialysis.
  • CNN Convolutional Neural Network
  • a computer program includes the steps of combining with a computing device to obtain medical data of a dialysis patient, wherein the medical data relates to a plurality of dialysis sessions.
  • the input data has a dialysis session axis and an independent variable axis. It is two-dimensional data having - and can be stored in a computer-readable recording medium to execute a step of predicting the risk of hypotension during dialysis for the dialysis patient by inputting the input data into the prediction model.
  • the risk of developing hypotension during dialysis can be accurately predicted at an early stage through a prediction model based on a CNN (Convolutional Neural Network).
  • a CNN Convolutional Neural Network
  • the risk of developing hypotension in a scheduled dialysis session i.e., before the dialysis session begins
  • the incidence of hypotension during dialysis can be significantly reduced through preemptive measures based on predicted results.
  • a prediction model can be learned using a medical dataset of dialysis patients with various independent variables (e.g., demographic characteristics, disease history, medication history, vital signs for each dialysis session, dialysis performance information, etc.). Accordingly, a model that accurately predicts the risk of developing low blood pressure can be built by considering various factors in combination.
  • two-dimensional data constructed from medical data of dialysis patients i.e., two-dimensional data with a dialysis session axis and an independent variable axis
  • a CNN-based prediction model can be built.
  • FIG. 1 is an exemplary diagram schematically illustrating a system for predicting occurrence of low blood pressure during dialysis and its inputs and outputs according to some embodiments of the present disclosure.
  • Figure 2 is an exemplary diagram showing symptoms of low blood pressure during dialysis that may be referenced in some embodiments of the present disclosure.
  • FIG. 3 is an exemplary diagram illustrating a process in which a system for predicting occurrence of low blood pressure during dialysis according to some embodiments of the present disclosure provides a prediction service.
  • FIG. 4 is an exemplary flowchart illustrating a method for predicting the occurrence of low blood pressure during dialysis according to some embodiments of the present disclosure.
  • 5 and 6 are exemplary diagrams for explaining the structure and operating principle of a prediction model according to some embodiments of the present disclosure.
  • FIG. 7 is an exemplary diagram for explaining the structure and operating principle of a prediction model according to some other embodiments of the present disclosure.
  • FIGS. 8 to 10 are exemplary diagrams for explaining a method of building a prediction model according to some embodiments of the present disclosure.
  • FIG. 11 is an exemplary diagram for explaining a method of selecting key independent variables according to some embodiments of the present disclosure.
  • Figure 12 is an exemplary diagram for explaining a method of selecting main independent variables according to some other embodiments of the present disclosure.
  • 13 and 14 are exemplary diagrams for explaining a data enhancement method according to some embodiments of the present disclosure.
  • FIG. 15 illustrates an example computing device capable of implementing a system for predicting the occurrence of hypotension during dialysis according to some embodiments of the present disclosure.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, or order of the component is not limited by the term.
  • a component is described as being “connected,” “coupled,” or “connected” to another component, that component may be directly connected or connected to that other component, but there is another component between each component. It will be understood that elements may be “connected,” “combined,” or “connected.”
  • “comprises” and/or “comprising” refers to a referenced component, step, operation and/or element that includes one or more other components, steps, operations and/or elements. Does not exclude presence or addition.
  • FIG. 1 is an exemplary diagram illustrating a system 10 for predicting occurrence of hypotension during dialysis and its input and output according to some embodiments of the present disclosure.
  • the system for predicting the occurrence of hypotension during dialysis 10 is shown as the 'prediction system 10', and in the following description, the system for predicting the occurrence of hypotension during dialysis 10 is referred to as the 'prediction system 10'. Let it be abbreviated.
  • the prediction system 10 is a computing system that receives medical data of a dialysis patient, predicts the risk of intradialysis hypotension (IDH) for the patient based on the input data, and outputs the prediction. It can be.
  • the prediction system 10 predicts the risk of low blood pressure occurring in a patient during a scheduled dialysis session through the prediction model 11 (e.g., as illustrated in FIG. 2, the risk of experiencing symptoms of a sudden drop in blood pressure during dialysis) ) can be predicted.
  • the prediction system 10 trains a prediction model 11 using medical datasets for multiple dialysis patients, and predicts the risk of hypotension during dialysis for a specific patient through the learned prediction model 11. It is predictable.
  • the prediction model 11 may be a CNN (Convolutional Neural Network)-based model, and during learning and prediction, the dialysis patient's medical data is processed into two-dimensional input data 12 to create a prediction model (11). ) can be entered.
  • CNN Convolutional Neural Network
  • Prediction results include, for example, whether intradialytic hypotension will occur (e.g., IDH or No-IDH), the risk of intradialytic hypotension (i.e., likelihood/probability of intradialytic hypotension), and the risk stage of intradialytic hypotension (e.g., Nadir100, Nadir90, etc.), risk level by stage, etc., but is not limited to this.
  • intradialytic hypotension e.g., IDH or No-IDH
  • the risk of intradialytic hypotension i.e., likelihood/probability of intradialytic hypotension
  • the risk stage of intradialytic hypotension e.g., Nadir100, Nadir90, etc.
  • the medical dataset (or data) used for learning (or predicting) the prediction model 11 may be composed of at least one dependent variable and multiple independent variables, which will be described later.
  • variables include 'feature', 'attribute', 'element', 'column', 'item', and 'field ( It can be used interchangeably with terms such as ‘field’.
  • each individual data that makes up the medical dataset is 'sample', 'example', 'record', 'instance', 'entry', and 'data'. It can be used interchangeably with terms such as 'data point' and 'observation'.
  • the prediction system 10 may provide a prediction service regarding the occurrence of hypotension during dialysis.
  • the prediction system 10 may receive medical data of a dialysis patient from the user terminal 20, predict the risk of hypotension during dialysis based on the received medical data, and provide the prediction result to the user terminal 20. there is. Users may be patients or medical staff, but the scope of the present disclosure is not limited thereto.
  • the prediction system 10 may provide this prediction service through a web interface (or app interface), but the scope of the present disclosure is not limited thereto.
  • Prediction system 10 may be implemented with at least one computing device. For example, all functions of prediction system 10 may be implemented in one computing device, and a first function of prediction system 1 is implemented in a first computing device and a second function is implemented in a second computing device. It could be. Alternatively, certain functions of prediction system 10 may be implemented on multiple computing devices.
  • a computing device may encompass any device equipped with a computing (processing) function, and for an example of such a device, refer to FIG. 15. Since a computing device is an assembly of multiple components (e.g. processor, memory, etc.) interacting, it may be called a 'computing system' in some cases. Additionally, a computing system may refer to a collection of multiple computing devices interacting for the same purpose.
  • a computing device is an assembly of multiple components (e.g. processor, memory, etc.) interacting, it may be called a 'computing system' in some cases. Additionally, a computing system may refer to a collection of multiple computing devices interacting for the same purpose.
  • the prediction system 10 according to some embodiments of the present disclosure has been schematically described with reference to FIGS. 1 to 3 .
  • various methods that can be performed in the prediction system 10 illustrated in FIG. 1 will be described in detail.
  • Figure 4 is an exemplary flowchart schematically showing a method for predicting the occurrence of low blood pressure during dialysis according to some embodiments of the present disclosure. However, this is only a preferred embodiment for achieving the purpose of the present disclosure, and of course, some steps may be added or deleted as needed.
  • the prediction method may begin at step S41 of acquiring a medical dataset for dialysis patients.
  • a medical dataset may be comprised of medical data (i.e., data samples) for multiple dialysis patients, and each medical data (i.e., data sample) may include data regarding a plurality of dialysis sessions. Additionally, each medical data (ie, data sample) may have one or more dependent variables and multiple independent variables.
  • One or more dependent variables relate to the occurrence of intradialytic hypotension, for example, whether intradialytic hypotension occurred (e.g., IDH or No-IDH), risk stage for intradialytic hypotension (e.g., Nadir100, Nadir90, etc.) ), etc., but is not limited to this.
  • intradialytic hypotension e.g., IDH or No-IDH
  • risk stage for intradialytic hypotension e.g., Nadir100, Nadir90, etc.
  • low blood pressure during dialysis can be defined in various ways, such as 'Nadir90', 'Fall20Nadir90', etc., and may be defined in any way.
  • Multiple independent variables include, for example, the patient's demographic characteristics, disease history, medication history, test results the patient received before dialysis, vital signs from the previous/current dialysis session, and dialysis performance information from the previous/current dialysis session. may include. However, the scope of the present disclosure is not limited thereto. For specific examples of independent variables, please refer to Table 1 below.
  • the vital signs of the previous dialysis session may be, for example, values measured during the corresponding dialysis session (e.g., average values), and the vital signs of the current dialysis session may be, for example, the values measured before the corresponding dialysis session begins. It can be any value. However, the scope of the present disclosure is not limited thereto.
  • the weight change between dialysis is a value representing the difference between the patient's weight before the start of the current dialysis session and the weight after the previous dialysis session.
  • it may be the difference between the two weights divided by the patient's dry weight.
  • it is not limited to this.
  • dialysate may be classified into, for example, G solution, A solution, low calcium solution, and others, but the scope of the present disclosure is not limited thereto.
  • blood vessel types may be classified into, for example, AVF, AVG, catheter, etc., but the scope of the present disclosure is not limited thereto.
  • dialysis modes include, for example, hemodialysis (HD), hemofiltration dialysis (HDF), hemofiltration (HF), hemoperfusion (HP), ultrafiltration (UF), and sustained low efficiency dialysis (SLED). ), but the scope of the present disclosure is not limited thereto.
  • HDF hemofiltration dialysis
  • HF hemofiltration
  • HP hemoperfusion
  • UF ultrafiltration
  • SLED sustained low efficiency dialysis
  • the prediction model can accurately predict the risk of hypotension during dialysis by considering various factors in combination.
  • the prediction model learned using the independent variables shown in Table 1 takes into account the patient's disease history, the patient's condition before dialysis, and the patient's dialysis information in a complex (comprehensive) manner to predict the risk of hypotension during dialysis (e.g. , the risk of low blood pressure occurring during a scheduled dialysis session) can be accurately predicted.
  • a main independent variable may be selected from among a plurality of independent variables constituting the medical dataset.
  • medical datasets for key independent variables can be used as learning datasets for prediction models. By doing so, the performance of the prediction model can be further improved. This embodiment will be described in more detail later with reference to FIGS. 11 and 12.
  • augmentation processing is performed on the dataset of the hypotension occurrence class (i.e., cases where hypotension occurred during dialysis). It could be. This embodiment will be described in more detail later with reference to FIGS. 13 and 14.
  • a model for predicting the risk of developing low blood pressure during dialysis can be built using a medical dataset.
  • the prediction model may be a CNN-based model, but its detailed structure may vary depending on the embodiment.
  • the prediction model may be implemented as a CNN-based model.
  • the prediction model may be configured to include a convolutional layer 52, a pooling layer 53, and an output layer 54.
  • This prediction model extracts a feature map from two-dimensional input data (51) and accurately predicts the risk of hypotension during dialysis based on the extracted feature map (e.g., outputs a confidence score regarding whether hypotension occurs during dialysis). can do.
  • the output layer 54 is configured to output a confidence score for each class, the confidence score (or a processed value thereof) of the hypotension (IDH) class can be used as a value indicating the risk of occurrence of hypotension during dialysis. .
  • Those skilled in the art will already be familiar with the operating principles of each layer 52 to 54, so description thereof will be omitted.
  • the method of constructing (generating) two-dimensional input data 51 from the medical data of a dialysis patient will be explained in detail later.
  • the convolution layer 52 may be configured to extract a feature map through a one-dimensional convolution (1d conv) operation.
  • 1d conv one-dimensional convolution
  • the convolution layer 52 applies the convolution filter 61 along the dialysis session axis. By moving it (i.e., moving it only in one direction), a convolution operation can be performed on the input data 62.
  • the convolution layer 52 can accurately extract time series characteristics according to dialysis sessions similar to RNN (Recurrent Neural Network) series models, and as a result, the performance of the prediction model can be greatly improved.
  • RNN Recurrent Neural Network
  • CNN series models typically have much fewer parameters (i.e., weight parameters) than RNN series models, the time cost and computing cost required to learn the prediction model can be reduced (i.e., the prediction model is RNN. Learning costs may be reduced compared to when implemented as a series model).
  • the prediction model may be implemented based on a combination of CNN and RNN.
  • the prediction model includes a plurality of CNN blocks 72-1 to 72-n, a plurality of RNN blocks 73-1 to 73-n, and a plurality of output layers 74. -1 to 74-n).
  • the CNN blocks 72-1 to 72-n can extract feature maps from two-dimensional input data (71-1 to 71-n, e.g., a plurality of two-dimensional data according to time series order),
  • the RNN blocks (73-1 to 73-n) can analyze feature maps considering the time series order, and the output layers (74-1 to 74-n) predict the risk of hypotension for the corresponding dialysis session. You can print it out.
  • two-dimensional input data is constructed by processing the medical data of a dialysis patient (S81), and a prediction model can be learned using the constructed input data (S82).
  • the prediction system 10 inputs two-dimensional input data into a prediction model to obtain a prediction result, and the difference (i.e., prediction error) between the prediction result and the correct answer label (i.e., the value of the dependent variable) is minimized.
  • You can update the weight parameters of the prediction model e.g., the weight parameters of the convolution filter.
  • FIG. 9 An exemplary way to construct input data for a prediction model is shown in FIG. 9.
  • the prediction system 10 can place medical data of a dialysis patient on a two-dimensional data plane 90 formed by the dialysis session axis and the independent variable axis.
  • the prediction system 10 can generate two-dimensional input data by extracting data 91 regarding a preset number of dialysis sessions on the data plane 90. For example, assume that prediction for the current dialysis session 't' is performed using data from three previous dialysis sessions (e.g., dialysis sessions t-3 to t-1). In this case, the prediction system 10 can extract data 91 from dialysis session 't-3' to dialysis session 't-1' of the patient as one unit of input data.
  • the correct answer label of the input data 91 may be whether hypotension occurs (or hypotension risk stage, etc.) in dialysis session 't'.
  • the prediction system 10 combines data 91 about the three previous dialysis sessions and data about the current dialysis session 't' (i.e., vital signs before the start of the session, dialysis performance information, etc.) into one unit of input data. It can also be extracted with .
  • the data of the previous dialysis session may include only vital sign data measured during the dialysis session, or may further include vital sign data measured before the start of the dialysis session.
  • the prediction system 10 may continuously extract two-dimensional input data for a prediction model using a sliding window method. For example, the prediction system 10 places medical data on a two-dimensional data plane formed by the dialysis session axis and the independent variable axis, moves a sliding window along the dialysis session axis on the two-dimensional data plane, and makes predictions.
  • the input data of the model can be extracted continuously.
  • the size of the sliding window can be set based on the number of dialysis sessions to be included in the input data.
  • the position (order) in which the independent variables are arranged (placed) can be determined in various ways.
  • the arrangement positions of the independent variables may be determined based on prior knowledge.
  • the prediction system 10 may place independent variables with a high correlation close to each other (e.g., adjacent to each other) based on prior knowledge, and place independent variables with a low correlation far away from each other.
  • the prediction model performs predictions by better considering the correlation between independent variables, so the performance of the prediction model can be further improved.
  • the arrangement positions of the independent variables may be determined based on the correlation coefficient between the independent variables.
  • the prediction system 10 may place independent variables with relatively large correlation coefficients close to each other (e.g., adjacent to each other), and place independent variables with relatively small correlation coefficients far away from each other.
  • the prediction model performs predictions by better considering the correlation between independent variables, so the performance of the prediction model can be further improved.
  • the arrangement positions of the independent variables may be determined based on the performance evaluation results of the CNN-based model performed by changing the arrangement positions of the independent variables. For example, as shown in FIG. 10, the prediction system 10 performs learning and performance evaluation of the CNN-based prediction models 102 and 104 by changing the arrangement positions of the independent variables (see input data 101 and 103). can do. In addition, the prediction system 10 can determine the arrangement position of the independent variables by comparing the performance evaluation results (e.g. determining the arrangement position of the prediction model with the best performance).
  • the arrangement positions of the independent variables may be determined randomly.
  • the arrangement positions of the independent variables may be determined based on various combinations of the above-described embodiments.
  • the prediction system 10 determines the arrangement position of the independent variables of the first group using the first method (e.g., determined based on correlation coefficient, prior knowledge, etc.), and determines the arrangement position of the independent variables of the second group using the second method. It can also be decided by method (e.g., random method).
  • the risk of developing hypotension during dialysis of the target patient may be predicted through the learned prediction model.
  • the prediction system 10 may construct two-dimensional data from the target patient's medical data and perform prediction by inputting the two-dimensional data into a prediction model.
  • the prediction results include, for example, whether intradialytic hypotension will occur (e.g., IDH or No-IDH), the risk of intradialytic hypotension (i.e., likelihood/probability of intradialytic hypotension), and the risk stage for intradialytic hypotension. (e.g., Nadir100, Nadir90, etc.), it may be a risk level by stage, but it is not limited to this.
  • intradialytic hypotension e.g., IDH or No-IDH
  • the risk stage for intradialytic hypotension i.e., likelihood/probability of intradialytic hypotension
  • the risk stage for intradialytic hypotension e.g., Nadir100, Nadir90, etc.
  • it may be a risk level by stage, but it is
  • the prediction system 10 builds a first prediction model (e.g. a CNN-based prediction model) using a medical dataset, and a second prediction model (e.g. prediction based on a combination of CNN and RNN) that is different from the first prediction model. model) can be further built.
  • the prediction system 10 builds a first prediction model using a medical dataset about first independent variables, and constructs a medical dataset about second independent variables that are at least partially different from the first independent variables. It is also possible to build a second prediction model using this. In this case, the prediction system 10 can predict the risk of developing low blood pressure during dialysis by comprehensively considering the prediction results of the two prediction models.
  • the risk of developing low blood pressure during dialysis can be accurately predicted at an early stage through a CNN-based prediction model.
  • the risk of developing hypotension in a scheduled dialysis session i.e., before the dialysis session begins
  • the incidence of hypotension during dialysis can be significantly reduced through preemptive measures based on predicted results.
  • a prediction model can be learned using a medical dataset of dialysis patients with various independent variables (e.g., demographic characteristics, disease history, medication history, vital signs for each dialysis session, dialysis performance information, etc.). Accordingly, a model that accurately predicts the risk of developing low blood pressure can be built by considering various factors in combination.
  • two-dimensional data constructed from medical data of dialysis patients i.e., two-dimensional data with a dialysis session axis and an independent variable axis
  • a CNN-based prediction model can be built.
  • these embodiments relate to a method of selecting key independent variables (113-1 to 113-k) based on performance evaluation results for the model 112.
  • the prediction system 10 can train the model 112 using the independent variables 111-1 to 111-n constituting the medical dataset and evaluate the performance of the learned model 112. .
  • the prediction system 10 may learn a first model using a first independent variable (e.g. 111-1) and a second model using a second independent variable (e.g. 111-2). And, the prediction system 10 can evaluate the performance of each of the first model and the second model.
  • the prediction system 10 may learn the model 112 using two or more independent variables (e.g. 111-1, 111-2).
  • the model 112 shown in FIG. 11 can be understood as an abstraction of all models used to select key independent variables.
  • the model 112 is a learnable model (i.e., machine learning/deep learning model), which may be the same type of model as the above-mentioned prediction model, or another type of model (e.g., logistic regression, random forest, decision tree, XG boost, etc.).
  • the prediction system 10 may select key independent variables (113-1 to 113-k) based on the performance evaluation results of the model 112. For example, the prediction system 10 uses K independent variables (113- 1 to 113-k) can be selected as main independent variables.
  • the prediction system 10 can build a prediction model using the medical dataset composed of the main independent variables (113-1 to 113-k). there is. By doing so, a more high-performance prediction model can be built.
  • the present embodiments use the degree of influence of changes in the value of a specific independent variable (e.g., variable 2) on the prediction results (e.g. 122, 123) of the model 121 to determine the main independent variable. It's about how to select.
  • a specific independent variable e.g., variable 2
  • the prediction results e.g. 122, 123
  • the prediction system 10 may train the model 121 using a medical dataset.
  • the model 121 may be a CNN-based model, but the scope of the present disclosure is not limited thereto.
  • the prediction system 10 may obtain the first prediction result 122 by inputting the two-dimensional first input data 124 into the learned model 121.
  • FIG. 12 shows an example where model 121 is a classification model that outputs confidence scores for a class in which hypotension occurs during dialysis (see IDH) and a class in which it does not occur (see No-IDH).
  • the prediction system 10 generates second input data 126 by changing the value 125 of a specific independent variable (e.g. variable 2) in the first input data 124, and generates second input data 126 ) can be input again into the learned model 121 to obtain the second prediction result 123.
  • the prediction system 10 may change the value 125 of a specific independent variable (e.g. variable 2) to '0' or change it to the average value of the dataset belonging to the class in which hypotension does not occur (or the class in which hypotension occurs). .
  • the prediction system 10 may calculate the difference between the two prediction results 122 and 123.
  • the prediction system 10 repeats these processes for other patient data to determine the influence (e.g. average of difference values) of a specific independent variable (e.g. variable 2) on the prediction results (e.g. 122, 123) of the model 121. It can be measured. For example, if the overall confidence score of the hypotension class is significantly reduced by changing the value of a specific independent variable (e.g. variable 2) to '0', the prediction system 10 determines that the independent variable is the prediction of the model 121. It can be judged that the degree of influence on the results (or dependent variable) is high.
  • a specific independent variable e.g. variable 2
  • the prediction system 10 determines that the independent variable is the prediction of the model 121. It can be judged that the degree of influence on the results (or dependent variable) is high.
  • the prediction system 10 can measure the influence of each of the independent variables constituting the medical dataset, and select independent variables whose measured influence is higher than the standard value as main independent variables. Additionally, the prediction system 10 can build a prediction model using a medical dataset composed of key independent variables. By doing so, a more high-performance prediction model can be built.
  • these embodiments relate to a method of augmenting a medical dataset of the intradialysis hypotension occurrence class (see IDH) using the autoencoder-based model 133.
  • the autoencoder-based model 133 may be configured to include an encoder 134 and a decoder 135. Additionally, the encoder 134 can encode the input data 132 into a latent vector 136, and the decoder 135 can reconstruct (restore) the input data by decoding the latent vector 136. .
  • the autoencoder-based model 133 consists of a basic autoencoder structure.
  • the prediction system 10 can learn the autoencoder-based model 133 using the medical dataset 131 of the hypotension occurrence class. As shown, the prediction system 10 can learn the model 133 based on the reconstruction loss for each medical data 132 constituting the medical dataset 131, and the reconstruction loss Can be calculated based on the difference between the input data 132 and the output (reconstructed) data 137.
  • Each medical data 132 may be, for example, data related to a single dialysis session, but the scope of the present disclosure is not limited thereto.
  • the encoder 134 can map the medical dataset 131 of the hypotension occurrence class to a corresponding area (so-called 'manifold') on the latent space.
  • the prediction system 10 can identify a region 141 (hereinafter referred to as 'latent region') in the latent space as illustrated in FIG. 14 through the learned encoder 134.
  • the illustrated latent area 141 refers to an area in which the medical dataset 131 of the hypotension occurrence class is distributed in the latent space.
  • the prediction system 10 encodes a number of medical data included in the medical dataset 131 into latent vectors (e.g. 134) through the learned encoder 134, and selects the area containing all of the corresponding latent vectors as medical data. It can be identified as a potential area 141 of the dataset 131.
  • prediction system 10 may sample latent vector 142 within latent region 141 . Additionally, the prediction system 10 may generate virtual medical data belonging to the hypotension occurrence class by decoding the sampled latent vector 142 through the learned decoder 135. As this sampling and decoding process is repeated, the dataset 131 of the hypotension occurrence class can be gradually enhanced.
  • the dataset augmentation method according to some embodiments of the present disclosure has been described with reference to FIGS. 13 and 14. According to the above, the class imbalance problem can be greatly reduced by augmenting the medical dataset of the class in which hypotension occurs during dialysis, and thus the performance of the prediction model can be greatly improved. Additionally, fairly plausible medical data (i.e., virtual medical data) can be generated by using an autoencoder-based model.
  • the present inventors built a model to predict the risk of low blood pressure during dialysis using medical datasets on actual dialysis patients.
  • the medical dataset consists of data on approximately 2,040 dialysis patients and a total of 937,076 dialysis sessions. Additionally, in the medical dataset, hypotension during dialysis was confirmed to have occurred in approximately 1,507 patients and a total of 43,673 dialysis sessions.
  • the present inventors built a CNN-type prediction model as illustrated in Figure 5 (hereinafter, 'Example 1'), and further built a logistic regression model to compare performance (hereinafter, 'Comparative Example 1') ), performance evaluation of the two models was conducted.
  • the evaluation results are shown in Table 2 below.
  • FIG. 15 is an exemplary hardware configuration diagram showing the computing device 150.
  • the computing device 150 includes one or more processors 151, a bus 153, a communication interface 154, and a memory (loading) a computer program executed by the processor 151. 152) and a storage 155 that stores a computer program 156.
  • processors 151 a bus 153, a communication interface 154, and a memory (loading) a computer program executed by the processor 151. 152) and a storage 155 that stores a computer program 156.
  • FIG. 15 only components related to the embodiment of the present disclosure are shown in FIG. 15. Accordingly, anyone skilled in the art to which the present disclosure pertains can recognize that other general-purpose components may be included in addition to the components shown in FIG. 15 . That is, the computing device 150 may further include various components in addition to those shown in FIG. 15 . Additionally, in some cases, the computing device 150 may be configured with some of the components shown in FIG. 15 omitted. Hereinafter, each component of the computing device 150 will be described.
  • the processor 151 may control the overall operation of each component of the computing device 150.
  • the processor 151 is at least one of a Central Processing Unit (CPU), Micro Processor Unit (MPU), Micro Controller Unit (MCU), Graphic Processing Unit (GPU), or any type of processor well known in the art of the present disclosure. It can be configured to include. Additionally, the processor 151 may perform operations on at least one application or program to execute operations/methods according to embodiments of the present disclosure.
  • Computing device 150 may include one or more processors.
  • memory 152 may store various data, commands and/or information.
  • Memory 152 may load a computer program 156 from storage 155 to execute operations/methods according to embodiments of the present disclosure.
  • the memory 152 may be implemented as a volatile memory such as RAM, but the technical scope of the present disclosure is not limited thereto.
  • the bus 153 may provide communication functionality between components of the computing device 150.
  • the bus 153 may be implemented as various types of buses, such as an address bus, a data bus, and a control bus.
  • the communication interface 154 may support wired and wireless Internet communication of the computing device 150. Additionally, the communication interface 154 may support various communication methods other than Internet communication. To this end, the communication interface 154 may be configured to include a communication module well known in the technical field of the present disclosure.
  • storage 155 may non-transitory store one or more computer programs 156.
  • the storage 155 is a non-volatile memory such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, a hard disk, a removable disk, or a non-volatile memory such as a hard disk, a removable disk, or the like in the technical field to which this disclosure pertains. It may consist of any well-known type of computer-readable recording medium.
  • the computer program 156 may include one or more instructions that, when loaded into the memory 152, cause the processor 151 to perform operations/methods according to various embodiments of the present disclosure. That is, the processor 151 can perform operations/methods according to various embodiments of the present disclosure by executing the one or more instructions.
  • the computer program 156 includes the operation of acquiring medical data for dialysis patients, the operation of processing medical data to form input data of a CNN-based prediction model, and the operation of inputting the input data into the prediction model to obtain medical data for dialysis patients. It may include instructions to perform actions that predict the risk of low blood pressure during dialysis.
  • the prediction system 10 according to some embodiments of the present disclosure may be implemented through the computing device 150.
  • the technical idea of the present disclosure described so far with reference to FIGS. 1 to 15 may be implemented as computer-readable code on a computer-readable medium.
  • the computer-readable recording medium may be, for example, a removable recording medium (CD, DVD, Blu-ray disk, USB storage device, removable hard disk) or a fixed recording medium (ROM, RAM, computer-equipped hard disk). You can.
  • the computer program recorded on the computer-readable recording medium can be transmitted to another computing device through a network such as the Internet, installed on the other computing device, and thus used on the other computing device.

Abstract

투석 중 저혈압 발생 예측 방법 및 그 시스템이 제공된다. 본 개시의 몇몇 실시예들에 따른 투석 중 저혈압 발생 예측 방법은, 투석 환자의 의료 데이터를 가공하여 CNN(Convolutional Neural Network) 기반 예측 모델의 입력 데이터를 구성하는 단계, 구성된 입력 데이터를 예측 모델에 입력하여 투석 환자에 대한 투석 중 저혈압 발생 위험을 예측하는 단계를 포함할 수 있다. CNN 기반 예측 모델은 투석세션축과 독립변수축을 갖는 2차원의 입력 데이터를 토대로 예측을 수행함으로써 투석 중 저혈압 발생 위험을 정확하게 예측할 수 있다.

Description

투석 중 저혈압 발생 예측 방법 및 그 시스템
본 개시는 투석 중 저혈압 발생 예측 방법 및 그 시스템에 관한 것으로, 보다 상세하게는, 딥러닝 기술을 이용하여 투석 중 저혈압의 발생 위험을 예측하는 방법 및 그 방법을 수행하는 시스템에 관한 것이다.
투석 중 저혈압(IntraDialytic Hypotension, IDH)은 투석 환자들에게 흔하게 발생하면서도 매우 위험한 부작용 중 하나이다. 투석 중 저혈압은 합병증을 유발하여 투석 환자들의 입원 기간과 사망률을 크게 증가시키는 것으로 알려져 있다.
투석 중 저혈압 발생가능성을 예측할 수 있는 최선의 방식은 투석 중인 환자의 상태를 실시간으로 모니터링하면서 저혈압 발생 징후를 미리 감지하는 것이다. 그러나, 이러한 방식은 많은 의료 인력과 복잡한 모니터링 장비를 필요로 하기 때문에, 현실화되기는 어렵다.
본 개시의 몇몇 실시예들을 통해 해결하고자 하는 기술적 과제는, 투석 중 저혈압의 발생 위험을 정확하게 예측할 수 있는 방법 및 그 방법을 수행하는 시스템을 제공하는 것이다.
본 개시의 몇몇 실시예들을 통해 해결하고자 하는 다른 기술적 과제는, 투석 중 저혈압의 발생 위험을 정확하게 예측할 수 있는 딥러닝 모델을 구축하는 방법 및 그 방법을 수행하는 시스템을 제공하는 것이다.
본 개시의 몇몇 실시예들을 통해 해결하고자 하는 또 다른 기술적 과제는, 투석 중 저혈압의 발생 위험을 예측하는 모델의 성능을 보장할 수 있는 주요 변수(피처)들을 제공하는 것이다.
본 개시의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시의 기술분야에서의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 해결하기 위한, 본 개시의 몇몇 실시예들에 따른 투석 중 저혈압 발생 예측 방법은, 적어도 하나의 컴퓨팅 장치에 의해 수행되는 방법으로서, 투석 환자의 의료 데이터를 획득하는 단계 - 상기 의료 데이터는 복수의 투석세션들에 관한 투석 데이터를 포함하고 상기 투석 데이터는 복수의 독립변수들을 가짐 - , 상기 의료 데이터를 가공하여 CNN(Convolutional Neural Network) 기반 예측 모델의 입력 데이터를 구성하는 단계 - 상기 입력 데이터는 투석세션축과 독립변수축을 갖는 2차원 데이터입력 및 상기 입력 데이터를 상기 예측 모델에 입력하여 상기 투석 환자에 대한 투석 중 저혈압 발생 위험을 예측하는 단계를 포함할 수 있다.
몇몇 실시예들에서, 상기 복수의 독립변수들은 활력징후 및 투석시행정보에 관한 변수를 포함할 수 있다.
몇몇 실시예들에서, 상기 복수의 독립변수들은 수축기혈압(SBP), 이완기혈압(DBP), UFR(ultrafiltration rate) 및 저혈압 발생 여부 중 적어도 하나에 관한 변수를 포함할 수 있다.
몇몇 실시예들에서, 상기 복수의 독립변수들은 투석액, 투석모드, 투석소요시간 및 혈류속도(BFR) 중 적어도 하나에 관한 변수를 포함할 수 있다.
몇몇 실시예들에서, 상기 의료 데이터는 상기 투석 환자의 인구통계학적 특성, 질병 이력, 복약 이력 및 상기 투석 환자의 투석 전 검사 결과에 관한 데이터 중 적어도 하나를 더 포함할 수 있다.
몇몇 실시예들에서, 상기 예측 모델은 상기 투석세션축을 따라 상기 입력 데이터에 대해 1차원 컨볼루션 연산을 수행하는 컨볼루션 레이어를 포함할 수 있다.
몇몇 실시예들에서, 상기 의료 데이터는 투석 중 저혈압 발생에 관한 정답 레이블이 존재하는 학습 데이터이고, 상기 예측의 결과와 상기 정답 레이블의 차이에 기초하여 상기 예측 모델을 학습시키는 단계를 더 포함할 수 있다.
몇몇 실시예들에서, 상기 투석 데이터는 상기 투석 환자가 받은 이전 투석세션에 관한 제1 데이터와 상기 투석 환자가 받을 현재 투석세션에 관한 제2 데이터를 포함하고, 상기 예측하는 단계는, 상기 예측 모델을 통해 상기 현재 투석세션에서 저혈압이 발생될 위험을 예측하는 단계를 포함할 수 있다.
상술한 기술적 과제를 해결하기 위한, 본 개시의 몇몇 실시예들에 따른 투석 중 저혈압 발생 예측 시스템은, 하나 이상의 인스트럭션을 저장하는 메모리 및하나 이상의 프로세서를 포함하고, 상가 하나 이상의 프로세서는, 상기 저장된 하나 이상의 인스트럭션을 실행시킴으로써, 투석 환자의 의료 데이터를 획득하는 동작 - 상기 의료 데이터는 복수의 투석세션들에 관한 투석 데이터를 포함하고 상기 투석 데이터는 복수의 독립변수들을 가짐 - , 상기 의료 데이터를 가공하여 CNN(Convolutional Neural Network) 기반 예측 모델의 입력 데이터를 구성하는 동작 - 상기 입력 데이터는 투석세션축과 독립변수축을 갖는 2차원 데이터임 - 및상기 입력 데이터를 상기 예측 모델에 입력하여 상기 투석 환자에 대한 투석 중 저혈압 발생 위험을 예측하는 동작을 수행할 수 있다.
상술한 기술적 과제를 해결하기 위한, 본 개시의 몇몇 실시예들에 따른 컴퓨터 프로그램은, 컴퓨팅 장치와 결합되어, 투석 환자의 의료 데이터를 획득하는 단계 - 상기 의료 데이터는 복수의 투석세션들에 관한 투석 데이터를 포함하고 상기 투석 데이터는 복수의 독립변수들을 가짐 - , 상기 의료 데이터를 가공하여 CNN(Convolutional Neural Network) 기반 예측 모델의 입력 데이터를 구성하는 단계 - 상기 입력 데이터는 투석세션축과 독립변수축을 갖는 2차원 데이터임 - 및상기 입력 데이터를 상기 예측 모델에 입력하여 상기 투석 환자에 대한 투석 중 저혈압 발생 위험을 예측하는 단계를 실행시키기 위하여 컴퓨터로 판독가능한 기록매체에 저장될 수 있다.
본 개시의 몇몇실시예들에 따르면, CNN(Convolutional Neural Network) 기반의 예측 모델을 통해 투석 중 저혈압 발생 위험이 조기에 정확하게 예측될 수 있다. 가령, 예측 모델을 통해 예정된 투석세션에서(즉, 투석 세션이 시작되기 전에) 저혈압이 발생될 위험이 정확하게 예측될 수 있다. 아울러, 예측 결과에 따른 선제적 조치를 통해 투석 중 저혈압 발생률은 크게 감소될 수 있다.
또한, 다양한 독립변수들(e. g. , 인구통계학적 특성, 질병이력, 복약 이력, 투석세션별 활력징후 및 투석시행정보 등)을 갖는 투석 환자의 의료 데이터셋을 이용하여 예측 모델이 학습될 수 있다. 이에 따라, 다양한 요인들을 복합적으로 고려하여 저혈압 발생 위험을 정확하게 예측하는 모델이 구축될 수 있다.
또한, 투석 환자의 의료 데이터로부터 구성된 2차원 데이터(즉, 투석세션축과 독립변수축을 갖는 2차원의 데이터)가 CNN 기반 예측 모델의 학습 데이터로 이용될 수 있다. 이러한 경우, 예측 모델이 투석세션들간의 연관성과 독립변수들 간의 연관성을 종합적으로 고려하여 예측을 수행하도록 학습되기 때문에, 고성능의 예측 모델이 구축될 수 있다.
본 개시의 기술적 사상에 따른 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 개시의 몇몇 실시예들에 따른 투석 중 저혈압 발생 예측 시스템과 그의 입출력을 개략적으로 설명하기 위한 예시적인 도면이다.
도 2는 본 개시의 몇몇 실시예들에서 참조될 수 잇는 투석 중 저혈압 증상을 나타내는 예시적인 도면이다.
도 3은 본 개시의 몇몇 실시예들에 따른 투석 중 저혈압 발생 예측 시스템이 예측서비스를 제공하는 과정을 설명하기 위한 예시적인 도면이다.
도 4는 본 개시의 몇몇 실시예들에 따른 투석 중 저혈압 발생 예측 방법을 나타내는 예시적인 흐름도이다.
도 5및 도 6은 본 개시의 몇몇 실시예들에 따른 예측 모델의 구조 및 동작 원리를 설명하기 위한 예시적인 도면이다.
도 7은 본 개시의 다른 몇몇 실시예들에 따른 예측 모델의 구조 및 동작 원리를 설명하기 위한 예시적인 도면이다.
도 8 내지 도 10은 본 개시의 몇몇 실시예들에 따른 예측 모델 구축 방법을 설명하기 위한 예시적인 도면이다.
도 11은 본 개시의 몇몇 실시예들에 따른 주요 독립변수 선별 방법을 설명하기 위한 예시적인 도면이다.
도 12는 본 개시의 다른 몇몇 실시예들에 따른 주요 독립변수 선별 방법을 설명하기 위한 예시적인 도면이다.
도 13 및 도 14는 본 개시의 몇몇 실시예들에 따른 데이터 증강 방법을 설명하기 위한 예시적인 도면이다.
도 15는 본 개시의 몇몇 실시예들에 따른 투석 중 저혈압 발생 예측 시스템을 구현할 수 있는 예시적인 컴퓨팅 장치를 도시한다.
이하, 첨부된 도면을 참조하여 본 개시의 바람직한 실시예들을 상세히 설명한다. 본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시의 기술적 사상은 이하의 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 이하의 실시예들은 본 개시의 기술적 사상을 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 본 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시의 기술적 사상은 청구항의 범주에 의해 정의될 뿐이다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 개시를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다. 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 개시를 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
또한, 본 개시의 구성요소를 설명하는데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
본 개시에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
이하, 본 개시의 다양한 실시예들에 대하여 첨부된 도면에 따라 상세하게 설명한다.
도 1은 본 개시의 몇몇 실시예들에 따른 투석 중 저혈압 발생 예측 시스템(10)과 그의 입출력을 설명하기 위한 예시적인 도면이다. 도 1 이하의 도면에서, 투석 중 저혈압 발생 예측 시스템(10)은 '예측 시스템(10)'으로 도시되었고, 이하의 설명에서도 투석 중 저혈압 발생 예측 시스템(10)을 '예측 시스템(10)'으로 약칭하도록 한다.
도 1에 도시된 바와 같이, 예측 시스템(10)은 투석 환자의 의료 데이터를 입력받고, 입력된 데이터를 토대로 해당 환자에 대한투석 중 저혈압(IntraDialytic Hypotension, IDH) 발생 위험을 예측하여 출력하는 컴퓨팅 시스템일 수 있다. 가령, 예측 시스템(10)은 예측 모델(11)을 통해 예정된 투석세션에서 환자에게 저혈압이 발생될 위험(e. g. , 도 2에 예시된 바와 같이, 투석 중에 혈압이 급격하게 저하되는 증상이 발생될 위험)을 예측할 수 있다.
보다 구체적으로, 예측 시스템(10)은 복수의 투석 환자들에 대한 의료 데이터셋을 이용하여 예측 모델(11)을 학습시키고, 학습된 예측 모델(11)을 통해 특정 환자의 투석 중 저혈압 발생 위험을 예측할 수 있다. 도시된 바와 같이, 예측 모델(11)은 CNN(Convolutional Neural Network) 기반의 모델일 수 있으며, 학습 및 예측 시에 투석 환자의 의료 데이터는 2차원의 입력 데이터(12)로 가공되어 예측 모델(11)로 입력될 수 있다.
예측 결과는 예를 들어 투석 중 저혈압 발생 여부(e. g. , IDH 또는 No-IDH), 투석 중 저혈압 발생 위험도(즉, 투석 중 저혈압이 발생할 가능성/확률), 투석 중 저혈압의 위험 단계(e. g. , Nadir100, Nadir90 등), 단계별 위험도 등이 될 수 있을 것이나, 이에 한정되는 것은 아니다. 예측 시스템(10)이 학습 및 예측을 수행하는 구체적인 방식에 관하여서는 도 4 이하의 도면을 참조하여 상세하게 설명하도록 한다.
예측 모델(11)의 학습(또는 예측)에 이용되는 의료 데이터셋(또는 데이터)은 적어도 하나의 종속변수와 다수의 독립변수들로 구성될 수 있는데, 이와 관련하여서는 후술하도록 한다. 참고로, 당해 기술 분야에서 변수(variable)는 '피처(feature)', '속성(attribute)', '요소(element)', '컬럼(column)', '항목(item)' 및 '필드(field)'등의 용어와 혼용되어 사용될 수 있다. 또한, 의료 데이터셋을 구성하는 각각의 개별 데이터는 '샘플(sample)', '사례(example)', '레코드(record)', '인스턴스(instance)', '엔트리(entry)', '데이터 포인트(data point)' 및 '관측값(observation)'등의 용어와 혼용되어 사용될 수 있다.
몇몇 실시예들에서는, 도 3에 도시된 바와 같이, 예측 시스템(10)이 투석 중 저혈압 발생에 관한 예측 서비스를 제공할 수도 있다. 가령, 예측 시스템(10)은 사용자 단말(20)로부터 투석 환자의 의료 데이터를 수신하고, 수신된 의료 데이터를 토대로 투석 중 저혈압 발생 위험을 예측하며, 예측 결과를 사용자 단말(20)에게 제공할 수 있다. 사용자는 환자 또는 의료진 등이 될 수 있을 것이나, 본 개시의 범위가 이에 한정되는 것은 아니다. 예측 시스템(10)은 웹 인터페이스(또는 앱 인터페이스)를 통해 이러한 예측 서비스를 제공할 수 있을 것이나, 본 개시의 범위가 이에 한정되는 것은 아니다.
예측 시스템(10)은 적어도 하나의 컴퓨팅 장치로 구현될 수 있다. 예를 들어, 예측 시스템(10)의 모든 기능이 하나의 컴퓨팅 장치로 구현될 수도 있고, 예측 시스템(1)의 제1기능은 제1 컴퓨팅 장치에서 구현되고 제2 기능은 제2 컴퓨팅 장치에서 구현될 수도 있다. 또는, 예측 시스템(10)의 특정 기능이 복수의 컴퓨팅 장치들에서 구현될 수도 있다.
컴퓨팅 장치는 컴퓨팅(프로세싱) 기능을 구비한 임의의 장치를 모두 포괄할 수 있으며, 이러한 장치의 일 예시에 관하여서는 도 15를 참조하도록 한다. 컴퓨팅 장치는 복수의 구성요소들(e. g. 프로세서, 메모리 등)이 상호작용하는 하나의 집합체이므로, 경우에 따라 '컴퓨팅 시스템'으로 명명될 수도 있다. 또한, 컴퓨팅 시스템은 복수의 컴퓨팅 장치들이 동일한 목적을 위해 상호작용하는 집합체를 의미하는 것일 수도 있다.
지금까지 도 1 내지 도 3을 참조하여 본 개시의 몇몇 실시예들에 따른 예측 시스템(10)에 대하여 개략적으로 설명하였다. 이하에서는, 도 1에 예시된 예측 시스템(10)에서 수행될 수 있는 다양한 방법들에 대하여 상세하게 설명하도록 한다.
이하에서는, 이해의 편의를 제공하기 위해, 후술될 방법들의 모든 단계(동작)들이 도 1에 예시된 예측 시스템(10)에서 수행되는 것을 가정하여 설명을 이어가도록 한다. 따라서, 특정 단계(동작)의 주어가 생략된 경우, 예측 시스템(10)에 의해 수행되는 것으로 이해될 수 있다. 다만, 실제 환경에서는 후술될 방법의 일부 단계가 다른 컴퓨팅 장치에서 수행될 수도 있다. 가령, 예측 모델(e. g. 도 1의 11)의 학습단계는 경우에 따라 다른 컴퓨팅 장치에서 수행될 수도 있다.
도 4는 본 개시의 몇몇 실시예들에 따른 투석 중 저혈압 발생 예측 방법을 개략적으로 나타내는 예시적인 흐름도이다. 단, 이는본 개시의 목적을 달성하기 위한 바람직한 실시예일 뿐이며, 필요에 따라 일부 단계가 추가되거나 삭제될 수 있음은 물론이다.
도 4에 도시된 바와 같이, 실시예들에 따른 예측 방법은 투석 환자들에 대한의료 데이터셋을 획득하는 단계 S41에서 시작될 수 있다. 의료 데이터셋은 다수의 투석 환자들에 대한의료 데이터(즉, 데이터 샘플)로 구성될 수 있고, 각각의 의료 데이터(즉, 데이터 샘플)는 복수의 투석세션들에 관한 데이터를 포함할 수 있다. 또한, 각각의 의료 데이터(즉, 데이터 샘플)는하나 이상의 종속변수와 복수의 독립변수들을 가질 수 있다.
하나 이상의 종속변수(즉, 정답 레이블)는 투석 중 저혈압 발생에 관한 것으로서, 예를 들어 투석 중 저혈압 발생 여부(e. g. , IDH 또는 No-IDH), 투석 중 저혈압의 위험 단계(e. g. , Nadir100, Nadir90 등) 등이 될 수 있을 것이나, 이에 한정되는 것은 아니다. 참고로, 투석 중 저혈압은 'Nadir90', 'Fall20Nadir90' 등과 같이 다양한 방식으로 정의될 수 있으며, 어떠한 방식으로 정의되더라도 무방하다.
복수의 독립변수들은 예를 들어 환자의 인구통계학적 특성, 질병 이력, 복약 이력, 환자가 투석 전에 받은 검사 결과, 이전/현재 투석세션의 활력징후, 이전/현재 투석세션의 투석시행정보 등에 관한 변수들을 포함할 수 있다. 그러나, 본 개시의 범위가 이에 한정되는 것은 아니다. 독립변수들에 대한 구체적인 예시는 하기의 표 1을 참조하도록 한다.
[표 1]
Figure PCTKR2023011305-appb-img-000001
상기 표 1에서, 이전 투석세션의 활력징후는 예를 들어 해당 투석세션 중에 측정된 값(e. g. , 평균값)이 될 수 있고, 현재 투석세션의 활력징후는 예를 들어 해당투석세션이 시작되기 전에 측정된 값이 될 수 있다. 그러나, 본 개시의 범위가 이에 한정되는 것은 아니다.
또한, 투석 간 체중 변화는 현재 투석세션 시작 전 환자의 체중과 이전 투석세션이 종료 후 체중의 차이를 나타내는 값으로서, 예를 들어 두 체중의 차이를 환자의 건체중으로 나눈 값일 수 있다. 그러나, 이에 한정되는 것은 아니다.
또한, 투석액의 종류는 예를 들어 G액, A액, 저칼슘액, 기타로 구분될 수 있으나, 본 개시의 범위가 이에 한정되는 것은 아니다.
또한, 혈관종류는예를 들어 AVF, AVG, 카테터(Catheter), 기타로 구분될 수 있으나, 본 개시의 범위가 이에 한정되는 것은 아니다.
또한, 투석모드는 예를 들어혈액투석(HD), 혈액여과투석(HDF), 혈액여과(HF), 혈액관류(HP), 한외여과(UF), 지속성순화혈액투석(sustained low efficiency dialysis, SLED)으로 구분될 수 있으나, 본 개시의 범위가 이에 한정되는 것은 아니다.
위와 같은 다양한 독립변수들을 예측 모델의 학습에 이용하면, 예측 모델이 다양한 요인들을 복합적으로 고려하여 투석 중 저혈압 발생 위험을 정확하게 예측할 수 있게 된다. 가령, 표 1에 예시된 독립변수들을 이용하여 학습된 예측 모델은 환자의 질병 이력, 투석 전 환자의 상태, 환자의 투석시행정보를 복합적(종합적)으로 고려하여 투석 중 저혈압이 발생될 위험(e. g. , 예정된투석세션에서 저혈압이 발생될 위험)을 정확하게 예측할 수 있게 된다.
한편, 몇몇 실시예들에서는, 의료 데이터셋을 구성하는 다수의 독립변수들 중에서 주요 독립변수가 선별될 수도 있다. 그리고, 주요 독립변수에 대한 의료 데이터셋이 예측 모델의 학습 데이터셋으로 이용될 수 있다. 그렇게 함으로써, 예측 모델의 성능이 더욱 향상될 수 있는데, 본 실시예에 관하여서는 추후 도 11및 도 12를 참조하여 보다 상세하게 설명하도록 한다.
또한, 몇몇 실시예들에서는, 의료 데이터셋의 클래스 불균형(class imbalance) 문제를 경감시키기 위해, 저혈압 발생 클래스(즉, 투석 중 저혈압이 발생된 케이스)의 데이터셋을 증강(augmentation)시키는 처리가 수행될 수도 있다. 본 실시예에 관하여서는 추후 도 13 및 도 14를 참조하여 보다 상세하게 설명하도록 한다.
단계 S42에서, 의료 데이터셋을 이용하여 투석 중 저혈압 발생 위험을 예측하는 모델이 구축될 수 있다. 예측 모델은 CNN 기반의 모델일 수 있으나, 그 세부 구조는 실시예에 따라 달라질 수 있다.
몇몇 실시예들에서는, 예측 모델이CNN 계열의 모델로 구현될 수 있다. 가령, 도 5에 도시된 바와 같이, 예측 모델은 컨볼루션 레이어(52), 풀링 레이어(53)및 출력 레이어(54)를 포함하도록 구성될 수 있다. 이러한 예측 모델은 2차원의 입력 데이터(51)로부터 특징맵을 추출하고, 추출된 특징맵에 기반하여 투석 중 저혈압 발생 위험을 정확하게 예측(e. g. , 투석 중 저혈압 발생 여부에 관한 컨피던스 스코어를 출력함)할 수 있다. 출력 레이어(54)가 클래스별 컨피던스 스코어(confidence score)를 출력하도록 구성된 경우, 저혈압(IDH) 클래스의 컨피던스 스코어(또는 이를 가공한 값)는 투석 중 저혈압의 발생 위험도를 나타내는 값으로 이용될 수 있다. 당해 기술 분야의 종사자라면, 각 레이어(52 내지 54)의동작 원리에 대해 이미 숙지하고 있을 것인 바, 이에 대한 설명은 생략하도록 한다. 투석 환자의 의료 데이터로부터 2차원의 입력 데이터(51)를 구성(생성)하는 방법에 관하여서는 잠시 후에 상세하게 설명하도록 한다.
앞선 실시예들에서, 컨볼루션 레이어(52)는 1차원 컨볼루션(1d conv) 연산을 통해 특징맵을 추출하도록 구성될 수도 있다. 가령, 도 6에 도시된 바와 같이, 입력 데이터(62)가 투석세션축과 독립변수축으로 구성된 2차원 데이터라고 할 때, 컨볼루션 레이어(52)는 컨볼루션 필터(61)를 투석세션축을 따라 이동시키며(즉, 한방향으로만 이동시킴), 입력 데이터(62)에 대해 컨볼루션 연산을 수행할 수 있다. 이러한 경우, 컨볼루션 레이어(52)가 RNN(Recurrent Neural Network) 계열의 모델과 유사하게 투석세션에 따른 시계열 특성을 정확하게 추출할 수 있게 되며, 그 결과 예측 모델의 성능은 크게 향상될 수 있다. 뿐만 아니라, CNN 계열 모델은 통상적으로 RNN 계열 모델보다 파라미터(즉, 가중치 파라미터)개수가훨씬 적기 때문에, 예측 모델의 학습에 소요되는 시간 비용 및 컴퓨팅 비용은 절감될 수 있다(즉, 예측 모델이RNN 계열의 모델로 구현된 경우보다 학습 비용이 감소될 수 있음).
다른 몇몇 실시예들에서는, 예측 모델이 CNN과 RNN의 조합에 기초하여 구현될 수 있다. 가령, 도 7에 도시된 바와 같이, 예측 모델이 복수의 CNN 블록들(72-1 내지 72-n), 복수의 RNN 블록들(73-1 내지 73-n) 및 복수의 출력 레이어들(74-1 내지 74-n)을 포함하도록 구성될 수 있다. 여기서, CNN 블록들(72-1 내지 72-n)은 2차원의 입력 데이터(71-1 내지 71-n, e. g. , 시계열 순서에 따른 복수의 2차원 데이터)로부터 특징맵들을 추출할 수 있고, RNN 블록들(73-1 내지 73-n)은 시계열 순서를 고려하여 특징맵들을 분석할 수 있으며, 출력 레이어들(74-1 내지 74-n)은 대응되는 투석세션에 대한 저혈압 발생 위험을 예측하여 출력할 수 있다.
이하에서는, 도 8을 참조하여 학습 단계 S42의 세부 과정에 대하여 설명하도록 한다.
도 8에 도시된 바와 같이, 투석 환자의 의료 데이터를 가공하여 2차원의 입력 데이터가 구성되고(S81), 구성된 입력 데이터를 이용하여 예측 모델이 학습될 수 있다(S82). 가령, 예측 시스템(10)은 2차원의 입력 데이터를 예측 모델에 입력하여 예측 결과를 획득하고, 예측 결과와 정답 레이블(즉, 종속변수의 값)의 차이(즉, 예측 오차)가 최소화되는 방향으로 예측 모델의 가중치 파라미터(e. g. , 컨볼루션 필터의 가중치 파라미터)를 업데이트할 수 있다. 이러한 과정이 다수의 의료 데이터에 대해 반복 수행됨으로써, 예측 모델이 투석 중 저혈압 발생 위험을 정확하게 예측할 수 있게 된다.
예측 모델의 입력 데이터를 구성하는 예시적인 방식은 도 9에 도시되어 있다.
도 9에 도시된 바와 같이, 예측 시스템(10)은 투석세션축과 독립변수축에 의해 형성되는 2차원의 데이터 평면(90) 상에 투석 환자의 의료 데이터를 배치할 수 있다. 그리고, 예측 시스템(10)은 데이터 평면(90) 상에서 기 설정된 개수의 투석세션들에 관한 데이터(91)를 추출함으로써 2차원의 입력 데이터를 생성할 수 있다. 가령, 3개의 이전 투석세션들(e. g. , 투석세션t-3 내지 t-1)의 데이터를 이용하여 현재 투석세션't'에 대한 예측을 수행한다고 가정하자. 이러한 경우, 예측 시스템(10)은 해당 환자의 투석세션't-3'부터 투석세션't-1'까지의 데이터(91)를 한 단위의 입력 데이터로 추출할 수 있다. 이때, 입력 데이터(91)의 정답 레이블은 투석세션't'에서의 저혈압 발생 여부(또는 저혈압 위험 단계 등)가 될 수 있다. 또는, 예측 시스템(10)은 3개의 이전 투석세션들에 관한 데이터(91)와 현재 투석세션 't'에 관한 데이터(즉, 세션 시작 전의 활력징후, 투석시행정보 등)를 한 단위의 입력 데이터로 추출할 수도 있다. 참고로, 이전 투석세션의 데이터는 해당 투석세션 도중에 측정된 활력징후 데이터만을 포함할 수도 있고, 해당 투석세션 시작 전에 측정된 활력징후 데이터를 더 포함할 수도 있다.
예측 시스템(10)은 슬라이딩 윈도우 방식으로 예측 모델을 위한 2차원의 입력 데이터를 연속적으로 추출할 수도 있다. 가령, 예측 시스템(10)은 투석세션축과 독립변수축에 의해 형성되는 2차원의 데이터 평면 상에 의료 데이터를 배치하고, 2차원의 데이터 평면 상에서, 슬라이딩 윈도우를 투석세션축에 따라 이동시키며 예측 모델의 입력 데이터를 연속적으로 추출할 수 있다. 이때, 슬라이딩 윈도우의 크기는 입력 데이터에 포함될 투석세션의 개수에 기초하여 설정될 수 있다.
한편, 독립변수축 상에서, 독립변수들이 배열(배치)되는 위치(순서)는 다양한 방식으로 결정될 수 있다.
몇몇 실시예들에서는, 사전 지식(prior knowledge)에 기초하여 독립변수들의 배열 위치가 결정될 수 있다. 가령, 예측 시스템(10)은 사전 지식에 기초하여 연관성이 높은 독립변수들을 서로 가깝게 배치하고(e. g. , 인접 배치함), 연관성이 낮은 독립변수들은 서로 멀리 배치할 수 있다. 이러한 경우, 예측 모델이 독립변수들의 연관성을 보다 잘 고려하여 예측을 수행하게 되는 바, 예측 모델의 성능이 더욱 향상될 수 있다.
다른 몇몇 실시예들에서는, 독립변수들 간의 상관계수에 기초하여 독립변수들의 배열 위치가 결정될 수 있다. 가령, 예측 시스템(10)은 상관계수의 값이 상대적으로 큰 독립변수들을 서로 가깝게 배치하고(e. g. , 인접 배치함), 상대적으로 작은 독립변수들은 서로 멀리 배치할 수 있다. 이러한 경우, 예측 모델이 독립변수들의 연관성을 보다 잘 고려하여 예측을 수행하게 되는 바, 예측 모델의 성능이 더욱 향상될 수 있다.
또 다른 몇몇 실시예들에서는, 독립변수들의 배열 위치를 변경해가며 수행된 CNN 기반 모델의 성능 평가 결과에 기초하여 독립변수들의 배열 위치가 결정될 수 있다. 가령, 도 10에 도시된 바와 같이, 예측 시스템(10)은 독립변수들의 배열 위치를 변경해가며(입력 데이터 101, 103 참조) CNN 기반 예측 모델들(102, 104)에 대한 학습 및 성능 평가를 수행할 수 있다. 그리고, 예측 시스템(10)은 성능 평가 결과를 비교함으로써 독립변수들의 배열 위치를 결정할 수 있다(e. g. 성능이 가장 우수한 예측 모델의 배열 위치로 결정함).
또 다른 몇몇 실시예들에서는, 독립변수들의 배열 위치가 랜덤하게 결정될 수도 있다.
또 다른 몇몇 실시예들에서는, 상술한 실시예들의 다양한 조합에 기초하여 독립변수들의 배열 위치가 결정될 수도 있다. 가령, 예측 시스템(10)은 제1그룹의 독립변수들의 배열 위치는 제1방식(e. g. , 상관계수, 사전 지식 등에 기초하여 결정됨)으로 결정하고, 제2그룹의 독립변수들의 배열 위치는 제2방식(e. g. , 랜덤 방식)으로 결정할 수도 있다.
다시 도 4를 참조하여 설명한다.
단계 S43에서, 학습된 예측 모델을 통해 대상 환자의 투석 중 저혈압 발생 위험이 예측될 수 있다. 구체적으로, 예측 시스템(10)은 대상 환자의 의료 데이터로부터 2차원 데이터를 구성하고, 2차원 데이터를 예측 모델에 입력함으로써 예측을 수행할 수 있다. 상술한 바와 같이, 예측 결과는 예를 들어 투석 중 저혈압 발생 여부(e. g. , IDH 또는 No-IDH), 투석 중 저혈압 발생 위험도(즉, 투석 중 저혈압이 발생할 가능성/확률), 투석 중 저혈압의 위험 단계(e. g. , Nadir100, Nadir90 등), 단계별 위험도 등이 될 수 있을 것이나, 이에 한정되는 것은 아니다. 2차원 데이터를 구성하는 방식은 도 9 등의 설명 내용을 참조하도록 한다.
한편, 몇몇 실시예들에서는, 다수의 예측 모델들이 구축될 수도 있다. 가령, 예측 시스템(10)은 의료 데이터셋을 이용하여 제1예측 모델(e. g. CNN 계열의 예측 모델)을 구축하고, 제1예측 모델과 다른 제2예측 모델(e. g. CNN과 RNN의 조합에 기초한 예측 모델)을 더 구축할 수 있다. 또는, 예측 시스템(10)은 제1독립변수들에관한 의료 데이터셋을 이용하여 제1예측 모델을 구축하고, 제1독립변수들과 적어도 일부는 상이한 제2독립변수들에 관한 의료 데이터셋을 이용하여 제2예측 모델을 구축할 수도 있다. 이러한 경우, 예측 시스템(10)은 두 예측 모델의 예측 결과를 종합적으로 고려하여 투석 중 저혈압 발생 위험을 예측할 수 있다.
지금까지 도 4 내지 도 10을 참조하여 본 개시의 몇몇 실시예들에 따른 투석 중 저혈압 발생 예측 방법에 대하여 설명하였다. 상술한 바에 따르면, CNN 기반 예측 모델을 통해 투석 중 저혈압 발생 위험이 조기에 정확하게 예측될 수 있다. 가령, 예측 모델을 통해 예정된 투석세션에서(즉, 투석 세션이 시작되기 전에) 저혈압이 발생될 위험이 정확하게 예측될 수 있다. 아울러, 예측 결과에 따른 선제적 조치를 통해 투석 중 저혈압 발생률은 크게 감소될 수 있다.
또한, 다양한 독립변수들(e. g. , 인구통계학적 특성, 질병이력, 복약 이력, 투석세션별 활력징후 및 투석시행정보 등)을 갖는 투석 환자의 의료 데이터셋을 이용하여 예측 모델이 학습될 수 있다. 이에 따라, 다양한 요인들을 복합적으로 고려하여 저혈압 발생 위험을 정확하게 예측하는 모델이 구축될 수 있다.
또한, 투석 환자의 의료 데이터로부터 구성된 2차원 데이터(즉, 투석세션축과 독립변수축을 갖는 2차원의 데이터)가 CNN 기반 예측 모델의 학습 데이터로 이용될 수 있다. 이러한 경우, 예측 모델이 투석세션들간의 연관성과 독립변수들 간의 연관성을 종합적으로 고려하여 예측을 수행하도록 학습되기 때문에, 고성능의 예측 모델이 구축될 수 있다.
이하에서는, 도 11 및 도 12를 참조하여 주요 독립변수를 선별하는 방법에 관한 실시예들에 대하여 설명하도록 한다.
먼저, 도 11을 참조하여 본 개시의 몇몇 실시예들에 따른 주요 독립변수 선별 방법에 대하여 설명하도록 한다.
도 11에 도시된 바와 같이, 본 실시예들은 모델(112)에 대한 성능 평가 결과를 기초로 주요 독립변수들(113-1 내지 113-k)을 선별하는 방법에 관한 것이다.
구체적으로, 예측 시스템(10)은 의료 데이터셋을 구성하는 독립변수들(111-1 내지 111-n)을 이용하여 모델(112)을 학습시키고, 학습된 모델(112)의 성능을 평가할 수 있다. 가령, 예측 시스템(10)은 제1독립변수(e. g. 111-1)를 이용하여 제1모델을 학습시키고제2독립변수(e. g. 111-2)를 이용하여 제2모델을 학습시킬 수 있다. 그리고, 예측 시스템(10)은 제1모델과 제2모델 각각의 성능을 평가할 수 있다. 물론, 예측 시스템(10)은 둘 이상의 독립변수(e. g. 111-1, 111-2)를 이용하여 모델(112)을학습시킬 수도 있다.
도 11에 도시된 모델(112)은 주요 독립변수 선별에 이용된 모든 모델들이 추상화된 것으로 이해될 수 있다. 모델(112)은 학습 가능한 모델(즉, 기계학습/딥러닝 모델)로서, 상술한 예측 모델과 동일한 유형의 모델일 수도 있고, 다른 유형의 모델(e. g. , 로지스틱 회귀, 랜덤 포레스트, 결정 트리, XG부스트 등)일 수도 있다.
다음으로, 예측 시스템(10)은 모델(112)의 성능 평가 결과를 기초로 주요 독립변수(113-1 내지 113-k)를 선별할 수 있다. 가령, 예측 시스템(10)은 성능 평가 점수(e. g. , 정확도 등)가 기준치 이상인 모델의 학습에 이용된 K개(단, K는 독립변수의 전체 개수 N보다 작은 값)의 독립변수들(113-1 내지 113-k)을 주요 독립변수로 선별할 수 있다.
주요 독립변수들(113-1 내지 113-k)이 선별되면, 예측 시스템(10)은 주요 독립변수들(113-1 내지 113-k)로 구성된 의료 데이터셋을 이용하여 예측 모델을 구축할 수 있다. 그렇게 함으로써, 보다 고성능의 예측 모델이 구축될 수 있다.
이하에서는, 도 12을 참조하여 본 개시의 다른 몇몇 실시예들에 따른 주요 독립변수 선별 방법에 대하여 설명하도록 한다.
도 12에 도시된 바와 같이, 본 실시예들은 특정 독립변수(e. g. , 변수2)의 값의 변화가 모델(121)의 예측 결과(e. g. 122, 123)에 미치는 영향도를 이용하여 주요 독립변수를 선별하는 방법에 관한 것이다.
구체적으로, 예측 시스템(10)은 의료 데이터셋을 이용하여 모델(121)을 학습시킬 수 있다. 도시된 바와 같이, 모델(121)은 CNN 기반의 모델일 수 있으나, 본 개시의 범위가 이에 한정되는 것은 아니다.
다음으로, 예측 시스템(10)은 2차원의 제1입력 데이터(124)를 학습된 모델(121)에 입력하여 제1예측 결과(122)를 획득할 수 있다. 도 12는 모델(121)이 투석 중 저혈압 발생 클래스(IDH참조)와 미발생 클래스(No-IDH참조)에 대한 컨피던스 스코어를 출력하는 분류 모델인 경우를 예로서 도시하고 있다.
다음으로, 예측 시스템(10)은 제1입력 데이터(124)에서 특정 독립변수(e. g. 변수2)의 값(125)을 변경하여 제2 입력 데이터(126)를 생성하고, 제2입력 데이터(126)를 다시 학습된 모델(121)에 입력하여 제2예측 결과(123)를 획득할 수 있다. 가령, 예측 시스템(10)은 특정 독립변수(e. g. 변수2)의 값(125)을 '0'으로 변경할 수도 있고, 저혈압 미발생 클래스(또는 저혈압발생 클래스)에 속한 데이터셋의 평균값으로 변경할 수도 있다.
다음으로, 예측 시스템(10)은 두 예측 결과(122, 123)의 차이를 산출할 수 있다. 예측 시스템(10)은 이러한 과정들을 다른 환자 데이터에 대해 반복함으로써 특정 독립변수(e. g. 변수2)가 모델(121)의 예측 결과(e. g. 122, 123)에 미치는 영향도(e. g. 차이값의 평균)를 측정할 수 있다. 가령, 특정 독립변수(e. g. 변수2)의 값을 '0'으로 변경함에 따라 저혈압발생 클래스의 컨피던스 스코어가 전반적으로 크게 감소된 경우, 예측 시스템(10)은 해당 독립변수가 모델(121)의 예측 결과(또는 종속변수)에 미치는 영향도가 높다고 판단할 수 있다.
예측 시스템(10)은 의료 데이터셋을 구성하는 독립변수들 각각의 영향도를 측정하고, 측정된 영향도가 기준치 이상인 독립변수들을 주요 독립변수로 선별할 수 있다. 그리고, 예측 시스템(10)은 주요 독립변수들로 구성된 의료 데이터셋을 이용하여 예측 모델을 구축할 수 있다. 그렇게 함으로써, 보다 고성능의 예측 모델이 구축될 수 있다.
지금까지 도 11 및 도 12를 참조하여 주요 독립변수를 선별하는 방법에 관한 실시예들에 대하여 설명하였다. 이하에서는, 도 13및 도 14을 참조하여 본 개시의 몇몇 실시예들에 따른 데이터셋 증강 방법에 대하여 설명하도록 한다.
도 13에 도시된 바와 같이, 본 실시예들은 오토인코더 기반 모델(133)을 이용하여 투석 중 저혈압 발생클래스(IDH참조)의 의료 데이터셋을 증강시키는 방법에 관한 것이다. 여기서, 오토인코더 기반 모델(133)은 인코더(134) 및 디코더(135)를 포함하도록 구성될 수 있다. 그리고, 인코더(134)는 입력 데이터(132)를 잠재 벡터(136, latent vector)로 인코딩할 수 있고, 디코더(135)는 잠재 벡터(136)를 디코딩하여 입력 데이터를 재구성(복원)할 수 있다. 당해 기술 분야의 종사자라면, 오토인코더 기반 모델의 구조 및 동작 원리에 대해 이미 숙지하고 있을 것인 바, 오토인코더 기반 모델 자체에 대한 설명은 생략하도록 한다. 참고로, 도 13은 오토인코더 기반 모델(133)이 기본 오토인코더 구조로 이루어진 것을 예시하고 있다.
보다 구체적으로, 예측 시스템(10)은 저혈압 발생클래스의 의료 데이터셋(131)을 이용하여 오토인코더 기반 모델(133)을 학습시킬 수 있다. 도시된 바와 같이, 예측 시스템(10)은 의료 데이터셋(131)을 구성하는 각각의 의료 데이터(132)에 대한 재구성 손실(reconstruction loss)에 기초하여 모델(133)을 학습시킬 수 있으며, 재구성 손실은 입력 데이터(132)와 출력(재구성)데이터(137)의 차이에 기초하여 산출될 수 있다. 각각의 의료 데이터(132)는 예를 들어 단일 투석세션에 관한 데이터일 수 있으나, 본 개시의 범위가 이에 한정되는 것은 아니다.
상술한 학습 과정을 통해, 인코더(134)가 저혈압 발생클래스의 의료 데이터셋(131)을 대응되는 잠재 공간(latent space) 상의 영역(이른바 '매니폴드')으로 매핑할 수 있게 된다.
다음으로, 예측 시스템(10)은 학습된 인코더(134)를 통해 도 14에 예시된 바와 같은 잠재 공간 상의 영역(141, 이하 '잠재 영역'으로 칭함)을 식별할 수 다. 도시된 잠재 영역(141)은 잠재 공간 상에서 저혈압 발생 클래스의 의료 데이터셋(131)이 분포하고 있는 영역을 의미한다. 가령, 예측 시스템(10)은 학습된 인코더(134)를 통해 의료 데이터셋(131)에 포함된 다수의 의료 데이터를 잠재 벡터(e. g. 134)로 인코딩하고, 해당 잠재 벡터들을 모두 포함하는 영역을 의료 데이터셋(131)의 잠재 영역(141)으로 식별할 수 있다.
다음으로, 예측 시스템(10)은 잠재 영역(141) 내에서 잠재 벡터(142)를 샘플링할 수 있다. 그리고, 예측 시스템(10)은 학습된 디코더(135)를 통해 샘플링된 잠재 벡터(142)를 디코딩함으로써 저혈압 발생클래스에 속한 가상의 의료 데이터를 생성할 수 있다. 이러한 샘플링 및 디코딩 과정이 반복됨에 따라 저혈압 발생클래스의 데이터셋(131)이 점진적으로 증강될 수 있다.
지금까지 도 13 및 도 14을 참조하여 본 개시의 몇몇 실시예들에 따른 데이터셋 증강 방법에 대하여 설명하였다. 상술한 바에 따르면, 투석 중 저혈압 발생클래스의 의료 데이터셋을 증강시킴으로써 클래스 불균형 문제가 크게 경감될 수 있으며, 이에 따라 예측 모델의 성능은 크게 향상될 수 있다. 또한, 오토인코더 기반의 모델을 이용함으로써 상당히 그럴듯한 의료 데이터(즉, 가상의 의료 데이터)가 생성될 수 있다.
이하에서는, 본 개시의 발명자들이 수행한 실험 결과에 대하여 간략하게 소개하도록 한다.
본 발명자들은 본 개시의 실시예들에 따른 효과를 증명하기 위해 실제 투석 환자들에 대한 의료 데이터셋을 이용하여 투석 중 저혈압이 발생될 위험을 예측하는 모델을 구축하였다. 해당 의료 데이터셋은 약 2, 040명의 투석 환자들에 관한 데이터로, 총 937, 076회의 투석세션에 관한 데이터로 구성되었다. 또한, 해당 의료 데이터셋에서, 투석 중 저혈압은약 1, 507명의 환자들과 총 43, 673회의 투석세션에서 발생한 것으로 확인되었다.
구체적으로, 본 발명자들은 도 5에 예시된 바와 같은 CNN 계열의 예측 모델을 구축하였고(이하, '실시예 1'), 성능 비교를 위해 로지스틱 회귀 모델을 더 구축하였으며(이하, '비교예 1'), 두 모델들에 대한 성능 평가를 실시하였다. 평가 결과는 하기의 표 2에 기재되어 있다. 당해 기술 분야의 종사자라면, 표 2에 기재된 성능 메트릭의 의미 및 측정 방법에 대해 이미 숙지하고 있을 것인 바, 이에 대한 설명은 생략하도록 한다.
[표 2]
Figure PCTKR2023011305-appb-img-000002
표 2을 참고하면, 실시예 1에 따른 예측 모델의 성능이 비교예 1을 상회하는 것을 확인할 수 있다. 이는 CNN 계열의 예측 모델이투석세션들 간의 연관성과 독립변수들 간의 연관성을 종합적으로 고려하여 예측을 수행함으로써 나타난 결과로 판단된다.
지금까지 본 발명자들이 수행한 실험 결과에 대하여 간략하게 소개하였다. 이하에서는, 도 15을 참조하여 본 개시의 몇몇 실시예들에 따른 예측 시스템(10)을 구현할 수 있는 예시적인 컴퓨팅 장치(150)에 대하여 설명하도록 한다.
도 15는 컴퓨팅 장치(150)를 나타내는 예시적인 하드웨어 구성도이다.
도 15에 도시된 바와 같이, 컴퓨팅 장치(150)는 하나 이상의 프로세서(151), 버스(153), 통신 인터페이스(154), 프로세서(151)에 의하여 수행되는 컴퓨터 프로그램을 로드(load)하는 메모리(152)와, 컴퓨터 프로그램(156)을 저장하는 스토리지(155)를 포함할 수 있다. 다만, 도 15에는 본 개시의 실시예와 관련있는 구성요소들만이 도시되어 있다. 따라서, 본 개시가속한 기술분야의 통상의 기술자라면 도 15에 도시된 구성요소들 외에 다른 범용적인 구성 요소들이 더 포함될 수 있음을 알 수 있다. 즉, 컴퓨팅 장치(150)에는, 도 15에 도시된 구성 요소 이외에도 다양한 구성 요소가 더 포함될 수 있다. 또한, 경우에 따라, 도 15에 도시된 구성요소들 중 일부가 생략된 형태로 컴퓨팅 장치(150)가 구성될 수도 있다. 이하, 컴퓨팅 장치(150)의 각 구성요소에 대하여 설명한다.
프로세서(151)는 컴퓨팅 장치(150)의 각 구성의 전반적인 동작을 제어할 수 있다. 프로세서(151)는 CPU(Central Processing Unit), MPU(Micro Processor Unit), MCU(Micro Controller Unit), GPU(Graphic Processing Unit) 또는 본 개시의 기술 분야에 잘 알려진 임의의 형태의 프로세서 중 적어도 하나를 포함하여 구성될 수 있다. 또한, 프로세서(151)는 본 개시의 실시예들에 따른 동작/방법을 실행하기 위한 적어도 하나의 애플리케이션 또는 프로그램에 대한 연산을 수행할 수 있다. 컴퓨팅 장치(150)는 하나 이상의 프로세서를 구비할 수 있다.
다음으로, 메모리(152)는각종데이터, 명령 및/또는 정보를 저장할 수 있다. 메모리(152)는 본 개시의 실시예들에 따른 동작/방법을 실행하기 위하여 스토리지(155)로부터 컴퓨터 프로그램(156)을 로드할 수 있다. 메모리(152)는 RAM과 같은 휘발성 메모리로 구현될 수 있을 것이나, 본 개시의 기술적 범위가 이에 한정되는 것은 아니다.
다음으로, 버스(153)는 컴퓨팅 장치(150)의 구성 요소 간 통신 기능을 제공할 수 있다. 버스(153)는 주소 버스(Address Bus), 데이터 버스(Data Bus) 및 제어 버스(Control Bus) 등 다양한 형태의 버스로 구현될 수 있다.
다음으로, 통신 인터페이스(154)는 컴퓨팅 장치(150)의 유무선 인터넷 통신을 지원할 수 있다. 또한, 통신 인터페이스(154)는 인터넷 통신 외의 다양한 통신 방식을 지원할 수도 있다. 이를 위해, 통신 인터페이스(154)는 본 개시의 기술 분야에 잘 알려진 통신 모듈을 포함하여 구성될 수 있다.
다음으로, 스토리지(155)는 하나 이상의 컴퓨터 프로그램(156)을 비임시적으로 저장할 수있다. 스토리지(155)는 ROM(Read Only Memory), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM), 플래시 메모리 등과 같은 비휘발성 메모리, 하드디스크, 착탈 형디스크, 또는 본 개시가 속하는 기술분야에서 잘 알려진 임의의 형태의 컴퓨터로 읽을 수 있는 기록매체를 포함하여 구성 될 수 있다.
다음으로, 컴퓨터 프로그램(156)은 메모리(152)에 로드될 때 프로세서(151)로 하여금 본 개시의 다양한 실시예들에 따른 동작/방법을 수행하도록 하는 하나 이상의 인스트럭션을 포함할 수 있다. 즉, 프로세서(151)는 상기 하나 이상의 인스트럭션을 실행함으로써, 본 개시의 다양한 실시예에 따른 동작/방법을 수행할 수 있다.
예를 들어, 컴퓨터 프로그램(156)은 투석 환자에 대한 의료 데이터를 획득하는 동작, 의료 데이터를 가공하여 CNN기반 예측 모델의 입력 데이터를 구성하는 동작 및입력 데이터를 예측 모델에 입력하여 투석 환자에 대한 투석 중 저혈압 발생 위험을 예측하는 동작을 수행하도록 하는 인스트럭션들을 포함할 수 있다. 이와 같은 경우, 컴퓨팅 장치(150)를 통해 본 개시의 몇몇 실시예들에 따른 예측 시스템(10)이 구현될 수 있다.
지금까지 도 15를 참조하여 본 개시의 몇몇 실시예들에 따른 예측 시스템(10)을 구현할 수 있는 예시적인 컴퓨팅 장치(150)에 대하여 설명하였다.
지금까지 도 1 내지 도 15를 참조하여 설명된 본 개시의 기술적 사상은 컴퓨터가 읽을 수 있는 매체 상에 컴퓨터가 읽을 수 있는 코드로 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록 매체는, 예를 들어 이동형 기록 매체(CD, DVD, 블루레이 디스크, USB 저장 장치, 이동식 하드 디스크)이거나, 고정식 기록 매체(ROM, RAM, 컴퓨터 구비 형 하드 디스크)일 수 있다. 상기 컴퓨터로 읽을 수 있는 기록 매체에 기록된 상기 컴퓨터 프로그램은 인터넷 등의 네트워크를 통하여 다른 컴퓨팅 장치에 전송되어 상기 다른 컴퓨팅 장치에 설치될 수 있고, 이로써 상기 다른 컴퓨팅 장치에서 사용될 수 있다.
이상에서, 본 개시의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 개시의 기술적 사상이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 개시의 목적 범위 안에서라면, 그 모든 구성요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.
도면에서 동작들이 특정한 순서로 도시되어 있지만, 반드시 동작들이 도시된 특정한 순서로 또는 순차적 순서로 실행되어야만 하거나 또는 모든 도시된 동작들이 실행되어야만 원하는 결과를 얻을 수 있는 것으로 이해되어서는 안된다. 특정 상황에서는, 멀티태스킹 및 병렬 처리가 유리할 수도 있다. 더욱이, 위에 설명한 실시예들에서 다양한 구성들의 분리는 그러한 분리가 반드시 필요한 것으로 이해되어서는 안되고, 설명된 프로그램 컴포넌트들 및 시스템들은 일반적으로 단일 소프트웨어 제품으로 함께 통합되거나 다수의 소프트웨어 제품으로 패키지될 수 있음을 이해하여야 한다.
이상 첨부된 도면을 참조하여 본 개시의 실시예들을 설명하였지만, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자는 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 본 개시가 다른 구체적인 형태로도 실시될 수 있다는 것을 이해할 수 있다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 개시의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 개시에 의해 정의되는 기술적 사상의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (15)

  1. 적어도 하나의 컴퓨팅 장치에 의해 수행되는 방법으로서,
    투석 환자의 의료 데이터를 획득하는 단계 - 상기 의료 데이터는 복수의 투석세션들에 관한 투석 데이터를 포함하고 상기 투석 데이터는 복수의 독립변수들을 가짐 - ;
    상기 의료 데이터를 가공하여 CNN(Convolutional Neural Network) 기반 예측 모델의 입력 데이터를 구성하는 단계 - 상기 입력 데이터는 투석세션축과 독립변수축을 갖는 2차원 데이터임 - ; 및
    상기 입력 데이터를 상기 예측 모델에 입력하여 상기 투석 환자에대한 투석 중 저혈압 발생 위험을 예측하는 단계를 포함하는,
    투석 중 저혈압 발생 예측 방법.
  2. 제1항에 있어서,
    상기 복수의 독립변수들은 활력징후 및 투석시행정보에 관한 변수를 포함하는,
    투석 중 저혈압 발생 예측 방법.
  3. 제1항에 있어서,
    상기 복수의 독립변수들은 수축기혈압(SBP), 이완기혈압(DBP), UFR(ultrafiltration rate) 및 저혈압 발생 여부 중 적어도 하나에 관한 변수를 포함하는, 투석 중 저혈압 발생 예측 방법.
  4. 제1항에 있어서,
    상기 복수의 독립변수들은 투석액, 투석모드, 투석소요시간 및 혈류속도(BFR) 중 적어도 하나에 관한 변수를 포함하는, 투석 중 저혈압 발생 예측 방법.
  5. 제1항에 있어서,
    상기 의료 데이터는 상기 투석 환자의 인구통계학적 특성, 질병 이력, 복약 이력 및 상기 투석 환자의 투석 전 검사 결과에 관한 데이터 중 적어도 하나를 더 포함하는, 투석 중 저혈압 발생 예측 방법.
  6. 제1항에 있어서,
    상기 예측 모델은 상기 투석세션축을 따라 상기 입력 데이터에 대해 1차원 컨볼루션 연산을 수행하는 컨볼루션 레이어를 포함하는, 투석 중 저혈압 발생 예측 방법.
  7. 제1항에 있어서,
    상기 입력 데이터를 구성하는 단계는,
    상기 투석세션축과 상기 독립변수축에 의해 형성되는 2차원의 데이터 평면 상에 상기 의료 데이터를 배치하는 단계; 및
    상기 2차원의 데이터 평면 상에서, 미리 설정된 크기의 슬라이딩 윈도우를 상기 투석세션축에 따라 이동시키며 복수의 입력 데이터를 추출하는 단계를 포함하는, 투석 중 저혈압 발생 예측 방법.
  8. 제1항에 있어서,
    상기 의료 데이터는 투석 중 저혈압 발생에 관한 정답 레이블이 존재하는 학습 데이터이고,
    상기 예측의 결과와 상기 정답 레이블의 차이에 기초하여 상기 예측 모델을 학습시키는 단계를 더 포함하는, 투석 중 저혈압 발생 예측 방법.
  9. 제1항에 있어서,
    상기 투석 데이터는 상기 투석 환자가 받은 이전 투석세션에 관한 제1 데이터와 상기 투석 환자가 받을 현재 투석세션에 관한 제2 데이터를 포함하고,
    상기 예측하는 단계는,
    상기 예측 모델을 통해 상기 현재 투석세션에서 저혈압이 발생될 위험을 예측하는 단계를 포함하는, 투석 중 저혈압 발생 예측 방법.
  10. 제9항에 있어서,
    상기 제1 데이터는 상기 이전 투석세션을 받는 동안에 측정된 상기 투석 환자의 활력징후 데이터를 포함하고,
    상기 제2 데이터는 상기 현재 투석세션을 받기 전에 측정된 상기 투석 환자의 활력징후 데이터를 포함하는, 투석 중 저혈압 발생 예측 방법.
  11. 제1항에 있어서,
    상기 입력 데이터를 구성하는 단계는,
    상기 복수의 독립변수들 중에서 일부의 변수를 선택하고 상기 선택된 변수에 대한 기계학습 모델의 성능을 평가하는 과정을 반복적으로 수행하는 단계;
    상기 반복 수행의 결과에 기초하여 상기 복수의 독립변수들 중에서 주요 독립변수를 선별하는 단계; 및
    상기 주요 독립변수에 대한 투석 데이터를 가공하여 상기 입력 데이터를 구성하는 단계를 포함하는, 투석 중 저혈압 발생 예측 방법.
  12. 제1항에 있어서,
    상기 독립변수축 상에서 상기 복수의 독립변수들의 배열 위치는 상기 독립변수들 간의 상관계수에 기초하여 결정되는, 투석 중 저혈압 발생 예측 방법.
  13. 제1항에 있어서,
    상기 독립변수축 상에서 상기 복수의 독립변수들의 배열 위치는 상기 독립변수들의 배열 위치를 변경해가며 수행된 CNN 기반 모델의 성능 평가 결과에 기초하여 결정되는, 투석 중 저혈압 발생 예측 방법.
  14. 하나 이상의 인스트럭션을 저장하는 메모리; 및
    하나 이상의 프로세서를 포함하고,
    상가 하나 이상의 프로세서는,
    상기 저장된 하나 이상의 인스트럭션을 실행시킴으로써,
    투석 환자의 의료 데이터를 획득하는 동작 - 상기 의료 데이터는 복수의 투석세션들에 관한 투석 데이터를 포함하고 상기 투석 데이터는 복수의 독립변수들을 가짐 - ,
    상기 의료 데이터를 가공하여 CNN(Convolutional Neural Network) 기반 예측 모델의 입력 데이터를 구성하는 동작 - 상기 입력 데이터는 투석세션축과 독립변수축을 갖는 2차원 데이터임 - 및
    상기 입력 데이터를 상기 예측 모델에 입력하여 상기 투석 환자에대한 투석 중 저혈압 발생 위험을 예측하는 동작을 수행하는, 투석 중 저혈압 발생 예측 시스템.
  15. 컴퓨팅 장치와 결합되어,
    투석 환자의 의료 데이터를 획득하는 단계 - 상기 의료 데이터는 복수의 투석세션들에 관한 투석 데이터를 포함하고 상기 투석 데이터는 복수의 독립변수들을 가짐 - ;
    상기 의료 데이터를 가공하여 CNN(Convolutional Neural Network) 기반 예측 모델의 입력 데이터를 구성하는 단계 - 상기 입력 데이터는 투석세션축과 독립변수축을 갖는 2차원 데이터임 - ; 및
    상기 입력 데이터를 상기 예측 모델에 입력하여 상기 투석 환자에 대한 투석 중 저혈압 발생 위험을 예측하는 단계를 실행시키기 위하여 컴퓨터로 판독가능한 기록매체에 저장된, 컴퓨터 프로그램.
PCT/KR2023/011305 2022-08-12 2023-08-02 투석 중 저혈압 발생 예측 방법 및 그 시스템 WO2024034984A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0101462 2022-08-12
KR1020220101462A KR20240022865A (ko) 2022-08-12 2022-08-12 투석 중 저혈압 발생 예측 방법 및 그 시스템

Publications (1)

Publication Number Publication Date
WO2024034984A1 true WO2024034984A1 (ko) 2024-02-15

Family

ID=89852148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011305 WO2024034984A1 (ko) 2022-08-12 2023-08-02 투석 중 저혈압 발생 예측 방법 및 그 시스템

Country Status (2)

Country Link
KR (1) KR20240022865A (ko)
WO (1) WO2024034984A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150045713A1 (en) * 2013-08-07 2015-02-12 B. Braun Avitum Ag Device and method for predicting intradialytic parameters
KR20200144312A (ko) * 2019-06-18 2020-12-29 순천향대학교 산학협력단 심박변이도로 투석 중 저혈압을 예측하는 방법
US20210193317A1 (en) * 2019-12-20 2021-06-24 Fresenius Medical Care Holdings, Inc. Real-time intradialytic hypotension prediction
KR20220004476A (ko) * 2020-07-03 2022-01-11 주식회사 뷰노 진단 결과를 제공하기 위한 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150045713A1 (en) * 2013-08-07 2015-02-12 B. Braun Avitum Ag Device and method for predicting intradialytic parameters
KR20200144312A (ko) * 2019-06-18 2020-12-29 순천향대학교 산학협력단 심박변이도로 투석 중 저혈압을 예측하는 방법
US20210193317A1 (en) * 2019-12-20 2021-06-24 Fresenius Medical Care Holdings, Inc. Real-time intradialytic hypotension prediction
KR20220004476A (ko) * 2020-07-03 2022-01-11 주식회사 뷰노 진단 결과를 제공하기 위한 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GÓMEZ-PULIDO JUAN A., GÓMEZ-PULIDO JOSÉ M., RODRÍGUEZ-PUYOL DIEGO, POLO-LUQUE MARÍA-LUZ, VARGAS-LOMBARDO MIGUEL: "Predicting the Appearance of Hypotension during Hemodialysis Sessions Using Machine Learning Classifiers", INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL, vol. 18, no. 5, 28 February 2021 (2021-02-28), pages 2364, XP093138215, ISSN: 1661-7827, DOI: 10.3390/ijerph18052364 *

Also Published As

Publication number Publication date
KR20240022865A (ko) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2020141807A2 (ko) 딥러닝을 이용한 정상동율동 심전도 상태에서의 발작성 심방세동 예측방법
EP3777674A1 (en) Time series data learning and analyzing method using artificial intelligence
WO2017164478A1 (ko) 미세 얼굴 다이나믹의 딥 러닝 분석을 통한 미세 표정 인식 방법 및 장치
WO2020145678A1 (en) System and method for multi-spoken language detection
WO2020071877A1 (ko) 병리 이미지 검색을 위한 시스템 및 방법
CN111078552A (zh) 页面显示异常的检测方法、装置及存储介质
CN110609524A (zh) 一种工业设备剩余寿命预测模型及其构建方法和应用
WO2021153861A1 (ko) 다중 객체 검출 방법 및 그 장치
WO2021246612A1 (ko) 자동으로 혈관 영상을 처리하는 방법 및 장치
WO2020180135A1 (ko) 뇌 질환 예측 장치 및 방법, 뇌 질환을 예측하기 위한 학습 장치
CN115798711B (zh) 基于反事实对比学习的慢性肾病诊疗决策支持系统
WO2023095989A1 (ko) 뇌질환 진단을 위한 다중 모달리티 의료 영상 분석 방법 및 장치
WO2024034984A1 (ko) 투석 중 저혈압 발생 예측 방법 및 그 시스템
WO2022114791A1 (ko) 빅데이터 기반의 질환 발병 위험도 예측 시스템, 예측 방법, 및 프로그램
WO2020262748A1 (ko) 종합주의력 검사 데이터에 기초하여 주의력 결핍 및 과잉 행동 장애를 분류 및 치료반응을 예측하는 시스템 및 방법
WO2020096102A1 (ko) 인공지능 실행가속을 위한 인공지능 실행모델 설정방법 및 인공지능 실행가속시스템
CN113693611A (zh) 基于机器学习的心电数据分类方法及装置
CN111798944A (zh) 基于emr/ehr和心电图的心脏异常分析多模式框架
CN116524995A (zh) 基于人工智能的药物疗效预测方法及相关设备
US20220199256A1 (en) Search method and information processing system
WO2019225798A1 (ko) 다수의 심리검사지에서 불안 및 우울 증세의 신속한 진단을 위한 기계 학습 기반의 문항 선별 방법 및 장치
WO2022010149A1 (ko) 얼굴 표정에 관한 데이터 세트를 생성하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능 기록 매체
CN113436743B (zh) 基于表示学习的多结局疗效预测方法、装置及存储介质
CN113326113B (zh) 任务处理方法及装置、电子设备和存储介质
CN113963413A (zh) 基于人工智能的疫情排查方法、装置、电子设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852864

Country of ref document: EP

Kind code of ref document: A1