WO2024034870A1 - 배터리 팩 및 이를 포함하는 자동차 - Google Patents

배터리 팩 및 이를 포함하는 자동차 Download PDF

Info

Publication number
WO2024034870A1
WO2024034870A1 PCT/KR2023/009697 KR2023009697W WO2024034870A1 WO 2024034870 A1 WO2024034870 A1 WO 2024034870A1 KR 2023009697 W KR2023009697 W KR 2023009697W WO 2024034870 A1 WO2024034870 A1 WO 2024034870A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
support plates
battery
battery pack
pack
Prior art date
Application number
PCT/KR2023/009697
Other languages
English (en)
French (fr)
Inventor
서성원
이인제
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CA3230276A priority Critical patent/CA3230276A1/en
Priority to CN202380013847.0A priority patent/CN118056324A/zh
Priority to EP23848579.1A priority patent/EP4372887A1/en
Publication of WO2024034870A1 publication Critical patent/WO2024034870A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack and a vehicle including the same, and more specifically, to a battery pack with a simplified structure and a vehicle including the same.
  • lithium secondary batteries are in the spotlight for their advantages of free charging and discharging, very low self-discharge rate, and high energy density as they have almost no memory effect compared to nickel-based secondary batteries.
  • lithium secondary batteries mainly use lithium-based oxide and carbon material as positive and negative electrode active materials, respectively.
  • the lithium secondary battery includes a positive and negative electrode plate coated with the positive and negative electrode active materials, an electrode assembly in which the positive and negative electrode plates are disposed with a separator in between, and an exterior material that seals and stores the electrode assembly with an electrolyte.
  • lithium secondary batteries can be classified into can-type secondary batteries in which the electrode assembly is built into a metal can and pouch-type secondary batteries in which the electrode assembly is built in a pouch of an aluminum laminate sheet, depending on the shape of the battery case.
  • can-type secondary batteries can be further classified into cylindrical batteries and prismatic batteries depending on the shape of the metal can.
  • the pouch of the pouch-type secondary battery can be broadly divided into a lower sheet and an upper sheet covering it.
  • the pouch accommodates an electrode assembly formed by laminating and winding a positive electrode, a negative electrode, and a separator. Then, after storing the electrode assembly, the edges of the upper and lower sheets are sealed by heat fusion or the like. Additionally, the electrode tab drawn out from each electrode is coupled to an electrode lead, and an insulating film may be added to the electrode lead in contact with the sealing portion.
  • the pouch-type secondary battery can have the flexibility to be configured in various forms.
  • the pouch-type secondary battery has the advantage of being able to implement a secondary battery of the same capacity with a smaller volume and mass.
  • the lithium secondary battery is made into a dense structure by overlapping or stacking multiple battery cells mounted on themselves or in a cartridge to provide high voltage and current, and then electrically connecting them into a battery module or battery pack. It is being used.
  • conventional battery packs may be disadvantageous in terms of assembly.
  • a plurality of battery cells are modularized to form a battery module, and then the battery module is stored in a pack case. Therefore, there is a problem in that the battery pack manufacturing process becomes complicated.
  • the process and structure of forming a cell stack using the above-described stacking frames, bolts, plates, etc. may be very complicated.
  • thermal propagation between battery cells is not properly suppressed, this may lead to thermal events in other battery cells included in the battery pack, causing larger problems such as ignition or explosion of the battery pack. Furthermore, ignition or explosion occurring in the battery pack can cause significant damage to people or property in the surrounding area. Accordingly, in the case of such battery packs, a configuration capable of appropriately controlling the above-mentioned thermal events is required.
  • the present invention was conceived to solve the above-mentioned problems, and more specifically, its purpose is to provide a battery pack with a simplified structure and a vehicle including the same.
  • a battery pack includes a plurality of battery cell assemblies; a pack housing accommodating the plurality of battery cell assemblies therein; a plurality of support plates configured to support both sides of each battery cell assembly accommodated in the pack housing; and a fixing member configured to fix adjacent support plates among the plurality of support plates to the pack housing so that a gap is formed between the adjacent support plates.
  • the fixing member may include a gap forming portion inserted between the adjacent support plates to form the gap.
  • the size of the gap may be configured to correspond to the thickness of the gap forming portion.
  • the battery pack may further include a guide member disposed between the adjacent support plates and configured to guide insertion of the gap forming portion.
  • the fixing member may be provided at one end of the adjacent support plates and at other ends of the adjacent support plates located on opposite sides of the one end.
  • At least one of the fixing members provided at one end and the other end of the mutually adjacent support plates may be formed integrally with the pack housing.
  • At least one support plate among the adjacent support plates may include a recessed portion into which a portion of the fixing member is inserted and coupled.
  • the fixing member may further include a side portion that extends from one side of the gap forming portion to the side of the at least one support plate and is inserted into the recessed portion of the at least one support plate.
  • the side portion may be configured to be in close contact with the inner surface of the recessed portion.
  • the fixing member extends toward an adjacent support plate among the adjacent support plates on both sides of the gap forming portion with the gap forming portion interposed therebetween, and is inserted into the recessed portion of the adjacent support plate. It may further include a pair of side parts configured to do so.
  • the battery pack may further include a compression pad disposed between each battery cell assembly and a support plate supporting each battery cell assembly among the plurality of support plates.
  • a vehicle according to another aspect of the present invention includes at least one battery pack according to any one of the above-described embodiments.
  • the space occupied by the module case or reinforcing members within the pack housing or the space for securing tolerances may not be required. Accordingly, it is possible to secure additional space within the pack housing for mounting the battery cell assembly, and thus the energy density of the battery pack can be further improved.
  • the support plate supporting the front and rear of the battery cell assembly can be directly fixed to the pack housing through a fixing member, so that it can be mounted within the pack housing without a separate reinforcing member such as a pack cross beam.
  • the arrangement state of the battery cell assembly can be maintained stably.
  • a swelling phenomenon that may occur in a battery cell assembly can be effectively controlled through a gap between support plates.
  • thermal runaway or flame propagation between adjacent battery cell assemblies when an event such as thermal runaway occurs in a specific battery cell assembly through the gap between the support plates. Accordingly, thermal runaway propagation and simultaneous ignition between multiple battery cell assemblies can be prevented or minimized.
  • the volume and weight of the battery pack can be reduced and the manufacturing process can be simplified.
  • FIG. 1 is a diagram showing a battery pack according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the detailed structure of the battery pack of FIG. 1.
  • FIG. 3 is a diagram showing a battery cell assembly and support plate provided in the battery pack of FIG. 1.
  • FIG. 4 is a diagram showing a portion of the pack housing provided in the battery pack of FIG. 1.
  • FIG. 5 is a diagram showing a fixing member provided in the battery pack of FIG. 1.
  • FIG. 6 is a cross-sectional view taken along the line A-A' of FIG. 2.
  • FIGS. 7 and 8 are diagrams showing a state in which the battery cell assembly and the support plate are assembled to the pack housing of FIG. 4.
  • FIGS. 9 and 10 are diagrams showing a battery pack according to a second embodiment of the present invention.
  • 11 and 12 are diagrams showing a battery pack according to a third embodiment of the present invention.
  • Figure 13 is a diagram showing a battery pack according to a fourth embodiment of the present invention.
  • Figure 14 is a diagram showing a battery pack according to a fifth embodiment of the present invention.
  • FIG. 15 is a diagram showing the fixing member shown in FIG. 14.
  • Figure 16 is a diagram showing a car according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing a battery pack 10 according to an embodiment of the present invention
  • FIG. 2 is a diagram for explaining the detailed structure of the battery pack 10 in FIG. 1
  • FIG. 3 is a diagram showing the battery pack 10 in FIG. 1. This is a diagram showing the battery cell assembly 100 and the support plate 200 provided at (10).
  • the Direction, Z-axis direction may mean an up-down direction perpendicular to both the X-axis direction and the Y-axis direction.
  • the battery pack 10 includes a battery cell assembly 100, a support plate 200, a pack housing 300, and a fixing member 400. can do.
  • the battery cell assembly 100 includes at least one battery cell 110.
  • the battery cell assembly 100 may include a plurality of battery cells 110 stacked in one direction (X-axis direction).
  • the battery cell may refer to the most basic secondary battery capable of charging and discharging.
  • This battery cell 110 may be composed of a pouch-type battery cell, a cylindrical battery cell, or a prismatic battery cell.
  • the battery cell 110 may be a pouch-type battery cell.
  • electrode leads may be provided on at least one of both sides of the battery cell 110.
  • the battery pack 10 may include a plurality of the above-described battery cell assemblies 100.
  • the plurality of battery cell assemblies 100 may be arranged side by side along one direction (X-axis direction).
  • the support plate 200 is disposed on both ends of the stacking direction (X-axis direction) of each battery cell assembly 100 accommodated in the pack housing 300, which will be described later, and is provided on both sides of the battery cell assembly 100. It is structured to support.
  • This support plate 200 may be made of a material with high heat resistance and rigidity.
  • the pack housing 300 is configured to accommodate the battery cell assembly 100 therein. To this end, the pack housing 300 may include an internal accommodation space for accommodating the battery cell assembly 100. Additionally, the pack housing 300 may be made of a material with high heat resistance and rigidity.
  • This pack housing 300 may be configured as a single piece, or may be configured as an assembly assembled by combining a plurality of members.
  • the pack housing 300 may be composed of multiple frames that are coupled to each other. That is, the pack housing 300 may be composed of a plurality of frames that are coupled to each other to form an internal accommodation space of a predetermined size.
  • the pack housing 300 may include a side frame 310, a floor frame 320, and an upper cover 330.
  • the side frame 310 may form the side surface of the pack housing 300.
  • the side frame 310 may form a side surface of the pack housing 300 in the front-back direction (X-axis direction) and a side surface of the pack housing 300 in the left-right direction (Y-axis direction).
  • the floor frame 320 constitutes the lower part of the pack housing 300 and may be coupled to the lower part of the side frame 310. At this time, the floor frame 320 may be provided with a built-in heat sink (not shown).
  • the upper cover 330 is coupled to the upper part of the side frame 310 and may cover the upper side of the battery cell assembly 100 accommodated inside the pack housing 300. At this time, a heat transfer material (not shown) may be provided on the lower part of the upper cover 330.
  • the fixing member 400 fixes adjacent support plates among the plurality of support plates 200 supporting the plurality of battery cell assemblies 100 to the pack housing 300, and provides a space between the adjacent support plates. It is configured to be fixed so that a gap (S, see FIG. 6 to be described later) is formed. In this case, the gap S formed by the fixing member 400 may serve as a buffer space between the adjacent support plates. Additionally, the fixing member 400 may be configured to extend in the left and right direction (Y-axis direction) of the pack housing 300. In one embodiment, the fixing member 400 may include an elastic material.
  • the fixing member 400 may be configured to directly fix the support plate 200, which supports the front and back sides of the battery cell assembly 100, to the pack housing 300.
  • the fixing member 400 can fix the support plate 200 by pressing it toward the pack housing 300 in the vertical direction (see FIGS. 7 and 8 described later).
  • the fixing member 400 may be fixed by pressing the support plate 200 toward the floor frame 320 and/or the top cover 330 of the pack housing 300 described above.
  • the lower part of the battery cell assembly 100 may be located adjacent to the floor frame 320.
  • the top of the battery cell assembly 100 may be located adjacent to the top cover 330.
  • the lower part of the battery cell assembly 100 may be located adjacent to the floor frame 320, and the upper part of the battery cell assembly 100 may be located adjacent to the upper cover 330.
  • the lower part of the battery cell assembly 100 may be in close contact with the floor frame 320.
  • the top of the battery cell assembly 100 may be in close contact with the top cover 330.
  • the lower part of the battery cell assembly 100 may be in close contact with the floor frame 320, and the upper part of the battery cell assembly 100 may be in close contact with the top cover 330. Accordingly, the heat generated from the battery cell assembly 100 will be discharged to the outside of the pack housing 300 through the heat sink provided in the floor frame 320 and/or the heat transfer material provided in the top cover 330. You can.
  • reinforcing members such as module cases or pack cross beams are not required, so the space occupied by the module case or reinforcing members within the pack housing 300 or the space for securing tolerances is not required. It may not be possible. Accordingly, it is possible to secure additional space in the pack housing 300 for mounting the battery cell assembly 100, and thus the energy density of the battery pack 10 can be further improved.
  • the support plate 200 supporting the front and rear sides of the battery cell assembly 100 can be directly fixed to the pack housing 300 through the fixing member 400, so that a separate The arrangement of the battery cell assembly 100 within the pack housing 300 can be stably maintained even without a reinforcing member such as a pack cross beam.
  • thermal runaway phenomenon when an event such as thermal runaway phenomenon occurs in a specific battery cell assembly 100 through the gap S between the support plates 200, thermal runaway between adjacent battery cell assemblies 100 or The spread of flames can be prevented or minimized. Accordingly, thermal runaway propagation and simultaneous ignition between the plurality of battery cell assemblies 100 can be prevented or minimized.
  • reinforcing members such as module cases or pack crossbeams are not required, so the volume and weight of the battery pack can be reduced and the manufacturing process can be simplified.
  • FIG. 4 is a view showing a portion of the pack housing 300 provided in the battery pack 10 of FIG. 1
  • FIG. 5 is a view showing the fixing member 400 provided in the battery pack 10 of FIG. 1.
  • FIG. 6 is a cross-sectional view in the A-A' direction of FIG. 2 (in detail, FIG. 6 is a diagram showing the configuration of FIG. 2 cross-sectioned on the XZ plane based on line A-A'.)
  • the fixing member 400 may include a body 410 and a gap forming portion 420.
  • the body 410 corresponds to the main body of the fixing member 400 and may have a length corresponding to the length of the support plate 200.
  • the gap forming portion 420 is inserted in the vertical direction between adjacent support plates among the plurality of support plates 200 supporting the plurality of battery cell assemblies 100, forming the gap S described above. It can be configured to do so.
  • the fixing member 400 may have a gap forming portion 420 protruding from the center portion of the body 410, and may have a generally “T-shaped” cross-section. Additionally, the gap forming portion 420 may have a predetermined thickness and protrude from the center portion of the body 410 by a predetermined length.
  • the gap forming portion 420 of the fixing member 400 is positioned between the support plates 200 in the vertical direction. It can be inserted to form a gap (S).
  • the size of the gap S may be configured to correspond to the thickness of the gap forming portion 420.
  • the body 410 of the fixing member 400 covers the top or bottom of the gap S, making it airtight. It can be sealed.
  • the buffer space between the support plates 200 supporting different adjacent battery cell assemblies 100 can be formed more easily and stably.
  • FIGS. 7 and 8 are diagrams showing a state in which the battery cell assembly 100 and the support plate 200 are assembled to the pack housing 300 of FIG. 4 . At this time, the side frame 310 and the top cover 330 of the pack housing 300 are not shown in FIG. 7 .
  • the battery pack 10 may include a plurality of fixing members 400 . That is, the fixing member 400 may be provided at one end of adjacent support plates and at other ends of the adjacent support plates located on opposite sides of the one end.
  • the battery pack 10 may include a pair of fixing members 400 facing each other in the vertical direction as a unit, and may include a plurality of such pairs of fixing members.
  • the gap forming portions of the pair of fixing members 400 are inserted between adjacent support plates, respectively, and are inserted into the upper and lower sides of the support plates 200 to form a gap S. It can be configured.
  • the first fixing member 400 that secure the two support plates 200, which respectively support the battery cell assemblies between different adjacent battery cell assemblies, to the pack housing 300
  • the first fixing member The gap forming portion 420 of 400 is inserted upward from the bottom of the two support plates 200, and the gap forming portion 420 of the second fixing member 400 is inserted into the two supporting plates 200. It can be inserted downward from the top.
  • the bodies 410 of the pair of fixing members 400 can airtightly seal the lower and upper ends of the gap S, respectively.
  • the buffer space between the support plates 200 supporting different adjacent battery cell assemblies 100 can be formed more easily and stably.
  • At least one of a pair of fixing members 400 provided at the upper and lower ends of the two adjacent support plates 200 may be formed integrally with the pack housing 300. You can.
  • one of the pair of fixing members 400 may be formed integrally with the floor frame 320 of the pack housing 300 described above. In another embodiment, one of the pair of fixing members 400 may be formed integrally with the upper cover 330 of the pack housing 300 described above. In another embodiment, one of the pair of fixing members 400 may be formed integrally with the floor frame 320, and the other may be formed integrally with the upper cover 330.
  • the buffer space between the support plates 200 supporting different adjacent battery cell assemblies 100 be more easily and stably formed, but also the support plate for the pack housing 300 can be formed more easily and stably. Fixation of (200) can be achieved more stably.
  • At least one support plate 200 among adjacent support plates may include a recessed portion 210 into which a portion of the fixing member 400 is inserted and coupled.
  • the recessed portion 210 may be configured to be coupled to one end of the fixing member 400 by inserting it in the vertical direction. Specifically, the recessed portion 210 may be coupled to one end of the body 410 of the fixing member 400 by inserting it in the vertical direction. To this end, the recessed portion 210 may have a groove structure recessed at a certain depth from the top or bottom of the support plate 200 erected in the vertical direction toward the center of the support plate 200.
  • the recessed portion 210 may provide an additional buffer space in addition to the gap S described above. Specifically, an empty space is formed in a portion of the support plate 200 corresponding to the recessed portion 210, and the side portion of the body 410 of the fixing member 400 can be coupled to the recessed portion 210, The recessed portion 210 may provide additional buffer space to counteract swelling of the battery cell assembly 100.
  • the swelling phenomenon that may occur in the battery cell assembly 100 can be more effectively controlled.
  • the fixing member 400 extends from one side of the gap forming portion 420 toward the at least one support plate 200, and holds the at least one support plate 200. It may include a side portion 430 inserted into the recessed portion 210. In this case, the side portion 430 may be configured to be in close contact with the inner surface of the recessed portion 210.
  • the fixing member 400 may include a pair of side portions 430.
  • the pair of side parts 430 extend toward the adjacent support plate 200 from both sides of the gap forming part 420, with the gap forming part 420 interposed therebetween, so that the adjacent supporting plate 200 ) may be configured to be inserted into the recessed portion 210.
  • This pair of side portions 430 may correspond to both ends of the body 410 described above. Specifically, a pair of side portions 430 may be provided on both sides of the gap forming portion 420 with the gap forming portion 420 interposed therebetween. In this case, the pair of side portions 430 may be configured to protrude from both ends of the body 410.
  • each side portion 430 may be configured to be inserted into and coupled to the recessed portion 210 of the support plate 200 that supports the adjacent battery cell assembly 100.
  • the mutual coupling between the fixing member 400 and the support plate 200 can be stably achieved. That is, since a pair of side portions 430 protruding from both sides of the body 410 are coupled to the support plates 200, The gap forming portion 420 protruding from approximately the center of the body 410 can stably form the gap S between the support plates 200.
  • the side portion 430 may be configured to come into close contact with the inner surface of the recessed portion 210 that is recessed in the vertical direction. That is, the side portion 430 may be inserted into the recessed portion 210 and configured to be in close contact with the inner surface of the recessed portion 210.
  • a pair of side parts 430 are located on both sides of the gap forming part 420, respectively.
  • the buffer space between the support plates 200 supporting different adjacent battery cell assemblies 100 can be formed more easily and stably.
  • the battery pack 10 may further include a compression pad (P).
  • the compression pad P may be configured to be disposed between the battery cell assembly 100 and the support plate 200 supporting the battery cell assembly 100.
  • the compression pad P may include an elastic material such as sponge, urethane, or silicone.
  • the compression pad (P) may include an insulating material.
  • the compression pad (P) is disposed between at least one of the front and rear surfaces of the battery cell assembly 100 and the support plate 200 when viewed from the stacking direction (X-axis direction) of the plurality of battery cells 110. You can.
  • the compression pad P may be configured to suppress a swelling phenomenon that may occur in the battery cell assembly 100.
  • a compression pad (P) for preventing swelling of the battery cell assembly 100 is disposed between at least one of the front and rear surfaces of the battery cell assembly 100 and the support plate 200, and the compression pad (P) )
  • the parts of the battery pack 10 can be simplified. Accordingly, additional space for accommodating the battery cell assembly 100 can be secured in the limited internal space of the pack housing 300, and thus the energy density of the battery pack 10 can be further improved.
  • the compression pad P is not necessarily limited to the above-described embodiment, and may also be disposed between adjacent battery cells.
  • FIG 9 and 10 are diagrams showing the battery pack 12 according to the second embodiment of the present invention.
  • the battery pack 12 according to the present embodiment is similar to the battery pack 10 of the previous embodiment, redundant description of components that are substantially the same or similar to the previous embodiment will be omitted, and hereinafter, the previous embodiment will be described. Let's look at the differences between .
  • the gap S between the support plates 200 supporting adjacent battery cell assemblies 100 is included in the battery cell assembly 100.
  • the size may be adjusted according to the number of battery cells 110.
  • the gap S can be adjusted in accordance with the capacity of the battery cell assembly 100.
  • the gap S between the support plates 200 can be adjusted by changing the width (length in the X-axis direction) of the gap forming portion 420 of the fixing member 400.
  • the gap forming portion 420 has a width capable of forming the corresponding gap S.
  • a fixing member 400 including a gap forming portion 420 having a width capable of forming a corresponding gap S. can be inserted between the support plates 200 that support adjacent battery cell assemblies 100.
  • the gap S when the number of battery cells 110 constituting the battery cell assembly 100 is large, the gap S can be configured to be large, and the battery cells 110 If the number of is small, the gap (S) can be configured to be small.
  • the gap S between the support plates 200 is adjustable according to the capacity of the battery cell assembly 100, so the battery cell assembly 100 ) has the advantage of being able to respond more flexibly to the swelling phenomenon that may occur.
  • 11 and 12 are diagrams showing a battery pack 14 according to a third embodiment of the present invention.
  • the battery pack 14 according to the present embodiment is similar to the battery pack 12 of the previous embodiment, redundant description of components that are substantially the same or similar to the previous embodiment will be omitted, and hereinafter, the previous embodiment will be described. Let's look at the differences between .
  • the battery pack 14 may further include a guide member 500.
  • This guide member 500 is disposed between mutually adjacent support plates, so that the gap forming part 420 of the fixing member 400 is accurately inserted between the mutually adjacent supporting plates. It may be configured to guide insertion.
  • the guide member 500 may include a material with strong rigidity and elasticity.
  • a hole H into which the gap forming portion 420 can be inserted may be formed in the vertical direction.
  • the gap forming portion 420 may pass through the hole H and be inserted between the support plates 200 to form the gap S.
  • the guide member 500 may be configured to support the side of the fixing member 400 (side of the body 410) in the vertical direction.
  • both sides of the guide member 500 may be configured to be in close contact with the side surfaces of the support plate 200 when viewed from the stacking direction (X-axis direction) of the plurality of battery cells 110.
  • the gap S between the support plates 200 supporting adjacent battery cell assemblies 100 is the number of battery cells 110 constituting the battery cell assembly 100. It may be configured to adjust the size in response.
  • the gap S can be adjusted in accordance with the capacity of the battery cell assembly 100.
  • the gap S between the support plates 200 can be adjusted by changing the width of the gap forming portion 420 of the fixing member 400.
  • the battery cell assembly 100 may expand in the stacking direction (X-axis direction) of the battery cells 110.
  • the support plate 200 may be curved in the expansion direction of the battery cell assembly 100.
  • the guide member 500 may be disposed between support plates supporting two adjacent battery cell assemblies 100 and come into close contact with the sides of the support plates. Accordingly, the guide member 500 can absorb stress (expansion force) transmitted through the support plate 200. That is, the guide member 500 can reduce the stress generated by the swelling phenomenon of the battery cell assembly 100 and transmitted to the fixing member 400.
  • the guide member 500 since the guide member 500 may include a material with strong rigidity and elasticity as described above, it can better absorb stress generated by the swelling phenomenon of the battery cell assembly 100.
  • a fixing member 400 having a width capable of forming a corresponding gap S
  • the gap forming portion 420 may be inserted between the support plates 200 that support adjacent battery cell assemblies 100 by passing through the hole H of the guide member 500.
  • the gap of the fixing member 400 having a width capable of forming the corresponding gap S
  • the forming portion 420 may be inserted between the support plates 200 that support adjacent battery cell assemblies 100 by passing through the hole H of the guide member 500 .
  • the gap S when the number of battery cells 110 constituting the battery cell assembly 100 is large, the gap S can be configured to be large, and the battery cells 110 If the number of is small, the gap (S) can be configured to be small.
  • the guide member 500 may be disposed between the support plates 200 that support adjacent battery cell assemblies 100, thereby supporting the battery cell assembly 100. Even when the stress generated by the swelling phenomenon of the battery cell assembly 100 increases as the number of battery cells 110 constituting the battery cell 110 increases, transmission of this stress to the fixing member 400 can be minimized.
  • the hole H of the guide member 500 may be formed to an appropriate size so as to pass through the gap forming portion 420 having various widths.
  • the battery pack 14 not only is it possible to respond more flexibly to the swelling phenomenon that may occur in the battery cell assembly 100, but also the fixing member 400 is affected by the swelling phenomenon. ) can be prevented from being damaged.
  • Figure 13 is a diagram showing the battery pack 16 according to the fourth embodiment of the present invention.
  • the battery pack 16 according to the present embodiment is similar to the battery pack 10 of the previous embodiment, redundant description of components that are substantially the same or similar to the previous embodiment will be omitted, and hereinafter, the previous embodiment will be described. Let's look at the differences between .
  • the pack housing 300 may further include a reinforcement frame 340.
  • the reinforcement frame 340 may be configured to reinforce the rigidity of the pack housing 300.
  • the floor frame 320 may be disposed below the reinforcement frame 340.
  • both ends of the reinforcement frame 340 in the front-back direction (X-axis direction) are respectively coupled to side frames arranged along the left and right directions (Y-axis direction) of the pack housing 300 among the plurality of side frames 310. You can. Also, when viewed from the left and right directions (Y-axis direction) of the pack housing 300, the reinforcement frame 340 may be provided at approximately the center of the pack housing 300.
  • the battery cell assembly 100 and the support plate 200 supporting the same may be disposed on both sides of the pack housing 300 in the left and right direction (Y-axis direction) with respect to the reinforcement frame 340.
  • one end of the battery cell assembly 100 and the support plate 200 may be configured to be adjacent to the side frame 310, and the other end may be reinforced. It may be configured to be adjacent to the frame 340.
  • the length of the battery cell 110 in the left-right direction (Y-axis direction) is approximately half of the length in the left-right direction (Y-axis direction) of the pack housing 300.
  • the reinforcement frame 340 By disposing the reinforcement frame 340 inside the pack housing 300, the battery cell assembly 100 and the support plate 200 can be stably accommodated inside the pack housing 300.
  • the length of the fixing member 400 extending in the left and right direction (Y-axis direction) of the pack housing 300 will be configured to correspond to the length of the battery cell 110 extending in the left and right direction (Y-axis direction). You can.
  • fire extinguishing material may be built into the fixing member 400 according to the present invention.
  • the extinguishing material may be a microcapsule in which a polymer shell surrounds fluorinated ketone, a high-performance extinguishing agent.
  • the fire extinguishing material may be configured to react at a temperature range of approximately 120 to 220° C. to discharge the fire extinguishing agent into the gap S described above.
  • Figure 14 is a diagram showing the battery pack 18 according to the fifth embodiment of the present invention.
  • the battery pack 18 according to the present embodiment is similar to the battery packs 10 and 12 described above, redundant description of components that are substantially the same or similar to the previous embodiment will be omitted, and hereinafter, the previous embodiment will be described. Let's look at the differences between .
  • the battery pack 18 may include a fixing member 400' of a modified structure that replaces the fixing member 400 described above.
  • the fixing member 400' secures adjacent support plates among the plurality of support plates 200 supporting the plurality of battery cell assemblies 100 to the pack housing 300, and is provided between the adjacent support plates. It can be fixed so that a gap (S) is formed.
  • the gap S formed by the fixing member 400' may serve as a buffer space between the adjacent support plates. Additionally, the fixing member 400' may be configured to extend in the left and right direction (Y-axis direction) of the pack housing 300.
  • FIG. 15 is a diagram showing the fixing member 400' shown in FIG. 14.
  • the fixing member 400' may include a body 410, a gap forming part 420, and a side part 430.
  • the body 410 may constitute the main body of the fixing member 400'.
  • the gap forming portion 420 may be inserted between adjacent support plates in the vertical direction (Z-axis direction) to form the gap S described above.
  • the fixing member 400' may have a gap forming portion 420 protruding from one end of the body 410, and may have a generally "L-shaped" cross section.
  • the gap forming portion 420 may have a predetermined thickness and protrude from one end of the body 410 by a predetermined length.
  • the side portion 430 extends from one side of the gap forming portion 420 toward the support plate 200 adjacent to the fixing member 400', and forms a recessed portion 210 of the adjacent support plate 200. It can be configured to be inserted into . In this case, the side portion 430 may be configured to be in close contact with the inner surface of the recessed portion 210.
  • the support plate 200 can be easily fixed inside the pack housing 300, and the arrangement structure of the battery cell assemblies disposed inside the pack housing 300 can be diversified.
  • Figure 16 is a diagram showing a car 2 according to an embodiment of the present invention.
  • a vehicle 2 according to an embodiment of the present invention includes at least one battery pack 10, 12, 14, 16, and 18 according to various embodiments described above.
  • the battery packs 10, 12, 14, 16, and 18 provided in the vehicle 2 can provide electrical energy required for various operations of the vehicle 2.
  • the battery packs 10, 12, 14, 16, and 18 according to the present invention can be applied to various electrical devices or electrical systems other than automobiles, as well as to ESS (Energy Storage System).
  • ESS Electronic Storage System

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

구조가 단순화된 배터리 팩 및 이를 포함하는 자동차를 제공한다. 본 발명의 일 측면에 따른 배터리 팩은, 복수의 배터리 셀 어셈블리와, 상기 배터리 셀 어셈블리의 전면 및 후면을 지지하도록 구성된 지지 플레이트와, 상기 배터리 셀 어셈블리를 내부에 수용하는 팩 하우징 및 인접한 상기 배터리 셀 어셈블리들을 지지하는 지지 플레이트들 사이에 간극이 형성되게 상기 지지 플레이트들을 상기 팩 하우징에 고정하도록 구성된 고정 부재를 포함한다.

Description

배터리 팩 및 이를 포함하는 자동차
본 출원은 2022년 8월 10일에 출원된 한국 특허출원 제10-2022-0099863호를 기초로 한 우선권 주장을 수반하며, 해당 특허출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
본 발명은 배터리 팩 및 이를 포함하는 자동차에 관한 것으로, 더 상세하게는 구조가 단순화된 배터리 팩 및 이를 포함하는 자동차에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차전지에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 이차전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차전지 등이 있다. 이 중에서 리튬 이차전지는 니켈 계열의 이차전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 또한, 리튬 이차전지는 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판, 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체 및 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재를 구비한다.
한편, 리튬 이차전지는 전지 케이스의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차전지와, 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차전지로 분류될 수 있다. 그리고, 캔형 이차전지는 다시 금속 캔의 형태에 따라 원통형 전지와 각형 전지로 분류될 수 있다.
여기서, 파우치형 이차전지의 파우치는 하부 시트와 이를 덮는 상부 시트로 크게 구분될 수 있다. 이 때, 파우치에는 양극 및 음극과 세퍼레이터가 적층 권취되어 형성된 전극조립체가 수납된다. 그리고, 상기 전극조립체를 수납한 다음 상부 시트와 하부 시트의 가장자리를 열융착 등에 의해 실링하게 된다. 또한, 각 전극에서 인출된 전극탭이 전극 리드에 결합되고, 상기 전극 리드에는 실링부와 접촉한 부분에 절연 필름이 부가될 수 있다.
이처럼, 파우치형 이차전지는 다양한 형태로 구성할 수 있는 융통성을 가질 수 있다. 또한, 파우치형 이차전지는 보다 작은 부피와 질량으로 같은 용량의 이차전지를 구현할 수 있는 장점이 있다.
이러한 상기 리튬 이차전지는, 고전압 및 고전류를 제공할 수 있도록 여러 개의 배터리 셀들을 그 자체 또는 카트리지 등에 장착한 상태로 중첩 내지 적층해 밀집 구조로 만든 후, 이를 전기적으로 연결한 배터리 모듈이나 배터리 팩으로 이용이 되고 있다.
하지만, 이와 같은 종래 배터리 팩의 경우, 에너지 밀도 측면에서 불리할 수 있다. 대표적으로, 다수의 배터리 셀을 모듈 케이스 내부에 수납하여 모듈화시키는 과정에서, 모듈 케이스 또는 적층용 프레임 등 여러 구성요소로 인해 배터리 팩의 부피가 불필요하게 증가하거나 배터리 셀이 차지하는 공간이 줄어들 수 있다. 더욱이, 모듈 케이스나 적층용 프레임 등의 구성요소 자체가 차지하는 공간은 물론이고, 이러한 구성요소들에 대한 조립 공차를 확보하기 위해 배터리 셀의 수납 공간이 줄어들 수 있다. 따라서, 종래 배터리 팩의 경우, 에너지 밀도를 높이는데 한계가 생길 수 있다.
또한, 종래 배터리 팩의 경우, 조립성 측면에서도 불리할 수 있다. 특히, 배터리 팩을 제조하기 위해서는, 먼저 다수의 배터리 셀을 모듈화시켜 배터리 모듈을 구성한 후, 배터리 모듈을 팩 케이스에 수납하는 과정을 거치게 되므로, 배터리 팩의 제조 공정이 복잡해지는 문제가 있다. 더욱이, 전술한 적층용 프레임 및 볼트, 플레이트 등을 이용하여 셀 적층체를 형성하는 공정 및 구조가 매우 복잡할 수 있다.
또한, 종래 배터리 팩의 경우, 팩 케이스 내부에 모듈 케이스가 수납되고, 모듈 케이스 내부에 배터리 셀이 수납되므로, 우수한 냉각성을 확보하기 어렵다는 문제도 있다. 특히, 모듈 케이스 내부에 수납된 배터리 셀들의 열을 모듈 케이스를 거쳐 팩 케이스 외부로 배출시키는 경우, 냉각 효율이 떨어지고, 냉각 구조도 복잡해질 수 있다.
또한, 배터리 팩의 경우 대표적으로 중요한 문제 중 하나는 안전성이다. 특히, 배터리 팩에 포함된 다수의 배터리 셀 중, 어느 하나의 배터리 셀에서 열적 이벤트가 발생한 경우, 이러한 이벤트가 다른 배터리 셀로 전파(propagation)되는 것이 억제될 필요가 있다.
만일, 배터리 셀 간 열적 전파가 제대로 억제되지 못하면, 이는 배터리 팩에 포함된 다른 배터리 셀의 열적 이벤트로 이어져, 배터리 팩의 발화나 폭발 등, 보다 큰 문제를 야기할 수 있다. 더욱이, 배터리 팩에서 발생한 발화나 폭발은, 주변의 인명이나 재산 상 큰 피해를 입힐 수 있다. 따라서, 이러한 배터리 팩의 경우, 전술한 열적 이벤트를 적절하게 제어할 수 있는 구성이 요구된다.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 보다 상세하게는 구조가 단순화된 배터리 팩 및 이를 포함하는 자동차를 제공하는데 그 목적이 있다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따른 배터리 팩은, 복수의 배터리 셀 어셈블리; 상기 복수의 배터리 셀 어셈블리를 내부에 수용하는 팩 하우징; 상기 팩 하우징에 수용된 각각의 배터리 셀 어셈블리의 양 측면을 지지하도록 구성된 복수의 지지 플레이트; 및 상기 복수의 지지 플레이트 중 상호 인접한 지지 플레이트들을 상기 팩 하우징에 고정하되, 상기 상호 인접한 지지 플레이트들 사이에 간극이 형성되게 고정하도록 구성된 고정 부재를 포함한다.
일 실시예에 있어서, 상기 고정 부재는, 상기 상호 인접한 지지 플레이트들 사이에 삽입되어 상기 간극을 형성하도록 구성된 간극 형성부를 포함할 수 있다.
일 실시예에 있어서, 상기 간극의 크기는, 상기 간극 형성부의 두께에 대응하도록 구성될 수 있다.
일 실시예에 있어서, 상기 배터리 팩은, 상기 상호 인접한 지지 플레이트들 사이에 배치되어, 상기 간극 형성부의 삽입을 가이드하도록 구성된 가이드 부재를 더 포함할 수 있다.
일 실시예에 있어서, 상기 고정 부재는, 상기 상호 인접한 지지 플레이트들의 일단과, 상기 일단의 반대편에 위치한 상기 상호 인접한 지지 플레이트들의 타단에 각각 마련될 수 있다.
일 실시예에 있어서, 상기 상호 인접한 지지 플레이트들의 상기 일단 및 상기 타단에 구비된 고정 부재들 중 적어도 하나는, 상기 팩 하우징과 일체로 구성될 수 있다.
일 실시예에 있어서, 상기 상호 인접한 지지 플레이트들 중 적어도 하나의 지지 플레이트는, 상기 고정 부재의 일 부분이 삽입되어 결합되는 함입부를 포함할 수 있다.
일 실시예에 있어서, 상기 고정 부재는, 상기 간극 형성부의 일 측에서 상기 적어도 하나의 지지 플레이트는 측으로 연장되어, 상기 적어도 하나의 지지플레이트의 상기 함입부에 삽입되는 사이드부를 더 포함할 수 있다.
일 실시예에 있어서, 상기 사이드부는, 상기 함입부의 내부면에 밀착되도록 구성될 수 있다.
일 실시예에 있어서, 상기 고정 부재는, 상기 간극 형성부를 사이에 두고 상기 간극 형성부의 양 측에서 각각 상기 상호 인접한 지지 플레이트들 중 인접한 지지 플레이트 측으로 연장되어, 상기 인접한 지지 플레이트의 상기 함입부에 삽입되도록 구성된 한 쌍의 사이드부를 더 포함할 수 있다.
일 실시예에 있어서, 상기 배터리 팩은, 상기 각각의 배터리 셀 어셈블리와, 상기 복수의 지지 플레이트 중 상기 각각의 배터리 셀 어셈블리를 지지하는 지지 플레이트의 사이에 배치되는 압축 패드를 더 포함할 수 있다.
또한, 본 발명의 다른 측면에 따른 자동차는, 상술한 실시예들 중 어느 한 실시예에 따른 적어도 하나의 배터리 팩을 포함한다.
본 발명의 실시예에 따르면, 모듈 케이스나 팩 크로스 빔 등의 보강 부재가 요구되지 않으므로, 팩 하우징 내에서 모듈 케이스나 보강 부재가 차지하는 공간이나 그로 인한 공차 확보를 위한 공간이 요구되지 않을 수 있다. 이에 따라 배터리 셀 어셈블리를 실장하기 위한 팩 하우징 내의 추가 공간 확보가 가능하므로 배터리 팩의 에너지 밀도가 보다 향상될 수 있다.
또한, 본 발명의 실시예에 따르면, 고정 부재를 통해 배터리 셀 어셈블리의 전면 및 후면을 지지하는 지지 플레이트를 팩 하우징에 직접 고정할 수 있으므로, 별도의 팩 크로스 빔 등의 보강 부재 없이도 팩 하우징 내에서의 배터리 셀 어셈블리의 배치 상태가 안정적으로 유지될 수 있다.
또한, 본 발명의 실시예에 따르면, 지지 플레이트들 사이의 간극을 통해 배터리 셀 어셈블리에서 야기될 수 있는 스웰링 현상을 효과적으로 제어할 수 있다.
또한, 본 발명의 실시예에 따르면, 지지 플레이트들 사이의 간극을 통해 특정 배터리 셀 어셈블리에서 열 폭주 현상과 같은 이벤트 발생시 인접한 배터리 셀 어셈블리 간의 열 폭주나 화염이 전파되는 것을 방지하거나 최소화할 수 있다. 이에 따라 다수의 배터리 셀 어셈블리 간의 열 폭주 전파 및 동시다발적 발화를 방지하거나 최소화할 수 있다.
또한, 본 발명의 실시예에 따르면, 모듈 케이스나 팩 크로스빔 등의 보강 부재가 요구되지 않으므로, 배터리 팩의 부피나 무게가 감소되고, 제조 공정이 간소화될 수 있다.
이외에도 본 발명의 여러 실시예에 의하여, 여러 다른 추가적인 효과가 달성될 수 있다. 이러한 본 발명의 여러 효과들에 대해서는 각 실시예에서 상세하게 설명하거나, 당업자가 쉽게 이해할 수 있는 효과에 대해서는 그 설명을 생략한다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명의 일 실시예에 따른 배터리 팩을 나타낸 도면이다.
도 2는 도 1의 배터리 팩의 상세 구조를 설명하기 위한 도면이다.
도 3은 도 1의 배터리 팩에 구비된 배터리 셀 어셈블리 및 지지 플레이트를 나타낸 도면이다.
도 4는 도 1의 배터리 팩에 구비된 팩 하우징의 일부를 나타낸 도면이다.
도 5는 도 1의 배터리 팩에 구비된 고정 부재를 나타낸 도면이다.
도 6은 도 2의 A-A' 방향 단면도이다.
도 7 및 도 8은 도 4의 팩 하우징에 배터리 셀 어셈블리 및 지지 플레이트가 조립되는 상태를 나타낸 도면이다.
도 9 및 도 10은 본 발명의 제2 실시예에 따른 배터리 팩을 나타낸 도면이다.
도 11 및 도 12는 본 발명의 제3 실시예에 따른 배터리 팩을 나타낸 도면이다.
도 13은 본 발명의 제4 실시예에 따른 배터리 팩을 나타낸 도면이다.
도 14는 본 발명의 제5 실시예에 따른 배터리 팩을 나타낸 도면이다.
도 15는 도 14에 도시된 고정 부재를 나타낸 도면이다.
도 16은 본 발명의 일 실시예에 따른 자동차를 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예들과, 도면에 도시된 실시예들은 본 발명을 설명하는데 필요한 예시적인 것들에 불과할 뿐이고, 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 팩(10)을 나타낸 도면이고, 도 2는 도 1의 배터리 팩(10)의 상세 구조를 설명하기 위한 도면이며, 도 3은 도 1의 배터리 팩(10)에 구비된 배터리 셀 어셈블리(100) 및 지지 플레이트(200)를 나타낸 도면이다.
본 발명의 실시예들에서, 도면에 도시된 X축 방향은 후술되는 배터리 팩(10)의 전후 방향, Y축 방향은 X축 방향과 수평면(XY평면)상에서 수직된 배터리 팩(10)의 좌우 방향, Z축 방향은 X축 방향 및 Y축 방향에 대해 모두 수직된 상하 방향을 의미할 수 있다.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 배터리 팩(10)은, 배터리 셀 어셈블리(100), 지지 플레이트(200), 팩 하우징(300) 및 고정 부재(400)를 포함할 수 있다.
상기 배터리 셀 어셈블리(100)는, 적어도 하나의 배터리 셀(110)을 포함한다. 예컨대, 도 2에 도시된 바와 같이, 배터리 셀 어셈블리(100)는 일 방향(X축 방향)으로 적층된 복수의 배터리 셀(110)을 포함할 수 있다. 여기서, 배터리 셀은 충전 및 방전이 가능한 가장 기본적인 이차전지를 의미할 수 있다. 이러한 배터리 셀(110)은, 파우치형 배터리 셀, 원통형 배터리 셀 또는 각형 배터리 셀로 구성될 수 있다. 일례로서, 배터리 셀(110)은 파우치형 배터리 셀일 수 있다. 상세히 도시되지는 않았으나, 배터리 셀(110)의 양측 중 적어도 일측에는 전극 리드가 구비될 수 있다.
본 발명에 따른 배터리 팩(10)은, 상술한 배터리 셀 어셈블리(100)를 복수로 포함할 수 있다. 이 경우, 복수의 배터리 셀 어셈블리(100)는 일 방향(X축 방향)을 따라 나란하게 배치될 수 있다.
상기 지지 플레이트(200)는, 후술되는 팩 하우징(300)에 수용된 각각의 배터리 셀 어셈블리(100)의 적층 방향(X축 방향) 양 단에 각각 배치되어, 해당 배터리 셀 어셈블리(100)의 양 측면을 지지하도록 구성된다. 이러한 지지 플레이트(200)는, 내열성 및 강성이 강한 소재로 구성될 수 있다.
상기 팩 하우징(300)은, 배터리 셀 어셈블리(100)를 그 내부에 수용하도록 구성된다. 이를 위해, 팩 하우징(300)은, 배터리 셀 어셈블리(100)를 수용하기 위한 내부 수용 공간을 포함할 수 있다. 또한, 팩 하우징(300)은, 내열성 및 강성이 강한 소재로 구성될 수 있다.
이러한 팩 하우징(300)은, 일체형으로 구성될 수도 있고, 복수의 부재들을 결합하여 조립한 조립체로 구성될 수도 있다. 일 실시예에서, 팩 하우징(300)은, 상호 결합되는 다수의 프레임들로 구성될 수도 있다. 즉, 팩 하우징(300)은 소정 사이즈의 내부 수용 공간을 형성할 수 있게 상호 결합되는 다수의 프레임들로 구성될 수도 있다.
구체적으로, 팩 하우징(300)은, 사이드 프레임(310), 플로어 프레임(320) 및 상부 커버(330)를 포함할 수 있다.
상기 사이드 프레임(310)은, 팩 하우징(300)의 측면을 구성할 수 있다. 일례로서, 사이드 프레임(310)은 팩 하우징(300)의 전후 방향(X축 방향)에서의 측면 및 팩 하우징(300)의 좌우 방향(Y축 방향)에서의 측면을 구성할 수 있다.
상기 플로어 프레임(320)은, 팩 하우징(300)의 하부를 구성하고, 사이드 프레임(310)의 하부에 결합될 수 있다. 이 때, 플로어 프레임(320)에는 히트 싱크(미도시)가 내장된 형태로 구비될 수도 있다.
상기 상부 커버(330)는, 사이드 프레임(310)의 상부에 결합되고, 팩 하우징(300) 내부에 수용된 배터리 셀 어셈블리(100)의 상측을 커버할 수 있다. 이 때, 상부 커버(330)의 하부에는 열 전달 물질(미도시)이 구비될 수도 있다.
상기 고정 부재(400)는, 복수의 배터리 셀 어셈블리(100)를 지지하는 복수의 지지 플레이트(200) 중, 상호 인접한 지지 플레이트들을 팩 하우징(300)에 고정하되, 상기 상호 인접한 지지 플레이트들 사이에 간극(S, 후술되는 도 6 참조)이 형성되게 고정하도록 구성된다. 이 경우, 고정 부재(400)에 의해 형성되는 간극(S)은, 상기 상호 인접한 지지 플레이트들 사이의 완충 공간의 역할을 수행할 수 있다. 또한, 고정 부재(400)는, 팩 하우징(300)의 좌우 방향(Y축 방향)으로 연장되도록 구성될 수 있다. 일 실시예에 있어서, 고정 부재(400)는 탄성 소재를 포함할 수 있다.
한편, 고정 부재(400)는, 배터리 셀 어셈블리(100)의 전면 및 후면을 지지하는 지지 플레이트(200)를, 팩 하우징(300)에 직접적으로 고정하도록 구성될 수 있다. 일례로서, 고정 부재(400)는, 지지 플레이트(200)를 상하 방향에서 팩 하우징(300) 측으로 가압하여 고정시킬 수 있다(후술되는 도 7 및 8 참조). 예로써, 고정 부재(400)는, 지지 플레이트(200)를 전술한 팩 하우징(300)의 플로어 프레임(320) 및/또는 상부 커버(330) 측으로 가압하여 고정시킬 수 있다.
이 때, 배터리 셀 어셈블리(100)의 하부는 플로어 프레임(320)에 인접하게 위치될 수 있다. 또는, 배터리 셀 어셈블리(100)의 상부는 상부 커버(330)에 인접하게 위치될 수 있다. 또는, 배터리 셀 어셈블리(100)의 하부가 플로어 프레임(320)에 인접하게 위치되고, 배터리 셀 어셈블리(100)의 상부가 상부 커버(330)에 인접하게 위치될 수도 있다. 다른 예로써, 배터리 셀 어셈블리(100)의 하부는 플로어 프레임(320)에 밀착될 수도 있다. 또는, 배터리 셀 어셈블리(100)의 상부는 상부 커버(330)에 밀착될 수도 있다. 또는, 배터리 셀 어셈블리(100)의 하부가 플로어 프레임(320)에 밀착되고, 배터리 셀 어셈블리(100)의 상부가 상부 커버(330)에 밀착될 수도 있다. 이에 따라, 배터리 셀 어셈블리(100)로부터 발생된 열이 플로어 프레임(320)에 구비된 히트 싱크 및/또는 상부 커버(330)에 구비된 열 전달 물질을 통해 팩 하우징(300)의 외부로 배출될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 모듈 케이스나 팩 크로스 빔 등의 보강 부재가 요구되지 않으므로, 팩 하우징(300) 내에서 모듈 케이스나 보강 부재가 차지하는 공간이나 그로 인한 공차 확보를 위한 공간이 요구되지 않을 수 있다. 이에 따라 배터리 셀 어셈블리(100)를 실장하기 위한 팩 하우징(300) 내의 추가 공간 확보가 가능하므로 배터리 팩(10)의 에너지 밀도가 보다 향상될 수 있다.
또한, 본 발명의 실시 구성에 의하면, 고정 부재(400)를 통해 배터리 셀 어셈블리(100)의 전면 및 후면을 지지하는 지지 플레이트(200)를 팩 하우징(300)에 직접 고정할 수 있으므로, 별도의 팩 크로스 빔 등의 보강 부재 없이도 팩 하우징(300) 내에서의 배터리 셀 어셈블리(100)의 배치 상태가 안정적으로 유지될 수 있다.
또한, 본 발명의 실시 구성에 의하면, 지지 플레이트(200)들 사이의 간극(S)을 통해, 배터리 셀 어셈블리(100)에 포함된 배터리 셀(110)에서 발생할 수 있는 스웰링 현상을 효과적으로 제어할 수 있다.
또한, 본 발명의 실시 구성에 의하면, 지지 플레이트(200)들 사이의 간극(S)을 통해 특정 배터리 셀 어셈블리(100)에서 열 폭주 현상과 같은 이벤트 발생시 인접한 배터리 셀 어셈블리(100) 간의 열 폭주나 화염이 전파되는 것을 방지하거나 최소화할 수 있다. 이에 따라 다수의 배터리 셀 어셈블리(100) 간의 열 폭주 전파 및 동시다발적 발화를 방지하거나 최소화할 수 있다.
또한, 본 발명의 실시 구성에 의하면, 모듈 케이스나 팩 크로스빔 등의 보강 부재가 요구되지 않으므로, 배터리 팩의 부피나 무게가 감소되고, 제조 공정이 간소화될 수 있다.
도 4는 도 1의 배터리 팩(10)에 구비된 팩 하우징(300)의 일부를 나타낸 도면이며, 도 5는 도 1의 배터리 팩(10)에 구비된 고정 부재(400)를 나타낸 도면이고, 도 6은 도 2의 A-A' 방향 단면도이다(상세하게는 도 6은, 도 2의 구성을 A-A' 선을 기준으로 XZ평면에 대해 단면 처리하여 나타낸 도면이다.)
도 2, 도 4 내지 도 6을 참조하면, 고정 부재(400)는, 바디(410) 및 간극 형성부(420)를 포함할 수 있다.
상기 바디(410)는, 상기 고정 부재(400)의 본체에 해당하는 것으로, 지지 플레이트(200)의 길이에 대응하는 길이를 가질 수 있다.
상기 간극 형성부(420)는, 복수의 배터리 셀 어셈블리(100)를 지지하는 복수의 지지 플레이트(200) 중에서, 상호 인접한 지지 플레이트들의 사이에 상하 방향으로 삽입되어, 전술한 간극(S)을 형성하도록 구성될 수 있다. 이 때, 상기 고정 부재(400)는 그 바디(410)의 중심 부분으로부터 간극 형성부(420)가 돌출되어, 대체적으로 "T자 형태"의 단면을 가질 수 있다. 또한, 간극 형성부(420)는, 소정 두께를 가지며 바디(410)의 중심 부분에서 소정 길이만큼 돌출될 수 있다.
즉, 배터리 셀 어셈블리(100)를 지지하는 지지 플레이트(200)들을 팩 하우징(300) 내에 고정시킬 때, 고정 부재(400)의 간극 형성부(420)는 지지 플레이트(200)들 사이에 상하 방향으로 삽입되어 간극(S)을 형성할 수 있다. 이 경우, 해당 간극(S)의 크기는, 간극 형성부(420)의 두께에 대응하도록 구성될 수 있다.
또한, 간극 형성부(420)가 지지 플레이트(200)들 사이에 상하 방향으로 삽입된 상태에서, 고정 부재(400)의 바디(410)는 간극(S)의 상단 또는 하단을 커버하여, 기밀하게 밀폐할 수 있다.
이러한 실시 구성에 의하면, 인접한 서로 다른 배터리 셀 어셈블리(100)를 지지하는 지지 플레이트(200)들 사이의 완충 공간을 보다 용이하고 안정적으로 형성할 수 있다.
도 7 및 도 8은 도 4의 팩 하우징(300)에 배터리 셀 어셈블리(100) 및 지지 플레이트(200)가 조립되는 상태를 나타낸 도면이다. 이 때, 도 7에서 팩 하우징(300)의 사이드 프레임(310), 상부 커버(330)의 도시는 생략하도록 한다.
도 6 내지 도 8을 참조하면, 배터리 팩(10)은 고정 부재(400)를 복수로 포함할 수 있다. 즉, 고정 부재(400)는 상호 인접한 지지 플레이트들의 일단과, 상기 일단의 반대편에 위치한 상기 상호 인접한 지지 플레이트들의 타단에 각각 마련될 수 있다. 일 실시예에 있어서, 배터리 팩(10)은 상하 방향으로 상호 마주보는 한 쌍의 고정 부재(400)를 단위로 하여, 이러한 한 쌍의 고정 부재를 복수로 포함할 수 있다. 이 경우, 한 쌍의 고정 부재(400)의 간극 형성부들은 각각, 상호 인접한 지지 플레이트들 사이에 삽입되되, 지지 플레이트(200)들의 상단 측과 하단 측에 각각 삽입되어 간극(S)을 형성하도록 구성될 수 있다.
예컨대, 인접한 서로 다른 배터리 셀 어셈블리들 사이에서 해당 배터리 셀 어셈블리들을 각각 지지하는 2개의 지지 플레이트(200)를, 팩 하우징(300)에 고정하는 한 쌍의 고정 부재(400) 중, 제1 고정 부재(400)의 간극 형성부(420)는 상기 2개의 지지 플레이트(200)의 하단에서 상방으로 삽입되고, 제2 고정 부재(400)의 간극 형성부(420)는 상기 2개의 지지 플레이트(200)의 상단에서 하방으로 삽입될 수 있다. 이 때, 한 쌍의 고정 부재(400)의 바디(410)들은 각각, 간극(S)의 하단과 상단을 기밀하게 밀폐할 수 있다.
이러한 실시 구성에 의하면, 인접한 서로 다른 배터리 셀 어셈블리(100)를 지지하는 지지 플레이트(200)들 사이의 완충 공간을 더욱 용이하고 안정적으로 형성할 수 있다.
도 2 및 도 6 내지 도 8을 참조하면, 상호 인접한 2개의 지지 플레이트(200)의 상단 및 하단에 마련된 한 쌍의 고정 부재(400) 중 적어도 하나는, 팩 하우징(300)과 일체로 구성될 수 있다.
일 실시예에 있어서, 한 쌍의 고정 부재(400) 중 어느 하나는, 전술한 팩 하우징(300)의 플로어 프레임(320)과 일체로 구성될 수 있다. 다른 일 실시예에 있어서, 한 쌍의 고정 부재(400) 중 어느 하나는, 전술한 팩 하우징(300)의 상부 커버(330)와 일체로 구성될 수 있다. 또 다른 일 실시예에 있어서, 한 쌍의 고정 부재(400) 중 하나는 상기 플로어 프레임(320)과 일체로 구성되고, 나머지 하나는 상기 상부 커버(330)와 일체로 구성될 수 있다.
이러한 실시 구성에 의하면, 인접한 서로 다른 배터리 셀 어셈블리(100)를 지지하는 지지 플레이트(200)들 사이의 완충 공간을 더욱 용이하고 안정적으로 형성할 수 있을 뿐 아니라, 팩 하우징(300)에 대한 지지 플레이트(200)의 고정이 보다 안정적으로 이루어질 수 있다.
도 6 내지 도 8을 참조하면, 상호 인접한 지지 플레이트들 중 적어도 하나의 지지 플레이트(200)는, 고정 부재(400)의 일 부분이 삽입되어 결합되는 함입부(210)를 포함할 수 있다.
상기 함입부(210)는, 고정 부재(400)의 일측 단부가 상하 방향으로 삽입되어 결합되도록 구성될 수 있다. 구체적으로, 함입부(210)는, 고정 부재(400)의 바디(410)의 일측 단부가 상하 방향으로 삽입되어 결합될 수 있다. 이를 위해, 함입부(210)는 상하 방향으로 기립된 지지 플레이트(200)의 상단 또는 하단에서 지지 플레이트(200)의 중심부를 향해 일정 깊이로 함입된 홈 구조를 가질 수 있다.
즉, 배터리 셀 어셈블리(100)를 지지하는 지지 플레이트(200)들을 팩 하우징(300) 내에 고정시킬 때, 함입부(210)는, 전술한 간극(S)에 더하여 추가적인 완충 공간을 제공할 수 있다. 구체적으로, 지지 플레이트(200)에서 함입부(210)에 대응되는 부분에 빈 공간이 형성되고, 이러한 함입부(210)에 고정 부재(400)의 바디(410)의 측부가 결합될 수 있으므로, 함입부(210)는 배터리 셀 어셈블리(100)의 스웰링 현상에 대응하기 위한 추가적인 완충 공간을 제공할 수 있다.
이러한 실시 구성에 의하면, 배터리 셀 어셈블리(100)에서 발생할 수 있는 스웰링 현상을 더 효과적으로 제어할 수 있다.
도 5 내지 도 8을 다시 참조하면, 고정 부재(400)는, 간극 형성부(420)의 일 측에서 상기 적어도 하나의 지지 플레이트(200) 측으로 연장되어, 상기 적어도 하나의 지지 플레이트(200)의 함입부(210)에 삽입되는 사이드부(430)를 포함할 수 있다. 이 경우, 상기 사이드부(430)는 함입부(210)의 내부면에 밀착되도록 구성될 수 있다.
일 실시예에 있어서, 고정 부재(400)는 한 쌍의 사이드부(430)를 포함할 수 있다. 이 경우, 한 쌍의 사이드부(430)는 간극 형성부(420)를 사이에 두고, 간극 형성부(420)의 양 측에서 각각 인접한 지지 플레이트(200) 측으로 연장되어, 상기 인접한 지지 플레이트(200)의 함입부(210)에 삽입되도록 구성될 수 있다.
이러한 한 쌍의 사이드부(430)는, 전술한 바디(410)의 양측 단부에 해당될 수 있다. 구체적으로, 한 쌍의 사이드부(430)는, 간극 형성부(420)를 사이에 두고 간극 형성부(420)의 양 측에 각각 마련될 수 있다. 이 경우, 한 쌍의 사이드부(430)는 바디(410)의 양측 단부로부터 돌출되도록 구성될 수 있다.
또한, 각각의 사이드부(430)는 인접한 배터리 셀 어셈블리(100)를 지지하는 지지 플레이트(200)의 함입부(210)에 삽입되어 결합되도록 구성될 수 있다.
이에 따라, 배터리 셀 어셈블리(100)를 지지하는 지지 플레이트(200)들을 팩 하우징(300) 내에 고정시킬 때, 고정 부재(400)와 지지 플레이트(200) 간의 상호 결합이 안정적으로 이루어질 수 있다. 즉, 바디(410)의 양 측부에서 각각 돌출된 한 쌍의 사이드부(430)가 지지 플레이트(200)들에 결합되므로, 바디(410)의 대략 중앙으로부터 돌출된 간극 형성부(420)가 지지 플레이트(200)들 사이의 간극(S)을 안정적으로 형성할 수 있다.
이러한 실시 구성에 의하면, 인접한 서로 다른 배터리 셀 어셈블리들을 지지하는 지지 플레이트들 사이의 완충 공간을 더욱 용이하고 안정적으로 형성할 수 있다.
도 6 내지 도 8을 참조하면, 사이드부(430)는, 상하 방향으로 함입된 함입부(210)의 내부면에 밀착되도록 구성될 수 있다. 즉, 사이드부(430)는, 함입부(210)에 삽입되어 함입부(210)의 내부면에 밀착되도록 구성될 수 있다.
이와 같이, 간극 형성부(420)에 의해 지지 플레이트(200)들 사이에 간극(S)이 형성된 상태에서, 한 쌍의 사이드부(430)가 각각, 간극 형성부(420)의 양 측에 위치한 지지 플레이트들의 함입부들에 삽입되어 해당 함입부(210)의 내부면에 밀착됨으로써, 간극(S)의 상측 및/또는 하측을 더욱 기밀하게 밀폐할 수 있다.
이러한 실시 구성에 의하면, 인접한 서로 다른 배터리 셀 어셈블리(100)를 지지하는 지지 플레이트(200)들 사이의 완충 공간을 더욱 용이하고 안정적으로 형성할 수 있다.
도 6을 참조하면, 상기 배터리 팩(10)은, 압축 패드(P)를 더 포함할 수 있다. 상기 압축 패드(P)는 배터리 셀 어셈블리(100)와, 해당 배터리 셀 어셈블리(100)를 지지하는 지지 플레이트(200)의 사이에 배치되도록 구성될 수 있다. 일 실시예에 있어서, 압축 패드(P)는, 스펀지, 우레탄 또는 실리콘 등 같이 탄성을 갖는 소재를 포함할 수 있다. 더불어 압축 패드(P)는, 단열 소재를 포함할 수 있다.
상기 압축 패드(P)는, 복수의 배터리 셀(110)의 적층 방향(X축 방향)에서 볼 때, 배터리 셀 어셈블리(100)의 전면 및 후면 중 적어도 일면과 지지 플레이트(200) 사이에 배치될 수 있다. 예로써, 압축 패드(P)는, 배터리 셀 어셈블리(100)에서 야기될 수 있는 스웰링 현상을 억제하도록 구성될 수 있다.
상술한 바와 같이, 본 발명에 따르면, 고정 부재(400)에 의해 형성된 지지 플레이트(200)들 사이의 간극(S)을 통해 배터리 셀 어셈블리(100)에서 야기될 수 있는 스웰링 현상을 효과적으로 제어할 수 있다.
또한, 배터리 셀 어셈블리(100)의 스웰링 현상 방지를 위한 압축 패드(P)를, 배터리 셀 어셈블리(100)의 전면 및 후면 중 적어도 일면과 지지 플레이트(200) 사이에 배치하여, 압축 패드(P)의 수량을 최소화함으로써, 배터리 팩(10)의 부품을 간소화할 수 있다. 이에 따라, 팩 하우징(300)의 제한된 내부 공간에서 배터리 셀 어셈블리(100)를 수용하기 위한 공간을 추가적으로 확보할 수 있으므로, 배터리 팩(10)의 에너지 밀도가 보다 향상될 수 있다.
한편, 압축 패드(P)는, 전술한 실시예에 반드시 한정되는 것은 아니고, 상호 인접한 배터리 셀들 사이에도 배치될 수 있다.
도 9 및 도 10은 본 발명의 제2 실시예에 따른 배터리 팩(12)을 나타낸 도면이다.
본 실시예에 따른 배터리 팩(12)은, 앞선 실시예의 상기 배터리 팩(10)과 유사하므로, 앞선 실시예와 실질적으로 동일하거나 또는 유사한 구성들에 대해서는 중복 설명을 생략하고, 이하, 앞선 실시예와의 차이점을 중심으로 살펴 본다.
도 9 및 도 10을 참조하면, 상기 배터리 팩(12)에서, 인접한 배터리 셀 어셈블리(100)들을 지지하는 지지 플레이트(200)들 사이의 간극(S)은, 배터리 셀 어셈블리(100)에 포함된 배터리 셀(110)의 개수에 대응하여 크기가 조절되도록 구성될 수 있다.
즉, 상기 배터리 팩(12)에서, 상기 간극(S)은, 배터리 셀 어셈블리(100)의 용량에 대응하여 조절될 수 있다.
구체적으로, 지지 플레이트(200)들 사이의 간극(S)은, 고정 부재(400)의 간극 형성부(420)의 폭(X축 방향에서의 길이)을 변경함으로써 조절될 수 있다.
예시적으로, 도 9에서와 같이 하나의 배터리 셀 어셈블리(100)에서의 배터리 셀(110)이 3개로 구성된 경우, 이에 대응되는 간극(S)을 형성할 수 있는 폭을 가지는 간극 형성부(420)를 포함하는 고정 부재(400)를 인접한 배터리 셀 어셈블리(100)들을 지지하는 지지 플레이트(200)들 사이에 삽입할 수 있다. 한편, 도 10에서와 같이 하나의 배터리 셀 어셈블리(100)에서의 배터리 셀(110)이 5개로 구성된 경우, 이에 대응되는 간극(S)을 형성할 수 있는 폭을 가지는 간극 형성부(420)를 포함하는 고정 부재(400)를 인접한 배터리 셀 어셈블리(100)들을 지지하는 지지 플레이트(200)들 사이에 삽입할 수 있다.
즉, 본 실시예에 따른 배터리 팩(12)에서는, 배터리 셀 어셈블리(100)를 구성하는 배터리 셀(110)의 개수가 많은 경우 상기 간극(S)을 크게 구성할 수 있고, 배터리 셀(110)의 개수가 적은 경우 상기 간극(S)을 작게 구성할 수 있다.
이상 살펴본 바와 같이 본 실시예에 따른 배터리 팩(12)에 따르면, 배터리 셀 어셈블리(100)의 용량에 대응하여 지지 플레이트(200)들 사이의 간극(S)이 조절 가능하므로, 배터리 셀 어셈블리(100)에서 야기될 수 있는 스웰링 현상에 보다 유연한 대응이 가능한 장점이 있다.
도 11 및 도 12는 본 발명의 제3 실시예에 따른 배터리 팩(14)을 나타낸 도면이다.
본 실시예에 따른 배터리 팩(14)은, 앞선 실시예의 상기 배터리 팩(12)과 유사하므로, 앞선 실시예와 실질적으로 동일하거나 또는 유사한 구성들에 대해서는 중복 설명을 생략하고, 이하, 앞선 실시예와의 차이점을 중심으로 살펴 본다.
도 11 및 도 12를 참조하면, 상기 배터리 팩(14)은, 가이드 부재(500)를 더 포함할 수 있다.
이러한 가이드 부재(500)는, 상호 인접한 지지 플레이트들 사이에 배치되어, 고정 부재(400)의 간극 형성부(420)가 상기 상호 인접한 지지 플레이트들 사이로 정확하게 삽입되도록, 상기 간극 형성부(420)의 삽입을 가이드하도록 구성될 수 있다. 일 실시예에 있어서, 가이드 부재(500)는 강성 및 탄성력이 강한 재질을 포함할 수 있다.
상기 가이드 부재(500)의 대략 중앙에는, 간극 형성부(420)가 삽입 가능한 홀(H)이 상하 방향으로 형성될 수 있다. 이 때, 간극 형성부(420)는 홀(H)을 통과하여 지지 플레이트(200)들 사이에 삽입됨으로써 간극(S)을 형성할 수 있다. 또한, 가이드 부재(500)는, 고정 부재(400)의 측부(바디(410)의 측부)를 상하 방향으로 지지하도록 구성될 수 있다.
그리고, 가이드 부재(500)의 양 측면은, 복수의 배터리 셀(110)의 적층 방향(X축 방향)에서 볼 때, 지지 플레이트(200)의 측면에 밀착되도록 구성될 수 있다.
한편, 상기 배터리 팩(14)에서, 인접한 배터리 셀 어셈블리(100)들을 지지하는 지지 플레이트(200)들 사이의 간극(S)은, 배터리 셀 어셈블리(100)를 구성하는 배터리 셀(110)의 개수에 대응하여 크기가 조절되도록 구성될 수 있다.
즉, 상기 배터리 팩(14)에서, 상기 간극(S)은, 배터리 셀 어셈블리(100)의 용량에 대응하여 조절될 수 있다.
구체적으로, 지지 플레이트(200)들 사이의 간극(S)은, 고정 부재(400)의 간극 형성부(420)의 폭을 변경함으로써 조절될 수 있다.
예컨대, 배터리 셀 어셈블리(100)에서 스웰링 현상이 발생하는 경우, 배터리 셀 어셈블리(100)는 배터리 셀(110)의 적층 방향(X축 방향)으로 팽창될 수 있다. 이 경우, 지지 플레이트(200)는 배터리 셀 어셈블리(100)의 팽창 방향으로 만곡될 수 있다.
전술한 바와 같이, 가이드 부재(500)는 상호 인접한 2개의 배터리 셀 어셈블리(100)를 지지하는 지지 플레이트들 사이에 배치되어 해당 지지 플레이트들의 측면에 밀착될 수 있다. 따라서, 가이드 부재(500)는, 지지 플레이트(200)를 통해 전달되는 응력(팽창력)을 흡수할 수 있다. 즉, 가이드 부재(500)는, 배터리 셀 어셈블리(100)의 스웰링 현상에 의해 발생되어 고정 부재(400)에 전달되는 응력을 감소시킬 수 있다. 특히, 가이드 부재(500)는, 전술한 바와 같이 강성 및 탄성력이 강한 재질을 포함할 수 있으므로, 배터리 셀 어셈블리(100)의 스웰링 현상에 의해 발생된 응력을 더욱 잘 흡수할 수 있다.
예시적으로, 도 11에서와 같이 하나의 배터리 셀 어셈블리(100)에서의 배터리 셀(110)이 3개로 구성된 경우, 이에 대응되는 간극(S)을 형성할 수 있는 폭을 가지는 고정부재(400)의 간극 형성부(420)를, 가이드 부재(500)의 홀(H)을 통과시켜, 인접한 배터리 셀 어셈블리(100)들을 지지하는 지지 플레이트(200)들 사이에 삽입할 수 있다.
한편, 도 12에서와 같이 하나의 배터리 셀 어셈블리(100)에서의 배터리 셀(110)이 5개로 구성된 경우, 이에 대응되는 간극(S)을 형성할 수 있는 폭을 가지는 고정부재(400)의 간극 형성부(420)를, 가이드 부재(500)의 홀(H)을 통과시켜, 인접한 배터리 셀 어셈블리(100)들을 지지하는 지지 플레이트(200)들 사이에 삽입할 수 있다.
즉, 본 실시예에 따른 배터리 팩(14)에서는, 배터리 셀 어셈블리(100)를 구성하는 배터리 셀(110)의 개수가 많은 경우 상기 간극(S)을 크게 구성할 수 있고, 배터리 셀(110)의 개수가 적은 경우 상기 간극(S)을 작게 구성할 수 있다.
또한, 본 실시예에 따른 배터리 팩(14)에서는, 가이드 부재(500)가 인접한 배터리 셀 어셈블리(100)들을 지지하는 지지 플레이트(200)들 사이에 배치될 수 있으므로, 배터리 셀 어셈블리(100)를 구성하는 배터리 셀(110)의 개수가 증가하여 배터리 셀 어셈블리(100)의 스웰링 현상에 발생된 응력이 보다 커지는 경우에도, 이러한 응력이 고정 부재(400)에 전달되는 것을 최소화할 수 있다.
한편, 가이드 부재(500)의 홀(H)은 다양한 폭을 가지는 간극 형성부(420)를 통과시킬 수 있도록 적절한 크기로 형성될 수 있다.
이상 살펴본 바와 같이, 본 실시예에 따른 배터리 팩(14)에 따르면, 배터리 셀 어셈블리(100)에서 발생할 수 있는 스웰링 현상에 더욱 유연한 대응이 가능할 뿐만 아니라, 상기 스웰링 현상에 의해 고정 부재(400)가 손상되는 것을 방지할 수 있다.
도 13은 본 발명의 제4 실시예에 따른 배터리 팩(16)을 나타낸 도면이다.
본 실시예에 따른 배터리 팩(16)은, 앞선 실시예의 상기 배터리 팩(10)과 유사하므로, 앞선 실시예와 실질적으로 동일하거나 또는 유사한 구성들에 대해서는 중복 설명을 생략하고, 이하, 앞선 실시예와의 차이점을 중심으로 살펴 본다.
도 13을 참조하면, 상기 배터리 팩(16)에서, 팩 하우징(300)은, 보강 프레임(340)을 더 포함할 수 있다.
상기 보강 프레임(340)은, 팩 하우징(300)의 강성을 보강하기 위한 구성일 수 있다. 이 때, 보강 프레임(340)의 하부에는 플로어 프레임(320)이 배치될 수 있다. 또한, 보강 프레임(340)의 전후 방향(X축 방향) 양단은, 복수의 사이드 프레임(310) 중 팩 하우징(300)의 좌우 방향(Y축 방향)을 따라 배치된 사이드 프레임들에 각각 결합될 수 있다. 그리고, 팩 하우징(300)의 좌우 방향(Y축 방향)에서 볼 때, 보강 프레임(340)은 팩 하우징(300)의 대략 중앙에 구비될 수 있다.
그리고, 배터리 셀 어셈블리(100) 및 이를 지지하는 지지 플레이트(200)는 보강 프레임(340)을 기준으로 팩 하우징(300)의 좌우 방향(Y축 방향) 양 측에 배치될 수 있다. 이 때, 팩 하우징(300)의 좌우 방향(Y축 방향)에 있어서, 배터리 셀 어셈블리(100)와 지지 플레이트(200)의 일단은 사이드 프레임(310)에 인접하도록 구성될 수 있고, 타단은 보강 프레임(340)에 인접하도록 구성될 수 있다.
즉, 본 실시예에 따른 배터리 팩(16)에서는, 배터리 셀(110)의 좌우 방향(Y축 방향) 길이가 팩 하우징(300)의 좌우 방향(Y축 방향)의 길이의 대략 반인 경우에, 팩 하우징(300)의 내부에 보강 프레임(340)을 배치함으로써, 배터리 셀 어셈블리(100) 및 지지 플레이트(200)가 팩 하우징(300) 내부에 안정적으로 수용될 수 있다. 이 경우, 팩 하우징(300)의 좌우 방향(Y축 방향)으로 연장된 고정 부재(400)의 길이는, 좌우 방향(Y축 방향)으로 연장된 배터리 셀(110)의 길이에 대응되게 구성될 수 있다.
한편, 본 발명에 따른 고정 부재(400)의 내부에는 소화 물질(미도시)이 내장될 수도 있다. 예로서, 예로서, 상기 소화 물질은 고성능 소화제인 플루오르화 케톤을 고분자쉘이 감싸는 형태의 마이크로 캡슐일 수 있다. 그리고 상기 소화 물질은, 대략 120 ~ 220℃의 온도 범위에서 반응하여 소화제를 전술한 간극(S)에 배출하도록 구성될 수 있다.
즉, 고정 부재(400)의 내부에 소화 물질이 내장되는 경우, 간극(S) 내의 온도가 일정 온도 범위로 상승할 시 간극(S)으로 소화제를 배출하여, 인접한 배터리 셀 어셈블리들 간의 열 폭주 전파 및 동시다발적 발화를 더욱 확실하게 억제할 수 있다.
도 14는 본 발명의 제5 실시예에 따른 배터리 팩(18)을 나타낸 도면이다.
본 실시예에 따른 배터리 팩(18)은, 상술한 배터리 팩(10, 12)과 유사하므로, 앞선 실시예와 실질적으로 동일하거나 또는 유사한 구성들에 대해서는 중복 설명을 생략하고, 이하, 앞선 실시예와의 차이점을 중심으로 살펴 본다.
도 14을 참조하면, 상기 배터리 팩(18)은 상술한 고정 부재(400)를 대체하는 변형된 구조의 고정 부재(400')를 포함할 수 있다.
상기 고정 부재(400')는, 복수의 배터리 셀 어셈블리(100)를 지지하는 복수의 지지 플레이트(200) 중, 상호 인접한 지지 플레이트들을 팩 하우징(300)에 고정하되, 상기 상호 인접한 지지 플레이트들 사이에 간극(S)이 형성되도록 고정할 수 있다.
이러한 고정 부재(400')에 의해 형성되는 간극(S)은, 상기 상호 인접한 지지 플레이트들 사이의 완충 공간의 역할을 수행할 수 있다. 또한, 고정 부재(400')는, 팩 하우징(300)의 좌우 방향(Y축 방향)으로 연장되도록 구성될 수 있다.
도 15는 도 14에 도시된 고정 부재(400')를 나타낸 도면이다.
도 15를 참조하면, 상기 고정 부재(400')는, 바디(410), 간극 형성부(420) 및 사이드부(430)를 포함할 수 있다.
상기 바디(410)는, 상기 고정 부재(400')의 본체를 구성할 수 있다.
상기 간극 형성부(420)는, 상술한 바와 같이, 상호 인접한 지지 플레이트들의 사이에 상하 방향(Z축 방향)으로 삽입되어, 전술한 간극(S)을 형성하도록 구성될 수 있다.
이 때, 상기 고정 부재(400')는 그 바디(410)의 일측 단부에서 간극 형성부(420)가 돌출되어, 대체적으로 "L자 형태"의 단면을 가질 수 있다. 이 경우, 간극 형성부(420)는, 소정 두께를 가지며 바디(410)의 일측 단부에서 소정 길이만큼 돌출될 수 있다.
상기 사이드부(430)는, 간극 형성부(420)의 일 측에서, 상기 고정 부재(400')와 인접한 지지 플레이트(200) 측으로 연장되어, 상기 인접한 지지 플레이트(200)의 함입부(210)에 삽입되도록 구성될 수 있다. 이 경우, 상기 사이드부(430)는 함입부(210)의 내부면에 밀착되도록 구성될 수 있다.
이러한 실시 구성에 의하면, 지지 플레이트(200)를 팩 하우징(300) 내부에 용이하게 고정할 수 있으며, 팩 하우징(300)의 내부에 배치되는 배터리 셀 어셈블리들의 배치 구조를 다양화할 수 있다.
도 16은 본 발명의 일 실시예에 따른 자동차(2)를 나타낸 도면이다.
도 16을 참조하면, 본 발명의 일 실시예에 따른 자동차(2)는, 앞서 설명된 다양한 실시예에 따른 적어도 하나의 배터리 팩(10, 12, 14, 16, 18)을 포함한다.
이와 같이, 자동차(2)에 구비된 배터리 팩(10, 12, 14, 16, 18)은 자동차(2)의 여러 동작에 필요한 전기 에너지를 제공할 수 있다.
참고로, 본 발명에 따른 배터리 팩(10, 12, 14, 16, 18)은 자동차 이외에 다양한 전기 장치나 전기 시스템에 적용될 수 있음은 물론, ESS(Energy Storage System)에도 적용될 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
한편, 본 발명에서 상, 하, 좌, 우, 전, 후와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.

Claims (12)

  1. 복수의 배터리 셀 어셈블리;
    상기 복수의 배터리 셀 어셈블리를 내부에 수용하는 팩 하우징;
    상기 팩 하우징에 수용된 각각의 배터리 셀 어셈블리의 양 측면을 지지하도록 구성된 복수의 지지 플레이트; 및
    상기 복수의 지지 플레이트 중 상호 인접한 지지 플레이트들을 상기 팩 하우징에 고정하되, 상기 상호 인접한 지지 플레이트들 사이에 간극이 형성되게 고정하도록 구성된 고정 부재를 포함하는 것을 특징으로 하는 배터리 팩.
  2. 제1항에 있어서,
    상기 고정 부재는,
    상기 상호 인접한 지지 플레이트들 사이에 삽입되어 상기 간극을 형성하도록 구성된 간극 형성부를 포함하는 것을 특징으로 하는 배터리 팩.
  3. 제2항에 있어서,
    상기 간극의 크기는,
    상기 간극 형성부의 두께에 대응하도록 구성된 것을 특징으로 하는 배터리 팩.
  4. 제2항에 있어서,
    상기 배터리 팩은,
    상기 상호 인접한 지지 플레이트들 사이에 배치되어, 상기 간극 형성부의 삽입을 가이드하도록 구성된 가이드 부재를 더 포함하는 것을 특징으로 하는 배터리 팩.
  5. 제2항에 있어서,
    상기 고정 부재는,
    상기 상호 인접한 지지 플레이트들의 일단과, 상기 일단의 반대편에 위치한 상기 상호 인접한 지지 플레이트들의 타단에 각각 마련된 것을 특징으로 하는 배터리 팩.
  6. 제5항에 있어서,
    상기 상호 인접한 지지 플레이트들의 상기 일단 및 상기 타단에 구비된 고정 부재들 중 적어도 하나는,
    상기 팩 하우징과 일체로 구성된 것을 특징으로 하는 배터리 팩.
  7. 제2항에 있어서,
    상기 상호 인접한 지지 플레이트들 중 적어도 하나의 지지 플레이트는,
    상기 고정 부재의 일 부분이 삽입되어 결합되는 함입부를 포함하는 것을 특징으로 하는 배터리 팩.
  8. 제7항에 있어서,
    상기 고정 부재는,
    상기 간극 형성부의 일 측에서 상기 적어도 하나의 지지 플레이트 측으로 연장되어, 상기 적어도 하나의 지지 플레이트의 함입부에 삽입되는 사이드부를 더 포함하는 것을 특징으로 하는 배터리 팩.
  9. 제8항에 있어서,
    상기 사이드부는,
    상기 함입부의 내부면에 밀착되도록 구성된 것을 특징으로 하는 배터리 팩.
  10. 제7항에 있어서,
    상기 고정 부재는,
    상기 간극 형성부를 사이에 두고 상기 간극 형성부의 양 측에서 각각 인접한 지지 플레이트 측으로 연장되어, 상기 인접한 지지 플레이트의 함입부에 삽입되도록 구성된 한 쌍의 사이드부를 더 포함하는 것을 특징으로 하는 배터리 팩.
  11. 제1항에 있어서,
    상기 각각의 배터리 셀 어셈블리와, 상기 복수의 지지 플레이트 중 상기 각각의 배터리 셀 어셈블리를 지지하는 지지 플레이트의 사이에 배치되는 압축 패드를 더 포함하는 것을 특징으로 하는 배터리 팩.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 배터리 팩을 포함하는 자동차.
PCT/KR2023/009697 2022-08-10 2023-07-07 배터리 팩 및 이를 포함하는 자동차 WO2024034870A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3230276A CA3230276A1 (en) 2022-08-10 2023-07-07 Battery pack and vehicle comprising same
CN202380013847.0A CN118056324A (zh) 2022-08-10 2023-07-07 电池组和包括该电池组的车辆
EP23848579.1A EP4372887A1 (en) 2022-08-10 2023-07-07 Battery pack and vehicle comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220099863 2022-08-10
KR10-2022-0099863 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034870A1 true WO2024034870A1 (ko) 2024-02-15

Family

ID=89851886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009697 WO2024034870A1 (ko) 2022-08-10 2023-07-07 배터리 팩 및 이를 포함하는 자동차

Country Status (4)

Country Link
KR (1) KR20240021694A (ko)
CN (1) CN118056324A (ko)
CA (1) CA3230276A1 (ko)
WO (1) WO2024034870A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180050086A (ko) * 2016-11-04 2018-05-14 주식회사 엘지화학 배터리 팩
KR20200106378A (ko) * 2019-03-04 2020-09-14 주식회사 엘지화학 스웰링 흡수 및 열 차단 기능을 갖는 패드 복합체를 구비하는 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
KR20200131500A (ko) * 2019-05-14 2020-11-24 에스케이이노베이션 주식회사 배터리 모듈
CN214898766U (zh) * 2021-03-17 2021-11-26 恒大新能源技术(深圳)有限公司 一种电芯模块及电池包
KR20220065548A (ko) * 2020-11-13 2022-05-20 에스케이온 주식회사 배터리 모듈 및 이를 구비하는 배터리 팩
KR20220099863A (ko) 2021-01-07 2022-07-14 현대모비스 주식회사 차량용 브레이크 패드 마모 검출장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180050086A (ko) * 2016-11-04 2018-05-14 주식회사 엘지화학 배터리 팩
KR20200106378A (ko) * 2019-03-04 2020-09-14 주식회사 엘지화학 스웰링 흡수 및 열 차단 기능을 갖는 패드 복합체를 구비하는 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
KR20200131500A (ko) * 2019-05-14 2020-11-24 에스케이이노베이션 주식회사 배터리 모듈
KR20220065548A (ko) * 2020-11-13 2022-05-20 에스케이온 주식회사 배터리 모듈 및 이를 구비하는 배터리 팩
KR20220099863A (ko) 2021-01-07 2022-07-14 현대모비스 주식회사 차량용 브레이크 패드 마모 검출장치
CN214898766U (zh) * 2021-03-17 2021-11-26 恒大新能源技术(深圳)有限公司 一种电芯模块及电池包

Also Published As

Publication number Publication date
KR20240021694A (ko) 2024-02-19
CN118056324A (zh) 2024-05-17
CA3230276A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2021118028A1 (ko) 인근 모듈로의 가스 이동을 방지할 수 있는 전지 모듈
WO2021221478A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022149896A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023033553A1 (ko) 배터리 셀, 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2024034870A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2022149897A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2024071613A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2023172092A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2023171917A1 (ko) 배터리 팩 및 이를 포함하는 전력 저장 장치
WO2023211126A1 (ko) 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2024019451A1 (ko) 배터리 팩 및 배터리 모듈
WO2022265363A1 (ko) 안전성이 향상된 배터리 팩
WO2024019514A1 (ko) 배터리 팩 및 이를 포함하는 디바이스
WO2024019511A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2023090949A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2024005581A1 (ko) 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2023121090A1 (ko) 배터리 셀, 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2024063485A1 (ko) 배터리 팩 및 이를 포함하는 전력 저장 장치
WO2024117429A1 (ko) 배터리 모듈
WO2024019412A1 (ko) 배터리 팩 및 이를 포함하는 디바이스
WO2023229139A1 (ko) 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2024019418A1 (ko) 배터리 팩과 이에 포함되는 셀 블록 및 이를 포함하는 자동차
WO2023210931A1 (ko) 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2024019413A1 (ko) 배터리 팩 및 이를 포함하는 디바이스
WO2024019414A1 (ko) 전지 팩 및 이를 포함하는 디바이스

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023848579

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023848579

Country of ref document: EP

Effective date: 20240215

WWE Wipo information: entry into national phase

Ref document number: 3230276

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848579

Country of ref document: EP

Kind code of ref document: A1