WO2024034963A1 - Base station device, terminal, and resource control method - Google Patents

Base station device, terminal, and resource control method Download PDF

Info

Publication number
WO2024034963A1
WO2024034963A1 PCT/KR2023/011201 KR2023011201W WO2024034963A1 WO 2024034963 A1 WO2024034963 A1 WO 2024034963A1 KR 2023011201 W KR2023011201 W KR 2023011201W WO 2024034963 A1 WO2024034963 A1 WO 2024034963A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
station device
random access
terminal
communication type
Prior art date
Application number
PCT/KR2023/011201
Other languages
French (fr)
Korean (ko)
Inventor
조상훈
최치영
Original Assignee
에스케이텔레콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이텔레콤 주식회사 filed Critical 에스케이텔레콤 주식회사
Publication of WO2024034963A1 publication Critical patent/WO2024034963A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present invention relates to a method of expanding cell coverage by applying Subband non-overlapping Full Duplex (SBFD) technology.
  • SBFD Subband non-overlapping Full Duplex
  • data traffic which was previously concentrated in the downlink, may appear in various uplink and downlink data rates depending on time.
  • dynamic time division duplex communication technology dynamically distributes time resources according to the ratio of uplink and downlink data, unlike the existing duplex communication technology where resources are fixed in an environment where uplink and downlink data rates vary. This is an allocation method.
  • the 5G communication system uses the frequency bands of FR1 (Frequency Range 1), which includes the sub-6 GHz frequency band, and FR2 (Frequency Range 2), which includes the mmWave band (24-71 GHz) frequency band. Accordingly, high-speed data transmission is possible and latency can also be shortened.
  • FR1 Frequency Range 1
  • FR2 Frequency Range 2
  • mmWave band 24-71 GHz
  • cell coverage may be reduced due to the use of high frequency bands.
  • the present invention was created in consideration of the above-mentioned circumstances, and the object to be achieved by the present invention is to provide cell coverage by utilizing SBFD (Subband non-overlapping Full Duplex) technology in a Dynamic Time Division Duplexing environment. It's about expanding.
  • SBFD Subband non-overlapping Full Duplex
  • the base station device has a memory containing a command and executes the command, thereby generating a TA (Timing Advance) value measured from the random access preamble of the terminal.
  • a TA Triming Advance
  • the random access preamble is received through a specific RO (RACH Occasion) of the Random Access Channel (RACH), and the specific RO is 2 allocated to consecutive sections within a slot according to the format of the random access preamble. Configuration using the above uplink resources may be possible.
  • RACH Occasion Random Access Channel
  • the processor may determine whether the communication type is a long-distance communication type from the result of comparing the TA value with a predefined threshold (Timing Advance Thresh).
  • the processor may determine the slot format to include two or more uplink resources allocated to consecutive sections within the slot.
  • the terminal periodically determines whether an E1 event (Event E1) related to a change in distance from the base station device is entered based on the TA value confirmed from the base station device according to a random access procedure for initial connection. And, upon entry of the E1 event, the random access preamble can be transmitted to the base station device.
  • Event E1 an E1 event related to a change in distance from the base station device is entered based on the TA value confirmed from the base station device according to a random access procedure for initial connection.
  • the random access preamble can be transmitted to the base station device.
  • the terminal can determine the entry of the E1 event when the result of adding or subtracting the hysteresis parameter to the TA value is outside the range of the threshold defined based on the TA value. there is.
  • a terminal for achieving the above object includes: a memory including instructions; And by executing the command, a random access preamble is transmitted to the base station device according to a random access procedure for initial access, and the base station based on the TA (Timing Advance) value measured from the random access preamble.
  • TA Timing Advance
  • the base station device determines resources within a slot format that can simultaneously allocate uplink resources and downlink resources between frequency subbands according to the communication type according to the distance to the device, based on the TA value, the base station device It is characterized by including a processor that periodically determines whether an E1 event (Event E1) related to a change in distance is entered, and transmits the random access preamble to the base station device when determining the entry of the E1 event.
  • Event E1 an E1 event
  • a resource control method performed in a base station device is a method of controlling resources between the terminal and the terminal based on the TA (Timing Advance) value measured from the random access preamble of the terminal.
  • the random access preamble is received through a specific RO (RACH Occasion) of the Random Access Channel (RACH), and the specific RO is 2 allocated to consecutive sections within a slot according to the format of the random access preamble. Configuration using the above uplink resources may be possible.
  • RACH Occasion Random Access Channel
  • the determination step may determine whether the communication type is a long-distance communication type from the result of comparing the TA value with a predefined threshold (Timing Advance Thresh).
  • the slot format may be determined to include two or more uplink resources allocated to consecutive sections within the slot.
  • the terminal periodically determines whether an E1 event (Event E1) related to a change in distance from the base station device is entered based on the TA value confirmed from the base station device according to a random access procedure for initial connection. And, upon entry of the E1 event, the random access preamble can be transmitted to the base station device.
  • Event E1 an E1 event related to a change in distance from the base station device is entered based on the TA value confirmed from the base station device according to a random access procedure for initial connection.
  • the random access preamble can be transmitted to the base station device.
  • the terminal can determine the entry of the E1 event when the result of adding or subtracting the hysteresis parameter to the TA value is outside the range of the threshold defined based on the TA value. there is.
  • SBFD Subband non-overlapping Full Duplex
  • TDD pattern resource pattern of (200)
  • cell coverage can be expanded by efficiently compensating for the time delay that occurs during long-distance communication.
  • Figure 1 is an example diagram for explaining a slot format in SBFD (Subband non-overlapping Full Duplex) technology.
  • SBFD Subband non-overlapping Full Duplex
  • Figure 2 is an exemplary diagram illustrating a dynamic time division duplex communication environment according to an embodiment of the present invention.
  • Figure 3 is a configuration diagram for explaining the schematic configuration of a base station device according to an embodiment of the present invention.
  • Figure 4 is an example diagram for explaining RO (RACH Occasion) settings according to an embodiment of the present invention.
  • Figure 5 is an example diagram for explaining a slot format according to an embodiment of the present invention.
  • Figure 6 is a configuration diagram for explaining the schematic configuration of a terminal according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a resource control method according to an embodiment of the present invention.
  • the present invention deals with SBFD (Subband non-overlapping Full Duplex) technology.
  • the 5G communication system accommodates the maximum number of terminals based on limited wireless resources, and provides eMBB (enhanced mobile broadband)/mMTC (massive machine type communications)/uRLLC (ultra-reliable and It supports scenarios of low latency communications (highly reliable and low latency communications).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • uRLLC ultra-reliable and It supports scenarios of low latency communications (highly reliable and low latency communications).
  • data traffic which was previously concentrated in the downlink, may appear in various uplink and downlink data rates depending on time.
  • Dynamic Time Division Duplexing technology is also being discussed as one of the core technologies of the 5G communication system.
  • dynamic time division duplex communication technology dynamically distributes time resources according to the ratio of uplink and downlink data, unlike the existing duplex communication technology where resources are fixed in an environment where uplink and downlink data rates vary. This is an allocation method.
  • the 5G communication system uses the frequency bands of FR1 (Frequency Range 1), which includes the sub-6 GHz frequency band, and FR2 (Frequency Range 2), which includes the mmWave band (24-71 GHz) frequency band. Accordingly, high-speed data transmission is possible and latency can also be shortened.
  • FR1 Frequency Range 1
  • FR2 Frequency Range 2
  • mmWave band 24-71 GHz
  • cell coverage may be reduced due to the use of high frequency bands.
  • maritime coverage must serve a maritime area of 100 km, but the slot format used in 3.5 GHz, the main band of FR1, cannot accommodate 100 km of coverage.
  • a slot of at least 3ms must be secured to compensate for the time delay that occurs during long-distance communication.
  • uplink (UL) resources must be allocated six times in a row to secure a slot of at least 3ms.
  • Figure 1 exemplarily shows a dynamic time division duplex communication environment according to an embodiment of the present invention.
  • FIG. 1 in a dynamic time division duplex communication environment according to an embodiment of the present invention, it has a configuration including a base station device 100 that determines resources for the terminal 200 within cell coverage (C). You can.
  • a base station device 100 that determines resources for the terminal 200 within cell coverage (C). You can.
  • This base station device 100 utilizes SBFD (Subband non-overlapping Full Duplex) technology to match the pattern (TDD pattern) of resources allocated to the terminal 200 to the distance to the terminal 200 within cell coverage (C). Depending on your situation, you may decide differently.
  • SBFD Subband non-overlapping Full Duplex
  • the SBFD technology is a technology being discussed in 3GPP Release 18.
  • 3GPP Release 18 unlike the existing TDD method, simultaneous allocation of uplink (UL) resources and downlink (DL) resources between frequency subbands
  • UL uplink
  • DL downlink
  • the time delay occurring during long-distance communication can be efficiently compensated through the above-described configuration.
  • the base station device 100 and the terminal for realizing this will be described. We will continue with a more detailed explanation of the composition of (200).
  • Figure 3 schematically shows the configuration of the base station device 100 according to an embodiment of the present invention.
  • the base station device 100 may be configured to include a memory including instructions and a processor that executes the instructions in the memory.
  • a processor in the case of a processor according to an embodiment of the present invention, it may have a configuration including a determination unit 110 and a decision unit 120 depending on the implemented function according to the execution of the instruction.
  • All or at least part of the configuration of the base station device 100 may be implemented in the form of a hardware module or a software module, or may be implemented in a combination of a hardware module and a software module.
  • the base station device 100 changes the resource pattern (TDD pattern) of the terminal 200 according to the distance to the terminal 200 within the cell coverage (C) through the above-described functional configuration. You can decide.
  • the determination unit 110 performs a function of determining the communication type of the terminal 200.
  • the determination unit 110 determines the communication type according to the distance from the terminal 200 based on the TA (Timing Advance) value measured from the random access preamble of the terminal 200.
  • the determination unit 110 may receive a random access preamble through a specific RACH Occasion (RO) of the Random Access Channel (RACH).
  • RO Random Access Channel
  • This random access preamble may be received from the terminal 200 when the terminal 200 initially accesses a cell or enters an E1 event (Event E1), which will be described later.
  • the initial access to a cell of the terminal 200 assumes a situation where the terminal 200 located at a distance makes initial access, considering the same maximum cell coverage (100 km) as the LTE communication system. .
  • the time delay for the random access preamble to reach the base station device 100 from the remote terminal 200 and the response of the base station device 100 thereto are determined by the terminal.
  • the time delay to reach (200) must all be considered.
  • a specific RO (RACH Occasion) of the Random Access Channel (RACH) selected to transmit the random access preamble when the terminal 200 initially accesses a remote cell is shown, for example, in Figure 4 (a) ), it can be set to 6 uplink resources allocated to consecutive sections within the slot.
  • RO RACH Occasion
  • uplink resources allocated to a continuous section for setting RO has been described as an example, but there is no special limitation on the number of these uplink resources. , can be set to an arbitrary number of 2 or more depending on operator settings considering the size of cell coverage.
  • the short-distance access situation of the terminal 200 is also considered.
  • a specific RO (RACH Occasion) of the RACH (Random Access Channel) is used, for example, as a single uplink as shown in FIG. 4 (b).
  • RACH Occasion of the RACH (Random Access Channel)
  • it can be set as a default link resource.
  • this single uplink resource can support measurement of time delay corresponding to a maximum cell coverage of 4.6km.
  • the determination unit 110 determines a timing advance (TA) value (N ta _Offset) measured from the received random access preamble. Based on the distance to the terminal 200, the communication type is determined.
  • TA timing advance
  • the determination unit 110 uses the result of comparing the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh) to determine that the communication type according to the distance from the terminal 200 corresponds to the long-distance communication type. You can determine whether it is done or not.
  • the determination unit 110 compares the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh), and if the TA value (N ta _Offset) is greater than or equal to the threshold (Timing Advance Thresh), the communication type It can be determined as a long-distance communication type where the distance from the terminal 200 is long, and in the opposite case where the TA value (N ta _Offset) is less than the threshold (Timing Advance Thresh), it is short-distance communication where the distance from the terminal 200 is relatively close. It can be determined by type.
  • the threshold here (Timing Advance Thresh) is an operator setting value according to the TS38.133 standard and can be set in the range, for example, from 0 to 25600.
  • the decision unit 120 performs a function of determining resources of the terminal 200 according to the determined communication type.
  • the decision unit 120 determines the resource pattern (TDD pattern) of the terminal 200 differently according to the determined communication type.
  • the decision unit 120 can determine for the terminal 200 an uplink slot format (UL coverage slot format) in which uplink resources are allocated to continuous sections within the slot. there is.
  • an uplink slot format (UL coverage slot format) in which uplink resources are allocated to continuous sections within the slot.
  • the decision unit 120 may consider the long-distance communication type and determine an uplink slot format that includes at least two uplink resources in a continuous section as shown in FIG. 5 (a), for example.
  • the decision unit 120 may determine a default slot format for the terminal 200.
  • This default slot format may have, for example, the format shown in Figure 5 (b), and in particular, this is TDD-UL-, which is an RRC IE used when setting TDD for a specific UE (UE Specific) in the 3GPP TS38.331 standard below. It can be determined based on the DL-ConfigDedicated parameter.
  • the Random Access Preamble transmission (MSG1) where the random access preamble is received from the terminal 200. It is transmitted to the terminal 200 along with a TA value (N ta _Offset) through Random Access Response reception (MSG2), which is a response, followed by Scheduled Transmission (MSG3), Contention resolution (MSG4), and Completion of the Random Access.
  • the random access procedure can be completed through procedure (MSG5).
  • an E1 event (Event E1) related to the change in distance from the base station device 100 is generated based on the TA value (N ta _Offset) received from the base station device 100. It periodically determines whether the E1 event is entering, and when determining the entry of an E1 event, a random access preamble is transmitted to the base station device 100 so that the base station device 100 can re-determine the slot format according to the distance change.
  • the terminal 200 detects a case where the result of adding or subtracting the hysteresis parameter to the TA value (N ta _Offset) is outside the range of the threshold defined based on the TA value (N ta _Offset). It can be determined that an E1 event has been entered.
  • a specific conditional expression for determining the entry of this E1 event can be defined as follows.
  • Figure 6 schematically shows the configuration of the terminal 200 according to an embodiment of the present invention.
  • the terminal 200 may be configured to include a memory including instructions and a processor that executes the instructions in the memory.
  • the processor may have a configuration that includes an initial access unit 210 and an event processing unit 220, depending on the implemented function according to the execution of instructions.
  • All or at least part of the components of the terminal 200 may be implemented in the form of hardware modules, software modules, or a combination of hardware modules and software modules.
  • the terminal 200 determines the resource pattern (TDD pattern) of the terminal 200 differently depending on the distance from the base station device 100 in the cell coverage (C) through the above-described functional configuration. can support you.
  • the initial connection unit 210 is responsible for processing random accessors for initial connection.
  • the initial access unit 210 transmits a random access preamble to the base station device according to a random access procedure for initial access, and matches the TA (Timing Advance) value measured from the random access preamble to the base station device.
  • TA Timing Advance
  • resources within a slot format that can simultaneously allocate uplink resources and downlink resources between frequency subbands are determined.
  • This random access preamble may be received from the terminal 200 upon initial access to a cell or upon entering an E1 event (Event E1), which will be described later.
  • cell initial access assumes a situation where a terminal 200 located at a distance makes initial access, considering the same maximum cell coverage (100 km) as the LTE communication system.
  • the time delay for the random access preamble to reach the base station device 100 from the remote terminal 200 and the response of the base station device 100 thereto are determined by the terminal.
  • the time delay to reach (200) must all be considered.
  • the specific RO (RACH Occasion) of the RACH (Random Access Channel) selected for transmission of the random access preamble upon initial access to a remote cell is shown in FIG. 4 (a), previously illustrating the specific RO (RACH Occasion) Likewise, it can be set to 6 uplink resources allocated to consecutive sections within the slot.
  • RO RACH Occasion
  • uplink resources allocated to a continuous section for setting RO has been described as an example, but there is no special limitation on the number of these uplink resources. , can be set to an arbitrary number of 2 or more depending on operator settings considering the size of cell coverage.
  • the short-distance access situation of the terminal 200 is also considered, and for this purpose, a specific RO (RACH Occasion) of the RACH (Random Access Channel) is used, as shown in FIG. 4 (b).
  • a specific RO (RACH Occasion) of the RACH Random Access Channel
  • it can be set as default as a single uplink resource.
  • this single uplink resource can support measurement of time delay corresponding to a maximum cell coverage of 4.6km.
  • the base station device 100 receives a timing advance (TA) value (N ta _Offset) measured from the received random access preamble. ) Based on this, the communication type is determined according to the distance to the terminal 200.
  • TA timing advance
  • the base station device 100 uses the result of comparing the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh) to determine that the communication type according to the distance from the terminal 200 corresponds to the long-distance communication type. You can determine whether it is done or not.
  • the base station device 100 compares the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh), and if the TA value (N ta _Offset) is greater than or equal to the threshold (Timing Advance Thresh), the communication type It can be determined as a long-distance communication type where the distance from the terminal 200 is long, and in the opposite case where the TA value (N ta _Offset) is less than the threshold (Timing Advance Thresh), it is short-distance communication where the distance from the terminal 200 is relatively close. It can be determined by type.
  • the threshold here (Timing Advance Thresh) is an operator setting value according to the TS38.133 standard and can be set in the range, for example, from 0 to 25600.
  • the base station device 100 determines the communication type according to the distance to the terminal 200
  • the resource pattern (TDD pattern) of the terminal 200 is determined differently according to the determined communication type.
  • the base station device 100 can determine for the terminal 200 an uplink slot format (UL coverage slot format) in which uplink resources are allocated to continuous sections within the slot. there is.
  • an uplink slot format (UL coverage slot format) in which uplink resources are allocated to continuous sections within the slot.
  • the base station device 100 may determine an uplink slot format that includes at least two uplink resources in a continuous section as shown in FIG. 5(a), taking into account the type of long-distance communication.
  • the base station device 100 may determine a default slot format for the terminal 200.
  • This default slot format may have the same format as shown in FIG. 5 (b), as illustrated above.
  • this is the TDD- It can be determined based on the UL-DL-ConfigDedicated parameter.
  • the Random Access Preamble transmission (MSG1) where the random access preamble is received from the terminal 200. It is transmitted to the terminal 200 along with a TA value (N ta _Offset) through Random Access Response reception (MSG2), which is a response, followed by Scheduled Transmission (MSG3), Contention resolution (MSG4), and Completion of the Random Access.
  • the random access procedure can be completed through procedure (MSG5).
  • the event processing unit 220 is responsible for processing the E1 event.
  • the event processing unit 220 responds to the change in distance with the base station device 100 based on the TA value (N ta _Offset) received from the base station device 100. It periodically determines whether an E1 event (Event E1) related to the event is entering, and when determining the entry of an E1 event, a random access preamble is transmitted to the base station device 100 to re-determine the slot format according to the distance change at the base station device 100. enable it to be performed.
  • Event E1 Event E1 related to the event
  • a random access preamble is transmitted to the base station device 100 to re-determine the slot format according to the distance change at the base station device 100. enable it to be performed.
  • the random access preamble transmitted when determining the entry of the E1 event in the case of long-distance communication, continuous within the slot, as shown in FIG. 4 (a), based on the communication type determined in the previous random access procedure. It is transmitted to the base station device 100 through RO (RACH Occasion) set as an uplink resource, and in the case of short-distance communication, RO (RACH Occasion) set as one uplink resource as shown in FIG. 4 (b) above. It can be transmitted to the base station device 100 through .
  • RO RACH Occasion
  • SBFD Subband non-overlapping Full Duplex
  • the resource pattern (TDD pattern) of the terminal 200 can be determined differently depending on the distance to the terminal 200 within the cell coverage, so cell coverage can be achieved by efficiently compensating for the time delay that occurs during long-distance communication. can be expanded.
  • the terminal using Half-Duplex Since it becomes possible for a specific terminal (200) to transmit downlink and a specific terminal to transmit uplink at the same time (200), the installation of a base station can be minimized by resolving the issue of uplink resource shortage depending on the purpose, and the frequency increase As simultaneous allocation of uplink and downlink resources between bands becomes possible, service quality can be improved by reducing latency. In particular, quality improvement is possible in real-time Voice IP services, which are a disadvantage of TDD.
  • SBFD Subband non-overlapping Full Duplex
  • the E1 event standard which is a distance-based event
  • the signal strength-based RSRP, RSRQ, and RSSI events are compared to the terminal. The effect of making it easier to check the distance can also be expected.
  • the following description will refer to the base station device 100 and the terminal 200 described with reference to FIG. 3 as the subjects performing the resource control method.
  • the base station device 100 determines the communication type according to the distance to the terminal based on the TA (Timing Advance) value measured from the random access preamble of the terminal 200 (S110).
  • TA Timing Advance
  • the base station device 100 receives a random access preamble through a specific RO (RACH Occasion) of the RACH (Random Access Channel).
  • RO Random Access Channel
  • This random access preamble may be received from the terminal 200 when the terminal 200 initially accesses a cell or enters an E1 event (Event E1), which will be described later.
  • the initial access to a cell of the terminal 200 assumes a situation where the terminal 200 located at a distance makes initial access, considering the same maximum cell coverage (100 km) as the LTE communication system. .
  • the time delay for the random access preamble to reach the base station device 100 from the remote terminal 200 and the response of the base station device 100 thereto are determined by the terminal.
  • the time delay to reach (200) must all be considered.
  • the specific RO (RACH Occasion) of the Random Access Channel (RACH) selected to transmit the random access preamble upon initial access to the remote cell of the terminal 200 is illustrated in FIG. 4. As in (a), it can be set to 6 uplink resources allocated to consecutive sections within the slot.
  • RO RACH Occasion
  • uplink resources allocated to a continuous section for setting RO has been described as an example, but there is no special limitation on the number of these uplink resources. , can be set to an arbitrary number of 2 or more depending on operator settings considering the size of cell coverage.
  • the short-distance access situation of the terminal 200 is also considered, and for this purpose, a specific RO (RACH Occasion) of the RACH (Random Access Channel) is used, as shown in FIG. 4 (b).
  • a specific RO (RACH Occasion) of the RACH Random Access Channel
  • it can be set as default as a single uplink resource.
  • this single uplink resource can support measurement of time delay corresponding to a maximum cell coverage of 4.6km.
  • the base station device 100 receives a random access preamble through a specific RO (RACH Occasion) of the RACH (Random Access Channel), the TA (Timing Advance) value (N ta _Offset) measured from the received random access preamble Based on this, the communication type is determined according to the distance to the terminal 200.
  • RO Random Access Channel
  • the base station device 100 uses the result of comparing the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh) to determine that the communication type according to the distance from the terminal 200 corresponds to the long-distance communication type. You can determine whether it is done or not.
  • the base station device 100 compares the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh), and if the TA value (N ta _Offset) is greater than or equal to the threshold (Timing Advance Thresh), the communication type It can be determined as a long-distance communication type where the distance from the terminal 200 is long, and in the opposite case where the TA value (N ta _Offset) is less than the threshold (Timing Advance Thresh), it is short-distance communication where the distance from the terminal 200 is relatively close. It can be determined by type.
  • the threshold here (Timing Advance Thresh) is an operator setting value according to the TS38.133 standard and can be set in the range, for example, from 0 to 25600.
  • the base station device 100 determines the communication type according to the distance to the terminal 200, it determines the resource pattern (TDD pattern) of the terminal 200 differently according to the determined communication type (S120-S140).
  • the base station device 100 can determine for the terminal 200 an uplink slot format (UL coverage slot format) in which uplink resources are allocated to continuous sections within the slot. there is.
  • an uplink slot format (UL coverage slot format) in which uplink resources are allocated to continuous sections within the slot.
  • the base station device 100 may consider the type of long-distance communication and determine an uplink slot format that includes at least two uplink resources in a continuous section as shown in FIG. 5 (a), for example.
  • the base station device 100 may determine a default slot format for the terminal 200.
  • This default slot format may have the same format as shown in FIG. 5(b), and in particular, this is TDD-UL-, which is an RRC IE used when setting TDD for a specific UE (UE Specific) in the 3GPP TS38.331 standard. It can be determined based on the DL-ConfigDedicated parameter.
  • the Random Access Preamble transmission (MSG1) where the random access preamble is received from the terminal 200. It is transmitted to the terminal 200 along with a TA value (N ta _Offset) through Random Access Response reception (MSG2), which is a response, followed by Scheduled Transmission (MSG3), Contention resolution (MSG4), and Completion of the Random Access.
  • the random access procedure can be completed through procedure (MSG5).
  • the terminal 200 after completing this random access procedure, receives an E1 event (Event E1) related to the change in distance from the base station device 100 based on the TA value (N ta _Offset) received from the base station device 100. Entry is periodically determined, and when the entry of an E1 event is determined, a random access preamble is transmitted to the base station device 100 so that the base station device 100 can re-determine the slot format according to distance changes (S150) .
  • Event E1 Event E1 related to the change in distance from the base station device 100 based on the TA value (N ta _Offset) received from the base station device 100. Entry is periodically determined, and when the entry of an E1 event is determined, a random access preamble is transmitted to the base station device 100 so that the base station device 100 can re-determine the slot format according to distance changes (S150) .
  • the terminal 200 detects a case where the result of adding or subtracting the hysteresis parameter to the TA value (N ta _Offset) is outside the range of the threshold defined based on the TA value (N ta _Offset). It can be determined that an E1 event has been entered.
  • a terminal in cell coverage is controlled by utilizing SBFD (Subband non-overlapping Full Duplex) technology in a Dynamic Time Division Duplexing environment. Since the resource pattern (TDD pattern) of the terminal 200 can be determined differently depending on the distance from the terminal 200, cell coverage can be expanded through a method of efficiently compensating for the time delay that occurs during long-distance communication.
  • SBFD Subband non-overlapping Full Duplex
  • each terminal 200 using Half-Duplex is connected to a specific terminal 200 at the same time. Since it becomes possible to transmit downlink and specific terminals to transmit uplink, it is possible to minimize the installation of base stations by resolving the issue of uplink resource shortage depending on the purpose, and to minimize the installation of uplink and downlink resources between frequency subbands. As simultaneous allocation becomes possible, service quality can be improved by reducing latency. In particular, quality improvement is possible in real-time Voice IP services, which are a drawback of TDD.
  • the E1 event standard which is a distance-based event
  • the effect of making it easier to check the distance to the terminal compared to signal strength-based RSRP, RSRQ, and RSSI events can be expected. You can.
  • the resource control method may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc., singly or in combination.
  • Program instructions recorded on the medium may be specially designed and constructed for the present invention or may be known and usable by those skilled in the art of computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks.
  • program instructions include machine language code, such as that produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter, etc.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.

Abstract

The present invention relates to a scheme to extend cell coverage by using subband non-overlapping full duplex (SBFD) technology in a dynamic time division duplexing environment.

Description

기지국장치, 단말, 및 자원 제어 방법Base station device, terminal, and resource control method
본 발명은, SBFD(Subband non-overlapping Full Duplex) 기술 적용에 따른 셀 커버리지 확장 방안에 관한 것이다.The present invention relates to a method of expanding cell coverage by applying Subband non-overlapping Full Duplex (SBFD) technology.
본원 출원은 2022년 08월 11일자로 출원된 한국 출원 제10-2022-0100426호의 우선권을 주장하고, 이러한 출원의 내용 전체가 모든 목적들을 위해서 참조로서 본원에 포함된다.This application claims priority from Korean Application No. 10-2022-0100426, filed on August 11, 2022, and the entire contents of this application are incorporated herein by reference for all purposes.
LTE 통신시스템으로부터 진화된 5G 통신시스템 환경에서는 수많은 기기가 연결되어 다양한 형태의 데이터 트래픽이 발생하게 된다.In the 5G communication system environment, which has evolved from the LTE communication system, numerous devices are connected and various types of data traffic occur.
이에 따라 기존에 하향링크에 집중된 데이터 트래픽이 시간에 따라 상향링크와 하향링크 데이터 비율로 다양하게 나타날 수 있다.Accordingly, data traffic, which was previously concentrated in the downlink, may appear in various uplink and downlink data rates depending on time.
관련하여, 5G 통신시스템의 핵심 기술 중 하나로 동적 시분할 이중통신(Dynamic Time Division Duplexing) 기술에 대해서도 논의되고 있다.In relation to this, Dynamic Time Division Duplexing technology, one of the core technologies of the 5G communication system, is also being discussed.
여기서, 동적 시분할 이중통신 기술은 전술한 바와 같이 상향링크와 하향링크 데이터 비율이 다양한 환경에서 기존의 자원이 고정된 이중통신 기술과 달리 상향링크와 하향링크의 데이터의 비율에 따라서 시간 자원을 동적으로 할당하는 방식이다.Here, as described above, dynamic time division duplex communication technology dynamically distributes time resources according to the ratio of uplink and downlink data, unlike the existing duplex communication technology where resources are fixed in an environment where uplink and downlink data rates vary. This is an allocation method.
한편, 이와 관련하여, 5G 통신시스템에서는, sub-6 GHz 주파수 대역 포함하는 FR1(Frequency Range 1)과, mmWave 대역(24-71GHz)의 주파수 대역 포함하는 FR2(Frequency Range 2)의 주파수 대역을 사용함에 따라, 고속의 데이터 전송이 가능하고, 레이턴시(Latency)도 단축시킬 수 있다.Meanwhile, in this regard, the 5G communication system uses the frequency bands of FR1 (Frequency Range 1), which includes the sub-6 GHz frequency band, and FR2 (Frequency Range 2), which includes the mmWave band (24-71 GHz) frequency band. Accordingly, high-speed data transmission is possible and latency can also be shortened.
그러나, 5G 통신시스템에서는 이러한 장점에도 불구하고, 높은 주파수 대역의 사용으로 인해 오히려 셀 커버리지가 축소될 수 있다.However, despite these advantages in the 5G communication system, cell coverage may be reduced due to the use of high frequency bands.
이에 따라 커버리지 유지 또는 확장을 위해선 고가의 장비가 많은 수로 필요하게 되는 한계점 또한 존재한다.Accordingly, there is also a limitation in that a large number of expensive equipment is required to maintain or expand coverage.
본 발명은 상기한 사정을 감안하여 창출된 것으로서, 본 발명에서 도달하고자 하는 목적은, 동적 시분할 이중통신(Dynamic Time Division Duplexing) 환경에서 SBFD(Subband non-overlapping Full Duplex) 기술을 활용하여 셀 커버리지를 확장하는데 있다.The present invention was created in consideration of the above-mentioned circumstances, and the object to be achieved by the present invention is to provide cell coverage by utilizing SBFD (Subband non-overlapping Full Duplex) technology in a Dynamic Time Division Duplexing environment. It's about expanding.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 기지국장치는, 명령어를 포함하는 메모리 및 상기 명령어를 실행함으로써, 단말의 랜덤 액세스 프리앰블(Random Access Preamble)로부터 측정된 TA(Timing Advance) 값을 기초로 상기 단말과의 거리에 따른 통신 유형을 판별하고, 주파수 부 대역 간에 상향링크 자원과 하향링크 자원의 동시 할당이 가능한 슬롯 포맷 내 자원을 상기 통신 유형에 따라 결정하는 프로세서를 포함하는 것을 특징으로 한다.In order to achieve the above object, the base station device according to an embodiment of the present invention has a memory containing a command and executes the command, thereby generating a TA (Timing Advance) value measured from the random access preamble of the terminal. Characterized by comprising a processor that determines the communication type based on the distance to the terminal and determines resources within a slot format that allows simultaneous allocation of uplink resources and downlink resources between frequency subbands according to the communication type. do.
구체적으로, 상기 랜덤 액세스 프리앰블은, RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 통해서 수신되며, 상기 특정 RO는, 상기 랜덤 액세스 프리앰블의 포맷에 따라서, 슬롯 내 연속된 구간으로 할당되는 2 이상의 상향링크 자원을 이용한 설정이 가능할 수 있다.Specifically, the random access preamble is received through a specific RO (RACH Occasion) of the Random Access Channel (RACH), and the specific RO is 2 allocated to consecutive sections within a slot according to the format of the random access preamble. Configuration using the above uplink resources may be possible.
구체적으로, 상기 프로세서는, 상기 TA 값을 기 정의된 임계치(Timing Advance Thresh)와 비교한 결과로부터 상기 통신 유형이 원거리 통신 유형인지 여부를 판별할 수 있다.Specifically, the processor may determine whether the communication type is a long-distance communication type from the result of comparing the TA value with a predefined threshold (Timing Advance Thresh).
구체적으로, 상기 프로세서는, 상기 통신 유형으로 원거리 통신 유형이 판별되는 경우, 슬롯 내 연속된 구간으로 할당된 2 이상의 상향링크 자원을 포함하도록 슬롯 포맷을 결정할 수 있다.Specifically, when the long-distance communication type is determined by the communication type, the processor may determine the slot format to include two or more uplink resources allocated to consecutive sections within the slot.
구체적으로, 상기 단말은, 초기 접속을 위한 랜덤 액세스 절차에 따라 상기 기지국장치로부터 확인되는 TA 값을 기초로, 상기 기지국장치와의 거리 변동에 관한 E1 이벤트(Event E1)의 진입 여부를 주기적으로 판별하며, 상기 E1 이벤트의 진입 시 상기 랜덤 액세스 프리앰블을 상기 기지국장치로 전송할 수 있다.Specifically, the terminal periodically determines whether an E1 event (Event E1) related to a change in distance from the base station device is entered based on the TA value confirmed from the base station device according to a random access procedure for initial connection. And, upon entry of the E1 event, the random access preamble can be transmitted to the base station device.
구체적으로, 상기 단말은, 상기 TA 값에 대해 히스테리시스(hysteresis) 파라미터를 가산 또는 감산한 결과 값이, 상기 TA 값을 기준으로 정의된 임계치의 범위를 벗어나는 경우, 상기 E1 이벤트의 진입을 판별할 수 있다.Specifically, the terminal can determine the entry of the E1 event when the result of adding or subtracting the hysteresis parameter to the TA value is outside the range of the threshold defined based on the TA value. there is.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 단말은, 명령어를 포함하는 메모리; 및 상기 명령어를 실행함으로써, 초기 접속을 위한 랜덤 액세스 절차에 따라 랜덤 엑세스 프리앰블(Random Access Preamble)을 기지국장치로 전송하며, 상기 랜덤 액세스 플리앰블로부터 측정된 TA(Timing Advance) 값에 기초한 상기 기지국장치와의 거리에 따른 통신 유형에 따라, 주파수 부 대역 간에 상향링크 자원과 하향링크 자원의 동시 할당이 가능한 슬롯 포맷 내 자원이 상기 기지국장치에서 결정되면, 상기 TA 값을 기초로, 상기 기지국장치와의 거리 변동에 관한 E1 이벤트(Event E1)의 진입 여부를 주기적으로 판별하고, 상기 E1 이벤트의 진입 판별 시 상기 랜덤 액세스 프리앰블을 상기 기지국장치로 전송하는 프로세서를 포함하는 것을 특징으로 한다.A terminal according to an embodiment of the present invention for achieving the above object includes: a memory including instructions; And by executing the command, a random access preamble is transmitted to the base station device according to a random access procedure for initial access, and the base station based on the TA (Timing Advance) value measured from the random access preamble. If the base station device determines resources within a slot format that can simultaneously allocate uplink resources and downlink resources between frequency subbands according to the communication type according to the distance to the device, based on the TA value, the base station device It is characterized by including a processor that periodically determines whether an E1 event (Event E1) related to a change in distance is entered, and transmits the random access preamble to the base station device when determining the entry of the E1 event.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 기지국장치에서 수행되는 자원 제어 방법은, 단말의 랜덤 액세스 프리앰블(Random Access Preamble)로부터 측정된 TA(Timing Advance) 값을 기초로 상기 단말과의 거리에 따른 통신 유형을 판별하는 판별단계; 및 주파수 부 대역 간에 상향링크 자원과 하향링크 자원의 동시 할당이 가능한 슬롯 포맷 내 자원을 상기 통신 유형에 따라 결정하는 결정단계를 포함하는 것을 특징으로 한다.A resource control method performed in a base station device according to an embodiment of the present invention to achieve the above object is a method of controlling resources between the terminal and the terminal based on the TA (Timing Advance) value measured from the random access preamble of the terminal. A determination step of determining the communication type according to the distance; And a decision step of determining resources within a slot format that can simultaneously allocate uplink resources and downlink resources between frequency subbands according to the communication type.
구체적으로, 상기 랜덤 액세스 프리앰블은, RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 통해서 수신되며, 상기 특정 RO는, 상기 랜덤 액세스 프리앰블의 포맷에 따라서, 슬롯 내 연속된 구간으로 할당되는 2 이상의 상향링크 자원을 이용한 설정이 가능할 수 있다.Specifically, the random access preamble is received through a specific RO (RACH Occasion) of the Random Access Channel (RACH), and the specific RO is 2 allocated to consecutive sections within a slot according to the format of the random access preamble. Configuration using the above uplink resources may be possible.
구체적으로, 상기 판별단계는, 상기 TA 값을 기 정의된 임계치(Timing Advance Thresh)와 비교한 결과로부터 상기 통신 유형이 원거리 통신 유형인지 여부를 판별할 수 있다.Specifically, the determination step may determine whether the communication type is a long-distance communication type from the result of comparing the TA value with a predefined threshold (Timing Advance Thresh).
구체적으로, 상기 결정단계는, 상기 통신 유형으로 원거리 통신 유형이 판별되는 경우, 슬롯 내 연속된 구간으로 할당된 2 이상의 상향링크 자원을 포함하도록 슬롯 포맷을 결정할 수 있다.Specifically, in the determination step, when the long-distance communication type is determined by the communication type, the slot format may be determined to include two or more uplink resources allocated to consecutive sections within the slot.
구체적으로, 상기 단말은, 초기 접속을 위한 랜덤 액세스 절차에 따라 상기 기지국장치로부터 확인되는 TA 값을 기초로, 상기 기지국장치와의 거리 변동에 관한 E1 이벤트(Event E1)의 진입 여부를 주기적으로 판별하며, 상기 E1 이벤트의 진입 시 상기 랜덤 액세스 프리앰블을 상기 기지국장치로 전송할 수 있다.Specifically, the terminal periodically determines whether an E1 event (Event E1) related to a change in distance from the base station device is entered based on the TA value confirmed from the base station device according to a random access procedure for initial connection. And, upon entry of the E1 event, the random access preamble can be transmitted to the base station device.
구체적으로, 상기 단말은, 상기 TA 값에 대해 히스테리시스(hysteresis) 파라미터를 가산 또는 감산한 결과 값이, 상기 TA 값을 기준으로 정의된 임계치의 범위를 벗어나는 경우, 상기 E1 이벤트의 진입을 판별할 수 있다.Specifically, the terminal can determine the entry of the E1 event when the result of adding or subtracting the hysteresis parameter to the TA value is outside the range of the threshold defined based on the TA value. there is.
본 발명의 기지국장치 및 자원 제어 방법에 따르면, 동적 시분할 이중통신(Dynamic Time Division Duplexing) 환경에서 SBFD(Subband non-overlapping Full Duplex) 기술을 활용하여 셀 커버리지 내 단말(200)과의 거리에 따라 단말(200)의 자원 패턴(TDD 패턴)을 다르게 결정할 수 있으므로, 원거리 통신 시 발생하는 시간 지연을 효율적으로 보상하는 방식을 통해 셀 커버리지를 확장할 수 있다.According to the base station device and resource control method of the present invention, SBFD (Subband non-overlapping Full Duplex) technology is utilized in a dynamic time division duplexing environment to control the terminal according to the distance from the terminal 200 within cell coverage. Since the resource pattern (TDD pattern) of (200) can be determined differently, cell coverage can be expanded by efficiently compensating for the time delay that occurs during long-distance communication.
도 1은 SBFD(Subband non-overlapping Full Duplex) 기술에서의 슬롯 포맷을 설명하기 위한 예시도.Figure 1 is an example diagram for explaining a slot format in SBFD (Subband non-overlapping Full Duplex) technology.
도 2는 본 발명의 일 실시예에 따른 동적 시분할 이중통신 환경을 설명하기 위한 예시도.Figure 2 is an exemplary diagram illustrating a dynamic time division duplex communication environment according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 기지국장치의 개략적인 구성을 설명하기 위한 구성도.Figure 3 is a configuration diagram for explaining the schematic configuration of a base station device according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 RO(RACH Occasion) 설정을 설명하기 위한 예시도.Figure 4 is an example diagram for explaining RO (RACH Occasion) settings according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 슬롯 포맷을 설명하기 위한 예시도.Figure 5 is an example diagram for explaining a slot format according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 단말의 개략적인 구성을 설명하기 위한 구성도.Figure 6 is a configuration diagram for explaining the schematic configuration of a terminal according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 자원 제어 방법을 설명하기 위한 순서도.7 is a flowchart illustrating a resource control method according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 다양한 실시 예에 대하여 설명한다.Hereinafter, various embodiments of the present invention will be described with reference to the attached drawings.
본 발명은, SBFD(Subband non-overlapping Full Duplex) 기술을 다룬다.The present invention deals with SBFD (Subband non-overlapping Full Duplex) technology.
LTE 통신시스템에서 통신서비스의 종류 및 전송 요구 속도 등이 다양해짐에 따라, LTE 주파수 증설 및 5G 통신시스템으로의 진화가 활발하게 진행되고 있다. As the types of communication services and transmission requirements in the LTE communication system become more diverse, the expansion of LTE frequencies and the evolution to 5G communication systems are actively progressing.
5G 통신시스템은, 한정된 무선자원을 기반으로 최대한 많은 수의 단말을 수용하면서, eMBB (enhanced mobile broadband, 향상된 모바일 광대역)/mMTC(massive machine type communications, 대규모 기계형 통신)/uRLLC(ultra-reliable and low latency communications, 고도의 신뢰도와 낮은 지연 시간 통신)의 시나리오를 지원하고 있다.The 5G communication system accommodates the maximum number of terminals based on limited wireless resources, and provides eMBB (enhanced mobile broadband)/mMTC (massive machine type communications)/uRLLC (ultra-reliable and It supports scenarios of low latency communications (highly reliable and low latency communications).
한편, 이러한 5G 통신시스템 환경에서는 수많은 기기가 연결되어 다양한 형태의 데이터 트래픽이 발생하게 된다.Meanwhile, in this 5G communication system environment, numerous devices are connected and various types of data traffic occur.
이에 따라 기존에 하향링크에 집중된 데이터 트래픽이 시간에 따라 상향링크와 하향링크 데이터 비율로 다양하게 나타날 수 있다.Accordingly, data traffic, which was previously concentrated in the downlink, may appear in various uplink and downlink data rates depending on time.
이와 관련하여, 5G 통신시스템의 핵심 기술 중 하나로 동적 시분할 이중통신(Dynamic Time Division Duplexing) 기술에 대해서도 논의되고 있다.In this regard, Dynamic Time Division Duplexing technology is also being discussed as one of the core technologies of the 5G communication system.
여기서, 동적 시분할 이중통신 기술은 전술한 바와 같이 상향링크와 하향링크 데이터 비율이 다양한 환경에서 기존의 자원이 고정된 이중통신 기술과 달리 상향링크와 하향링크의 데이터의 비율에 따라서 시간 자원을 동적으로 할당하는 방식이다.Here, as described above, dynamic time division duplex communication technology dynamically distributes time resources according to the ratio of uplink and downlink data, unlike the existing duplex communication technology where resources are fixed in an environment where uplink and downlink data rates vary. This is an allocation method.
한편, 이와 관련하여, 5G 통신시스템에서는, sub-6 GHz 주파수 대역 포함하는 FR1(Frequency Range 1)과, mmWave 대역(24-71GHz)의 주파수 대역 포함하는 FR2(Frequency Range 2)의 주파수 대역을 사용함에 따라, 고속의 데이터 전송이 가능하고, 레이턴시(Latency)도 단축시킬 수 있다.Meanwhile, in this regard, the 5G communication system uses the frequency bands of FR1 (Frequency Range 1), which includes the sub-6 GHz frequency band, and FR2 (Frequency Range 2), which includes the mmWave band (24-71 GHz) frequency band. Accordingly, high-speed data transmission is possible and latency can also be shortened.
헌데, 5G 통신시스템에서는 이러한 장점에도 불구하고, 높은 주파수 대역의 사용으로 인해 오히려 셀 커버리지가 축소될 수 있다.However, despite these advantages in the 5G communication system, cell coverage may be reduced due to the use of high frequency bands.
이에 따라 커버리지 유지 또는 확장을 위해선 고가의 장비가 많은 수로 필요하게 되는 한계점 또한 존재한다.Accordingly, there is also a limitation in that a large number of expensive equipment is required to maintain or expand coverage.
특히, 도심 및 일반적인 지역에서 발생되는 셀 커버리지 축소 현상은, 여러 가지 방법을 통해 개선이 가능한 반면, 해상 커버리지의 경우, 장비 투입이 제한될 수밖에 없는 지리적 특성으로 인해 현상이 개선이 사실상 어려운 것이 현실이다.In particular, the cell coverage reduction phenomenon that occurs in urban areas and general areas can be improved through various methods, but in the case of maritime coverage, it is virtually difficult to improve the phenomenon due to geographical characteristics that inevitably limit equipment input. .
이를 좀더 구체적으로 살펴보면, 해상 커버리지는 100km의 해상 지역을 서비스해야 하지만 FR1의 주요 대역인 3.5GHz에서 사용되는 슬롯 포맷으로는 100km의 커버리지를 수용할 수 없다.Looking at this more specifically, maritime coverage must serve a maritime area of 100 km, but the slot format used in 3.5 GHz, the main band of FR1, cannot accommodate 100 km of coverage.
이를 해결하기 위해서는, 원거리 통신 시 발생하는 시간 지연을 보상할 수 있도록 최소 3ms의 슬롯이 확보되어야 한다.To solve this, a slot of at least 3ms must be secured to compensate for the time delay that occurs during long-distance communication.
관련하여, SCS(subcarrier spacing) 30kHz를 사용하는 경우 최소 3ms의 슬롯 확보를 위해 상향링크(UL) 자원을 6개나 연속하여 할당해야 한다.Relatedly, when using subcarrier spacing (SCS) 30kHz, uplink (UL) resources must be allocated six times in a row to secure a slot of at least 3ms.
그러나, 이 경우 상대적으로 하향링크(DL) 자원 확보가 그만큼 어려워지게 되므로, 이를 통한 시간 지연의 보상은 어려운 것이 현실이다.However, in this case, securing downlink (DL) resources becomes relatively difficult, so compensating for time delay through this is difficult.
이에 본 발명의 일 실시예에서는, 5G 통신시스템에서 이처럼 원거리 통신 시 발생하는 시간 지연을 효과적으로 보상할 수 있는 새로운 방안을 제안하고자 한다.Accordingly, in one embodiment of the present invention, we would like to propose a new method that can effectively compensate for the time delay that occurs during long-distance communication in the 5G communication system.
이와 관련하여, 도 1에는 본 발명의 일 실시예에 따른 동적 시분할 이중통신 환경을 예시적으로 보여주고 있다.In this regard, Figure 1 exemplarily shows a dynamic time division duplex communication environment according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 동적 시분할 이중통신 환경에서는, 셀 커버리지(C) 내 단말(200)에 대해서 자원을 결정하는 기지국장치(100)를 포함하는 구성을 가질 수 있다.As shown in FIG. 1, in a dynamic time division duplex communication environment according to an embodiment of the present invention, it has a configuration including a base station device 100 that determines resources for the terminal 200 within cell coverage (C). You can.
이러한 기지국장치(100)는 SBFD(Subband non-overlapping Full Duplex) 기술을 활용하여 단말(200)에 대해서 할당되는 자원의 패턴(TDD 패턴)을 셀 커버리지(C) 내 단말(200)과의 거리에 따라 다르게 결정할 수 있다.This base station device 100 utilizes SBFD (Subband non-overlapping Full Duplex) technology to match the pattern (TDD pattern) of resources allocated to the terminal 200 to the distance to the terminal 200 within cell coverage (C). Depending on your situation, you may decide differently.
여기서, SBFD 기술은, 3GPP Release 18에서 논의 중인 기술로서, 예컨대, 도 2에서와 같이, 기존의 TDD 방식과는 달리 주파수 부 대역 간에 상향링크(UL) 자원과 하향링크(DL) 자원의 동시 할당이 가능한 슬롯 포맷을 지원할 수 있다.Here, the SBFD technology is a technology being discussed in 3GPP Release 18. For example, as shown in FIG. 2, unlike the existing TDD method, simultaneous allocation of uplink (UL) resources and downlink (DL) resources between frequency subbands These possible slot formats can be supported.
이상, 본 발명의 일 실시예에 따른 동적 시분할 이중통신 환경에서는, 전술한 구성을 통해서 원거리 통신 시 발생하는 시간 지연을 효율적으로 보상할 수 있는데, 이하에서는 이를 실현하기 위한 기지국장치(100) 및 단말(200)의 구성에 대해 보다 구체적인 설명을 이어 가기로 한다.As above, in the dynamic time division duplex communication environment according to an embodiment of the present invention, the time delay occurring during long-distance communication can be efficiently compensated through the above-described configuration. Hereinafter, the base station device 100 and the terminal for realizing this will be described. We will continue with a more detailed explanation of the composition of (200).
도 3은 본 발명의 일 실시예에 따른 기지국장치(100)의 구성을 개략적으로 보여주고 있다.Figure 3 schematically shows the configuration of the base station device 100 according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 기지국장치(100)는 명령어를 포함하는 메모리와, 메모리 내 명령어를 실행하는 프로세서를 포함하도록 구성될 수 있다.As shown in FIG. 3, the base station device 100 according to an embodiment of the present invention may be configured to include a memory including instructions and a processor that executes the instructions in the memory.
특히, 본 발명의 일 실시예에 따른 프로세서의 경우, 명령어의 실행에 따른 구현 기능에 따라, 판별부(110), 및 결정부(120)를 포함하는 구성을 가질 수 있다.In particular, in the case of a processor according to an embodiment of the present invention, it may have a configuration including a determination unit 110 and a decision unit 120 depending on the implemented function according to the execution of the instruction.
이러한 기지국장치(100)의 구성 전체 내지는 적어도 일부는 하드웨어 모듈 형태 또는 소프트웨어 모듈 형태로 구현되거나, 하드웨어 모듈과 소프트웨어 모듈이 조합된 형태로도 구현될 수 있다.All or at least part of the configuration of the base station device 100 may be implemented in the form of a hardware module or a software module, or may be implemented in a combination of a hardware module and a software module.
결국, 본 발명의 실시 예에 따른 기지국장치(100)는 전술한 기능 구성을 통해, 셀 커버리지(C) 내 단말(200)과의 거리에 따라 단말(200)의 자원 패턴(TDD 패턴)을 다르게 결정할 수 있다.Ultimately, the base station device 100 according to an embodiment of the present invention changes the resource pattern (TDD pattern) of the terminal 200 according to the distance to the terminal 200 within the cell coverage (C) through the above-described functional configuration. You can decide.
이하에서는 이를 실현하기 위한 프로세서의 각 기능 구성에 대해 보다 구체적인 설명을 이어 가기로 한다.Below, we will continue with a more detailed explanation of the configuration of each function of the processor to realize this.
판별부(110)는 단말(200)의 통신 유형을 판별하는 기능을 수행한다.The determination unit 110 performs a function of determining the communication type of the terminal 200.
보다 구체적으로, 판별부(110)는 단말(200)의 랜덤 액세스 프리앰블(Random Access Preamble)로부터 측정된 TA(Timing Advance) 값을 기초로 상기 단말과의 거리에 따른 통신 유형을 판별하게 된다.More specifically, the determination unit 110 determines the communication type according to the distance from the terminal 200 based on the TA (Timing Advance) value measured from the random access preamble of the terminal 200.
이를 위해, 판별부(110)는 RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 통해서 랜덤 액세스 프리앰블(Random Access Preamble)을 수신할 수 있다.To this end, the determination unit 110 may receive a random access preamble through a specific RACH Occasion (RO) of the Random Access Channel (RACH).
이러한, 랜덤 액세스 프리앰블은 단말(200)의 셀 초기 접속 또는, 후술될 E1 이벤트(Event E1)의 진입 시 단말(200)로부터 수신될 수 있다.This random access preamble may be received from the terminal 200 when the terminal 200 initially accesses a cell or enters an E1 event (Event E1), which will be described later.
한편, 본 발명의 일 실시예에 따른 단말(200)의 셀 초기 접속은, LTE 통신시스템과 동일한 최대 셀 커버리지(100km)를 고려하여, 원거리에 위치한 단말(200)이 초기 접속하는 상황을 전제한다.Meanwhile, the initial access to a cell of the terminal 200 according to an embodiment of the present invention assumes a situation where the terminal 200 located at a distance makes initial access, considering the same maximum cell coverage (100 km) as the LTE communication system. .
이처럼, 원거리에 위치한 단말(200)과 시간 동기화를 위해서는 랜덤 액세스 프리앰블이 원거리의 단말(200)로부터 기지국장치(100)까지 도달하기까지의 시간 지연과, 이에 대한 기지국장치(100)의 응답이 단말(200)까지 도달하기까지의 시간 지연이 모두 고려해야만 한다.In this way, in order to synchronize time with the terminal 200 located at a distance, the time delay for the random access preamble to reach the base station device 100 from the remote terminal 200 and the response of the base station device 100 thereto are determined by the terminal. The time delay to reach (200) must all be considered.
따라서, 이와 같은 최대 셀 커버리지(100km)의 크기에 상응하는 긴 시간 지연을 측정하기 위해서는, 최소 3ms의 연속된 상향링크(UL) 자원을 확보할 필요가 있다.Therefore, in order to measure a long time delay corresponding to the size of the maximum cell coverage (100 km), it is necessary to secure continuous uplink (UL) resources of at least 3 ms.
참고로, 이는, 3.5GHz 대역에서 SCS(subcarrier spacing) 30kHz를 사용하는 경우 최소 3ms의 슬롯 확보를 위해 6개의 상향링크(UL) 자원을 연속된 구간으로 할당해야만 하는 상황을 가정한 것이다.For reference, this assumes that when using subcarrier spacing (SCS) 30kHz in the 3.5GHz band, 6 uplink (UL) resources must be allocated in a continuous section to secure a slot of at least 3ms.
관련하여, 본 발명의 일 실시예에서는, 단말(200)의 원거리 셀 초기 접속 시 랜덤 액세스 프리앰블이 전달하기 위해 선택되는 RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 예컨대, 도 4 (a)에서와 같이 슬롯 내 연속된 구간으로 할당되는 6개의 상향링크 자원으로 설정할 수 있도록 한다.Relatedly, in one embodiment of the present invention, a specific RO (RACH Occasion) of the Random Access Channel (RACH) selected to transmit the random access preamble when the terminal 200 initially accesses a remote cell is shown, for example, in Figure 4 (a) ), it can be set to 6 uplink resources allocated to consecutive sections within the slot.
이처럼, 슬롯 내 연속된 구간으로 할당되는 6개의 상향링크 자원으로 설정되는 RO(RACH Occasion)는, 5G 통신시스템의 규격에 따라 가장 큰 크기의 셀 커버리지를 확보할 수 있는 랜덤 액세스 프리앰블의 포맷(Preamble Format = 1)에 의해 설정될 수 있다.In this way, RO (RACH Occasion), which is set with 6 uplink resources allocated to consecutive sections within the slot, is a random access preamble format that can secure the largest cell coverage according to the specifications of the 5G communication system. It can be set by Format = 1).
정리하자면, 단말(200)의 원거리 셀 초기 접속 시, 가장 큰 크기의 셀 커버리지 확보를 위해, 랜덤 액세스 프리앰블의 포맷(Preamble Format = 1)을 통해 슬롯 내 연속된 구간으로 할당되는 6개의 상향링크 자원을 이용하여 랜덤 액세스 프리앰블을 전송하기위한 특정 RO(RACH Occasion)가 설정될 수 있는 것이다.In summary, in order to secure the largest cell coverage when the terminal 200 initially accesses a remote cell, six uplink resources are allocated to continuous sections within the slot through the format of the random access preamble (Preamble Format = 1). A specific RO (RACH Occasion) for transmitting a random access preamble can be set using .
참고로, 본 발명의 일 실시예에서는 RO(RACH Occasion)의 설정에 연속된 구간으로 할당되는 6개의 상향링크 자원을 이용하는 것을 예시적으로 설명하였지만, 이러한 상향링크 자원 개수에 특별한 제한이 있는 것은 아니며, 셀 커버리지의 크기를 고려한 운용자 설정에 따라 2 이상인 임의의 개수로 설정할 수 있다.For reference, in one embodiment of the present invention, the use of six uplink resources allocated to a continuous section for setting RO (RACH Occasion) has been described as an example, but there is no special limitation on the number of these uplink resources. , can be set to an arbitrary number of 2 or more depending on operator settings considering the size of cell coverage.
한편, 본 발명의 일 실시예에서는, 단말(200)의 근거리 접속 상황 또한 고려하는데, 이를 위해 RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 예컨대, 도 4 (b)에서와 같이 단일 상향링크 자원으로 기본 설정할 수 있음은 물론이다.Meanwhile, in one embodiment of the present invention, the short-distance access situation of the terminal 200 is also considered. To this end, a specific RO (RACH Occasion) of the RACH (Random Access Channel) is used, for example, as a single uplink as shown in FIG. 4 (b). Of course, it can be set as a default link resource.
참고로, 3.5GHz 대역에서 SCS(subcarrier spacing) 30kHz를 사용하는 경우를 고려한다면, 이러한 단일 상향링크 자원의 경우, 최대 셀 커버리지 4.6km에 상응하는 시간 지연의 측정을 지원할 수 있다.For reference, considering the case of using SCS (subcarrier spacing) 30kHz in the 3.5GHz band, this single uplink resource can support measurement of time delay corresponding to a maximum cell coverage of 4.6km.
그리고, 판별부(110)는 RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 통해서 랜덤 액세스 프리앰블이 수신되면, 수신된 랜덤 액세스 프리앰블로부터 측정된 TA(Timing Advance) 값(Nta_Offset)을 기초로 단말(200)과의 거리에 따른 통신 유형을 판별한다.And, when a random access preamble is received through a specific RO (RACH Occasion) of a random access channel (RACH), the determination unit 110 determines a timing advance (TA) value (N ta _Offset) measured from the received random access preamble. Based on the distance to the terminal 200, the communication type is determined.
이때, 판별부(110)는, TA 값(Nta_Offset)을 기 정의된 임계치(Timing Advance Thresh)와 비교한 결과를 이용하여 단말(200)과의 거리에 따른 통신 유형이 원거리 통신 유형에 해당하는지 여부를 판별할 수 있다.At this time, the determination unit 110 uses the result of comparing the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh) to determine that the communication type according to the distance from the terminal 200 corresponds to the long-distance communication type. You can determine whether it is done or not.
즉, 판별부(110)는 TA 값(Nta_Offset)을 기 정의된 임계치(Timing Advance Thresh)와 비교한 결과 TA 값(Nta_Offset)이 임계치(Timing Advance Thresh) 이상인 경우라면, 통신 유형으로 단말(200)과의 거리가 먼 원거리 통신 유형으로 판별할 수 있으며, TA 값(Nta_Offset)이 임계치(Timing Advance Thresh) 미만인 반대인 경우라면, 단말(200)과의 거리가 비교적 가까운 근거리 통신 유형으로 판별할 수 있는 것이다.That is, the determination unit 110 compares the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh), and if the TA value (N ta _Offset) is greater than or equal to the threshold (Timing Advance Thresh), the communication type It can be determined as a long-distance communication type where the distance from the terminal 200 is long, and in the opposite case where the TA value (N ta _Offset) is less than the threshold (Timing Advance Thresh), it is short-distance communication where the distance from the terminal 200 is relatively close. It can be determined by type.
참고로 여기서의 임계치(Timing Advance Thresh)는, TS38.133규격에 따른 운용자 설정 값으로서 예컨대, 0~25600까지의 범위로 설정될 수 있다.For reference, the threshold here (Timing Advance Thresh) is an operator setting value according to the TS38.133 standard and can be set in the range, for example, from 0 to 25600.
결정부(120)는 판별된 통신 유형에 따라 단말(200)의 자원을 결정하는 기능을 수행한다.The decision unit 120 performs a function of determining resources of the terminal 200 according to the determined communication type.
보다 구체적으로, 결정부(120)는 단말(200)과의 거리에 따른 통신 유형이 판별되면, 단말(200)의 자원 패턴(TDD 패턴)을 판별된 통신 유형에 따라 달리 결정하게 된다.More specifically, when the communication type according to the distance to the terminal 200 is determined, the decision unit 120 determines the resource pattern (TDD pattern) of the terminal 200 differently according to the determined communication type.
이때, 결정부(120)는 통신 유형으로 원거리 통신 유형이 판별되는 경우, 슬롯 내 연속된 구간으로 상향링크 자원이 할당된 상향링크 슬롯 포맷(UL Coverage slot format)을 단말(200)에 대해서 결정할 수 있다.At this time, when the long-distance communication type is determined by the communication type, the decision unit 120 can determine for the terminal 200 an uplink slot format (UL coverage slot format) in which uplink resources are allocated to continuous sections within the slot. there is.
이와 관련하여, 결정부(120)는 원거리 통신 유형을 고려하여 예컨대, 도 5 (a)에서와 같이 연속된 구간으로 최소 2 이상의 상향링크 자원을 포함하는 상향링크 슬롯 포맷을 결정할 수 있다.In this regard, the decision unit 120 may consider the long-distance communication type and determine an uplink slot format that includes at least two uplink resources in a continuous section as shown in FIG. 5 (a), for example.
반면, 결정부(120)는 통신 유형으로 근거리 통신 유형이 판별되는 경우, 디폴트 슬롯 포맷(Default slot format)을 단말(200)에 대해서 결정할 수 있다.On the other hand, when the short-distance communication type is determined as the communication type, the decision unit 120 may determine a default slot format for the terminal 200.
이러한, 디폴트 슬롯 포맷은 예컨대, 도 5 (b)에서와 같은 포맷을 가질 수 있으며, 특히 이는 아래 3GPP TS38.331 규격에서 특정 단말(UE Specific)에 TDD 설정 시 사용되는 RRC IE인 TDD-UL-DL-ConfigDedicated 파라미터를 근거로 결정될 수 있다.This default slot format may have, for example, the format shown in Figure 5 (b), and in particular, this is TDD-UL-, which is an RRC IE used when setting TDD for a specific UE (UE Specific) in the 3GPP TS38.331 standard below. It can be determined based on the DL-ConfigDedicated parameter.
Figure PCTKR2023011201-appb-img-000001
Figure PCTKR2023011201-appb-img-000001
참고로, 이와 같이 통신 유형에 따라 상향링크 슬롯 포맷(UL Coverage slot format) 또는 디폴트 슬롯 포맷으로 결정된 슬롯 포맷에 대한 정보는, 단말(200)로부터 랜덤 액세스 프리앰블이 수신되는 Random Access Preamble transmission(MSG1)에 대한 응답인 Random Access Response reception(MSG2)를 통해 TA 값(Nta_Offset)과 함께 단말(200)로 전송되며, 이어지는, Scheduled Transmission(MSG3), Contention resolution (MSG4), 및 Completion of the Random Access procedure(MSG5)를 거쳐 랜덤 액세스 절차는 마무리될 수 있다.For reference, information about the slot format determined as the uplink slot format (UL Coverage slot format) or the default slot format according to the communication type is provided in the Random Access Preamble transmission (MSG1) where the random access preamble is received from the terminal 200. It is transmitted to the terminal 200 along with a TA value (N ta _Offset) through Random Access Response reception (MSG2), which is a response, followed by Scheduled Transmission (MSG3), Contention resolution (MSG4), and Completion of the Random Access. The random access procedure can be completed through procedure (MSG5).
관련하여, 이러한 랜덤 액세스 절차가 마무리된 단말(200)에서는 기지국장치(100)로부터 수신된 TA 값(Nta_Offset)을 기초로, 기지국장치(100)와의 거리 변동에 관한 E1 이벤트(Event E1)의 진입 여부를 주기적으로 판별하며, E1 이벤트의 진입 판별 시 랜덤 액세스 프리앰블을 기지국장치(100)로 전송하여 기지국장치(100) 단에서 거리 변동에 따른 슬롯 포맷 결정을 재 수행할 수 있도록 한다.In relation to this, in the terminal 200 where this random access procedure has been completed, an E1 event (Event E1) related to the change in distance from the base station device 100 is generated based on the TA value (N ta _Offset) received from the base station device 100. It periodically determines whether the E1 event is entering, and when determining the entry of an E1 event, a random access preamble is transmitted to the base station device 100 so that the base station device 100 can re-determine the slot format according to the distance change.
이때, 단말(200)에서는 TA 값(Nta_Offset)에 대해 히스테리시스(hysteresis) 파라미터를 가산 또는 감산한 결과 값이, 상기 TA 값(Nta_Offset)을 기준으로 정의된 임계치의 범위를 벗어나는 경우를 E1 이벤트에 진입한 것으로 판별할 수 있다.At this time, the terminal 200 detects a case where the result of adding or subtracting the hysteresis parameter to the TA value (N ta _Offset) is outside the range of the threshold defined based on the TA value (N ta _Offset). It can be determined that an E1 event has been entered.
이러한 E1 이벤트의 진입을 판별하기 위한 구체적인 조건식은 아래와 같이 정의될 수 있다.A specific conditional expression for determining the entry of this E1 event can be defined as follows.
Figure PCTKR2023011201-appb-img-000002
Figure PCTKR2023011201-appb-img-000002
한편, 단말(200) 단에서의 E1 이벤트의 진입 판별 시 전송되는 랜덤 액세스 프리앰블의 경우, 직전 랜덤 액세스 절차에서 판별된 통신 유형에 근거하여, 원거리 통신인 경우, 앞서 예시한 도 4 (a)에서와 같이, 슬롯 내 연속된 상향링크 자원으로 설정된 RO(RACH Occasion)를 통해 기지국장치(100)로 전송되며, 근거리 통신인 경우에서는 앞서 예시한 도 4 (b)에서와 같이 하나의 상향링크 자원으로 설정된 RO(RACH Occasion)를 통해 기지국장치(100)로 전송될 수 있다.Meanwhile, in the case of a random access preamble transmitted when determining the entry of an E1 event at the terminal 200, based on the communication type determined in the previous random access procedure, in the case of long-distance communication, in the above-illustrated Figure 4 (a) As shown, it is transmitted to the base station device 100 through RO (RACH Occasion) set as a continuous uplink resource within the slot, and in the case of short-distance communication, it is transmitted as a single uplink resource as shown in FIG. 4 (b) previously illustrated. It can be transmitted to the base station device 100 through a set RO (RACH Occasion).
도 6은 본 발명의 일 실시예에 따른 단말(200)의 구성을 개략적으로 보여주고 있다.Figure 6 schematically shows the configuration of the terminal 200 according to an embodiment of the present invention.
도 6에 도시된 바와 같이, 본 발명의 일 실시예에 따른 단말(200)은 명령어를 포함하는 메모리와, 메모리 내 명령어를 실행하는 프로세서를 포함하도록 구성될 수 있다.As shown in FIG. 6, the terminal 200 according to an embodiment of the present invention may be configured to include a memory including instructions and a processor that executes the instructions in the memory.
특히, 본 발명의 일 실시예에 따른 프로세서의 경우, 명령어의 실행에 따른 구현 기능에 따라, 초기접속부(210), 및 이벤트처리부(220)를 포함하는 구성을 가질 수 있다.In particular, the processor according to an embodiment of the present invention may have a configuration that includes an initial access unit 210 and an event processing unit 220, depending on the implemented function according to the execution of instructions.
이러한 단말(200)의 구성 전체 내지는 적어도 일부는 하드웨어 모듈 형태 또는 소프트웨어 모듈 형태로 구현되거나, 하드웨어 모듈과 소프트웨어 모듈이 조합된 형태로도 구현될 수 있다.All or at least part of the components of the terminal 200 may be implemented in the form of hardware modules, software modules, or a combination of hardware modules and software modules.
결국, 본 발명의 실시 예에 따른 단말(200)은 전술한 기능 구성을 통해, 셀 커버리지(C)에서 기지국장치(100)와의 거리에 따라 단말(200)의 자원 패턴(TDD 패턴)을 다르게 결정하는 것을 지원할 수 있다.Ultimately, the terminal 200 according to an embodiment of the present invention determines the resource pattern (TDD pattern) of the terminal 200 differently depending on the distance from the base station device 100 in the cell coverage (C) through the above-described functional configuration. can support you.
이하에서는 이를 실현하기 위한 프로세서의 각 기능 구성에 대해 보다 구체적인 설명을 이어 가기로 한다.Below, we will continue with a more detailed explanation of the configuration of each function of the processor to realize this.
초기접속부(210)는 초기 접속을위한 랜덤 액세서를 처리하는 기능을 담당한다.The initial connection unit 210 is responsible for processing random accessors for initial connection.
보다 구체적으로, 초기접속부(210)는 초기 접속을 위한 랜덤 액세스 절차에 따라 랜덤 엑세스 프리앰블(Random Access Preamble)을 기지국장치로 전송하여, 상기 랜덤 액세스 플리앰블로부터 측정된 TA(Timing Advance) 값에 기초한 상기 기지국장치와의 거리에 따른 통신 유형에 따라, 주파수 부 대역 간에 상향링크 자원과 하향링크 자원의 동시 할당이 가능한 슬롯 포맷 내 자원이 결정되도록 한다.More specifically, the initial access unit 210 transmits a random access preamble to the base station device according to a random access procedure for initial access, and matches the TA (Timing Advance) value measured from the random access preamble to the base station device. Depending on the communication type based on the distance to the base station device, resources within a slot format that can simultaneously allocate uplink resources and downlink resources between frequency subbands are determined.
이러한, 랜덤 액세스 프리앰블은 셀 초기 접속 또는, 후술될 E1 이벤트(Event E1)의 진입 시 단말(200)로부터 수신될 수 있다.This random access preamble may be received from the terminal 200 upon initial access to a cell or upon entering an E1 event (Event E1), which will be described later.
한편, 본 발명의 일 실시예에 따른 셀 초기 접속은, LTE 통신시스템과 동일한 최대 셀 커버리지(100km)를 고려하여, 원거리에 위치한 단말(200)이 초기 접속하는 상황을 전제한다.Meanwhile, cell initial access according to an embodiment of the present invention assumes a situation where a terminal 200 located at a distance makes initial access, considering the same maximum cell coverage (100 km) as the LTE communication system.
이처럼, 원거리에 위치한 단말(200)과 시간 동기화를 위해서는 랜덤 액세스 프리앰블이 원거리의 단말(200)로부터 기지국장치(100)까지 도달하기까지의 시간 지연과, 이에 대한 기지국장치(100)의 응답이 단말(200)까지 도달하기까지의 시간 지연이 모두 고려해야만 한다.In this way, in order to synchronize time with the terminal 200 located at a distance, the time delay for the random access preamble to reach the base station device 100 from the remote terminal 200 and the response of the base station device 100 thereto are determined by the terminal. The time delay to reach (200) must all be considered.
따라서, 이와 같은 최대 셀 커버리지(100km)의 크기에 상응하는 긴 시간 지연을 측정하기 위해서는, 최소 3ms의 연속된 상향링크(UL) 자원을 확보할 필요가 있다.Therefore, in order to measure a long time delay corresponding to the size of the maximum cell coverage (100 km), it is necessary to secure continuous uplink (UL) resources of at least 3 ms.
참고로, 이는, 3.5GHz 대역에서 SCS(subcarrier spacing) 30kHz를 사용하는 경우 최소 3ms의 슬롯 확보를 위해 6개의 상향링크(UL) 자원을 연속된 구간으로 할당해야만 하는 상황을 가정한 것이다.For reference, this assumes that when using subcarrier spacing (SCS) 30kHz in the 3.5GHz band, 6 uplink (UL) resources must be allocated in a continuous section to secure a slot of at least 3ms.
관련하여, 본 발명의 일 실시예에서는, 원거리 셀 초기 접속 시 랜덤 액세스 프리앰블이 전달하기 위해 선택되는 RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 앞서 예시한, 도 4 (a)에서와 같이 슬롯 내 연속된 구간으로 할당되는 6개의 상향링크 자원으로 설정할 수 있도록 한다.Relatedly, in one embodiment of the present invention, the specific RO (RACH Occasion) of the RACH (Random Access Channel) selected for transmission of the random access preamble upon initial access to a remote cell is shown in FIG. 4 (a), previously illustrating the specific RO (RACH Occasion) Likewise, it can be set to 6 uplink resources allocated to consecutive sections within the slot.
이처럼, 슬롯 내 연속된 구간으로 할당되는 6개의 상향링크 자원으로 설정되는 RO(RACH Occasion)는, 5G 통신시스템의 규격에 따라 가장 큰 크기의 셀 커버리지를 확보할 수 있는 랜덤 액세스 프리앰블의 포맷(Preamble Format = 1)에 의해 설정될 수 있다.In this way, RO (RACH Occasion), which is set with 6 uplink resources allocated to consecutive sections within the slot, is a random access preamble format that can secure the largest cell coverage according to the specifications of the 5G communication system. It can be set by Format = 1).
정리하자면, 원거리 셀 초기 접속 시, 가장 큰 크기의 셀 커버리지 확보를 위해, 랜덤 액세스 프리앰블의 포맷(Preamble Format = 1)을 통해 슬롯 내 연속된 구간으로 할당되는 6개의 상향링크 자원을 이용하여 랜덤 액세스 프리앰블을 전송하기위한 특정 RO(RACH Occasion)가 설정될 수 있는 것이다.To summarize, in order to secure the largest cell coverage when initially accessing a remote cell, random access is performed using 6 uplink resources allocated to consecutive sections within the slot through the format of the random access preamble (Preamble Format = 1). A specific RO (RACH Occasion) for transmitting the preamble can be set.
참고로, 본 발명의 일 실시예에서는 RO(RACH Occasion)의 설정에 연속된 구간으로 할당되는 6개의 상향링크 자원을 이용하는 것을 예시적으로 설명하였지만, 이러한 상향링크 자원 개수에 특별한 제한이 있는 것은 아니며, 셀 커버리지의 크기를 고려한 운용자 설정에 따라 2 이상인 임의의 개수로 설정할 수 있다.For reference, in one embodiment of the present invention, the use of six uplink resources allocated to a continuous section for setting RO (RACH Occasion) has been described as an example, but there is no special limitation on the number of these uplink resources. , can be set to an arbitrary number of 2 or more depending on operator settings considering the size of cell coverage.
한편, 본 발명의 일 실시예에서는, 단말(200)의 근거리 접속 상황 또한 고려하는데, 이를 위해 RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 앞서 예시한, 도 4 (b)에서와 같이 단일 상향링크 자원으로 기본 설정할 수 있음은 물론이다.Meanwhile, in one embodiment of the present invention, the short-distance access situation of the terminal 200 is also considered, and for this purpose, a specific RO (RACH Occasion) of the RACH (Random Access Channel) is used, as shown in FIG. 4 (b). Of course, it can be set as default as a single uplink resource.
참고로, 3.5GHz 대역에서 SCS(subcarrier spacing) 30kHz를 사용하는 경우를 고려한다면, 이러한 단일 상향링크 자원의 경우, 최대 셀 커버리지 4.6km에 상응하는 시간 지연의 측정을 지원할 수 있다.For reference, considering the case of using SCS (subcarrier spacing) 30kHz in the 3.5GHz band, this single uplink resource can support measurement of time delay corresponding to a maximum cell coverage of 4.6km.
이와 관련하여, 기지국장치(100)는 RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 통해서 랜덤 액세스 프리앰블이 수신되면, 수신된 랜덤 액세스 프리앰블로부터 측정된 TA(Timing Advance) 값(Nta_Offset)을 기초로 단말(200)과의 거리에 따른 통신 유형을 판별한다.In this regard, when a random access preamble is received through a specific RO (RACH Occasion) of a random access channel (RACH), the base station device 100 receives a timing advance (TA) value (N ta _Offset) measured from the received random access preamble. ) Based on this, the communication type is determined according to the distance to the terminal 200.
이때, 기지국장치(100)는, TA 값(Nta_Offset)을 기 정의된 임계치(Timing Advance Thresh)와 비교한 결과를 이용하여 단말(200)과의 거리에 따른 통신 유형이 원거리 통신 유형에 해당하는지 여부를 판별할 수 있다.At this time, the base station device 100 uses the result of comparing the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh) to determine that the communication type according to the distance from the terminal 200 corresponds to the long-distance communication type. You can determine whether it is done or not.
즉, 기지국장치(100)는 TA 값(Nta_Offset)을 기 정의된 임계치(Timing Advance Thresh)와 비교한 결과 TA 값(Nta_Offset)이 임계치(Timing Advance Thresh) 이상인 경우라면, 통신 유형으로 단말(200)과의 거리가 먼 원거리 통신 유형으로 판별할 수 있으며, TA 값(Nta_Offset)이 임계치(Timing Advance Thresh) 미만인 반대인 경우라면, 단말(200)과의 거리가 비교적 가까운 근거리 통신 유형으로 판별할 수 있는 것이다.That is, the base station device 100 compares the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh), and if the TA value (N ta _Offset) is greater than or equal to the threshold (Timing Advance Thresh), the communication type It can be determined as a long-distance communication type where the distance from the terminal 200 is long, and in the opposite case where the TA value (N ta _Offset) is less than the threshold (Timing Advance Thresh), it is short-distance communication where the distance from the terminal 200 is relatively close. It can be determined by type.
참고로 여기서의 임계치(Timing Advance Thresh)는, TS38.133규격에 따른 운용자 설정 값으로서 예컨대, 0~25600까지의 범위로 설정될 수 있다.For reference, the threshold here (Timing Advance Thresh) is an operator setting value according to the TS38.133 standard and can be set in the range, for example, from 0 to 25600.
그리고, 기지국장치(100)는 단말(200)과의 거리에 따른 통신 유형이 판별되면, 단말(200)의 자원 패턴(TDD 패턴)을 판별된 통신 유형에 따라 달리 결정하게 된다.Then, when the base station device 100 determines the communication type according to the distance to the terminal 200, the resource pattern (TDD pattern) of the terminal 200 is determined differently according to the determined communication type.
이때, 기지국장치(100)는 통신 유형으로 원거리 통신 유형이 판별되는 경우, 슬롯 내 연속된 구간으로 상향링크 자원이 할당된 상향링크 슬롯 포맷(UL Coverage slot format)을 단말(200)에 대해서 결정할 수 있다.At this time, when the long-distance communication type is determined by the communication type, the base station device 100 can determine for the terminal 200 an uplink slot format (UL coverage slot format) in which uplink resources are allocated to continuous sections within the slot. there is.
이와 관련하여, 기지국장치(100)는 원거리 통신 유형을 고려하여 앞서 예시한, 도 5 (a)에서와 같이 연속된 구간으로 최소 2 이상의 상향링크 자원을 포함하는 상향링크 슬롯 포맷을 결정할 수 있다.In this regard, the base station device 100 may determine an uplink slot format that includes at least two uplink resources in a continuous section as shown in FIG. 5(a), taking into account the type of long-distance communication.
반면, 기지국장치(100)는 통신 유형으로 근거리 통신 유형이 판별되는 경우, 디폴트 슬롯 포맷(Default slot format)을 단말(200)에 대해서 결정할 수 있다.On the other hand, when the short-distance communication type is determined as the communication type, the base station device 100 may determine a default slot format for the terminal 200.
이러한, 디폴트 슬롯 포맷은 앞서 예시한, 도 5 (b)에서와 같은 포맷을 가질 수 있으며, 특히 이는 아래 3GPP TS38.331 규격에서 특정 단말(UE Specific)에 TDD 설정 시 사용되는 RRC IE인 TDD-UL-DL-ConfigDedicated 파라미터를 근거로 결정될 수 있다.This default slot format may have the same format as shown in FIG. 5 (b), as illustrated above. In particular, this is the TDD- It can be determined based on the UL-DL-ConfigDedicated parameter.
참고로, 이와 같이 통신 유형에 따라 상향링크 슬롯 포맷(UL Coverage slot format) 또는 디폴트 슬롯 포맷으로 결정된 슬롯 포맷에 대한 정보는, 단말(200)로부터 랜덤 액세스 프리앰블이 수신되는 Random Access Preamble transmission(MSG1)에 대한 응답인 Random Access Response reception(MSG2)를 통해 TA 값(Nta_Offset)과 함께 단말(200)로 전송되며, 이어지는, Scheduled Transmission(MSG3), Contention resolution (MSG4), 및 Completion of the Random Access procedure(MSG5)를 거쳐 랜덤 액세스 절차는 마무리될 수 있다.For reference, information about the slot format determined as the uplink slot format (UL Coverage slot format) or the default slot format according to the communication type is provided in the Random Access Preamble transmission (MSG1) where the random access preamble is received from the terminal 200. It is transmitted to the terminal 200 along with a TA value (N ta _Offset) through Random Access Response reception (MSG2), which is a response, followed by Scheduled Transmission (MSG3), Contention resolution (MSG4), and Completion of the Random Access. The random access procedure can be completed through procedure (MSG5).
이벤트처리부(220)는 E1 이벤트를 처리하는 기능을 담당한다.The event processing unit 220 is responsible for processing the E1 event.
보다 구체적으로, 이벤트처리부(220)는 초기 접속에 따른 랜덤 액세스 절차가 마무리된 경우, 기지국장치(100)로부터 수신된 TA 값(Nta_Offset)을 기초로, 기지국장치(100)와의 거리 변동에 관한 E1 이벤트(Event E1)의 진입 여부를 주기적으로 판별하며, E1 이벤트의 진입 판별 시 랜덤 액세스 프리앰블을 기지국장치(100)로 전송하여 기지국장치(100) 단에서 거리 변동에 따른 슬롯 포맷 결정을 재 수행할 수 있도록 한다.More specifically, when the random access procedure according to the initial connection is completed, the event processing unit 220 responds to the change in distance with the base station device 100 based on the TA value (N ta _Offset) received from the base station device 100. It periodically determines whether an E1 event (Event E1) related to the event is entering, and when determining the entry of an E1 event, a random access preamble is transmitted to the base station device 100 to re-determine the slot format according to the distance change at the base station device 100. enable it to be performed.
이때, 이벤트처리부(220)는 TA 값(Nta_Offset)에 대해 히스테리시스(hysteresis) 파라미터를 가산 또는 감산한 결과 값이, 상기 TA 값(Nta_Offset)을 기준으로 정의된 임계치의 범위를 벗어나는 경우를 E1 이벤트에 진입한 것으로 판별할 수 있다.At this time, the event processing unit 220 when the result of adding or subtracting the hysteresis parameter to the TA value (N ta _Offset) is outside the range of the threshold defined based on the TA value (N ta _Offset). can be determined to have entered the E1 event.
한편, 이처럼 E1 이벤트의 진입 판별 시 전송되는 랜덤 액세스 프리앰블의 경우, 직전 랜덤 액세스 절차에서 판별된 통신 유형에 근거하여, 원거리 통신인 경우, 앞서 예시한 도 4 (a)에서와 같이, 슬롯 내 연속된 상향링크 자원으로 설정된 RO(RACH Occasion)를 통해 기지국장치(100)로 전송되며, 근거리 통신인 경우에서는 앞서 예시한 도 4 (b)에서와 같이 하나의 상향링크 자원으로 설정된 RO(RACH Occasion)를 통해 기지국장치(100)로 전송될 수 있다.Meanwhile, in the case of the random access preamble transmitted when determining the entry of the E1 event, in the case of long-distance communication, continuous within the slot, as shown in FIG. 4 (a), based on the communication type determined in the previous random access procedure. It is transmitted to the base station device 100 through RO (RACH Occasion) set as an uplink resource, and in the case of short-distance communication, RO (RACH Occasion) set as one uplink resource as shown in FIG. 4 (b) above. It can be transmitted to the base station device 100 through .
이상에서 살펴본 바와 같이, 본 발명의 일 실시예에 따른 기지국장치(100) 및 단말(200)의 구성에 따르면, 동적 시분할 이중통신(Dynamic Time Division Duplexing) 환경에서 SBFD(Subband non-overlapping Full Duplex) 기술을 활용하여 셀 커버리지 내 단말(200)과의 거리에 따라 단말(200)의 자원 패턴(TDD 패턴)을 다르게 결정할 수 있으므로, 원거리 통신 시 발생하는 시간 지연을 효율적으로 보상하는 방식을 통해 셀 커버리지를 확장할 수 있다.As discussed above, according to the configuration of the base station device 100 and the terminal 200 according to an embodiment of the present invention, SBFD (Subband non-overlapping Full Duplex) in a dynamic time division duplexing environment By using technology, the resource pattern (TDD pattern) of the terminal 200 can be determined differently depending on the distance to the terminal 200 within the cell coverage, so cell coverage can be achieved by efficiently compensating for the time delay that occurs during long-distance communication. can be expanded.
또한, 본 발명의 일 실시예에 따른 기지국장치(100) 및 단말(200)의 구성에 따르면, 셀 커버리지 확장에 SBFD(Subband non-overlapping Full Duplex) 기술을 활용됨에 따라 Half-Duplex를 사용하는 단말(200) 별로 동시에 특정 단말(200)은 하향링크를 전송하고 특정 단말은 상향링크를 전송하는 것이 가능해지게 되므로, 용도에 따라 상향링크 자원 부족 이슈를 해소하여 기지국 설치를 최소화할 수 있으며, 주파수 부 대역 간에 상향링크 자원과 하향링크 자원의 동시 할당이 가능해짐에 따라 레이턴시(Latency)를 줄여 서비스 품질을 높여줄 수 있고, 특히 TDD의 단점인 실시간성의 Voice IP 서비스 등에서도 품질 개선이 가능하다.In addition, according to the configuration of the base station device 100 and the terminal 200 according to an embodiment of the present invention, as SBFD (Subband non-overlapping Full Duplex) technology is utilized to expand cell coverage, the terminal using Half-Duplex Since it becomes possible for a specific terminal (200) to transmit downlink and a specific terminal to transmit uplink at the same time (200), the installation of a base station can be minimized by resolving the issue of uplink resource shortage depending on the purpose, and the frequency increase As simultaneous allocation of uplink and downlink resources between bands becomes possible, service quality can be improved by reducing latency. In particular, quality improvement is possible in real-time Voice IP services, which are a disadvantage of TDD.
또한, 본 발명의 일 실시예에 따른 기지국장치(100) 및 단말(200)의 구성에 따르면, 거리 기반 이벤트인 E1 이벤트 규격이 반영됨에 따라, 신호 세기 기반의 RSRP, RSRQ, RSSI 이벤트 대비 단말에 대한 거리 확인이 용이해지는 효과 또한 기대해 볼 수 있다.In addition, according to the configuration of the base station device 100 and the terminal 200 according to an embodiment of the present invention, as the E1 event standard, which is a distance-based event, is reflected, the signal strength-based RSRP, RSRQ, and RSSI events are compared to the terminal. The effect of making it easier to check the distance can also be expected.
이하에서는, 도 7을 참조하여 본 발명의 일 실시예에 따른 자원 제어 방법을 설명하기로 한다.Hereinafter, a resource control method according to an embodiment of the present invention will be described with reference to FIG. 7.
설명의 편의를 위해, 아래의 설명에서는 자원 제어 방법의 수행 주체로서, 도 3을 참조하여 설명한 기지국장치(100)와 단말(200)을 언급하기로 한다.For convenience of explanation, the following description will refer to the base station device 100 and the terminal 200 described with reference to FIG. 3 as the subjects performing the resource control method.
먼저, 기지국장치(100)는 단말(200)의 랜덤 액세스 프리앰블(Random Access Preamble)로부터 측정된 TA(Timing Advance) 값을 기초로 상기 단말과의 거리에 따른 통신 유형을 판별한다(S110).First, the base station device 100 determines the communication type according to the distance to the terminal based on the TA (Timing Advance) value measured from the random access preamble of the terminal 200 (S110).
이를 위해 기지국장치(100)는 RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 통해서 랜덤 액세스 프리앰블(Random Access Preamble)을 수신한다.To this end, the base station device 100 receives a random access preamble through a specific RO (RACH Occasion) of the RACH (Random Access Channel).
이러한, 랜덤 액세스 프리앰블은 단말(200)의 셀 초기 접속 또는, 후술될 E1 이벤트(Event E1)의 진입 시 단말(200)로부터 수신될 수 있다.This random access preamble may be received from the terminal 200 when the terminal 200 initially accesses a cell or enters an E1 event (Event E1), which will be described later.
한편, 본 발명의 일 실시예에 따른 단말(200)의 셀 초기 접속은, LTE 통신시스템과 동일한 최대 셀 커버리지(100km)를 고려하여, 원거리에 위치한 단말(200)이 초기 접속하는 상황을 전제한다.Meanwhile, the initial access to a cell of the terminal 200 according to an embodiment of the present invention assumes a situation where the terminal 200 located at a distance makes initial access, considering the same maximum cell coverage (100 km) as the LTE communication system. .
이처럼, 원거리에 위치한 단말(200)과 시간 동기화를 위해서는 랜덤 액세스 프리앰블이 원거리의 단말(200)로부터 기지국장치(100)까지 도달하기까지의 시간 지연과, 이에 대한 기지국장치(100)의 응답이 단말(200)까지 도달하기까지의 시간 지연이 모두 고려해야만 한다.In this way, in order to synchronize time with the terminal 200 located at a distance, the time delay for the random access preamble to reach the base station device 100 from the remote terminal 200 and the response of the base station device 100 thereto are determined by the terminal. The time delay to reach (200) must all be considered.
따라서, 이와 같은 최대 셀 커버리지(100km)의 크기에 상응하는 긴 시간 지연을 측정하기 위해서는, 최소 3ms의 연속된 상향링크(UL) 자원을 확보할 필요가 있다.Therefore, in order to measure a long time delay corresponding to the size of the maximum cell coverage (100 km), it is necessary to secure continuous uplink (UL) resources of at least 3 ms.
참고로, 이는, 3.5GHz 대역에서 SCS(subcarrier spacing) 30kHz를 사용하는 경우 최소 3ms의 슬롯 확보를 위해 6개의 상향링크(UL) 자원을 연속된 구간으로 할당해야만 하는 상황을 가정한 것이다.For reference, this assumes that when using subcarrier spacing (SCS) 30kHz in the 3.5GHz band, 6 uplink (UL) resources must be allocated in a continuous section to secure a slot of at least 3ms.
관련하여, 본 발명의 일 실시예에서는, 단말(200)의 원거리 셀 초기 접속 시 랜덤 액세스 프리앰블이 전달하기 위해 선택되는 RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 앞서 예시한, 도 4 (a)에서와 같이 슬롯 내 연속된 구간으로 할당되는 6개의 상향링크 자원으로 설정할 수 있도록 한다.Relatedly, in one embodiment of the present invention, the specific RO (RACH Occasion) of the Random Access Channel (RACH) selected to transmit the random access preamble upon initial access to the remote cell of the terminal 200 is illustrated in FIG. 4. As in (a), it can be set to 6 uplink resources allocated to consecutive sections within the slot.
이처럼, 슬롯 내 연속된 구간으로 할당되는 6개의 상향링크 자원으로 설정되는 RO(RACH Occasion)는, 5G 통신시스템의 규격에 따라 가장 큰 크기의 셀 커버리지를 확보할 수 있는 랜덤 액세스 프리앰블의 포맷(Preamble Format = 1)에 의해 설정될 수 있다.In this way, RO (RACH Occasion), which is set with 6 uplink resources allocated to consecutive sections within the slot, is a random access preamble format that can secure the largest cell coverage according to the specifications of the 5G communication system. It can be set by Format = 1).
정리하자면, 단말(200)의 원거리 셀 초기 접속 시, 가장 큰 크기의 셀 커버리지 확보를 위해, 랜덤 액세스 프리앰블의 포맷(Preamble Format = 1)을 통해 슬롯 내 연속된 구간으로 할당되는 6개의 상향링크 자원을 이용하여 랜덤 액세스 프리앰블을 전송하기위한 특정 RO(RACH Occasion)가 설정될 수 있는 것이다.In summary, in order to secure the largest cell coverage when the terminal 200 initially accesses a remote cell, six uplink resources are allocated to continuous sections within the slot through the format of the random access preamble (Preamble Format = 1). A specific RO (RACH Occasion) for transmitting a random access preamble can be set using .
참고로, 본 발명의 일 실시예에서는 RO(RACH Occasion)의 설정에 연속된 구간으로 할당되는 6개의 상향링크 자원을 이용하는 것을 예시적으로 설명하였지만, 이러한 상향링크 자원 개수에 특별한 제한이 있는 것은 아니며, 셀 커버리지의 크기를 고려한 운용자 설정에 따라 2 이상인 임의의 개수로 설정할 수 있다.For reference, in one embodiment of the present invention, the use of six uplink resources allocated to a continuous section for setting RO (RACH Occasion) has been described as an example, but there is no special limitation on the number of these uplink resources. , can be set to an arbitrary number of 2 or more depending on operator settings considering the size of cell coverage.
한편, 본 발명의 일 실시예에서는, 단말(200)의 근거리 접속 상황 또한 고려하는데, 이를 위해 RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 앞서 예시한, 도 4 (b)에서와 같이 단일 상향링크 자원으로 기본 설정할 수 있음은 물론이다.Meanwhile, in one embodiment of the present invention, the short-distance access situation of the terminal 200 is also considered, and for this purpose, a specific RO (RACH Occasion) of the RACH (Random Access Channel) is used, as shown in FIG. 4 (b). Of course, it can be set as default as a single uplink resource.
참고로, 3.5GHz 대역에서 SCS(subcarrier spacing) 30kHz를 사용하는 경우를 고려한다면, 이러한 단일 상향링크 자원의 경우, 최대 셀 커버리지 4.6km에 상응하는 시간 지연의 측정을 지원할 수 있다.For reference, considering the case of using SCS (subcarrier spacing) 30kHz in the 3.5GHz band, this single uplink resource can support measurement of time delay corresponding to a maximum cell coverage of 4.6km.
그리고 나서, 기지국장치(100)는 RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 통해서 랜덤 액세스 프리앰블이 수신되면, 수신된 랜덤 액세스 프리앰블로부터 측정된 TA(Timing Advance) 값(Nta_Offset)을 기초로 단말(200)과의 거리에 따른 통신 유형을 판별한다.Then, when the base station device 100 receives a random access preamble through a specific RO (RACH Occasion) of the RACH (Random Access Channel), the TA (Timing Advance) value (N ta _Offset) measured from the received random access preamble Based on this, the communication type is determined according to the distance to the terminal 200.
이때, 기지국장치(100)는, TA 값(Nta_Offset)을 기 정의된 임계치(Timing Advance Thresh)와 비교한 결과를 이용하여 단말(200)과의 거리에 따른 통신 유형이 원거리 통신 유형에 해당하는지 여부를 판별할 수 있다.At this time, the base station device 100 uses the result of comparing the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh) to determine that the communication type according to the distance from the terminal 200 corresponds to the long-distance communication type. You can determine whether it is done or not.
즉, 기지국장치(100)는 TA 값(Nta_Offset)을 기 정의된 임계치(Timing Advance Thresh)와 비교한 결과 TA 값(Nta_Offset)이 임계치(Timing Advance Thresh) 이상인 경우라면, 통신 유형으로 단말(200)과의 거리가 먼 원거리 통신 유형으로 판별할 수 있으며, TA 값(Nta_Offset)이 임계치(Timing Advance Thresh) 미만인 반대인 경우라면, 단말(200)과의 거리가 비교적 가까운 근거리 통신 유형으로 판별할 수 있는 것이다.That is, the base station device 100 compares the TA value (N ta _Offset) with a predefined threshold (Timing Advance Thresh), and if the TA value (N ta _Offset) is greater than or equal to the threshold (Timing Advance Thresh), the communication type It can be determined as a long-distance communication type where the distance from the terminal 200 is long, and in the opposite case where the TA value (N ta _Offset) is less than the threshold (Timing Advance Thresh), it is short-distance communication where the distance from the terminal 200 is relatively close. It can be determined by type.
참고로 여기서의 임계치(Timing Advance Thresh)는, TS38.133규격에 따른 운용자 설정 값으로서 예컨대, 0~25600까지의 범위로 설정될 수 있다.For reference, the threshold here (Timing Advance Thresh) is an operator setting value according to the TS38.133 standard and can be set in the range, for example, from 0 to 25600.
나아가, 기지국장치(100)는 단말(200)과의 거리에 따른 통신 유형이 판별되면, 단말(200)의 자원 패턴(TDD 패턴)을 판별된 통신 유형에 따라 달리 결정한다(S120-S140).Furthermore, when the base station device 100 determines the communication type according to the distance to the terminal 200, it determines the resource pattern (TDD pattern) of the terminal 200 differently according to the determined communication type (S120-S140).
이때, 기지국장치(100)는 통신 유형으로 원거리 통신 유형이 판별되는 경우, 슬롯 내 연속된 구간으로 상향링크 자원이 할당된 상향링크 슬롯 포맷(UL Coverage slot format)을 단말(200)에 대해서 결정할 수 있다.At this time, when the long-distance communication type is determined by the communication type, the base station device 100 can determine for the terminal 200 an uplink slot format (UL coverage slot format) in which uplink resources are allocated to continuous sections within the slot. there is.
이와 관련하여, 기지국장치(100)는 원거리 통신 유형을 고려하여 예컨대, 도 5 (a)에서와 같이 연속된 구간으로 최소 2 이상의 상향링크 자원을 포함하는 상향링크 슬롯 포맷을 결정할 수 있다.In this regard, the base station device 100 may consider the type of long-distance communication and determine an uplink slot format that includes at least two uplink resources in a continuous section as shown in FIG. 5 (a), for example.
반면, 기지국장치(100)는 통신 유형으로 근거리 통신 유형이 판별되는 경우, 디폴트 슬롯 포맷(Default slot format)을 단말(200)에 대해서 결정할 수 있다.On the other hand, when the short-distance communication type is determined as the communication type, the base station device 100 may determine a default slot format for the terminal 200.
이러한, 디폴트 슬롯 포맷은 앞서 예시한 도 5 (b)에서와 같은 포맷을 가질 수 있으며, 특히 이는 3GPP TS38.331 규격에서 특정 단말(UE Specific)에 TDD 설정 시 사용되는 RRC IE인 TDD-UL-DL-ConfigDedicated 파라미터를 근거로 결정될 수 있다.This default slot format may have the same format as shown in FIG. 5(b), and in particular, this is TDD-UL-, which is an RRC IE used when setting TDD for a specific UE (UE Specific) in the 3GPP TS38.331 standard. It can be determined based on the DL-ConfigDedicated parameter.
참고로, 이와 같이 통신 유형에 따라 상향링크 슬롯 포맷(UL Coverage slot format) 또는 디폴트 슬롯 포맷으로 결정된 슬롯 포맷에 대한 정보는, 단말(200)로부터 랜덤 액세스 프리앰블이 수신되는 Random Access Preamble transmission(MSG1)에 대한 응답인 Random Access Response reception(MSG2)를 통해 TA 값(Nta_Offset)과 함께 단말(200)로 전송되며, 이어지는, Scheduled Transmission(MSG3), Contention resolution (MSG4), 및 Completion of the Random Access procedure(MSG5)를 거쳐 랜덤 액세스 절차는 마무리될 수 있다.For reference, information about the slot format determined as the uplink slot format (UL Coverage slot format) or the default slot format according to the communication type is provided in the Random Access Preamble transmission (MSG1) where the random access preamble is received from the terminal 200. It is transmitted to the terminal 200 along with a TA value (N ta _Offset) through Random Access Response reception (MSG2), which is a response, followed by Scheduled Transmission (MSG3), Contention resolution (MSG4), and Completion of the Random Access. The random access procedure can be completed through procedure (MSG5).
이후, 이러한 랜덤 액세스 절차가 마무리된 단말(200)에서는 기지국장치(100)로부터 수신된 TA 값(Nta_Offset)을 기초로, 기지국장치(100)와의 거리 변동에 관한 E1 이벤트(Event E1)의 진입 여부를 주기적으로 판별하며, E1 이벤트의 진입 판별 시 랜덤 액세스 프리앰블을 기지국장치(100)로 전송하여 기지국장치(100) 단에서 거리 변동에 따른 슬롯 포맷 결정을 재 수행할 수 있도록 한다(S150).Afterwards, the terminal 200, after completing this random access procedure, receives an E1 event (Event E1) related to the change in distance from the base station device 100 based on the TA value (N ta _Offset) received from the base station device 100. Entry is periodically determined, and when the entry of an E1 event is determined, a random access preamble is transmitted to the base station device 100 so that the base station device 100 can re-determine the slot format according to distance changes (S150) .
이때, 단말(200)에서는 TA 값(Nta_Offset)에 대해 히스테리시스(hysteresis) 파라미터를 가산 또는 감산한 결과 값이, 상기 TA 값(Nta_Offset)을 기준으로 정의된 임계치의 범위를 벗어나는 경우를 E1 이벤트에 진입한 것으로 판별할 수 있다.At this time, the terminal 200 detects a case where the result of adding or subtracting the hysteresis parameter to the TA value (N ta _Offset) is outside the range of the threshold defined based on the TA value (N ta _Offset). It can be determined that an E1 event has been entered.
한편, 단말(200) 단에서의 E1 이벤트의 진입 판별 시 전송되는 랜덤 액세스 프리앰블의 경우, 직전 랜덤 액세스 절차에서 판별된 통신 유형에 근거하여, 원거리 통신인 경우, 앞서 예시한 도 4 (a)에서와 같이, 슬롯 내 연속된 상향링크 자원으로 설정된 RO(RACH Occasion)를 통해 기지국장치(100)로 전송되며, 근거리 통신인 경우에서는 앞서 예시한 도 4 (b)에서와 같이 하나의 상향링크 자원으로 설정된 RO(RACH Occasion)를 통해 기지국장치(100)로 전송될 수 있다.Meanwhile, in the case of a random access preamble transmitted when determining the entry of an E1 event at the terminal 200, based on the communication type determined in the previous random access procedure, in the case of long-distance communication, in the above-illustrated Figure 4 (a) As shown, it is transmitted to the base station device 100 through RO (RACH Occasion) set as a continuous uplink resource within the slot, and in the case of short-distance communication, it is transmitted as a single uplink resource as shown in FIG. 4 (b) previously illustrated. It can be transmitted to the base station device 100 through a set RO (RACH Occasion).
이상 설명한 단계 S110 내지 S150에 해당하는 전술의 과정은 기지국장치(100)에 대한 단말(200)의 접속 해제 시까지 반복된다(S160).The above-described process corresponding to steps S110 to S150 is repeated until the terminal 200 disconnects from the base station device 100 (S160).
이상에서 살펴본 바와 같이, 본 발명의 일 실시예에 따른 자원 제어 방법에 따르면, 동적 시분할 이중통신(Dynamic Time Division Duplexing) 환경에서 SBFD(Subband non-overlapping Full Duplex) 기술을 활용하여 셀 커버리지 내 단말(200)과의 거리에 따라 단말(200)의 자원 패턴(TDD 패턴)을 다르게 결정할 수 있으므로, 원거리 통신 시 발생하는 시간 지연을 효율적으로 보상하는 방식을 통해 셀 커버리지를 확장할 수 있다.As discussed above, according to the resource control method according to an embodiment of the present invention, a terminal (in cell coverage) is controlled by utilizing SBFD (Subband non-overlapping Full Duplex) technology in a Dynamic Time Division Duplexing environment. Since the resource pattern (TDD pattern) of the terminal 200 can be determined differently depending on the distance from the terminal 200, cell coverage can be expanded through a method of efficiently compensating for the time delay that occurs during long-distance communication.
또한, 본 발명의 일 실시예에 따른 자원 제어 방법에 따르면 셀 커버리지 확장에 SBFD(Subband non-overlapping Full Duplex) 기술을 활용됨에 따라 Half-Duplex를 사용하는 단말(200) 별로 동시에 특정 단말(200)은 하향링크를 전송하고 특정 단말은 상향링크를 전송하는 것이 가능해지게 되므로, 용도에 따라 상향링크 자원 부족 이슈를 해소하여 기지국 설치를 최소화할 수 있으며, 주파수 부 대역 간에 상향링크 자원과 하향링크 자원의 동시 할당이 가능해짐에 따라 레이턴시(Latency)를 줄여 서비스 품질을 높여줄 수 있고, 특히 TDD의 단점인 실시간성의 Voice IP 서비스 등에서도 품질 개선이 가능하다.In addition, according to the resource control method according to an embodiment of the present invention, as SBFD (Subband non-overlapping Full Duplex) technology is used to expand cell coverage, each terminal 200 using Half-Duplex is connected to a specific terminal 200 at the same time. Since it becomes possible to transmit downlink and specific terminals to transmit uplink, it is possible to minimize the installation of base stations by resolving the issue of uplink resource shortage depending on the purpose, and to minimize the installation of uplink and downlink resources between frequency subbands. As simultaneous allocation becomes possible, service quality can be improved by reducing latency. In particular, quality improvement is possible in real-time Voice IP services, which are a drawback of TDD.
또한, 본 발명의 일 실시예에 따른 자원 제어 방법에 따르면 거리 기반 이벤트인 E1 이벤트 규격이 반영됨에 따라, 신호 세기 기반의 RSRP, RSRQ, RSSI 이벤트 대비 단말에 대한 거리 확인이 용이해지는 효과 또한 기대해 볼 수 있다.In addition, according to the resource control method according to an embodiment of the present invention, as the E1 event standard, which is a distance-based event, is reflected, the effect of making it easier to check the distance to the terminal compared to signal strength-based RSRP, RSRQ, and RSSI events can be expected. You can.
본 발명의 일 실시 예에 따른 자원 제어 방법은, 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The resource control method according to an embodiment of the present invention may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium. The computer-readable medium may include program instructions, data files, data structures, etc., singly or in combination. Program instructions recorded on the medium may be specially designed and constructed for the present invention or may be known and usable by those skilled in the art of computer software. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks. -Includes optical media (magneto-optical media) and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, etc. Examples of program instructions include machine language code, such as that produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter, etc. The hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.
지금까지 본 발명을 바람직한 실시 예를 참조하여 상세히 설명하였지만, 본 발명이 상기한 실시 예에 한정되는 것은 아니며, 이하의 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 또는 수정이 가능한 범위까지 본 발명의 기술적 사상이 미친다 할 것이다.Although the present invention has been described in detail with reference to preferred embodiments so far, the present invention is not limited to the above-described embodiments, and the technical field to which the present invention pertains without departing from the gist of the present invention as claimed in the following claims. Anyone skilled in the art will recognize that the technical idea of the present invention extends to the extent that various changes or modifications can be made.

Claims (15)

  1. 명령어를 포함하는 메모리, 및memory containing instructions, and
    상기 명령어를 실행함으로써, 단말의 랜덤 액세스 프리앰블(Random Access Preamble)로부터 측정된 TA(Timing Advance) 값을 기초로 상기 단말과의 거리에 따른 통신 유형을 판별하고, 주파수 부 대역 간에 상향링크 자원과 하향링크 자원의 동시 할당이 가능한 슬롯 포맷 내 자원을 상기 통신 유형에 따라 결정하는 프로세서를 포함하는 것을 특징으로 하는 기지국장치.By executing the command, the communication type is determined according to the distance to the terminal based on the TA (Timing Advance) value measured from the random access preamble of the terminal, and the uplink resources and downlink resources are used between frequency subbands. A base station device comprising a processor that determines resources within a slot format capable of simultaneous allocation of link resources according to the communication type.
  2. 제 1 항에 있어서,According to claim 1,
    상기 랜덤 액세스 프리앰블은, The random access preamble is,
    RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 통해서 수신되며,It is received through a specific RO (RACH Occasion) of RACH (Random Access Channel).
    상기 특정 RO는,The specific RO is,
    상기 랜덤 액세스 프리앰블의 포맷에 따라서, 슬롯 내 연속된 구간으로 할당되는 2 이상의 상향링크 자원을 이용한 설정이 가능한 것을 특징으로 하는 기지국장치.A base station device, characterized in that configuration is possible using two or more uplink resources allocated to consecutive sections within a slot, depending on the format of the random access preamble.
  3. 제 1 항에 있어서,According to claim 1,
    상기 프로세서는,The processor,
    상기 TA 값을 기 정의된 임계치(Timing Advance Thresh)와 비교한 결과로부터 상기 통신 유형이 원거리 통신 유형인지 여부를 판별하는 것을 특징으로 하는 기지국장치.A base station device characterized in that it determines whether the communication type is a long-distance communication type based on a result of comparing the TA value with a predefined threshold (Timing Advance Thresh).
  4. 제 1 항에 있어서,According to claim 1,
    상기 프로세서는,The processor,
    상기 통신 유형으로 원거리 통신 유형이 판별되는 경우, 슬롯 내 연속된 구간으로 할당된 2 이상의 상향링크 자원을 포함하도록 슬롯 포맷을 결정하는 것을 특징으로 하는 기지국장치.When the long-distance communication type is determined by the communication type, the base station device is characterized in that the slot format is determined to include two or more uplink resources allocated to consecutive sections within the slot.
  5. 제 1 항에 있어서,According to claim 1,
    상기 단말은,The terminal is,
    초기 접속을 위한 랜덤 액세스 절차에 따라 상기 기지국장치로부터 확인되는 TA 값을 기초로, 상기 기지국장치와의 거리 변동에 관한 E1 이벤트(Event E1)의 진입 여부를 주기적으로 판별하며, 상기 E1 이벤트의 진입 시 상기 랜덤 액세스 프리앰블을 상기 기지국장치로 전송하는 것을 특징으로 하는 기지국장치.Based on the TA value confirmed from the base station device according to the random access procedure for initial connection, it is periodically determined whether an E1 event (Event E1) related to a change in distance from the base station device is entered, and the entry of the E1 event is performed. A base station device, characterized in that the random access preamble is transmitted to the base station device.
  6. 제 5 항에 있어서,According to claim 5,
    상기 단말은,The terminal is,
    상기 TA 값에 대해 히스테리시스(hysteresis) 파라미터를 가산 또는 감산한 결과 값이, 상기 TA 값을 기준으로 정의된 임계치의 범위를 벗어나는 경우, 상기 E1 이벤트의 진입을 판별하는 것을 특징으로 하는 기지국장치.A base station device characterized in that it determines entry of the E1 event when a result of adding or subtracting a hysteresis parameter to the TA value is outside the range of a threshold defined based on the TA value.
  7. 명령어를 포함하는 메모리; 및memory containing instructions; and
    상기 명령어를 실행함으로써, 초기 접속을 위한 랜덤 액세스 절차에 따라 랜덤 엑세스 프리앰블(Random Access Preamble)을 기지국장치로 전송하며, 상기 랜덤 액세스 플리앰블로부터 측정된 TA(Timing Advance) 값에 기초한 상기 기지국장치와의 거리에 따른 통신 유형에 따라, 주파수 부 대역 간에 상향링크 자원과 하향링크 자원의 동시 할당이 가능한 슬롯 포맷 내 자원이 상기 기지국장치에서 결정되면, 상기 TA 값을 기초로, 상기 기지국장치와의 거리 변동에 관한 E1 이벤트(Event E1)의 진입 여부를 주기적으로 판별하고, 상기 E1 이벤트의 진입 판별 시 상기 랜덤 액세스 프리앰블을 상기 기지국장치로 전송하는 프로세서를 포함하는 것을 특징으로 하는 단말.By executing the command, a random access preamble is transmitted to the base station device according to a random access procedure for initial access, and the base station device is based on a TA (Timing Advance) value measured from the random access preamble. Depending on the communication type according to the distance from the base station, if resources within a slot format capable of simultaneous allocation of uplink resources and downlink resources between frequency subbands are determined by the base station device, based on the TA value, the base station device A terminal comprising a processor that periodically determines whether an E1 event (Event E1) related to a change in distance is entered, and transmits the random access preamble to the base station device when the E1 event is determined to enter.
  8. 기지국장치에서 수행되는 자원 제어 방법에 있어서,In the resource control method performed in the base station device,
    단말의 랜덤 액세스 프리앰블(Random Access Preamble)로부터 측정된 TA(Timing Advance) 값을 기초로 상기 단말과의 거리에 따른 통신 유형을 판별하는 판별단계; 및A determination step of determining a communication type according to the distance from the terminal based on the TA (Timing Advance) value measured from the random access preamble of the terminal; and
    주파수 부 대역 간에 상향링크 자원과 하향링크 자원의 동시 할당이 가능한 슬롯 포맷 내 자원을 상기 통신 유형에 따라 결정하는 결정단계를 포함하는 것을 특징으로 하는 자원 제어 방법.A resource control method comprising a decision step of determining resources within a slot format capable of simultaneous allocation of uplink resources and downlink resources between frequency subbands according to the communication type.
  9. 제 8 항에 있어서,According to claim 8,
    상기 랜덤 액세스 프리앰블은, The random access preamble is,
    RACH(Random Access Channel)의 특정 RO(RACH Occasion)를 통해서 수신되며,It is received through a specific RO (RACH Occasion) of RACH (Random Access Channel).
    상기 특정 RO는,The specific RO is,
    상기 랜덤 액세스 프리앰블의 포맷에 따라서, 슬롯 내 연속된 구간으로 할당되는 2 이상의 상향링크 자원을 이용한 설정이 가능한 것을 특징으로 하는 자원 제어 방법.A resource control method, characterized in that configuration is possible using two or more uplink resources allocated to consecutive sections within a slot, depending on the format of the random access preamble.
  10. 제 8 항에 있어서,According to claim 8,
    상기 판별단계는,The determination step is,
    상기 TA 값을 기 정의된 임계치(Timing Advance Thresh)와 비교한 결과로부터 상기 통신 유형이 원거리 통신 유형인지 여부를 판별하는 것을 특징으로 하는 자원 제어 방법.A resource control method characterized by determining whether the communication type is a long-distance communication type from the result of comparing the TA value with a predefined threshold (Timing Advance Thresh).
  11. 제 8 항에 있어서,According to claim 8,
    상기 결정단계는,The decision step is,
    상기 통신 유형으로 원거리 통신 유형이 판별되는 경우, 슬롯 내 연속된 구간으로 할당된 2 이상의 상향링크 자원을 포함하도록 슬롯 포맷을 결정하는 것을 특징으로 하는 자원 제어 방법.When the long-distance communication type is determined by the communication type, a resource control method characterized in that the slot format is determined to include two or more uplink resources allocated to consecutive sections within the slot.
  12. 제 8 항에 있어서,According to claim 8,
    상기 단말은,The terminal is,
    초기 접속을 위한 랜덤 액세스 절차에 따라 상기 기지국장치로부터 확인되는 TA 값을 기초로, 상기 기지국장치와의 거리 변동에 관한 E1 이벤트(Event E1)의 진입 여부를 주기적으로 판별하며, 상기 E1 이벤트의 진입 시 상기 랜덤 액세스 프리앰블을 상기 기지국장치로 전송하는 것을 특징으로 하는 자원 제어 방법.Based on the TA value confirmed from the base station device according to the random access procedure for initial connection, it is periodically determined whether an E1 event (Event E1) related to a change in distance from the base station device is entered, and the entry of the E1 event is performed. A resource control method characterized by transmitting the random access preamble to the base station device.
  13. 제 12 항에 있어서,According to claim 12,
    상기 단말은,The terminal is,
    상기 TA 값에 대해 히스테리시스(hysteresis) 파라미터를 가산 또는 감산한 결과 값이, 상기 TA 값을 기준으로 정의된 임계치의 범위를 벗어나는 경우, 상기 E1 이벤트의 진입을 판별하는 것을 특징으로 하는 자원 제어 방법.A resource control method characterized by determining entry of the E1 event when a result of adding or subtracting a hysteresis parameter to the TA value is outside the range of a threshold defined based on the TA value.
  14. 제 8 항 내지 제 13 항 중 어느 한 항의 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능 기록매체.A computer-readable recording medium recording a program for executing the method of any one of claims 8 to 13.
  15. 하드웨어와 결합되어, 제 8 항 내지 제 13 항 중 어느 한 항의 방법을 실행시키기 위해 매체에 저장된 컴퓨터 프로그램.A computer program coupled with hardware and stored on a medium for executing the method of any one of claims 8 to 13.
PCT/KR2023/011201 2022-08-11 2023-08-01 Base station device, terminal, and resource control method WO2024034963A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0100426 2022-08-11
KR1020220100426A KR20240022130A (en) 2022-08-11 2022-08-11 Base station appratus, resource control method

Publications (1)

Publication Number Publication Date
WO2024034963A1 true WO2024034963A1 (en) 2024-02-15

Family

ID=89852078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011201 WO2024034963A1 (en) 2022-08-11 2023-08-01 Base station device, terminal, and resource control method

Country Status (2)

Country Link
KR (1) KR20240022130A (en)
WO (1) WO2024034963A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371043B1 (en) * 2009-10-29 2014-03-10 알까뗄 루슨트 Method for range extension in wireless communication systems
US20150181595A1 (en) * 2012-08-08 2015-06-25 Zte Corporation Method, User Equipment and Base Station for Determining Timing Advance
US20210377926A1 (en) * 2020-06-01 2021-12-02 Qualcomm Incorporated Semi-persistent scheduling for subband full-duplex slots
US20220078734A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated Timing advance in full-duplex communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371043B1 (en) * 2009-10-29 2014-03-10 알까뗄 루슨트 Method for range extension in wireless communication systems
US20150181595A1 (en) * 2012-08-08 2015-06-25 Zte Corporation Method, User Equipment and Base Station for Determining Timing Advance
US20210377926A1 (en) * 2020-06-01 2021-12-02 Qualcomm Incorporated Semi-persistent scheduling for subband full-duplex slots
US20220078734A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated Timing advance in full-duplex communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PANASONIC: "Potential enhancements on dynamic/flexible TDD for subband full duplex", 3GPP DRAFT; R1-2204076, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153351 *

Also Published As

Publication number Publication date
KR20240022130A (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2019031671A1 (en) Method, base station, and user equipment for transmitting and detecting a random access response
WO2015174748A1 (en) Method and equipment for data transmission on unlicensed band
WO2017007280A1 (en) Synchronization method of user equipment in wireless communication system and user equipment using method
WO2010151079A2 (en) Multi-cell communication system that performs interference control using relay of terminal
WO2016153182A1 (en) Method for accessing millimeter wave cell in wireless communication system and apparatus therefor
WO2012047058A2 (en) Apparatus and method for supporting coverage expansion of compact cell in heterogeneous network system
WO2014148818A1 (en) Method and apparatus for performing communication in wireless communication system
WO2010095871A2 (en) Signal transmitting/receiving method for a relay node, and relay node using the method
WO2017135802A1 (en) Power control method and apparatus in v2x communication
WO2012134178A2 (en) Handover apparatus and method for avoiding in-device coexistence interference
WO2010143847A2 (en) Method for a user terminal to random access a carrier aggregation mobile communication system
WO2013022285A2 (en) Method and device for random access in wireless communication system supporting multi-carrier wave
WO2015005714A1 (en) Method and apparatus for discovering neighbor device in d2d communication network
EP2229749A2 (en) Method for multiple tdd systems coexistence
EP3888409A1 (en) Method and apparatus for transmitting and receiving a signal in a wireless communication system
WO2017222132A1 (en) Uplink signal transmission device and uplink signal transmission method
WO2019074164A1 (en) Base station device, and method for transmitting data and signal
WO2011053067A2 (en) Method and apparatus of requiring uplink resources for transmitting ranging request message in communication system
WO2014148768A1 (en) Antenna device for base station and operation method therefor
WO2024034963A1 (en) Base station device, terminal, and resource control method
WO2016048081A1 (en) Wireless channel access method and device
WO2020209655A1 (en) Method and device for transmitting and receiving reference signal for positioning
WO2017115984A1 (en) Device and method for distributively scheduling in device-to-device direct communication network
WO2016175547A1 (en) Relay device, node device, and operation method thereof in communication system using frequency mirroring
WO2018155885A1 (en) Method for reassigning root sequence index and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852844

Country of ref document: EP

Kind code of ref document: A1